

Curt Russell Topock Site Manager GT&D Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

October 15, 2009

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Third Quarter 2009 Monitoring Report – Board Order R7-2006-0060 PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System Discharge to Injection Wells

Dear Mr. Perdue:

Enclosed is the Third Quarter 2009 Monitoring Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) under Order R7-2006-0060 and in compliance with the revised Monitoring and Reporting Program for Order R7-2006-0060, issued August 28, 2008. The WDRs apply to IM No. 3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely, 14

Curt Russell Topock Site Manager

Enclosures:

Third Quarter 2009 Monitoring Report for the IM No. 3 Groundwater Treatment System

cc: Cliff Raley, Water Board Tom Vandenberg, State Water Resources Control Board Aaron Yue, DTSC

Third Quarter 2009 Monitoring Report

Interim Measure No. 3 Groundwater Treatment System

Waste Discharge Requirements Board Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for California Regional Water Quality Control Board Colorado River Basin Region

> on behalf of Pacific Gas and Electric Company

> > October 15, 2009

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

Third Quarter 2009 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

October 15, 2009

This report was prepared and or the supervision of a California Certified B ngineer No. C68986 REGIS Exp. 12/09 Pen Thy Dennis Fink, P.E. No **Project Engineer**

iii

Contents

1.0	Introduction	1-1
2.0	Sampling Station Locations	
3.0	Description of Activities	
4.0	Groundwater Treatment System Flow Rates	
	4.1 July 2009	
	4.2 August 2009	
	4.3 September 2009	
5.0	Sampling and Analytical Procedures	
6.0	Analytical Results	
7.0	Conclusions	
8.0	Certification	

Tables

- 1 Sampling Station Descriptions
- 2 Flow Monitoring Results
- 3 Sample Collection Dates
- 4 Board Order No. R7-2006-0060 Waste Discharge Requirements Influent Monitoring Results
- 5 Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent Monitoring Results
- 6 Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse Osmosis Concentrate Monitoring Results
- 7 Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge Monitoring Results
- 8 Board Order No. R7-2006-0060 Waste Discharge Requirements Monitoring Information
- 9 Additional Effluent Monitoring Results

Figures

1 IM No. 3 Project Site Features

TP-PR-10-10-03 Effluent Metering Locations

TP-PR-10-10-11	Influent Metering Locations
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
TP-PR-10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations

Appendix

A Third Quarter 2009 Laboratory Analytical Reports

Acronyms and Abbreviations

IM	Interim Measure
IW	injection well
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
RO	reverse osmosis
TPH	total petroleum hydrocarbons
Truesdail	Truesdail Laboratories, Inc.
TVSS	transient voltage surge suppressor
Water Board	California Regional Water Quality Control Board, Colorado River Basin Region
WDR	Waste Discharge Requirements

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area. All figures are located at the end of this report.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006 and is the successor to Order No. R7-2004-0103. The revised Monitoring and Reporting Program (MRP) under the Order, issued August 28, 2008, requires quarterly monitoring reports to be submitted by the fifteenth day of the month following the end of the quarter.

This report covers monitoring activities related to operation of the IM No. 3 groundwater treatment system during the Third Quarter 2009. The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. (All tables are located at the end of this report.) Sampling station locations are shown on the process and instrumentation diagrams, Figures TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, provided at the end of this report.

3.0 Description of Activities

The treatment system was initially operated between July 25 and July 28, 2005 for the Waste Discharge Requirement (WDR)-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, permitted by Order R7-2006-0060 (successor to Order R7-2004-0103), includes:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

During the Third Quarter 2009, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during Third Quarter 2009. The operational run time for the IM groundwater extraction system (combined or individual pumping), by month, was approximately:

- 64.0 percent during July 2009
- 97.3 percent during August 2009
- 72.8 percent during September 2009

Operation of the groundwater treatment system results in the following three out-flow components:

- **Treated Effluent**: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis Concentrate (brine)**: Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility. Disposal occurs each time a sludge waste storage bin reaches capacity or within 90 days of the start date for accumulation in the storage container.

Activities during the Third Quarter 2009 included two extended shutdowns. The first extended shutdown was in July, due primarily to planned maintenance to replace the aging reverse osmosis (RO) system. The second extended shutdown was in September due primarily to equipment failure that resulted in synthetic oil fouling of the treatment stream.

July Extended Shutdown

The IM No. 3 extraction system was shut down for 267.9 hours during July 2009, for both planned and unplanned events. The causes of the extraction system downtime included:

- Planned maintenance to replace the aging RO system with a new, modern RO system;
- Unplanned maintenance to troubleshoot the new RO system during testing; and
- Unplanned maintenance to repair the microfilter level system.

The RO unit start-up testing was completed July 27, 2009, and the IM No. 3 plant was returned to continuous treatment service.

September Extended Shutdown

The IM No. 3 facility shut down on September 9, 2009 due to equipment failure that resulted in synthetic oil fouling of the treatment stream in tank T301A from the tank mixer gearbox. Immediately upon discovery of the fouling, IM No. 3 operators shut down the extraction and injection well systems, and began cleanup and recovery actions. PG&E notified the Water Board about the incident on September 9, 2009. PG&E also had follow-up conversations with the Water Board on September 11, 14, and 16 to discuss the status of the clean-up and recovery actions. On September 16, 2009 the Water Board concurred with PG&E's recommendation to resume the injection of treated water from the IM No. 3 treatment plant into the injection wells.

The following recovery actions were implemented to address the synthetic oil fouling:

- At approximately 11:00 a.m. on September 9, 2009, injection was stopped upon discovering the oil fouling within the IM No. 3 treatment system. Injection of treated water was halted and the plant put into recirculation mode.
- At approximately 11:00 p.m. on September 9, 2009, the plant recirculation was shut down, which allowed free oil to float to the top of tanks.
- Starting at approximately 7:00 a.m. on September 10, 2009, a vacuum truck was mobilized to IM No. 3 to remove oil contamination. Removal of water in the top layer of tanks and injection pipe flushing were completed from September 10-15, 2009. The clarifier was drained and pressure-washed. The RO prefilters were inspected, and no significant fouling or petroleum odor was observed on the RO pre-filters.
- On September 14, 2009 three air-lift backwash cycles of injection well 3 (IW-3) were completed to help remove traces of oil that may have been pumped to the injection well by removing water from the injection well and the aquifer surrounding the well.
- On the afternoon of September 14, 2009 plant operation was restarted in recirculation mode.
- Injection was restarted on afternoon of September 16, 2009 after receiving Water Board concurrence.

4.0 Groundwater Treatment System Flow Rates

The Third Quarter 2009 treatment system monthly average flow rates (influent, effluent, and reverse osmosis concentrate) are presented in Table 2.

The system influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-RP-10-10-03). The treatment system effluent flow rate was measured by flow meters in the piping into injection wells IW-2 and IW-3 (Figure TP-RP-10-10-11). The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-RP-10-10-08).

The IM No. 3 facility treated approximately 13,873,469 gallons of extracted groundwater during the Third Quarter 2009. The IM No. 3 facility also treated approximately 8,860 gallons of water generated from the groundwater monitoring program and 32,100 gallons of injection well backwashing/re-development water.

Three containers of solids were transported offsite from the IM No. 3 facility during Third Quarter 2009.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 22 percent of downtime during Third Quarter 2009) are summarized below. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site.

4.1 July 2009

Periods of planned and unplanned extraction system down time (that together resulted in approximately 36.0 percent of downtime during July 2009) are summarized below.

- July 2, 2009 (planned): The extraction well system was offline from 2:37 p.m. to 6:14 p.m. for electrical and mechanical work associated with the RO upgrade. Extraction system downtime was 3 hours and 37 minutes.
- **July 3, 2009 (planned):** The extraction well system was offline from 2:02 p.m. to 9:41 p.m. for a microfilter repair. Extraction system downtime was 7 hours and 39 minutes.
- July 4, 2009 (unplanned): The extraction well system was offline from 3:04 p.m. to 4:18 p.m. and from 11:33 p.m. to 11:44 p.m. when City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 1 hour and 25 minutes.
- **July 8, 2009 (planned):** The extraction well system was offline from 12:24 p.m. to 12:25 p.m. and from 12:38 p.m. to 12:39 p.m. to measure and calculate the specific capacity of the extraction wells. Extraction system downtime was 2 minutes.

- July 9, 2009 (planned): The extraction well system was offline from 12:54 p.m. to 12:55 p.m., 12:59 p.m. to 1:00 p.m., and 1:05 p.m. to 1:06 p.m. while testing the pipeline leak detection system. Extraction system downtime was 3 minutes.
- July 10, 2009 (unplanned): The extraction well system was offline from 6:47 a.m. to 6:56 p.m. when the transient voltage surge suppressor (TVSS) failed after the City of Needles power supply imbalance alarmed and shut down the extraction wells. The TVSS was replaced with a spare. Since the plant was down, additional electrical work associated with the RO upgrade was completed. Extraction well downtime was 12 hours and 9 minutes.
- July 13 16, 2009 (planned): The extraction well system was offline from 9:01 a.m. on July 13, 2009 to 4:14 p.m. on July 16, 2009 for beginning the commissioning and startup of the new RO equipment that replaced the aging RO equipment. Extraction well downtime was 3 days, 7 hours, and 13 minutes.
- July 16, 2009 (planned): The extraction well system was offline from 5:43 p.m. to 6:18 p.m. for maintenance prior to starting up the plant with the existing RO system. Extraction well downtime was 35 minutes.
- July 17, 2009 (planned): The extraction well system was offline from 5:38 a.m. to 11:32 a.m. and from 11:33 a.m. to 7:45 p.m. for plant maintenance. Extraction well downtime was 14 hours and 6 minutes.
- **July 18 19, 2009 (unplanned):** The extraction well system was offline from 1:27 p.m. to 1:50 p.m. on July 18, 2009 and from 11:52 p.m. on July 18, 2009 to 12:21 a.m. on July 19, 2009 when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction well downtime was 52 minutes.
- July 20, 2009 (planned): The extraction well system was offline from 10:07 a.m. to 11:04 a.m. and 11:07 a.m. to 12:24 p.m. to switch from generator power to City of Needles power. Extraction well downtime was 2 hours and 14 minutes.
- July 22 27, 2009 (planned): The extraction well system was offline from 7:21 a.m. on July 22, 2009 to 4:13 p.m. on July 27, 2009 to complete the commissioning and startup of the new RO equipment that replaced the aging RO equipment. Extraction well downtime was 5 days, 8 hours, and 52 minutes.
- July 28, 2009 (unplanned): The extraction well system was offline from 7:54 a.m. to 8:17 a.m., 10:19 a.m. to 5:09 p.m., and 5:13 p.m. to 6:29 p.m. for microfilter repairs. Extraction well downtime was 8 hours and 29 minutes.
- July 30, 2009 (unplanned): The extraction well system was offline from 3:39 p.m. to 7:03 p.m. to replace a membrane element in the new primary RO. Extraction well downtime was 3 hours and 24 minutes.
- July 30, 2009 (unplanned): The extraction well system was offline from 11:56 p.m. to 11:57 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction well downtime was 1 minute.

• July 31, 2009 (unplanned): The extraction well system was offline from 12:00 a.m. to 12:01 a.m., from 12:06 a.m. to 12:11 a.m., 12:14 a.m. to 12:15 a.m., 12:16 a.m. to 12:21 a.m., 10:06 a.m. to 3:04 p.m., and 3:59 p.m. to 4:01 p.m. due to power supply imbalances and for plant maintenance. Extraction well downtime was 5 hours and 12 minutes.

4.2 August 2009

Periods of planned and unplanned extraction system down time (that together resulted in approximately 2.7 percent of downtime during August 2009) are summarized below.

- August 1, 2009 (unplanned): The extraction well system was offline from 6:06 a.m. to 6:14 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 8 minutes.
- August 5, 2009 (unplanned): The extraction well system was offline from 6:17 a.m. to 6:25 a.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 8 minutes.
- August 7, 2009 (planned): The extraction well system was offline from 12:03 p.m. to 12:04 p.m., 12:15 p.m. to 12:20 p.m., 12:33 p.m. to 12:34 p.m., and from 12:37 p.m. to 12:38 p.m. while testing the pipeline leak detection system. Extraction system downtime was 8 minutes.
- August 10, 2009 (planned): The extraction well system was offline from 11:31 a.m. to 1:16 p.m. to maintain proper levels in tanks. Extraction system downtime was 1 hour and 45 minutes.
- August 11, 2009 (planned): The extraction well system was offline from 1:31 a.m. to 2:22 a.m. to maintain proper levels in tanks. Extraction system downtime was 51 minutes.
- August 11, 2009 (planned): The extraction well system was offline from 7:53 a.m. to 6:15 p.m. to perform scheduled monthly maintenance. Extraction well downtime was 10 hours and 22 minutes.
- August 16, 2009 (unplanned): The extraction well system was offline from 12:45 p.m. to 1:04 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction well downtime was 19 minutes.
- August 31, 2009 (planned): The extraction well system was offline from 7:21 a.m. to 1:58 p.m. for the microfilter bank switch. Extraction well downtime was 6 hours and 37 minutes.

4.3 September 2009

Periods of planned and unplanned extraction system down time (that together resulted in approximately 27.2 percent of downtime during September 2009) are summarized below.

• September 6, 2009 (unplanned): The extraction well system was offline from 8:29 a.m. to 8:30 a.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 1 minute.

- September 8, 2009 (planned): The extraction well system was offline from 11:20 a.m. to 11:28 a.m., 11:32 a.m. to 11:33 a.m., 11:41 a.m. to 11:42 a.m., 11:47 a.m. to 11:48 a.m., 12:04 p.m. to 12:05 p.m. and 12:10 p.m. to 12:11 p.m. for testing of the pipeline leak detection alarm system. Extraction system downtime was 13 minutes.
- September 8, 2009 (planned): The extraction well system was offline from 1:21 p.m. to 1:44 p.m., 1:54 p.m. to 2:17 p.m. and 2:27 p.m. to 6:59 p.m. for the microfilter bank switch. Extraction system downtime was 5 hours and 18 minutes.
- September 9 -14, 2009 (unplanned): The extraction well system was offline from 11:00 a.m. on September 9 to 2:19 p.m. on September 14 due to an equipment failure resulting in synthetic oil fouling of the treatment stream in operation tank T301A from the tank mixer gearbox. Extraction system downtime was 5 days, 3 hours and 19 minutes.
- September 14 -16, 2009 (planned): The extraction well system was offline from 3:10 p.m. to 3:26 p.m. on September 14 and from 3:32 p.m. on September 14 to 3:42 p.m. on September 16 to collect samples and to maintain proper levels in tanks. Extraction system downtime was 2 days, and 26 minutes.
- September 23, 2009 (planned): The extraction well system was offline from 7:58 a.m. to 3:49 p.m. for the microfilter bank switch and injection line maintenance. Extraction system downtime was 6 hours and 51 minutes.
- **September 25, 2009 (unplanned):** The extraction well system was offline from 12:12 p.m. to 2:37 p.m. due to failure of polymer feed. Extraction well downtime was 2 hours and 25 minutes.
- September 26, 2009 (unplanned): The extraction well system was offline from 2:00 p.m. to 2:02 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction well downtime was 2 minutes.
- September 27, 2009 (unplanned): The extraction well system was offline from 10:11 a.m. to 10:32 p.m. due to low pressure in the TW-3D extraction well pipeline. Extraction well downtime was 21 minutes.
- September 27-28, 2009 (unplanned): The extraction well system was offline from 12:54 p.m. to 2:25 p.m. on September 27, from 5:23 a.m. to 5:27 a.m. on September 28, and 5:28 a.m. to 6:38 a.m. on September 28 due to high water level in the raw water tank, T-100. Extraction well downtime was 3 hours and 45 minutes.
- September 28, 2009 (planned): The extraction well system was offline from 7:43 a.m. to 12:32 p.m. to install new modules in the microfilter. Extraction well downtime was 4 hours and 49 minutes.

5.0 Sampling and Analytical Procedures

With the exception of pH, all samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to Truesdail via courier under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival.

Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program. California-certified laboratory analyses were performed in accordance with the latest edition of the *Guidelines Establishing Test Procedures for Analysis of Pollutants* (40 Code of Federal Regulations Part 136), promulgated by the United States Environmental Protection Agency.

During the Third Quarter 2009, analysis of pH was conducted by field method pursuant to the Water Board letter dated October 16, 2007 (subject: Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling frequency was conducted in accordance with the revised MRP, issued August 28, 2008.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060, the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Water Board on June 17, 2005, and the revised MRP under Order R7-2006-0060 issued August 28, 2008. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

6.0 Analytical Results

Laboratory reports for samples collected in Third Quarter 2009 were prepared by certified analytical laboratories, and are presented in Appendix A.

Samples were collected in accordance with the WDR sampling frequency requirements. See Table 3 for sample collection dates.

The influent sampling analytical results are presented in Table 4. The effluent sampling analytical results are presented in Table 5. The reverse osmosis concentrate sampling analytical results are presented in Table 6. The sludge sampling analytical results are presented in Table 7.

Table 8 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

Additional effluent sampling analytical results are presented in Table 9. These additional samples were collected and analyzed for total petroleum hydrocarbons (TPH) at the request of the Water Board as a result of the September extended treatment system shutdown due primarily to equipment failure that resulted in synthetic oil fouling of the treatment stream.

7.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period. No events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units were identified during the reporting period.

8.0 Certification

On August 12, 2005, PG&E submitted a signature delegation letter to the Water Board, delegating PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0060 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated December 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	bernne
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Site Manager
Date:	October 15, 2009

Tables

Sampling Station Descriptions

Third Quarter 2009 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-RP-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-RP-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-RP-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-RP-10-10-06).

Note:

= Sequential sample identification number at each sample station.

^a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

Flow Monitoring Results

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^{b,c} (gpm)	Reverse Osmosis Concentrate ^b (gpm)
July 2009 Average Monthly Flowrate	86.0	83.4	1.8
August 2009 Average Monthly Flowrate	131.4	127.3	3.2
September 2009 Average Monthly Flowrate	96.5	93.5	2.3

Third Quarter 2009 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Notes:

gpm: gallons per minute.

^a Extraction wells TW-3D and PE-1 were operated during the Third Quarter 2009. Extraction wells TW-2D and TW-2S were not operated during the Third Quarter 2009.

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during the Third Quarter 2009 is approximately 0.76 percent.

 $^{\circ}$ Effluent was discharged into injection wells IW-2 and IW-3 during the Third Quarter 2009.

Parameter	Sample Collection Dates	Results
Influent ^a	July 1, 2009	See Table 4
	August 5, 2009	
	September 2, 2009	
Effluent ^b	July 1, 2009	See Table 5
	July 8, 2009	
	July 13, 2009	
	July 21, 2009	
	July 29, 2009	
	August 5, 2009	
	August 12, 2009	
	August 19, 2009	
	August 26, 2009	
	September 2, 2009	
	September 9, 2009	
	September 16, 2009	
	September 18, 2009	
	September 23, 2009	
	September 30, 2009	
Reverse Osmosis Concentrate ^c	September 2, 2009	See Table 6
Sludge ^d	August 4, 2009	See Table 7
	September 12, 2009	
	September 18, 2009	
Additional Effluent Sampling	September 16, 2009	See Table 9
Requested by Water Board	September 17, 2009	
	September 18, 2009	
	September 19, 2009	
	September 20, 2009	
	September 21, 2009	

Sample Collection Dates

Notes:

^a Influent sampling is required monthly.

^b Effluent sampling is required weekly.

^c Reverse Osmosis Concentrate sampling is required quarterly.

^d Sludge samples analysis is required quarterly by composite.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Influent Monitoring Results a Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Samplin	ng Frequency										Мо	nthly												
	Analytes Units ^b	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium µg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic µg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluorid mg/L	e Lead μg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron µg/L	Zinc μg/L
Sample ID	MDL Date	7.00	0.0070	0.0220		0.0750	0.998	1.28	0.0050	0.112	0.0750	0.0810	0.0020	0.520	0.0250	0.0750	0.0600	0.0840	0.205	0.0350	0.00020	1.00	2.40	0.575
SC-100B-WDR-210	7/1/2009	4900	ND (0.100)	7980	7.1	1130	1190	ND (50.0)	ND (0.500)	ND (10.0)	3.64	24.8	1.08	ND (5.00)	2.58	ND (10.0)	ND (10.0)	20.7	ND (10.0)	3.12	ND (0.0050)) 571 I	ND (20.0)	16.8
RL		250	0.100	2.00		1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-100B-WDR-215	5 8/5/2009	4680	ND (0.100)	7980	7.4	950	1060	ND (50.0)	ND (0.500)	ND (10.0)	3.60	22.8	1.11	ND (5.00)	2.30	ND (10.0)	ND (10.0)	18.8	ND (10.0)	2.50	ND (0.0050)) 532 I	ND (20.0)	ND (10.0)
RL		250	0.100	2.00		1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	50.0	20.0	10.0
SC-100B-WDR-219	9/2/2009	5130	ND (0.100)	7970	7.6	1060	1090	ND (50.0)	ND (0.500)	ND (10.0)	2.05	13.2	1.04	ND (5.00)	2.91	ND (10.0)	ND (10.0)	12.6	ND (10.0)	3.22	ND (0.0050)) 561 I	ND (20.0)	ND (20.0)
RL		250	0.100	2.00		10.0	10.5	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	12.5	20.0	20.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

N = nitrogen

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units RL = project reporting limit

 $\mu g/L = micrograms per liter$

µmhos/cm = micromhos per centimeter

^a Sampling Location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

^b Units reported in this table are those units required in the WDRs.

^c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Effluent Monitoring Results ^a *Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System*

WDRs Effluent	Ave. Monthly	NA	NA	NA	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-imits ^b	Max Daily	NA	NA	NA	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Required Samplin	ng Frequency			Weekly	,											Monthly								
	Analytes	TDS	Turbidity	Specific Conductance	Field ^e pH	Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead I	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
\sim	Units ^c	mg/L	NTU	µmhos/cm	pH units	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	mg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	mg/L	µg/L	µg/L
		3.50	0.0070	0.0220		0.0750	0.0200	1.28	0.0050	0.112	0.0750	0.0810	0.0020	0.520	0.0250	0.0750	0.0600	0.0840	0.205	0.0350	0.00020	1.00	2.40	0.575
Sample ID	Date																							
SC-700B-WDR-210	0 7/1/2009	4120	ND (0.100)	6970	7.00	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	ND (10.0) 1.06	ND (5.00)	2.76	ND (10.0)	ND (10.0)	16.0	ND (10.0)	3.14	ND (0.0050)	492	ND (20.0)	ND (10.0
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	· · /	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-700B-WDR-211	1 7/8/2009	4170	ND (0.100)	7140	7.00	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-212	2 7/13/2009	3980	ND (0.100)	6970	7.50	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-213	3 7/21/2009	4070	ND (0.100)	6960	7.10	ND (1.00)	ND (0.200)																	
RL		125	0.100	2.00		1.00	0.200																	
SC-700B-WDR-214	4 7/29/2009	4480	ND (0.100)	7630	7.50	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-21	5 8/5/2009	4390	ND (0.100)	7380	7.80	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	13.6	1.07	ND (5.00)	2.14	ND (10.0)	44.9	14.2	ND (10.0)	2.31	ND (0.0050)	492	ND (20.0)	20.4
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	50.0	20.0	10.0
SC-700B-WDR-216	6 8/12/2009	3600	0.105	5990	7.70	1.23	ND (0.200)																	
RL		125	0.100	2.00		1.00	0.200																	
SC-700B-WDR-217	7 8/19/2009	4130	0.109	7060	7.70	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-218	8 8/26/2009	4120	0.113	6900	7.20	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-219	9 9/2/2009	4220	ND (0.100)	6990	7.60	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	ND (10.0) 1.01	ND (5.00)	2.47	ND (10.0)	ND (10.0)	24.6	ND (10.0)	2.84	ND (0.0050)	485	ND (20.0)	ND (20.0
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	12.5	20.0	20.0
SC-700B-WDR-220	0 9/9/2009	4290	0.118	7060	7.60	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-22	1 9/16/2009	4430	0.162	7610	7.50	ND (1.00)	0.370																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-222	2 9/18/2009	4310	0.141	7270	7.80	ND (1.00)	ND (1.05)																	
RL		250	0.100	2.00		1.00	1.05																	
SC-700B-WDR-223	3 9/23/2009	4070	0.169	7040	7.60	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-224	4 9/30/2009	4190	ND (0.100)	6970	7.60	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	

 TABLE 5

 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

 Effluent Monitoring Results ^a

 Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program
J = concentration or reporting limits estimated by laboratory or validation
MDL = method detection limit
mg/L = milligrams per liter
N = nitrogen
NA = not applicable
ND = parameter not detected at the listed value
NTU = nephelometric turbidity units
RL = project reporting limit
µg/L = micrograms per liter
µmhos/cm = micromhos per centimeter

^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).

- ^b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.
- $^{\mbox{c}}$ Units reported in this table are those units required in the WDRs.
- ^d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.
- e Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Reverse Osmosis Concentrate Monitoring Results ^a *Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System*

Required Sampling Frequency		Quarterly																				
Analytes Units ^b MDL Sample ID Date	TDS mg/L 35.0	Specific Conductance µmhos/cm 0.0220	Field ^c pH pH units 	Chromium mg/L 0.000075	Hexavalent Chromium mg/L 0.00020	Antimony mg/L 0.00050	Arsenic mg/L 0.00014	Barium mg/L 0.0020	Beryllium mg/L 0.00015	Cadmium mg/L 0.000060	Cobalt mg/L 0.000075	Copper mg/L 0.00052	Fluoride mg/L 0.0600	Lead mg/L 0.000075	Molybdenun mg/L 5 0.00073	n Mercury mg/L 0.00030	Nickel mg/L 0.00021	Selenium mg/L 0.00025	Silver mg/L 0.00019	Thallium mg/L 0.000085	Vanadium mg/L 0.000060	Zinc mg/L 0.0090
SC-701-WDR-219 9/2/2009 RL	39600 1250	51500 2.00	7.6	0.00508 0.0020	ND (0.0021) 0.0021	ND (0.0100) 0.0100	ND (0.0020) 0.0020	0.0214 0.0100	ND (0.0020) 0.0020	ND (0.0030) 0.0030	ND (0.0100 0.0100) ND (0.005 0.0050	0) 21.3 0.500	ND (0.010 0.0100	00) 0.178 0.0100	ND (0.0020) 0.0020	ND (0.0100) 0.0100	0.0257 0.0100	ND (0.0050 0.0050)) ND (0.0020 0.0020) ND (0.0050) 0.0050	0.0200

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

ND = parameter not detected at the listed value

RL = project reporting limit

μg/L = micrograms per liter

µmhos/cm = micromhos per centimeter

^a Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08).

^b Units reported in this table are those units required in the WDRs.

^c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling I	Frequency		Quarterly																		
Sample ID	Analytes Units ^b MDL Date	Chromium mg/kg 0.0755	Hexavalent Chromium mg/kg 2.26	Antimony mg/kg 0.0037	Arsenic mg/kg 0.0011	Barium mg/kg 0.0075	Beryllium mg/kg 0.0038	Cadmium mg/kg 0.0038	Cobalt mg/kg 0.0038	Copper mg/kg 0.0038	Fluoride mg/kg 0.0453	Lead mg/kg 0.0151	Molybdenum mg/kg 0.0053	Mercury mg/kg 0.00045	Nickel mg/kg 0.0038	Selenium mg/kg 0.0018	Silver mg/kg 0.0038	Thallium mg/kg 0.0302	Vanadium mg/kg 0.0038	Zinc mg/kg 0.0340	Bioassay % Survival at 750 mg/L ^C
SC-Sludge-WDR-219 RL	9/2/2009	18100 54.1	157 15.1	ND (2.70) 2.70	50.7 2.70	123 2.70	184 2.70	58.2 5.41	8.05 2.70	79.7 2.70	70.9 15.1	ND (5.41) 5.41	38.0 2.70	0.699 J 0.270	ND (2.70) 2.70	ND (2.70) 2.70	ND (5.41) 5.41	ND (5.41) 5.41	548 2.70	138 13.5	95 100

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program
 J = concentration or reporting limits estimated by laboratory or validation
 mg/kg = milligrams per killogram
 mg/L = milligrams per liter
 MDL = method detection limit

ND = parameter not detected at the listed reporting limit

RL = project reporting limit

^a Sampling location for all sludge samples is the sludge collection bin (see attached P&ID TP-PR-10-10-06).

^b Units reported in this table are those units required in the WDRs.

^c Concentration of sludge per 1 liter of water. Pass/Fail test, with pass result if % Survival is >60%.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

_ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-210	J. Aide	7/1/2009	8:25:00 AM	TLI	EPA 120.1	SC	7/6/2009	Tina Acquiat
					TLI	EPA 200.7	В	7/9/2009	Kris Collins
					TLI	EPA 200.7	FE	7/9/2009	Kris Collins
					TLI	EPA 200.8	AL	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	AS	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	BA	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	CR	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	CU	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	MN	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	MO	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	NI	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	PB	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	SB	7/2/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	ZN	7/6/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 218.6	CR6	7/1/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	7/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	7/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	7/2/2009	Giawad Ghenniwa
					FIELD	HACH	PH	7/1/2009	J. Aide
					TLI	SM2130B	TRB	7/2/2009	Gautam Savani
					TLI	SM2540C	TDS	7/6/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	7/6/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	7/2/2009	Tina Acquiat
SC-100B	SC-100B-WDR-215	J. Aide	8/5/2009	8:00:00 AM	TLI	EPA 120.1	SC	8/6/2009	Tina Acquiat
					TLI	EPA 200.7	В	8/12/2009	Kris Collins
					TLI	EPA 200.7	FE	8/12/2009	Kris Collins
					TLI	EPA 200.8	AL	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	AS	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	BA	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	CR	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	CU	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	MN	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	MO	8/13/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	NI	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	PB	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	SB	8/16/2009	Daniel Kang/Romuel Chavez/Linda Sa

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-215	J. Aide	8/5/2009	8:00:00 AM	TLI	EPA 200.8	ZN	8/13/2009	Daniel Kang/Romuel Chavez/Linda Saet
					TLI	EPA 218.6	CR6	8/6/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	8/6/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	8/6/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	8/6/2009	Giawad Ghenniwa
					FIELD	HACH	PH	8/5/2009	J. Aide
					TLI	SM2130B	TRB	8/6/2009	Gautam Savani
					TLI	SM2540C	TDS	8/6/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	8/10/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	8/6/2009	Tina Acquiat
SC-100B	SC-100B-WDR-219	J. Aide	9/2/2009	8:00:00 AM	TLI	EPA 120.1	SC	9/3/2009	Tina Acquiat
					TLI	EPA 200.7	В	9/18/2009	Kris Collins/Daniel Kang
					TLI	EPA 200.7	CR	10/9/2009	Kris Collins/Daniel Kang
					TLI	EPA 200.7	FE	9/21/2009	Kris Collins/Daniel Kang
					TLI	EPA 200.7	ZN	10/2/2009	Kris Collins/Daniel Kang
					TLI	EPA 200.8	AL	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	AS	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	BA	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	CU	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	MN	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	MO	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	NI	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	PB	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	SB	9/22/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	9/3/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	9/3/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	9/3/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	9/3/2009	Giawad Ghenniwa
					FIELD	HACH	PH	9/2/2009	J. Aide
					TLI	SM2130B	TRB	9/3/2009	Gautam Savani
					TLI	SM2540C	TDS	9/3/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	9/4/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	9/3/2009	Tina Acquiat
SC-700B	SC-700B-WDR-210	J. Aide	7/1/2009	8:25:00 AM	TLI	EPA 120.1	SC	7/6/2009	Tina Acquiat
					TLI	EPA 200.7	В	7/9/2009	Kris Collins
					TLI	EPA 200.7	FE	7/9/2009	Kris Collins

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-210	J. Aide	7/1/2009	8:25:00 AM	TLI	EPA 200.8	AL	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	AS	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	BA	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	CR	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	CU	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	MN	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	MO	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	NI	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	PB	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	SB	7/2/2009	Daniel Kang/Romuel Chave
					TLI	EPA 200.8	ZN	7/6/2009	Daniel Kang/Romuel Chave
					TLI	EPA 218.6	CR6	7/1/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	7/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	7/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	7/2/2009	Giawad Ghenniwa
					FIELD	HACH	PH	7/1/2009	J. Aide
					TLI	SM2130B	TRB	7/2/2009	Gautam Savani
					TLI	SM2540C	TDS	7/6/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	7/6/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	7/2/2009	Tina Acquiat
SC-700B	SC-700B-WDR-211	C. Knight	7/8/2009	10:11:00 AM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat
					TLI	EPA 200.8	CR	7/9/2009	Daniel Kang
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan
					FIELD	HACH	PH	7/8/2009	C. Knight
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat
SC-700B	SC-700B-WDR-212	Ron Phelps	7/13/2009	8:00:00 AM	TLI	EPA 120.1	SC	7/15/2009	Tina Acquiat
					TLI	EPA 200.8	CR	7/16/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	7/14/2009	David Blackburn
					FIELD	HACH	PH	7/13/2009	Ron Phelps
					TLI	SM2130B	TRB	7/14/2009	Gautam Savani
					TLI	SM2540C	TDS	7/16/2009	Tina Acquiat
SC-700B	SC-700B-WDR-213	Ron Phelps	7/21/2009	8:00:00 AM	TLI	EPA 120.1	SC	7/23/2009	Tina Acquiat
					TLI	EPA 200.8	CR	7/24/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	7/23/2009	Michael Nonezyan
					FIELD	HACH	PH	7/21/2009	Ron Phelps

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-213	Ron Phelps	7/21/2009	8:00:00 AM	TLI	SM2130B	TRB	7/22/2009	Gautam Savani
					TLI	SM2540C	TDS	7/23/2009	Tina Acquiat
SC-700B	SC-700B-WDR-214	J. Aide	7/29/2009	8:00:00 AM	TLI	EPA 120.1	SC	7/31/2009	Tina Acquiat
					TLI	EPA 200.8	CR	7/31/2009	Daniel Kang
					TLI	EPA 218.6	CR6	7/30/2009	Michael Nonezyan
					FIELD	HACH	PH	7/29/2009	J. Aide
					TLI	SM2130B	TRB	7/30/2009	Gautam Savani
					TLI	SM2540C	TDS	7/31/2009	Tina Acquiat
SC-700B	SC-700B-WDR-215	J. Aide	8/5/2009	8:00:00 AM	TLI	EPA 120.1	SC	8/6/2009	Tina Acquiat
					TLI	EPA 200.7	В	8/12/2009	Kris Collins
					TLI	EPA 200.7	FE	8/12/2009	Kris Collins
					TLI	EPA 200.8	AL	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	AS	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	BA	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	CR	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	CU	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 200.8	MN	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	MO	8/13/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	NI	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	PB	8/10/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	SB	8/16/2009	Daniel Kang/Romuel Chavez/Linda Sae
					TLI	EPA 200.8	ZN	8/13/2009	Daniel Kang/Romuel Chavez/Linda Sa
					TLI	EPA 218.6	CR6	8/6/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	8/6/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	8/6/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	8/6/2009	Giawad Ghenniwa
					FIELD	HACH	PH	8/5/2009	J. Aide
					TLI	SM2130B	TRB	8/6/2009	Gautam Savani
					TLI	SM2540C	TDS	8/6/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	8/10/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	8/6/2009	Tina Acquiat
SC-700B	SC-700B-WDR-216	J. Aide	8/12/2009	8:00:00 AM	TLI	EPA 120.1	SC	8/13/2009	Tina Acquiat
					TLI	EPA 200.8	CR	8/18/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	8/13/2009	Michael Nonezyan
					FIELD	HACH	PH	8/12/2009	J. Aide
					TLI	SM2130B	TRB	8/13/2009	Gautam Savani

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-216	J. Aide	8/12/2009	8:00:00 AM	TLI	SM2540C	TDS	8/13/2009	Tina Acquiat
SC-700B	SC-700B-WDR-217	J. Aide	8/19/2009	8:30:00 AM	TLI	EPA 120.1	SC	8/20/2009	Tina Acquiat
					TLI	EPA 200.8	CR	8/27/2009	Daniel Kang
					TLI	EPA 218.6	CR6	8/21/2009	Michael Nonezyan
					FIELD	HACH	PH	8/19/2009	J. Aide
					TLI	SM2130B	TRB	8/21/2009	lordan Stavrev
					TLI	SM2540C	TDS	8/20/2009	Tina Acquiat
SC-700B	SC-700B-WDR-218	J. Aide	8/26/2009	8:00:00 AM	TLI	EPA 120.1	SC	8/27/2009	Tina Acquiat
					TLI	EPA 200.8	CR	8/28/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	8/27/2009	Michael Nonezyan
					FIELD	HACH	PH	8/26/2009	J. Aide
					TLI	SM2130B	TRB	8/27/2009	Gautam Savani
					TLI	SM2540C	TDS	8/27/2009	Tina Acquiat
SC-700B	SC-700B-WDR-219	J. Aide	9/2/2009	8:00:00 AM	TLI	EPA 120.1	SC	9/3/2009	Tina Acquiat
					TLI	EPA 200.7	В	9/18/2009	Kris Collins/Daniel Ka
					TLI	EPA 200.7	FE	9/21/2009	Kris Collins/Daniel Kar
					TLI	EPA 200.7	ZN	10/2/2009	Kris Collins/Daniel Kar
					TLI	EPA 200.8	AL	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	AS	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	BA	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	CR	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	CU	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	MN	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	MO	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	NI	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	PB	9/22/2009	Romuel Chavez
					TLI	EPA 200.8	SB	9/22/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	9/3/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	9/3/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	9/3/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	9/3/2009	Giawad Ghenniwa
					FIELD	HACH	PH	9/2/2009	J. Aide
					TLI	SM2130B	TRB	9/3/2009	Gautam Savani
					TLI	SM2540C	TDS	9/3/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	9/4/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	9/3/2009	Tina Acquiat

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-220	Chris Knight	9/9/2009		TLI	EPA 120.1	SC	9/10/2009	Tina Acquiat
		-			TLI	EPA 200.8	CR	9/11/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	9/10/2009	Michael Nonezyan
					FIELD	HACH	PH	9/9/2009	Chris Knight
					TLI	SM2130B	TRB	9/10/2009	Gautam Savani
					TLI	SM2540C	TDS	9/11/2009	Tina Acquiat
SC-700B	SC-700B-WDR-221	Chris Lentz	9/16/2009	4:00:00 PM	TLI	EPA 120.1	SC	9/17/2009	Tina Acquiat
					TLI	EPA 200.8	CR	9/21/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	9/23/2009	Michael Nonezyan
					FIELD	HACH	PH	9/16/2009	Chris Lentz
					TLI	SM2130B	TRB	9/17/2009	Gautam Savani
					TLI	SM2540C	TDS	9/18/2009	Tina Acquiat
SC-700B	SC-700B-WDR-222	C. Knight	9/18/2009	8:00:00 AM	TLI	EPA 120.1	SC	9/18/2009	Tina Acquiat
					TLI	EPA 200.8	CR	9/22/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	9/23/2009	Michael Nonezyan
					FIELD	HACH	PH	9/18/2009	C. Knight
					TLI	SM2130B	TRB	9/18/2009	Gautam Savani
					TLI	SM2540C	TDS	9/18/2009	Tina Acquiat
SC-700B	SC-700B-WDR-223	J. Aide	9/23/2009	8:15:00 AM	TLI	EPA 120.1	SC	9/24/2009	Tina Acquiat
					TLI	EPA 200.8	CR	10/4/2009	Daniel Kang
					TLI	EPA 218.6	CR6	9/25/2009	Sonya Bersudsky
					FIELD	HACH	PH	9/23/2009	J. Aide
					TLI	SM2130B	TRB	9/24/2009	Gautam Savani
					TLI	SM2540C	TDS	9/24/2009	Tina Acquiat
SC-700B	SC-700B-WDR-224	C. Knight	9/30/2009	8:00:00 AM	TLI	EPA 120.1	SC	10/1/2009	Tina Acquiat
					TLI	EPA 200.8	CR	10/4/2009	Daniel Kang
					TLI	EPA 218.6	CR6	10/1/2009	Sonya Bersudsky
					FIELD	HACH	PH	9/30/2009	C. Knight
					TLI	SM2130B	TRB	10/1/2009	Gautam Savani
					TLI	SM2540C	TDS	10/1/2009	Tina Acquiat
SC-701	SC-701-WDR-219	J. Aide	9/2/2009	8:00:00 AM	TLI	EPA 120.1	SC	9/3/2009	Tina Acquiat
					TLI	EPA 200.7	BA	10/9/2009	Kris Collins/Daniel Kan
					TLI	EPA 200.7	ZN	10/9/2009	Kris Collins/Daniel Kan
					TLI	EPA 200.8	AG	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	AS	10/8/2009	Romuel Chavez
	o\TopockProgram\Database\Tuesdai\}			P	age 6 of 8				Date Printed 10/12/2009

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-219	J. Aide	9/2/2009	8:00:00 AM	TLI	EPA 200.8	BE	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	CD	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	СО	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	CR	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	CU	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	HG	10/5/2009	Romuel Chavez
					TLI	EPA 200.8	MO	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	NI	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	PB	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	SB	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	SE	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	TL	10/8/2009	Romuel Chavez
					TLI	EPA 200.8	V	10/8/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	9/3/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	9/3/2009	Giawad Ghenniwa
					FIELD	HACH	PH	9/2/2009	J. Aide
					TLI	SM2540C	TDS	9/3/2009	Tina Acquiat
Phase Seperator	SC-Sludge-WDR-219	J. Aide	9/2/2009	8:30:00 AM	TLI	EPA 300.0	FL	9/3/2009	Giawad Ghenniwa
					TLI	EPA 6010B	AG	9/10/2009	Kris Collins
					TLI	EPA 6010B	BA	9/10/2009	Kris Collins
					TLI	EPA 6010B	BE	9/10/2009	Kris Collins
					TLI	EPA 6010B	CD	9/10/2009	Kris Collins
					TLI	EPA 6010B	CO	9/10/2009	Kris Collins
					TLI	EPA 6010B	CR	9/11/2009	Kris Collins
					TLI	EPA 6010B	NI	9/10/2009	Kris Collins
					TLI	EPA 6010B	PB	9/10/2009	Kris Collins
					TLI	EPA 6010B	TL	9/10/2009	Kris Collins
					TLI	EPA 6010B	V	9/10/2009	Kris Collins
					TLI	EPA 6010B	ZN	9/10/2009	Kris Collins
					TLI	SW 6020A	AS	9/23/2009	Romuel Chaves
					TLI	SW 6020A	CU	9/23/2009	Romuel Chaves
					TLI	SW 6020A	HG	10/6/2009	Romuel Chaves
					TLI	SW 6020A	MO	9/23/2009	Romuel Chaves
					TLI	SW 6020A	SB	9/23/2009	Romuel Chaves
					TLI	SW 6020A	SE	9/23/2009	Romuel Chaves
					TLI	SW 7199	CR6	9/17/2009	Michael Nonezyan

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information *Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Seperator	SC-Sludge-WDR-219	J. Aide	09/2/2009	8:30:00 AM	ATL	96-Hour Acute Aquatic Toxicity Screening Test	BIO	9/4/2009 - 09/9/2009	Joe LeMay

NOTES:

SC-700B = Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04).

SC-100B = Sampling location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

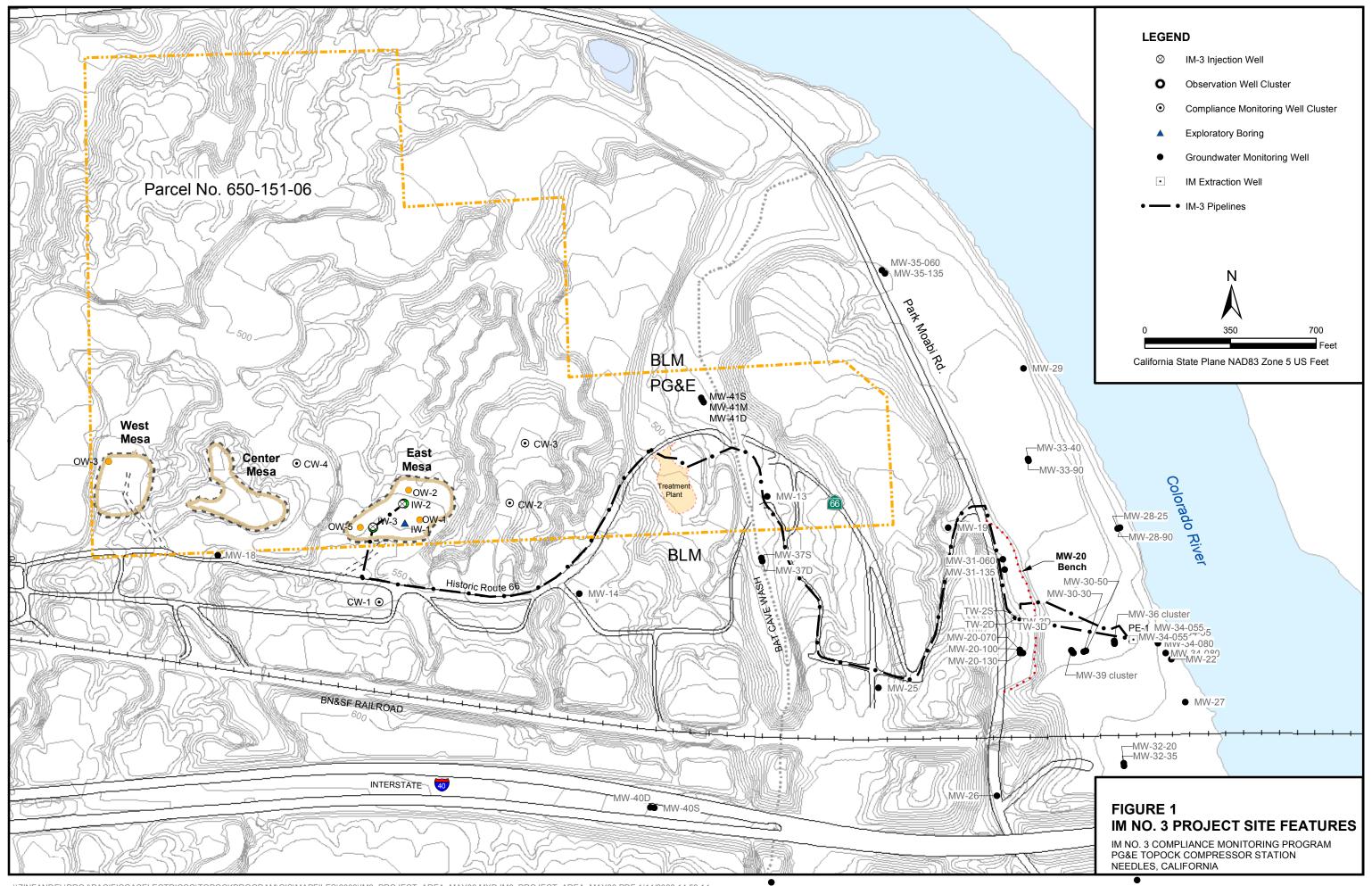
SC-701 = Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08).

Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.

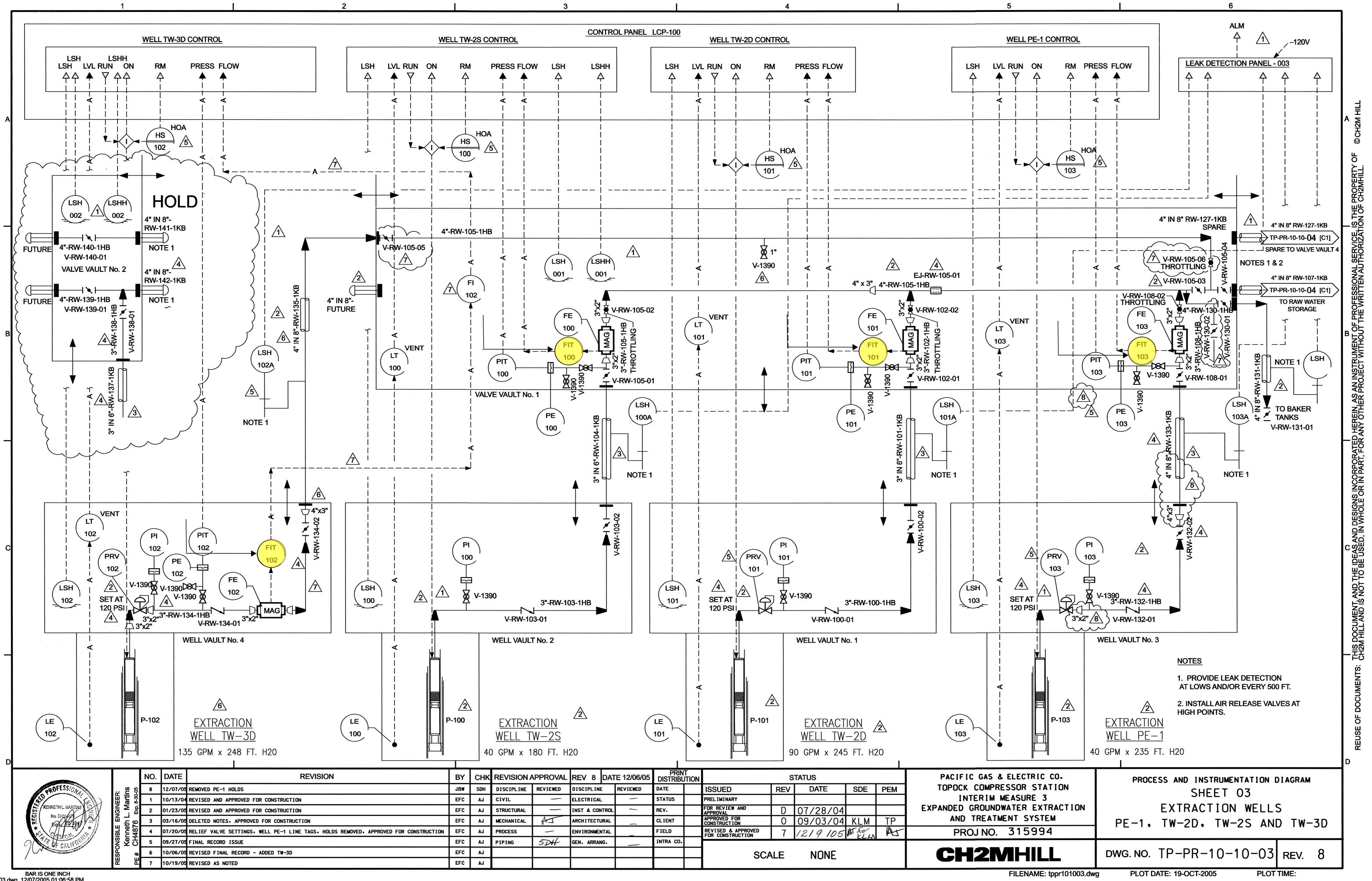
	a la construcción	NULIONI	
AL =	aluminum	NH3N =	
Ag =	silver	NI =	nickel
AS =	arsenic	NO2N =	nitrite (as N)
B =	boron	NO3N =	nitrate (as N)
BA =	barium	PB =	lead
BE =	beryllium	PH =	рН
CD =	cadmium	SB =	antimony
CO =	cobalt	SC =	specific conductance
CR =	chromium	SE =	selenium
CR6 =	hexavalent chromium	SO4 =	sulfate
CU =	copper	TDS =	total dissolved solids
FE =	iron	TL =	thallium
FL =	fluoride	TLI =	Truesdail Laboratories, Inc.
HG =	mercury	TRB =	turbidity
MN =	manganese	V =	vanadium
MO =	molybdenum	ZN =	zinc

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Additional Effluent Parameters^a *Third Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System*

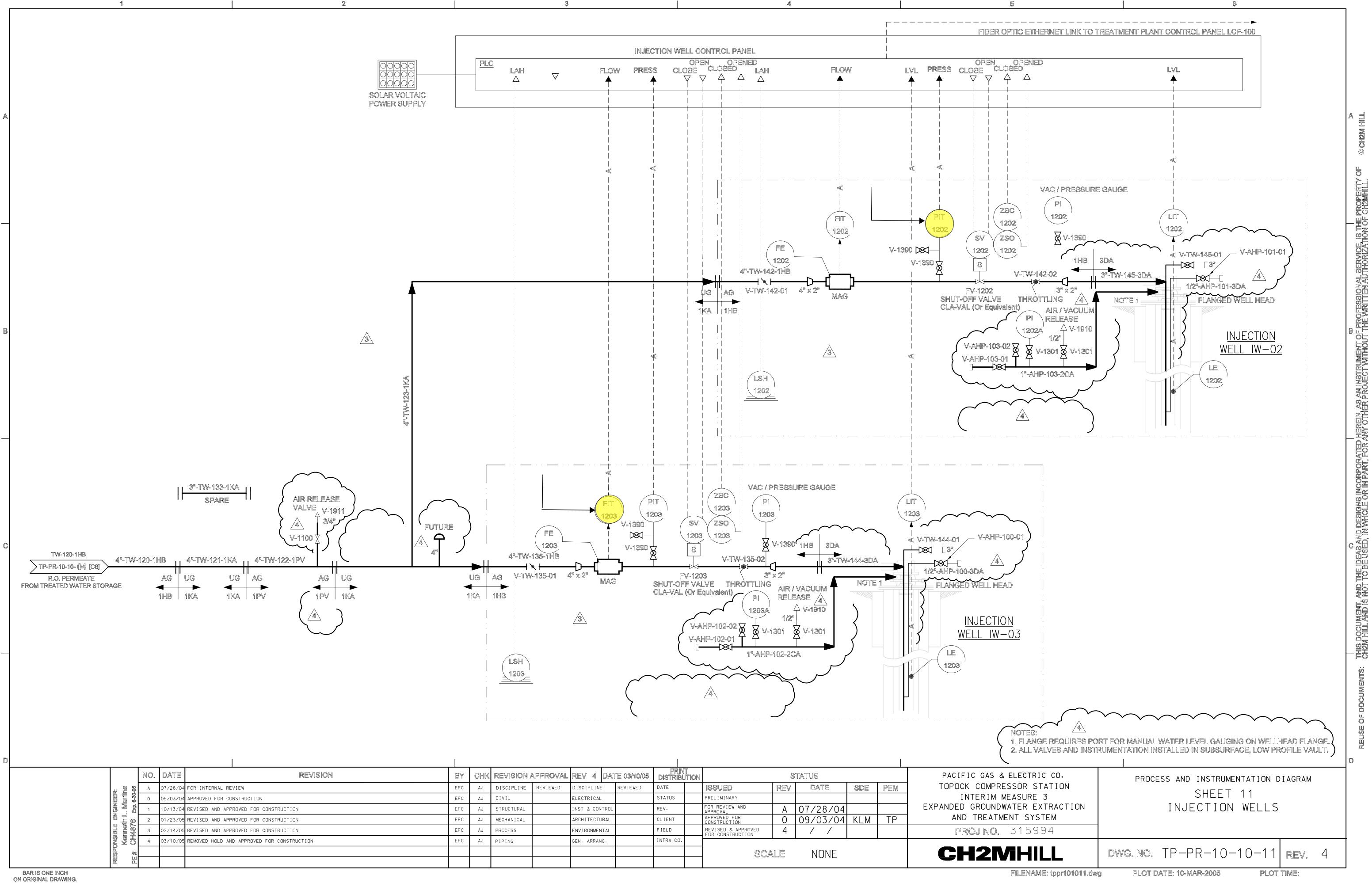
		TPH Diesel	TPH Motor Oil
Location	Date	(µg/L)	(µg/L)
SC-700B	9/16/2009	55.0	ND (51)
SC-700B	9/17/2009	ND (50)	ND (50)
SC-700B	9/18/2009	ND (50)	ND (50)
SC-700B	9/19/2009	ND (50)	ND (50)
SC-700B	9/20/2009	ND (50)	ND (50)
SC-700B	9/21/2009	ND (50)	ND (50)

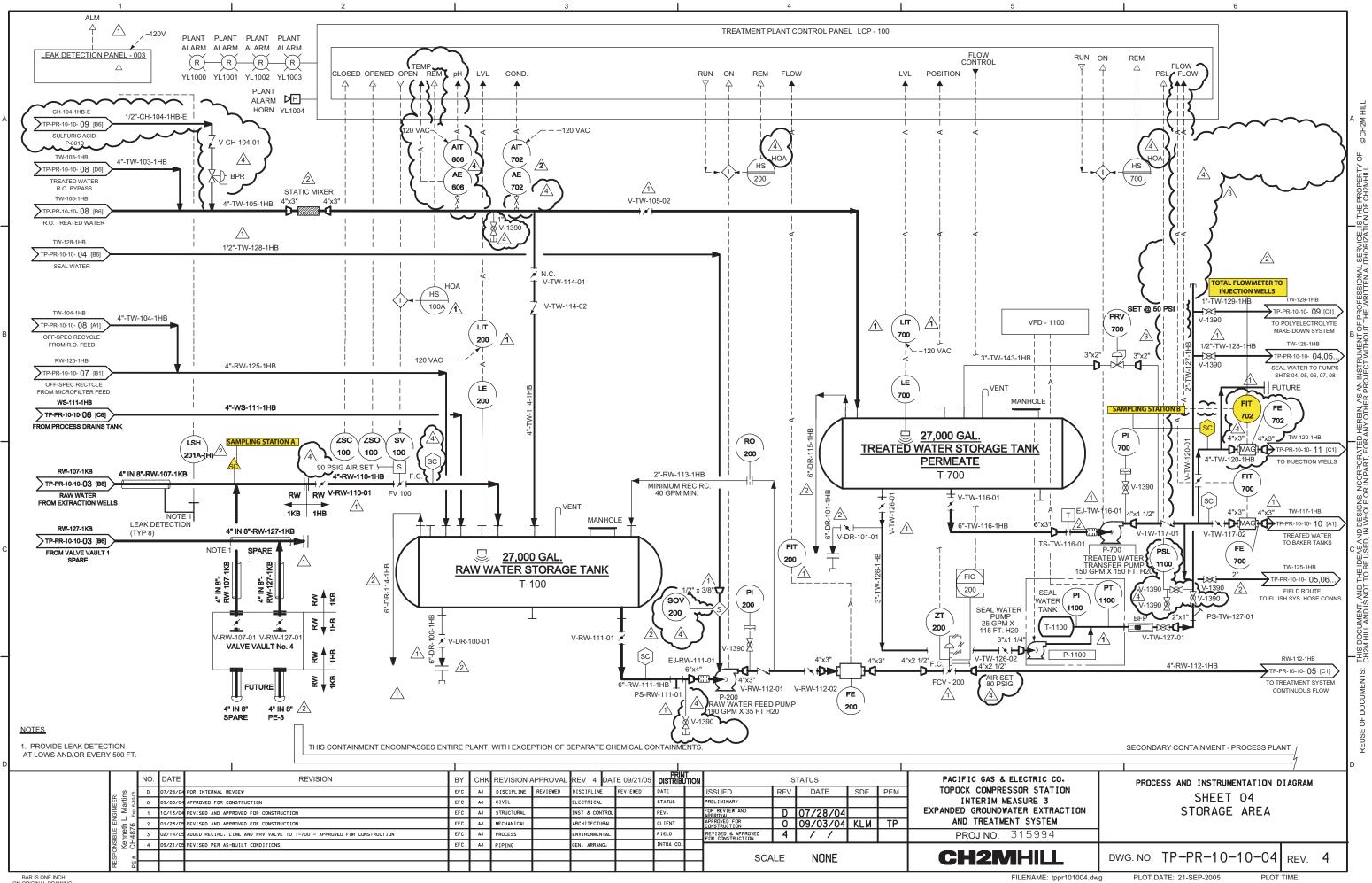

NOTES:

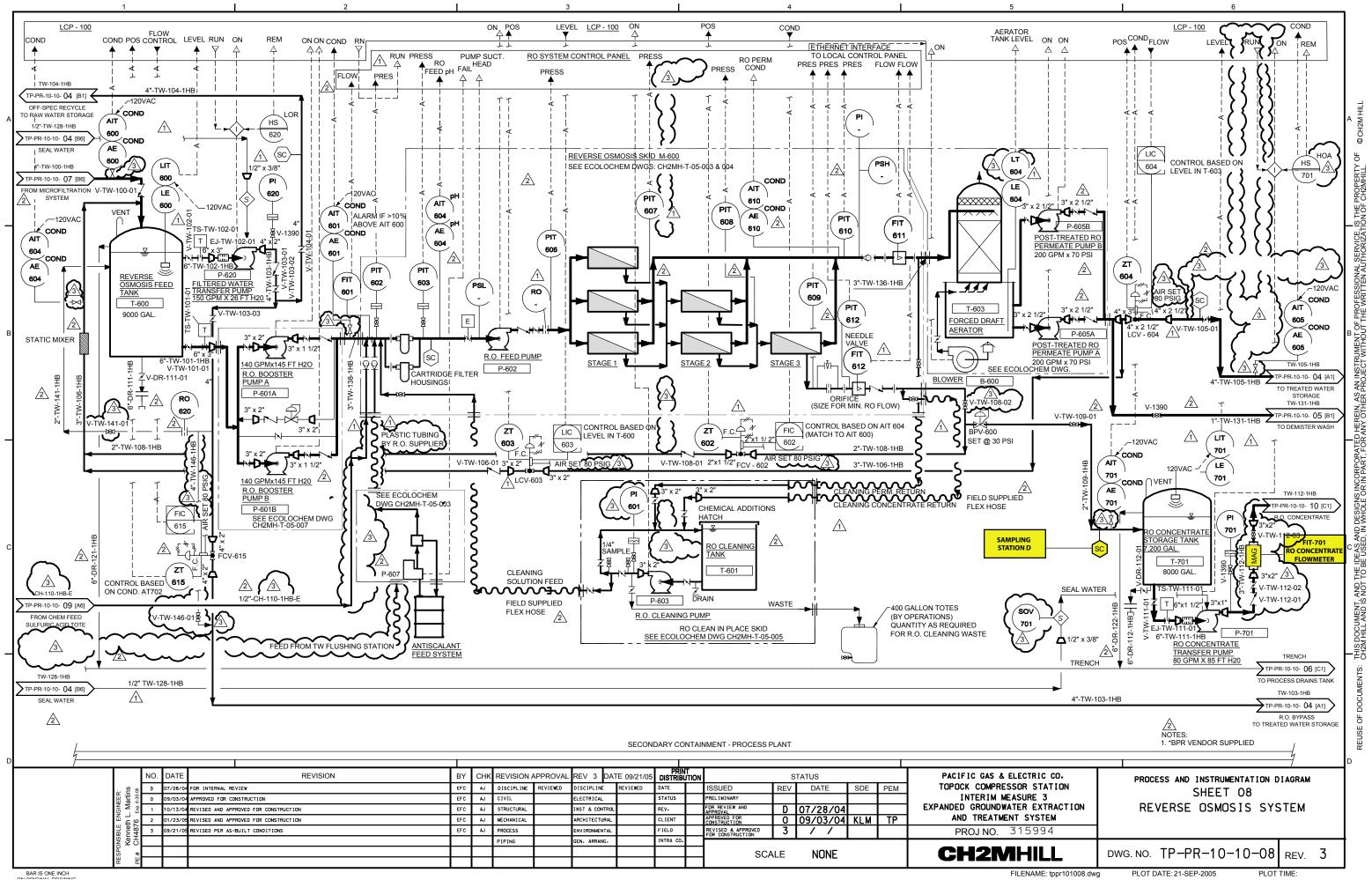
ND = parameter not detected at the listed value

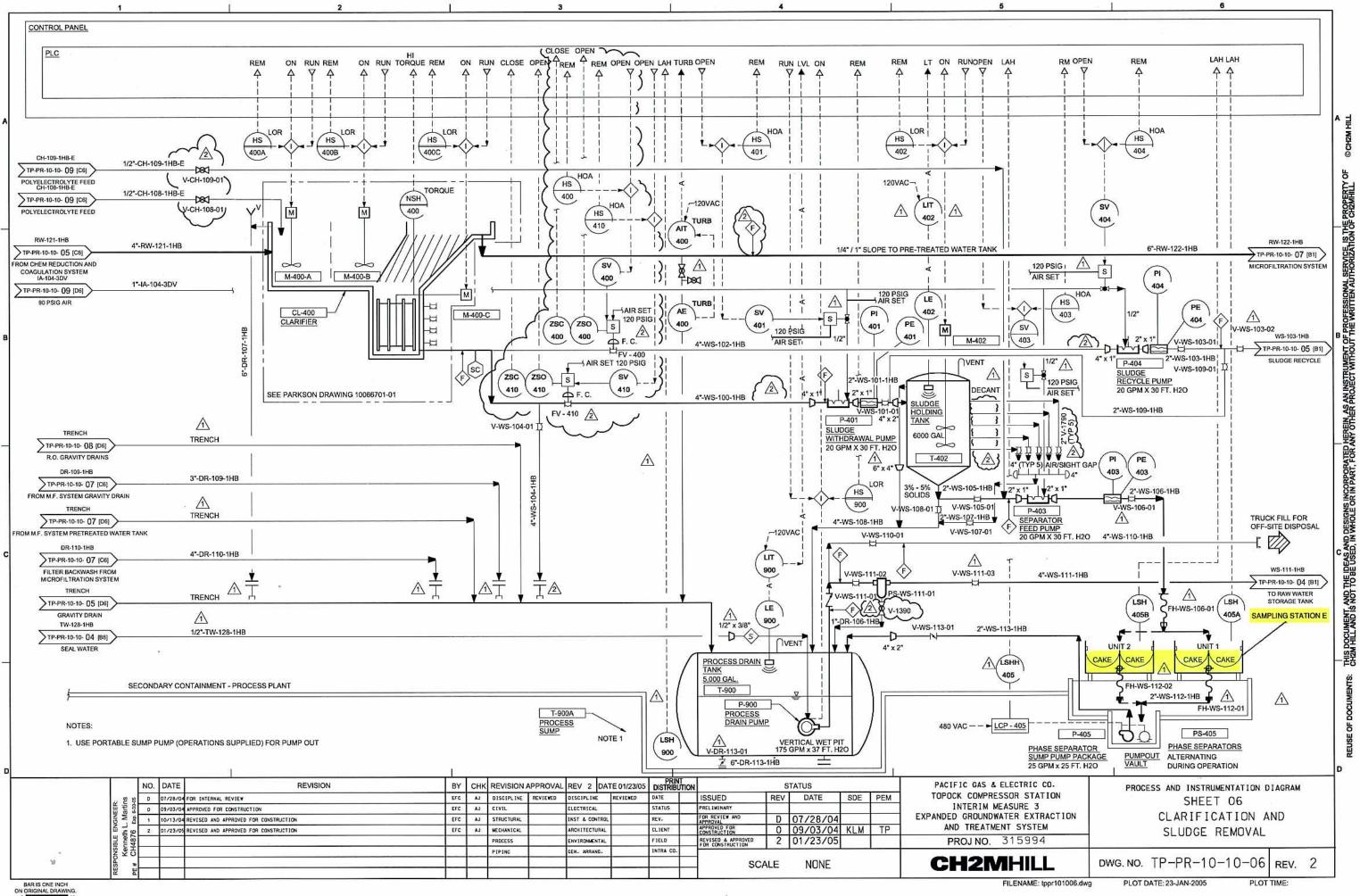

µg/L = micrograms per liter

^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).


Figures


\\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MAPFILES\2006\IM3_PROJECT_AREA_MAY06.MXD IM3_PROJECT_AREA_MAY06.PDF 1/14/2008 14:59:14




tppr101003.dwg 12/07/2005.01:06:58 PM

IK	REVISION A	\PPROVAL	REV 4 [DATE 03/10/05	PRIN DISTRIBL	t Jtion		S	TATUS			PACIFIC GAS & EL
	DISCIPLINE	REVIEWED	DISCIPLINE	REVIEWED	DATE		ISSUED	REV	DATE	SDE	PEM	TOPOCK COMPRESS
	CIVIL		ELECTRICAL		STATUS		PRELIMINARY					INTERIM MEAS
	STRUCTURAL		INST & CONT	ROL	REV.		FOR REVIEW AND APPROVAL	Α	07/28/04			EXPANDED GROUNDWAT
	MECHANICAL		ARCHITECTUR	AL	CLIENT		APPROVED FOR CONSTRUCTION	0	09/03/04	KLM	ΤP	AND TREATMENT
	PROCESS		ENVIRONMENT	AL	FIELD		REVISED & APPROVED FOR CONSTRUCTION	4				projno. 3
	PIPING		GEN. ARRANG		INTRA CO.							
							SCA	ALE.	NONE			CH2M

Appendix A Third Quarter 2009 Laboratory Analytical Reports

EXCELLENCE IN INDEPENDENT TESTING

Establishod 1931

14201 FRANKLIN AVENUĘ TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 14, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-210 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 984092

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-210 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on July 1, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi
 Manager, Analytical Services

K. R. P. goyen

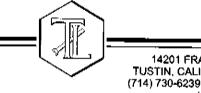
K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending


Laboratory No.: 984092

Date: July 14, 2009 Collected: July 1, 2009 Received: July 1, 2009

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
ÉPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Daniel Kang / Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: July 14, 2009

Laboratory No.: 984092

Prep/ Analyzed: July 6, 2009 Analytical Batch: 07EC09B

Collected: July 1, 2009

Received: July 1, 2009

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending

investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
984092-1	SC-700B-WDR-210	µmhos/cm	EPA 120.1	1.00	2.00	6970
984092-2	SC-100B-WDR-210	µmhos/cm	EPA 120.1	1.00	2.00	7980

QA/QC Summary

QC ST I.D.	D Laborato	1 Concentrati	on	Duplic: Concentr			Relative Percent Difference		ceptance limits	QC Within Control
Duplica	ate 984092-3	2 7980		7990			0.13%		<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration		'heoretica) Incentration	Percel Recove		Acceptar Limits		QC Withi Control	
	Blank	ND		<2.00			<2.00		Yes	-
	CCS	704		706	99.7%	6	90% - 11)%	Yes	
L	CVS#1	996		1000	99.6%	6	90% - 11)%	Yes	
	LCS	704		706	99.7%	6)%	Yes	7
L	LCSD	704		706	99.7%	6	90% - 110)%	Yes	7

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending

Laboratory No.: 984092 Date: July 14, 2009

Collected: July 1, 2009 Received: July 1, 2009 Prep/ Analyzed: July 6, 2009 Analytical Batch: 07TDS09B

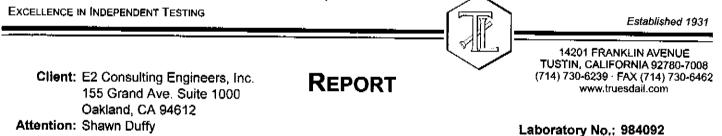
Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
984092-1	SC-700B-WDR-210	mg/L	SM 2540C	250	4120
984092-2	SC-100B-WDR-210	mg/L	SM 2540C	250	4900

QA/QC Summarv


QC STD I	uplicate 9840	aborator Number	Concentre	tion	Dupil Concent			Percent fference		ceptance limits	QC Within Control
Duplicat	Duplicate 984093		5300		5240		0.57%			<u><</u> 5%	Yes
	QC Std I.D.	d I.D.	Measured Concentration		oretical entration	Percer Recove		Accepta Limit		QC Within Control]
		nk	ND	<	25.0			<25.0)	Yes	-
L	LCS	1	501		500	100%		90% - 11		Yes	-

ND: Below the reporting limit (Not Detected). **RL: Reporting Limit.**

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and accepted for the exclusive use of the client to the same submitted and the same subm whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	Units	DF	<u>RL</u>	<u>Results</u>
984092-1	SC-700B-WDR-210	08:25	NTU	1.00	0.100	ND
984092-2	SC-100B-WDR-210	08:25	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	.D. Laborato Number	' Concentre	ation	Duplie Concent			Relative Percent ifference		ceptance limits	QC Within Control
Duplicat	e 984092-2	2 <u>ND</u>)		0.00%		<u>< 20%</u>	Yes
	QC Std I.D.	Measured Concentration		entration	Perce Recove		Accepta Limit		QC Within Control	י
	Blank	ND		:0.100			<0.10	0	Yes	-
	LCS	7.83		8.00	97.9%	6	90% - 11		Yes	-
	LCS	7.90	l	8.00	98.8%	6	90% - 1 ⁻	10%	Yes	

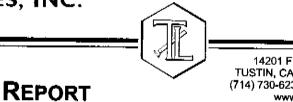
ND: Below the reporting limit (Not Detected).

DE: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Date: July 14, 2009

Collected: July 1, 2009


Received: July 1, 2009

Prep/ Analyzed: July 2, 2009 Analytical Batch: 07TUC09B

San Cand

f._ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 984092

Collected: July 1, 2009

Received: July 1, 2009

Prep/ Analyzed: July 1, 2009

Analytical Batch: 07CrH09A

Date: July 14, 2009

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending Prep. Batch: 07CrH09A

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Fleid I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
984092-1	SC-700B-WDR-210	08:25	08:40	μg/L	1.05	0.20	ND
984092-2	SC-100B-WDR-210	08:25	08:51	μg/L	105		1190

					<u> QA</u>	<u>/QC</u>	Su	mmar	У					
	QC STO			ratory nber	Sampi Concentri	-		plicate entration		Relative Percent lifference	eptance imits		Control	
	Duplic	ate	9840	92-2	1190			190		0.00%	20%		Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilu	tion Factor	Added Spike Conc.		WS Iount	Measure Conc. of Spiked sample		Theoretical Conc. of spiked sample	MS% covery	^		QC Within Control
MS	984092-1	0.12		1.06	1.00	1	.06	1.20		1,18	 02%		90-110%	Yés
MS	984092-2	1190		105	15.0	1	575	2860		2765	06%	-	Yes Acceptance limits 90-110% 90-110%	Yes
		QC Sto	I I.D.	1	sured ntration		eoretica centratio			Acceptar Limits	QC Wit Contr	thin		
		Blar	ık	N	1D		<0.200			<0.200	Yes			
		MRC	<u>CS</u>	5.	08		5.00	1029	%	90% - 11	Yes	_		
		MRCV	S#1	1(0.1	<u> </u>	10.0	101	%	95% - 10	Yes	_		
		MRCV	S#2	9.	73		10.0	97.3		95% - 10	 Yes			
		MRCV	5#3	9.	94		10.0	99.4		95% - 10	Yes			
		LCS	3	5.	09		5.00	1029	%	90% - 110	 Yes		Control Yes Acceptance limits 90-110% 90-110%	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Attention: Shawn Duffy

Project No.: Pending

P.O. No.: Pending

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 REPORT Client: E2 Consulting Engineers, Inc. www.truesdail.com 155 Grand Ave. Suite 1000 Oakland, CA 94612

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project

investigation;

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Method	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984092-1	SC-700B-WDR-210	08:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND
984092-2	SC-100B-WDR-210	08:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summarv

	QC STD) I.D.	Number	Concentration Concentration Per			lelative ercent	cceptance limits		QC Within Control									
	Duplic	ate	ç	84092	2	ND			ND			fference		20%	╇	Yes			
QC Std I.D.	I.D. Number		mber sample		spiked Dilutio			Added Spike Conc.		MS nount	Ç.	easured onc. of piked ample	T	heoretical Conc. of spiked sample		MS% covery		Acceptance Ilmits	QC Within Control
MS _98	984092-2	0.00	0	1.	00	6.00	6	3.00		6.13		6.00		02%	_	75-125%	Yes		
		QC	C Std	I.D.	_	asured entration		eoretica centratio		Percer Recove		Acceptan Limits		QC Witi Contro					
			Blan	k		ND		<0.500			<0.500			Yes					
			MRCC			6.05		6.00		101%		90% - 110)%	Yes					
			RCVS			5.74		6.00		95.7%	,	90% - 110)%	Yes					
		<u>M</u>	RCVS			6.15		6.00		103%		90% - 110)%	Yes					
			LCS			10.2		10.0		102%		90% - 110)%	Yes					

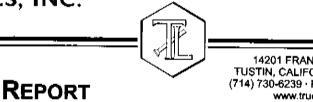
ND: Below the reporting limit (Not Detected).

DF: Ollution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 984092

Collected: July 1, 2009


Received: July 1, 2009

Prep/ Analyzed: July 6, 2009 Analytical Batch: 07NH3-E09B

Date: July 14, 2009

≁... Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92760-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending

Laboratory No.: 984092

Date: July 14, 2009 Collected: July 1, 2009 Received: July 1, 2009 Prep/ Analyzed: July 2, 2009 Analytical Batch: 07AN09B

Investigation:	Fluoride by Ion Chromatography using EPA 300.0
	• • • •

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
984092-1	SC-700B-WDR-210	08:25	10:35	mg/L	5.00	0.500	2.76
984092-2	SC-100B-WDR-210	08:25	10:46	mg/L	5.00	0.500	2.58

QA/QC Summary

	QC STE) I.D.		bora Numb		Concentratio		ation Duplica Concentra		Relative Percent Difference		Acceptance limits			C Within Control	
	<u>Duplic</u>	ate	6	8409	2-2	2.58	2.79		79			<u>≤</u> 20%		Yes		
QC Std I.D.	Lab Number	unsg	nc.of biked nple		ution ctor	Added Spike		MS nount	Measured Conc. of spiked sample	d Theoretic of Conc. o spiked		al			ceptance limits	QC Within Control
MS	984092-2	2.	58	5	.00	4.00		20.0	24.0		22.6		107%	8	5-115%	Yes
		Q	C Std	LD,		asured	_	eoretical centratio	Percer n Recove		Acceptan Limits		QC Witi Contro	hin		
			Blan	ĸ .		ND		<0.500			<0.500		Yes			
			MRCC	xs		4.26		4.00	107%		90% - 11()%	Yes	-		
		M	IRCV:	# 1		3.27		3.00	109%		90% - 110)%	Yes			
		N	IRCV:	¥2		3.26		3.00	109%		90% - 110)%	Yes			
			LCS			4.16		4.00	104%		90% - 110)%	Yes			

ND: Below the reporting limit (Not Detected). DF: Ollution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Kona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.; 984092

Collected: July 1, 2009

Received: July 1, 2009

Prep/ Analyzed: July 2, 2009 Analytical Batch: 07AN09B

Date: July 14, 2009

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending

P.O. No.: Pending

investigation:

Sulfate by Method EPA 300.0

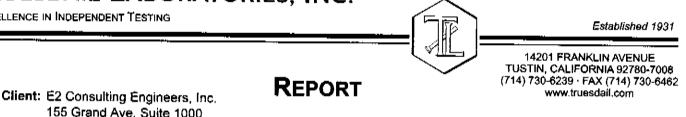
REPORT

Analytical Results Sulfate

<u>TLI 1.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
984092-1	SC-700B-WDR-210	08:25	12:29	mg/L	50.0	25.0	492
984092-2	SC-100B-WDR-210	08:25	12:40	mg/L	50.0	25.0	

QA/QC Summary

	QC ST			abora Numb	-	Concentra	Concentration I		entration		elative ercent iference	Acceptance limits		QC Within Control	
_	Duplic	ate	. 9	8408	<u>4-1</u>	1100		11	10	(0.90%		<u><</u> 20%	Yes	-
QC Std I.D.	Lab Number	Conc unspi sam	ikeđ	_	ution ctor	Added Spike Conc.	Added Spike		Measured Conc. of spiked sample		heoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MŜ	984084-1	110)0	1	200	10.0	2	2000	3210		3100		106%	85-115%	Yes
		QC	Std	I.D.	_	asured		neoretical Icentratio	Percer Recove		Acceptar Limits		QC With Contro	ıin	
			Blank	<		ND		<0.500			<0.500	,	Yes		
		<u>N</u>	ARCC	s		20.0		20.0	100%		90% - 11	0%	Yes		
		M	RCVS	;#1		<u>15.5</u>		15.0	103%		90% - 11	0%	Yes		
		MF	RCVS	;# 2		15.3		1 <u>5.</u> 0	102%		90% - 110	0%	Yes		
			LCS			20.5		20.0	103%		90% - 110	0%	Yes		


ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending

Laboratory No.: 984092 Date: July 14, 2009 Collected: July 1, 2009 Received: July 1, 2009 Prep/ Analyzed: July 2, 2009 Analytical Batch: 07AN09B

Investigation;

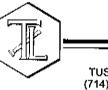
Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>, TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
984092-1	SC-700B-WDR-210	08:25	10:35	mg/L	5.00	1.00	3.14
984092-2	SC-100B-WDR-210	08:25	10:46	mg/L	5.00	1.00	3.12

QA/QC Summarv

	QC STD			aborat Numb 184092	97	Concentration		tion Duplicate Concentration 3.13		ion 1	Relative Percent Difference 0.32%		Acceptance limits < 20%		QC Within Control Yes	
QC Sta I.D.	Lab Number	Con unsp sam	iked		ition ctor	Added Spike Conc.	_	MS nount	Mea Coi sp	sured nc. of iked mple	Т	heoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MS	984092-2	3.1	12	5.	00	4.00		20.0	2	4.5		23.1		107%	85-115%	Yes
		Q	C Std	I.D.		asured entration		eoretica centratic		Percen lecove		Acceptan Limits	ce	QC Wit Contr	 	1
			Blan	к :		ND		<0.500				<0.500		Yes		
			MRCC	s_		4.02		4.00		101%		90% - 110		Yes		
		<u></u>	IRCV5	S#1		3.03		3.00		101%		90% - 110	%	Yes		
			LCS			4.09		4.00		102%		90% - 110)%	Yes		


ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

💤 ~ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending

Laboratory No.: 984092 Date: July 14, 2009 Collected: July 1, 2009 Received: July 1, 2009 Prep/ Analyzed: July 2, 2009 Analytical Batch: 07NO209B

Investigation:

Nitrite as N by Method SM 4500-NO2-B

REPORT

Analytical Results for Nitrite as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample_Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
984092-1 984092-2	SC-700B-WDR-210 SC-100B-WDR-210	08:25	14:46	mg/L	1.00	0.0050	ND
004002-2	00-1000-4406-210	08:25	14:47	mg/L	1.00	0.0050	ND

					QA		C Su	ımr	nary	/					
	QC ST	D I.D.		ratory nber	er Concentr		tion Duplicate Concentration		-	Relative Percent Difference		ceptance limits		QC Within Control	
	Duplic	ate	9840	92-1	ND	N		ND		0.00%		< 20%		Yes	
QC Std I.D.	Lab Number	Conc.o unspike sample	d G	Illution Factor	Added Spike Conc.		MS nount	Co: sp	isured nc. of liked mple	Theoretical Conc. of spiked sample		MS% scovery	,	Acceptance limits	QC Within Control
MS	984092-1	0,00		1.00	0.0200	0	.0200	_	0199	0.0200		99.5%		75-125%	Yes
		QC S	td I.D.	· · ·	asured entration		eoretica Icentratio		Percent Recover	- ,		QC Wit Contr			
		Bl	ink .		ND		<0.0050			<0.005	Ó	Yes			
		MR	CCS	0.	0265		0,0270		98%	90% - 11	0%	Yes			
		MRC	V\$#1	0.	0198		0.0200		99%	90% - 11	0%	Yes			
			35	Ó.	0456	0.0450			101%	90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected). DE: Dilution Eactor

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 984092

Reported: July 14, 2009 Collected: July 1, 2009

Received: July 1, 2009

Analyzed: See Below

Established 1931

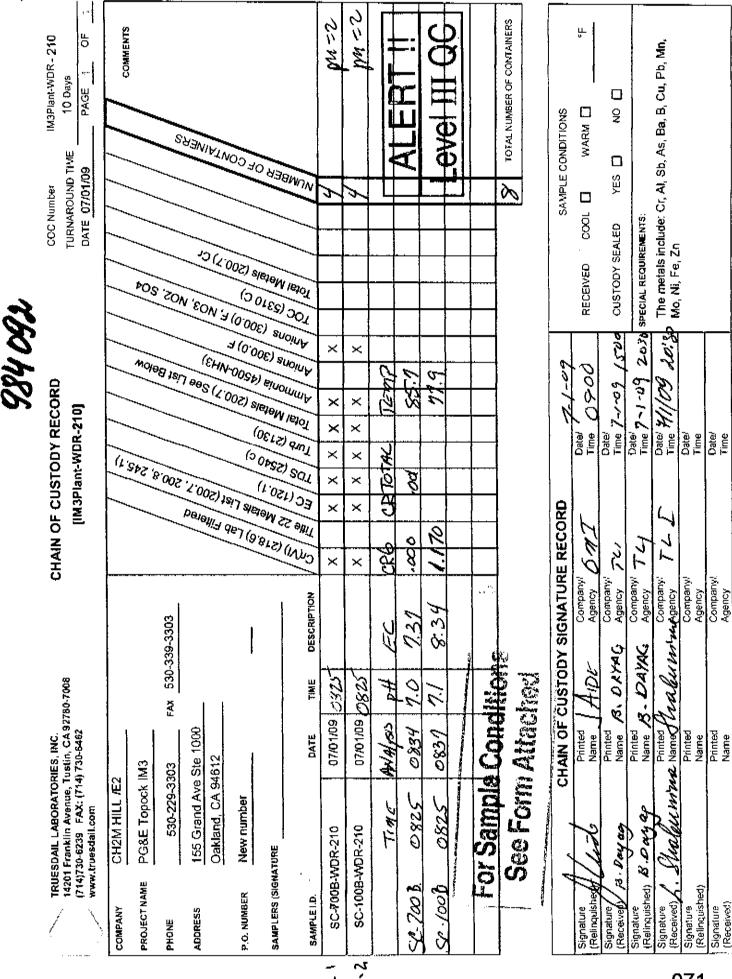
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: Pending P.O. No.: Pending Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID: S	C-700B-WDR-210	<u>Time Col</u>	lected: 08	3:25		LABID	984092-1	••
Parameter	Method	Reported <u>Value</u>	DF	Units	RL	Batch	Date Analyzed	Time <u>Analyz</u> ed
Aluminum	EPA 200.8	ND	5.00	μg/L	50.0	070209A	07/02/09	11:03
Antimony	EPA 200.8	ND	5.00	μg/L	10.0	070209A	07/02/09	11:03
Arsenic	EPA 200.8	ND	5.00	μg/L	1.00	070209A	07/02/09	11:03
Barium	EPA 200.8	ND	5.00	119/L	10.0	070209A	07/02/09	11:03
Chromium	EPA 200.8	NO	5.00	μg/L	1.00	070209A	07/02/09	11:03
Copper	EPA 200.8	ND	5.00	<u>μ</u> g/L	5.00	070209A	07/02/09	11:03
Lead	EPA 200.8	ND	5.00	μ g/L	10.0	070209A	07/02/09	
Manganese	EPA 200.8	ND	5.00	 µg/L_	10.0	070209A	07/02/09	11:03
Molybdenum	EPA 200.8	16.0	5.00	μg/L	10.0	070209A		11:03
Nickel	EPA 200.8	ND	5.00	μg/L	10.0	070209A	07/02/09	<u>1</u> 1:03
Zinc	EPA 200.8	ND	5.00	<u>μg/L</u>	10.0		07/02/09	11:03
Boron	EPA 200.7	1060	1.00	<u>юз/с</u> µg/L	200	<u>070609A</u>	07/06/09	15:43
Iron	EPA 200.7	ND	1.00			070909A	07/09/09	15:33
				μg/L	20.0	070909A	07/09/09	15:33

Report Continued


SAMPLE ID: SO	C-100B-WDR-210	Time	Collected: 0	8:25		LAB ID:	984092-2	
Parameter	Method	Reported Value	DF	Units	<u>RL</u>	Batch	Date Analyzed	Time Analyzed
Aluminum	EPA 200.8	<u>N</u> D	5.00	_μg/L	50.0	070209A	07/02/09	11:47
Antimony	EPA 200.8	ND.	5.00	μ g/L	10.0	070209A	07/02/09	11:47
Arsenic	EPA 200.8	3.64	5.00	<u>µg/L</u>	1.00	070209A	07/02/09	11;47
Barium	EPA 200.8	24,8	5.00	µ g/L	10.0	070209A	07/02/09	<u>. 11:47</u>
Chromium	EPA 200.8	1130	5.00	μg/L	1.00	070209A	07/02/09	11:47
Copper	EPA 200.8	ND	5.00	_µg/L	5.00	070209A	07/02/09	11:47
Lead	EPA 200.8	ND	5.00	μ g/L	10.0	070209A	07/02/09	11:47
Manganese	EPA 200.8	ND	5.00	μg/L	10.0	070209A	07/02/09	11:47
Molybdenum	EPA 200.8	20.7	5.00	μ g/L	10.0	070209A	07/02/09	
Nickel	EPA 200.8	ND	5.00	µg/L	10.0	070209A	07/02/09	11:47
Zine	EPA 200.8	16.8	5.00	μ g/L	10.0	070609A		11:47
Boron	EPA 200.7	1080	1.00	μ <u>g/L</u>	200	070909A	07/06/09	<u> </u>
Iron	EPA 200.7	ND	1.00	μ <u>g/L</u>	20.0	070909A	07/09/09	<u>15:39</u> 15:39

ND: Not detected or below limit of detection. DF: Dilution factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

£

Mona Nassimi, Manager
 Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 21, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-211 PROJECT, GROUNDWATER MONITORING, TLI NO.: 984207

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-211 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on July 8, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Mr. Shawn Duffy of CH2M Hill requested that the project description and sample ID be reported as IM3Plant-WDR-211 and SC-700B-WDR-211, respectively, rather than IM3Plant-WDR-210 and SC-700B-WDR-210 as shown on the chain of custody.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Sen Car

4. Mona Nassimi Manager, Analytical Services

K. R. P. gyer

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 984207

Date: July 21, 2009 Collected: July 8, 2009 Received: July 8, 2009

ANALYST LIST

Метнор	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Daniel Kang
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

EACELLENCE			_[76]	Established 1931
	E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Shawn Duffy	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Project Name: Project No.:	One (1) Groundwater Sample PG&E Topock Project 379209.01.02 379209.01.02 070909A			Date: July 21, 2009 Collected: July 8, 2009 Received: July 8, 2009 p/ Analyzed: July 9, 2009 rtical Batch: 070909A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	Results
984207	SC-700B-WDR-211	μg/L	EPA 200.8	17:22	5.00	1.00	ND

 \sim

	QC STD) I.D .		orato umbe	· 1	Concentra	tion	Du Conce	olicat entra	tion	Р	elative ercent ference		eptance limits	QC Within Control	
	Duplic	ate	9:	<u>84207</u>		ND			ND		C	0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Con unsp sam	oiked	Dilu Fac		i Spike i		MS nount	Co s	asured onc. of piked ample		Theoretical Conc. of liked sampl	e R	MS% ecovery	Acceptance limits	QC Within Control
MŚ	984207	0.0	00	5.00		50.0		250		247	250			98.8%	75-125%	Yes
		Q	C Std	I.D.		easured centration		ieoretica icentratic	- 1	Percen Recove		Acceptar Limits		QC Withi Control		
			Blank			ND		<1.00				<1.00		Yes	-	
			MRCC	<u> </u>		48.3		50.0		96.6%	,	<u>90% - 1</u> 1	0%	Yes		
		⊢	IRCV\$	#1		49.5		50.0		99.0%		90% - 11	0%	Yes		
		M	IRCVS	#2		49.0		50.0		98.0%		90% - 11	0%	Yes		
		<u> </u>	ICS			50.2		50.0	ſ	100%		80% - 12	0%	Yes		
			LCS			47.5		50.0		95.0%		90% - 11	0%	Yes	7	

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

007

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 984207

Collected: July 8, 2009

Received: July 8, 2009

Prep/ Analyzed: July 9, 2009 Analytical Batch: 07CrH09C

Date: July 21, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Hexavalent Chromium by EPA 218.6

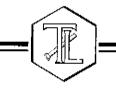
Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984207	SC-700B-WDR-211	10:11	08:48	μg/L	1.05	0.20	ND

						QA	vu	<u>C 3</u>	un	imai	ſ						
	QC ST) I.D.		orato umber		Concentrati	on	Duj Conçe	plica entra			Relative Percent		eptance limits		QC Within Control	
	Duplic	ate	98	4208-	1	333			333			0.00%		<u><</u> 20%		Yes	
QC Std I.D,	Lab Number	นกร	nc.of piked mple	Dilut Fact		Added Spike Conc.		MS nount	C	easured onc. of piked ample	8	Theoretical Conc. of piked sample	R	MS% ecovery	Ac	ceptance limits	QC Within Contro
MŚ	984207	0	.00	1.0	6	1.00		1.06		1.08		1.06		102%		90 - 110%	Yes
		c	2C Std	I.D.	-	Measured oncentration		eoretica icentratic	· 1	Percer Recove			:e	QC Witi Contro			
			Blani	<u> </u>		ND		<0.200				<0.200		Yes			
			MRCC	s		5.11		5.00		102%	,	90% - 110	%	Yes			
			MRCVS	;#1 _		9.98		10.0		99.8%	6	95% - 105	%	Yes			
			MRCVS	# 2		9.83		10.0		98.3%	6	95% - 105	%	Yes			
			MRCVS	\$#3		9.64		10.0		96.4%	6	95% - 105	%	Yes			
			MRCVS	;#4		9.68		10.0		96.8%	6	95% - 105	%	Yes			
			MRCVS			9.67		10.0		96.7%	6	95% - 105	%	Yes			
			MRCVS			9.63		10.0		96.3%	6	95% - 105	%	Yes			
			_LCS			5.08		5.00		102%	,	90% - 110	%	Yes			

OA/OC Summany

ND: Below the reporting limit (Not Detected), **DF:** Dilution Factor.


> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖅 Mona Nassimi, Manager Analytical Services

whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984207

Date: July 21, 2009 Collected: July 8, 2009 Received: July 8, 2009 Prep/ Analyzed: July 9, 2009 Analytical Batch: 07TUC09F

Investigation:

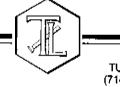
Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984207	SC-700B-WDR-211	10:11	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	Number	Concentra	tion	Dupl Concer	tration	F Di	Relative Percent fference		ceptance fimits	QC Within Control
	e i 964209-7	0.559		0.5	60		0.18%		<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration		oretical entration	Percen Recove		Accepta Limit		QC Within Control	
	Blank	ND	<(0.100			<0.10	0	Yes	-
	LCS	7.74		8.00	96.8%	,	90% - 11		Yes	1
	LĊS	7.80	1	8.00	97.5%		90% - 11		Yes	1
	LCS	7.75		8.00	96.9%		90% - 11		Yes	1


ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: July 21, 2009

Laboratory No.: 984207

Prep/ Analyzed: July 13, 2009 Analytical Batch: 07EC09D

Collected: July 8, 2009

Received: July 8, 2009

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

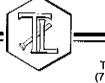
Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	<u>RL</u>	Results
984207	SC-700B-WDR-211	µmhos/cm	EPA 120.1	1.00	2.00	7140

QA/QC	Summary


QC S I.D.		1 Concentrati	ion Duplica Concentra		Relative Percent Difference	Acceptance limits	QC Within Control
Duplic	ate 984209-) 7340	7340		0.00%	<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percer Recove			
	Blank	ND	<2.00		<2.00	Yes	
	ccs	704	706	99.7%	90% - 110)% Yes	
	CVS#1	994	999	99.5%	90% - 110)% Yes	
	CVS#2	995	999	99.6%	90% - 110)% Yes	
	LCS	704	706	99.7%	90% - 110)% Yes	
	LCSD	704	706	99.7%	90% - 110)% Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

4. - Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984207

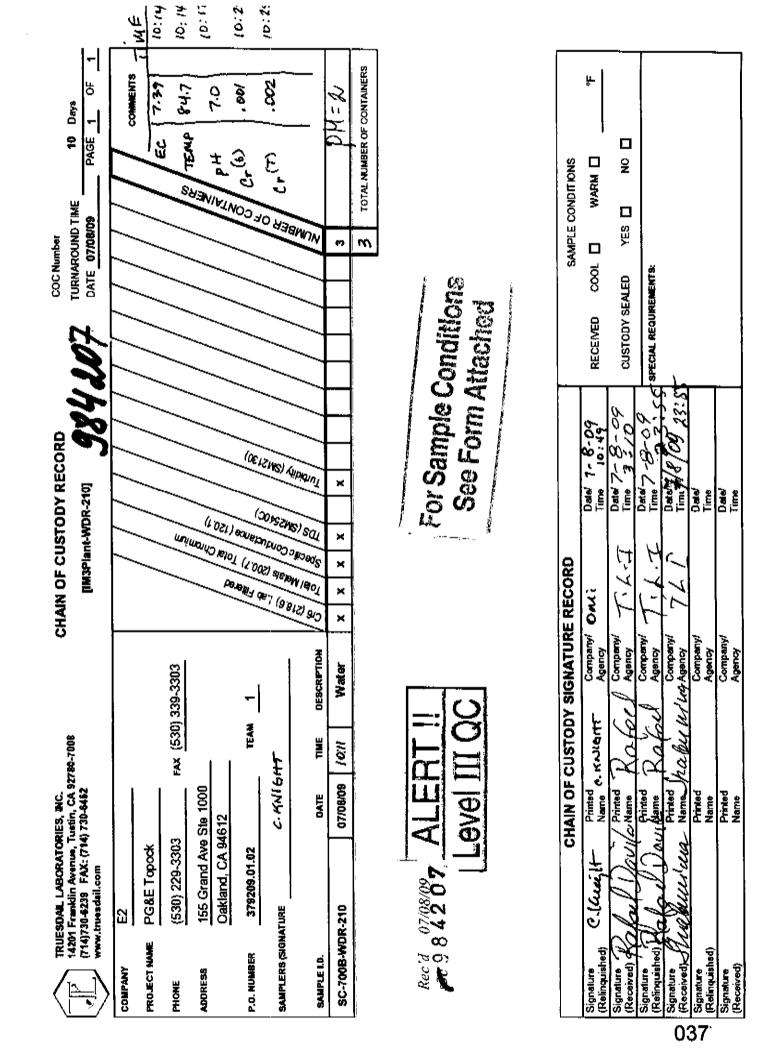
Date: July 21, 2009 Collected: July 8, 2009 Received: July 8, 2009 Prep/ Analyzed: July 13, 2009 Analytical Batch: 07TDS09D

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u> TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
984207	SC-700B-WDR-211	mg/L	SM 2540C	250	4170


QA/QC Summary

QC STD I	.D.	Laborator Number	y Concentrat		ion Duplicate Concentration			Percent Difference		Acceptance limits		QC Within Control
Duplicat	8	984209-8		4150		404)		1.34%		<u><</u> 5%	Yes
	٩	C Std I.D.		Measured Incentration		eoretical centration	Perce Recove		Accepta Limit		QC Within Control	'n
		Blank		ND		<25.0			<25.0)	Yes	
		LCS 1		502		500	100%	, 1	90% - 1	10%	Yes	
		LCS 2		500		500	100%		90% - 1	10%	Yes	***

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Hanalytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 23, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-212 PROJECT, GROUNDWATER MONIFORING, TLI NO.: 984276

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-212 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on July 13, 2009, intact and in chilled condition. The samples will be kept in a locked tefrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the matrix spike for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

tor

Mona Nassimi Manager, Analytical Services

K.R. 9. 9.20

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 984276

Date: July 23, 2009 Collected: July 13, 2009 Received: July 13, 2009

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	David Blackburn

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT www.truesdail.com Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 984276 Sample: One (1) Groundwater Sample Date: July 23, 2009 Project Name: PG&E Topock Project Collected: July 13, 2009 Project No.: 379209.01.02 Received: July 13, 2009 P.O. No.: 379209.01.02 Prep/ Analyzed: July 16, 2009 Prep. Batch: 071609B Analytical Batch: 071609B

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

.

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	_RL	Results
984276	SC-7008-WDR-212						<u>i veeuite</u>
004210	30-700B-WDR-212	μ g/L	EPA 200.8	17:55	5.00	1.00	ND

						QA	VQ	C Si	Imm	ar	У				
	QC STE) I.D.		orato	-	Concentra	tion	4	plicate entration		Relative Percent Difference	1	cceptance limits	QC Within Control	
·····	Duplic	ate _	98	4271	1	45.6			44.8		1.77%		<u>≺</u> 20%	Yes	
QC Std I.D,	Lab Number	unst	nc.of biked nple	Dilu Fac	tion tor	Added Spike Conc.		MS nount	Measu Conc. Spike samp	of	Theoret Conc. spiked sa	of	MS% Recovery	Acceptance limits	QC Within Control
MS	984271-1	45	5.6	5,6	ю	50.0		250	283		296	—-ŀ	95.0%	75-125%	
		Q	C Std			easured centration		eoretica Icentratic		rcen		ptance nits		nin	Yes
			Blank			ND		<1.00			<1	.00	Yes	_	
			MRCC	-		<u>4</u> 8.7		50.0	97	.4%	90%	- 110%	Yes		
			RCVS			45.3		50.0	90).6%	90%	110%	Yes		
			RCVS			46.0		50.0	92	0%	90% -	· 110%	Yes		
			RCVS	#3		45.3		50.0	90	.6%	90%	110%	Yes		
			ICS		_	49.4		50.0	98	.8%	_	120%	*		
	d at can + -t:		LCS		_	49.4		<u>50.</u> 0	98	.8%	_	110%	Yes		

ND: Not detected at reporting limit **DF:** Oilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
984276	SC-700B-WDR-212	08:00	14:08	μ g/ L	1.05	0.20	ND

		_				Q/	VQ	<u>(C</u> Si	ur	nma	ry	,					
	QC STI) I.D.		oorator umber	y	Concentrat	lon		-	ate ration	I	Relative Percent ifference		ceptance limits	T	QC WithIn Control	
	Duplic	ate	98	4271-4		84.8			92.9	•		9.12%		< 20%	+	Yeş	
QC Std I.D.	Lab Number	uns	nc.of piked nple	Diluti Fact		Added Spike Conc.		MS nount	C	leasured Conc. of Spiked sample	ľ	Theoretical Conc. of piked s ample		MS% ecovery	Ac	ceptance limits	QC Within Controi
MŞ	984276	0.	.00	1.06	;	1.00		1.06		1.13		1.06		107%		90 - 110%	Yes
		a	C Std	I.D.		Measured	_	eoretica centrati		Percel		Acceptan Limits	ce	QC With Contro			
			Blan	<u> </u>		ND		<0.200				<0.200		Yes	_		
			MRCC	s		5.12		5.00		102%	,	90% - 110	%	Yes			
			IRCV 5	<u>\$#1</u>		10.1		10.0		101%	;	95% - 105	%	Yes			
			IRCV			10.1		10.0		101%		95% - 105	%	Yes			
		<u> </u>	IRCVS			10.3		10.0		103%	,	95% - 105	%	Yes			
		L.	LCS			5.06		5.00		101%	,	90% - 110	%	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom It is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

800

Laboratory No.: 984276

Date: July 23, 2009 Collected: July 13, 2009 Received: July 13, 2009 Prep/ Analyzed: July 14, 2009 Analytical Batch: 07CrH09D

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984276

Date: July 23, 2009 Collected: July 13, 2009 Received: July 13, 2009 Prep/ Analyzed: July 14, 2009 Analytical Batch: 07TUC09G

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	RL	<u>Re</u> sults
984276	SC-700B-WDR-212					<u>Incourto</u>
304270	3C-700B-WDR-212	08:00	NTU	1.00	0.100	ND

QA/	Sumn	iary

QC STD I	.D.	Laborator Number		ation	tion Dupli Concent		Relative Percent Difference		ceptance limits	QC Within Control
Duplicat		984265-1	3 ND		N	D	0.00%		≤ 20%	Yes
	QC	C Std I.D.	Measured Concentration	-	oretical entration	Percen Recove			QC Within Control	
		Blank	ND	<	0.100		<0.10	00	Yes	4
		LCS	7.55		8.00	94.4%		_	Yes	1
		ĻCS	7.70		8.00	96.3%			Yes	1

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

P.O. No.: 379209.01.02

Laboratory No.: 984276

Date: July 23, 2009 Collected: July 13, 2009 Received: July 13, 2009 Prep/ Analyzed: July 15, 2009 Analytical Batch: 07EC09F

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	RL	Results
984276	SC-700B-WDR-212					Neodita
001210	00-7000-WDR-212	µmhos/cm	EPA 120.1	1.00	2.00	6970

QA/QC Summary

QC 81 I.D.		1 Concentrat	ion i	Duplicate F Concentration		ative Percent Difference	Acceptance limits	QC Within Control
Duplic:	ate 984276	6970		6980		0.14%	<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration	Theoreti Concentra		Percent ecovery	Acceptane Limits	e QC With Contro	nin
ļ	Blank	ND	<2.00			<2.00	Yes	
	<u> </u>	704	706		99.7%	90% - 110		-
	<u>CVS#1</u>	9 95	999		99.6%	90% - 110		-
- I-	CVS#2	995	999		99.6%	90% - 110		_
Ĺ	LCS	704	706		99.7%	90% - 110		
L	LCSD	704	706		99.7%	90% - 110		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 984276

Collected: July 13, 2009

Received: July 13, 2009

Prep/ Analyzed: July 16, 2009 Analytical Batch: 07TDS09E

Date: July 23, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
984276	SC-700B-WDR-212	mg/L	SM 2540C	250	3980

QA/QC Summary


QC STD I	STD I.D. Laboratory Number		Concentrat	Concentration		ate ration		ercent fference	Acceptance limits		QC Within Control
Duplicat	Duplicate 984276		3980		3930		0.63%		<u><</u> 5%		Yes
	QC Std I.D		Measured Soncentration		eoretical centration	Percen Recover		Accepta Limit		QC Within Control	
	Blank		ND		<25.0)	Yes	-
	LCS 1		499		500	99.8%		90% - 11		Yes	1

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 30, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-213 PROJECT, GROUNDWATER MONITORING, TLI NO.: 984435

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-213 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on July 21, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Seon (- Mona Nassimi

Mona Nassimi Manager, Analytical Services

K. R. P. gyen

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 984435

Date: July 30, 2009 Collected: July 21, 2009 Received: July 21, 2009

ANALYST LIST

METHOD	RARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

				Established 1931
	, , , , , , , , , , , , , , , , , , ,	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462
Client:	E2 Consulting Engineers, Inc.	REPORT		www.truesdail.com
	155 Grand Ave. Suite 1000			
	Oakland, CA 94612			
Attention:	Shawn Duffy		Lai	boratory No.: 984435
-	One (1) Groundwater Sample			Date: July 30, 2009
	PG&E Topock Project		(Collected: July 21, 2009
Project No.:	379209.01.02			Received: July 21, 2009
P.O. No.:	379209.01.02			Analyzed: July 24, 2009

Prep. Batch: 072409A

.

400. July 24, 2008 Analytical Batch: 072409A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	<u>RL</u>	Results
984435	SC-700B-WDR-213	μg/L	EPA 200.8	12:28	5.00	1.00	ND

						VQ	C Si	ım	mar	У					
	QC ST	LD. La	borate lumbe	-	Concentra	ition	Du Conc	plica entra		Р	elative ercent fference		ceptance limits	QC Within Control	
	Duplic	ate 🤤	8443	5	ND			ND			0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample		ition ctor	Added Spike Conc.		MS nount	C i	asured onc. of piked ample		Theoretical Conc. of biked sample	F	MS% Recovery	Acceptance limits	QC Within Control
MS	984435	0.00	5.	00	50.0		250		254		250	Γ	102%	75-125%	Yes
		QC Std	I.D.		Measured ncentration		neoretica ncentrati	· 1	Percer Recove		Acceptane Limits	CØ	QC With Contro		
		Blan	k		ND		<1.00				<1.00		Yes		
		MRCC	<u>s</u>		50.2		50.0		100%		90% - 110	%	Yes		
		MRCV	5#1		49.5		50.0		99.0%	,	90% - 110	%	Yes		
		ICS			49.7		50.0		99.4%	>	80% - <u>1</u> 20	%	Yes		
		LCS			50.4		_50.0		101%		90% - 110	%	Yes		

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Sen Came

🦾 – Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

007

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 984435

Collected: July 21, 2009

Received: July 21, 2009

Prep/ Analyzed: July 23, 2009 Analytical Batch: 07CrH09I

Date: July 30, 2009

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

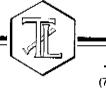
<u>TLI I.D.</u>	Field_I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
984435	SC-700B-WDR-213	08:00	08:01	μα/L	1.05	0.20	

					_	QA	VQ	C S	ur	nmai	ry						
	ας ετι) I.D.		oorator umber	у	Concentrati	òn	ŧ	iplic ent	ate	P	elative ercent ference		eptance limits	QC W Con		
	Duplic	ate	98	4372-3		330			330)	(0.00%		<u><</u> 20%	Ye	\$	
QC Std I.D.	Lab Number	unspiked Dilution Added Spike MS Conc. o r sample Factor Conc. Amount spiked		leasured Conc. of spiked sample	Theoretical		R	MS% ecovery	Acceptance limits		QC Within Control						
MS	984435	_0.	00	1.06	<u>}</u>	1.00		1.06		1.06		1.06		100%	90 - 1	10%	Yés
		a	C Std	I.D.		Neasured pricentration		eoretica icentrati		Percer Recove	-	Acceptane Limits	:0	QC With Contro			
			Blank			ND		<0.200			_	<0.200		Yes			
			MRCC	S		<u>5.1</u> 1		5.00	••	102%		90% - 110	%	Yes	-1		
		N	/RCVS	;# 1		10.2		10.0		102%	1	95% - 105		Yes	-		
		h	/RCVS	<i>;#</i> 2		9.75		10.0		97.5%	5	95% - 105	%	Yes			
			LCS			5.12		5.00		102%		90% - 110	%	Yes			

NO: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.


for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984435

Date: July 30, 2009 Collected: July 21, 2009 Received: July 21, 2009 Prep/ Analyzed: July 22, 2009 Analytical Batch: 07TUC09N

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample_Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984435	SC-700B-WDR-213	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	.D. Laborator Number	1 Concentrat	tion	Dupl Concer		F	Relative Percent Ifference	Acceptance limits		QC Within Control
Duplicati	e 984415-8	ND		ND			0.00%		<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration		oretical entration	Percer Recove	-	Accepta Limit		QC Within Control	
	Blank	ND	<	0.100			<0.10	0	Yes	
	LCS	8.18		8.00	102%	,	.90% - 1	10%	Yes	1
	LCS	7.79		8.00	97.4%	<u>.</u>	90% - 1	10%	Yes	
i	LCS	7.75		B. O O	96.9%	5	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	Results
984435	SC-700B-WDR-213	µmhos/cm	EPA 120.1	1.00	2.00	0960

QA/QC Summary

QC STE I.D.	D Laborato Number	1 Concentrati	ncentration c		Duplicate Rela Concentration [Acceptance limits		QC Within Control Yes
Duplicat	licate 984435 6960		6970			0.14%		<u><</u> 10%		
·	QC Std I.D.	_ 1		Theoretical Perce				ce QC Witi Contro		
	Blank	ND		<2.00		-	<2.00		Yes	-
	CCS	704		706	99.7	7%	90% - 110	%	Yes	-
	CVS#1	995		999		3%	90% - 110	%	Yes	
	LCS	704		706	99.7	7%	90% - 110	%	Yes	-
	LCSD	704		706	99.7	7%	90% - 110		Yes	1

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

tur

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

010

Laboratory No.: 984435

Date: July 30, 2009 Collected: July 21, 2009 Received: July 21, 2009 Prep/ Analyzed: July 23, 2009 Analytical Batch: 07EC09G

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984435

Date: July 30, 2009 Collected: July 21, 2009 Received: July 21, 2009 Prep/ Analyzed: July 23, 2009 Analytical Batch: 07TDS09I

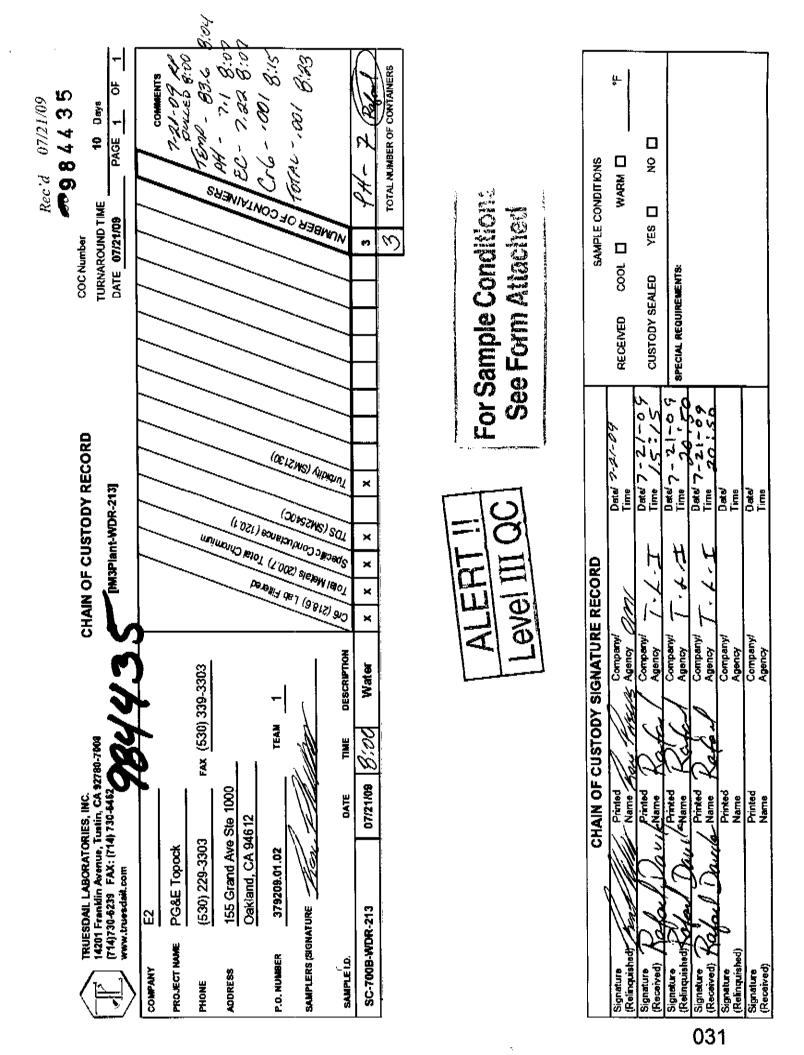
Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
984435	SC-700B-WDR-213	mg/L	SM 2540C	125	4070

QA/QC Summary


QC STD I	.D.	Laborator Number	· 1	Concentrat	ion	•	Duplicate Concentration		Percent fference		eptance limits	QC Within Control
Duplicat	e	984435		4070		4150		0.97%		<u>≤</u> 5%		Yes
	Q	C Std I.D.		leasured scentration		eoretical centration	Percer Recove		Accepta Limit		QC Within Control	ŀ
		Blank		ND		<25.0			<25.0)	Yes	4
		LCS 1		499		500	99.8%	6	90% - 1	10%	Yes	7
		LCS 2		497		500	99.4%	6	90% - 11	10%	Yes	1

ND: Selow the reporting limit (Not Detected), RL: Reporting Limit,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

--- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or In part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

August 5, 2009

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-214 PROJECT, GROUNDWATER MONITORING, TLI NO.: 984596

Truesdail Laboratorics, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-214 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on July 29, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

en

For Mona Nassimi Manager, Analytical Services

Ali Khange

Fo / K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project

Project No.: 379209.01.02

Laboratory No.: 984596

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

ľ

Date: August 5, 2009 Collected: July 29, 2009 Received: July 29, 2009

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Daniel Kang
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT Client: E2 Consulting Engineers, Inc. www.truesdail.com 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 984596 Sample: One (1) Groundwater Sample Date: August 5, 2009 Project Name: PG&E Topock Project Collected: July 29, 2009 Project No.: 379209.01.02 Received: July 29, 2009 P.O. No.: 379209.01.02 Prep/ Analyzed: July 31, 2009 Prep. Batch: 073109B Analytical Batch: 073109B

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	Beeulte
984596	SC-700B-WDR-214						<u>Results</u>
	00-700B-WBR-214	μg/L	EPA 200.8	15:32	5.00	1.00	ND

						QA	VQ	C Si	ın	nmar	v				
	QC ST) I.D.		borato umbe	-	Concentra		Du	plic	T	Relative Percent Difference	Ac	ceptance limits	QC Within Control	
	Duplic	ate	9	84596	}	ND			ND		0.00%		≤20%	Yes	
QC Std I.D.	Lab Number	Con unsp sam	iked		tion tor	Added Spike Conc.		MS nount		easured Conc. of spiked sample	Theoretic Conc. of spiked sam		MS% Recovery	Acceptance limits	QC Withir Control
MS	984596	0.0	00	5,(00	<u>5</u> 0.0		250		236	250	-+	94,4%	75-125%	
		Q	C Std	I.D.		leasured Icentration		eoretica centrati		Percen Recove	t Accept		OC With Contro	hin	Yes
			Blank	_		ND		<1.00			<1.0	0	Yes		
			MRCC			48.3		50.0		96.6%	90% - 1	10%	Yes		
			RCVS	<u> </u>		46.4		50.0		92.8%	90% - 1	10%	Yes		
		M	RCVS	#2		46.8		50.0		93.7%	90% - 1	10%	Yes	7	
		—	ICS			46.9		50.0		93,8%	80% - 1	20%	Yes		
			ICS#2	<u></u>		47.3		50.0		94.5%	80% - 1	20%	Yes	-	
	d at contail.		LCS		_	48.3		50.0		96.7%	90% - 1	10%	Yes	7	

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

en Cand

🖌 / Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar This report applies only to the sample, or samples, investigated and is not necessarily indicative or the quality or condition or apparently identical or of the products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 . (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984596

Date: August 6, 2009 Collected: July 29, 2009 Received: July 29, 2009 Prep/ Analyzed: July 29-30, 2009 Analytical Batch: 07CrH09J Revision 1

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
984596	SC-700B-WDR-214	08:00 07/3	0/09; 08:48	μg/L	1.05	0.20	

QA/QC Summary

	QC ST) I.D.		ooratory umber	r	Concentra	Concentration Duplicate Concentration			Relative Percent Difference		Acceptance limits		Ī	QC Within Control	
	Duplic	ate	98	4549-2		22.5		2	3.6		4.77%		< 20%		Yes	
QC Std I.D.	Lab Number	นกร	nc.of piked nple	Dilutio Facto		Added Spike Conc.		/IS ount	Measured Conc. of spiked sample		Theoretical Conc. of piked sample	R	MS% ecovery	Ac	cceptance limits	QC Within Contro
MS	984596	984596 0.00 1.06			1.00	1	.06	1.06		1.06		100%		90 - 110%	Yes	
		Q	C Std	I.D.		Measured incentration		eoretical centration	Perce Recove		Acceptane Limits	CĐ	QC With Contro			
			Blan	(ND		<0.200			<0.200		Yes			
			MRCC	s		5.10		5.00	102%	6	90% - 110	%	Yes		1	
		N	MRCVS	S#1		10.1		10.0	101%	6	95% - 105	%	Yes	_	1	
		٨	MRCVS	5#2		10.4		10.0	104%	6	95% - 105	%	Yes		1	
			LCS			5.06		5.00	101%	6	90% - 110	%	Yes		1	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 984596

Date: August 6, 2009 Collected: July 29, 2009 Received: July 29, 2009 Prep/ Analyzed: July 30, 2009 Analytical Batch: 07TUC09Q Revision 1

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	RL	Results
984596	SC-700B-WDR-214	00.00		<u> </u>		Results
004000	3C-700B-WDR-214	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	.D. Nur	ratory nber	Concentra	Concentration Duplicate Concentration		1	Relative Percent Difference		ceptance limits	QC Within Control	
Duplicat	Duplicate 984596 N		ND		N	D		0.00%		< 20%	Yes
	QC Std I.	I.D. Measured Concentration		1	oretical entration	Percer Recove		Accepta Limit		QC Within Control	ו
	Blank		ND	<(0.100			<0.10	0	Yes	-
	LCS		7.56	1	3.00	94.5%	,	90% - 11		Yes	1
l	LCS		7.45		3.00	93.1%	,	90% - 11		Yes	-

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: August 5, 2009

Laboratory No.: 984596

Prep/ Analyzed: July 31, 2009 Analytical Batch: 07EC09I

Collected: July 29, 2009

Received: July 29, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	RL	<u>Results</u>
984596	SC-700B-WDR-214	µmhos/cm	EPA 120.1	1.00	2.00	7630

QA/QC Summary

QC ST I.D.		* Concontration		Duplicate Concentration			tive Percent Ifference	Acceptance limits		QC Within Control
Duplica	ate 984596	3 7630	7650			0.26%		<u>< 10%</u>	Yes	
	QC Std I.D.	itd I.D. Measured Concentration		Theoretical Concentration		ent very			QC Withi Control	· · · · · · · · · · · · · · · · · · ·
	Blank	ND		<2.00			<2.00		Yes	-
	ccs	705		706	99.9)%	90% - 110	%	Yes	-
	CVS#1	995		999	99.6	5%	90% - 110		Yes	
	LCS	705		706	99.9	9%	90% - 110		Yes	1
	LCSD	705		706	99.9		90% - 110		Yes	4

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

40 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT www.truesdail.com Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.; 984596 Sample: One (1) Groundwater Sample Date: August 5, 2009 Project Name: PG&E Topock Project Collected: July 29, 2009 Project No.: 379209.01.02 Received: July 29, 2009 P.O. No.: 379209.01.02 Prep/ Analyzed: July 31, 2009

Investigation:

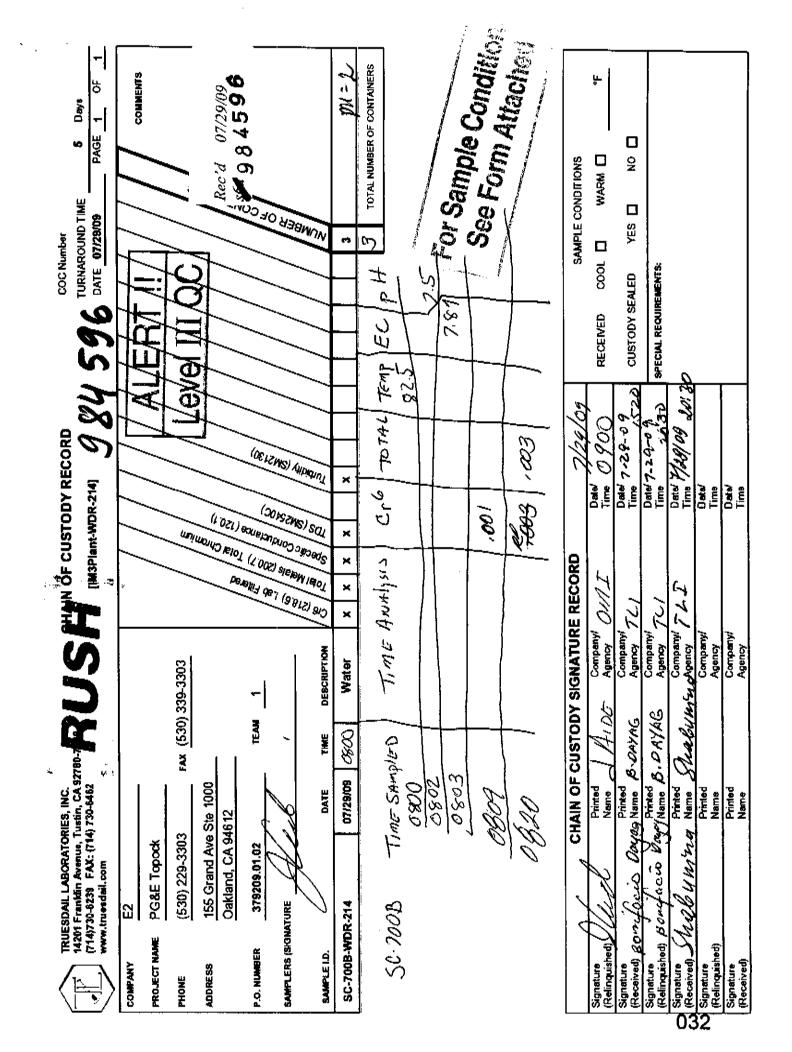
Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Unjts</u>	Method	<u>RL</u>	<u>Results</u>
984596	SC-700B-WDR-214	mg/L	SM 2540C	250	4480

QA/QC Summary

QC STD I	QC STD I.D. Laborator Number			ncentrat	ion	Duplic Concent			Percent Ifference		eptance limits	QC Within Control
Ouplicate		984596		4480		437	0		1.24%		<u><</u> 5%	Yes
	QC Std I.D.		C Std I.D. Measured Concentratio			eoretical centration	Percei Recove		Accepta Limit			
	Blank	lank ND			<25.0			<25.0	}	Yes	-	
l		LCS_1	499)		500	99.8%	6	90% - 11		Yes	


ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Analytical Batch: 07TDS09K

Mona Nassimi, Manager tur Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

August 21, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-215 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 984729

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-215 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on August 5, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Mr. Shawn Duffy of CH2M Hill canceled the analysis for TOC by SM 5310 C on August 6, 2009.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

6 - Mona Nassimi Manager, Analytical Services

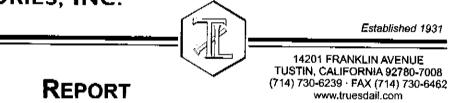
K. R. P. gola

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com


Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM

Laboratory No.: 984729 Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM_2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
<u>SM 4500-NH3 D</u>	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Daniel Kang / Romuel Chavez / Linda Saetern
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Laboratory No.: 984729

Prep/ Analyzed: August 6, 2009 Analytical Batch: 08EC09C

Date: August 21, 2009

Collected: August 5, 2009

Received: August 5 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	DE	<u>RL</u>	<u>Results</u>
984729+1	SC-700B-WDR-215	µmhos/cm	EPA 120.1	1.00	2.00	7380
984729-2	SC-100B-WDR-215	µmhos/cm	EPA 120.1	1.00	2.00	7980

QA/QC Summary

QC STD	Number	Concontrati	011 1	licate ntration	Relative Percent Differenc	AC	ceptance limits	QC Within Control	
Duplicate	984731-2	8620	86	30	0.12%		≤ 10%	Yes	
4	QC Std I.D.	Measured Concentration	Theoretical Concentration	Perce Recove		ptance nits	QC Withi Control	n	
	<u> Blank</u>	ND	<2.00	·		.00	Yes	-1	
	CCS	705	706	99.9%		110%	Yes	-	
	CVS#1	966	999	96.7%		110%	Yes	-	
	LCS	705	706	99.9%		110%	Yes	-1	
L.,	LCSD	705	706	99.9%		110%	Yes	-	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895,AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984729

Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 6, 2009 Analytical Batch: 08TDS09C

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Unitş</u>	Method	<u>RL</u>	Results
984729-1	SC-700B-WDR-215	mg/L	SM 2540C	250	4390
984729-2	SC-100B-WDR-215	mg/L	SM 2540C	250	4680

QA/QC Summary

QC STD I.D. Labor Nun			ation	Dupli Concen			Percent ifference	Acceptance limits		QC Within Control
Duplicat	e 984731-	2 5270		522	20		0.48%	<u><</u> 5%		Yes
	QC Std I.D.	I.D. Measured Concentration		oretical entration	Perce Recove		Accepta Limit:		QC Within Control	<u>_</u>
	Blank	ND	<	25.0			<25.0	•	Yes	-
L	LCS 1	499		500	99.8%	6	90% - 11		Yes	4

ND: Below the reporting limit (Not Detected). **RL: Reporting Limit.**

> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Sen (

fu- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratorles,

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984729

Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 6, 2009 Analytical Batch: 08TUC09E

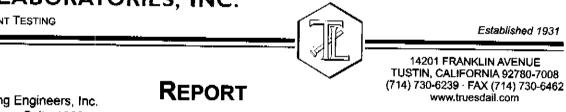
Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984729-1	SC-700B-WDR-215	08:00	NTU	1.00	0.100	
984729-2	SC-100B-WDR-215	08:00	NTU	1.00	0.100	

QA/QC Summarv


QC STD I	QC STD I.D. Laborator Number Duplicate 984729-2			Concentra	ition	Dupli Concent			Relative Percent ifference		ceptance limits	QC Within Control	
Duplicat				ND		NC	ND		0.00%		<u>< 20%</u>	Yes	
	Q	QC Std I.D.		C Std I.D. Measured Concentration			Theoretical Perce Concentration Recov					QC Within Control	
	Blank		ND		<	0.100		0 Yes			-1		
	LCS	LCS		8.20		8.00	103%			_	Yes	-	
l		LCS		£.10		8.00	101%	, ,	90% - 11		Yes	1	

ND: Below the reporting limit (Not Detected). DE: Dilution Factor

> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM Prep. Batch: 08CrH09F

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Run Time	<u>Units</u>	DF	RL	<u>Results</u>
984729-1	SC-700B-WDR-215	08:00	09:50	μg/L	1.05	0.20	ND
984729-2	SC-100B-WDR-215	08:00	09:39	μg/L	105	21.0	1060

QA/QC Summary

	QC STE				ratory nber	Sampi Concentra			licate ntration	Relative Percent Difference		Acceptance limits		QC Within Control	
	Duplic	ate		9847	29-2	1060		10	060		0.00%		< 20%	Yes	
QC Std I.D.	Lab Number	unsp	ic.of biked hple	Dilut	tion Factor	Added Spike Conc.	I .	MS nount	Measured Conc. of spiked sample		heoretical Conc. of spiked sample		MS% acovery	Acceptance limits	QC Within Control
vis	984729-1		00		1.06	1,00	,	1.06	1.06	+	1.06		100%	90-110%	Yes
<u>M\$ 98</u>	984729-2	10	60	L,.	105	15.0	1	575	2640	-1-	2635		100%	90-110%	Yes
	QC Std J.D.		I.D.		sured ntration			1		Acceptan Limits	IC0	QC With Contro	in		
		L	Blan	k .	L. N	۱D		<0.200		_	<0.200		Yes	_	
			MRCC	:\$	5.	.00		5.00	100%	6	90% - 110		Yes		
		M	RCV	S#1	1	0.2		10.0	102%	6	95% - 105		Yes	_	
		M	IRCV	3#2	9.	99		10.0	99.99	6	95% - 105		Yes		
			RCVS	5#3	9.	89		10.0	98.99	6	95% - 105		Yes	_	
		M	RÇV	#4	9.	85		10.0	98.5%		95% - 105		Yes	-1	
			LCS	, , ,	5.	06		5.00	101%	(90% - 110		Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.; 984729

Collected: August 5, 2009

Received: August 5, 2009

Prep/ Analyzed: August 6, 2009

Analytical Batch: 08CrH09F

Date: August 21, 2009

🚛 Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984729 Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 10, 2009 Analytical Batch: 08NH3-E09B

Investigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Method</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984729-1 984729-2	SC-700B-WDR-215 SC-100B-WDR-215	08:00 08:00	SM 4500-NH3 D SM 4500-NH3 D	mg/L mg/L	1.00 1.00	0.500	ND

QA/QC Summary

	QC ST			aborat Numb	ər	Concentr	ation		plicate entration		Relative Percent lifference		eptance limits		QC Within Control	
	Duplic	ate		84729	-1	<u>ND</u>			ND	Т	0.00%		<u>< 20%</u>	+-	Yes	
QC Std I.D.	I.D. Number		unspiked		ation ctor	I Sniko I		MS 10unt	Measure Conc. o spiked sample	f	Theoretical Conc. of spiked sample	MS% Recovery		A	Acceptance limits	QC Within Control
MS	IS 984729-2	0.0	00	1.	00	6.00	ė	i.00	5.87		6.00	ļ	97.8%	┢┈	75-125%	Yes
			C Std	1.D.		asured entration		eoretica Centratic			Acceptan Limits	1CØ	QC Wit Contr	thin		
			Blan	k .		ND		<0.500	5		<0.500		0 Yes			
	MRCCS			6.00		6.00	100	%	90% - 110		Yes					
		M	MRCV:			6.06		6.00	101	%	90% - 110		Yes			
			LCŞ			9.87		10.0	98.7	%	90% - 110		Yes			

ND: Below the reporting limit (Not Detected), DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984729

Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 6, 2009 Analytical Batch: 08AN09E

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

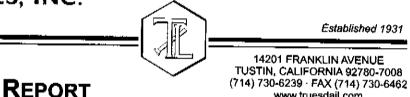
Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	RL	<u>Results</u>
984729-1	SC-700B-WDR-215	08:00	10:48	mg/L	5.00	0.500	2.14
984729-2	SC-100B-WDR-215	08:00	11:00	mg/L	5.00	0.500	2.30

QA/QC Summary

	QC ST			abora Numt	юг	Concentr	ation	Du Conc	plica entra	tion	Pe	olative orcent orence		ceptance limits	Ţ	QC Within Control	
	Duplic	ate		8472	9-2	2.30		L	2.42			.08%		< 20%		Yes	
QC Std f.D.	Lab Number	Con unsp sam			ution	Added Spike Conc.	_	MS nount	C (asured onc. of piked ample		eoretical Conc. of spiked sample		MS% BCOVery	,	Acceptance Ilmits	QC Within Control
MS	984729-2	2.3	30	5	.00	4.00		20.0		22.9	1-	22.3	İ—	103%		85-115%	Yes
		Q	C Std	I.D.		asured entration		eoretica		Percen Recove	· •	Acceptar Limits	ice	QC Wit Contr		3	165
		L.,	Blan	ĸ		ND		<0.500			+	< 0.500	,	Yes	_	1	
			MRCC	s		3.98		4.00		99.5%		90% - 110		Yes			
		м	RCVS	3#1		3.04		3,00		101%	_	90% - 110		Yes		1	
			LCS			3.96		4.00		99.0%		90% - 110		Yes	_	1	

ND: Below the reporting limit (Not Detected).


DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Hona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used. In whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984729

Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 6, 2009 Analytical Batch: 08AN09E

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984729-1	SC-700B-WDR-215	08:00	12:42	mg/L	100	50.0	492
984729-2	SC-100B-WDR-215	08:00	13:16	mg/L	100	50.0	532

QA/QC Summary

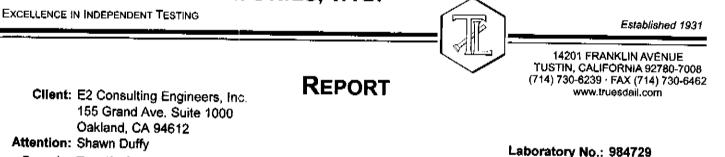
	QC STE		1	Numb	er	Concentr	 Conce	licate ntration	F	Relative Percent ifference		ceptance limits	T	QC Within Control	
QC Std I.D.		Con unsp	ic.of Diked nple	_	ution ctor	492 Added Spike Conc.	MS nount	84 Measured Conc. of spiked		1.64% Theoretical Conc. of Spiked		< 20% MS% ecovery		Yes Acceptance Ilmits	QC Within Control
MS	984729-1	4	92	1	00	10.0	000	sample 1510	+	sample 1492		102%		85-115%	Yes
		Q	C Std	I.D.		entration	 eoretical centratio	Percer n Recove		Acceptan Limits		QC Wit		1	
			Blank	·		ND	<0.500			<0.500		Yes	_		
			MRCC	s		19,9	20.0	99.5%	,	90% - 110	_	Yes			
		M	RCVS	#1		14.8	<u>1</u> 5.0	98.7%	,	90% - 110		Yes			
		M	IRCVS			15.0	15.0	100%	,	90% - 110		Yes	-		
			LCS			19.8	20.0	99.0%	Ż	90% - 110	%	Yes			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Eactor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services


This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Sample: Two (2) Groundwaters

Project Name: PG&E Topock Project

P.O. No.: 392895.AA.DM

Project No.: 392895.AA.DM

Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 6, 2009 Analytical Batch: 08AN09E

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
984729-1	SC-700B-WDR-215	08:00	10:48	mg/L	5.00	1.00	2.31
984729-2	SC-100B-WDR-215	08:00	11:00	mg/L	5.00	1.00	

QA/QC Summarv

	QC STD		M	boratory lumber	Concentr	 	plicate entration	F	Relative Percent Ifference		eptance limits		C Within Control	
r	Duplica	ite	9	84729-2	2.50	 <u> </u>	2.64		5.45%		<u><</u> 20%		Yes	
QC Std I.D.	Lab Number	Conc unspi samp	iked	Dilution Factor	Added Spike Conc.	 MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample		MS% covery	Ac	ceptance limits	QC Within Control
MS	984729-2	2.5	<u>o (</u>	5.00	4.00	20.0	23.7	-	22.5		106%	8	5-115%	Yes
		ac	Std		asured centration	eoretica centratic			Acceptan Limits	ce	QC Wit	hin	<u>•_(/0//</u>	163
			Blank		ND	<0.500		-	<0.500		Yes	-		
		M	RCC	s	3.94	4.00	98.5%	6	90% - 110		Yes	_		
		MF	RCVŞ	#1	2.95	3.00	98.3%	6	90% - 110		Yes			
			LCS		3.93	4.00	98.3%	6	90% - 110		Yes			

ND: Selow the reporting limit (Not Detected),

DF: Dilution Factor.

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984729

Date: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Prep/ Analyzed: August 6, 2009 Analytical Batch: 08NO209C

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
984729-1	SC-700B-WDR-215	08:00	13:18	mg/L	1.00	0.0050	ND
984729-2	SC-100B-WDR-215	08:00	13:19	mg/L	1.00	0.0050	ND

					QA	VQ	<u>C S</u> u	Im	mary	1						
	QC ST		Nun	natory nber	Concentr	ation		plica entr	ation	Relativ Percer Differen	nt			Ī	QC Within Control	
	Duplic	ate	9847	29-1	ND			ND		0.00%			< 20%		Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample		ilution Factor	Added Spike Conc.	-	MS nount	c t	easured onc. of spiked ample	Theore Conc spik sam	. of ed		MS% scovery	,	Acceptance fimits	QC Within Control
MS	984729-1	0.00		1.00	0.0200	0.	0200		0.0195	0.02	_		97.5%	-	75-125%	Yes
		QC Sto	I I.D.	· _ ·	asured entration	_	eoretica centratic	· (Percent Recovery		eptan .imits	CĐ	QC Wit		1	
		Blar	ik		ND		<0.0050	-			0.0050)	Yes	_		
		MRC	CS	0.	0267	-	0.0270		98.9%		6 - 11C		Yes			
		MRCV	S#1	0.	0199		0.0200		100%		- 110		Yes			
		LC	<u> </u>	<u> </u>	0463		0.0450		103%		- 110		Yes			

ND: Below the reporting limit (Not Detected). DF: Offution Fector,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

tor

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 984729

Reported: August 21, 2009 Collected: August 5, 2009 Received: August 5, 2009 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation: Total Metal Analyses as Requested

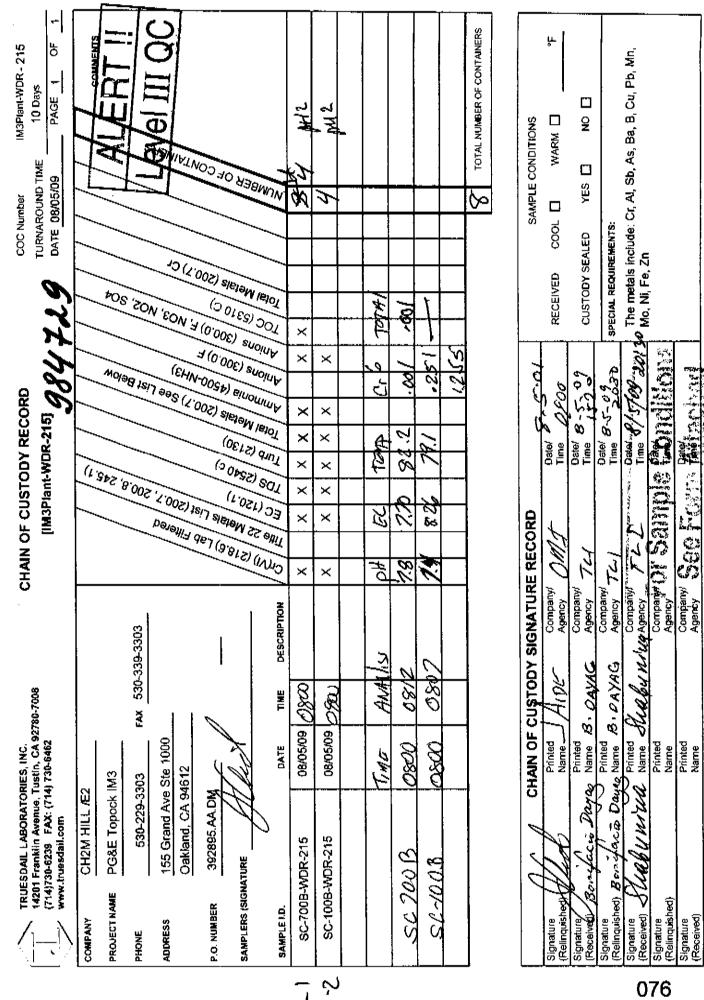
Analytical Results

SAMPLE ID:	SC-700B-WDR-215	Time Col	lected:	08:00		LABIO): 984729-1	<u> </u>
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date	Time
Aluminum	EPA 200.8	ND	5.00	μg/L	50.0	081009A	Analyzed	Analyzed
Antimony	EPA 200.8	ND	5.00	<u></u> <u>µg/L</u>	10.0		08/10/09	15:37
Arsenic	EPA 200.8	ND	5.00			081009A	08/10/09	15:37
Barium	EPA 200.8	13.6	5.00	µg/L	1.00	081009A	08/10/09	15:37
Chromium	EPA 200.8	ND		μg/L	10.0	081009A	08/10/09	15:37
Copper	EPA 200.8		<u> </u>	µg/L	1.00	081009A	08/10/09	15:37
Lead	EPA 200.8		5.00	μg/L	5.00	081009A	08/10/09	15:37
Manganese		ND	<u> </u>	<u>µg/L</u>	10.0	081009A	08/10/09	15:37
	EPA 200.8	44.9	<u>5.00</u>	µg/L	10.0	081009A	08/10/09	15:37
Molybdenum	EPA 200.8	14.2	5.00	μg/L	10.0	081309B	08/13/09	23:48
Nickel	EPA 200.8	ND ND	5.00	<u>µg/L</u>	10.0	081009A	08/10/09	
Zinc	EPA 200.8	20.4	5.00	μ g/L	10.0	0813098		
Boron	EPA 200.7	1070	1.00	μg/L			08/13/09	23:48
iron	EPA 200.7	ND			200	08 <u>1209A</u>	08/12/09	12:11
			1.00	µg/L	20.0	070909A	07/09/09	12:11

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Report Continued

SAMPLE ID: SC	-100B-WDR-215	Time Co	llected:	08:00		LAB ID	: 984729-2	········
Parameter	Method	Reported Value	DF	Unite	RL	Batch	Date Analyzed	Time
Aluminum	EPA 200.8	ND	5.00	µ g/L	50.0	081009A	08/10/09	Anatyzed
Antimony	EPA 200.8	ND	5.00	<u></u> µg/L	10.0	081009A		<u> </u>
Arsenic	EPA 200.8	3.60	5.00		1.00		08/10/09	16:03
Barium	EPA 200.8	22.8	5.00	<u> </u>		081009A	08/10/09	16:03
Chromium	EPA 200.8	950	· · · · · · · · ·		10.0	A600180	08/10/09	16:03
Copper	EPA 200.8		5.00	<u>µg</u> /L	1.00	081009A	08/10/09	16:03
Lead		<u>ND</u>	5.00	μ g/L	<u> </u>	081009A	08/10/09	16:03
	EPA 200.8	ND	5.00	<u>µg/L</u>	10.0	081009A	08/10/09	16:03
Manganese	EPA 200.8	ND	5.00	μ g/L	10.0	081009A	08/10/09	16:03
Molybdenum	EPA 200.8	18.8	5.00	μg/L	10.0	0813098	08/13/09	
Nickel	EPA 200.8	ND	5.00	μg/L	10.0			23:54
Zinc	EPA 200.8	ND	5.00			081009A	08/10/09	16:03
Boron	EPA 200.7	1110	· · · · · · · · · · · · · · · · · · ·	<u>µ</u> 9/L	10.0	081309B	08/13/09	23:54
Iron	EPA 200.7		<u> </u>	μg/L	200	081209A	08/12/09	12:45
	EFA 200./	<u>ND</u>	1.00	µg/ <u>L</u>	20.0	070909A	07/09/09	12:45


ND: Not detected, or below limit of detection. DF: Dilution factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

018

076

l

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

August 31, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-216 PROJECT, GROUNDWATER MONITORING, TLJ NO.: 984886

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant WDR-216 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on August 12, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Sen Canda

Mona Nassimi Manager, Analytical Services

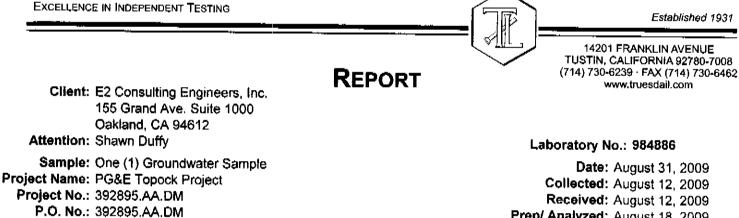
K. R. P. Sye

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com


Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM

Laboratory No.; 984886

Date: August 31, 2009 Collected: August 12, 2009 Received: August 12, 2009

ANALYST LIST

WETHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

Prep. Batch: 081809B

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation:

using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	Results
984886	SC-700B-WDR-216	μg/L	EPA 200.8	17:42	5.00	1.00	1.23

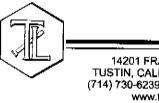
						QA	<u>VQ</u>	<u> C Sι</u>	IN	nmar	У					
	QC STE) I.D.	Numb		-	Concentration		Duplicate Concentration			Relative Percent Difference		Acceptance limits		QC Within Control	
	Duplic	ate			9	ND		f		ND		0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	unsp	nsbiked i		tion tor	Added Spike Conc.		MS nount	(feasured Conc. of spiked sample	Theoretica Conc. of spiked sam		MS% Recovery		Acceptance limits	QC Within Control
MS	984889-9	0 .	0.00 5.0		00	Aeasured Th		250 Theoretical oncentration		233		250		93.2%	75-125%	Yes
		QC Std I.D. Blank MRCCS		I.D.										QC Withi Control	 	
				ι (ND	<u><1</u> .00				<1.00			Yes		
				MRCCS		47.8	_	50.0		95.6%	5	90% - 11	0%	Yes		
			<u>/RÇVS</u>	#1		47.2		50.0		94.4%	5	90% - 11	0%	Yes		
		MRCVS#2 47.5			50.0		95.0%	,	90% - 11	0%	Yes					
		N	/IRĊV5	;# 3		46.1		50.0		92.2%		90% - 11	0%	Yes		
			ICS			46.7		50.0		93.4%		80% - 12	0%	Yes		
				LCS		47.1		50.0		94.2%		90% - 110		Yes		

ND: Not detected at reporting limit

DF: Oilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services


This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 007

A (00 0

Prep/ Analyzed: August 18, 2009 Analytical Batch: 081809B

Established 1931

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984886

Date: August 31, 2009 Collected: August 12, 2009 Received: August 12, 2009 Prep/ Analyzed: August 13, 2009 Analytical Batch: 08CrH09Q

Investigation:

Hexavalent Chromium by EPA 218.6

REPORT

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
984886	SC-700B-WDR-216	08:00	11:58	μ g/L	1.05	0.20	ND

QA/QC Summary

	QC STC		Number		·	Concentration		Duplicate Concentration		Relative Percent Difference		Acceptance limits		QC Within Control		
	Duplic	ate	ite 984		}			1	1,4	(0.00%	.00%		Yes		
QC Std I.D.	Lab Number	Conc.of unspiked sample		Dilutior Factor		Added Spike Conc.		MS Iount	Measured Conc. of spiked sample		Theoretical Conc. of piked samp		MS% lecovery	Acceptance limits		QC Within Control
MŞ	984886	86 0.124 1 QC Std I.D.		1.06		1.00	1	.06	1.27	1.18			108%	90	- 110%	Yes
				I.D.	D. Measured Concentrat			eoretical centration	Percer Recove				QC Wit Contr			
			Blank			ND		<0.200		<0.200		0	Yes			
		MRCVS#1 MRCVS#2 MRCVS#3		s	5.15 9.80 9.89			5.00	103%				Yes			
				#1				10.0	98.0%	c,			Yes			
				#2				10.0	98.9%	°.			Yes			
				9.86			10.0	98.6%	, ,	95% - 10) 5% Yes					
	LCS			5.15		5.00	103%	,	90% - 110%		Yes					

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 800

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984886

Date: August 31, 2009 Collected: August 12, 2009 Received: August 12, 2009 Prep/ Analyzed: August 13, 2009 Analytical Batch: 08TUC09K

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
984886	SC-700B-WDR-216	08:00	NTU	1.00	0.100	0.105

QA/QC Summary

QC STD I.D. Laboratory Number		Concentral	tion	Dupli Concen		F F	Relative Percent fference		ceptance limits	QC Within Control
Duplicate	984883-2	7 ND		ND			0.00%		<u><</u> 20%	Yes
	QC Std I.D.	Std I.D. Measured Concentration		oretical entration	Percer Recove		Accepta Limit		QC Within Control	
	Blank	ND	<	0.100		<0.1		ю	Yes	
	LCS	7.77		8.00	97.1%	ò	90% - 110		Yes	
	LCS	7.68		8.00	96.0%		90% - 1	10%	Yes]

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Ker Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

009

EXCELLENCE IN INDEPENDENT TESTING

REPORT

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 984886

Date: August 31, 2009 Collected: August 12, 2009 Received: August 12, 2009 Prep/ Analyzed: August 13, 2009 Analytical Batch: 08EC09E

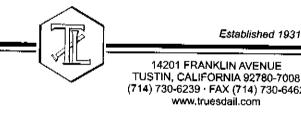
Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Fleid I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
984886	SC-700B-WDR-216	µmhos/cm	EPA 120.1	1.00	2.00	5990

				<u>w</u> r			lary				
QC STD Laboratory I.D. Number			Concentrat	lon	on Duplicat Concentrat			tive Percent ifference	Ac	ceptance limits	QC Within Control
Duplic	ate	984886	5990		6000			0.17%	<u><</u> 10%		Yes
	QC Std I.D.		Measured Concentration	Theoretical Concentration		Percent Recovery		Acceptane Limits			
		Blank	ND		<2.00			<2.00	-	Yes	-
		ccs	704		706	99.7	7%	90% - 110			-
	(CVS#1_	965		999	96.6	6%	90% - 110	%	Yes	1
		LÇŞ	704		706	99.7	%	90% - 110	%	Yes	1
l		LCSD	704		706	99.7	'%	90% - 110	%	Yes	1


OA/OC Summary

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

) a Can for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895,AA,DM

Laboratory No.: 984886

Date: August 31, 2009 Collected: August 12, 2009 Received: August 12, 2009 Prep/ Analyzed: August 13, 2009 Analytical Batch: 08TDS09H

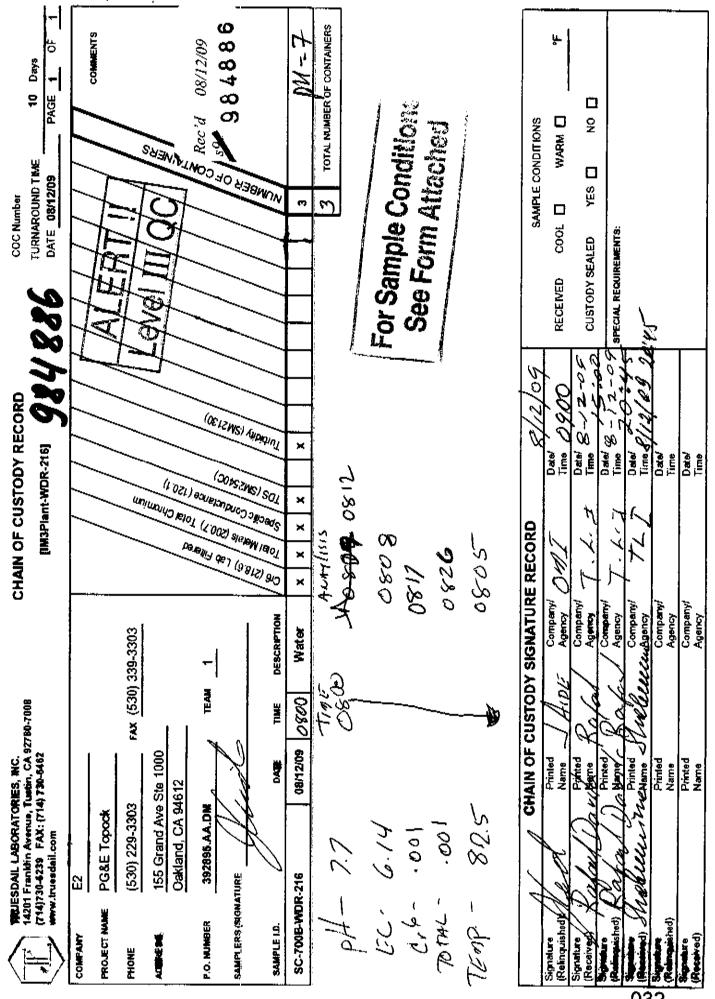
Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	Results
984886	SC-700B-WDR-216	mg/L	SM 2540C	125	3600

QA/QC Summary


QC STD I.D. Laborat Numb		-	Concentrat	ion	Duplic Concent	-		Percent Ifference		ceptance limits	QC Within Control
Duplicate 984855-2		2	1000		1000		0.00%		<u>≺</u> 5%		Yes
	QC Std I.D.		Measured Concentration		eoretical centration	Perce Recove		Accepta Limit		QC Within Control	
	Blank				<25.0			<25.0)	Yes	-
	LCS 1		497		500	99.4%	6	90% - 1 ⁻	10%	Yes	1
	LCS 2		498		500	99.6%	6	90% - 1	10%	Yes	

ND: Selow the reporting limit (Not Detected), RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

August 31, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-217 PROJECT, GROUNDWATER MONITORING, TLI NO.: 985000

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-217 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on August 19, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Sen Cond Hona Nassimi

 Мопа Nassimi Manager, Analytical Services

K-R. P. Joje

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM

Laboratory No.: 985000

Date: August 31, 2009 Collected: August 19, 2009 Received: August 19, 2009

ANALYST LIST

метнор	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	lordan Stavrev
EPA 200.8	Total Chromium	Daniel Kang
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENC	E IN INDEPENDENT TESTING			Established 1931
Client:	E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Attention:	Shawn Duffy		Lat	oratory No.: 985000
Project Name: Project No.:	One (1) Groundwater Sample PG&E Topock Project 392895.AA.DM 392895.AA.DM		(F Prep//	Date: August 31, 2009 Collected: August 19, 2009 Received: August 19, 2009 Analyzed: August 27, 2009
riep. Dateit.	0020090		Analytic	al Batch: 0826090

Analytical Batch: 082609C

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	Run Time	DF	RL	<u>Results</u>
985000	SC-700B-WDR-217	μg/L	EPA 200.8	00:11	5.00	1.00	ND

						QA	VQ	C Si	IN	ımar							
	QC STD) I.D.		oorato umbei	*	Concentra	tion		•	ate ration	Pe	alative arcent ference	Ac	ceptance limits	QC	Within ontrol	
	Duplica	ate	98	4912-	1	ND			ND		.0	.00%		<u>≤</u> 20%		Yes	
QC Std I.D.	Lab Number	Conc. unspik samp	ted	Ðilut Fac		Added Spike Conc.		MS nount	C	leasured Conc. of Spiked sample		heoretical Conc. of Iked samp	F	MS% Recovery		eptance mits	QC Within Control
MS	984912-1	0.00)	5.0	00	50.0		250		248		250		99.2%	75-	-125%	Yes
		QC	Std	I.D.		easured icentration		eoretica Icentrati		Percer Recove		Accepta Limit		QC With Contro			•
		E	3lank			ND		<1.00				<1.00)	Yes			
		M	RCC	s		50.6		50.0		101%	,	90% - 11	10%	Yes			
		MR	CVS	#1		50. 9		50.0		102%		90% - 11	10%	Yes			
		MR	CVS	#2		50.6		50.0		101%		90% - 11	10%	Yes			
		MR	CVS	#3		46.1		50.0		92.2%	,	90% - 1 1	10%	Yes			
			ICS			50.4		50.0		101%		80% - 12	20%	Yes			
			LCS			50.3		50.0		101%		90% - 11	10%	Yes			

ND: Not detected at reporting limit **DF:** Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖌 🖉 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

007

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92760-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985000

Date: August 31, 2009 Collected: August 19, 2009 Received: August 19, 2009 Prep/ Analyzed: August 21, 2009 Analytical Batch: 08CrH09T

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u> Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985000	SC-700B-WDR-217	08:30	10:15	μg/L	1.05	0.20	ND

OA/OC Summany

	QC ST) I.D.		orator umber	-	Concentra	tion Duplicate Concentration			Relative Percent Difference			eptance imits		C Within Control		
	Duplic	ate	98	4909-2				408		¢	0.00%		20%	Yes			
QC Std I.D.	Lab Number	uns	nc.of piked mple	Dilut Fact				Measured MS Conc. of nount spiked sample		1	heoretical Conc. of iked sample	Becovery		Acceptance lim		QC ts Withi Contr	in
MS	985000 0.00 1.06 1.00		1.00	1.06 1		1.09	1.06		103%		90 - 110%		Yes				
		6	QC Std	I.D.	-	Measured nceritration		eoretical centration	Perce Recove		Acceptar Limits		QC With Contro				
			Blan	k		ND		≈0.200			<0.200)	Yes				
			MRCC	5		5.26		5.00	105%	6	90% - 110	0%	Yes				
			MRÇV	S#1		9.71		10.0	97.19	6	95% - 10	5%	Yes				
			MRÇV	5#2		9.70		10.0	97.0%	6	95% - 10	5%	Yes				
			LCS	;		5.23		5.00	105%	6	90% - 110	2%	Yes				

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985000

Date: August 31, 2009 Collected: August 19, 2009 Received: August 19, 2009 Prep/ Analyzed: August 21, 2009 Analytical Batch: 08TUC09N

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLH.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	DF	RL	Results
985000	SC-700B-WDR-217	08:30	NTU	1.00	0.100	0.109

QA/QC Summary

QC STD I.	. []. [Number					elative ercent fference	Acceptance limits		QC Within Control
Duplicate	e 985000	0.109		0.1	07		1.85%		<u>< 20%</u>	Yes
	QC Std I.D.	Measured Concentration		oretical entration	Percer Recove		Accepta Limit		QC Within Control	1
	Blank	ND		0.100			<0.10	0	Yes	1
	LCS	7.51		8.00	93.9%		90% - 1	10%	Yes	1
	LCS	7.48		8.00	93.5%	5	90% - 1	10%	Yes]

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985000

Date: August 31, 2009 Collected: August 19, 2009 Received: August 19, 2009 Prep/ Analyzed: August 20, 2009 Analytical Batch: 08EC09G

Investigation:

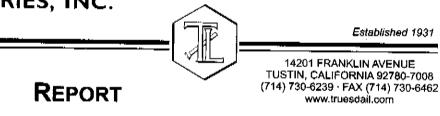
Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	DF	<u>RL</u>	<u>Results</u>
985000	SC-700B-WDR-217	µmhos/cm	EPA 120.1	1.00	2.00	7060

						ai y				
QC ST I.D.		Laboratory Number Concentration		Duplicate F Concentration			tive Percent lifference	Acceptance limits		QC Within Control
Duplica	cate 985000 7060		7070			0.14%		<u>≺</u> 10%	Yes	
	QC Std I.D.	Concentration Concentration		Perc Reco		Acceptance Limits		QC Withi Control	1	
	Blank			<2.00 -		-	<2.00		Yes	
	CCS	CS 704		706 99.7		7% 90% - 110		0% Yes		
	CVS#1 997			999		3%	90% - 110		Yes	
	LCS 704			706		7%	90% - 110		Yes	
	LCSD	704		706	99.7	7%	90% - 110	%	Yes	

QA/QC Summary


Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🗛 🔎 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

010

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985000

Date: August 31, 2009 Collected: August 19, 2009 Received: August 19, 2009 Prep/ Analyzed: August 20, 2009 Analytical Batch: 08TDS09L

Investigation:

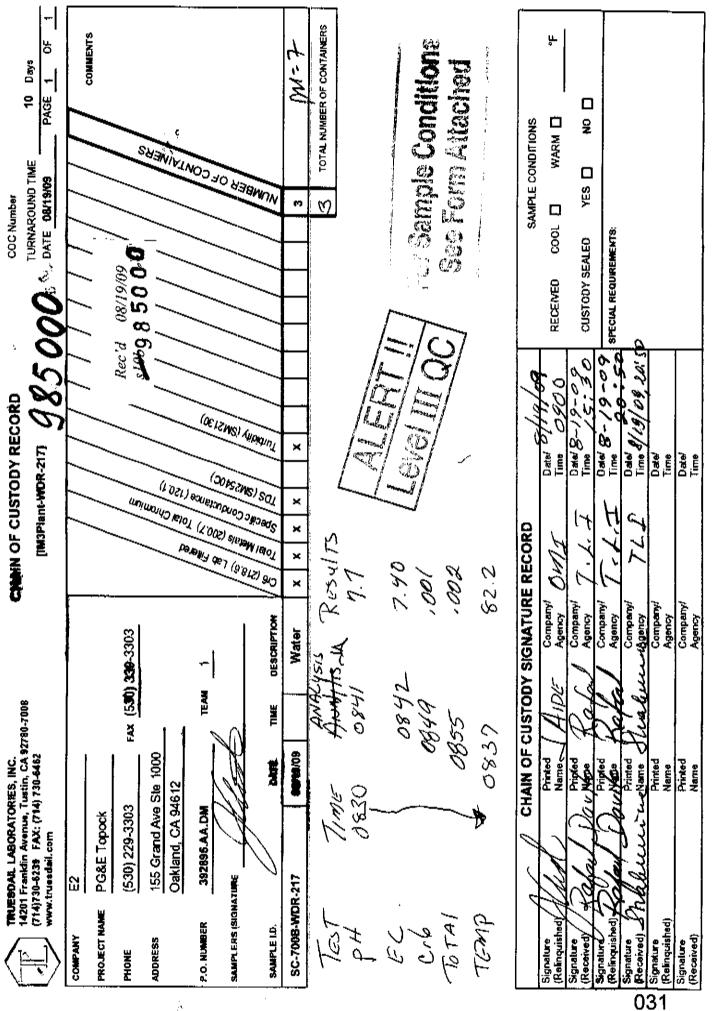
Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
985000	SC-700B-WDR-217	mg/L	SM 2540C	250	4130

QA/QC Summary

QC STD I	TD I.D. Laboratory Number		y Concentra	tion	Duplic Concent			Percent fference		ceptance limits	QC Within Control
Duplicat	e	985000	4130	4130		4070		0.73%		<u>≤</u> 5%	Yes
	a	IC Std I.D.	Measured Concentration		eoretical centration	Percei Recove		Accepta Limit		QC Within Control	•
		Blank	ND		<25.0			<25.0		Yes	-
l		LCS	499		500	99.8%	ώ	90% - 11	0%	Yes	1


ND: Below the reporting limit (Not Detected). RL: Reporting Limit,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior authorization from Truesdail Laboratories.

011

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

September 1, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-218 PROJECT, GROUNDWATER MONITORING, TLI NO.: 985102

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-218 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on August 26, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

--- Mona Nassimi Manager, Analytical Services

K.R.P. gyen

K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985102

Collected: August 26, 2009

Received: August 26, 2009

Date: September 1, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM

ANALYST LIST

andar Marina and Angelandar and Angelandar		
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
<u>SM 2130B</u>	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT www.truesdail.com Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Laboratory No.: 985102 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Collected: August 26, 2009 Project Name: PG&E Topock Project Received: August 26, 2009 Project No.: 392895.AA.DM Prep/ Analyzed: August 28, 2009 P.O. No.: 392895.AA.DM Analytical Batch: 082809A Prep. Batch: 082809A

Total Chromium by inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	<u>Results</u>
985102	SC-700B-WDR-218	μ g/L	EPA 200.8	15:09	5.00	1.00	ND

					QA	/Q!	C 3u	m	mar	y					
QC STD	I.D.	Laboratory Number			Concentration					Pe	ercent		· ·	QC Within Control	
Duplica	ate	98	4910-	2	ND			ND		0	0.00%	4	<u>20%</u>	Yes	
Lab Number	une	spiked			Added Spike Conc.			C	onc. of piked		Conc. of	R		Acceptance limits	QC Within Control
984910-2		0.00	5.	00	50.0		250		237		250		94.8%	75-125%	Yes
	Γ	QC Std	1.D.								Acceptan Limits	ĊÐ	QC Within Control	n	
		Blan	<u>к</u>		ΝĎ		<1.00				<1.00		Yes		
		MRCC	s		48.6		50.0		97.2%	6	90% - 110)%	Yes	_	
		MRCV	5#1		46.5		50.0		93.0%	6	90% - 110)%	Yes		
		MRCV	S#2		48.4		50.0		96.8%	6	90% - 110)%	Yes		
		MRCV	5#3		48.9		50.0		97.89	6	90% - 110)%	Yes	4	
	Lab Number	Lab uni Number sa 984910-2 u	QC STD I.D. N Duplicate 98 Lab Conc.of unspiked sample 984910-2 0.00 QC Std Blan MRCC MRCV3	QC STD I.D. Number Duplicate 984910- Lab Conc.of Dilu Number unspiked Fac	QC STD I.D. Number Duplicate 984910-2 Lab Number Conc.of unspiked sample Dilution Factor 984910-2 0.00 5.00 984910-2 0.00 5.00 QC Std I.D. M Cont Cont Slank M Cont Cont Blank M MRCVS#1 M MRCVS#2	QC STD I.D. Laboratory Number Concentration Duplicate 984910-2 ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 <tr< td=""><td>QC STD I.D. Laboratory Number Concentration Duplicate 984910-2 ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 QC Std I.D. Measured Concentration Th Concentration Blank ND 1 MRCVS#1 46.5 1 MRCVS#2 48.4 1</td><td>QC STD I.D. Laboratory Number Concentration Duc Concentration Duplicate 984910-2 ND Lab Number Conc. of unspiked sample Dilution Factor Added Spike Conc. MS Amount 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 QC Std I.D. Measured Concentration Theoretics Concentration Concentration Blank ND <1.00</td> MRCVS#1 46.5 50.0 MRCVS#1 46.5 50.0 50.0 50.0</tr<>	QC STD I.D. Laboratory Number Concentration Duplicate 984910-2 ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 984910-2 0.00 5.00 50.0 QC Std I.D. Measured Concentration Th Concentration Blank ND 1 MRCVS#1 46.5 1 MRCVS#2 48.4 1	QC STD I.D. Laboratory Number Concentration Duc Concentration Duplicate 984910-2 ND Lab Number Conc. of unspiked sample Dilution Factor Added Spike Conc. MS Amount 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 984910-2 0.00 5.00 50.0 250 QC Std I.D. Measured Concentration Theoretics Concentration Concentration Blank ND <1.00	QC STD I.D. Laboratory Number Concentration Duplicat Concentration Duplicate 984910-2 ND ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. MS Mc Ca Samont 984910-2 0.00 5.00 50.0 250 50.0 984910-2 0.00 5.00 50.0 250 50.0 984910-2 0.00 5.00 50.0 250 50.0 984910-2 0.00 5.00 50.0 250 50.0 984910-2 0.00 5.00 50.0 250 50.0 984910-2 0.00 5.00 50.0 250 50.0 984910-2 0.00 5.00 50.0 250 50.0 MRCVS#1 46.5 50.0 50.0 50.0	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Duplicate 984910-2 ND ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. MS Amount Measured Conc. of spiked sample 984910-2 0.00 5.00 50.0 250 237 QC Std I.D. Measured Concentration Theoretical Concentration Percent Concentration 984910-2 0.00 5.00 50.0 250 237 QC Std I.D. Measured Concentration Theoretical Concentration Percent Concentration Percent Concentration Blank ND <1.00	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Productse Difference Duplicate 984910-2 ND ND 0 Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. MS Measured Conc. of Amount Measured sample Productse Spike 984910-2 0.00 5.00 50.0 250 237 237 984910-2 0.00 5.00 50.0 250 237 237 984910-2 0.00 5.00 50.0 250 237 237 984910-2 0.00 5.00 50.0 250 237 237 984910-2 0.00 5.00 50.0 250 237 237 Blank ND <1.00	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Relative Percent Difference Duplicate 984910-2 ND ND 0.00% Lab Number Conc. of unspiked sample Dilution Factor Added Spike Conc. MS Amount Measured Conc. of spiked sample Theoretical Conc. of spiked sample 984910-2 0.00 5.00 50.0 250 237 250 QC Std I.D. Measured Concentration Theoretical Concentration Percent Recovery Acceptan Limits Blank ND <1.00	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Relative Percent Difference Accur Percent Duplicate 984910-2 ND ND 0.00% 5 Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. MS Amount Measured conc. of spiked sample Theoretical Conc. of spiked sample Relative Percent Relative Difference Accur Percent 984910-2 0.00 5.00 50.0 250 237 250 250 984910-2 0.00 5.00 50.0 250 237 250 250 QC Std I.D. Measured Concentration Theoretical Concentration Percent Recovery Acceptance Limits Blank ND <1.00	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Relative Percent Difference Acceptance limits Duplicate 984910-2 ND ND 0.00% <20%	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Relative Percent Difference Acceptance limits QC Within Control Duplicate 984910-2 ND ND 0.00% ≤20% Yes Lab Number Ornc.of unspiked sample Dilution Factor Added Spike Conc. MS Measured Conc. of spiked sample Theoretical Conc. of spiked sample MS% Recovery Acceptance limits MS% Recovery Acceptance limits 984910-2 0.00 5.00 50.0 250 237 250 94.8% 75-125% 984910-2 0.00 5.00 50.0 250 237 250 94.8% 75-125% QC Std I.D. Measured Concentration Theoretical Concentration Percent Recovery Acceptance Limits QC Within Control Blank ND <1.00

50.0

50.0

50.0

ND: Not detected at reporting limit

MRCVS#4

ICS

LCS

48.2

48.9

48.7

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

Yes

Yes

San Carl

fu __ Mona Nassimi, Manager Analytical Services

90% - 110%

80% - 120%

90% - 110%

96.4%

97.8%

97.4%

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products. oritten authorization from Truesdail Laboratories.

Date: September 1, 2009

Established 1931

EXCELLENCE IN INDEPENDENT TESTING

14201 FRAM TUSTIN, CALIF (714) 730-6239 -

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985102

Date: September 1, 2009 Collected: August 26, 2009 Received: August 26, 2009 Prep/ Analyzed: August 27, 2009 Analytical Batch: 08CrH09W

Investigation:

Hexavalent Chromium by EPA 218.6

REPORT

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985102	SC-700B-WDR-218	08:00	07:16	μg/L	1.05	0.20	ND

									L							
	QC ST) I.D.	I.D. Laboratory Number Concentration		tion			P	Relative A Percent Difference		ptance mits	QC Within Control				
	Duplic	ate	98	5103-1	1.33		.1	.33	(0.00%	4	20%	Yes			
QC Std I.D.	Lab Number	Conc unspi	onc.of spiked	1c.of piked F	onc.of D	Dilution Factor	Added Spike Conc.		WS Iount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sampl			MS% covery	Acceptance limits	QC Within Control
MS	985102	985102 0.00 1.		1.06	1.00	1	.06	1.04		1.06	9	98.1%	90 - 110%	Yes		
		-	QC Std	I.D. 0	Measured concentration		eoretical centration	Perce Recov		Acceptano Limits	:0	QC Wit Contr				
			Blan	k	ND		<0.200			<0.200		Yes				
			MRC		5.06		5.00	1019	6	90% - 110	%	Yes				
			MRCV	S#1	10.2		10.0	1023	/ 6	95% - 105	%	Yes	<u> </u>			
			MRCV	S#2	9.93		10.0	99.3	%	95% - 105	%	Yes	<u></u>			
			MRCV	S#3	9.84		10.0	98.4	%	95% - 105	%	Yes				
			LCS	\$	5,10		5,00	102	6	90% - 110	%	Yes				

QA/QC Summary

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

- Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985102

Date: September 1, 2009 Collected: August 26, 2009 Received: August 26, 2009 Prep/ Analyzed: August 27, 2009 Analytical Batch: 08TUC09Q

Investigation:

Turbidity by Method SM 2130B

REPORT

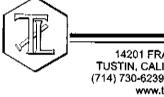
Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985102	SC-700B-WDR-218	08:00	NTU	1.00	0.100	0.113

								_		
QC STD I.	D. Laborator Number	Concentral	tion	Dupli Concen		F	Relative Percent ifference		eptance Ilmits	QC Within Control
Duplicate	985102	0.113		0.1	14		0.88%		<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration		oretical entration	Perce Recove		Accept Limi		QC Within Control	n
	Blank	ND	<	0.100			<0.10	0	Yes]
	LCS	7.80		8.00	97.59	6	90% - 1	10%	Yes	_
	LCS	7.63		8.00	95.49	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.


Ser Con

for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without pr 0g^{itten} authorization from Truesdail Laboratories,

QA/QC Summarv

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985102

Date: September 1, 2009 Collected: August 26, 2009 Received: August 26, 2009 Prep/ Analyzed: August 27, 2009 Analytical Batch: 08EC09L

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	<u>RL</u>	<u>Results</u>
985102	SC-700B-WDR-218	µmhos/cm	EPA 120.1	1.00	2.00	6900

QA/QC Summary

QC STI	D Laborato Number	 Concentrati 	on	Duplica Concentra			tive Percent lifference	Acceptance limits		QC Within Control	
Duplicat	te 985102	6900		6910		0.1		.14%		Yes	
	QC Std I.D.	Measured Concentration		Theoretical Concentration		ent very			QC Withi Control		
F	Blank	ND		<2.00		-	<2.00		Yes		
- I-	CCS	705		706	99.	9%	90% - 110	%	Yes_		
r	CVS#1	995	ľ	999	99,	ô%	90% - 110	%	Yes		
	LCS	705		706	99.	9%	90% - 110	1%	Yes		
F	LCSD	705		706	99.1	9%	90 <u>% - 110</u>)%	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without **product** authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Total Dissolved Solids by SM 2540C

REPORT

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
985102	SC-700B-WDR-218	mg/L	SM 2540C	250	4120

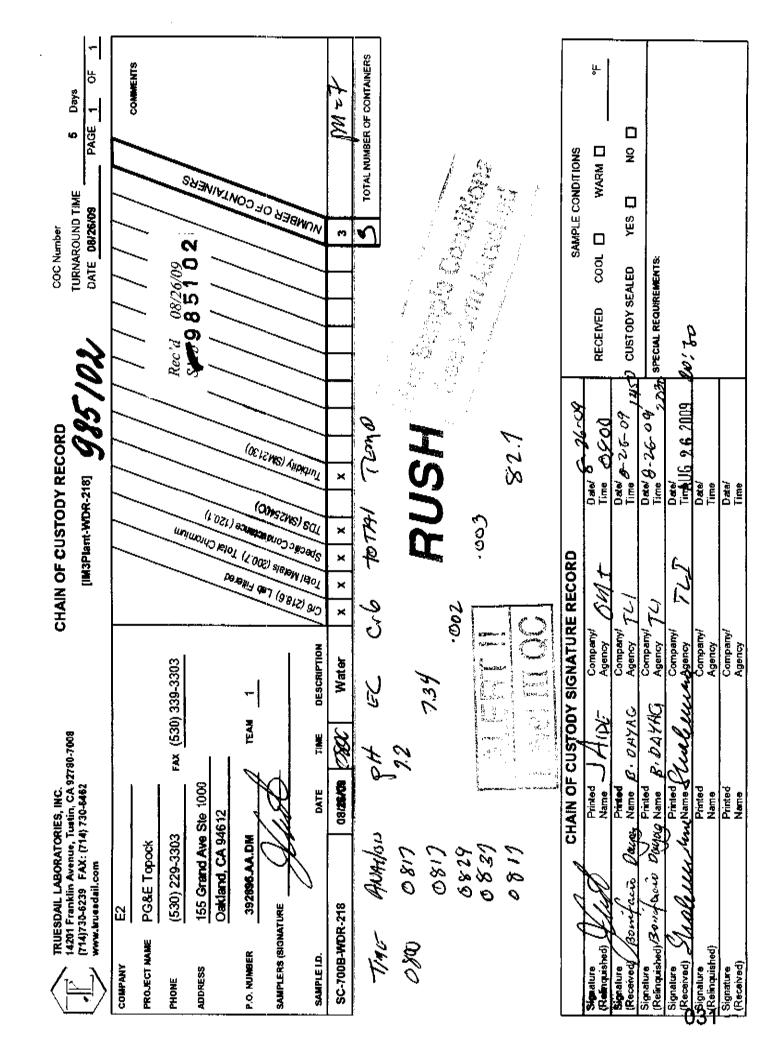
QA/QC Summary

QC STD I.	.D. L	aborator Number	y Concent	ration	Duplic Concent		•	ercent lference		eptance imits	QC Within Control
Duplicat	Duplicate 985102		412	0	4040			0.98%		<u>≺</u> 5%	Yes
			Measured Concentration		eoretical centration	Perce: Recove		Accepta Limit		QC Within Control	n
	BI	ank	ND		<25.0			<25.	0	Yes	
	L	cs	497		500	99.4%	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL; Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services


This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used. In whole or in part, in any advertising or publicity matter without or written authorization from Truesdail Laboratories.

Receiv

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985102

Date: September 1, 2009 Collected: August 26, 2009 Received: August 26, 2009 Prep/ Analyzed: August 27, 2009 Analytical Batch: 08TDS09P

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 12, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: REVISED CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-219 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 985197

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-219 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 2, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Mercuty for sample SC-701-WDR-219 was analyzed by EPA 200.8 rather that EPA 245.1 and was past the method specified holding time due to instrument problems.

Total Chromium, for sample SC-100B-WDR-219, was re-analyzed by EPA 200.7 due to the discrepancy between the Total Chromium (by EPA 200.8) and Hexavalent Chromium results. The result from the re-analysis is reported.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Sen Can

L- Mona Nassimi Manager, Analytical Services

-Or K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM

Laboratory No.: 985197 Date: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009

ANALYST LIST

метнор	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metais by ICP	Kris Collins / Daniel Kang
EPA 200.8	Metals by ICP/MS	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985197

Date: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09EC09B

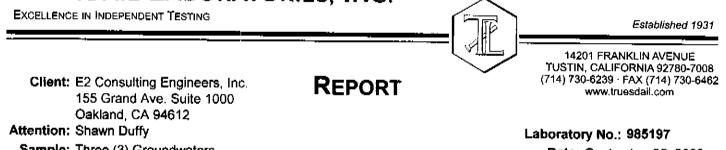
Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	RL	Results
985197-1	SC-700B-WDR-219	µmhos/cm	EPA 120.1	1.00	2.00	6990
985197-2	SC-100B-WDR-219	µmhos/cm	EPA 120.1	1.00	2.00	7970
985197-3	SC-701-WDR-219	µmhos/cm	EPA 120.1	1.00	2.00	51500

QA/QC Summary


QC ST I.D.	D Laborato Number	* (CABEA011001)	on Dupli Concer		Relative Percent Difference	Ac	ceptance limits	QC Within Control
Duplica	ite 985197-:	3 51500	516	51600			<u><</u> 10%	Yes
	QC Std I.D. Measured Concentration		Theoretical Concentration	Percer Recove			QC With Control	'n
	Blank	ND	<2.00		<2.00	<u> </u>	Yes	•-
	CCS	705	706	99,9%			Yes	-
	CVS#1	995	999	99.6%			Yes	
	LCS	705	706	99.9%			Yes	-
L	LCSD	705	706	99.9%			Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

tor Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom It is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Date: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09TDS09B

Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

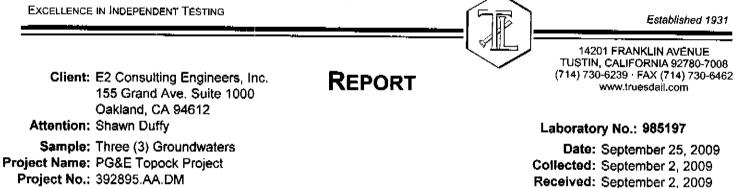
Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	Results
985197-1	SC-700B-WDR-219	mg/L	SM 2540C	250	4220
985197-2	SC-100B-WDR-219	mg/L	SM 2540C	250	5130
985197-3	SC-701-WDR-219	mg/L	SM 2540C	1250	39600

QA/QC Summary

QC STD I.	D. Laborato Number	* Concontra	tion	Duplic Concent			Percent ifference		eptance limit s	QC Within Control
Duplicate	985197-3	3 39600	39600		38800		1.02%		<u><</u> 5%	Yes
	QC Std i.D.	Measured Concentration		eoretical centration	Perce Recove		Accepta Limit		QC Within Control	
	Blank	ND		<25.0			<25.0)	Yes	
	LCS 1	503		500	101%	6	90% - 1	10%	Yes	


ND: Below the reporting limit (Not Detected), RL: Reporting Limit,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

⊦-- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

P.O. No.: 392895.AA.DM

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Units	DF	<u>RL</u>	<u>Results</u>
985197-1	SC-700B-WDR-219	08:00	NTU	1.00	0.100	ND
985197-2	SC-100B-WDR-219	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	,D,	Laborator Number	r ۱	Concentra	tion	Dupik Concent	ate	1	Relative Percent ifference		ceptance limits	QC Within Control
Duplicat	e	985197-2		ND		ND	1		0.00%		<u>< 20%</u>	Yes
	Q	C Std I.D.		/leasured ricentration		eoretical centration	Perce Recove	-	Accepta Llmit		QC Within Control	n
		Blank		ND		<0.100			<0.10	0	Yes	-
		LCS		7.50		8.00	93.8%	6	90% - 11	10%	Yes	
		LCS		7.63		8.00	95.4%	6	90% - 11	10%	Yes]

ND: Below the reporting limit (Not Detected).

DE Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Prep/ Analyzed: September 3, 2009

Analytical Batch: 09TUC09D

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985197

Prep/ Analyzed: September 3, 2009

Analytical Batch: 09CrH09B

Collected: September 2, 2009

Received: September 2, 2009

Date: September 25, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895,AA,DM Prep. Batch: 09CrH09B

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	Units	DF	RL	<u>Results</u>
985197-1	SC-700B-WDR-219	08:00	14:01	μ g/L	1.05	0.20	ND
985197-2	SC-100B-WDR-219	08:00	14:12	μg/L	52.5	10.5	1090
985197-3	SC-701-WDR-219	08:00	16:39	μġ/L	10.5	2.10	NĎ

						QA	/QC S	Sum	mary	,				
	QC STD	QC STD I.D. Laboratory Number		· · · ·	Sampl Concentra		Dupli		Relative Percent Difference		ceptance limits	QC Within Control		
	Duplic	ate	ģ	85197	-2	1090		109	io –	0.00%		≤ 20%	Yes	
QC Std I.D,	Lab Number	Conc unspi sam;	ked (Dilutio	n Factor	Added Spike Conc.	MS Amour		Veasured Conc. of spiked sample	Theoretica Conc. of Spiked sample		MS% BCOVERY	Acceptance limits	QC Within Control
MS	985197-1	0.0	0	1.	.05	1.00	1.05		1.02	1.05	97.1%		90-110%	Yes
MS	985197-2	109	Ó	. 57	2.5	25.0	1313		2400	2403		99.8%	90-110%	Yes
MS	985197-3	0.0	<u>o</u>	1(0.5	1.00	10.5		10.1	10.5		96.2%	90-110%	Yes
		QC	Std I.	D.		sured ntration	Theore Concent		Percent Recover			QC Withi Control	n	
			<u>Blank</u>		N	۵.	<0.2	00		<0.20	0	Yes	-	
		M	IRCCS	;	5,	04	5.0	0	101%	90% - 1	10%	Yes	1	
		MF	₹CV\$#	11 I	1().0	10.	¢.	100%	95% - 10		Yes	1	
		MF	RCVS#	2	10).2	10,	0	102%	95% - 10)5%	Yes	1	
			LCS		5.	02	5.0	0	100%	90% - 11	10%	Yes	-1	

ND: Below the reporting limit (Not Detected).

DE: Dilution Eactor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🚣 – Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or In part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: September 25, 2009

Laboratory No.: 985197

Prep/ Analyzed: September 4, 2009

Collected: September 2, 2009

Received: September 2, 2009

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Analytical Batch: 09NH3-E09A

Investigation:

Ammonia as N by Method SM 4500-NH3 D

REPORT

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Metho</u> d	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985197-1	SC-700B-WDR-219	08:00	SM 4500-NH3 D	mg/L	1.00	0.500	
985197-2	SC-100B-WDR-219	08:00	SM 4500-NH3 D	mg/L	1.00	0.500	

QA/QC Summary

				aborat Numbe	-	Concentra	tion		licate ntration	1	Relative Percent ifference		eptance imits		C Within Control	
	Duplic	ate		<u>85197</u>	-2	ND	ND		0.00%		0.00%		20%	-	Yes	
QC Std I.D.	Lab Number	sample			ution ctor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample		MS% covery	A	cceptance limits	QC Within Control
MS	983651-2	0.	00	1	.00	6.00	é	5.00	5.78		6.00	ę	6.3%		75-125%	Yes
		¢	QC Std	I.D.	_	entration		eoretical centratio	Perce n Recove		Acceptan Limits	¢e	QC With Contro		·	
			Blan	k .		ND	-	<0.500			< 0.500		Yes	-		
		L	MRCC	s		5.70		6.00	95.09	6	90% - 110	%	Yes			
		<u> </u>	MRCVS	5#1		5.87		6.00	97.89	6	90% - 110	%	Yes			
			LCS		L.,	10.6		10.0	106%	6	90% - 110	_	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985197

Date: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09AN09C

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI 1.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985197-1	SC-700B-WDR-219	08:00	11:43	mg/L	5.00	0.500	2.47
985197-2	SC-100B-WDR-219	08:00	11:54	mg/L	5.00	0.500	2.91
985197-3	SC-701-WDR-219	08:00	12:06	mg/L	5.00	0.500	21.3

QA/QC Summarv

	QC ST	Duplicate 985164	Y Concentration Duplicate Pe Concentration Diffe		Relative Percent Difference		eptance QC Within limits Control								
	Duplic	ate		98516	4	0.780	0.780 (783		0.38%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Con unsp sam			ution ctor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MS	985164	0.7	80	1	.00	2.00		2.00	2.79		2.78		101%	85-115%	Yes
		۵	C Std	ł.D.		easured centration	-	eoretical centratio	Perce n Recov		Acceptan Limits		QC Within Control	ייייייייייייייייייייייייייייייייייייייי	-
			Blank	<u>(</u>		NÐ		-0.500			<0.500		Yes		
			MRÇÇ	s		4.14		4.00	104%	6	90% - 110)%	Yes		
		M	IRCVS	#1		3.14		3.00	105%	6	90% - 110)%	Yes		
]	IRCVS	\$#2		3.13		3.00	104%	6	90% - 110)%	Yes		
		L	LCS			4.12		4.00	103%	6	90% - 110)%	Yes		

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

fo- Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985197

Date: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09AN09C

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985197-1	SC-700B-WDR-219	08:00	16:05	mg/L	25.0	12.5	485
985197-2	SC-100B-WDR-219	08:00	16:17	mg/L	25.0	12.5	561

QA/QC Summary

	QC STD I.D. Laboratory Number		Concentration Concentration Pe Concentration Diffe		Relative Percent Difference	A	ceptance limits	limits Control						
QC Std I.D.	Lab Number	Cone Unspi sam	c.of iked	Dil	ution Ictor	50.0 Added Spike Conc.		MS mount	0.5 Measured Conc. of spiked sample	1.00% Theoretical Conc. of spiked sample	F	<u>< 20%</u> MS% Recovery	Yes Acceptance limits	QC Withir Control
MS	985164	50.	.0	1	0.0	<u>1</u> 0.0		100	152	150	+	102%	85-115%	Yes
			C Std	I. D .		asured entration		neoretical Icentratio	Percent n Recover	1		QC Within Control		
			Blank			NĎ		<0.500		<0.500)	Yes	1	
		N	MRCC	\$		20.0		20.0	100%	90% - 11	0%	Yeş	"]	
		M	RCVS	#1		15.1		15.0	101%	90% - 11	0%	Yes	-	
		M	RCVS	#2		15.2		15.0	101%	90% - 11	0%	Yes	1	
		M	RĊVS	#3		15.1		15.0	101%	90% - 11	0%	Yes		
		L	LCS			20.0		20.0	100%	90% - 11	0%	Yes	1	

ND: Below the reporting limit (Not Detected). DE: Dilution Eactor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

≁- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895,AA DM P.O. No.: 392895.AA.DM

Laboratory No.: 985197 Date: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09AN09C

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI I.D.</u>	Field I.D.	<u>Sample_Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
985197-1	SC-700B-WDR-219	08:00	11:43	mg/L	5.00	1.00	2.84
985197-2	SC-100B-WDR-219	08:00	11:54	mg/L	5.00	1.00	3.22

QA/QC Summarv

	QC STD	Number				Concentration Duplicate Pe Concentration Diff		Relative Percent Difference		eptance limits	QC Within Control				
	Duplica	te	98	15195	-18	ND		ND			0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	unsp	iC.of Diked nple		ution ctor	Added Spike Conc.		MS nount	Measu Conc. spike samp	. of ed	Theoretical Conc. of Spiked sample	_	MS% covery	Acceptance limits	QC Within Control
MS 98	985195-18	0.0	00	1	.00	4,00	4	4.00	4.3	D	4.00		108%	85-115%	Yes
		Q	C Std	I.D,		asured entration		eoretical centratio		rcent covery			QC Withi Control	n (•
			Blank	ς		ND		<0.500			<0.500		Yes	4	
			MRCC	S		3.97		4.00	9	9.3%	90% - 11	0%	Yes	-	
		_ N	IRCVS	#1		3.01		3.00	1	00%	90% - 11	0%	Yes		
		2.99		3.00	9	9.7%	90% - 11)%	Yes						
		3.99		4.00	ġ.	9.8%	90% - 11)%	Yés	7					

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖉 – Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985197 Date: September 25, 2009

Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09NO2098

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985197-1	SC-700B-WDR-219	08:00	15:41	mg/L	1.00	0.0050	ND
985197-2	SC-100B-WDR-219	08:00	15:42	mg/L	1.00	0.0050	ND

							Ju	miai	У					
	QC STD) I.D.	Labor Num	•	Concentra	ation		plicate entration		Relative Percent Difference		eptance imits	QC Within Control	
	Duplica	ate	9851	97-1	ND			ND		0.00%	4	20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspike sample	a '	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MS	985197-1	0.00		1.00	0.0200	0.	0200	0.0202		0.0200	,	01%	75-125%	Yes
		QC S	td I.D.		asured entration		eoretica centrati			Acceptan Limits		QC Witi Contro		
		Bla	ank		ND		<0.0050			<0.0050	,	Yes	-	
	MRCCS 0.	.0269		0.0270	99.6	%	90% - 110)%	Yes					
		i 0	.0199		0.0200	99.5)%	Yes				
		L	<u>)</u> \$	0	.0463		0.0450	103	%	90% - 110)%	Yes		

QA/QC Summary

ND: Below the reporting limit (Not Detected), DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	SC-700B-WDR-219	Time Col	lected:	08:00		LABI): 985197-1	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Aluminum	EPA 200.8	ND	5.00	<u>µ</u> 9/L	50.0	092209A	09/22/09	16:03
Antimony	EPA 200.8	ND	5.00	µg/L	10.0	092209A	09/22/09	16:03
Arsenic	EPA 200.8	ND	5.00	μ g/L	1.00	092209A	09/22/09	16:03
Barlum	EPA 200.8	ND	5.00	μg/L	10.0	092209A	09/22/09	16:03
Chromium	EPA 200.8	DM	5.00	µg/L_	1.00	092209A	09/22/09	16:03
Copper	EPA 200.8	ND	5.00	µg/L	5.00	092209A	09/22/09	16:03
Lead	EPA 200.8	ND	5.00	 	10.0	092209A	09/22/09	16:03
Manganese	EPA 200.8	ND	5.00	μg/L	10.0	092209A	09/22/09	16:03
Molybdenum	EPA 200.8	24.6	5.00	μg/L	10.0	092209A	09/22/09	16:03
Nickel	EPA 200.8	ND	5.00	μ g/L	10.0	092209A	09/22/09	16:03
Zinc	EPA 200.7	ND	1.00	μ g/L	20.0	100209A	10/02/09	09:21
Boron	EPA 200.7	1010	1.00	<u>µg/L</u>	200	091809A	09/18/09	10:59
Iron	EPA 200.7	ND	1.00	µg/L	20.0	092109A	09/21/09	11:11

SAMPLE ID: SC-1	00B-WDR-219	Time Coli	ected:	08:00		LAB IC): 985197-2	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Aluminum	EPA 200.8	ND	5.00	μ g/L	50.0	092209A	09/22/09	16:10
Antimony	EPA 200.8	ND	5.00	μ g/ L	10.0	092209A	09/22/09	16:10
Arsenic	EPA 200.8	2.05	5.00	µg/L	1.00	092209A	09/22/09	16:10
Barium	EPA 200.8	13.2	5.00	<u>μg/L</u>	10.0	092209A	09/22/09	16:10
Chromium	EPA 200.7	1060	1.00	μg/L	10.0	100909A	10/09/09	18:14
Copper	EPA 200.8	ND	5.00	μ g/L	5.00	092209A	09/22/09	16:10
Lead	EPA 200.8	ND	5.00	μg/L	10.0	092209A	09/22/09	16:10
Manganese	EPA 200.8	ND	5.00	μ g/L	10.0	092209A	09/22/09	16:10
Molybdenum	EPA 200.8	12.6	5.00	µg/L	10.0	092209A	09/22/09	16:10
Nickel	EPA 200.8	ND	5.00	μ g/ L	10.0	092209A	09/22/09	16:10
Zinc	EPA 200.7	ND	1.00		20.0	100209A	10/02/09	09;43
Boron	EPA 200.7	1040	1.00	<u>µg/L</u>	200	091809A	09/18/09	11:05
Iron	EPA 200.7	ND	1.00	µg/L	20.0	092109A	09/21/09	11:17

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratorics, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without property. 6^{itten} authorization from Truesdail Laboratories.

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985197 Reported: September 25, 2009 Collected: September 2, 2009 Received: September 2, 2009 Analyzed: See Below

Report Continued

Revision 1

SAMPLE ID:	SC-701-WDR-219	Time Col	lected:	08:00		LAB ID	986197-3	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Antimony	EPA 200.8	ND	10.0	_μ 9/L	10.0	100809A	10/08/09	11:55
Arsenic	EPA 200.8	ND	10.0	μ g/L	2.00	100809A	10/08/09	11:55
Barlum	EPA 200.7	21.4	1.00	μ g/ L	10.0	100909A	10/09/09	14:14
Beryllium	EPA 200.8	ND	10.0	μg/L	2.00	100809A	10/08/09	11:55
Cadmium	EPA 200.8	ND	10.0	µg/L	3.00	100809A	10/08/09	11:55
Chromium	EPA 200.8	5.08	10.0	μg/L	100.00	100809A	10/08/09	11:55
Cobalt	EPA 200.8	ND	10.0	μ g/L	5.00	100809A	10/08/09	11:55
Copper	EPA 200.8	ND	10.0	μg/L	5.00	100809A	10/08/09	11:55
Lead	EPA 200.8	ND	10.0	μg/L_	10.0	100809A	10/08/09	11:55
Mercury	EPA 200.8	ND J	10.0	μg/L	2.00	100509A-Hg	10/05/09	11:31
Molybdenum	EPA 200.8	178	10.0	_µg/L	10.0	100809A	10/08/09	11:55
Nickel	EPA 200.8	ND	10.0	μ g/L	10.0	100809A	10/08/09	11:55
Selenium	EPA 200.8	25.7	10.0	μ g /L	10.0	100809A	10/08/09	11:55
Silver	EPA 200.8	NØ	10.0	µg/L	5.00	100809A	10/08/09	11:55 11:55
Thallium	EPA 200.8	ND	10.0	μg/L	2.00	100809A	10/08/09	11:55
Vanadium	EPA 200.8	ND	10.0	μg/L	5.00	100809A	10/08/09	11:55
Zinc	EPA 200.7	ND	1.00	μg/L	20.0	100909A	10/09/09	14:14


ND: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Serland A. Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

September 28, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-220 PROJECT, GROUNDWATER MONITORING, TLI NO.: 985297

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-220 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 9, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

For K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985297 Date: September 28, 2009 Collected: September 9, 2009 Received: September 9, 2009

ANALYST LIST

		ANALYOT
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT Client: E2 Consulting Engineers, Inc. www.truesdail.com 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 985297 Sample: One (1) Groundwater Sample Date: September 28, 2009 Project Name: PG&E Topock Project Collected: September 9, 2009 Project No.: 392895.AA.DM Received: September 9, 2009 P.O. No.: 392895.AA.DM Prep/ Analyzed: September 11, 2009 Prep. Batch: 091109A Analytical Batch: 091109A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

														_		
<u>TLI I.D.</u> 985297	<u>Field</u> SC-70	<u>I.D.</u> 10B-WI	DR-2	220		<u>Units</u> μg/L	_	ethod A 200.8	3		<u>in 1</u> 3:1	<u>Time</u> 6		DF 5.00	<u>RL</u> 1.00	<u>Results</u> ND
•	_					QA	/Q	C Si	ın	nmar	У					
	QC STO	I.D.		orato umbe		Concentra	ition		piic entr	ate ation	F	Relative Percent fference		eptance limits	QC Within Control	
	Duplic	ate	98	5197-	1	ND			ND			0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc unspit samp	ked	Dilu Fac		Added Spike Conc.		MS nount	C	easured onc. of spiked sample		Theoretical Conc. of piked sample	e R	MS% ecovery	Acceptance limits	QC Within Control
MS	985197-1	0.00	0	5.(00	50.0		250		252	\top	250	┢	101%	75-125%	Yes
		QC	Std	I.D.		loasured acentration		eoretica centrati		Perce/ Recove		Acceptan Limits		QC Within Control	_	
			Blank			ND		<1.00				<1.00		Yes	1	
		м	IRCC	s		53.7		50.0		107%	6	90% - 110	3%	Yes	-	
			<u>RCVS</u>			51.8		50.0		104%	6	90% - 11()%	Yes	1	
			₹CVS	#2		50.5		50.0		101%		90% - 110		Yes]	
			ICS			56.2		50,0		112%	5	80% - 120)%	Yes		
			LCS			52.1		50.0		104%	5	90% - 110)%	Yes		
ND: Not detect	ed at reportin	g limit														

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without on yritten authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

		■1 JBI I	
	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Client: E2 Consulting Engineers, Inc.			
155 Grand Ave. Suite 1000			
Oakland, CA 94612			
ention: Shawn Duffy			Laboratory No.: 985297
			Deter Ostober 6, 2000

<u>م</u> ا

Date: October 6, 2009 Collected: September 9, 2009 Received: September 9, 2009 Prep/ Analyzed: September 10, 2009 Analytical Batch: 09CrH09C **Revision 1**

Established 1931

Attention:

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

 <u> I.D.</u> 5297	<u>Field</u> SC-7	<u>I.D.</u> 00B-W	VDR	-220	<u>Sample T</u> 08:00			<u>n Tim</u>)8:35	<u>.e</u>		nits .g/L		05		<u>RL</u> 0.20		asults ND
					G	A/Q	C Su	mm	аг	У							
	QC STD	I.D.		oratory Imber	Concentra	ation		licate ntratio	n	P	telative Percent fference		eptance mits		QC Within Control		
	Duplic	ate	98	5298-1	 NÐ	_	1	<u>۱</u> ۵		0.00% 1		<u>< 20%</u>			Yes		
QC Std I,D.	Lab Number	Conc unspil samp	ked	Dilutio Facto	Added Spike Conc.		AS Jount	Meas Cone spil sam	c. of ked		Theoretica Conc. of piked samp	R	MS% covery	Ace	ceptance limi	ts	QC Within Control
MS	985297	0.17	/1	1.06	1.00	1	.06	1.;	22		1.23		99.0%		90 - 110%		Yes
		QC	; Std	I.D.	Measured incentration		eoretical centration		Perce lecov		Accept Limit		QC With Contro				
			Blank		ND		<0.200				<0.20	00	Yes				
		N	/RCC	s	5.04		5.00		101		90% - 1		Yes				
			RCVS		9.81		10.0		98.1		95% - 1		Yes	_			
			RCVS		9.58	 	10.0		95.8		<u>95% - 1</u> 95% - 1		Yes Yes				
			RCVS		 9.95	<u> </u>	10.0 10.0	<u> </u>	<u>99.5</u> 99.6		95% - 1		Yes	_			
			RCVS RCVS		9.96		10.0		100		95% - 1		Yes				
			LCS		5.04		5.00		101		90% - 1		Yes				

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🧞 Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prove the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prove the condition that it is not to be used. authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985297

Date: September 28, 2009 Collected: September 9, 2009 Received: September 9, 2009 Prep/ Analyzed: September 10, 2009 Analytical Batch: 09TUC09H

Investigation:

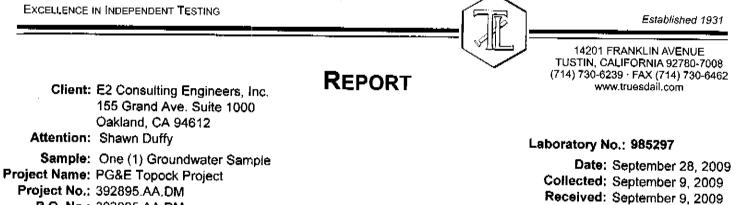
Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Re</u> sults
985297						
300297	SC-700B-WDR-220	08:00	NTU	1.00	0.100	0.118

QA/QC Summary

QC STD I	Number	Concentra	tion	Dupl Concer		F	Relative Percent fference		ceptance limits	QC Within Control
Duplicat	e 985293-1	<u>0 N</u> D		ND			0.00%		<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration	· ·	oretical entration	Percer Recove				QC Within Control	
	Blank	ND	<	0.100			<0.10	0	Yes	1
	LCS	7.70	1	B.00	96.3%	<u>,</u>	90% - 1	10%	Yes	1
	LCS	7.58	8	B.00	94.8%	,	90% - 1	10%	Yes	1
[LCS	7.55		3.00	94.4%	,	90% - 1		Yes	1


ND: Below the reporting limit (Not Detected). DF: Dilution Factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

n

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without **positive** authorization from Truesdail Laboratories.

P.O. No.: 392895.AA.DM

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	Results
985297	SC-700B-WDR-220	µmhos/cm	EPA 120.1	1.00	2.00	7060

						iai y				
QC ST I.D.		1 Concentrat	ion	Duplica Concentra			tive Percent ifference	Ac	ceptance limits	QC Within Control
Duplic	ate 985297	7060		7080			0.28%		<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration		heoretical acentration	Perc Reco		Acceptan Limits	Cê	QC With Control	
	Blank	ND		<2.00		-	<2.00		Yes	
	CCS	705		706	99.9	%	90% - 110	%	Yes	
	CVS#1	996		999	99.7	7%	90% - 110	%	Yes	
_	CVS#2	996		999	99.7	7%	90% - 110	%	Yes	7
Ļ	LCS	705		706	99.9	9%	90% - 110	%	Yes	1
l	LCSD	705		706	99.9	9%	90% - 110	%	Yes	1

OA/OC Summary

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Prep/ Analyzed: September 10, 2009

Analytical Batch: 09EC09E

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: September 28, 2009

Laboratory No.: 985297

Collected: September 9, 2009

Received: September 9, 2009

Prep/ Analyzed: September 11, 2009

Analytical Batch: 09TDS09D

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

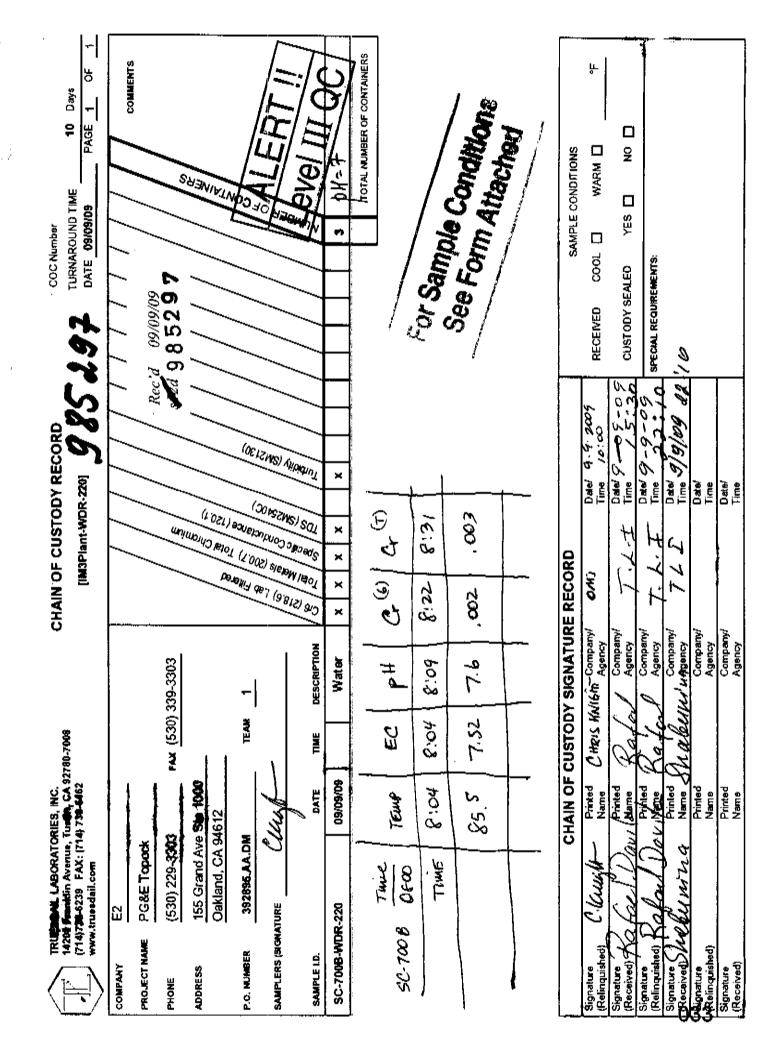
Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	RL	<u>Re</u> sults
985297	SC-7008-WDR-220	mg/L	SM 2540C	250	4290

QA/QC Summary


QC STD I.C). Laborator Number	Concontrol	tion	Duplic Concent			ercent fference		ceptance limits	QC Within Control
Duplicate	985297	4290		422	0		0.82%		<u><</u> 5%	Yes
	QC Std I.D.	Measured Concentration		eoretical centration	Percent Recovery		Accepta Limit		QC Within Control	7
Ĺ	Blank	ND		<25.0			<25.0)	Yes	-
Ĺ	LCŞ	501		500	100.2%	6	90% - 11	0%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without article written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 7, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: REVISED CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-221 PROJECT, GROUNDWATER MONITORING, TLI NO.: 985424

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-221 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples was received and delivered with the chain of custody on September 16, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the sample and matrix spike for Hexavalent Chromium analysis by EPA 218.6 were slightly outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

en Cu 🖡 Mona Nassimi

Manager, Analytical Services

Al Khang

For K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985424 Date: September 30, 2009 Collected: September 16, 2009 Received: September 16, 2009

ANALYST LIST

	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT Client: E2 Consulting Engineers, Inc. www.truesdail.com 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 985424 Sample: One (1) Groundwater Sample Date: September 30, 2009 Project Name: PG&E Topock Project Collected: September 16, 2009 Project No.: 392895.AA.DM Received: September 16, 2009 P.O. No.: 392895.AA.DM Prep/ Analyzed: September 21, 2009 Prep. Batch: 092109A Analytical Batch: 092109A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	Results
985424	SC-700B-WDR-221	μg/L	EPA 200.8	15:15	5.00	1.00	ND

QA/QC Summarv

	QC STD) I.D. L	aboratory Number	Concent	ration	Duplic Concent		Relative Percent Difference		eptance limits	QC Within Control	
	Duptic	ate	985298-1			NE	>	0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	– L Dilucti	Snike			Veasured Conc. of spiked sample	Theoretica Conc. of spiked samp	l a	MS% ecovery	Acceptance limits	QC Within Control
MS	985298-1	0.00	5.00) <u>5</u> 0.0		250	241	250		96.4%	75-125%	Yes
		QC St	d I.D.	Measured Concentration		eoretical centration	Percer			QC With Contro		

QC Std I.D.	Concentration	Concentration	Recovery	Limits	Control
Blank	ND	<1.00	_	<1.00	Yes
MRCCS	48.2	50.0	96.4%	90% - 110%	Yes
MRCVS#1	47.2	50.0	94.4%	90% - 110%	Yes
MRCVS#2	47.8	50.0	95.6%	90% - 110%	Yes
MRCVS#3	48.6	50.0	97.2%	90% - 110%	Yes
MRCVS#4	49.2	50.0	98.4%	90% - 110%	Yes
ICS	49.9	50.0	99.8%	80% - 120%	Yes
LCS	48.8	50.0	97.6%	90% - 110%	Yes

ND: Not detected at reporting limit **DF:** Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without procurry written authorization from Truesdail Laboratories.

TRUESDAIL	LABORATORIES,	INC.
-----------	---------------	------

EXCELLENCE IN INDEPENDENT TESTING

			_ 「下	Established 1931
	E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Shawn Duffy	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 ⋅ FAX (714) 730-6462 www.truesdail.com
Project Name: Project No.:	One (1) Groundwater Sample PG&E Topock Project 392895.AA.DM 392895.AA.DM			Date: October 7, 2009 Collected: September 16, 2009 Received: September 16, 2009 p/ Analyzed: September 23, 2009 r/tical Batch: 09CrH09G Revision 1

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985424	SC-700B-WDR-221	16:00	08:45	μg/L	1.05	0.20	0.37

						v	i AV G	C Su	mmary	Υ					
	QC ST) I.D.		oratory umber	'	Concentra	ition		licate ntration	Ρ	elative ercent fference		eptance Imits	QC Within Control	
	Duplic	ate	98	5510-1		22.8		2	2.7	(0.44%	A I	20%	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked mple	Diluti Facto		Added Spike Conc.	-	MS Jount	Measured Conc. of Spiked sample		Theoretical Conc. of biked sample		MS% ecovery	Acceptance limits	QC Within Control
MŞ	985424	0	.37	1.06	i	1.00	1	.06	1.41		1.43	ļ	98.1%	90 - 110%	Yes
		4	QC Std	I.D.		Measured procentration		eoretical centration	Percei Recove		Acceptanc Limits	.e	QC With Contro		
			Blank	,		ND		<0.200			<0.200		Yes		
			MRCC	s		5.26		5.00	105%		90% - 110	%	Yes		
			MRCVS	#1		10.1		10.0	101%	à	95% - 1059	%	Yes		
			MRCVS	# 2		10.0		10.0	100%	'n	<u>9</u> 5% - 105°	%	Yes		
			MRCVS	# 3		9.93		10.0	99.3%	6	95% - 105%	%	Yes		
			LCS			5.09		5.00	102%		90% - 110	%	Yes		

NO: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Son Carl

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without roops authorization from Truesdail Laboratories.

QA/QC Summary

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985424

Date: September 30, 2009 Collected: September 16, 2009 Received: September 16, 2009 Prep/ Analyzed: September 17, 2009 Analytical Batch: 09TUC09J

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLH.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985424	SC-700B-WDR-221	16:00	NTU	1.00	0.100	0.162

QA/QC Summary

QC STD I.	D. Laboratory. Number	Concentrat	Concentration		plicate entration		Relative Percent Difference		eptance limits	QC Within Control
Duplicat	e <u>985424</u>	0.162		0.1	64		1.23%		<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration	· ·	oretical entration	Percer Recove		Accepta Limit		QC Within Control	•
	Blank	ND	<	0.100			<0.10	0	Yes	1
	LCS	7.94		8.00	99.3%	5	90% - 1	10%	Yes	1
	LCS	7.90		8.00	98.8%	5	90% - 1	10%	Yes	1
	LCS	7,86		8.00	98.3%	,	<u>9</u> 0% - 1	10%	Yes	1

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

💤 – Mona Nassimi, Manager

 Mona Nassimi, Manage Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom It is addressed and upon the condition that It is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: September 30, 2009

Collected: September 16, 2009

Received: September 16, 2009

Prep/ Analyzed: September 17, 2009

Laboratory No.; 985424

Analytical Batch: 09EC09H

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM

P.O. No.: 392895.AA.DM

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I,D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
985424	SC-700B-WDR-221	µmhos/cm	EPA 120.1	1.00	2.00	7610

QA/QC Summarv

QC 51 1.D.		1 Concontrati	ion Duplicate Concentratio				tive Percent ifference	Acceptance limits		QC Within Control
Duplic	ate 985424	7610		7630 0.		0.26%	0.26% <u>≤</u> 10%		Yes	
	QC Std I.D.	Measured Concentration		heoretical	Perc Reco		Acceptane Limits	69	QC Withi Control	
[Blank	ND		<2.00		-	<2.00		Yes	-
	CCS	705		706	99.9	%	90% - 110	%	Yes	
	CVS#1	996		999	99.7	/%	90% - 110	%	Yes	
	LCS	705		706	99.9	}%	90% - 110	%	Yes	7
l	LCSD	705		706	99.9)%	90% - 110	%	Yes	-

Respectfully submitted, **TRUESDAIL LABORATORIES, INC.**

≁--- Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdait.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

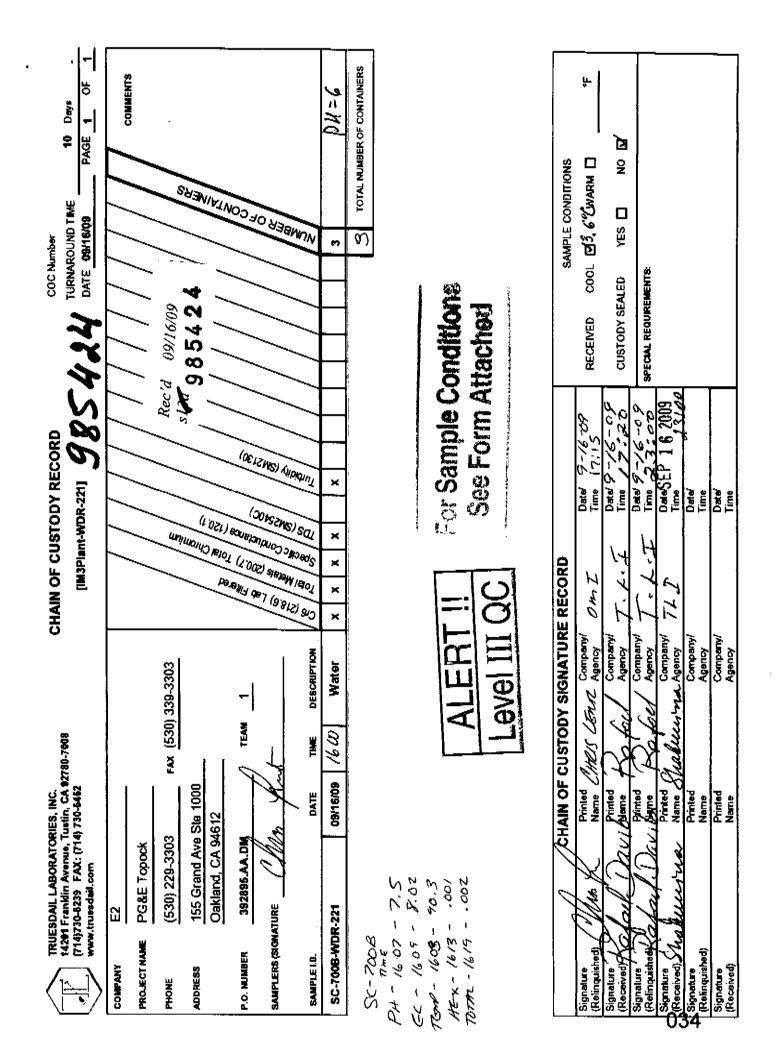
<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	Results
985424	SC-700B-WDR-221	mg/L	SM 2540C	250	4430

QA/QC Summary

QC STD I	.D.	Laborator Number	Concepts	Concentration		ate ration		^p ercent ifference		ceptance limits	QC Within Control
Duplicat	e	985424	4430		439	0		0.45%		<u>≤</u> 5%	Yes
	Q	C Std I.D.	Measured Concentration		eoretical centration	Percer Recove		Accepta Limit		QC Within Control	1
		Blank	ND		<25.0			<25.0)	Yes	-
		LCS	499		500	99.8%	,	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). **RL: Reporting Limit.**

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.


🗛 🗸 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Laboratory No.: 985424

Date: September 30, 2009 Collected: September 16, 2009 Received: September 16, 2009 Prep/ Analyzed: September 18, 2009 Analytical Batch: 09TDS09G

Investigation:

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

October 1, 2009

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-222 PROJECT, GROUNDWATER SUBJECT: MONITORING, TLI NO.: 985465

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-222 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical taw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 18, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Jan (a fo - Mona Nassimi

Manager, Analytical Services

K. R. P. Jye

K.R.P. Iver Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985465 Date: October 1, 2009 Collected: September 18, 2009 Received: September 18, 2009

ANALYST LIST

		and the second
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

			」「下下」	Established 1931
	E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Shawn Duffy	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Project Name: Project No.:	One (1) Groundwater Sample PG&E Topock Project 392895.AA.DM 392895.AA.DM 092209A		C F Prep/ A	Date: October 1, 2009 Date: October 1, 2009 Collected: September 18, 2009 Received: September 18, 2009 Analyzed: September 22, 2009 al Batch: 092209A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run</u> Time	DF	RL	Results
985465	SC-700B-WDR-222	μg/L	EPA 200.8	15:37	5.00	1.00	ND

QA/	QC	Summary	
			2

	QC S	TD I.D.		borate (umbe	-	Concentra	ition	Duj Conce	plicat entra		P	Relative ^S ercent ifference	Ac	ceptance limits	QC Within Control	
	Du	licate	<u>(</u>	98546	<u>, </u>				ND			0.00%		<u>≤</u> 20%	Yes	
QC Sta I.D.	Lab Numbe	un	onc.of spiked ample	1	tion tor	Added Spike Conc.	F	MS nount	Co sj	asured onc. of piked ample		Theoretical Conc. of piked sampl		MS% Recovery	Acceptance limits	QC Within Control
MS	98546	5	0.00	5.	00	50.0		250		242	t	250	- -	96.8%	75-125%	Yes
			QC Std	I.D.		leasured Icentration		eoretical centratio	·	Percen Recove		Acceptar Limits		QC With Contro	in	
			Blan	<u>k</u>		ND		<1.00				<1.00		Yes		
		F	MRCC	<u>, s</u>		48,4		50.0		96.8%		90% - 11	0%	Yes		
		_	MRCV	5#1		48.4		5 0.0		96.8%		90% - 110	0%	Yes	-1	
		- I-	MRCV			48.1		50.0		_96.2%		90% - 11(Yes	-	
		- I	ICS			49.2		50.0		96.4%		80% - 120	3%	Yes	1	
ND: Not dete			LCS			47.4		50.0		94.8%		90% - 11()%	Yes		

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Hexavalent Chromium by EPA 218.6

REPORT

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
985465	SC-700B-WDR-222	08:00	09:53	μg/L	5.25	1.05	ND

	·				<u> </u>		<u>c au</u>	mnar	y				
	QC ST	D I.D.		oratory umber	Concentr	ation		licate ntration	Relative Percent Difference	Ac	ceptance limits	QC Within Control	
	Duplic	ate	98	5510-1	22.8		2	2.7	0.44%		< 20%	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple	Dilution Factor	Added Spike Conc.		MS iount	Measured Conc. of spiked sample	Theoretic Conc. of Spiked sam		MS% Recovery	Acceptance limits	QC Within Control
MS	985465	0.	.00	5.25	1.00	5	.25	5.44	5.25		104%	90 - 110%	Yes
		G	QC Std	^{I.D.} c	Measured oncentration		eoretica) centration	Percer Recove			QC Witi Contro		
			Blank	¢ .	ND		<0.200		<0.2	00	Yes		
			MRCC	s	5.26	-	5.00	105%	90% -	110%	Yes		
			MRCVS	3#1	10.1		10.0	101%	95% -	105%	Yes		
			MRCVS		10.0		10.0	100%	95% - 1	105%	Yes		
		<u> </u>	MRCVS		9.93		10.0	99.3%	95% -	105%	Yes		
			LCS		5.09		5.00	102%	90% -	10%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

QA/QC Summary

Laboratory No.: 985465

Date: October 1, 2009 Collected: September 18, 2009 Received: September 18, 2009 Prep/ Analyzed: September 23, 2009 Analytical Batch: 09CrH09G

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985465

Date: October 1, 2009 Collected: September 18, 2009 Received: September 18, 2009 Prep/ Analyzed: September 18, 2009 Analytical Batch: 09TUC09K

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	RL	Results
985465	SC-700B-WDR-222	08:00	NTU	1.00	0.100	0.141

QA/QC Summary

QC STD I	.D. Laborato Number	" I Concentre	ition	Dupl		Rela Perc			eptance	QC Within Control
Duplicat	e <u>98</u> 5465	0.141		0.1		Differ 1.4			<u>≤ 20%</u>	Yes
	QC Std I.D.	Measured Concentration		oretical entration	Percer Recove		ccepta Limit		QC Within Control	
	Blank	ND	<	0.100			<0.10	0	Yes	-
	LCS	7.73		8.00	96.6%	, 9	0% - 1*	10%	Yes	

8.00

93.8%

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

LCS

7.50

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

90% - 110%

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without provertien authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA,DM P.O. No.: 392895.AA.DM

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>DF</u>	RL	Results
985465	SC-700B-WDR-222	µmhos/cm	EPA 120.1	1.00	2.00	7270

QA/	QC	Summary

QC S I.D.		1 Concont	ration	Dupiica Concentra			tive Percent ifference	limits		QC Within Control
Duplic	ate 98546	5 7270)	7280	0 0.1		0.14%	<	10%	Yes
	QC Std I.D.	Measured Concentration		heoretical incentration	Perce Recov		Acceptane Limits	Ċe	QC Withi Control	n
	Blank	ND		<2.00			<2.00		Yes	
	CCS	704		706	99.7	%	90% - 110	%	Yes	
	CVS#1	996		999	99.7	%	90% - 110		Yes	
	LCS	704		706	99.7	%	90% - 110	%	Yes	-
ļ	LCSD	704		706	99.7	%	90% - 110		Yes	1

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without pror, written authorized and upon the condition that it is not to be used. authorization from Truesdail Laboratories.

Laboratory No.: 985465

Date: October 1, 2009 Collected: September 18, 2009 Received: September 18, 2009 Prep/ Analyzed: September 18, 2009 Analytical Batch: 09EC091

EXCELLENCE IN INDEPENDENT TESTING

P.O. No.: 392895.AA.DM

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM

Laboratory No.: 985465

Date: October 1, 2009 Collected: September 18, 2009 Received: September 18, 2009 Prep/ Analyzed: September 18, 2009 Analytical Batch: 09TDS09G

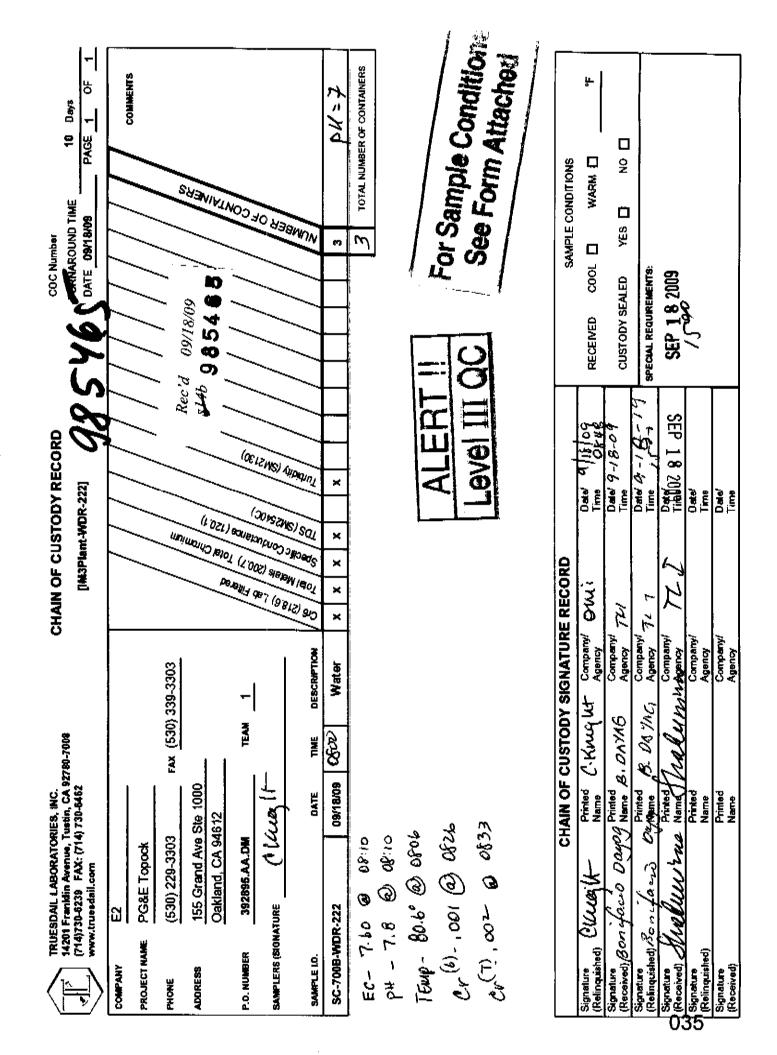
Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>RL</u>	Results
985465	SC-700B-WDR-222	mg/L	SM 2540C	250	4310

QA/QC Summary


QC STD I.C). Laborator Number	Concentration	tion	Duplic			cent rence		eptance limits	QC Within Control
Duplicate	985465	4310		434	0	0.3	5%		<u>≺</u> 5%	Yes
	QC Std I.D.	Measured Concentration		oretical entration	Percent Recover		Acceptar Limits		QC Withir Control	י] ו
	Blank	ND	<u> </u>	<25.0		·	<25.0		Yes	4
Ĺ	LCS	499		500	99.8%		90% - 11	0%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🗤 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without procrements without procrements of the client to be used. authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 7, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: REVISED CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-223 PROJECT, GROUNDWATER MONITORING, TLI NO.: 985530

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-223 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 23, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the sample and matrix spike for Hexavalent Chromium analysis by EPA 218.6 were slightly outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

fe γ Mona Nassimi Manager, Analytical Services

Ala Khang

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA,DM Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985530 Date: October 5, 2009 Collected: September 23, 2009 Received: September 23, 2009

ANALYST LIST

÷

ć

10

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	The second	Gautam Savani
EPA 200.8		Daniel Kang
EPA 218.6		Sonya Bersudsky

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT www.truesdail.com Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 985530 Sample: One (1) Groundwater Sample Date: October 5, 2009 Project Name: PG&E Topock Project Collected: September 23, 2009 Project No.: 392895.AA.DM Received: September 23, 2009 P.O. No.: 392895.AA.DM Prep/ Analyzed: October 4, 2009 Prep. Batch: 100409A Analytical Batch: 100409A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation; using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	<u>Results</u>
985530	SC-700B-WDR-223	μg/L	EPA 200.8	20:24	5.00	1.00	ND

QA/QC Summarv

	QC STD) I.D. I	aboratory Number	Concentra	tion		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	985618	ND			ND	0.00%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	M Amo	-	Measured Conc. of spiked sample	Theoretical Conc. of spiked sampl	MS% Recovery	Acceptance limits	QC Withir Control
MS	9 85618	0.00	5,00	50.0	25	50	236	250	94.4%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<1.00	"	<1.00	Yes
MRCCS	49.7	50.0	99.4%	90% - 110%	Yes
MRCVS#1	50.2	50.0	100%	90% - 110%	Yes
MRCVS#2	47.6	50.0	95.2%	90% - 110%	Yes
MRCVS#3	50.8	50.0	102%	90% - 110%	Yes
ICS	49.6	50.0	99.2%	80% - 120%	Yes
LCS	50.1	50.0	100%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative or the quality or condition or apparently identical or samples, products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proverties. This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985530	SC-700B-WDR-223	08:15	13:02	μg/L	1.05	0.20	ND

						<u> </u>				-)						
	QC STO) I.D.		orator	,	Concentra	ation		plicate entration	T	Relative Percent Difference		eptance limits		Within entrol	
	Duplic	ate	98	5550-2		2.38			2.45		2.90%		<u><</u> 20%	- \ \	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked npie	Diluti Facto		Added Spike Conc.	-	WIS Nount	Measur Conc. spike samp	of d	Theoretical Conc. of spiked samp	R	MS% ecovery	Accept	ance limits	QC Within Control
MS	985530	0	.00	1.00	}	1.00	1	.06	1.03		1.06		97.2%	. 90	- 110%	Yes
		6	QC Std	I.D.		Measured Incentration		eoretical centratio		rcer :ove			QC Wit Contr			
			Blan	ĸ		ND		<0.200			<0.20	0	Yes			
			MRCC	s		5,23		5.00	1	05%	90% - 11	10%	Yes			
			MRCV	S#1		10.2	. == .	10.0	1	32%	95% - 10)5%	Yes			
			MRCV	S#2		9,97		10.0	9!	.7%	95% - 10	05%	Yes			
			MRCV	S#3		9.86		10.0	9	3.6%	§ 95% - 10)5%	Yes	,		
			LCS	5		5.26		5.00	1	05%	90% - 11	10%	Yes			

ND; Below the reporting limit (Not Detected),

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without provide authorization from Truesdail Laboratories.

QA/QC Summary

Laboratory No.: 985530

Date: October 5, 2009 Collected: September 23, 2009 Received: September 23, 2009 Prep/ Analyzed: September 25, 2009 Analytical Batch: 09CrH09I

EXCELLENCE IN INDEPENDENT TESTING

- 1

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985530

Date: October 5, 2009 Collected: September 23, 2009 Received: September 23, 2009 Prep/ Analyzed: September 24, 2009 Analytical Batch: 09TUC09M

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLH.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985530	SC-700B-WDR-223	08:15	NTŲ	1.00	0.100	0.169

QA/QC Summary

QC STD I.	Number		/	Concentrat	ion	Dupli Concen		P	Percent		eptance Imits	QC Within Control
Duplicate	e	985529-1		0.116		0.1	17		0.86%	4	<u><</u> 20%	Yes
	QC	Std I.D.		easured icentration		oretical entration	Percer Recove		Accepta Limit		QC Withir Control	
		Blank		ND	4	0.100	-		<0.10	0	Yes	
		LCS		7.40		8,00	92.5%		90% - 1	10%	Yes	_
		LCS		7.70		8.00	96.3%	, b	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without provident authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

=

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Specific Conductivity by EPA 120.1

REPORT

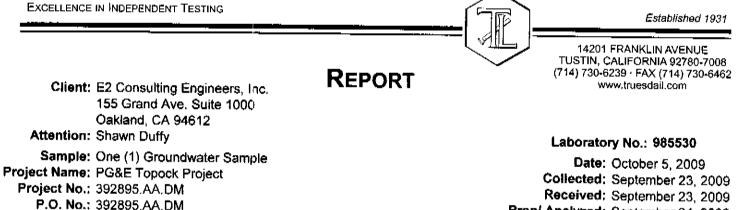
Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
985530	SC-700B-WDR-223	µmhos/cm	EPA 120.1	1.00	2.00	7040

QA/QC Summary

QC ST I.D.		Laboratory Number Concentration			Duplicate Re Concentration		Relative Percent Difference		eptance limits	QC Within Control	
Duplica	ate 985530	7040		7050			0.14%	<u><</u> 10%		Yes	
	QC Std I.D.	Measured Concentration		l'heoretical oncentration	Perc Reco		Acceptan Limits	C0	QC Withi Control	· •	
Ì	Blank	ND		<2.00			<2.00		Yes		
	CCS	705		706	99.9	9%	90% - 110	%	Yes		
[CVS#1	997		999	99.8	3%	9 0% - 110	%	Yes		
[LCS	705		706	99.9	9%	90% - 110	%	Yes		
[LCSD	705		706	99.9	9%	90% - 110	%	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.


Mona Nassimi, Manager

Mona Nassimi, Manager
 Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products authorization from Truesdail Laboratories.

Laboratory No.: 985530

Date: October 5, 2009 Collected: September 23, 2009 Received: September 23, 2009 Prep/ Analyzed: September 24, 2009 Analytical Batch: 09EC09K

Investigation:

Total Dissolved Solids by SM 2540C

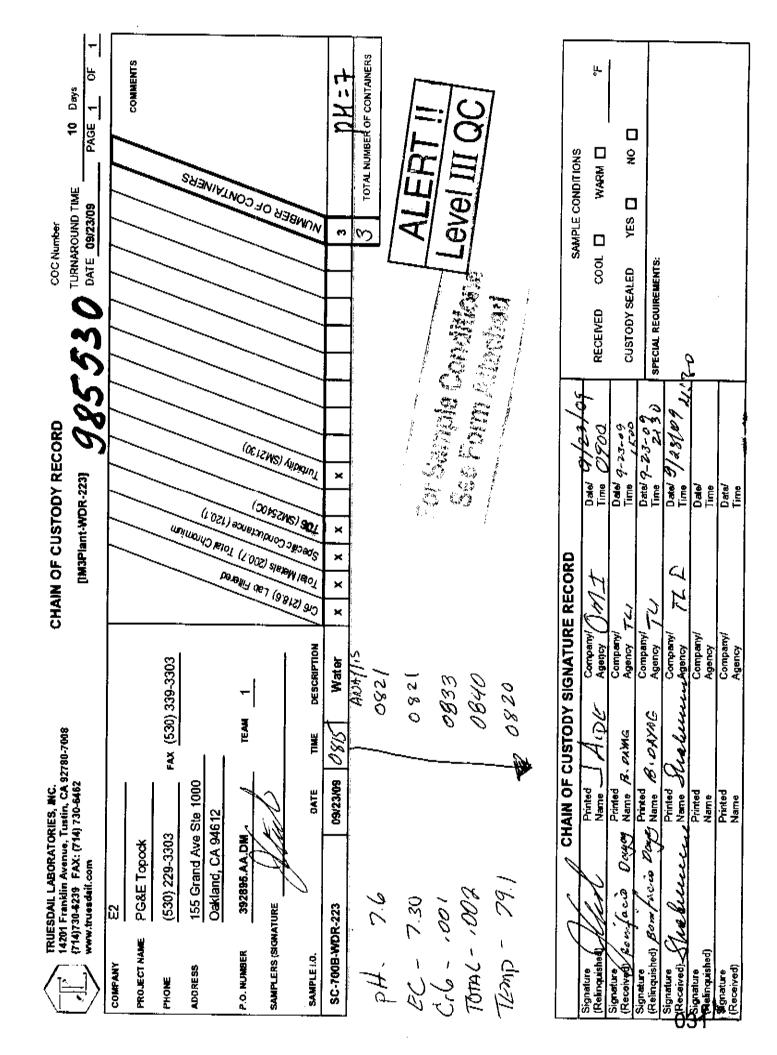
Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
985530	SC-700B-WDR-223	mg/L	SM 2540C	250	4070

QA/QC Summary

QC STD I.	.D. Laborat Numbe		Concentration		Duplicate Concentration		Percent Difference		Acceptance limits		QC Within Control
Duplicat	Duplicate 985530		4070		4150		0.97%		<u><</u>	5%	Yes
	QC Std I.D.		Measured		eoretical centration	Percen Recover		cceptan Limits	ce	QC Within Control	
ĺ	Blank		ND		<25.0			<25.0		Yes	1
Ĺ	LCS		498		500	99.6%	9	0% - 110	%	Yes	1

ND: Below the reporting limit (Not Detected). **RL: Reporting Limit.**


> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Prep/ Analyzed: September 24, 2009

Analytical Batch: 09TDS091

---- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without 011 Tritten authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

October 6, 2009

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-224 PROJECT, GROUNDWATER MONITORING, TLI NO.: 985618

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-224 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 30, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

f -- Mona Nassimi Manager, Analytical Services

K. R. P. Syen

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985618 Date: October 6, 2009 Collected: September 30, 2009 Received: September 30, 2009

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Daniel Kang
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 REPORT Client: E2 Consulting Engineers, Inc. www.truesdail.com 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 985618 Sample: One (1) Groundwater Sample Date: October 6, 2009 Project Name: PG&E Topock Project Collected: September 30, 2009 Project No.: 392895.AA.DM Received: September 30, 2009 P.O. No.: 392895,AA,DM Prep/ Analyzed: October 4, 2009 Prep. Batch: 100409A Analytical Batch: 100409A Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation:

using EPA 200.8

Analytical Results Total Chromium

<u>TLí I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	<u>Run Time</u>	DF	RL	Results
985618	SC-7008-WDR-224	μg/L	EPA 200.8	18:05	5.00	1.00	ND

QA/QC Summary

		QC STD	· 1.6.	aboratory Number	Concentra	ition	Conc	plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
		Duplica	ate	985618				ND	0.00%	<u></u> _ <u></u> 20%	Yes	
	Std D.	Lab Number	Conc.o unspike sampie	Eactor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked samp	MS% Recovery	Acceptance limits	QC Within Control
MŞ		98 5 618	0.00	5.00	50.0		250	236	250	94.4%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	NĎ	<1.00	_	<1.00	Yes
MRCCS	49.7	50.0	99.4%	90% - 110%	Yes
MRCV\$#1	50.2	50.0	100%	90% - 110%	Yes
MRCVS#2	47.6	50.0	95.2%	90% - 110%	Yes
MRCVS#3	50.8	50.0	102%	90% - 110%	Yes
ICS	49.6	50.0	99.2%	80% - 120%	Yes
LCS	50.1	50.0	100%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🥪 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prove written authorization from Truesdail Laboratories.

(714) 730-6239 · FAX (714) 730-6462

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985618	SC-700B-WDR-224	08:00	07:44	μ g/L	1.05	0.20	ND

							ic su	mmar	y				
	QC ST) I.D.		oratory umber	Conce	ntration		licate ntration	Relative Percent Difference	A	cceptance limits	QC Within Control	
	Duplic	ate	98	5620-1	9.	12	9	.10	0.22%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple	Dilution Factor			MS bount	Measured Conc. of spiked sample	Theoretic Conc. of spiked sam		MS% Recovery	Acceptance limits	QC Within Control
MS	985618	0.	.00	1.06	1.00	1	.06	1.06	1.06		100%	90 - 110%	Yes
		c	QC Std	^{I,D,} (Measured Concentration		eoretical centration	Percer Recove			QC Wit Contr		
			Blan	< .	ND		<0.200		<0.2	00	Yes	_	
			MRCC	s	5.21		5,00	104%	90% -	110%	Yes		
		<u></u>	MRCV	₩1	10.2		10.0	102%	95% -	105%	Yes		
			MRCVS	;#2	10.2		10,0	102%	95% -	105%	Yes		
			MRCV	\$#3	10.1		10.0	101%	95% -	105%	Yes		
		^	MRCV		9,91		10.0	99,1%	6 95% -	105%	Yes		
			LCS		5.23		5.00	105%	90% -	110%	Yes		

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

t∝∠Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without pror written outport is publicity in the client to be used. authorization from Truesdail Laboratories. 008

Laboratory No.: 985618

Date: October 6, 2009 Collected: September 30, 2009 Received: September 30, 2009 Prep/ Analyzed: October 1, 2009 Analytical Batch: 10CrH09A

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985618

Date: October 6, 2009 Collected: September 30, 2009 Received: September 30, 2009 Prep/ Analyzed: October 1, 2009 Analytical Batch: 10TUC09A

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TL! I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985618	SC-700B-WDR-224	08:00	NTŲ	1.00	0.100	ND

QA/QC Summary

QC STD I	e 985618 ND Conce GC Std I.D. Measured Theoretical	Dupi Concer		Р	Relative Percent Difference		ceptance limits	QC Within Control		
Duplicat	e 985618	NĎ		<u>N</u>	D	(0.00%		<u><</u> 20%	Yes
	QC Std I.D.		Theoretical Concentration		Percent Recovery				QC Within Control	1
	Blank	ND	ND <			<0.10		0	Yes	
	LCS	7.80		8.00	97.5%	, D	90% - 1	10%	Yes]
	LCS	8.10		8.00	101%	,	90% - 1	10%	Yes]

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager ____ Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: October 6, 2009

Collected: September 30, 2009

Received: September 30, 2009

Laboratory No.: 985618

Prep/ Analyzed: October 1, 2009

Analytical Batch: 10EC09A

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	RL	<u>Results</u>
985618	SC-700B-WDR-224	µmhos/cm	EPA 120.1	1.00	2.00	6970

QA/QC Summary

QC ST I.D.		Laborato Numbe	• I LODCONTS	ition	Duplicate Concentration			Relative Percent Difference		ceptance limits	QC Withir Control
Dupliç	Duplicate 985618		6970	6970		6980		0.14%		<u><</u> 10%	Yes
	QC	Std I.D.	Measured Concentration		Theoretical Incentration	Perc Reco		Acceptane Limits	ce	QC With Control	
		Blank	ND		<2.00			<2.00		Yes	-
		CCS	706	1	706	100)%	90% - 110	%	Yes	-1
	(CVS#1	996		999	99.7	7%	90% - 110	%	Yes	
		LCS	706		706	100)%	90% - 110	%	Yes	
		LCSD	706		706	100)%	90% - 110	%	Yes	-

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Hanalytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

EXCELENCE IN INCOPENDENT LESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985618

Date: October 6, 2009

Collected: September 30, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Investigation:

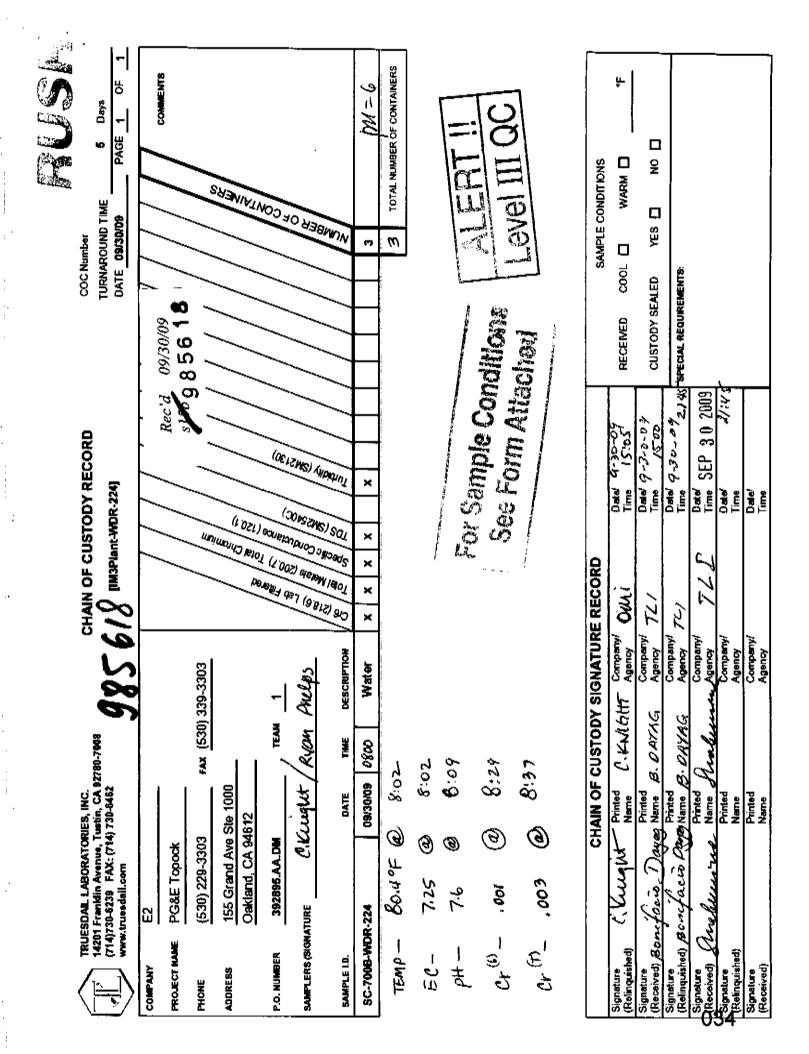
Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
985618	SC-700B-WDR-224	mg/L	SM 2540C	250	4190

QA/QC Summary

QC STD I	QC STD I.D. Laboratory Number		y Concentra	tion				Percent Ifference		ceptance limits	QC Within Control
Duplicate 985618		4190		4230		0.48%		<u> </u>		Yes	
	QC 8	Std I.D.	Measured Concentration		eoretical centration	Percei Recove		Accepta Limit		QC Withir Control	1
	Blank		ND		<25.0			<25.0)	Yes	-
	L	.cs	499		500	99.8%	6	90% - 1	10%	Yes	


ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without or written authorization from Truesdail Laboratories.

Received: September 30, 2009 Prep/ Analyzed: October 1, 2009

Analytical Batch: 10TDS09A

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 7, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-219 PROJECT, SLUDGE MONITORING,

TLI NO.: 985199

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-219 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 2, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

Mercury was analyzed past the method specified holding time due to instrument problems.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Hona Nassimi Manager, Analytical Services

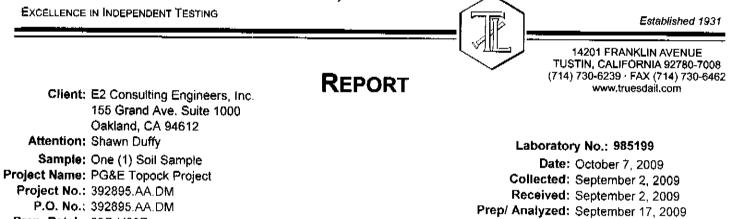
Al Khaysog

For K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com


Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM

Laboratory No.: 985199

Date: October 7, 2009 Collected: September 2, 2009 Received: September 2, 2009

ANALYST LIST

MÊTHOD	PARAMETER	ANALYST
EPA 300.0	Fluoride	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Kris Collins
SW 6020	Metals by ICP/MS	Romuel Chaves
SW 7199	Hexavalent Chromium	Michael Nonezyan

Investigation:

Prep. Batch: 09CrH09E

Hexavalent Chromium by IC Using Method SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
985199	SC-Sludge-WDR-21	9 08:30	15:53	mg/kg	10.0	15.1	157

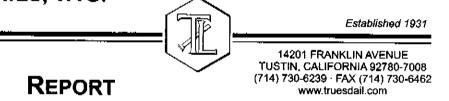
							2 <u>3 u</u>	mmar	<u>y</u>								
	QC STI	D I.D.	I.D. Laboratory Sample Number Concentrati		-		plicate entration	1	Relative Percent ifferenco		eptance límits						
	Duplic	ate	98	5199	157				< 20%	20% Yes							
QC Std I.D.	Lab Number	Conc.c unspike sampi	ad Dili	ution Factor	Added Spike Conc.	Spike MS		Spike MS		Measured Conc. of Spiked sample		Theoretical Conc. of spiked sample	M\$% Recovery			cceptance límits	QC Within Control
MS	985199	157		10.0	30.2	302		436		459	Ś	2.4%		75-125%	Yes		
IM\$	985199	157		50.0	58.6	2	928	2940		3085		95.0%		75-125%	Yes		
PDMS	985199	157		25.0	24.2	(605	803	-	762		107%		75-125%	Yes		
		QC S	Std I.D.		sured ntration		eor o tica centratio			Accepta		QC Wit Contro					
		Ŗ	ank	1	۳D		<0.400			<0.400	0	Yes					
		MF	CCS	2	.02		2.00	101	%	90% - 11	ñu -	Yes					
		MRC	VS#1	2	.07		2.00	103		90% - 11		Yes					
		L	ĊS	1	.69		2.00	84.5		80% - 12	_	Yes					

QA/QC Summary

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.


Analytical Batch: 09CrH09E

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

008

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985199

Date: October 7, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 23, 2009 Analytical Batch: 09SOLID09B

Investigation:

Total Solids by SM 2540 B

Analytical Results % Moisture

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Units	<u>Results</u>
985199	SC-Sludge-WDR-219	08:30	%	73.5

QA/QC Summary

QC STD I.D.	Laboratory Number Concentration		Duplicate Concentration	Relativo Percent Difforence	Acceptance limits	QC Within Control
Duplicate	985199	73,5	73.0	0.68%	<u><</u> 20%	Yes

ND: Below the reporting limit (Not Detected). DF: Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Ser Comb

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM

Laboratory No.: 985199

Date: October 7, 2009 Collected: September 2, 2009 Received: September 2, 2009 Prep/ Analyzed: September 3, 2009 Analytical Batch: 09AN09C

Investigation:	Fluoride by Ion Chromatography using EPA 300.0
----------------	--

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
985199	SC-Sludge-WDR-219	08:30	12:17	mg/kg	1.00	15.1	70.9

QA/QC Summary

	QC STO) I,Ø,		abora Numb	oratory mber Concentra		Concentration Concentration Pe		Percent i				C Within Control			
	Duplic	ate		<u>985</u> 16	<u>5</u> 4	0.780		0	.783		0.38%	:	<u><</u> 20%		Yes	
QC Std I.D.	Lab Number	Lab Conc.of			ution ictor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	T	Theoretical Conc. of spiked sample		MS% covery	Ac	ceptance limits	QC Within Control
MS	985164	<u>0</u> ,1	780	1	.00	2.00		2.00 2.79			2.78		101%	8	5-115%	Yes
		G	QC Std	I.D.		entration		eoretica icentratic			Acceptar Limits		QC With Contro			
			Blan	k.		ND		<0.500			<0.500)	Yes			
			MRCO	cs		4.14		4.00	104%	5	90% - 11	0%	Yes			
			MRCV	S#1		3.14		3.00	105%	, ,	90% - 11	0%	Yes			
			MRCV	5#2		3.13		3.00	104%		90% 11	0%	Yes			
			LCS	;		4.12		4.00	103%		90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC,

🛵 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

010

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985199 Reported: October 7, 2009 Collected: September 2, 2009 Received: September 2, 2009 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Samples: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 392895.AA.DM P.O. No.: 392895.AA.DM Investigation: Total Metal Analyses as Requested

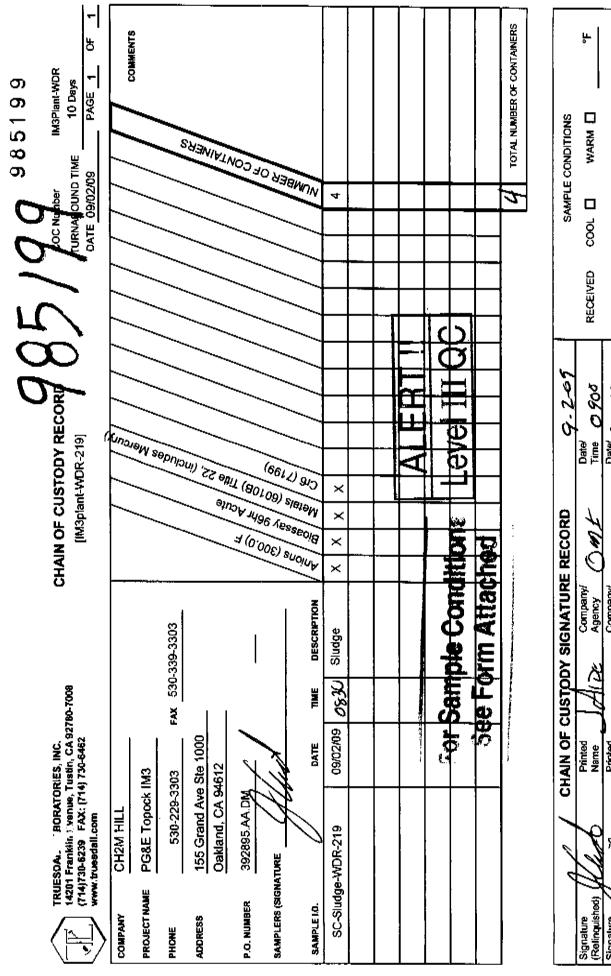
Analytical Results

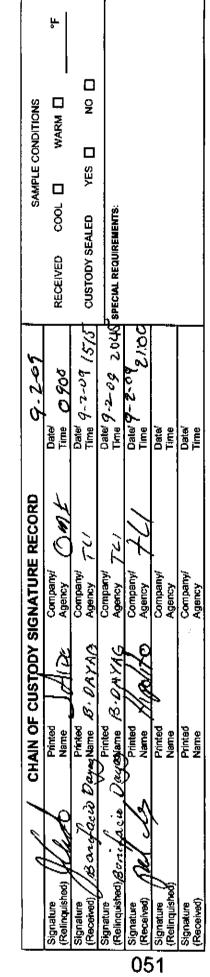
SAMPLE ID:	SC-Sludge-WDR-219	Time Co	llected: 0	8:30		LAB ID:	985199	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Antimony	SW 6020	NĎ	10.0	mg/kg	2.70	092309A	09/23/09	13:54
Arsenic	SW 6020	50.7	10,0	mg/kg	2.70	092309A	09/23/09	13:54
Barium	SW 6010B	123	1.00	mg/kg	2.70	091009A	09/10/09	17:29
Beryllium	SW 6010B	184	1.00	mg/kg	2.70	091009A	09/10/09	17:29
Cadmium	SW 6010B	58.2	1.00	mg/kg	5.41	091009A	09/10/09	17:29
Chromium	SW 6010B	18100	20.0	mg/kg	54.1	091109A	09/11/09	12:02
Cobalt	SW 6010B	8.05	1.00	mg/kg	2.70	091009A	09/10/09	17:29
Copper	SW 6020	79.7	10.0	mg/kg	2.70	092309A	09/23/09	13:54
Lead	SW 6010B	ND	1.00	mg/kg	5.41	091009A	09/10/09	17:29
Mercury	SW 6020	0.699 J	5.00	mg/kg	0.270	100609A-Hg	10/06/09	12:58
Molybdenum	SW 6020	38.0	10.0	mg/kg	2.70	092309A	09/23/09	13:54
Nickel	SW 6010B	ND	1.00	mg/kg	2.70	091009A	09/10/09	17:29
Selenium	SW 6020	ND	10.0	mg/kg	2.70	092309A	09/23/09	13:54
Silver	SW 6010B	ND	1.00	mg/kg	5.41	091009A	09/10/09	17:29
Thallium	SW 6010B	NĎ	1,00	mg/kg	5.41	091009A	09/10/09	17:29
Vanadium	SW 6010B	548	1.00	mg/kg	2.70	091009A	09/10/09	17:29
Zine	SW 6010B	138	1.00	mg/kg	13.5	091009A	09/10/09	17:29

NOTES:

Sample results and reporting limits reported on a dry weight basis.

ND: Not detected or below limit of detection.


DF: Dilution factor.


Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Se Con 4___ Mona Nassimi, Manager

 Mona Nassimi, Manage Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Sample Integrity & Analysis Discrepancy Form

Clien		Lab	# <u>98</u>	5199
Date	Delivered: <u>9/2</u> /09 Time: <u>2):</u> 00 By: □Mail dField	l Servi	ce 🗆	Client
1.	Was a Chain of Custody received and signed?	D Yes	□No	□ <i>N/A</i>
2.	Does Customer require an acknowledgement of the COC?	□Yes	□No	GINIA
3.	Are there any special requirements or notes on the COC?	🗆 Yes	□No	EN/A
4.	If a letter was sent with the COC, does it match the COC?	🗆 Yes	⊡No	DINIA
5.	Were all requested analyses understood and acceptable?	tt Yes	□No	
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4°C</u>	₽ ¥es	□No	□ <i>N/A</i>
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Tyes	□ <i>No</i>	□ <i>N/A</i>
8 .	Were sample custody seals intact?	□Yes	No	UNA D
9.	Does the number of samples received agree with COC?	Hyes	No	EN/A
10.	Did sample labels correspond with the client ID's?	B Yes	□No	
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	🗆 Yes	□No	BIN/A
12.	Were samples pH checked? pH =	□ Yes	□No	HIN/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	W res	□No	□N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH	d Yes	□No	□ <i>N/A</i>
15.	Sample Matrix: Liquid Drinking Water Ground Water Sludge GSoil Wipe Paint Solid Oth		⊐Waste	
16.	Comments:		, , , ,	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Kay	bil	Davila

LABORATORY REPORT

Date: September 9, 2009

Client: Truesdail Laboratories, Inc. 14201 Franklin Avenue Tustin, CA 92780 Attn: Sean Condon "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.:	A-09090406-001
Sample ID.:	985199

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.

Date Sampled:	09/02/09
Date Received:	09/04/09
Date Tested:	09/05/09 to 09/09/09

Sample Analysis: The following analyses were performed on your sample:

CCR Title 22 Fathead Minnow Hazardous Waste Screen Bioassay (Polisini & Miller 1988).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID. 985199 $\frac{\text{Results}}{\text{PASS}}$ (LC50 > 750 mg/l)

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

FATHEAD MINNOW HAZARDOUS WASTE SCREEN BIOASSAY

Lab No .: A 09090406 001 Client/ID: Truesdail 985199

TEST SUMMARY

Species: Pimephales promelas.

Fish length (mm): av: 25; min: 24; max: 26. Fish weight (gm): av: 0.28; min: 0.25; max: 0.32. Test chamber volume: 10 liters. Temperature: 20 +/- 2°C. Aeration: Single bubble through 30 bore tube. Number of replicates: 2. Dilution water: Soft reconstituted water (40 - 48 mg/l CaCO₃). QA/QC Batch No.: RT-090902. Source: In-Lab Culture. Regulations: CCR Title 22. Test Protocol: California F&G/DHS 1988. Endpoints: Survival at 96 hrs. Test type: Static. Feeding: None. Number of fish per chamber: 10. Photoperiod: 16/8 hrs light/dark.

			TEST DATA		
	INITIAL	24 Hr	48 Hr	72 Hr	96 Hr
Date/Time:	9-5-9 1050	4-6-04 1100	4-7-09 1030	9-8-09 1100	9-9-09 1100
Analyst:	m	2	2	R	Rom
	°C DO pH	°C DO pH #I	O °C DO pH #D	°C DO pH #D	°C DO pH #D
Control A	19.9 8.5 7.6	20.7 8.4 7.7 6	20.1 8.2 7.10	20.18.57.10	2038.47.10
Control B	14.8 8.4 7.6	20,1 8.7 7.10	20,18,07.00	20.18.47.0 0	20.28.77.10
400 mg/l A	198 8.27.5	20,0 8.6 7.1 0	20.0 8.7 7.2 0	20.1 8.9 7.1 12	20.18.77.10
400 mg/l B	147 862.5	20.0 8.6 7.1 0	20,0 8,8 7.1 0	20.0 8.8 7.1 0	20.08.97.1 ()
750 mg/l A	148 8.3 7.5	20,0 8,7 7.1 0	19.8 8.1 7.1 0	20.0 8.5 7.1 12	20.0 8.77.0 1
750 mg/l B	1.40 - 10/	2010 9.7 7.1 0	19,9 8,7 7,1 0	19.9 8.4 7.0 0	20.18.67.10
Comments		hod: Mechanical sha None (aqueous so en (DO) readings in ma	olution)		
<u> </u>					
		TROL	HIGH CONCENTI		tal Number Dead
	Alkalinity	Hardness	Alkalinity	Hardness Con	trol <i>O</i> /20
Initial	FU mg/1 CaCO,	42 mg/I CaCO ₃	30 mg/1 CaCO, 4	<u>) mg/l CaCO</u> , 400 r	mg/1 🕜 /20
Final	3/ mg/1 CaCO,	43 mg/1 CaCO,	34 mg/1 CaCO, 4	8 mg/l CaCO ₃ 750 i	mg/1 / /20

	(1	RESULTS he checked result applies based on fish survival rates)
	PASSED	LC50 > 750 mg/l (<40% dead in 750 mg/l conc.)
NA	FAILED	≥40% dead in 750 mg/l (close to passing - definitive test recommended)
NA	FAILED	LC50 < 400 mg/l (>60% dead in 400 mg/l conc.)

142 142	TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, California 92780	LABO Avenue, Tu	RATORIE JSTIN, CALIFOI	ES, INC. RNIA 92780	ALER' Level III	ALERT !! evel III QC	0	
				LABC	<u>aboratory Transmittal Form</u>	RAN	SMITTAL F	ORM
Date: <u>09/03/09</u> Page Laboratory: <u>Aquati</u> Attention: <u>Joe LeMay</u> Address: <u>4350 Trans</u> City: <u>Ventura</u> State	Date: <u>09/03/09</u> Page: <u>1</u> of <u>1</u> Laboratory: <u>Aquatic Testing Laboratories</u> Attention: <u>Joe LeMay</u> Address: <u>4350 Transport St. #107, Ph.:805-650-0546</u> City: <u>Ventura</u> State: <u>CA</u> Zip: <u>93003</u>	g Laborat u 07, Ph.:805- 93003	<u>ories</u> 650-0546		Please sign, date, 4 TRUESDAIL At 14201 Franklin Ave. Please include Tru	, & return this forn <u>NL LABORATO</u> Attn: Sean Condon venue, Tustin, Calift ruesdail Sample ID	Please sign, date, & return this form with results to: TRUESDAIL LABORATORIES, INC. Attn: Sean Condon 14201 Franklin Avenue, Tustin, California 92780-7008 Please include Truesdail Sample ID on your invoice	
				Tests/Methods Required	luired			
Sample ID	Date	Time	Matrix	Acute Aquatic Toxicity (% Survival)- Ff WS		Container Gty.	Comments/Container Type	er Type
985199	09/02/09	08:30	Sludge	X		~	8 oz Jar/Glass	
							Containers Total	
	Ā	Type of Service:	vice:		Sample	Sample Conditions:	us:	
	X <u>Normal (5-10 day TAT)</u> URGENT (24-48 hr. TAT)		□ RUSH (5 day TAT) □ Results needed by: _	Received on Ice?	on Ice? <u>Yes</u> /No Special Shipment/Handling or Storage Requirements:	ng or Stor	Sealed? Yes <u>age Requirements:</u>	Yes/ <u>No</u>
Relinquished by:	led by:	Amir Marivani	ivani tuki /	Amir Marivani	Truesdail Labs, Inc. Comeany	abs, Inc.	09/03/09 (Date	9:30 Time
Received bv:		N	J.	de le na	r Mil		Ż	
		Signature	ture	Printed Name	<i>C</i> ompany		Date	Time
Document/Forms	Document/Forms/ATL (Aquatic Testing Labs)/09/03/09 10:25 AM/CH	Labs)/09/03/09 10	1:25 AM/CH		TLi Phone:(714) 730-6239 • Fax (714) 730-6462	0-6239 • Fa	x (714) 730-6462	

September 23, 2009

Shawn P. Duffy CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (530) 229-3303

CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N003250

RE: PG&E Topock IM3

FAX: (530) 339-3303

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on September 16, 2009 by Advanced Technology Laboratories - Las Vegas . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

Advanced Technology Laboratories

CLIENT: CH2M HILL PG&E Topock IM3 **Project:** Lab Order: N003250

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS

Sample was received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

All samples were analyzed within method holding time.

Prep Comments for 3510_W_DMPGE:

Sample N003250-001A: pH 7. Sample N003250-002A: pH 7, Sample is turbid.

Analytical Comments for EPA 8260B Water:

Matrix Spike (MS) N003123-001AMS and Matrix Spike Duplicate (MSD) N003123-001AMSD were out of recovery criteria for 2-Butanone, Acetone, Styrene, Acrylonitrile, Freon, and 1,2,4-Trimethylbenzene. The associated Laboratory Control Sample (LCS) was within acceptance criteria for batch D09VW084.

Laboratories

ANALYTICAL RESULTS

Advanced Technology Laboratories - Las Vegas

PG&E Topock IM3

CH2M HILL

N003250

CLIENT:

Project:

Lab Order:

Print Date: 23-Sep-09

Client Sample ID: SC700B-091609 Collection Date: 9/16/2009 4:00:00 PM Matrix: WATER

Lab ID:	N003250-0	001						
Analyse	S	Resu	ılt	PQL Qu	al Units	DF	Date A	Analyzed
DIESEL	. & MOTOR OIL RAN	IGE ORGANICS BY EPA 3510C	GC/FID		EPA 801	5B		
RunID:	GC3_090916B	QC Batch:	33511			PrepDate:	9/16/2009	Analyst: JT
TPH-D	iesel		55	51	ug/L	1	9/1	7/2009 02:17 AM
TPH-M	lotor Oil		ND	51	ug/L	1	9/1	7/2009 02:17 AM
Surr	: p-Terphenyl	8	9.7	57-132	%REC	1	9/1	7/2009 02:17 AM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories

<u>V</u> 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

ANALYTICAL RESULTS

Print Date: 23-Sep-09

N003250 Lab Order: Collection Date: 9/16/2009 3:10:00 PM **Project:** PG&E Topock IM3 Matrix: WATER Lab ID: N003250-002 Analyses Result **PQL Qual Units** DF **Date Analyzed DIESEL & MOTOR OIL RANGE ORGANICS BY GC/FID** EPA 3510C EPA 8015B QC Batch: GC3_090916B RunID: 33511 PrepDate: 9/16/2009 Analyst: JT **TPH-Diesel** 95 62 ug/L 1 9/17/2009 02:46 AM **TPH-Motor Oil** 130 62 ug/L 1 9/17/2009 02:46 AM Surr: p-Terphenyl 84.8 57-132 %REC 1 9/17/2009 02:46 AM **VOLATILE ORGANIC COMPOUNDS BY GC/MS** EPA 8260B RunID: MS1 090916B QC Batch: D09VW084 PrepDate: Analyst: QBM 1,1,1,2-Tetrachloroethane ND 1.0 µg/L 9/16/2009 11:19 PM 1 ND 1 9/16/2009 11:19 PM 1,1,1-Trichloroethane 1.0 µg/L ND 9/16/2009 11:19 PM 1,1,2,2-Tetrachloroethane 1.0 µg/L 1 1,1,2-Trichloroethane ND 1.0 µg/L 1 9/16/2009 11:19 PM 1,1-Dichloroethane ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 1,1-Dichloroethene 1.0 µg/L 1 9/16/2009 11:19 PM 1,1-Dichloropropene ND 1.0 1 9/16/2009 11:19 PM µg/L 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 1.0 1 9/16/2009 11:19 PM 1,2,3-Trichloropropane µg/L 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 1 9/16/2009 11:19 PM 1,2,4-Trimethylbenzene 1.0 µg/L 1,2-Dibromo-3-chloropropane ND 2.0 9/16/2009 11:19 PM µg/L 1 ND 1 9/16/2009 11:19 PM 1,2-Dibromoethane 1.0 µg/L ND 9/16/2009 11:19 PM 1,2-Dichlorobenzene 1.0 µg/L 1 1,2-Dichloroethane ND 1 9/16/2009 11:19 PM 1.0 µg/L 1,2-Dichloropropane ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 1,3,5-Trimethylbenzene 1.0 µg/L 1 9/16/2009 11:19 PM 1,3-Dichlorobenzene ND 1.0 1 9/16/2009 11:19 PM µg/L 1,3-Dichloropropane ND 1.0 µg/L 1 9/16/2009 11:19 PM 1,4-Dichlorobenzene ND 1.0 µg/L 1 9/16/2009 11:19 PM 2,2-Dichloropropane ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 10 1 9/16/2009 11:19 PM 2-Butanone µg/L 2-Chlorotoluene ND 1.0 9/16/2009 11:19 PM µg/L 1 ND 4-Chlorotoluene 1.0 µg/L 1 9/16/2009 11:19 PM 4-Isopropyltoluene ND 1.0 µg/L 1 9/16/2009 11:19 PM 4-Methyl-2-pentanone ND 10 µg/L 1 9/16/2009 11:19 PM

Qualifiers: В

Analyte detected in the associated Method Blank

Value above quantitation range Е

1

1

1

1

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

9/16/2009 11:19 PM

9/16/2009 11:19 PM

9/16/2009 11:19 PM

9/16/2009 11:19 PM

Η Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

ND

ND

ND

ND

DO Surrogate Diluted Out

Acetone

Benzene

Acrylonitrile

Bromobenzene

Advanced Technology Laboratories

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

µg/L

µg/L

µg/L

µg/L

ND

10

20

1.0

1.0

Client Sample ID: IW3-091609

CLIENT: CH2M HILL

Advanced Technology Laboratories - Las Vegas

Advanced Technology Laboratories - Las Vegas

ANALYTICAL RESULTS

CLIENT: CH2M HILL N003250 Lab Order: **Project:**

Client Sample ID: IW3-091609 Collection Date: 9/16/2009 3:10:00 PM Matrix: WATER

DF Analyses Result **PQL Qual Units Date Analyzed VOLATILE ORGANIC COMPOUNDS BY GC/MS** EPA 8260B MS1_090916B QC Batch: D09VW084 PrepDate: RunID: Analyst: QBM ND µg/L Bromochloromethane 1.0 1 9/16/2009 11:19 PM Bromodichloromethane ND 1.0 µg/L 1 9/16/2009 11:19 PM Bromoform ND 1.0 µg/L 1 9/16/2009 11:19 PM Bromomethane ND 1.0 µg/L 1 9/16/2009 11:19 PM ND Carbon disulfide 1 9/16/2009 11:19 PM 1.0 µg/L Carbon tetrachloride ND 9/16/2009 11:19 PM 1.0 µg/L 1 ND Chlorobenzene 1.0 µg/L 1 9/16/2009 11:19 PM Chloroethane ND 1.0 µg/L 1 9/16/2009 11:19 PM Chloroform ND 1.0 µg/L 1 9/16/2009 11:19 PM Chloromethane ND 1.0 1 9/16/2009 11:19 PM µg/L ND cis-1,2-Dichloroethene 1.0 µg/L 1 9/16/2009 11:19 PM cis-1,3-Dichloropropene ND 1.0 1 9/16/2009 11:19 PM µg/L Dibromochloromethane ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 9/16/2009 11:19 PM Dibromomethane 1.0 µg/L 1 Dichlorodifluoromethane ND 1.0 1 9/16/2009 11:19 PM µg/L ND Ethylbenzene 1.0 µg/L 1 9/16/2009 11:19 PM Freon-113 ND 9/16/2009 11:19 PM 1.0 µg/L 1 Hexachlorobutadiene ND 1.0 1 9/16/2009 11:19 PM µg/L Isopropylbenzene ND 1.0 µg/L 1 9/16/2009 11:19 PM ND 1 9/16/2009 11:19 PM m,p-Xylene 2.0 µg/L Methylene chloride ND 5.0 µg/L 1 9/16/2009 11:19 PM MTBE ND 1.0 µg/L 1 9/16/2009 11:19 PM n-Butylbenzene ND 1.0 µg/L 1 9/16/2009 11:19 PM n-Propylbenzene ND 1.0 µg/L 1 9/16/2009 11:19 PM Naphthalene ND 1.0 1 9/16/2009 11:19 PM µg/L o-Xylene ND 1.0 1 9/16/2009 11:19 PM µg/L ND sec-Butylbenzene 1 9/16/2009 11:19 PM 1.0 µg/L Styrene ND 1.0 µg/L 1 9/16/2009 11:19 PM ND tert-Butylbenzene 1.0 1 9/16/2009 11:19 PM µg/L Tetrachloroethene ND 1.0 µg/L 1 9/16/2009 11:19 PM Toluene ND 2.5 µg/L 1 9/16/2009 11:19 PM trans-1,2-Dichloroethene ND 1.0 µg/L 1 9/16/2009 11:19 PM trans-1,3-Dichloropropene ND 1.0 µg/L 1 9/16/2009 11:19 PM Trichloroethene ND 1.0 1 9/16/2009 11:19 PM µg/L Trichlorofluoromethane ND 1.0 µg/L 1 9/16/2009 11:19 PM Vinyl chloride ND 1 9/16/2009 11:19 PM 1.0 µg/L

Qualifiers:

Η

DO

Analyte detected in the associated Method Blank В

Е Value above quantitation range

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference Not Detected at the Reporting Limit

Results are wet unless otherwise specified

ND

Advanced Technology Laboratories

Surrogate Diluted Out

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

PG&E Topock IM3 Lab ID: N003250-002

Print Date: 23-Sep-09

Advanced T	echnology Laborato	ries - Las Ve	202	Print Date: 2	23-Sep-09
CLIENT:	CH2M HILL		Client Sample ID	: IW3-0916	09
Lab Order:	N003250		Collection Date	: 9/16/2009	3:10:00 PM
Project:	PG&E Topock IM3		Matrix	: WATER	
Lab ID:	N003250-002				
Analyses		Result	PQL Qual Units	DF	Date Analyzed
VOLATILE OF	RGANIC COMPOUNDS B	Y GC/MS			

EPA 8260B RunID: MS1_090916B QC Batch: D09VW084 PrepDate: Analyst: QBM Xylenes, Total ND 3.0 µg/L 9/16/2009 11:19 PM 1 Surr: 1,2-Dichloroethane-d4 86.4 %REC 9/16/2009 11:19 PM 72-119 1 105 %REC 9/16/2009 11:19 PM Surr: 4-Bromofluorobenzene 76-119 1

85-115

81-120

%REC

%REC

1

1

87.0

111

Qualifiers:

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Laboratories

Surr: Dibromofluoromethane

Surr: Toluene-d8

Advanced Technology

Value above quantitation range Е

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

ANALYTICAL RESULTS

9/16/2009 11:19 PM

9/16/2009 11:19 PM

Advanced Technology Laboratories - Las Vegas

CLIENT: CH2M HILL Work Order: N003250

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_PGE

Sample ID: MB-33511	SampType: MBLK	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/16/2009	RunNo: 74865
Client ID: PBW	Batch ID: 33511	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/16/2009	SeqNo: 1132867
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	16.120	50		
TPH-Motor Oil	18.728	50		
Surr: p-Terphenyl	60.427	80.00	75.5 57 132	
Sample ID: LCS-33511-DRO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/16/2009	RunNo: 74865
Client ID: LCSW	Batch ID: 33511	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/17/2009	SeqNo: 1132868
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	829.431	50 1000 16.12	81.3 61 143	
Surr: p-Terphenyl	51.776	80.00	64.7 57 132	
Sample ID: LCS-33511-ORO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/16/2009	RunNo: 74865
Client ID: LCSW	Batch ID: 33511	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/17/2009	SeqNo: 1132870
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Analyte TPH-Motor Oil	Result 797.884	PQL SPK value SPK Ref Val 50 1000 18.73	%REC LowLimit HighLimit RPD Ref Val 77.9 50 150	%RPD RPDLimit Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology

Laboratories

E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

<u>ogv</u> 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project:

PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D090916LCS2	SampType: LCS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 748	362	
Client ID: LCSW	Batch ID: D09VW084	Test	lo: EPA 8260	В		Analysis Da	te: 9/16/20	09	SeqNo: 113	32799	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	26.670	1.0	25.00	0	107	81	129				
1,1,1-Trichloroethane	22.040	1.0	25.00	0	88.2	67	132				
1,1,2,2-Tetrachloroethane	27.000	1.0	25.00	0	108	63	128				
1,1,2-Trichloroethane	24.800	1.0	25.00	0	99.2	75	125				
1,1-Dichloroethane	25.240	1.0	25.00	0	101	69	133				
1,1-Dichloroethene	24.210	1.0	25.00	0	96.8	68	130				
1,1-Dichloropropene	26.770	1.0	25.00	0	107	73	132				
1,2,3-Trichlorobenzene	29.890	1.0	25.00	0	120	67	137				
1,2,3-Trichloropropane	27.090	1.0	25.00	0	108	73	124				
1,2,4-Trichlorobenzene	26.670	1.0	25.00	0	107	66	134				
1,2,4-Trimethylbenzene	27.450	1.0	25.00	0	110	74	132				
1,2-Dibromo-3-chloropropane	22.840	2.0	25.00	0	91.4	50	132				
1,2-Dibromoethane	27.230	1.0	25.00	0	109	80	121				
1,2-Dichlorobenzene	27.050	1.0	25.00	0	108	71	122				
1,2-Dichloroethane	25.380	1.0	25.00	0	102	69	132				
1,2-Dichloropropane	24.960	1.0	25.00	0	99.8	75	125				
1,3,5-Trimethylbenzene	27.810	1.0	25.00	0	111	74	131				
1,3-Dichlorobenzene	27.360	1.0	25.00	0	109	75	124				
1,3-Dichloropropane	26.000	1.0	25.00	0	104	73	126				
1,4-Dichlorobenzene	26.650	1.0	25.00	0	107	74	123				
2,2-Dichloropropane	22.650	1.0	25.00	0	90.6	69	137				
2-Butanone	289.230	10	250.0	0	116	49	136				
2-Chlorotoluene	28.840	1.0	25.00	0	115	73	126				
4-Chlorotoluene	29.140	1.0	25.00	0	117	74	128				
4-Isopropyltoluene	28.140	1.0	25.00	0	113	73	130				
4-Methyl-2-pentanone	294.510	10	250.0	0	118	58	134				
Acetone	312.250	10	250.0	0	125	40	135				
Acrylonitrile	225.920	20	250.0	0	90.4	75	125				
Benzene	25.660	1.0	25.00	0	103	81	122				
Bromobenzene	27.250	1.0	25.00	0	109	76	124				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- <u>Advanced Technology</u> Laboratories

E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ology 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project: PG&

PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D090916LCS2	SampType: LCS	TestCo	de: 8260_WP	_LL Units: µg/L		Prep Da	te:		RunNo: 74	362	
Client ID: LCSW	Batch ID: D09VW084	Test	No: EPA 8260	В		Analysis Da	ite: 9/16/20	009	SeqNo: 11	32799	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromochloromethane	23.500	1.0	25.00	0	94.0	65	129				
Bromodichloromethane	25.180	1.0	25.00	0	101	76	121				
Bromoform	22.850	1.0	25.00	0	91.4	69	128				
Bromomethane	21.780	1.0	25.00	0	87.1	53	141				
Carbon disulfide	21.210	1.0	25.00	0	84.8	75	125				
Carbon tetrachloride	22.600	1.0	25.00	0	90.4	66	138				
Chlorobenzene	26.350	1.0	25.00	0	105	81	122				
Chloroethane	29.120	1.0	25.00	0	116	58	133				
Chloroform	25.480	1.0	25.00	0	102	69	128				
Chloromethane	19.670	1.0	25.00	0	78.7	56	131				
cis-1,2-Dichloroethene	25.850	1.0	25.00	0	103	72	126				
cis-1,3-Dichloropropene	27.360	1.0	25.00	0	109	69	131				
Dibromochloromethane	26.290	1.0	25.00	0	105	66	133				
Dibromomethane	25.690	1.0	25.00	0	103	76	125				
Dichlorodifluoromethane	18.010	1.0	25.00	0	72.0	53	153				
Ethylbenzene	27.990	1.0	25.00	0	112	73	127				
Freon-113	20.300	1.0	25.00	0	81.2	75	125				
Hexachlorobutadiene	27.390	1.0	25.00	0	110	67	131				
Isopropylbenzene	30.900	1.0	25.00	0	124	75	127				
m,p-Xylene	58.840	1.0	50.00	0	118	76	128				
Methylene chloride	22.520	5.0	25.00	0	90.1	63	137				
МТВЕ	26.230	1.0	25.00	0	105	65	123				
n-Butylbenzene	27.920	1.0	25.00	0	112	69	137				
n-Propylbenzene	30.260	1.0	25.00	0	121	72	129				
Naphthalene	25.530	1.0	25.00	0	102	54	138				
o-Xylene	30.020	1.0	25.00	0	120	80	121				
sec-Butylbenzene	30.980	1.0	25.00	0	124	72	127				
Styrene	25.810	1.0	25.00	0	103	65	134				
tert-Butylbenzene	28.030	1.0	25.00	0	112	70	129				
Tetrachloroethene	26.580	1.0	25.00	0	106	66	128				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
 - <u>Advanced Technology</u> Laboratories

E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ology 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D090916LCS2	SampType: LCS	TestCo	de: 8260_WP_	_ LL Units: µg/L		Prep Da	te:		RunNo: 748	62	
Client ID: LCSW	Batch ID: D09VW084	Test	lo: EPA 8260	В		Analysis Da	te: 9/16/20	009	SeqNo: 113	2799	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	24.030	2.5	25.00	0	96.1	77	122				
trans-1,2-Dichloroethene	26.290	1.0	25.00	0	105	63	137				
trans-1,3-Dichloropropene	28.270	1.0	25.00	0	113	59	135				
Trichloroethene	25.510	1.0	25.00	0	102	70	127				
Trichlorofluoromethane	25.950	1.0	25.00	0	104	57	129				
Vinyl chloride	21.090	1.0	25.00	0	84.4	50	134				
Xylenes, Total	88.860	2.0	75.00	0	118	75	125				
Surr: 1,2-Dichloroethane-d4	23.800		25.00		95.2	72	119				
Surr: 4-Bromofluorobenzene	26.410		25.00		106	76	119				
Surr: Dibromofluoromethane	23.490		25.00		94.0	85	115				
Surr: Toluene-d8	25.390		25.00		102	81	120				
Sample ID: N003218-006AMS	SampType: MS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 748	62	
	SampType: MS Batch ID: D09VW084		de: 8260_WP_ No: EPA 8260			Prep Da Analysis Da		009	RunNo: 748 SeqNo: 113		
Sample ID: N003218-006AMS			lo: EPA 8260		%REC	Analysis Da	te: 9/16/20	009 RPD Ref Val			Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ	Batch ID: D09VW084	Test	lo: EPA 8260	B		Analysis Da	te: 9/16/20		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane	Batch ID: D09VW084 Result	TestN PQL	lo: EPA 8260 SPK value	B SPK Ref Val	%REC	Analysis Da LowLimit	te: 9/16/20 HighLimit		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	Batch ID: D09VW084 Result 24.530	TestM PQL 1.0	No: EPA 8260 SPK value 25.00	B SPK Ref Val 0	%REC 98.1	Analysis Da LowLimit 81	te: 9/16/20 HighLimit 129		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	Batch ID: D09VW084 Result 24.530 19.490	TestM PQL 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00	B SPK Ref Val 0 0	%REC 98.1 78.0	Analysis Da LowLimit 81 67	te: 9/16/20 HighLimit 129 132		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane	Batch ID: D09VW084 Result 24.530 19.490 20.510	TestN PQL 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00	B SPK Ref Val 0 0 0	%REC 98.1 78.0 82.0	Analysis Da LowLimit 81 67 63	te: 9/16/20 HighLimit 129 132 128		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520	TestN PQL 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0	%REC 98.1 78.0 82.0 82.1	Analysis Da LowLimit 81 67 63 75	te: 9/16/20 HighLimit 129 132 128 125		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500	TestN PQL 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0	Analysis Da LowLimit 81 67 63 75 69	te: 9/16/20 HighLimit 129 132 128 125 133		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500 21.850	Testh PQL 1.0 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0 87.4	Analysis Da LowLimit 81 67 63 75 69 68	te: 9/16/20 HighLimit 129 132 128 125 133 130		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500 21.850 24.470	TestM PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0 87.4 97.9	Analysis Da LowLimit 81 67 63 75 69 68 73	te: 9/16/20 HighLimit 129 132 128 125 133 130 132		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500 21.850 24.470 26.080	TestM PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0 87.4 97.9 104	Analysis Da LowLimit 81 67 63 75 69 68 73 67	te: 9/16/20 HighLimit 129 132 128 125 133 130 132 137		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500 21.850 24.470 26.080 20.420	TestM PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0 87.4 97.9 104 81.7	Analysis Da LowLimit 81 67 63 75 69 68 73 67 73	te: 9/16/20 HighLimit 129 132 128 125 133 130 132 137 124		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500 21.850 24.470 26.080 20.420 24.220	TestM PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0 87.4 97.9 104 81.7 96.9	Analysis Da LowLimit 81 67 63 75 69 68 73 67 73 67 73 66	te: 9/16/20 HighLimit 129 132 128 125 133 130 132 137 124 134		SeqNo: 113	2800	Qual
Sample ID: N003218-006AMS Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	Batch ID: D09VW084 Result 24.530 19.490 20.510 20.520 22.500 21.850 24.470 26.080 20.420 24.220 21.730	TestM PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	No: EPA 8260 SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	B SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 98.1 78.0 82.0 82.1 90.0 87.4 97.9 104 81.7 96.9 86.9	Analysis Da LowLimit 81 67 63 75 69 68 73 67 73 66 74	te: 9/16/20 HighLimit 129 132 128 125 133 130 132 137 124 134 132		SeqNo: 113	2800	Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology

Laboratories

E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

^{10gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project:

PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N003218-006AMS	SampType: MS	TestCo	de: 8260_WP	_LL Units: µg/L		Prep Da	te:		RunNo: 748	362	
Client ID: ZZZZZZ	Batch ID: D09VW084	Test	No: EPA 8260	В		Analysis Da	te: 9/16/20	009	SeqNo: 113	32800	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane	20.430	1.0	25.00	0	81.7	69	132				
1,2-Dichloropropane	22.540	1.0	25.00	0	90.2	75	125				
1,3,5-Trimethylbenzene	25.050	1.0	25.00	0	100	74	131				
1,3-Dichlorobenzene	25.150	1.0	25.00	0	101	75	124				
1,3-Dichloropropane	20.840	1.0	25.00	0	83.4	73	126				
1,4-Dichlorobenzene	24.430	1.0	25.00	0	97.7	74	123				
2,2-Dichloropropane	18.790	1.0	25.00	0	75.2	69	137				
2-Butanone	88.270	10	250.0	0	35.3	49	136				S
2-Chlorotoluene	27.060	1.0	25.00	0	108	73	126				
4-Chlorotoluene	27.200	1.0	25.00	0	109	74	128				
4-Isopropyltoluene	25.990	1.0	25.00	0	104	73	130				
4-Methyl-2-pentanone	187.820	10	250.0	0	75.1	58	134				
Acetone	71.970	10	250.0	0	28.8	40	135				S
Acrylonitrile	174.600	20	250.0	0	69.8	75	125				S
Benzene	23.660	1.0	25.00	0	94.6	81	122				
Bromobenzene	24.290	1.0	25.00	0	97.2	76	124				
Bromochloromethane	19.720	1.0	25.00	0	78.9	65	129				
Bromodichloromethane	22.330	1.0	25.00	0	89.3	76	121				
Bromoform	17.340	1.0	25.00	0	69.4	69	128				
Bromomethane	21.060	1.0	25.00	0	84.2	53	141				
Carbon disulfide	19.380	1.0	25.00	0	77.5	75	125				
Carbon tetrachloride	20.630	1.0	25.00	0	82.5	66	138				
Chlorobenzene	24.470	1.0	25.00	0	97.9	81	122				
Chloroethane	28.190	1.0	25.00	0	113	58	133				
Chloroform	23.210	1.0	25.00	0.5200	90.8	69	128				
Chloromethane	18.890	1.0	25.00	0	75.6	56	131				
cis-1,2-Dichloroethene	23.220	1.0	25.00	0	92.9	72	126				
cis-1,3-Dichloropropene	24.110	1.0	25.00	0	96.4	69	131				
Dibromochloromethane	21.930	1.0	25.00	0	87.7	66	133				
Dibromomethane	20.160	1.0	25.00	0	80.6	76	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- <u>Advanced Technology</u> Laboratories

E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

DIO<u>GY</u> 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project:

PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N003218-006AMS	SampType: MS	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 748	362	
Client ID: ZZZZZZ	Batch ID: D09VW084	Test	No: EPA 8260	В		Analysis Da	te: 9/16/20	09	SeqNo: 113	32800	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	16.950	1.0	25.00	0	67.8	53	153				
Ethylbenzene	26.190	1.0	25.00	0	105	73	127				
Freon-113	17.440	1.0	25.00	0	69.8	75	125				S
Hexachlorobutadiene	26.960	1.0	25.00	0	108	67	131				
Isopropylbenzene	31.190	1.0	25.00	0.5100	123	75	127				
m,p-Xylene	54.430	1.0	50.00	0.5000	108	76	128				
Methylene chloride	20.190	5.0	25.00	0	80.8	63	137				
МТВЕ	20.950	1.0	25.00	0	83.8	65	123				
n-Butylbenzene	26.190	1.0	25.00	0	105	69	137				
n-Propylbenzene	28.540	1.0	25.00	0	114	72	129				
Naphthalene	18.700	1.0	25.00	0	74.8	54	138				
o-Xylene	27.950	1.0	25.00	0	112	80	121				
sec-Butylbenzene	29.430	1.0	25.00	0	118	72	127				
Styrene	16.510	1.0	25.00	0	66.0	65	134				
tert-Butylbenzene	26.510	1.0	25.00	0	106	70	129				
Tetrachloroethene	25.120	1.0	25.00	0	100	66	128				
Toluene	22.830	2.5	25.00	0	91.3	77	122				
trans-1,2-Dichloroethene	22.850	1.0	25.00	0	91.4	63	137				
trans-1,3-Dichloropropene	23.550	1.0	25.00	0	94.2	59	135				
Trichloroethene	23.680	1.0	25.00	0	94.7	70	127				
Trichlorofluoromethane	24.230	1.0	25.00	0	96.9	57	129				
Vinyl chloride	19.980	1.0	25.00	0	79.9	50	134				
Xylenes, Total	82.380	2.0	75.00	0	110	75	125				
Surr: 1,2-Dichloroethane-d4	20.230		25.00		80.9	72	119				
Surr: 4-Bromofluorobenzene	25.880		25.00		104	76	119				
Surr: Dibromofluoromethane	21.440		25.00		85.8	85	115				
Surr: Toluene-d8	25.570		25.00		102	81	120				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
 - Advanced Technology

Laboratories

- E Value above quantitation range
- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{10gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project:

PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N003218-006AMSD	SampType: MSD	TestCo	de: 8260_WP	LL Units: µg/L		Prep Da	te:		RunNo: 748	862	
Client ID: ZZZZZZ	Batch ID: D09VW084	Test	No: EPA 8260	В		Analysis Da	te: 9/16/20	009	SeqNo: 113	32801	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	24.880	1.0	25.00	0	99.5	81	129	24.53	1.42	20	
1,1,1-Trichloroethane	20.560	1.0	25.00	0	82.2	67	132	19.49	5.34	20	
1,1,2,2-Tetrachloroethane	21.920	1.0	25.00	0	87.7	63	128	20.51	6.65	20	
1,1,2-Trichloroethane	22.260	1.0	25.00	0	89.0	75	125	20.52	8.13	20	
1,1-Dichloroethane	23.400	1.0	25.00	0	93.6	69	133	22.50	3.92	20	
1,1-Dichloroethene	22.350	1.0	25.00	0	89.4	68	130	21.85	2.26	20	
1,1-Dichloropropene	25.780	1.0	25.00	0	103	73	132	24.47	5.21	20	
1,2,3-Trichlorobenzene	25.730	1.0	25.00	0	103	67	137	26.08	1.35	20	
1,2,3-Trichloropropane	21.210	1.0	25.00	0	84.8	73	124	20.42	3.80	20	
1,2,4-Trichlorobenzene	23.610	1.0	25.00	0	94.4	66	134	24.22	2.55	20	
1,2,4-Trimethylbenzene	18.080	1.0	25.00	0	72.3	74	132	21.73	18.3	20	S
1,2-Dibromo-3-chloropropane	17.580	2.0	25.00	0	70.3	50	132	16.83	4.36	20	
1,2-Dibromoethane	23.370	1.0	25.00	0	93.5	80	121	21.78	7.04	20	
1,2-Dichlorobenzene	25.220	1.0	25.00	0	101	71	122	24.30	3.72	20	
1,2-Dichloroethane	22.440	1.0	25.00	0	89.8	69	132	20.43	9.38	20	
1,2-Dichloropropane	23.710	1.0	25.00	0	94.8	75	125	22.54	5.06	20	
1,3,5-Trimethylbenzene	24.300	1.0	25.00	0	97.2	74	131	25.05	3.04	20	
1,3-Dichlorobenzene	25.890	1.0	25.00	0	104	75	124	25.15	2.90	20	
1,3-Dichloropropane	21.880	1.0	25.00	0	87.5	73	126	20.84	4.87	20	
1,4-Dichlorobenzene	25.000	1.0	25.00	0	100	74	123	24.43	2.31	20	
2,2-Dichloropropane	20.000	1.0	25.00	0	80.0	69	137	18.79	6.24	20	
2-Butanone	96.910	10	250.0	0	38.8	49	136	88.27	9.33	20	S
2-Chlorotoluene	27.760	1.0	25.00	0	111	73	126	27.06	2.55	20	
4-Chlorotoluene	28.080	1.0	25.00	0	112	74	128	27.20	3.18	20	
4-Isopropyltoluene	25.210	1.0	25.00	0	101	73	130	25.99	3.05	20	
4-Methyl-2-pentanone	208.430	10	250.0	0	83.4	58	134	187.8	10.4	20	
Acetone	76.780	10	250.0	0	30.7	40	135	71.97	6.47	20	S
Acrylonitrile	186.570	20	250.0	0	74.6	75	125	174.6	6.63	20	S
Benzene	24.360	1.0	25.00	0	97.4	81	122	23.66	2.92	20	
Bromobenzene	25.030	1.0	25.00	0	100	76	124	24.29	3.00	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
 - Advanced Technology Laboratories

E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{10gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project:

PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N003218-006AMSD	SampType: MSD	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Da	te:		RunNo: 748	362	
Client ID: ZZZZZZ	Batch ID: D09VW084	Test	lo: EPA 8260	В		Analysis Da	te: 9/16/20	009	SeqNo: 113	32801	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromochloromethane	20.190	1.0	25.00	0	80.8	65	129	19.72	2.36	20	
Bromodichloromethane	23.690	1.0	25.00	0	94.8	76	121	22.33	5.91	20	
Bromoform	18.550	1.0	25.00	0	74.2	69	128	17.34	6.74	20	
Bromomethane	21.270	1.0	25.00	0	85.1	53	141	21.06	0.992	20	
Carbon disulfide	20.370	1.0	25.00	0	81.5	75	125	19.38	4.98	20	
Carbon tetrachloride	22.230	1.0	25.00	0	88.9	66	138	20.63	7.47	20	
Chlorobenzene	24.990	1.0	25.00	0	100	81	122	24.47	2.10	20	
Chloroethane	28.800	1.0	25.00	0	115	58	133	28.19	2.14	20	
Chloroform	23.820	1.0	25.00	0.5200	93.2	69	128	23.21	2.59	20	
Chloromethane	19.810	1.0	25.00	0	79.2	56	131	18.89	4.75	20	
cis-1,2-Dichloroethene	24.460	1.0	25.00	0	97.8	72	126	23.22	5.20	20	
cis-1,3-Dichloropropene	25.140	1.0	25.00	0	101	69	131	24.11	4.18	20	
Dibromochloromethane	22.760	1.0	25.00	0	91.0	66	133	21.93	3.71	20	
Dibromomethane	22.360	1.0	25.00	0	89.4	76	125	20.16	10.3	20	
Dichlorodifluoromethane	17.980	1.0	25.00	0	71.9	53	153	16.95	5.90	20	
Ethylbenzene	26.640	1.0	25.00	0	107	73	127	26.19	1.70	20	
Freon-113	18.900	1.0	25.00	0	75.6	75	125	17.44	8.04	20	
Hexachlorobutadiene	27.220	1.0	25.00	0	109	67	131	26.96	0.960	20	
Isopropylbenzene	30.060	1.0	25.00	0.5100	118	75	127	31.19	3.69	20	
m,p-Xylene	54.900	1.0	50.00	0.5000	109	76	128	54.43	0.860	20	
Methylene chloride	21.140	5.0	25.00	0	84.6	63	137	20.19	4.60	20	
MTBE	22.860	1.0	25.00	0	91.4	65	123	20.95	8.72	20	
n-Butylbenzene	25.030	1.0	25.00	0	100	69	137	26.19	4.53	20	
n-Propylbenzene	29.410	1.0	25.00	0	118	72	129	28.54	3.00	20	
Naphthalene	17.850	1.0	25.00	0	71.4	54	138	18.70	4.65	20	
o-Xylene	28.510	1.0	25.00	0	114	80	121	27.95	1.98	20	
sec-Butylbenzene	29.580	1.0	25.00	0	118	72	127	29.43	0.508	20	
Styrene	12.370	1.0	25.00	0	49.5	65	134	16.51	28.7	20	SR
tert-Butylbenzene	27.230	1.0	25.00	0	109	70	129	26.51	2.68	20	
Tetrachloroethene	25.130	1.0	25.00	0	101	66	128	25.12	0.0398	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- <u>Advanced Technology</u> Laboratories

E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{10gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N003218-006AMSD	SampType: MSD	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	te:		RunNo: 748	862	
Client ID: ZZZZZZ	Batch ID: D09VW084	Test	lo: EPA 8260E	i		Analysis Da	te: 9/16/20	009	SeqNo: 113	32801	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	23.790	2.5	25.00	0	95.2	77	122	22.83	4.12	20	
trans-1,2-Dichloroethene	23.800	1.0	25.00	0	95.2	63	137	22.85	4.07	20	
trans-1,3-Dichloropropene	25.130	1.0	25.00	0	101	59	135	23.55	6.49	20	
Trichloroethene	24.640	1.0	25.00	0	98.6	70	127	23.68	3.97	20	
Trichlorofluoromethane	24.560	1.0	25.00	0	98.2	57	129	24.23	1.35	20	
Vinyl chloride	20.720	1.0	25.00	0	82.9	50	134	19.98	3.64	20	
Xylenes, Total	83.410	2.0	75.00	0	111	75	125	82.38	1.24	20	
Surr: 1,2-Dichloroethane-d4	21.190		25.00		84.8	72	119		0		
Surr: 4-Bromofluorobenzene	26.730		25.00		107	76	119		0		
Surr: Dibromofluoromethane	22.150		25.00		88.6	85	115		0		
Surr: Toluene-d8	26.560		25.00		106	81	120		0		
Sample ID: D090916MB5	SampType: MBLK	TestCo	de: 8260_WP_	LL Units: µg/L		Prep Dat	te:		RunNo: 748	862	
Client ID: PBW	Batch ID: D09VW084	Test	lo: EPA 8260E	ł		Analysis Da	te: 9/16/20	009	SeqNo: 113	32802	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HiahLimit	RPD Ref Val	%RPD	RPDLimit	Qual
							5				
1,1,1,2-Tetrachloroethane	ND	1.0					5				
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND	1.0 1.0					<u> </u>				
1,1,1-Trichloroethane							<u> </u>				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND	1.0									
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND	1.0 1.0									
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ND ND ND	1.0 1.0 1.0									
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ND ND ND ND	1.0 1.0 1.0 1.0					<u> </u>				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	ND ND ND ND	1.0 1.0 1.0 1.0 1.0									
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0					j				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0					j				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichloroptopane 1,2,4-Trichlorobenzene	ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					<u> </u>				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					<u> </u>				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					<u> </u>				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

<u>Advanced Technology</u> Laboratories E Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DIO<u>GY</u> 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D090916MB5	SampType: MBLK	TestCode: 8260_WP_LL Units: µg/L	Prep Date:	RunNo: 74862
Client ID: PBW	Batch ID: D09VW084	TestNo: EPA 8260B	Analysis Date: 9/16/2009	SeqNo: 1132802
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,2-Dichloroethane	ND	1.0		
1,2-Dichloropropane	ND	1.0		
1,3,5-Trimethylbenzene	ND	1.0		
1,3-Dichlorobenzene	ND	1.0		
1,3-Dichloropropane	ND	1.0		
1,4-Dichlorobenzene	ND	1.0		
2,2-Dichloropropane	ND	1.0		
2-Butanone	ND	10		
2-Chlorotoluene	ND	1.0		
4-Chlorotoluene	ND	1.0		
4-Isopropyltoluene	ND	1.0		
4-Methyl-2-pentanone	ND	10		
Acetone	ND	10		
Acrylonitrile	ND	20		
Benzene	ND	1.0		
Bromobenzene	ND	1.0		
Bromochloromethane	ND	1.0		
Bromodichloromethane	ND	1.0		
Bromoform	ND	1.0		
Bromomethane	ND	1.0		
Carbon disulfide	ND	1.0		
Carbon tetrachloride	ND	1.0		
Chlorobenzene	ND	1.0		
Chloroethane	ND	1.0		
Chloroform	ND	1.0		
Chloromethane	ND	1.0		
cis-1,2-Dichloroethene	ND	1.0		
cis-1,3-Dichloropropene	ND	1.0		
Dibromochloromethane	ND	1.0		
Dibromomethane	ND	1.0		

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- <u>Advanced Technology</u> Laboratories

E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

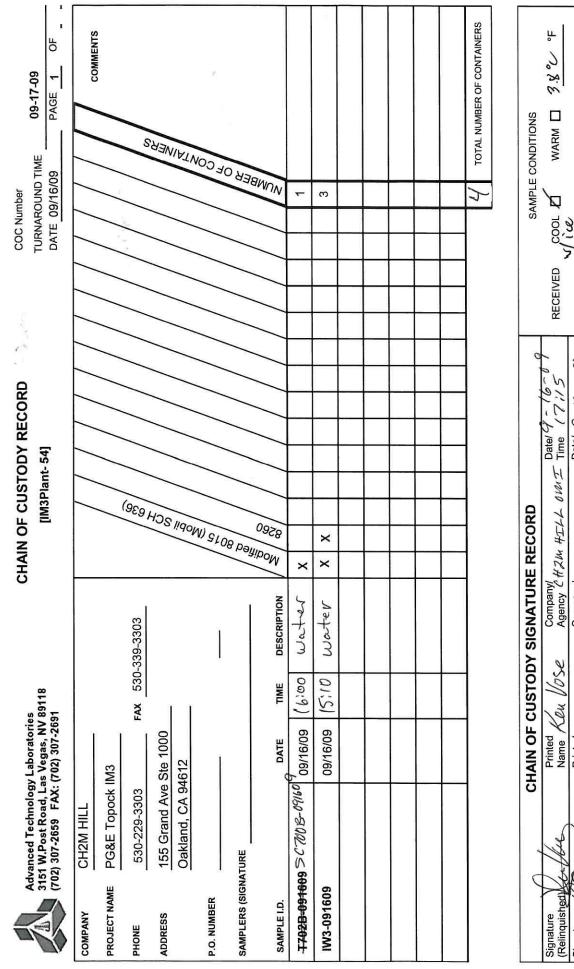
^{1010gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D090916MB5	SampType: MBLK	TestCo	de: 8260_WP	_LL Units: µg/L		Prep Da	ite:		RunNo: 748	362	
Client ID: PBW	Batch ID: D09VW084	Test	No: EPA 8260	В		Analysis Da	nte: 9/16/20	009	SeqNo: 113	32802	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	ND	1.0									
Ethylbenzene	ND	1.0									
Freon-113	ND	1.0									
Hexachlorobutadiene	ND	1.0									
Isopropylbenzene	ND	1.0									
m,p-Xylene	0.540	1.0									
Methylene chloride	ND	5.0									
МТВЕ	ND	1.0									
n-Butylbenzene	ND	1.0									
n-Propylbenzene	ND	1.0									
Naphthalene	ND	1.0									
o-Xylene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
tert-Butylbenzene	ND	1.0									
Tetrachloroethene	ND	1.0									
Toluene	ND	2.5									
trans-1,2-Dichloroethene	ND	1.0									
trans-1,3-Dichloropropene	ND	1.0									
Trichloroethene	ND	1.0									
Trichlorofluoromethane	ND	1.0									
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	2.0									
Surr: 1,2-Dichloroethane-d4	22.420		25.00		89.7	72	119				
Surr: 4-Bromofluorobenzene	26.000		25.00		104	76	119				
Surr: Dibromofluoromethane	21.260		25.00		85.0	85	115				
Surr: Toluene-d8	26.730		25.00		107	81	120				


Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
 - Advanced Technology Laboratories

- E Value above quantitation range
- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{10gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Ċ	CHAIN OF CUSTODY SIGNA'	TURE RECORD	0	SAMPLE CONDITIONS
Signature (Relinquished)	Printed Key 105e Com Name Key 105e Agei	Company Agency とれえい サエノム ロジィエ Time イアバラ	Date/ ヴ - パレーリー Time イアングラ	RECEIVED COOL & WARM 3 3 8 °C °F
Signature (Received)	Printed AFICIONAPD Agence	in ATL	Date/ 9-16-09 Time 18:15	
Signature/ (Relinquished)	Printed AFIC, OWNO Ager	Company/ イナ し Agency	Time 2012	SPECIAL REQUIREMENTS:
Signature (Received)	Printed GLEN GELMUNN Agenc	y ATL	Date/ タードレーロタ Time 20:32	
Signature (Relinquished)	Printed Compai Name Agency	//r	Date/ Time	
Signature (Received)	Printed Comp Name Ageno	any/ :y	Date/ Time	

September 30, 2009

Shawn P. Duffy CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

TEL: (530) 229-3303 FAX: (530) 339-3303 CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N003255

RE: PG&E Topock IM3

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on September 17, 2009 by Advanced Technology Laboratories - Las Vegas . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

esnak

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

<u>Advanced Technology</u> Laboratories

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

CLIENT:CH2M HILLProject:PG&E Topock IM3Lab Order:N003255

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS

Smple was received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Sample was analyzed within method holding time.

Prep Comments for 3510 Water:

Sample N003255-001A pH is 7.0

Advanced Technology Laboratories - Las Vegas

ANALYTICAL RESULTS

Print Date: 30-Sep-09

CLIENT:	CH2M HILL			Clie	ent Sample	e ID: SC-700E	6-091709	
Lab Order:	N003255			С	ollection E	Date: 9/17/200	9 2:40:00 PM	
Project:	PG&E Topock l	IM3			Ma	trix: WATER		
Lab ID:	N003255-001							
		Res	nlt	POL Ou	al Units	DF	Date Analyzed	
Analyses		100	uit					
	TOR OIL RANGE C							
					EPA 801	5B		
DIESEL & MC		DRGANICS BY)	EPA 801	5 B PrepDate:	9/17/2009 Analyst: J	r
DIESEL & MC		DRGANICS BY EPA 3510C	GC/FID)	EPA 801 ug/L		9/17/2009 Analyst: J 9/18/2009 02:10	
DIESEL & MC	090918A	DRGANICS BY EPA 3510C	GC/FID	5				AM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories 315

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Advanced Technology Laboratories - Las Vegas

CLIENT: CH2M HILL

Work Order: N003255

Project: PG&E Topock IM3

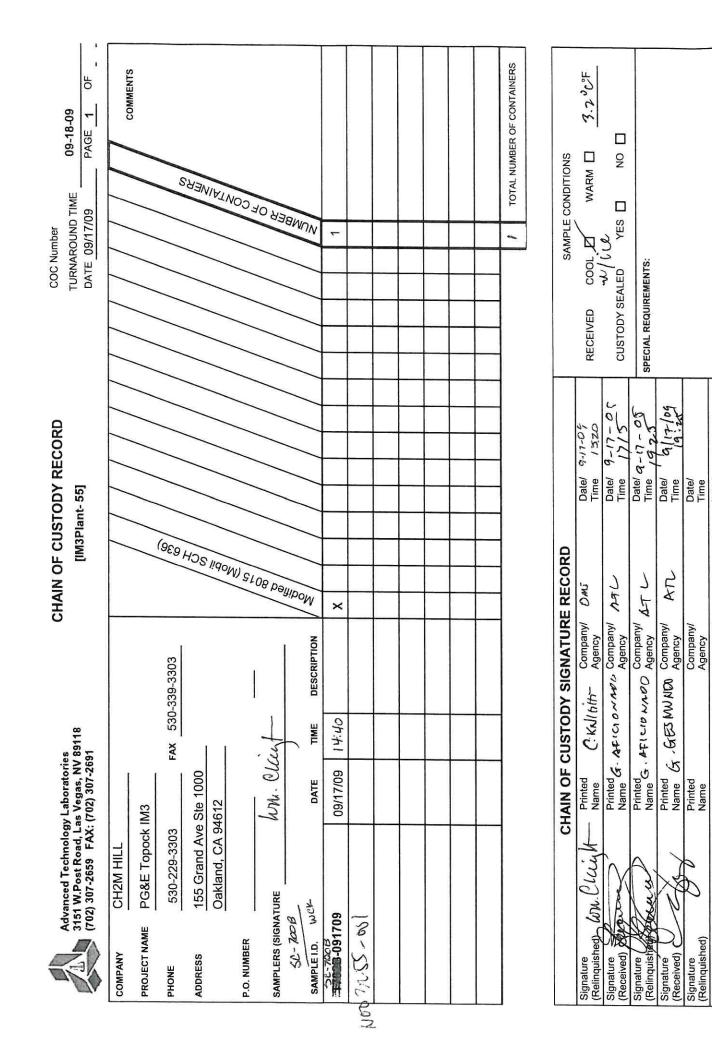
ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_PGE

Sample ID: LCS-33515-DRO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/17/2009	RunNo: 74874
Client ID: LCSW	Batch ID: 33515	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133106
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	856.603	50 1000 0	85.7 61 143	
Surr: p-Terphenyl	63.465	80.00	79.3 57 132	
Sample ID: LCS-33515-ORO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/17/2009	RunNo: 74874
Client ID: LCSW	Batch ID: 33515	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133108
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Motor Oil	872.709	50 1000 0	87.3 50 150	
Surr: p-Terphenyl	72.049	80.00	90.1 57 132	
Sample ID: MB-33515	SampType: MBLK	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/17/2009	RunNo: 74874
Client ID: PBW	Batch ID: 33515	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133111
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	46.578	50		
TPH-Motor Oil	32.517	50		
Surr: p-Terphenyl	65.806	80.00	82.3 57 132	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology


Laboratories

E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{1010gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Date/ Time

Company/ Agency

Printed Name

Signature (Received)

Shawn P. Duffy CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

TEL: (530) 229-3303 FAX: (530) 339-3303 CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N003260

RE: PG&E Topock IM3

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on September 18, 2009 by Advanced Technology Laboratories - Las Vegas . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

aboratory Birector

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

<u>Advanced Technology</u> Laboratories

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS

Smple was received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Sample was analyzed within method holding time.

Prep Comments for 3510 Water:

Sample N003260-001A: pH is 7.0

ANALYTICAL RESULTS

Print Date: 30-Sep-09

CLIENT:	CH2M HILL			Clie	ent Sample	ID: SC-700B	-091809	
Lab Order	r: N003260			C	ollection Da	ate: 9/18/200	9 8:00:00 A	Μ
Project:	PG&E Topock	IM3			Mat	rix: GROUN	D WATER	
Lab ID:	N003260-001							
		Res	nlt	PQL Qua	al Units	DF	Date A	Analyzed
Analyses		100	uit	- <u>v</u> <u>v</u>				•
	MOTOR OIL RANGE C							·
					EPA 8015	В		
DIESEL &		DRGANICS B)	EPA 8015	B PrepDate:	9/18/2009	Analyst: JT
DIESEL &	GC3_090918B	DRGANICS BY EPA 3510C	GC/FID)	EPA 8015	_		Analyst: JT 8/2009 11:12 PM
DIESEL &	GC3_090918B sel	DRGANICS BY EPA 3510C	GC/FIE 3351	b b 8	EPA 8015	_	9/18	

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories

CLIENT: CH2M HILL

Work Order: N003260

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_PGE

Sample ID: LCS-33518-DRO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/18/2009	RunNo: 74894
Client ID: LCSW	Batch ID: 33518	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133345
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel Surr: p-Terphenyl	869.757 65.093	50 1000 0 80.00	87.06114381.457132	
Sample ID: LCSD-33518-DRO	SampType: LCSD	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/18/2009	RunNo: 74894
Client ID: LCSS02	Batch ID: 33518	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133346
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	914.618	50 1000 0	91.561143869.890.757132	5.03 30
Surr: p-Terphenyl	72.572	80.00		0
Sample ID: LCS-33518-ORO	SampType: LCS	TestCode: 8015_W_DM _Units: ug/L	Prep Date: 9/18/2009	RunNo: 74894
Client ID: LCSW	Batch ID: 33518	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133347
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Motor Oil Surr: p-Terphenyl	886.386 71.655	50 1000 0 80.00	88.65015089.657132	
Sample ID: LCSD-33518-ORO	SampType: LCSD	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/18/2009	RunNo: 74894
Client ID: LCSS02	Batch ID: 33518	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133348
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Motor Oil	834.832	50 1000 0	83.550150886.496.257132	5.99 30
Surr: p-Terphenyl	76.947	80.00		0
Sample ID: MB-33518	SampType: MBLK	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/18/2009	RunNo: 74894
Client ID: PBW	Batch ID: 33518	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/18/2009	SeqNo: 1133350
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
 - Advanced Technology

E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Laboratories

CLIENT:CH2M HILLWork Order:N003260Project:PG&E Topock IM3

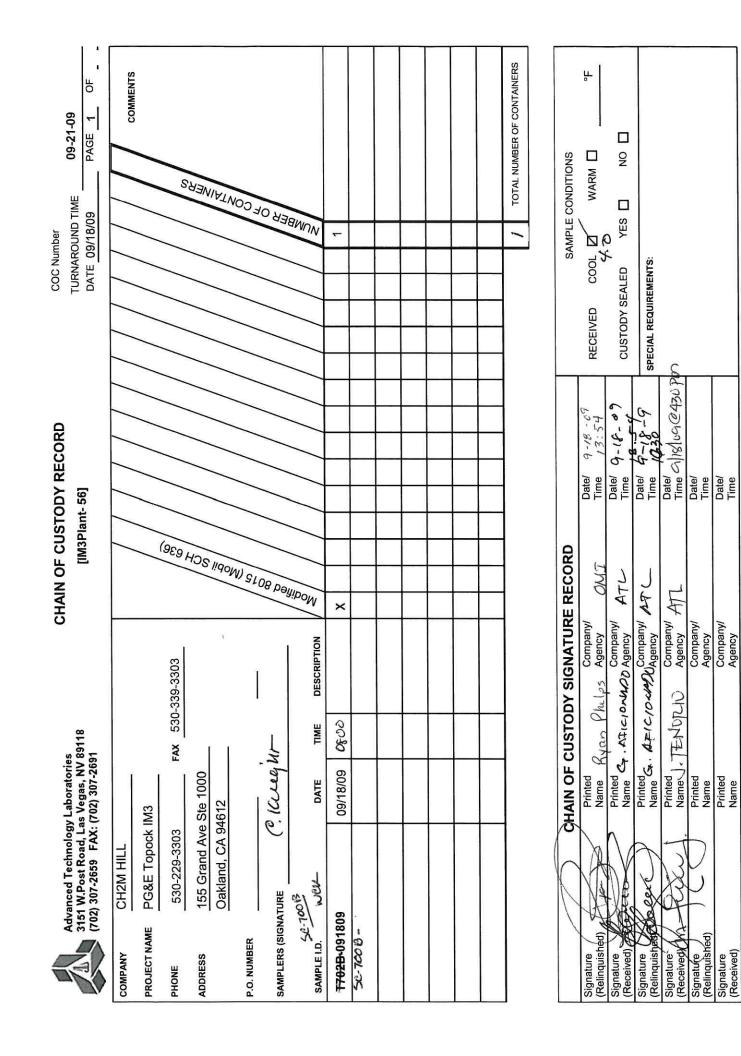
ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_PGE

Sample ID: MB-33518 Client ID: PBW	SampType: MBLK Batch ID: 33518	TestCode: 8015_W_DM Units: ug/L TestNo: EPA 8015B EPA 3510C	Prep Date: 9/18/2009 Analysis Date: 9/18/2009	RunNo: 74894 SeqNo: 1133350
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	43.559	50		
TPH-Motor Oil	31.008	50		
Surr: p-Terphenyl	71.231	80.00	89.0 57 132	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology


Laboratories

- E Value above quantitation range
- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{DIOGY} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

5 of 5

Shawn P. Duffy CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

TEL: (530) 229-3303 FAX: (530) 339-3303 CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N003270

RE: PG&E Topock IM3

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on September 21, 2009 by Advanced Technology Laboratories - Las Vegas . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

yeand Tenorio

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

<u>Advanced Technology</u> Laboratories

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS

Smple was received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Sample was analyzed within method holding time.

Prep Comments for 3510 Water:

Sample N003270-001A: pH is 7.0

Surr: p-Terphenyl

ANALYTICAL RESULTS

9/22/2009 02:11 AM

Print Date: 30-Sep-09

1

CLIENT:	CH2M HILL			Clie	nt Samp	le ID: T700B-(091909	
Lab Order:	N003270			Co	ollection	Date: 9/19/200	09 12:00:00	PM
Project:	PG&E Topock	IM3			Μ	atrix: WATEF	R	
Lab ID:	N003270-001							
Analyses		Res	ult	PQL Qua	l Units	DF	Date	Analyzed
DIESEL & MO	DTOR OIL RANGE	DRGANICS BY	GC/FID					
		EPA 3510C			EPA 80	15B		
RunID: GC3_	_090921A	QC Batch:	33538			PrepDate:	9/21/2009	Analyst: JT
TPH-Diesel			ND	50	ug/L	1	9/2	22/2009 02:11 AM
TPH-Motor O	il		ND	50	ug/L	1	9/2	22/2009 02:11 AM

57-132

%REC

91.6

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories 3151

3 of 4

CLIENT: CH2M HILL

Work Order: N003270

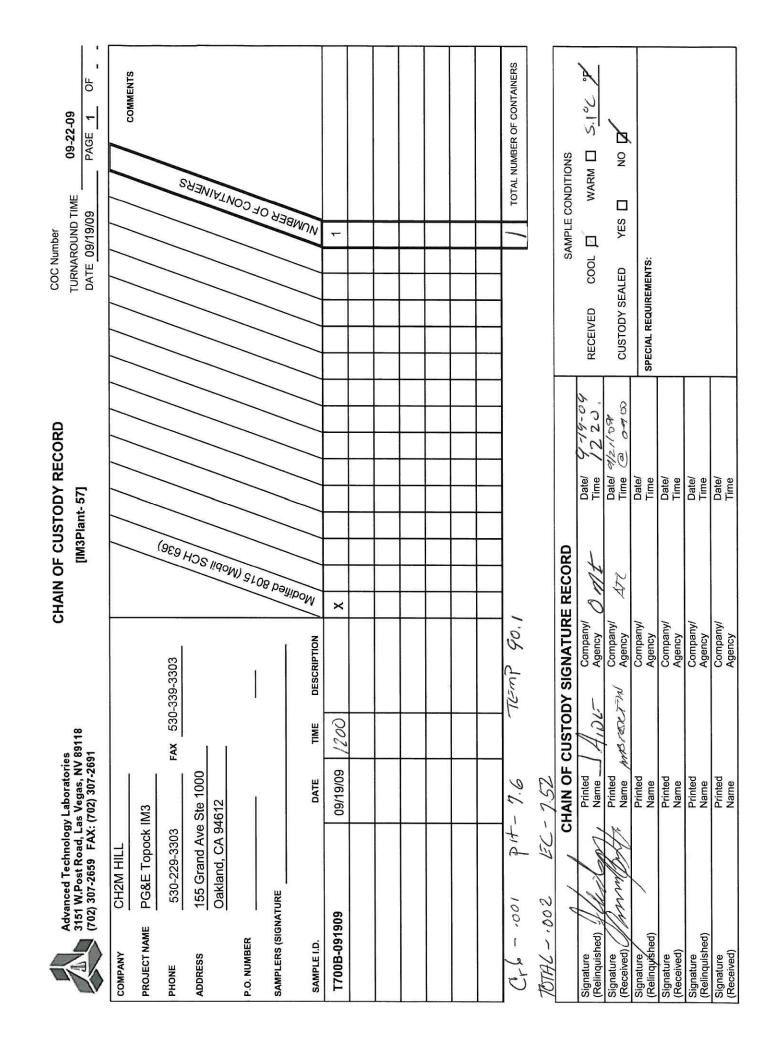
Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_PGE

Sample ID: LCS-33538-DRO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: LCSW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133517
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	998.925	50 1000 0	99.9 61 143	
Surr: p-Terphenyl	71.385	80.00	89.2 57 132	
Sample ID: LCS-33538-ORO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: LCSW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133519
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Motor Oil	947.702	50 1000 0	94.8 50 150	
Surr: p-Terphenyl	73.821	80.00	92.3 57 132	
Sample ID: MB-33538	SampType: MBLK	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: PBW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133524
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	14.965	50		
TPH-Motor Oil	17.802	50		
Surr: p-Terphenyl	84.711	80.00	106 57 132	

Qualifiers:


- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology

Laboratories

E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Shawn P. Duffy CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

TEL: (530) 229-3303 FAX: (530) 339-3303 CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N003271

RE: PG&E Topock IM3

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on September 21, 2009 by Advanced Technology Laboratories - Las Vegas . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

) ose Tenorid Jr.

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

<u>Advanced Technology</u> Laboratories

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS

Smple was received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Sample was analyzed within method holding time.

Prep Comments for 3510 Water:

Sample N003271-001A: pH is 7.0

ANALYTICAL RESULTS

Print Date: 30-Sep-09

CLIENT:	CH2M HILL			Clie	nt Sample	ID: T700B-0	92009	
Lab Order:	N003271			Co	ollection E	ate: 9/20/200	9 8:00:00 A	Μ
Project:	PG&E Topock	IM3			Ma	trix: WATER		
Lab ID:	N003271-001							
		Res	ult	PQL Qua	l Units	DF	Date A	nalyzed
Analyses								-
-	MOTOR OIL RANGE (Y GC/FID)				
-			Y GC/FID)	EPA 801	5B		
DIESEL &		ORGANICS B	Y GC/FID		EPA 801	5 B PrepDate:	9/21/2009	Analyst: JT
DIESEL &	C3_090921A	DRGANICS B EPA 3510C			EPA 801 ug/L			Analyst: JT 2/2009 02:40 AM
DIESEL & RunID: GC	C3_090921A 9I	DRGANICS B EPA 3510C	33538	3			9/22	, -

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories

CLIENT: CH2M HILL

Work Order: N003271

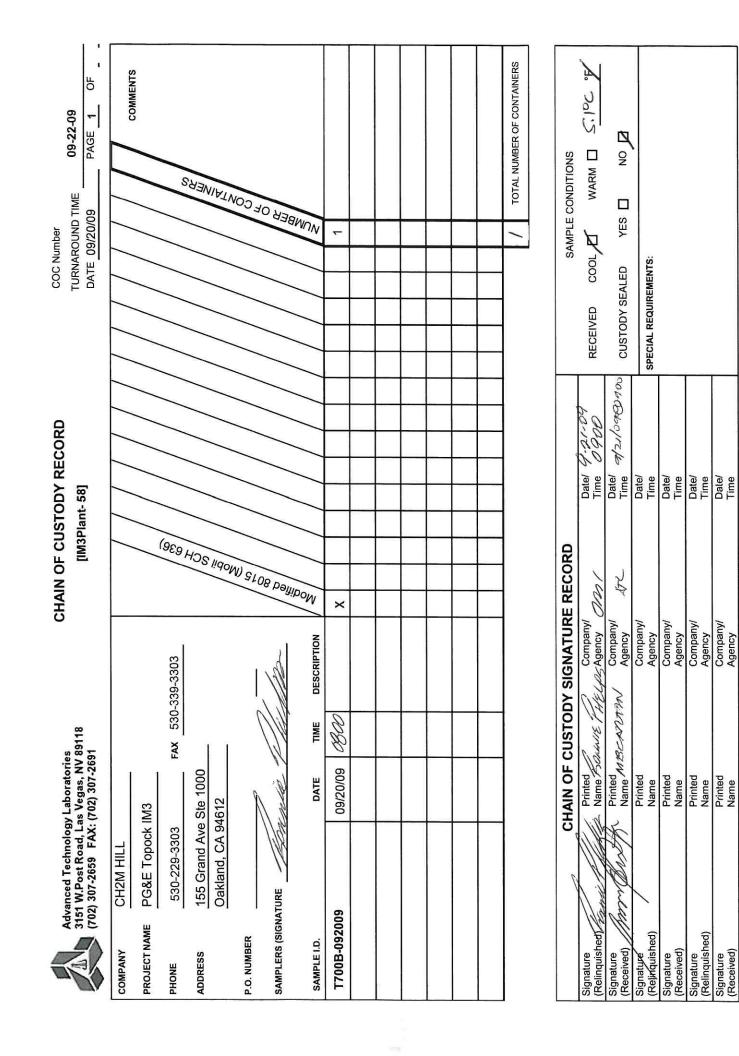
Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015_W_DM_PGE

Sample ID: LCS-33538-DRO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: LCSW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133517
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	998.925	50 1000 0	99.9 61 143	
Surr: p-Terphenyl	71.385	80.00	89.2 57 132	
Sample ID: LCS-33538-ORO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: LCSW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133519
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Motor Oil	947.702	50 1000 0	94.8 50 150	
Surr: p-Terphenyl	73.821	80.00	92.3 57 132	
Sample ID: MB-33538	SampType: MBLK	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: PBW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133524
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	14.965	50		
TPH-Motor Oil	17.802	50		
Surr: p-Terphenyl	84.711	80.00	106 57 132	

Qualifiers:


- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology

Laboratories

E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Shawn P. Duffy CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

TEL: (530) 229-3303 FAX: (530) 339-3303 CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N003272

RE: PG&E Topock IM3

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on September 21, 2009 by Advanced Technology Laboratories - Las Vegas . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

neondi ose Tenorio

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

<u>Advanced Technology</u> Laboratories

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS

Smple was received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Sample was analyzed within method holding time.

Prep Comments for 3510 Water:

Sample N003272-001A: pH is 7.0

Surr: p-Terphenyl

ANALYTICAL RESULTS

9/22/2009 03:09 AM

Print Date: 30-Sep-09

1

CLIENT:	CH2M HILL			Clien	t Samp	le ID: T700B-0	92109	
Lab Order:	N003272			Col	lection	Date: 9/21/200	9 8:00:00 A	AM
Project:	PG&E Topock	x IM3			Μ	atrix: WATER		
Lab ID:	N003272-001							
Analyses		Resu	lt	PQL Qual	Units	DF	Date	Analyzed
DIESEL & M	IOTOR OIL RANGE	ORGANICS BY	GC/FID					
		EPA 3510C			EPA 80	15B		
RunID: GC3	3_090921A	QC Batch:	33538			PrepDate:	9/21/2009	Analyst: JT
TPH-Diesel		I	ND	50	ug/L	1	9/2	2/2009 03:09 AM
TPH-Motor (Dil		ND	50	ug/L	1	9/2	2/2009 03:09 AM

57-132

%REC

107

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories 31

CLIENT: CH2M HILL

Work Order: N003272

Project: PG&E Topock IM3

ANALYTICAL QC SUMMARY REPORT

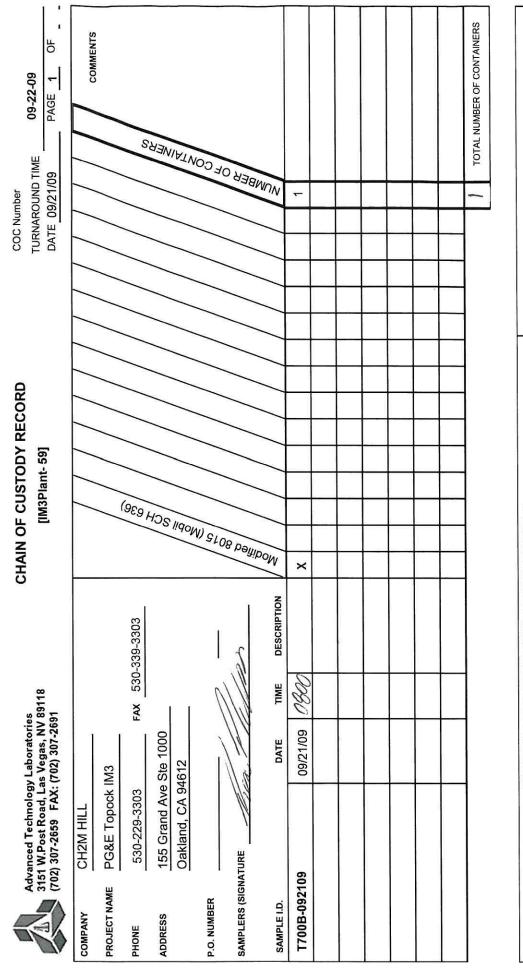
TestCode: 8015_W_DM_PGE

Sample ID: LCS-33538-DRO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: LCSW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133517
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	998.925	50 1000 0	99.9 61 143	
Surr: p-Terphenyl	71.385	80.00	89.2 57 132	
Sample ID: LCS-33538-ORO	SampType: LCS	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: LCSW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133519
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Motor Oil	947.702	50 1000 0	94.8 50 150	
Surr: p-Terphenyl	73.821	80.00	92.3 57 132	
Sample ID: MB-33538	SampType: MBLK	TestCode: 8015_W_DM_ Units: ug/L	Prep Date: 9/21/2009	RunNo: 74904
Client ID: PBW	Batch ID: 33538	TestNo: EPA 8015B EPA 3510C	Analysis Date: 9/22/2009	SeqNo: 1133524
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH-Diesel	14.965	50		
TPH-Motor Oil	17.802	50		
Surr: p-Terphenyl	84.711	80.00	106 57 132	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology

Laboratories


E Value above quantitation range

- R RPD outside accepted recovery limits
 - Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

^{1010gy} 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

4 of 4

J	CHAIN OF CUSTODY SIGNAT	SNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	A Name YOON FARMS	Companyl Companyl	Date/ 9-21-09 Time 0900	RECEIVED COOL X WARM C SIC Y
Signature (Received) (Ann MCAA	Printed Name <i>MISCART2N</i>	Company/ A7C Agency	Datel サノンパレッ Time 色のアダ	CUSTODY SEALED YES D NO D
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	SPECIAL REQUIREMENTS:
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	