

Curt Russell Topock Site Manager GT&D Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

July 15, 2009

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Second Quarter 2009 Monitoring and Semiannual Jan-June 2009 Operation and Maintenance Report – Board Order R7-2006-0060 PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System Discharge to Injection Wells

Dear Mr. Perdue:

Enclosed is the Second Quarter 2009 Monitoring and Semiannual January 1 through June 30, 2009 Operation and Maintenance Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) under Order R7-2006-0060 and in compliance with the revised Monitoring and Reporting Program for Order R7-2006-0060, issued August 28, 2008. The WDRs apply to IM No. 3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell Topock Site Manager

Enclosures:

Second Quarter 2009 Monitoring and Semiannual Jan-June 2009 Operation and Maintenance Report for the IM No. 3 Groundwater Treatment System

cc: Abdi Haile, Water Board Cliff Raley, Water Board Tom Vandenberg, State Water Resources Control Board Aaron Yue, DTSC

Second Quarter 2009 Monitoring and Semiannual January-June Operation and Maintenance Report

Interim Measure No. 3 Groundwater Treatment System

Waste Discharge Requirements Board Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

> on behalf of Pacific Gas and Electric Company

> > July 15, 2009

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 Second Quarter 2009 Monitoring and Semiannual January-June 2009 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

> Prepared for Pacific Gas and Electric Company

> > July 15, 2009

This report was prepared under the supervision of a California Certified Professional Engineer

Denny Fink

Dennis Fink, P.E. No. 68986 Project Engineer

Contents

10	Intro	duction	1-1									
2.0	Samj	pling Station Locations	2-1									
3.0	Description of Monitoring Activities											
	3.1	Groundwater Treatment System	3-1									
	3.2	Groundwater Treatment System Flow Rates for Second Quarter 2009	3-1									
		3.2.1 Treatment System Influent	3-2									
		3.2.2 Effluent Streams	3-2									
	3.3	3.3 Sampling and Analytical Procedures										
4.0	Anal	ytical Results	4-1									
5.0	Semiannual Operation and Maintenance											
	5.1	Flowmeter Calibration Records	5-1									
	5.2	Volumes of Groundwater Treated	5-2									
	5.3	Residual Solids Generated (Sludge)	5-2									
	5.4	Reverse Osmosis Concentrate Generated	5-3									
	5.5	Summary of WDR Compliance	5-3									
	5.6	Operation and Maintenance – Required Shutdowns	5-3									
	5.7	Treatment Plant Modifications	5-4									
6.0	Conc	lusions	6-1									
7.0	Certi	fication	7-1									

Tables

- 1 Sampling Station Descriptions
- 2 Flow Monitoring Results
- 3 Sample Collection Dates
- 4 Board Order No. R7-2006-0060 Waste Discharge Requirements Influent Monitoring Results
- 5 Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent Monitoring Results
- 6 Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse Osmosis Concentrate Monitoring Results
- 7 Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge Monitoring Results
- 8 Board Order No. R7-2006-0060 Waste Discharge Requirements Monitoring Information

Page

Figures

1	IM No. 3 Project Site Features
TP-PR-10-10-03	Effluent Metering Locations
TP-PR-10-10-11	Influent Metering Locations
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
TP-PR-10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations

Appendixes

- A Semiannual Operations and Maintenance Log
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D Second Quarter 2009 Laboratory Analytical Reports

Acronyms and Abbreviations

IM	Interim Measure
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
ppb	parts per billion
RCRA	Resource Conservation and Recovery Act
RO	reverse osmosis
Truesdail	Truesdail Laboratories, Inc.
Water Board	California Regional Water Quality Control Board, Colorado River Basin Region
WDR	Waste Discharge Requirements

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area. All figures are located at the end of this report.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006 and is the successor to Order No. R7-2004-0103. The revised Monitoring and Reporting Program (MRP) under the Order, issued August 28, 2008, requires quarterly monitoring reports to be submitted by the fifteenth day of the month following the end of the quarter.

This report covers IM No. 3 groundwater treatment system monitoring activities during the Second Quarter 2009, and operation and maintenance activities during the January 1 through June 30, 2009 semiannual reporting period. The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. (All tables are located at the end of this report.) Sampling station locations are shown on the process and instrumentation diagrams, Figures TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, provided at the end of this report.

3.0 Description of Monitoring Activities

This report describes second quarter 2009 monitoring activities, and the January 1, 2009 through June 30, 2009 operation and maintenance activities related to the IM No. 3 groundwater treatment system. IM No. 3 monitoring activities from January 1, 2009 through April 31, 2009 (first quarter) were reported in the *First Quarter 2009 Monitoring Report for IM No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060,* submitted to the Water Board April 15, 2009.

3.1 Groundwater Treatment System

The treatment system was initially operated between July 25 and July 28, 2005 for the Waste Discharge Requirement (WDR)-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, permitted by Order R7-2006-0060 (successor to Order R7-2004-0103), includes:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

Operation of the groundwater treatment system results in the following three effluent streams:

- Treated Effluent: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis Concentrate (brine):** Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first.

3.2 Groundwater Treatment System Flow Rates for Second Quarter 2009

Downtime is defined as any periods when all extraction wells are not operating so that no groundwater is being extracted and piped into IM No. 3 as influent. Periods of planned and unplanned extraction system downtime (that together resulted in approximately 11.6

percent downtime during Second Quarter 2009) are summarized in the Operations and Maintenance Log provided in Appendix A. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site.

Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

During the Second Quarter 2009, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during Second Quarter 2009.

The operational run time for the IM groundwater extraction system (combined or individual pumping), by month, was approximately:

- 75.7 percent during April 2009
- 92.1 percent during May 2009
- 97.3 percent during June 2009

The Second Quarter 2009 treatment system monthly average flow rates (influent, effluent, and reverse osmosis concentrate) are presented in Table 2. The system influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-PR-10-10-03).

The IM No. 3 facility treated approximately 15,613,405 gallons of extracted groundwater during Second Quarter 2009.

In addition to extracted groundwater, during Second Quarter 2009 the IM No. 3 facility treated 14,380 gallons of water generated from the groundwater monitoring program and 33,150 gallons of injection well development water.

3.2.2 Effluent Streams

The treatment system effluent flow rate was measured by flow meters in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PRR-10-10-11) and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM No. 3 facility injected 15,269,504 gallons of treatment system effluent during Second Quarter 2009. The monthly average flow rate to injection wells is shown in Table 2.

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-PR-10-10-08). The IM No. 3 facility generated 263,602 gallons of reverse osmosis concentrate during Second Quarter 2009. The monthly average reverse osmosis concentrate flow rate is shown in Table 2.

The sludge flow rate is measured by the size and weight of containers shipped offsite. Six sludge containers were shipped offsite from the IM No. 3 facility during Second Quarter 2009. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

With the exception of pH, all samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to Truesdail via courier under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival.

Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program. California-certified laboratory analyses were performed in accordance with the latest edition of the *Guidelines Establishing Test Procedures for Analysis of Pollutants* (40 Code of Federal Regulations Part 136), promulgated by the United States Environmental Protection Agency.

During the First and Second Quarters 2009, analysis of pH was conducted by field method pursuant to the Water Board letter dated October 16, 2007 (subject: Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling frequency was conducted in accordance with the revised MRP, issued August 28, 2008.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060, the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Water Board on June 17, 2005, and the revised Monitoring and Reporting Program (MRP) under Order R7-2006-0060 issued August 28, 2008. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

4.0 Analytical Results

Laboratory reports for samples collected in First Quarter 2009 were prepared by certified analytical laboratories, and are presented in the First Quarter 2009 Report. Laboratory reports for samples collected in Second Quarter 2009 were prepared by certified analytical laboratories, and are presented in Appendix D.

Samples were collected in accordance with the WDR sampling frequency requirements. See Table 3 for sample collection dates.

The influent sampling analytical results are presented in Table 4. The effluent sampling analytical results are presented in Table 5. The reverse osmosis concentrate sampling analytical results are presented in Table 6. The sludge sampling analytical results are presented in Table 7.

Table 8 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

5.0 Semiannual Operation and Maintenance

Pursuant to the WDRs Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Water Board Office twice annually.

This section includes the Semiannual Operation and Maintenance Report for the IM No. 3 groundwater treatment system for the period January 1, 2009 through June 30, 2009.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operations and maintenance records are also archived using maintenance software. The following sections summarize the operations and maintenance activities during this semiannual reporting period.

5.1 Flowmeter Calibration Records

The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a timely manner consistent with the use, flow, material, and manufacturer recommendations. The following flowmeters are used at the plant to measure groundwater flow.

Location	Flowmeter Location ID	Current Flowmeter Serial No.	Date of Most Recent Re-Calibrated Meter Installation	Previous Flowmeter Serial No.
Extraction well PE-1	FIT-103	6C036F16000	January 4, 2007	6A022216000
Extraction well TW-3D	FIT-102	6C037016000	January 25, 2008	6A022116000
Extraction well TW-2D ^a	FIT-101	6A021F16000	July 28, 2005	
Extraction well TW-2S ^b	FIT-100	6A022016000	July 28, 2005	
Injection well IW-02	FIT-1202	6A022116000	February 2, 2007	6C037016000
Injection well IW-03	FIT-1203	6C037216000	April 9, 2008	7700F216000
Combined IW-02 and IW-03	FIT-700	7700C616000	February 13, 2008	7700F316000
Reverse osmosis concentrate	FIT-701	6C022216000	February 2, 2007	6C037316000

Notes:

^a TW-2D is a backup extraction well only operated for brief testing and sampling periods since January 2006.

^b TW-2S is a backup extraction well only operated for brief testing and sampling periods since October 2005.

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated between January 1, 2009 and June 30, 2009 are provided in Appendix B.

Approximately 32,314,228 gallons of groundwater were extracted and treated between January 1, 2009 and June 30, 2009. Treatment of this water at the IM No. 3 facility is being performed in accordance with the conditions of Order No. R7-2006-0060.

Additionally, approximately 28,324 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 84,950 gallons of injection well re-development water were treated at the IM No. 3 facility during the January 1, 2009 to June 30, 2009 semiannual period.

A total of approximately 31,708,294 gallons of treated groundwater was injected back into the Alluvial Aquifer between January 1, 2009 and June 30, 2009.

5.3 Residual Solids Generated (Sludge)

During the January 1, 2009 to June 30, 2009 reporting period, nine containers of sludge were shipped offsite for disposal. The sludge was shipped to Chemical Waste Management at Kettleman Hills for disposal. A listing of each shipment during January 1, 2009 to June 30, 2009 reporting period is provided below.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests (cubic yards)	Approximate Wet Weight (Ibs)	Type of Shipment
1/13/09	10	15,240	non-RCRA hazardous waste
1/20/09	9	15,680	non-RCRA hazardous waste
2/24/09	9	12,240	non-RCRA hazardous waste
3/19/09	8	11,720	non-RCRA hazardous waste
4/07/09	9	12,640	non-RCRA hazardous waste
4/16/09	9	14,700	non-RCRA hazardous waste
4/22/09	9	13,180	non-RCRA hazardous waste
5/12/09	6	13,300	non-RCRA hazardous waste
6/01/09	10	13,080	non-RCRA hazardous waste
6/23/09	7	10,420	non-RCRA hazardous waste

Notes:

The approximate wet weight is provided by the disposal facility based on full container weight less the empty container weight.

RCRA = Resource Conservation and Recovery Act.

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figure TP-PR-10-10-08). From January 1, 2009 to June 30, 2009, approximately 616,019 gallons of reverse osmosis concentrate were transported to Liquid Environmental Solutions in Phoenix, Arizona for disposal.

5.5 Summary of WDR Compliance

No WDR violations were identified during the January 1, 2009 to June 30, 2009 semiannual reporting period.

Two release events were reported by telephone to Cliff Raley of the Water Board during the January 1, 2009 to June 30, 2009 semiannual period. Mr. Raley indicated by telephone that no further actions would be required.

- On January 29, 2009 at approximately 8:00 a.m., the plant operator observed the microfilter No. 5 module on the west bank leaking water. This release was partially inside and partially outside of containment. It is estimated that the release started at approximately 5:00 a.m. The estimated quantity of release (based on 1 liter per minute times three hours) is 48 gallons. Of this 48 gallons, PG&E estimates that 24 gallons fell outside of containment onto the adjacent gravel surface. PG&E removed the wetted portion of the gravel surface adjacent to the containment. The gravel was placed in a phase separator so all of the released liquid was returned to the IM No. 3 treatment system or disposed of along with sludge. PG&E replaced all tubing on the microfilter and installed a splash guard around the modules on the microfilter to prevent potential future leakage from escaping containment.
- On May 5, 2009, at 12:40 p.m., a small leak developed in a piece of plastic tubing that was conveying treated water reverse osmosis (RO) concentrate (brine). Although most of the leaking water was captured within the containment structure, a small amount (estimated 2 gallons) of the brine escaped the containment structure and was released onto the adjacent gravel surface. The water in this part of the treatment plant is after the chromium removal process. PG&E removed the wetted portion of the gravel surface adjacent to the containment. The gravel was placed in a phase separator so all of the released liquid was returned to the IM No. 3 treatment system or disposed of along with sludge. PG&E installed a plastic barricade adjacent to the tubing to prevent potential future leakage from escaping containment.

5.6 Operation and Maintenance – Required Shutdowns

Appendix A contains a summary of the operation or maintenance issues that required the groundwater extraction system to be shut down during the January 1, 2009 to June 30, 2009 semiannual reporting period. Records of routine maintenance are kept onsite.

5.7 Treatment Plant Modifications

No major IM No. 3 treatment plant modifications were performed during the January 1, 2009 to June 30, 2009 semiannual reporting period that affected the quality or quantity of treated effluent. However, during this same time period, PG&E initiated the process to replace the aging original RO system with a modern RO system. The original RO system will stay in service until the installation of the new RO system is completed and the new system is operating effectively. The startup of the replacement RO system is planned for the third quarter of 2009, and the original RO system will be removed.

6.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period. No events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units were identified during the reporting period.

7.0 Certification

On August 12, 2005, PG&E submitted a signature delegation letter to the Water Board, delegating PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0060 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated December 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	behumn
Name:	Curt Russell
Company:	Pacific Gas and Electric Company
Title:	Topock Site Manager
Date:	July 15, 2009

Tables

Sampling Station Descriptions Second Quarter 2009 Monitoring and Semiannual Jan-Jun 2009 O&M Report for Interim Measure No. 3

Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-RP-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-RP-10-10-04).
Sampling Station D ^b : Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-RP-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-RP-10-10-06).

Note:

= Sequential sample identification number at each sample station.

^a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

^b The June 3, 2009 RO Concentrate (brine) sample was collected approximately 50 feet upstream from the RO Concentrate holding tank T-701 instead of the typical sample port just downstream from T-701.

Flow Monitoring Results

Second Quarter 2009 Monitoring and Semiannual Jan-Jun 2009 O&M Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^{b,c} (gpm)	Reverse Osmosis Concentrate ^b (gpm)
April 2009 Average Monthly Flowrate	102.3	101.2	1.8
May 2009 Average Monthly Flowrate	123.9	122.8	2.0
June 2009 Average Monthly Flowrate	131.1	125.3	2.2

Notes:

gpm: gallons per minute.

^a Extraction wells TW-3D and PE-1 were operated during the Second Quarter 2009. Extraction wells TW-2S and TW-2D were not operated during the Second Quarter 2009.

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during the Second Quarter 2009 is approximately 1.4 percent.

^c Effluent was discharged into injection wells IW-02 and IW-03 during the Second Quarter 2009.

Sample Collection Dates

Second Quarter 2009 Monitoring and	Semiannual Jan-Jur	1 2009 O&M Report	for Interim Measure Ne	o. 3
Groundwater Treatment System				

Parameter	Sample Collection Dates	Results	
Influent ^a	April 1, 2009	See Table 4	
	May 6, 2009		
	June 3, 2009		
Effluent ^b	April 1, 2009	See Table 5	
	April 8, 2009		
	April 16, 2009		
	April 27, 2009		
	April 30, 2009		
	May 6, 2009		
	May 13, 2009		
	May 19, 2009		
	May 27, 2009		
	June 3, 2009		
	June 10, 2009		
	June 16, 2009		
	June 24, 2009		
Reverse Osmosis Concentrate ^c	June 3, 2009	See Table 6	
Sludge ^d	April 7, 2009	See Table 7	
	April 16, 2009		
	April 22, 2009		
	May 12, 2009		
	June 1, 2009		
	June 23, 2009		

Notes:

^a Influent sampling is required monthly.

^b Effluent sampling is required weekly for six constituents and monthly for sixteen constituents.

^c Reverse Osmosis Concentrate sampling is required quarterly.

^d Sludge sampling is required quarterly by composite.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Influent Monitoring Results ^a Second Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling	g Frequency	/	Monthly																					
	Analytes Units ^b	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium µg/L	Ammonia (as N) mg/L	Antimony μg/L	Arsenic µg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoric mg/L	le Lead µg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron µg/L	Zinc µg/L
Sample ID	MDL Date	50.4	0.0070	0.0220		0.266	1.52	1.28	0.0090	0.112	0.0750	0.0810	0.0048	0.650	0.0250	0.0910	0.0805	0.0840	0.635	0.0350	0.0010	1.20	2.40	0.575
SC-100B-WDR-197	4/1/2009	5700	ND (0.100)	7840	7.7	1270	1180	ND (50.0)	ND (0.500)	17.2	6.45	27.5	1.18	ND (5.00)	2.51	ND (10.0)	ND (10.0)	35.2	ND (10.0)	2.96	ND (0.0050) 588	ND (20.0)	ND (10.0)
RL		250	0.100	2.00		1.00	10.5	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-100B-WDR-202	5/6/2009	4650	0.101	7740	7.3	1130	1150	ND (50.0)	ND (0.500)	ND (10.0)	3.50	26.1	1.11	ND (5.00)	2.74	ND (10.0)	ND (10.0)	30.5	ND (10.0)	3.01	ND (0.0050) 574	ND (20.0)	ND (10.0)
RL		250	0.100	2.00		1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-100B-WDR-206	6/3/2009	4890	ND (0.100)	7940	7.2	1140	1110	ND (50.0)	ND (0.500)	ND (10.0)	2.27	25.0	1.00	ND (5.00)	2.89	ND (10.0)	ND (10.0)	21.4	ND (10.0)	3.11	ND (0.0050) 575	ND (20.0)	ND (10.0)
RL		250	0.100	2.00		1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	50.0	20.0	10.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

N = nitrogen

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units

RL = project reporting limit $\mu g/L$ = micrograms per liter

 μ mhos/cm = micromhos per centimeter

^a Sampling Location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

^b Units reported in this table are those units required in the WDRs.

^c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Effluent Monitoring Results ^a Second Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

WDRs Effluent Av	ve. Monthly	NA	NA	NA	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Required Sampling I	Frequency			Weekly	/				Monthly															
	Analytes	TDS	Turbidity	Specific Conductance	Field ^e pH	Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead N	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
	Units ^c	mg/L	NTU	µmhos/cm	pH units	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	mg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	mg/L	µg/L	µg/L
		25.2	0.0070	0.0220		0.0532	0.0304	1.28	0.0090	0.112	0.0750	0.0810	0.0048	0.650	0.0250	0.0910	0.0805	0.0840	0.635	0.0350	0.0010	1.20	2.40	0.575
Sample ID	Date																							
SC-700B-WDR-197 4	4/1/2009	3850	ND (0.100)	6710	7.10	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	14.3	1.12	11.1	2.01	ND (10.0)	53.8	19.6	ND (10.0)	2.48	ND (0.0050)	500	ND (20.0)) ND (10.0)
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-700B-WDR-198 4	4/8/2009	4140	ND (0.100)	6860	7.10	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-199 4	4/16/2009	4100	ND (0.100)	7220	7.10	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-200 4	1/27/2009	3060	ND (0.100)	5020	7.00	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-201 4	4/30/2009	3980	ND (0.100)	6780	7.10	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-202 5	5/6/2009	4360	ND (0.100)	6770	7.00	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	4.24	12.3	1.02	ND (5.00)) 2.38	ND (10.0)	13.2	20.0	ND (10.0)	2.71	ND (0.0050)	486	ND (20.0)) ND (10.0)
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-700B-WDR-203 5	5/13/2009	4280	ND (0.100)	6870	7.00	ND (1.00)	ND (0.200)																	
RL		125	0.100	2.00		1.00	0.200																	
SC-700B-WDR-204 5	5/19/2009	4460	ND (0.100)	7020	6.90	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-205 5	5/27/2009	4390	ND (0.100)	6750	7.00	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-206 6	6/3/2009	4370	ND (0.100)	7150	7.10	ND (1.00)	ND (0.200)	65.4	ND (0.500)	ND (10.0)	ND (1.00)	13.9	0.966	ND (5.00)) 2.45	ND (10.0)	30.3	17.3	ND (10.0)	2.76	ND (0.0050)	511	ND (20.0)) ND (10.0)
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	50.0	20.0	10.0
SC-700B-WDR-207 6	6/10/2009	4340	ND (0.100)	7290	7.00	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-208 6	6/16/2009	4790	ND (0.100)	7080	6.90	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00		1.00	0.200																	
SC-700B-WDR-209 6	6/24/2009	3460	ND (0.100)	6050	7.30	2.62	2.46																	
RL		125	0.100	2.00		1.00	0.200																	

TABLE 5Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)Effluent Monitoring Results aSecond Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

 $\begin{array}{l} (---) = not required by the WDR Monitoring and Reporting Program \\ J = concentration or reporting limits estimated by laboratory or validation \\ MDL = method detection limit \\ mg/L = milligrams per liter \\ N = nitrogen \\ NA = not applicable \\ ND = parameter not detected at the listed value \\ NTU = nephelometric turbidity units \\ RL = project reporting limit \\ \mu g/L = micrograms per liter \\ \mu mhos/cm = micromhos per centimeter \end{array}$

^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).

- ^b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.
- $^{\mbox{c}}$ Units reported in this table are those units required in the WDRs.
- ^d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.
- e Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Reverse Osmosis Concentrate Monitoring Results^a Second Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling Frequency	,									G	uarterly											
Analytes Units ^b MDL Sample ID Date	TDS mg/L 252	Specific Conductance µmhos/cm 0.153	Field ^c pH pH units 	Chromium mg/L 0.0011	Hexavalent Chromium mg/L 0.00076	Antimony mg/L 0.00045	Arsenic mg/L 0.00030	Barium mg/L 0.00032	Beryllium mg/L 0.00077	Cadmium mg/L 0.00023	Cobalt mg/L 0.00050	Copper mg/L 0.0026	Fluoride mg/L 0.0250	Lead mg/L 0.00036	Molybdenum mg/L 6 0.00034	n Mercury mg/L 0.000030	Nickel mg/L 0.0025	Selenium mg/L 0.00032	Silver mg/L 0.00042	Thallium mg/L 0.00036	Vanadium mg/L 0.00025	Zinc mg/L 0.0023
SC-701-WDR-206 6/3/2009 RL	51400 1250	61800 2.00	7.4 d 	0.00742 0.0040	ND (0.0052) 0.0052	ND (0.0100) 0.0100	ND (0.0040) 0.0040	0.190 0.0100	ND (0.0040) 0.0040	ND (0.0040) 0.0040	ND (0.0050) 0.0050) 0.0947 0.0050	23.2 I 0.500	ND (0.01(0.0100	00) 0.224 0.0100	ND (0.00020) 0.00020	0.0192 0.0100	0.0260 0.0100	0.00656 0.0050	ND (0.0040) 0.0040	ND (0.0050) 0.0050	ND (0.0200 0.0200

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

ND = parameter not detected at the listed value

RL = project reporting limit

µg/L = micrograms per liter µmhos/cm = micromhos per centimeter

µmnos/cm = micromnos per centimeter

^a Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08).

^b Units reported in this table are those units required in the WDRs.

^c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

^d Sample collected 6/3/09 at 6:00 a.m. from operational sample port upstream of RO Concentrate holding tank 701 rather than normal SC-701 sample port downstream from tank 701.

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a Second Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling Frequency									C	uarterly									
Analytes Units ^b MDL Sample ID Date	Chromium mg/kg 0.0270	Hexavalent Chromium mg/kg 2.21	Antimony mg/kg 0.00082	Arsenic mg/kg 0.00056	Barium mg/kg 0.0032	Beryllium mg/kg 0.0026	Cadmium mg/kg 0.0020	Cobalt mg/kg 0.0032	Copper mg/kg 0.0049	Fluoride mg/kg 0.0187	Lead mg/kg 0.0131	Molybdenum mg/kg 0.00064	Mercury mg/kg 0.00011	Nickel mg/kg 0.0056	Selenium mg/kg 0.00060	Silver mg/kg 0.0018	Thallium mg/kg 0.0090	Vanadium mg/kg 0.0029	Zinc mg/kg 0.0071
SC-Sludge-WDR-206 6/3/2009	12900	188	ND (2.00)	31.7	127	217	48.2 3.74	3.95	110	56.1	ND (3.74)	69.8	0.204	ND (1.87)	ND (1.87)	ND (3.74)	12.6	347	691 9 35

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program J = concentration or reporting limits estimated by laboratory or

validation

mg/kg = milligrams per killogram mg/L = milligrams per liter

MDL = method detection limit

ND = parameter not detected at the listed reporting limit

RL = project reporting limit

^a Sampling location for all sludge samples is the sludge collection bin (see attached P&ID TP-PR-10-10-06).

^b Units reported in this table are those units required in the WDRs.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-197	J. Aide	4/1/2009	8:25:00 AM	TLI	EPA 120.1	SC	4/2/2009	Tina Acquiat
					TLI	EPA 200.7	В	4/7/2009	Kris Collins
					TLI	EPA 200.7	FE	4/22/2009	Kris Collins
					TLI	EPA 200.8	AL	4/3/2009	Linda Saetern
					TLI	EPA 200.8	AS	4/3/2009	Linda Saetern
					TLI	EPA 200.8	BA	4/3/2009	Linda Saetern
					TLI	EPA 200.8	CR	4/3/2009	Linda Saetern
					TLI	EPA 200.8	CU	4/3/2009	Linda Saetern
					TLI	EPA 200.8	MN	4/3/2009	Linda Saetern
					TLI	EPA 200.8	MO	4/3/2009	Linda Saetern
					TLI	EPA 200.8	NI	4/3/2009	Linda Saetern
					TLI	EPA 200.8	PB	4/3/2009	Linda Saetern
					TLI	EPA 200.8	SB	4/3/2009	Linda Saetern
					TLI	EPA 200.8	ZN	4/3/2009	Linda Saetern
					TLI	EPA 218.6	CR6	4/2/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	4/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	4/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	4/2/2009	Giawad Ghenniwa
					FIELD	HACH	PH	4/1/2009	J. Aide
					TLI	SM2130B	TRB	4/2/2009	Gautam Savani
					TLI	SM2540C	TDS	4/2/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	4/6/2009	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	4/2/2009	Tina Acquiat
SC-100B	SC-100B-WDR-202	C.Knight	5/6/2009	1:11:00 PM	TLI	EPA 120.1	SC	5/7/2009	Tina Acquiat
					TLI	EPA 200.7	В	5/12/2009	Kris Collins
					TLI	EPA 200.7	FE	5/27/2009	Kris Collins
					TLI	EPA 200.8	AL	5/14/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	AS	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	BA	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	CR	5/22/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	CU	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	MN	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	MO	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	NI	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	PB	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	SB	5/7/2009	Daniel Kang/Romuel Chavez

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-202	C.Knight	5/6/2009	1:11:00 PM	TLI	EPA 200.8	ZN	5/7/2009	Daniel Kang/Romuel Chavez
		-			TLI	EPA 218.6	CR6	5/7/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	5/7/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	5/7/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	5/7/2009	Giawad Ghenniwa
					FIELD	HACH	PH	5/6/2009	C.Knight
					TLI	SM2130B	TRB	5/7/2009	Gautam Savani
					TLI	SM2540C	TDS	5/8/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	5/11/2009	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	5/7/2009	Tina Acquiat
SC-100B	SC-100B-WDR-206	C.Knight	6/3/2009	8:58:00 AM	TLI	EPA 120.1	SC	6/4/2009	Tina Acquiat
					TLI	EPA 200.7	В	6/5/2009	Kris Collins
					TLI	EPA 200.7	FE	6/10/2009	Kris Collins
					TLI	EPA 200.7	MN	6/5/2009	Kris Collins
					TLI	EPA 200.8	AL	6/10/2009	Daniel Kang
					TLI	EPA 200.8	AS	6/10/2009	Daniel Kang
					TLI	EPA 200.8	BA	6/10/2009	Daniel Kang
					TLI	EPA 200.8	CR	6/10/2009	Daniel Kang
					TLI	EPA 200.8	CU	6/10/2009	Daniel Kang
					TLI	EPA 200.8	MO	6/10/2009	Daniel Kang
					TLI	EPA 200.8	NI	6/10/2009	Daniel Kang
					TLI	EPA 200.8	PB	6/10/2009	Daniel Kang
					TLI	EPA 200.8	SB	6/17/2009	Daniel Kang
					TLI	EPA 200.8	ZN	6/10/2009	Daniel Kang
					TLI	EPA 218.6	CR6	6/4/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	6/4/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/4/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/4/2009	Giawad Ghenniwa
					FIELD	HACH	PH	6/3/2009	C. Knight
					TLI	SM2130B	TRB	6/4/2009	Gautam Savani
					TLI	SM2540C	TDS	6/4/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	6/4/2009	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	6/4/2009	Tina Acquiat
SC-700B	SC-700B-WDR-197	J. Aide	4/1/2009	8:25:00 AM	TLI	EPA 120.1	SC	4/2/2009	Tina Acquiat
					TLI	EPA 200.7	В	4/7/2009	Kris Collins
					TLI	EPA 200.7	FE	4/21/2009	Kris Collins

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-197	J. Aide	4/1/2009	8:25:00 AM	TLI	EPA 200.8	AL	4/3/2009	Linda Saetern
					TLI	EPA 200.8	AS	4/3/2009	Linda Saetern
					TLI	EPA 200.8	BA	4/3/2009	Linda Saetern
					TLI	EPA 200.8	CR	4/3/2009	Linda Saetern
					TLI	EPA 200.8	CU	4/3/2009	Linda Saetern
					TLI	EPA 200.8	MN	4/3/2009	Linda Saetern
					TLI	EPA 200.8	MO	4/3/2009	Linda Saetern
					TLI	EPA 200.8	NI	4/3/2009	Linda Saetern
					TLI	EPA 200.8	PB	4/3/2009	Linda Saetern
					TLI	EPA 200.8	SB	4/3/2009	Linda Saetern
					TLI	EPA 200.8	ZN	4/3/2009	Linda Saetern
					TLI	EPA 218.6	CR6	4/2/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	4/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	4/2/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	4/2/2009	Giawad Ghenniwa
					FIELD	HACH	PH	4/1/2009	J. Aide
					TLI	SM2130B	TRB	4/2/2009	Gautam Savani
					TLI	SM2540C	TDS	4/2/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	4/6/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	4/2/2009	Tina Acquiat
SC-700B	SC-700B-WDR-198	J. Aide	4/8/2009	8:05:00 AM	TLI	EPA 120.1	SC	4/9/2009	Tina Acquiat
					TLI	EPA 200.8	CR	4/13/2009	Linda Saetern
					TLI	EPA 218.6	CR6	4/9/2009	Michael Nonezyan
					FIELD	HACH	PH	4/8/2009	J. Aide
					TLI	SM2130B	TRB	4/9/2009	Gautam Savani
					TLI	SM2540C	TDS	4/13/2009	Tina Acquiat
SC-700B	SC-700B-WDR-199	C. Knight	4/16/2009	11:00:00 AM	TLI	EPA 120.1	SC	4/20/2009	Tina Acquiat
					TLI	EPA 200.8	CR	4/17/2009	Linda Saetern
					TLI	EPA 218.6	CR6	4/17/2009	Michael Nonezyan
					FIELD	HACH	PH	4/16/2009	C. Knight
					TLI	SM2130B	TRB	4/17/2009	Gautam Savani
					TLI	SM2540C	TDS	4/20/2009	Tina Acquiat
SC-700B	SC-700B-WDR-200	J. Aide	4/27/2009	2:30:00 PM	TLI	EPA 120.1	SC	4/28/2009	Tina Acquiat
					TLI	EPA 200.8	CR	4/29/2009	Daniel Kang
					TLI	EPA 218.6	CR6	4/28/2009	Michael Nonezyan
					FIELD	HACH	PH	4/27/2009	J. Aide

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-200	J. Aide	4/27/2009	2:30:00 PM	TLI	SM2130B	TRB	4/28/2009	Gautam Savani
					TLI	SM2540C	TDS	4/28/2009	Tina Acquiat
SC-700B	SC-700B-WDR-201	C. Knight	4/30/2009	10:02:00 AM	TLI	EPA 120.1	SC	5/1/2009	Tina Acquiat
					TLI	EPA 200.8	CR	5/1/2009	Romuel Chavez
					TLI	EPA 218.6	CR6	5/1/2009	Michael Nonezyan
					FIELD	HACH	PH	4/30/2009	C. Knight
					TLI	SM2130B	TRB	5/1/2009	Gautam Savani
					TLI	SM2540C	TDS	5/4/2009	Tina Acquiat
SC-700B	SC-700B-WDR-202	C.Knight	5/6/2009	1:00:00 PM	TLI	EPA 120.1	SC	5/7/2009	Tina Acquiat
					TLI	EPA 200.7	В	5/12/2009	Kris Collins
					TLI	EPA 200.7	FE	5/12/2009	Kris Collins
					TLI	EPA 200.8	AL	5/14/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	AS	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	BA	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	CR	5/22/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	CU	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	MN	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	MO	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	NI	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	PB	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	SB	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 200.8	ZN	5/7/2009	Daniel Kang/Romuel Chavez
					TLI	EPA 218.6	CR6	5/7/2009	Michael Nonezyan
					TLI	EPA 300.0	FL	5/7/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	5/7/2009	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	5/7/2009	Giawad Ghenniwa
					FIELD	HACH	PH	5/6/2009	C.Knight
					TLI	SM2130B	TRB	5/7/2009	Gautam Savani
					TLI	SM2540C	TDS	5/8/2009	Tina Acquiat
					TLI	SM4500NH3D	NH3N	5/11/2009	lordan Stavrev
					TLI	SM4500NO2B	NO2N	5/7/2009	Tina Acquiat
SC-700B	SC-700B-WDR-203	J. Aide	5/13/2009	7:50:00 AM	TLI	EPA 120.1	SC	5/14/2009	Tina Acquiat
					TLI	EPA 200.8	CR	5/15/2009	Linda Saetern
					TLI	EPA 218.6	CR6	5/14/2009	Michael Nonezyan
					FIELD	HACH	PH	5/13/2009	J. Aide
					TLI	SM2130B	TRB	5/14/2009	Gautam Savani

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Sampler Sample Sample Analysis Location Sample ID Name Date Time Lab Method	Analysis Parameter Date	Lab Technician
SC-700B SC-700B-WDR-203 J. Aide 5/13/2009 7:50:00 AM TLI SM2540C	TDS 5/18/2009	Tina Acquiat
SC-700B SC-700B-WDR-204 J. Aide 5/19/2009 8:00:00 AM TLI EPA 120.1	SC 5/21/2009	Tina Acquiat
TLI EPA 200.8	CR 5/20/2009	Daniel Kang
TLI EPA 218.6	CR6 5/21/2009	Michael Nonezyan
FIELD HACH	PH 5/19/2009	J. Aide
TLI SM2130B	TRB 5/19/2009	Gautam Savani
TLI SM2540C	TDS 5/21/2009	Tina Acquiat
SC-700B SC-700B-WDR-205 C. Knight 5/27/2009 9:08:00 AM TLI EPA 120.1	SC 5/28/2009	Tina Acquiat
TLI EPA 200.8	CR 5/28/2009	Linda Saetern
TLI EPA 218.6	CR6 5/28/2009	Michael Nonezyan
FIELD HACH	PH 5/27/2009	C. Knight
TLI SM2130B	TRB 5/28/2009	Gautam Savani
TLI SM2540C	TDS 5/28/2009	Tina Acquiat
SC-700B SC-700B-WDR-206 C.Knight 6/3/2009 9:03:00 AM TLI EPA 120.1	SC 6/4/2009	Tina Acquiat
TLI EPA 200.7	В 6/5/2009	Kris Collins
TLI EPA 200.7	FE 6/10/2009	Kris Collins
TLI EPA 200.7	MN 6/5/2009	Kris Collins
TLI EPA 200.8	AL 6/10/2009	Daniel Kang
TLI EPA 200.8	AS 6/10/2009	Daniel Kang
TLI EPA 200.8	BA 6/10/2009	Daniel Kang
TLI EPA 200.8	CR 6/10/2009	Daniel Kang
TLI EPA 200.8	CU 6/10/2009	Daniel Kang
TLI EPA 200.8	MO 6/10/2009	Daniel Kang
TLI EPA 200.8	NI 6/10/2009	Daniel Kang
TLI EPA 200.8	PB 6/10/2009	Daniel Kang
TLI EPA 200.8	SB 6/17/2009	Daniel Kang
TLI EPA 200.8	ZN 6/10/2009	Daniel Kang
TLI EPA 218.6	CR6 6/4/2009	Michael Nonezyan
TLI EPA 300.0	FL 6/4/2009	Giawad Ghenniwa
TLI EPA 300.0	NO3N 6/4/2009	Giawad Ghenniwa
TLI EPA 300.0	SO4 6/8/2009	Giawad Ghenniwa
FIELD HACH	PH 6/3/2009	C. Knight
TLI SM2130B	TRB 6/4/2009	Gautam Savani
TLI SM2540C	TDS 6/4/2009	Tina Acquiat
TLI SM4500NH3I	BD NH3N 6/4/2009	lordan Stavrev
TLI SM4500NO2	2B NO2N 6/4/2009	Tina Acquiat

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-207	J. Aide	6/10/2009		TLI	EPA 120.1	SC	6/11/2009	Tina Acquiat
					TLI	EPA 200.8	CR	6/11/2009	Romuel Chaves
					TLI	EPA 218.6	CR6	6/11/2009	Michael Nonezyan
					FIELD	HACH	PH	6/10/2009	J. Aide
					TLI	SM2130B	TRB	6/11/2009	Gautam Savani
					TLI	SM2540C	TDS	6/11/2009	Tina Acquiat
SC-700B	SC-700B-WDR-208	Ron Phelps	6/16/2009	8:00:00 AM	TLI	EPA 120.1	SC	6/17/2009	Tina Acquiat
					TLI	EPA 200.8	CR	6/18/2009	Romuel Chaves
					TLI	EPA 218.6	CR6	6/18/2009	Michael Nonezyan
					FIELD	HACH	PH	6/16/2009	Ron Phelps
					TLI	SM2130B	TRB	6/17/2009	Gautam Savani
					TLI	SM2540C	TDS	6/17/2009	Tina Acquiat
SC-700B	SC-700B-WDR-209	C. Knight	6/24/2009	8:00:00 AM	TLI	EPA 120.1	SC	6/25/2009	Tina Acquiat
					TLI	EPA 200.8	CR	6/25/2009	Romuel Chaves
					TLI	EPA 218.6	CR6	6/25/2009	Michael Nonezyan
					FIELD	HACH	PH	6/24/2009	C. Knight
					TLI	SM2130B	TRB	6/25/2009	Gautam Savani
					TLI	SM2540C	TDS	6/25/2009	Tina Acquiat
SC-701	SC-701-WDR-206	C.Knight	6/3/2009	9:09:00 AM	TLI	EPA 120.1	SC	6/4/2009	Tina Acquiat
					TLI	EPA 200.8	AG	6/10/2009	Daniel Kang
					TLI	EPA 200.8	AS	6/10/2009	Daniel Kang
					TLI	EPA 200.8	BA	6/10/2009	Daniel Kang
					TLI	EPA 200.8	BE	6/10/2009	Daniel Kang
					TLI	EPA 200.8	CD	6/10/2009	Daniel Kang
					TLI	EPA 200.8	CO	6/10/2009	Daniel Kang
					TLI	EPA 200.8	CR	6/10/2009	Daniel Kang
					TLI	EPA 200.8	CU	6/10/2009	Daniel Kang
					TLI	EPA 200.8	MO	6/10/2009	Daniel Kang
					TLI	EPA 200.8	NI	6/10/2009	Daniel Kang
					TLI	EPA 200.8	PB	6/10/2009	Daniel Kang
					TLI	EPA 200.8	SB	6/17/2009	Daniel Kang
					TLI	EPA 200.8	SE	6/10/2009	Daniel Kang
					TLI	EPA 200.8	TL	6/10/2009	Daniel Kang
					TLI	EPA 200.8	V	6/10/2009	Daniel Kang
					TLI	EPA 200.8	ZN	6/10/2009	Daniel Kang

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-206	C.Knight	6/3/2009	9:09:00 AM	TLI	EPA 218.6	CR6	6/4/2009	Michael Nonezyan
					TLI	EPA 245.1	HG	6/5/2009	Kris Collins
					TLI	EPA 300.0	FL	6/4/2009	Giawad Ghenniwa
					TLI	SM2540C	TDS	6/4/2009	Tina Acquiat
Phase Seperator	SC-Sludge-WDR-206	C. Knight	6/3/2009	9:29:00 AM	TLI	EPA 300.0	FL	6/4/2009	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/4/2009	Giawad Ghenniwa
					TLI	EPA 6010B	AG	6/19/2009	Kris Collins
					TLI	EPA 6010B	BA	6/19/2009	Kris Collins
					TLI	EPA 6010B	BE	6/19/2009	Kris Collins
					TLI	EPA 6010B	CD	6/19/2009	Kris Collins
					TLI	EPA 6010B	CO	6/19/2009	Kris Collins
					TLI	EPA 6010B	CR	6/19/2009	Kris Collins
					TLI	EPA 6010B	MN	6/15/2009	Kris Collins
					TLI	EPA 6010B	NI	6/19/2009	Kris Collins
					TLI	EPA 6010B	PB	6/19/2009	Kris Collins
					TLI	EPA 6010B	TL	6/19/2009	Kris Collins
					TLI	EPA 6010B	V	6/19/2009	Kris Collins
					TLI	EPA 6010B	ZN	6/19/2009	Kris Collins
					TLI	EPA 7471A	HG	6/12/2009	Kris Collins
					TLI	SW 6020A	AS	6/10/2009	Daniel Kang / Romuel Chaves
					TLI	SW 6020A	CU	6/10/2009	Daniel Kang / Romuel Chaves
					TLI	SW 6020A	MO	6/10/2009	Daniel Kang / Romuel Chaves
					TLI	SW 6020A	SB	6/11/2009	Daniel Kang / Romuel Chaves
					TLI	SW 6020A	SE	6/10/2009	Daniel Kang / Romuel Chaves
					TLI	SW 7199	CR6	6/5/2009	Michael Nonezyan

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information Second Quarter 2009 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

SC-700B = Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04).

SC-100B = Sampling location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

SC-701 = Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08).

Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.

AL =	aluminum	NH3N =	ammonia (as N)
Ag =	silver	NI =	nickel
AS =	arsenic	NO2N =	nitrite (as N)
B =	boron	NO3N =	nitrate (as N)
BA =	barium	PB =	lead
BE =	beryllium	PH =	рН
CD =	cadmium	SB =	antimony
CO =	cobalt	SC =	specific conductance
CR =	chromium	SE =	selenium
CR6 =	hexavalent chromium	SO4 =	sulfate
CU =	copper	TDS =	total dissolved solids
FE =	iron	TL =	thallium
FL =	fluoride	TLI =	Truesdail Laboratories, Inc.
HG =	mercury	TRB =	turbidity
MN =	manganese	V =	vanadium
MO =	molybdenum	ZN =	zinc

Figures

\\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MAPFILES\2006\IM3_PROJECT_AREA_MAY06.MXD IM3_PROJECT_AREA_MAY06.PDF 1/14/2008 14:59:14

tppr101003.dwg 12/07/2005.01:06:58 PM

PACIFIC GAS & E			TATUS	S		IT UTION	PRIN DISTRIBI	ΓE 03/10/05	REV 4 DAT	APPROVAL	REVISION
TOPOCK COMPRES	PEM	SDE	DATE	REV	ISSUED		DATE	REVIEWED	DISCIPLINE	REVIEWED	DISCIPLINE
] INTERIM ME					PRELIMINARY		STATUS		ELECTRICAL		CIVIL
EXPANDED GROUNDWA			07/28/04	А	FOR REVIEW AND APPROVAL		REV.		INST & CONTROL		STRUCTURAL
AND TREATMEN	TP	KLM	09/03/04	0	APPROVED FOR CONSTRUCTION		CLIENT		ARCHITECTURAL		MECHANICAL
PROJ NO. 3				4	REVISED & APPROVED		FIELD		ENVIRONMENTAL		PROCESS
				-			INTRA CO.		GEN. ARRANG.		PIPING
CH2M			NONE	NLE	SCA						
			I CON L								

Appendix A Operations and Maintenance Log

APPENDIX A Semiannual Operations and Maintenance Log

Downtime is defined as any periods when all extraction wells are not operating, so that no groundwater is being extracted and piped into IM No. 3 as influent. Periods of planned and unplanned extraction system downtime are summarized here. The times shown are in Pacific Standard Time to be consistent with other data collected at the site.

January 2009

- January 8, 2009 (planned): The extraction well system was offline from 1:29 p.m. to 1:30 p.m. and from 1:46 p.m. to 1:47 p.m. when the extraction wells were shut down temporarily for testing of leak detection system. Extraction well downtime was 2 minutes.
- January 10, 2009 (unplanned): The extraction well system was offline from approximately 3:10 p.m. to 3:23 p.m. due to a power outage. The data historian battery backup failed during this outage and did not come back online until January 12, 2009 at 9:54 a.m. Extraction system downtime was 13 minutes.
- **January 15, 2009 (planned):** The extraction well system was offline from 11:54 a.m. to 11:59 a.m. for inspection of leak detection system. Extraction system downtime was 5 minutes.
- January 19, 2009 (unplanned): The extraction well system was offline from 11:49 a.m. to 12:09 p.m., due to plugging of the low flow switch on the chemical mixing loop. Extraction system downtime was 20 minutes.
- **January 19, 2009 (unplanned):** The extraction well system was offline from 12:26 p.m. to 1:35 p.m., when the system shut down due to low flow. Extraction system downtime was 69 minutes.
- **January 20, 2009 (planned):** The extraction well system was offline from 7:40 a.m. to 8:20 a.m. to perform plant maintenance. Extraction system downtime was 40 minutes.
- January 20, 2009 January 21, 2009 (planned): The extraction well system was offline from 8:37 a.m. on January 20 to January 21, 2009 at 5:27 p.m. during the scheduled monthly maintenance outage. Extraction system downtime was 32 hours and 50 minutes.
- January 21, 2009 (unplanned): The extraction well system was offline from 7:07 p.m. to 8:44 p.m., and again from 9:11 p.m. to 11:25 p.m., because the plant staff was managing water inventory during the plant start-up after the maintenance outage. Extraction system downtime was 3 hours and 51 minutes.
- January 23, 2009 (planned): The extraction well system was offline from 11:05 a.m. to 3:56 p.m. for plant maintenance. Extraction well system downtime was 4 hours and 51 minutes.

- **January 29, 2009 (unplanned):** The extraction well system was offline from 8:23 a.m. to 10:53 a.m., and again from 7:00 p.m. to 7:10 p.m. due to a leak in the microfiltration system. Extraction well system downtime was 2 hours and 40 minutes.
- January 29, 2009 (unplanned): The extraction well system was offline from 10:05 p.m. to 10:15 p.m. due to low level in extraction well PE-1. Extraction well system downtime was 10 minutes.
- January30, 2009 (planned): The extraction well system was offline from 8:55 a.m. to 9:16 a.m. for microfiltration system maintenance. Extraction well system downtime was 21 minutes.
- January 31, 2009 (unplanned): The extraction well system was offline from 12:19 p.m. to 12:34 p.m. due to problems associated with the microfiltration system. Extraction well system downtime was 15 minutes.

February 2009

- February 18, 2009 (planned): The extraction well system was offline from 9:24 a.m. to 5:23 p.m. during the scheduled monthly maintenance outage. Extraction well downtime was 7 hours and 59 minutes.
- **February 18, 2009 (planned):** The extraction well system was offline from approximately 5:41 p.m. to 6:25 p.m. due to switching from the emergency generator to City of Needles power. Extraction system downtime was 44 minutes.
- **February 23, 2009 (unplanned):** The extraction well system was offline from 6:47 a.m. to 7:00 a.m. and again from 7:53 a.m. to 8:48 a.m. due to maintenance on the ferrous chloride system. Extraction system downtime was 1 hour and 8 minutes.
- **February 23, 2009 (planned):** The extraction well system was offline from 11:53 a.m. to 11:55 a.m., 12:02 p.m. to 12:05 p.m., and again from 12:10 p.m. to 12:11 p.m., due to testing of extraction well piping leak detection system. Extraction system downtime was 4 minutes.
- **February 24, 2009 (planned):** The extraction well system was offline from 4:06 p.m. to 4:08 p.m., and again from 4:18 p.m. to 4:23 p.m., when the system was shut down for the annual change out of the emergency generator. Extraction system downtime was 7 minutes.
- February 27, 2009 (planned): The extraction well system was offline from 12:30 p.m. to 12:31 p.m. to test leak detection system in valve vault 1. Extraction system downtime was 1 minute.

March 2009

• March 4, 2009 (planned): The extraction well system was offline from 8:20 a.m. to 8:36 a.m. when the extraction wells were shutdown temporarily to measure the level of each extraction well. Extraction well downtime was 16 minutes.

- March 13-14, 2009 (unplanned): The extraction well system was offline from 10:01 p.m. on March 13 to 1:38 a.m. on March 14 due to a pump flow sensor failure in the raw water feed pump. Extraction system downtime was 3 hours and 37 minutes.
- March 16, 2009 (unplanned): The extraction well system was offline from 5:38 p.m. to 6:58 p.m. due to a hose disconnection at the microfilter. Extraction system downtime was 1 hour and 20 minutes.
- March 18, 2009 (planned): The extraction well system was offline from 6:51 a.m. to 4:59 p.m. and again from 5:20 p.m. to 7:21 p.m. during the scheduled monthly maintenance outage. Extraction system downtime was 12 hours and 9 minutes.
- March 20, 2009 (planned): The extraction well system was offline from 8:21 a.m. to 8:23 a.m., 11:01 a.m. to 11:02 a.m., 11:09 a.m. to 11:10 a.m., 11:17 a.m. to 11:18 a.m., 11:25 a.m. to 11:26 a.m., 11:33 a.m. to 11:34 a.m., 11:40 a.m. to 11:41 a.m., and 12:00 p.m. to 12:01p.m when the system was shut down for testing of the leak detection system. Extraction system downtime was 9 minutes.
- March 22, 2009 (unplanned): The extraction well system was offline from 8:49 a.m. to 9:03 a.m. due to a leak at the microfilter. Extraction system downtime was 14 minutes.
- March 23, 2009 (planned): The extraction well system was offline from 7:48 a.m. to 8:43 p.m. due to plant testing. Extraction system downtime was 55 minutes.
- March 27, 2009 (unplanned): The extraction well system was offline from 5:01 a.m. to 6:51 a.m., 7:03 a.m. to 7:54 a.m., 9:08 a.m. to 9:41 a.m., 12:28 p.m. to 12:44 p.m., and 12:45 p.m. to 1:52 p.m. due to maintenance on the ferrous chloride system. Extraction system downtime was 4 hours and 37 minutes.
- March 28, 2009 (unplanned): The extraction well system was offline from 1:12 a.m. to 4:54 a.m. and again from 6:56 a.m. to 7:37 a.m. due to maintenance on the ferrous chloride system. Extraction system downtime was 4 hours and 23 minutes.
- March 28, 2009 (unplanned): The extraction well system was offline from 10:28 a.m. to 12:36 p.m. due to high pH at AIT606. Extraction system downtime was 2 hours and 8 minutes.
- March 29, 2009 (unplanned): The extraction well system was offline from 5:40 a.m. to 6:23 a.m. due to maintenance on the ferrous chloride system. Extraction system downtime was 42 minutes.
- March 29-30, 2009 (unplanned): The extraction well system was offline from 11:15 p.m. on March 29 to 2:50 a.m. on March 30 due to a power outage. Extraction system downtime was 3 hours and 55 minutes.
- March 30, 2009 (unplanned): The extraction well system was offline from 5:12 a.m. to 7:22 a.m. and 9:21 a.m. to 9:23 a.m. due to maintenance on the ferrous chloride system. Extraction system downtime was 2 hours and 12 minutes.

• March 31, 2009 (unplanned): The extraction well system was offline from 1:23 a.m. to 1:42 a.m., from 3:49 a.m. to 5:19 a.m. and 6:29 a.m. to 7:53 a.m. due to maintenance on the ferrous chloride system. Extraction system downtime was 2 hours and 53 minutes.

April 2009

April 2, 2009 (unplanned): The extraction well system was offline from 7:42 a.m. to 7:59 a.m. due to low ferrous chloride flow. Extraction system downtime was 17 minutes.

April 8, 2009 (planned): The extraction well system was offline from 7:52 a.m. to 8:27 a.m. and again from 8:33 a.m. to 9:07 a.m. for RO system maintenance. Extraction system downtime was 1 hour and 9 minutes.

April 8, 2009 (planned): The extraction well system was offline from 11:31 a.m. to 11:32 a.m., 11:47 a.m. to 11:48 a.m., 11:53 a.m. to 11:54 a.m., 11:59 a.m. to 12:00 p.m., and 12:11 p.m. to 12:12 p.m. when the system was shut down for testing of the leak detection system. Extraction system downtime was 5 minutes.

April 19, 2009 (unplanned): The extraction well system was offline from 6:17 a.m. to 6:33 a.m. due to primary RO permeate hose failure. Extraction system downtime was 16 minutes.

April 19, 2009 (unplanned): The extraction well system was offline from 7:29 p.m. to 8:57 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 1 hour and 28 minutes.

April 20-27, 2009 (planned): The extraction well system was offline from 7:01 a.m. on April 20 to 6:46 a.m. on April 26 and again from 7:32 a.m. on April 26 to 11:43 a.m. on April 27/09 to perform annual preventative maintenance. Extraction system downtime was 7 days, 3 hours and 56 minutes.

May 2009

May 5, 2009 (unplanned): The extraction well system was offline from 11:40 a.m. to 6:17 p.m. due to a leak outside the containment area of reverse osmosis system. Extraction system downtime was 6 hours and 37 minutes.

May 7, 2009 (planned): The extraction well system was offline from 11:35 a.m. to 12:05 p.m. for a pipeline leak investigation. Extraction system downtime was 30 minutes.

May 7, 2009 (planned): The extraction well system was offline from 12:22 p.m. to 12:23 p.m., 12:36 p.m. to 12:37 p.m., 12:56 a.m. to 12:57 p.m., and 1:03 p.m. to 1:04 p.m. when the system was shut down for testing of the leak detection system. Extraction system downtime was 4 minutes.

May 9, 2009 (unplanned): The extraction well system was offline from 2:36 p.m. to 2:44 p.m. and from 7:58 p.m. to 8:06 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 16 minutes.

May 10, 2009 (unplanned): The extraction well system was offline from 8:40 a.m. to 8:53 a.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 13 minutes.

May 11, 2009 (planned): The extraction well system was offline from 8:40 a.m. to 8:53 a.m. when plant power was switched from generator power to City of Needles power. Extraction system downtime was 13 minutes.

May 13 – 14, 2009 (planned): The extraction well system was offline from 7:40 a.m. on May 13 to 1:20 p.m. on May 14 to construct temporary RO permeate system as a part of the RO Enhancement project. Extraction system downtime was 1 day, 5 hours and 40 minutes.

May 18, 2009 (planned): The extraction well system was offline from 1:32 p.m. to 1:58 p.m. for hose replacement on the permeate tank. Extraction system downtime was 26 minutes.

May 19, 2009 (planned): The extraction well system was offline from 5:57 a.m. to 6:34 p.m. for planned maintenance. Extraction system downtime was 37 minutes.

May 20, 2009 (planned): The extraction well system was offline from 7:49 a.m. to 3:05 p.m. and from 3:06 p.m. to 9:57 p.m. for planned maintenance. Extraction system downtime was 14 hours and 7 minutes.

May 26, 2009 (planned): The extraction well system was offline from 10:44 a.m. to 4:02 p.m. for permeate tank repair. Extraction system downtime was 5 hours and 18 minutes.

May 30, 2009 (unplanned): The extraction well system was offline from 4:13 a.m. to 4:53 a.m. and 1:35 p.m. to 1:40 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 45 minutes.

May 30, 2009 (planned): The extraction well system was offline from 10:19 a.m. to 10:31 a.m. when plant power was switched from generator power to City of Needles power. Extraction system downtime was 12 minutes.

June 2009

June 3, 2009 (planned): The extraction well system was offline from 12:52 p.m. to 12:53 p.m., 1:10 p.m. to 1:11 p.m., 1:16 p.m. to 1:19 p.m., 1:24 p.m. to 1:28 p.m., 1:31 p.m. to 1:32 p.m., and 1:36 p.m. to 1:38 p.m. when the system was shut down for testing of the leak detection system. Extraction system downtime was 12 minutes.

June 16, 2009 (planned): The extraction well system was offline from 2:18 p.m. to 3:18 p.m. for a permeate tank connection. Extraction system downtime was 1 hour.

June 17-18, 2009 (unplanned): The extraction well system was offline from 10:35 p.m. to 10:44 p.m. on June 17; 1:05 a.m. to 1:12 a.m., and 10:35 a.m. to 11:12 a.m. on June 18 when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 53 minutes.

June 18, 2009 (planned): The extraction well system was offline from 8:25 p.m. to 8:31 p.m. when plant power was switched from generator power to City of Needles power. Extraction system downtime was 6 minutes.

June 22, 2009 (planned): The extraction well system was offline from 2:01 p.m. to 2:23 p.m. for repair of the micro filter system. Extraction system downtime was 22 minutes.

June 23 - 24, 2009 (planned): The extraction well system was offline from 5:55 a.m. to 7:11 p.m., 7:53 p.m. to 9:37 p.m. and 10:33 p.m. to 12:24 a.m. on June 24, 2009 for microfilter bank switch, plant maintenance, sampling routine to bring plant back online after microfilter bank switch. Extraction system downtime was 16 hours and 51 minutes.

Appendix B Daily Volumes of Groundwater Treated

January 2009 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Sy	/stem ^a	Inje	RO Brine ^a			
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
January	1	2009	0		153,948	39,539	193,487	189,215	15	189,230	6,364
January	2	2009	0		153,887	39,751	193,638	189,318	6,014	195,332	3,140
January	3	2009	0		154,049	39,629	193,678	196,148	18	196,166	3,150
January	4	2009	0		154,449	39,326	193,775	191,782	15	191,797	3,125
January	5	2009	0		154,566	39,317	193,882	191,446	15	191,461	5,177
January	6	2009	0		154,542	39,387	193,930	186,706	6,745	193,451	4,270
January	7	2009	0		154,623	39,394	194,018	186,384	7,805	194,188	3,140
January	8	2009	0		153,506	38,750	192,255	196,388	19	196,407	3,204
January	9	2009	0		151,824	38,330	190,153	186,829	18	186,847	3,146
January	10	2009			159,405	39,965	199,370	182,382	0	182,382	3,093
January	11	2009			156,296	33,496	189,792	184,032	0	184,032	3,132
January	12	2009			161,280	34,112	195,392	187,560	0	187,560	3,104
January	13	2009	0		159,581	31,511	191,092	111,745	79,396	191,141	3,166
January	14	2009	0		167,126	25,484	192,611	8	184,044	184,053	3,175
January	15	2009	0		154,751	35,952	190,703	2,008	181,484	183,493	6,295
January	16	2009	0		154,515	37,159	191,674	960	189,586	190,547	3,126
January	17	2009	0		153,374	39,427	192,801	11	188,535	188,546	3,008
January	18	2009	0		153,581	39,268	192,848	12	186,090	186,102	3,145
January	19	2009	0		142,684	37,234	179,919	10	178,497	178,507	3,150
January	20	2009	0		50,513	13,074	63,586	15	64,542	64,557	3,157
January	21	2009	0		15,714	4,786	20,500	14	13	27	10,759
January	22	2009	0		153,418	38,649	192,067	1,377	195,916	197,293	3,140
January	23	2009	0		122,257	31,765	154,022	19	148,581	148,600	3,142
January	24	2009	0		155,967	39,138	195,105	13	193,625	193,638	3,007
January	25	2009	0		156,066	39,085	195,151	16	195,355	195,371	3,138
January	26	2009	0		156,791	38,377	195,168	16	190,971	190,987	3,144
January	27	2009	0		156,857	38,514	195,371	5,384	184,170	189,555	6,328
January	28	2009	0		155,178	38,735	193,913	38,572	151,700	190,272	3,004
January	29	2009	0		136,819	34,356	171,176	13	177,394	177,407	3,175
January	30	2009	0		153,612	38,565	192,177	11	188,789	188,800	3,129
January	31	2009	0		154,409	38,428	192,837	12	189,498	189,510	352
Total Month	ly Volumes (gal)	0	0	4,515,589	1,100,502	5,616,091	2,428,406	3,088,851	5,517,257	114,585
Average Pu	mp/Injection	Rates (gpm)	0.0	0.0	101.2	24.7	125.8	54.4	69.2	123.6	2.6

NOTES:

---- : Not in operation during reporting period. gal: gallons gpm: gallons per minute

RO: Reverse Osmosis

^aFlow Readings tabulated from the data historian at the IM-3 Facility.

February 2009 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inj	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
February	1	2009		10	156,442	38,858	195,310	14	193,107	193,121	8,739
February	2	2009		5	156,621	38,865	195,491	11	190,415	190,426	3,113
February	3	2009		11	157,104	38,414	195,530	826	194,140	194,966	3,182
February	4	2009		9	157,190	38,405	195,604	14	187,112	187,126	2,997
February	5	2009		7	157,058	38,332	195,397	12	199,805	199,817	3,178
February	6	2009		9	157,110	38,035	195,155	12	186,874	186,886	6,130
February	7	2009		7	157,174	38,164	195,345	11	193,340	193,351	3,081
February	8	2009		5	157,192	38,242	195,439	11	190,281	190,292	3,153
February	9	2009		7	157,169	38,526	195,702	9	195,900	195,910	3,192
February	10	2009		9	156,264	38,039	194,312	3,257	190,783	194,040	3,197
February	11	2009		611	155,663	38,383	194,658	24,367	166,710	191,077	6,082
February	12	2009		10	156,436	38,727	195,172	33,587	158,996	192,582	3,137
February	13	2009		8	156,849	38,377	195,234	10	199,880	199,890	3,140
February	14	2009		10	157,007	38,337	195,354	11	190,239	190,249	3,147
February	15	2009		8	157,359	38,079	195,446	12	191,834	191,846	3,145
February	16	2009		10	157,697	37,782	195,488	9	192,441	192,450	3,194
February	17	2009		12	157,788	37,823	195,623	2,254	189,876	192,129	6,277
February	18	2009		7	99,298	24,211	123,516	19	124,595	124,614	3,159
February	19	2009		9	156,749	38,033	194,791	18	189,088	189,105	3,123
February	20	2009		9	156,980	38,029	195,018	17	191,200	191,217	3,182
February	21	2009		8	157,215	37,938	195,161	13	190,829	190,842	3,142
February	22	2009		7	157,349	37,846	195,202	8	191,083	191,091	3,136
February	23	2009		6	147,215	36,501	183,722	13	182,237	182,249	3,135
February	24	2009		11	155,248	38,219	193,478	7,737	185,839	193,575	6,403
February	25	2009		5	156,626	38,327	194,959	19	189,019	189,038	3,138
February	26	2009		9	156,546	38,521	195,076	10	188,117	188,128	3,211
February	27	2009		5	156,624	38,133	194,762	10	192,941	192,951	3,167
February	28	2009		5	156,844	38,142	194,991	11	194,447	194,458	3,215
Total Monthly	Volumes	s (gal)	0	829	4,324,820	1,055,287	5,380,936	72,302	5,231,128	5,303,429	106,095
Average Pum	p/Injectio	n Rates (gpm) 0.0	0.0	107.3	26.2	133.5	1.8	129.7	131.5	2.6

NOTES: gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

March 2009 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem	Inj	stem	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
March	1	2009			156,868	38,260	195,128	8	191,301	191,309	6,619
March	2	2009			156,932	38,296	195,228	17	187,332	187,349	6,746
March	3	2009			156,880	38,491	195,371	12	198,773	198,785	6,290
March	4	2009			140,599	34,858	175,458	13,438	154,079	167,517	1,857
March	5	2009			156,416	38,876	195,292	23	191,452	191,475	3,209
March	6	2009			156,607	38,754	195,361	27,493	164,208	191,700	3,221
March	7	2009			156,868	38,513	195,381	181,491	3,664	185,155	3,816
March	8	2009			156,966	38,569	195,536	69,868	123,848	193,715	5,713
March	9	2009			157,331	38,160	195,491	19	198,227	198,246	3,142
March	10	2009			157,301	38,446	195,747	99,915	95,579	195,494	3,166
March	11	2009			157,423	38,402	195,825	117,109	76,902	194,011	6,407
March	12	2009			157,430	38,425	195,855	8	193,973	193,982	3,127
March	13	2009			144,499	35,101	179,600	80,567	97,437	178,003	3,209
March	14	2009			145,560	35,854	181,414	17	181,795	181,812	3,156
March	15	2009			156,585	38,751	195,335	7	191,960	191,967	6,193
March	16	2009			147,648	36,205	183,854	13	179,006	179,019	3,256
March	17	2009			156,673	38,162	194,835	39,701	149,038	188,740	3,171
March	18	2009			76,138	19,394	95,532	12	87,156	87,168	11,756
March	19	2009			156,354	38,426	194,781	15,496	185,970	201,466	3,149
March	20	2009			155,152	38,120	193,273	14	190,389	190,403	3,171
March	21	2009			156,935	37,866	194,802	19	187,715	187,734	3,211
March	22	2009			154,225	38,643	192,868	28	192,409	192,438	5,311
March	23	2009			150,018	37,337	187,355	37,219	140,878	178,096	3,976
March	24	2009			156,585	38,331	194,917	33,194	165,232	198,425	3,226
March	25	2009			154,940	38,075	193,015	15,611	177,031	192,643	3,158
March	26	2009			152,983	37,823	190,806	15,862	183,941	199,803	3,169
March	27	2009			124,894	31,514	156,408	20	151,761	151,781	3,172
March	28	2009			113,144	28,317	141,461	15	130,950	130,964	6,558
March	29	2009			147,218	36,222	183,440	17	183,807	183,824	3,179
March	30	2009			122,947	30,635	153,582	9	150,164	150,173	3,167
March	31	2009			136,675	34,233	170,908	15	164,890	164,905	3,235
Total Monthly	/ Volumes	s (gal)	0	0	4,576,794	1,127,062	5,703,856	747,237	4,870,866	5,618,103	131,737
Average Pum	p/Injectio	n Rates (gpm)	0.0	0.0	102.5	25.2	127.8	16.7	109.1	125.9	3.0

NOTES:

April 2009 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem	Inj	stem	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
April	1	2009			157,169	38,715	195,885	22,041	177,090	199,131	6,390
April	2	2009			154,819	38,449	193,268	14	191,094	191,108	3,201
April	3	2009			157,078	38,957	196,036	8	194,354	194,362	3,237
April	4	2009			157,108	39,136	196,245	8	195,723	195,731	3,174
April	5	2009			157,426	38,825	196,251	8	190,359	190,367	3,149
April	6	2009			157,337	38,992	196,329	17	194,287	194,303	3,168
April	7	2009			157,704	38,562	196,265	14	197,556	197,569	3,216
April	8	2009			146,673	36,834	183,507	1,489	180,249	181,738	3,164
April	9	2009			157,189	38,490	195,680	17	190,730	190,746	3,143
April	10	2009			155,518	39,198	194,716	10	192,017	192,027	3,210
April	11	2009			155,379	38,596	193,974	8	193,658	193,666	3,209
April	12	2009			155,621	38,531	194,153	10	189,603	189,613	2,940
April	13	2009			155,953	38,210	194,163	12	189,797	189,809	3,244
April	14	2009			155,848	38,525	194,373	2,275	193,248	195,523	3,193
April	15	2009			155,589	38,960	194,549	14	189,215	189,229	3,186
April	16	2009			155,827	38,748	194,575	13	190,961	190,974	2,973
April	17	2009			155,902	38,797	194,699	12	194,233	194,245	3,234
April	18	2009			156,005	38,722	194,727	14	193,430	193,444	3,228
April	19	2009			139,629	34,680	174,309	11	164,992	165,003	3,212
April	20	2009			45,376	11,330	56,706	19	58,054	58,072	4
April	21	2009			9	12	21	12	8	21	3
April	22	2009			14	12	26	13	10	24	2
April	23	2009			17	24	41	17	17	35	4
April	24	2009			16	13	29	10	17	27	3
April	25	2009			12	13	25	21	14	34	5
April	26	2009			4,402	1,345	5,747	15	17	33	4
April	27	2009			78,982	19,962	98,944	14	99,901	99,915	9,161
April	28	2009			155,466	38,667	194,133	12	189,961	189,973	3,144
April	29	2009			155,734	38,370	194,104	26,534	172,626	199,160	3,191
April	30	2009			155,862	38,501	194,364	11	196,868	196,879	6
Total Monthly	/ Volumes	s (gal)	0	0	3,539,665	878,175	4,417,840	52,672	4,320,086	4,372,758	78,997
Average Pum	p/Injectio	on Rates (gpm) 0.0	0.0	81.9	20.3	102.3	1.2	100.0	101.2	1.8

NOTES:

May 2009 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem	Inje	stem	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
May	1	2009			156,245	38,055	194,300	14	193,763	193,776	3,231
May	2	2009			156,540	37,709	194,249	13	192,990	193,003	3,203
May	3	2009			156,205	38,343	194,548	13	190,139	190,152	3,192
May	4	2009			156,385	38,298	194,683	18	195,223	195,240	2,664
May	5	2009			112,199	28,293	140,492	12	135,362	135,374	3,497
May	6	2009			155,352	38,281	193,634	22,064	175,370	197,434	3,072
May	7	2009			148,667	37,882	186,548	16	186,980	186,996	1,460
May	8	2009			155,360	38,100	193,460	14	194,718	194,732	3,171
May	9	2009			152,295	38,822	191,117	19	185,799	185,817	2,813
May	10	2009			152,524	39,069	191,593	17	193,823	193,840	398
May	11	2009			151,929	39,494	191,423	19	188,714	188,733	3,157
May	12	2009			153,990	40,243	194,233	14	193,426	193,441	3,136
May	13	2009			48,910	13,127	62,037	19	62,642	62,661	3,239
May	14	2009			67,988	18,177	86,165	20	81,125	81,145	1,886
May	15	2009			154,721	39,827	194,547	20	190,458	190,478	2,102
May	16	2009			154,848	39,764	194,612	12	198,265	198,277	1,068
May	17	2009			154,815	39,888	194,704	17	192,831	192,848	3,145
May	18	2009			151,022	39,867	190,890	12	187,154	187,166	3,154
May	19	2009			149,479	39,722	189,201	4,305	182,402	186,707	3,101
May	20	2009			64,748	13,918	78,666	20	62,107	62,128	10,840
May	21	2009			166,094	22,268	188,362	9,937	183,979	193,916	3,137
May	22	2009			156,223	37,941	194,164	17	198,709	198,726	3,191
May	23	2009			156,105	38,159	194,264	15	188,932	188,947	3,182
May	24	2009			156,134	38,298	194,431	23	193,480	193,502	3,130
May	25	2009			156,064	38,558	194,623	14	185,063	185,077	3,197
May	26	2009			120,702	30,589	151,291	111,699	43,117	154,817	4
May	27	2009			155,581	38,720	194,301	201,451	16	201,468	3,174
May	28	2009			155,814	38,444	194,258	198,385	13	198,399	3,725
May	29	2009			155,884	38,363	194,247	190,448	18	190,466	3,196
May	30	2009			148,052	37,431	185,482	184,483	25	184,509	3,042
May	31	2009			154,703	40,104	194,808	182,564	11	182,576	3
Total Monthly	y Volumes	s (gal)	0	0	4,435,577	1,095,753	5,531,330	1,105,695	4,376,654	5,482,349	90,511
Average Pum	np/Injectio	on Rates (gpm) 0.0	0.0	99.4	24.5	123.9	24.8	98.0	122.8	2.0

NOTES:

June 2009 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem	Inje	Injection Well System			
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
June	1	2009			154,915	39,887	194,802	197,559	19	197,578	3,027
June	2	2009			154,708	40,196	194,903	191,841	14	191,855	3,180
June	3	2009			151,272	39,003	190,274	194,521	1,387	195,908	3,036
June	4	2009			155,344	38,330	193,674	185,922	15	185,937	3,149
June	5	2009			155,532	38,134	193,666	202,043	12	202,055	2
June	6	2009			155,674	37,996	193,670	193,141	15	193,156	3,121
June	7	2009			155,764	37,933	193,697	192,402	16	192,418	3,173
June	8	2009			155,936	37,999	193,934	195,869	265	196,134	3,227
June	9	2009			156,233	37,958	194,190	95,184	95,030	190,215	3,147
June	10	2009			156,476	37,803	194,279	8,440	188,590	197,030	3,203
June	11	2009			155,117	37,162	192,279	8	194,177	194,185	3
June	12	2009			156,970	37,359	194,329	18	189,222	189,240	3,219
June	13	2009			156,947	37,454	194,401	22	191,734	191,756	3,183
June	14	2009			156,843	37,703	194,546	16	192,662	192,678	3,178
June	15	2009			156,936	37,629	194,565	19	192,470	192,489	3,135
June	16	2009			149,148	36,697	185,844	11	181,106	181,118	3,134
June	17	2009			154,211	38,542	192,752	11,812	90,679	102,491	3,124
June	18	2009			149,444	37,470	186,914	14,427	88,335	102,763	3,166
June	19	2009			156,382	37,841	194,222	10	193,048	193,058	3
June	20	2009			156,551	37,682	194,233	13	189,202	189,214	3,172
June	21	2009			156,529	37,885	194,414	13	187,558	187,571	3,143
June	22	2009			153,366	37,620	190,985	4,654	175,694	180,347	3,025
June	23	2009			48,056	12,545	60,602	10	50,332	50,342	13,197
June	24	2009			151,982	38,838	190,819	191,531	16	191,547	2,264
June	25	2009			154,895	39,618	194,514	190,532	19	190,551	3,200
June	26	2009			155,020	39,335	194,355	186,718	22	186,740	3,195
June	27	2009			155,294	38,967	194,261	193,328	24	193,351	3,176
June	28	2009			155,244	39,105	194,349	185,896	20	185,916	3,056
June	29	2009			155,509	38,804	194,313	190,920	26	190,946	3,094
June	30	2009			155,356	39,089	194,445	178,066	7,742	185,808	3,164
Total Monthly	/ Volumes	s (gal)	0	0	4,541,652	1,122,582	5,664,235	3,004,947	2,409,450	5,414,397	94,095
Average Pum	p/Injectio	on Rates (gpm)) 0.0	0.0	105.1	26.0	131.1	69.6	55.8	125.3	2.2

NOTES:

Appendix C Flowmeter Calibration Records

Flow Calibration without Adjustment

30092302-1304705

US-19050353-30 / Endress+Hauser Flowtec 155.6102 GPM ($\triangleq 100\%$) Order N ^e /Manufacturer 23P50-AL1A1AA022AW Order code Current 4 - 20 mA PROMAG 23 P 2" 0.9148 Transmitter/Sensor Galibrated full scale 6C036F16000 0 Senial N ^e FIT-103 / PE - 1 / in s te//led 1/4/07 0.9148 FIT-1201- FIT-103 / PE - 1 / in s te//led 1/4/07 0 Tag N ^e Water temperature Measured error % o.r. Plow Flow Duration V target V meas. Δ or.* Outp.** N Iso Aul JUS GAU JUS GAU JUS GAU ImAl 39.5 61.5 30.1 30.807 30.875 0.22 10.34 39.5 61.5 30.1 30.812 30.561 -0.81 10.27 - - - - - - - - - - - - - - - - - - - - - - - - 139.5 61.5 <	WWRA Purchase or	-00092 der numb	23-F ^{er}	• •				FCP-6.F Calibration rig
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	US-190 Order Nº/N	50353 Manufactu	-30 / Er ^{rer}	idress+Ha	user Flow	rtec		$\begin{array}{l} 155.6102 \text{ GPM} \qquad (\triangleq 100\%) \\ \text{Calibrated full scale} \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23P50- Order code	AL1A1	AA022A	W				Current 4 - 20 mA Calibrated output
Transmitter/Sensor Galibration factor 6C036F16000 Serial N° FIT-103/PE-1/installed 1/4/07 Transmitter/Sensor O Zero point Transmitter/Sensor O Serial N° FIT-103/PE-1/installed 1/4/07 Transmitter/Sensor O Zero point Transmitter/Sensor Measured error % o.r. Tolerance limit Tolerance limit Transmitter/Sensor O Zero point Transmitter/Sensor Outp.** Flow Flow Duration V meas. Δ or.* Outp.** Measured error % o.r. 139.5 61.5 30.1 30.812 30.561 -0.81 10.27 - - - - - - - - - - - - - - - -	PROMA	AG 23 1	P 2"					0.9148
$ \frac{6C036F16000}{\text{Serial N}^{\circ}} = \frac{FIT-103}{FIT-1201-} \frac{FIT-103}{FE-1} \frac{1}{\text{in } s \text{ talled } 1/4/07} $ $ \frac{0}{\text{Zero point}} = \frac{1}{72.3 \circ F} = \frac{1}{7$	Transmitter	r/Sensor						Calibration factor
Serial N° FIT-1201- FIT-103/PE-1/installed 1/4/07 Tag N° Tag N° Term PLANCE Flow Flow Duration V target V meas. $\Delta o.r.*$ Outp.** Main Massain Measured error % o.r. 39.5 61.5 30.1 30.816 30.002 -2.64 10.15 39.5 61.5 30.1 30.807 30.875 0.22 10.34 1 39.5 61.5 30.1 30.813 30.772 -0.13 10.31 1 39.5 61.5 30.1 30.812 30.561 -0.81 10.27 0 1 1 -	6C036I	F16000)					0
FIT-1201- FIT-103 PE-1 in s talled 1/4/07 72.3 °F Tag N? Tag N? Water temperature Flow Flow Duration V target V meas. Δ or.* Outp.** Measured error % o.r. 181 IGPMI Iseci IUS GAU IW GAU IMA Tolerance limit 39.5 61.5 30.1 30.816 30.002 -2.64 10.15 2 39.5 61.5 30.1 30.807 30.875 0.22 10.34 1 39.5 61.5 30.1 30.813 30.772 -0.13 10.31 1 39.5 61.5 30.1 30.812 30.561 -0.81 10.27 0 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Serial Nº			1	1			Zero point
Water temperature Tag N? Water temperature Flow Flow Duration V target V meas. Δ or.* Outp.** Measured error % o.r. $ X $ [GPM] [sec] [US GAU] [US GAU] [X] [mA] 39.5 61.5 30.1 30.807 30.875 0.22 10.34 39.5 61.5 30.1 30.813 30.772 -0.13 10.31 39.5 61.5 30.1 30.812 30.561 -0.81 10.27 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	FIT-120	31- F	IT-103	PE-1	/install	ed 1/1	1/07	72.3 °F
Flow Flow Duration V target V meas. $\Delta o.r.*$ Outp.** Measured error % o.r. [%] [GPM] [sec] [US GAU] [US GAU] [%] [mA] 39.5 61.5 30.1 30.816 30.002 -2.64 10.15 39.5 61.5 30.1 30.807 30.875 0.22 10.34 39.5 61.5 30.1 30.813 30.772 -0.13 10.31 39.5 61.5 30.1 30.812 30.561 -0.81 10.27 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Tag N?		/		1			Water temperature
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Flow [%]	Flow [GPM]	Duration	V target US GALJ	V meas. [US GAL]	∆ 0.r.* [%]	Outp.** [mA]	Measured error % o.r.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.5	61.5	30.1	30.816	30.002	-2.64	10.15	2 .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.5	61.5	30.1	30.807	30.875	0.22	10.34	Tolerance limit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.5	61.5	30.1	30.813	30.772	-0.13	10.31	I - [±0.3% 0.1." ± 2.5."]
	39.5	61.5	30.1	30.812	30.561	-0.81	10.27	
	-	-	-	-	-	-	-	0
	-	-	-	-	-	-	-	
	-	-	-	-	-	-		-1-
	-	-	-	-	-	-	-	
0 10 20 30 40 50 00 20 80 00 Flow 191	-	-	-	-	-	-	-	-2-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

12-04-2006

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

TimSwint

*z.s.: Zero stability

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

Page 1/1

100%)

People for Process Automation

Flow Calibration with Adjustment

30107893-1304706

WWRA-002048-F

Purchase order number

US-19054161-10 / Endress+Hauser Flowtec

23P50-AL1A1AA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor

6C037016000

Serial Nº TW-3D/installed 1/25/08 FIT-1202 FIT-102

Tag N

Flow [%]	Flow [GPM]	Duration [sec]	V target (US GAL)	V meas. [US GAL]	∆ o.r.* [%]	Outp.** [mA]
9.9	15.5	30.1	7.7531	7.7537	0.01	5.59
40.5	63.0	30.1	31.560	31.554	-0.02	10.47
40.5	63.0	30.1	31.569	31.574	0.01	10.48
99.5	154.8	30.1	77.589	77.448	-0.18	19.89
••	· -	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
- *o.r.: of rate	-	-	-		-	-

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA) and Aurangabad (IN).

09-12-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

mSwint

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

FCP-6.F

Calibration rig

155.6102 GPM Calibrated full scale

Current 4 – 20 mA Calibrated output

0.9154

Calibration factor

0

Zero point

76.2 °F

Water temperature

Measured error % o.r.

Flow Calibration with Adjustment

30057866-1275190

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec Order N%Manufacturer

23P50-AL1A1RA022AW

Order Code

PROMAG 23 P 2"

Transmitter/Sensor

6A021F16000

FIT-100 / TW-20 / installed 7/28/05

Tag Nº

Flow	Flow	Duration	V target	V meas.	Δ o.r.*	Outp.**
(%)	(GPM)	[sec]	[US GAL]	[US GAL]	[%]	[mA]
10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59
39.9	62.1	30.0	31.071	31.070	0.00	10.38
39.9	62.1	30.0	31.073	31.078	0.02	10.38
100.2	156.0	30.0	78.041	78.156	0.15	20.06
-	-	-		-	-	-
-	-	-	100	-	-	-
-	-	-	-	-	-	-
-	-	-	1.00	-	-	-
-	-	-	075	-	-	-
-	-	-	-	-	-	-
"o r : ol rate						

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	and the second
Current 4 - 20 mA	
Calibrated output	
0.9178	
Calibration factor	
0	
Zero point	
72.9 °F	

Water temperature

Measured error % o.r.

"Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004 Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Sminh

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

People for Process Automation

Endress+Hauser

Flow Calibration with Adjustment

30057870-1275191

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

Flow

[%]

10.0

40.0

40.1

100.2

PROMAG 23 P 2"

Transmitter/Sensor

6A022016000

Flow

[GPM]

15.6

62.3

62.4

155.9

Serial Nº TW-25/ installed 7/28/05 FIT-101-Tag №

V target

US GAL

7.7910

31.157

31.229

78.017

Duration

[sec]

30.0

30.0

30.0

30.0

4

a.

FCP-6.C	
Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	

Water temperature

Measured error % o.r.

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

V meas.

[US GAL]

7.8318

31.160

31.229

77.856

Outp.**

[mA]

5.61

10.40

10.42

20.00

....

-

-

-

Δ o.r.*

[%]

0.52

0.01

0.00

-0.21

-

-

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Smit

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Endress+Hauser

People for Process Automation

60 70 80

Flow (%)

Flow Calibration without Adjustment

30094933-1275192

WWRA-001176-F Purchase order number					FCP-6.F				
US-19051105-10 / Endress+Hauser Flowtec					155.6102 GPM (≙ 100%)				
Order N [*] /Manufacturer 23P50-AL1A1RA022AW						Current 4 – 20 mA			
PROM	e AG 23 I	P 2"					Calibrated output 0.9214		
Transmitte	er/Sensor 116000)					Calibration factor O		
Serial Nº	Serial N° T = 1202 / $T = 02/2$ / $T = 02/2$					Zero point 72 3 °F			
Tag Nº	<u> </u>		/ 1431	ene a l	10100	<u></u>	Water temperature		
Flow [%]	Flow [CPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	Δo.r.* [%]	Outp.** (mAj	Measured error % o.r.		
9.9 40.5	15.5 63.0	30.1 30.1	7.7413 31.575	7.7054 31.604	-0.46 0.09	5.58 10.48	2 Tolerance limit		
40.5 99.8	63.0 155.3	30.1 30.1	31.562 77.847	31.621 78.099	0.19 0.32	10.49 20.02	1- (±0.5% o.r.* ± z.s.*)		
-	-	-	-	-	-	-			
-		-	-		-	-			

*o.t.: of rate

*z.s.: Zero stability

20 10

30

**Calculated value [4 - 20 mA]

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-23-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

fin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Flow Calibration with Adjustment

30116785-1304708

WWRA-002642-F

Purchase order number

US-19056062-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1AA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor

6C037216000

Serial Nº IW-03/installed 4/9/08 FIT-1204 FIT-1203

Tag Nº

(GPM)	ised	V target	US GAL	∆ o.r.* [%]	Outp.** [mA]	
15.5	30.1	7.7698	7.7384	-0.40	5.59	2
63.0	30.1	31.589	31.594	0.02	10.48	
63.1	30.1	31.617	31.612	-0.02	10.49	
156.0	30.1	78.191	78.296	0.13	20.06	
-	-	-	- 1	-	-	
-	· -	-	-		-	
-	-		-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
-	-	-	-	-	-	
	15.5 63.0 63.1 156.0 - - - -	15.5 30.1 63.0 30.1 63.1 30.1 156.0 30.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -	ISS 30.1 7.7698 63.0 30.1 31.589 63.1 30.1 31.617 156.0 30.1 78.191 - - -	Iter Just Grup Jus	Item Jeeq Just GAL Jus	Iss 30.1 7.7698 7.7384 -0.40 5.59 63.0 30.1 31.589 31.594 0.02 10.48 63.1 30.1 31.617 31.612 -0.02 10.49 156.0 30.1 78.191 78.296 0.13 20.06 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ŧ.	al.
FCP-6.F	
Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9312	
Calibration factor	
20	
Zero point	,
71.1 °F	
Water temperature	

Endress+Hauser

People for Process Automation

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA) and Aurangabad (IN).

02-18-2008 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

1 Ste

Taylor Shepard

Certified acc. to MIL-STD-45662A ISO 9001, Reg-Nº 030502.2

Page 1/1

Flow Calibration with Adjustment

30094930-1385113

WWRA-001176-F

Purchase order number

US-19051105-20 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P80-AL1A1AA022AW

Order code

PROMAG 23 P 3"

Transmitter/Sensor

7700C616000

Serial Nº - FIT-700/Combined Flow to IW-03+IW-02/ Tag Nº installed 2/13/08

Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas, [US GAL]	Δ o.r.* [%]	Outp.** [mA]
10.3	40.8	60.5	41.188	41.136	-0.13	5.64
41.0	163.2	60.4	164.437	164.439	0.00	10.56
41.0	163.4	60.4	164.412	164.396	-0.01	10.56
98.8	393.5	60.8	398.925	398.170	-0.19	19.78
-	-	-	120	-	3 4 3	-
-	-		<u>u</u> n	-	-	-
-	-	-	220	-	-	-
-	-	-		1 1	-	_
-	_	- 1	-	- 1	-	-
-	-		-	0 02	-	
*o r : of rate				1		10

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-23-2007

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

Calibration rig	
398.3621 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
1.1466	
Calibration factor	
35	
Zero point	
70 0 °E	

72.2 °F

Water temperature

Measured error % o.r.

M.E. Till

Morris E. Trueblood Jr. Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

People for Process Automation

Flow Calibration with Adjustment

30094931-1275193

WWRA-001178-F

Purchase order number

US-19051105-30 / Endress+Hauser Flowtec Order N°/Manufacturer

23P50-AL1A1RA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor

6A022216000

Serial Nº -701 IT . Ro Concentrate / installed 02/02/07 FIT-103 Tag Nº

Flow [%]	Flow Flow Duration [%] [GPM] [sec]		V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.*
10.0	15.5	30.1	7.7833	7.7628	-0.26	5.59
40.5	63.1	30.1	31.600	31.613	0.04	10.49
40.6	63.1	30.1	31.650	31.674	0.07	10.50
99.7	155.1	30.1	77.720	77.919	0.26	19.98
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9235	
Calibration factor	a waa ala ayaa ahaa ahaanaa
0	
Zero point	
72.2 °F	

Measured error % o.r.

**Calculated value (4 - 20 mA)

"o.r.: of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-23-2007

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

fin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

Appendix D Second Quarter 2009 Laboratory Analytical Reports

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

April 22, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-197 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 982576

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-197 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on April 1, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi Manager, Analytical Services

K. R. P. gyc

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01

Laboratory No.: 982576 Date: May 5, 2009 Collected: April 1, 2009 Received: April 1, 2009 Revision 1

ANALYST LIST

METHOD	PARAMETER	ANAL YST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Linda Saetern
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>DF</u>	<u>RL</u>	<u>Results</u>
982576-1	SC-700B-WDR-197	µmhos/cm	EPA 120.1	1.00	2.00	6710
982576-2	SC-100B-WDR-197	μ mhos/cm	EPA 120.1	1.00	2.00	7840

QA/QC Summary

	D Laboratory Concentration Duplicate Concentration			Relative Percent	Acceptance		QC Within				
1.1.2.		·		Concentr	ation		Difference		limits	Control	
Duplica	ate 982576-2	2 7840		7850		0.13%		<u>≺</u> 10%		Yes	
	QC Std I.D.	Measured Concentration	T Co	heoretical incentration	Percei Recove	nt ≆ry	Acceptar Limits	ice	QC With Control	In	
Ĺ	Blank	ND		<2.00			<2.00		Yes	-	
	CCS	695		706	98.49	6	90% - 11	0%	Yes		
	CVS#1	978		1000	97.8%	6	90% - 11	0%	Yes		
	LCS	695		706	98.49	6	90% - 11	0%	Yes		
Ĺ	LCSD	695		706	98.4%	6	90% - 11	0%	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 982576

Prep/ Analyzed: April 2, 2009 Analytical Batch: 04EC09A

Date: April 23, 2009

Collected: April 1, 2009

Received: April 1, 2009

Sem

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	RL	<u>Results</u>
982576-1	SC-700B-WDR-197	mg/L	SM 2540C	250	3850
982576-2	SC-100B-WDR-197	mg/L	SM 2540C	250	5700

QA/QC Summarv

QC STD I.	D. Laborator Number	Concentra	ition	Duplic Concent	cate tration	F Di	Percent Ifference	Aco	ceptance limits	QC Within Control
Duplicate 982574-2		2 5700		5650		0.44%		<u>≤</u> 5%		Yes
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Perce Recove	nt ery	Accepta Limit	nce s	QC Within Control	- -
[Blank	ND		<25.0			<25.0)	Yes	
[LCS 1	502		500	100%	6	90% - 1 ⁴	10%	Yes	1

ND: Below the reporting limit (Not Detected). **RL: Reporting Limit.**

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 982576

Collected: April 1, 2009

Received: April 1, 2009

Prep/ Analyzed: April 2, 2009 Analytical Batch: 04TDS09A

Date: April 23, 2009

4--

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 009

Excellence in INDEPENDENT TESTING
Established 1931
It201 FRANKLIN AVENUE
TUSTIN, CALIFORNIA 92780-7008
(714) 730-6239 · FAX (714) 730-6462
Www.truesdail.com
Oakland, CA 94612
Attention: Shawn Duffy
Laboratory No.: 982576

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Date: April 23, 2009 Collected: April 1, 2009 Received: April 1, 2009 Prep/ Analyzed: April 2, 2009 Analytical Batch: 04TUC09C

Investigation:

Turbidity by Method SM 2130B

	<u>Analytical Results Turbidity</u>													
<u>TLI I.D.</u>	Fleid I.D.	Sample Time	Units	<u>DF</u>	<u>RL</u>	Results								
982576-1 982576-2	SC-700B-WDR-197 SC-100B-WDR-197	08:25 08:25	NTU NTU	1.00 1.00	0.100 0.100	ND ND								

QA/QC Summary

QC STD I.D.		Laboratory Number		Concentration		Duplic Concent	cate tration	۲ ۱ ۱۵	Relative Percent Ifference	Acceptance limits		QC Within Control
Duplicate 982565-26		6	NĎ		NĎ		0.00%		<u>≤</u> 20%		Yes	
	a	QC Std I.D. Co Blank LCS		Measured Ti Concentration Con ND 8.27		Theoretical Concentration <0.100		nt ery	Accepta Limit	ince s	QC Within Control	
									<0.10	0	Yes	-
						8.00	1039	6 90% - 1		10% Yes		-
		LCS		7.93		8.00	99.19	6	90% - 1	10%	Yes	1

ND: Below the reporting limit (Not Detected). DE: Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 982576

Collected: April 1, 2009

Received: April 1, 2009

Prep/ Analyzed: April 2, 2009

Analytical Batch: 04CrH09B

Date: April 23, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01 Prep. Batch: 04CrH09B

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
982576-1	SC-700B-WDR-197	08:25	09:01	μg/L	1.05	0.20	ND
982576-2	SC-100B-WDR-197	08:25	09:11	μg/L	52.5	10.5	1180

QA/QC Summary

	QC STO	QC STD I.D. Laboratory Number Duplicate 982573		Sample Di Concentration Con-		Duj Conce	plicate entration		Relative Percent Difference		Acceptance limits		QC Within Control			
	Duplic			982573		ND		ND			0.00%		≤ 20%		Yes	
QC Std I.D.	Lab Number	Con unsp sam	ic.of liked aple	Dilut	ion Factor	Added Spike Conc.	Ал	MS nount	M C	easured Conc. of spiked sample		heoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
MS	982576-1	0.1	36		1.06	1.00	-	1.06		1.19		1.20		9.4%	90-110%	Yes
MS	982576-2	11	80		52.5	25.0	1	313		2460		2493	- 9	7.5%	90-110%	Yes
		QC Std I.D Blank		QC Std I.D. Mea Conce		isured Th entration Con		heoretical incentration		Percen Recove	cent Acceptan		ance QC Withi ts Control		in I	
				Blank		Blank ND		ND	<0.200						-1	
			MRCO	s		5.10		5.00		102%		90% - 11)%	Yes	-	
		Ň	IRCV:	5#1	ş	9.99		10.0		99.9%		95% - 10	5%	Yes	-1	
		M	IRCV	S#2		10.0		10.0		100%	-	95% - 10	5%	Yes		
			LCS	5		5.10		5.00		102%		90% - 11	2%	Yes	-	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.
EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Date: April 23, 2009 Collected: April 1, 2009 Received: April 1, 2009 Prep/ Analyzed: April 6, 2009 Analytical Batch: 04NH3-E09B

Laboratory No.: 982576

Investigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Method	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
982576-1	SC-700B-WDR-197	08:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND
982576-2	SC-100B-WDR-197	08:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summarv

) I.D,	L	aborato Numbe	r r	Concentration		on Duplicate Concentration		Relative Percent Difference	Acc	eptance limits	QC Within Control		
	Duplic	ate	9	82576	2	ND			ND		0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample 0,00		f d Dilution Factor		Added Spike Conc.		MS Amount		easured onc. of spiked ample	Theoretics Conc. of spiked sample	il Re	MS% covery	Acceptance limits	QC Within Control
MS	982576-2	0.00	1.00		6.00		6.00		6.00	6.00		100%	75-125%	Yes	
		0	QC Std I.D. Blank MRCCS MRCVS#1	Me Cond	asured centration	Theoretical Concentration <0.500		cal Percen ition Recover		nt Accept ry Limi	ance ts	QC Withi Control	n		
					ND					<0.5	20	Yes			
					6.04		6.00		101%	90% - 1	110% Yes				
					6.06		6.00		101%	1% 90% - 110		Yes			
		LÇŞ		10.5	10.0		105%	05% 90% - 1		Yes					

ND: Below the reporting limit (Not Detected).

DF: Ollution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 982576

Date: April 23, 2009 Collected: April 1, 2009 Received: April 1, 2009 Prep/ Analyzed: April 2, 2009 Analytical Batch: 04AN09B

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
982576-1	SC-700B-WDR-197	08:25	10:25	mg/L	5.00	0.500	2.01
982576-2	SC-100B-WDR-197	08:25	10:37	ma/L	5.00	0.500	2.51

							<u>vu</u>	<u>u 3u</u>	mr	nar	y .				
	QC STE) I.D. Laboratory Number		Concentra	ation	Dup Conce	olicate entrati	on	Rélative Percent Difference	Acc	eptance limits	QC Within Control			
	Duplic	ate	9	8257	6-2	2.51		2	2.50		0.40%		<u><</u> 20%	Yes	
QC Std I.D.	DescriptionLab Lab NumberConc.of unspiked sampleDilution Factor1S982576-22.515.00		ution Ictor	Added Spike Ar Conc. Ar		MS C Amount s		Sured ic. of iked nple	Theoretica Conc. of spiked sample	al MS% Recovery		Acceptance limits	QC Within Control		
NS			6-2 2.51 5.00		4.00	20.0		2	3.6	22.5		105%	85-115%	Yes	
		٩	C Std	I.D.	Me Conc	asured entration	Th Cor	neoretical ncentratio	n R	Percen	t Accepta ry Limit	INCØ S	QC Within Control	n	
			Blan	k		ND		<0.500			<0.50	0	Yes	-	
			MRCC)S		4.03		4.00		101%	90% - 11	10%	Yes	-	
		_ ∧	ARCV	5#1		3.10		3.00		103%	90% - 1	10%	Yes	7	
			/RCV	3#2		<u>3.10</u>		3.00		103%	90% - 1	10%	Yes	4	
		N	/RCVS	5#3		3.10		3.00		103%	90% - 11	10%	Yes	1	
			LCS			4.06		4.00		102%	90% 1	10%	Vac	1	

4.00

102%

4.06

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

investigation:

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

90% - 110%

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.; 982576

Collected: April 1, 2009

Received: April 1, 2009

Prep/ Analyzed: April 2, 2009 Analytical Batch: 04AN09B

Date: April 23, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
982576-1	SC-700B-WDR-197	08:25	12:54	mg/L	50.0	25.0	500
982576-2	SC-100B-WDR-197	08:25	13:28	mg/L	50.0	25.0	588

QA/QC Summarv

	QC STD) I.D .	La	aborat Numb	ory er	Concentra	ation	Du Conce	plica entr	ate ation	R P Oil	elative ercent iference	Acc	eptance limits	QC Within Control	
	Duplic	ate	Q	82576	⊱1	500			497		(0.60%	4	≤ 20%	Yes	
QC Std I.D.	Lab Number	Cor unsp san	nc.of piked nple	c.of iked ple 0 50.00		Added Spike Conc.	Ar	MS (\mount		easured ionc. of spiked sample	Theoretical Conc. of spiked sample		MS% Recovery		Acceptance limits	QC Within Control
MS	982576-1	5	00	50	0.00	10.0		500		1010		1000		102%	85-115%	Yes
		a	C Std I.D. Mea C Std I.D. Conce		asured	i Theoretic ion Concentral		retical Perc ntration Reco		it ry	Acceptar Limits	nce i	QC With Contro	hin ol		
			Blan	k		ND		<0.500				<0.500)	Yes		
			MRCO	cs		20.5		20.0		103%		90% - 11	0%	Yes		
		. <u>N</u>	MRCV:	S#1		15.0		15.0		100%		90% - 11	0%_	Yes		
		_ N	MRCV:	5#2		15.2		15.0		101%		90% - 11	0%	Yes		
			LCS	;		20.5		20.0		103%		90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

014

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 982576 Date: April 23, 2009 Collected: April 1, 2009 Received: April 1, 2009 Prep/ Analyzed: April 2, 2009 Analytical Batch: 04AN09B

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RI</u>	<u>Results</u>
982576-1	SC-700B-WDR-197	08:25	10:25	mg/L	5.00	1.00	2.48
982576-2	SC-100B-WDR-197	08:25	10:37	mg/L	5.00	1.00	2.96

					QA	/Q() Su	mr	nary	,								
	QC STD	I.D. Laboratory Number		atory Iber	Concentr	ation	Du Conc	plicat entra	te tion	R P Dif	elative ercent iference	Acc	eptance limits	T	QC Within Control			
	Duplica	ite 🗌	9825	64-2	13.6			13.2		2	2.99%	-	<u><</u> 20%		Yes			
QC Std I.D.	C Std Lab I.D. Number St 3 982564-2		of D ted F	ilution Factor	Added Spike Conc,	An	MS nount	Me Co \$ Si	asured onc. of piked ample	Ŧ	heoretical Conc. of spiked sample	Re	MS% covery		Acceptance limits	QC Within Control		
MS			982564-2	13.6	3	5.00	4.00	. 2	20.0		33.6		33.6		100%		85-115%	Yes
			QC Std I.D.		easured centration	Th Con	Theoretical Concentration		Percent Recover	t Y	Acceptar Limits	ice	QC Wit Contro	hin of				
	Blank	ND	<0.500				< 0.500			Yes								
		м	RCCS		3.98		4.00		99.5%		90% - 110)%	_ Yes					
		MR	CVS#1		2.99		3.00		99.7%		<u>90% - 11(</u>)%	Yes					
		MR	CVS#2		2,99		3.00		99.7%		90% - 11()%	Yes					
			LCS		4.00		4.00		100%	T	90% - 110)%.	Yes					

ND: Below the reporting limit (Not Detected), **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖅 – Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 982576 Date: April 23, 2009 Collected: April 1, 2009 Received: April 1, 2009 Prep/ Analyzed: April 2, 2009 Analytical Batch: 04NO209C

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>I LI I.D.</u>	<u>Fleid I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
982576-1 982576-2	SC-700B-WDR-197 SC-100B-WDR-197	08:25 08:25	13:37 13:38	mg/L	1.00	0.0050	ND
982576-2	SC-100B-WDR-197	08:25	13:38	mg/L	1.00	0.0050	

						QA		<u>C Su</u>	m	mar	y						
	QC STD I.D.		abor Num	atory ber	Concentra	ation	Du Conc	plic entr	ate ration	F F Di	Relative Percent ifference	Acç	eptance Imits	ac c	Within ontrol		
	Duplic	ate		9825	76-1	ND			ND			0.00%	<	20%	1	Yes	
QC Std I.D.	Lab Number	Con unsp sam	c.of liked iple	D F	ilution actor	Added Spike Conc.	Ar	MS nount	M C	leasured Conc. of spiked sample] 1	Theoretical Conc. of spiked sample	Re	MS% covery	Acc li	eptance imits	QC Within Control
MS 9825	982576-1	0.0	00		1.00	0.0200	0.	0200		0.0192		0.0200	9	6.0%	75	-125%	Yes
	QC Std 1		QC Std I.D. Mea Conce		asured entration Co		Theoretical Concentration		Percen Recover	nt Acceptan ery Limits			QC Withi Control	in			
		Blank MRCCS		ND	<0.0050				-	<0.0050		Yes					
			0.0202	0.0200			101%	1% 90% - 11)% Yes							
		м	RCVS	5#1	0.	0204		0.0200		102%		90% - 110	%	Yes			
		L	LCS		0.	0406		0.0400		102%		90% - 110	%	Voc			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

con (

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

016

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Laboratory No.: 982576 Reported: April 23, 2009 Collected: April 1, 2009 Received: April 1, 2009 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	SC-700B-WDR-197	Time Col	lected: 0	8:25): 982576-1	
Parameter	Method	Reported Value	ÐF	Units	RL	Batch	Date Analvzed	Time Analyzed
Aluminum	EPA 200.8	NĎ	5.00	µg/L	50.0	040309A	04/03/09	15:27
Antimony	EPA 200.8	ND	5.00	μg/L	10.0	040309A	04/03/09	15:27
Arsenic	EPA 200.8	ND	5.00	μ g/L	1.00	040309A	04/03/09	15:27
Barium	EPA 200.8	14.3	5.00	μ g/L	10.0	040309A	04/03/09	15:27
Chromium	EPA 200.8	ND	5.00	μg/L	1.00	040309A	04/03/09	15:27
Copper	EPA 200.8	11.1	5.00	μ g/L	5.00	040309A	04/03/09	15:27
Lead	EPA 200.8	ND	5.00	μg/L	10.0	040309A	04/03/09	15:27
Manganese	EPA 200.8	53.8	5.00	μg/L	10.0	040309A	04/03/09	15:27
Molybdenum	EPA 200.8	19.6	5.00	μ g/L	10.0	040309A	04/03/09	15:27
Nickel	EPA 200.8	ND	5.00	μ g/L	10.0	040309A	04/03/09	15:27
Zinc	EPA 200.8	ND	5.00	μg/L	10.0	040309A	04/03/09	15:27
Boron	EPA 200.7	1120	1.00	μg/L	200	040709A	04/07/09	12:38
Iron	EPA 200.7	ND	1.00	μg/L	20.0	042109A	04/21/09	10:18

Report Continued

SAMPLE ID: SC-10	008-WDR-197	Time Coli	ected: 0/	8:25): 982576-2	·
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date	Time
Aluminum	EPA 200.8	ND	5.00	ug/L	50.0	0403096	04/02/00	Anaryzed
Antimony	EPA 200.8	17.2	5.00	<u>+9</u>	10.0	040309A	04/03/09	15:33
Arsenic	EPA 200.8	6.45	5.00	μα/L	1.00	0403094	04/03/09	15:33
Barium	EPA 200.8	27.5	5.00	μα/L	10.0	040309A	04/03/09	<u>15:33</u>
Chromium	EPA 200.8	1270	5.00	μ g/l_	1.00	040309A	04/03/09	15:33 15:33
Copper	EPA 200.8	ND	5.00	 µg/L	5.00	040309A	04/03/09	15:33
Lead	EPA 200.8	ND	5.00	μg/L	10.0	040309A	04/03/09	15:33
Manganese	EPA 200.8	ND	5.00	<u></u> µg/L	10.0	040309A	04/03/09	15:33
Molybdenum	EPA 200.8	35.2	5.00	μ α/ L	10.0	040309A	04/03/09	15:33
Nickel	EPA 200.8	ND	5.00	μ α/ L	10.0	040309A	04/03/09	15:33
Zinc	EPA 200.8	ND	5.00	<u></u> µa/L	10.0	040309A	04/03/09	15:33
Boron	EPA 200.7	1180	1.00		200	0407094	04/03/09	12:33
Iron	EPA 200.7	ND	1.00	μg/L.	20.0	042209A	04/22/09	13:42

ND: Not detected, or below limit of detection. DF: Dilution factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

an

4-

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, Investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

018

EXCELLENCE IN INDEPENDENT TESTING

April 24, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-198 PROJECT, GROUNDWATER MONITORING, TLI NO.: 982697

Trucsdail Labotatorics, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-198 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on April 8, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

ScarCant

Mona Nassimi Manager, Analytical Services

K.R. P. Syca

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 982697 Date: April 23, 2009 Collected: April 8, 2009 Received: April 8, 2009

ANALYST LIST

METHOD		
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

. . .

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Prep. Batch: 041309A

Laboratory No.: 982697

Date: April 23, 2009 Collected: April 8, 2009 Received: April 8, 2009 Prep/ Analyzed: April 13, 2009 Analytical Batch: 041309A

Investigation:	Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer
	using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	Run Time	DF	RL	Results
982697	SC-700B-WDR-198	μ g/L	EPA 200.8	11:59	5.00	1.00	ND

QA/QC Summary

					_												
	QC STE) I.D.	Lai	orato umbe	r y r	Concentration		n Duplicate Concentration		Relative Percent Difference		Acceptance limits		nce	QC Within Control		
Duplicate		ate	e 982697		7 ND		ND		ND		0.00%			<u><</u> 20%		Yes	
QC Std I.D.	Lab Number	Co uns sa:	nc.of piked mpie	Dilu Fac	tion tor	Added Spike Conc.	Ar	MS nount	M C	easured Conc. of spiked sample	8	Theoretica Conc. of piked samp) Je	MS? Recov	% rery	Acceptance limits	QC Within Control
MS	982697	0	.00	5.0	00	50.0		250		261	t	250	+	1049	%	75-125%	Yes
		•	QC Std	I.D.	M Cor	leasured icentration	Ti Cor	ieoretica icentratio	l on	Percer Recove	nt ry	Accepta	ince is	* QC	Withi	n	100
			Blank	(ND		<1.00		·	_	<1.00	0		Yes	-	
			MRCC	s		50.5		5 0.0		101%		90% - 1	10%		Yes		
			MRCVS	#1		49.6		50.0		99.2%	, ,	90% - 1	10%		Yes	-	
			MRCVS	#2		50.6		50.0		101%		90% - 1	10%		Yes	7	
			MRCVS	#3		50.6		50,0		101%		90% - 1	10%		Yes	-	
			ICS			49.9		50.0		99.8%	,	80% - 1:	20%	, b	Yes	1	
			LÇŞ			50,5		50.0		101%		90% - 11	10%		Yes	1	

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982697

Date: April 23, 2009 Collected: April 8, 2009 Received: April 8, 2009 Prep/ Analyzed: April 9, 2009 Analytical Batch: 04CrH09D

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLUI.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	Units	DF	RI	Poculto
982697	SC-700B MOR 400				<u></u>		<u>resuns</u>
002007	30-700B-WDR-198	08:05	08:29	μg/L	1.05	0.20	ND

QA/QC Summary

	QC ST	D I.D.	Lat	orato	ry	Concentrati	ion	Du Conc	plica entra	ate ation	R P Di	telative Percent fference	Ac	ceptance limits		QC Within Control	
		:aię 	98	2696-4		11.6			<u>11,6</u>		(0.00%		<u>≤</u> 20%		Yes	
QC Std I.D.	Lab Number	Cor unsj sar	nc.of piked mpie	Dilut Fact	lon or	Added Spike Conc.	Аг	MS nount	Me Cu S	asured onc. of piked ample	sp	Theoretical Conc. of piked samp	le F	MS% Recovery	•	cceptance limits	QC Within Control
MS	_ 982697	0.	.00	1.0	<u>6</u> .	1.00		1.06		1.03		1.06		97.2%			Vec
		•	C Std	I.D.	Co	Measured	Th Con	eoretica centrati	i on	Percen Recove	it ry	Accepta Limit:	nce s	QC Wit Contr	hin ol		
			Blank	<u>ر</u>		ND		<0.200				<0.20	 0	Ver		-	
			MRCC	\$		5.10		5.00		102%		90% - 11	<u>~</u> 10%	Yes		-	
		N	IRCVS	;#1		10.10		10.0		101%		95% - 10)5%	Yes		-	
		<u>^</u>	<u>//RCVŞ</u>	#2		9.91		10.0		99.1%		95% - 10)5%	Yes		1	
		N	<u>IRCVS</u>	#3		9.80		10.0		98.0%		95% - 10)5%	Yes		1	
		<u>N</u>	/RCVS	#4		9.96		10.0		99.6%		95% - 10)5%	Yes		1	
			LCS			5.09		5.00	-	102%		90% - 11	0%	Vas			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

90% - 110%

🚧 – Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

800

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982697

Date: April 23, 2009 Collected: April 8, 2009 Received: April 8, 2009 Prep/ Analyzed: April 9, 2009 Analytical Batch: 04TUC09F

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	DF	RL	Results
982697	SC-700B-WDR-198	08:05	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.D	D. Laboratory Number	Concentrat	ion	Dupi Concer	icate Itration		Relative Percent ifference	Aco	eptance limits	QC Within Control
Duplicate 982687		0,147		0.149		1.35%		<u>≤</u> 20%		Yes
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percen Recove	nt ry	Accepta Limit	nce S	QC Within Control	
	Blank	ND	<	0.100			<0.10	0	Yes	4
	LCS	8.15		8.00	102%		90% - 11	10%	Yes	1
L	LCS	8.02		8.00	100%		90% - 11	10%	Yes	1
L	LCS	7.79	[B.00	97. 4 %		90% - 11	10%	Yes	1

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

too

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982697

Date: April 23, 2009 Collected: April 8, 2009 Received: April 8, 2009 Prep/ Analyzed: April 9, 2009 Analytical Batch: 04EC09E

Investigation;

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	RL	Results
982697	SC-700B-WDR-198	µmhos/cm	EPA 120.1	1.00	2.00	6860

QA/QC Summary

QC S	STD Laboratory .D. Number Concentr		Concentrati	on	n Duplicate Concentration		Rela	ntive Percent Difference	Acceptance limits		QC Within Control	
Dupic	ate	982697		982697 6860		6870			0.15%	<u><</u> 10%		Yes
	Q	C Std I.D.	C	Measured oncentration	T Co	Theoretical Incentration	Perc Reco	ent very	Acceptan Limits	C0	QC Within Control	n
		Blank		ND		<2.00			<2.00		Yes	-
		CCS		695		706	98.4	%	90% - 110	%	Yes	1
		CVS#1		978		<u>1</u> 000	97.8	%	90% - 110	%	Yes	1
		CVS#2		979		1000	97.9	%	90% - 110	%	Yes	-
		LCS		695		706	98.4	%	90% - 110	%	Yes	1
		LCSD		695		706	98.4	%	90% - 110	%	Yes	1

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

✓ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982697

Date: April 23, 2009 Collected: April 8, 2009 Received: April 8, 2009 Prep/ Analyzed: April 13, 2009 Analytical Batch: 04TDS09D

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 982697	<u>Fie</u> SC	<u>ld I.</u> -700	. <u>D.</u>)B-WDR-19	98	<u>Units</u> mg/L		. <u>Me</u> SM 2	<u>thod</u> 2540C		<u>RL</u> 250	<u>Results</u> 4140
				<u> </u>	A/Q	C Sum	mary				
	QC STD	. D ,	Laborator Number	y Concent	ration	Duplic Concenti	ate ration	Percent Difference	Ace	ceptance limits	QC Within Control
	Duplicat	te	982697	414	0	4230)	1.08%		<u>≺</u> 5%	Yes
		c	C Std I.D.	Measured Concentration	TI Co	heoretical ncentration	Percent Recovery	Accept / Limi	ance ts	QC Within Control	'n
			Blank	2 Z		<25.0		<25.	0	Yes	
			LCS 1	496		500	99.2%	90% - 1	10%	Yes	

500

100%

500

LCS 2

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

Son Camb

90% - 110%

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

May 5, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-199 PROJECT, GROUNDWATER MONITORING, TLI NO.: 982870

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-199 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical taw data have been included under Section 5.

The samples were received and delivered with the chain of custody on April 16, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

---- Mona Nassimi

Manager, Analytical Services

Al- Khang

Fol K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 982870 Date: May 5, 2009 Collected: April 16, 2009

Received: April 16, 2009

ANALYST LIST

METHOD		ANALVST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Client: E2 Consulting Engineers, Inc.

P.O. No.; 379209.01.02 Prep. Batch: 041709A

Laboratory No.: 982870

Date: May 5, 2009 Collected: April 16, 2009 Received: April 16, 2009 Prep/ Analyzed: April 17, 2009 Analytical Batch: 041709A

Investigation:

ion:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>Run Time</u>	DF	RL	<u>Results</u>
982870	SC-700B-WDR-199	μ g /L	EPA 200.8	11:23	5.00	1.00	ND

						QA	VQ	C Su	m	mary	y						
	QC STO) I.D.	Lai N	borato umbe	ny r	Concentration		Duj Conce	olica entra	te Ition	Re Pe Diff	ative rcent erence		ceptance limits	6	C Within Control	
Duplicate		982870)	ND		ND		0.00%		<u><</u> 20%			Yes			
QC Std I.D.	Lab Number	Coi uns sar	nc.of piked mple	Dilu Fac	tion tor	Added Spike Conc.	A	MS mount	Me C t	easured onc. of piked ample	T(spil	heoretical Conc. of ked samp	le F	MS% Recovery	Ą	cceptance limits	QC Within Control
MS	982870	0	.00	5.	00	50.0		250		239		250		95.6%		75-125%	Yes
			QC Std	I.Ö.	Col	Aeasured ncentration	Ti Coi	heoretica ncentratio) N	Percer Recove	nt ary	Accepta Limit:	nce s	QC With Contro	hin ol		
			Blan	k		ND		<1.00				<1.00)	Yes			
			MRCC	<u>s</u>		46.7		50.0		93.4%	5	90% - 11	0%	Yes			
			MRCVS	S#1		52.8		50.0		106%		<u>90%</u> - 11	0%	Yes			
			MRCVS	5#2		52.6		50.0		105%		90% - <u>1</u> 1	0%	Yes			
			MRCVS	\$#3	<u>.</u>	52.8		50.0		106%		90% - 1 1	0%	Yes			
			ICS			40.3		50.0		80.6%	5	80% - 12	20%	Yes			
			LCS			46.6		50.0		93.2%		90% - 11	10%	Yes			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982870

Date: May 5, 2009 Collected: April 16, 2009 Received: April 16, 2009 Prep/ Analyzed: April 17, 2009 Analytical Batch: 04CrH09K

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
982870	SC-700B-WDR-199	11:00	07:53	μg/L	1.05	0.20	NĎ

QA/QC Summary

	QC STD) I.D.	Lab Ni	oratory		Concentration		tion Duplicate Concentration		te ition	Relative Percent Difference		Acceptance limits			QC Within Control		
	Duplic	ate	98	2809-3		8.28		5	3.21		(0.85%	<	20%		Yes		
QC Std I.D.	Lab Number	Cor uns sar	nc.of piked nple	Dilutic Facto	r r	Added Spike Conc.	Аг	MS nount	Me Co S	asured onc. of piked ample	r sp	Theoretical Conc, of biked sample	e Re	M\$% ecovery	Ac	cceptance limi	ts	QC Within Control
MS	982870	0	.00	1.06		1.00		1.06		1.15		1.06		108%		90 - 110%		Yes
		6	2C Std	i.D.	Co	Measured Incentration	TI Coi	heoretica ncentrati	il on	Percer Recove	nt ery	Acceptar Limits	nce i	QC Wit Contr	hin ol			
			Blani	K .		ND.		<0.200				<0.200)	Yes				
			MRCC	xs 🛛		5.04		5.00		101%)	90% - 11	0%	Yes]		
			MRCVS	5#1		10.0		10.0		100%	, ,	95% - 10	5%	Yes				
			MRCVS	3#2		9.88		10.0		98.8%	6	95% - 10	5%	Yes]		
			MRÇV	\$#3		9.77		10.0		97.7%	6	95% - 10	5%	Yes]		
			LCS			5.05		5.00		101%	5	90% - 11	0%	Yes				

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982870

Date: May 5, 2009 Collected: April 16, 2009 Received: April 16, 2009 Prep/ Analyzed: April 17, 2009 Analytical Batch: 04TUC09N

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI 1.D.</u>	<u>Field I.D.</u>	Sample_Time		Jnits	DF	RL	Results
982870	SC-700B-WDR-199	11:00	1	NTU	1.00	0.100	ND

QA/QC Summary

QC STD	I.D.	Laboratory Number	Concentral	lion	Dupli Concer	icate tration	F F Di	Relative Percent Ifference	Aco	eptance limits	QC Within Control
Duplica	te	982870	ND		N	D		0.00%		<u><</u> 20%	Yes
	Q	C Std I.D.	Measured Concentration	The Conc	oretical entration	Percer Recove	nt Fry	Accepta Limit	ince Is	QC Within Control	רייק ז
		Blank	ND	<	0.100			<0.10	0	Yes	
	_	LCS	7.80		8.00	97.5%		90% - 1	10%	Yes	
		LCS	7,68		8.00	96.0%	5	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected), **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

(II)=

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209,01.02 P.O. No.: 379209,01.02

Date: May 5, 2009

Laboratory No.: 982870

Collected: April 16, 2009 Received: April 16, 2009 Prep/ Analyzed: April 20, 2009 Analytical Batch: 04EC09J

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	Results
982870	SC-700B-WDR-199	µmhos/cm	EPA 120.1	1.00	2.00	7220

	-		_							
QC STD Laboratory I.D. Number		Laboratory Number Concentration		Duplicate Concentration			tive Percent lifference	Aç	ceptance limits	QC Within Control
Duplicat	e 982870	7220		7230			0.14%	<u>≺</u> 10%		Yes
	QC Std I.D.	Measured Concentration	Co	Theoretical Incentration	Perc Reco	ent very	Acceptan Limits	CĐ	QC Within Control	n
	Blank	ND		<2.00		-	<2.00		Yes	1
	CCS	695		706	98.4	4%	90% - 110	%	Yes	1
	CVS#1	977		1000	97.	7%	90% - 110	%	Yes	
	LCS	695		706	98.	4%	90% - 110	%	Yes	-
	LCSD	695		706	98.4	4%	90% - 110	%	Yes	۳

QA/QC Summary

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 I TUSTIN, C (714) 730-62

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project

Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 982870

Date: May 5, 2009 Collected: April 16, 2009 Received: April 16, 2009 Prep/ Analyzed: April 20, 2009 Analytical Batch: 04TDS09G

Investigation:

Total Dissolved Solids by SM 2540C

REPORT

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	RL	<u>R</u> esults
982870	SC-700B-WDR-199	mg/L	SM 2540C	250	4100

QA/QC Summary

QC STD	I.D. Laborato	ry Concentr	ation	Dupile Concent	ate ration	P Dii	ercent Iference	Acc	ceptance límits	QC Within Control
Duplicat	te 982870	4100)	402	o		0.99%		<u>≤</u> 5%	Yes
	QC Std I.D.	Measured Concentration	Tł Cor	eoretical centration	Percen Recove	יו ידי	Accepta Limits	nce B	QC Withi Control	n
	Blank	ND		<25.0			<25.0)	Yes	
	LCS 1	499		500	99.8%	,	90% - 11	0%	Yeş	7

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Mona Nassimi, Manage Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

May 5, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-200 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983013

Truesdail Laboratorics, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-199 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on April 27, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Seen (

#--- Mona Nassimi Manager, Analytical Services

Al. Khang-

CK.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 983013 Date: May 5, 2009

Collected: April 27, 2009 Received: April 27, 2009

ANALYST LIST

METHOD		AMALYNY
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Daniel Kang
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

		Established 1931
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	Report	14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Attenuori, Shawa Duliy		Laboratory No.; 983013
Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02		Date: May 5, 2009 Collected: April 27, 2009 Received: April 27, 2009 Prep/ Analyzed: April 29, 2009

Investigation:

Prep. Batch: 042909A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI</u> 9830	<u>I.D.</u> 13	<u>Field </u> SC-70	<u>.D.</u> 0B-W	/DR-2	200		<u>Units</u> μg/L	<u>M</u> EP/	ethod A 200.8		<u>Ru</u> 16	n T 5:34	'ime 4		5	DF 5.00		<u>RL</u> 1.00	<u>Results</u> ND
							QA	VQ	C Su	m	mar	y							
		QC STD	1.D.	Lat N	borato lumbe	ry r	Concentra	tion	Duj Conce	olic: entr	ate ation	R P Dii	elativ erce lferei	ve intince	Acc I	eptance Imits	1	QC Within Control	
_		Duplic	ate	98	32991-	1	1.22			.16		(5.04%	4	2	20%		Yes	
0	2C Std I.D.	Lab Number	Cor unsj san	nc.of piked nple	Dilu Fac	tion tor	Added Spike Conc.	Аг	MS nount	M	easured Conc. of Spiked sample	sp	Theo Cor Diked	retical ic. of sample	R	MS% ecovery	A	cceptance limits	QC Within Control
MS	3	982991-1	1.	.22	5.	00	50.0		250		241		2	<u>5</u> 1		95.9%		75-125%	Yes
			G	C Std	I.D.	N Coi	leasured ncentration	Th Cor	neoretica ncentratic	i >n	Percen Recove	ıt ıry	A	ceptand Limits	e.	QC With Contro	nin Si		
				Blank	(ND		<1.00					<1.00		Yes			
				MRCÇ	\$		49.4		50.Q		98.8%)	90)% - 110 [.]	%	Yes			
				MRCV9	¥1		49.8		50.0		99.6%	,	90	<u>110</u>	%	Yes			
				ARCVS	\$#2		50.1		50.0		100%	_	90	<u> % - 110</u>	%	Yes	_		
				VIRCVS	\$#3		48.8		50.0		97.6%	,	_ 90	<u>% - 110</u>	%	Yes	_		
				105			42.5		50.0		85.0%	>	80	% - 120 [°]	%	Yes			
			.	<u>LUB</u>			0.06		50.0		100%		90	<u>% - 110</u>	%	Yes			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Batch: 042909A

🖅 – Mona Nassimi, Manager **Analytical Services**

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983013

Date: May 5, 2009 Collected: April 27, 2009 Received: April 27, 2009 Prep/ Analyzed: April 28, 2009 Analytical Batch: 04CrH09M

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Unitş</u>	DF	RL	Results
983013	SC-700B-WDR-200	14:30	10:40	μg/L	1.05	0.20	ND

QA/QC Summarv

	QC ST	D I.D,	Lat N	oratory umber	Concentrat	ion	Dur Conce	olicate entration		Relative Percent Difference	Aç	ceptance limits	QC Within Control	
	Dupliq	ate	98	2991-2	1.37		1	.38	Γ	0.73%		< 20%	Yes	
QC Std I.D.	Lab Number	Cor uns sar	nc.of piked nple	Dilutio Factor	n Added Spike Conc.	Ar	MS nount	Measured Conc. of spiked sample	1	Theoretical Conc. of spiked sample	e F	MS% Recovery	Acceptance limits	QC Within Control
MS	983013	0	19	1.06	1.00		1.06	1.29		1.25		104%	90 - 110%	Yes
		G	QC Std	I.D.	Measured Concentration	Th Cor	heoretical ncentratic	Perc on Reco	ent ver	t Acceptan y Limits	1C0	QC With Contro	nin it	
			Blan	ĸ	ND		<0.200			<0.200)	Yes	-	
			MRCC	s	5.03		5.00	101	%	90% - 110	0%	Yes		
			MRCVS	5#1	10.0		<u>10,0</u>	100	%	95% - 10	5%	Yes		
			MRCVS	5#2	10.1		10.0	101	%	95% - 105	5%	Yes		
			MRCVS	\$#3	10.3		10.0	103	%	95 % - 108	5%	Yes		
			MRCVS	5#4	10.2		10.0	102	%	95% - 105	5%	Yes		
			LCS		4.99		5.00	99.8	1%	90% - 11(0%	Ves		

99.8%

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

Sen Cand

90% - 110%

🗲 - Mona Nassimi, Manager **Analytical Services**

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983013

Date: May 5, 2009 Collected: April 27, 2009 Received: April 27, 2009 Prep/ Analyzed: April 28, 2009 Analytical Batch: 04TUC09Q

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>ȚLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	DF	RL	Results
000040						
903013	SC-700B-WDR-200	14:30	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.	D, Laborato Number	Concentra	Concentration		Duplicate Concentration		Relative Percent Difference		ceptance limit s	QC Within Control
Duplicate	<u>983007-1</u>	6 ND	ND ND			0.00%	<u>≺</u> 20%		Yes	
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percen Recove	nt iry	Accepta Limit	ince s	QC Within Control	
	Blank	ND	<	0.100	-		<0.10	0	Yes	1
	LCS	7,89		8.00	98.6%	2	90% - 1	10%	Yes	
l	LCS	8.05		8.00	<u>1</u> 01%	,	<u>90</u> % - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

4.7 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	Results
983013	SC-700B-WDR-200	µmhos/cm	EPA 120.1	1.00	2.00	5020

QC S I.D	TD.	TD Laboratory Number		Láboratory Number Concentration		on	Duplicate Concentration		Rela D	itive Percent lifference	Acceptance limits		QC Within Control
Duplic	cate	983013		5020	_	5030			0.20%		<u><</u> 10%	Yes	
	Q	C Std I.D.	c	Measured oncentration	T Co	heoretical incentration	Perc Reco	ent very	Acceptan Limits	ce	QC Withi Control	n	
		Blank		ND	*	<2.00			<2.00		Yes	-	
		CCS		695		706	98.4	%	90% - 110	%	Yes		
		CVS#1		978		1000	97.8	1%	90% - 110	%	Yes		
		LCS		695		706	98.4	%	90% - 110	%	Yes		
		LĊŚD		695		706	98.4	%	90% - 110	%	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratorles.

010

Laboratory No.: 983013

Date: May 5, 2009 Collected: April 27, 2009 Received: April 27, 2009 Prep/ Analyzed: April 28, 2009 Analytical Batch: 04EC09M

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983013

Date: May 5, 2009 Collected: April 27, 2009 Received: April 27, 2009 Prep/ Analyzed: April 28, 2009 Analytical Batch: 04TDS09L

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
983013	SC-700B-WDR-200	mg/L	SM 2540C	250	3060
		QA/QC SI	ummarv		

						Z.,				
QC STD I.I	D. Laborator Number	y Concentrat	tion	Duplicate Concentration		Percent Difference		Acceptance limits		QC Within Control
Duplicate	983013	_3060		308	0		0.33%		<u><</u> 5%	Yes
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percer Recove	nt ery	Accepta Limite	nce	QC Within Control	י
	Blank	ND		25.0		_	<25.0		Yes	-
L	LCS 1	497		500	99.4%	6	90% - 11	0%	Yes	1

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

40 - Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

May 6, 2009

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-201 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983073

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-201 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical taw data have been included under Section 5.

The samples were received and delivered with the chain of custody on April 30, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Seon Cam

Anager, Analytical Services

K. R. P. Joya

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVÉNUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 983073 Date: May 6, 2009 Collected: April 30, 2009 Received: April 30, 2009

ANALYST LIST

METHOD		
EPA 120.1	Specific Conductivity	<u>Tina Acquiat</u>
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chavez
EPA <u>2</u> 18.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Prep. Batch: 050109A

Investigation:

Laboratory No.: 983073

Date: May 6, 2009 Collected: April 30, 2009 Received: April 30, 2009 Prep/ Analyzed: May 1, 2009 Analytical Batch: 050109A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>Run Time</u>	DF	RL	Results
983073	SC-700B-WDR-201	μg/L	EPA 200.8	15:06	5.00	1.00	ND

						_ QA	VQ	<u>c</u> su	Im	mar	У							
	QC STD I.D.			oorato	ρ ry r	Concentra	tion	Duplicate Concentration		ite ation	Relative Percent Difference		Acceptance limits		QC Within Control			
	Duplic	ate	983073			ND		ND		0.00%		<u><</u> 20%		Yes	Yes			
QC Std I.D.	Lab Number	Cor unsj s ar	nc.of piked nple	Dilution Factor		Added Spike Conc.	Ar	MS nount		Measured Conc. of spiked sample		Theoretical Conc. of spiked samp		MS% Recovery		Ad	ceptance limits	QC Within Control
MS	983073	0.00 5.00		00	50.0		250 2		238		250		95.2	95.2%		75-125%	Yes	
		G	QC Std I.D.		Measured Concentration		Theoretical Concentration		l Sn	Percer n Recove		Acceptance Limits		QC Within Control		hin Di		±
			Blani	K		ND		<1.00		·		<1.0			Yes			
		MRCCS		;s		49.3	9.3			98.6%		90% - 110		0% Yes				
		MRCVS#1				47.8	50.0			95.6%		90% - 110%		yes				
			MRCVS#2			47.3		50.0		94.6%		90% - 1109		% Yes				
		1	MRCVS#3			48.4		50.0		96.8%		90% - 11(0% Yes				
		LCS			48.1			50.0	50.0		6	80% - 120		% Yes				
					48.4		50.0		96.8%		90% - 110		% Yes					

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983073

Date: May 6, 2009 Collected: April 30, 2009 Received: April 30, 2009 Prep/ Analyzed: May 1, 2009 Analytical Batch: 05CrH09A

investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u> 983073	<u>Field I.D.</u> SC-700B-WDR-201				<u>Sample 1</u> 10:02	<u>Run Time</u> 12:52		<u>t</u>	<u>Jnits</u> µg/Լ_ 1		DF 1.05		<u>RL</u> 0.20	<u>Results</u> ND		
QA/QC Summary																
	QC ST	QC STD I.D. Lai		aboratory Number		Concentration		Duplicate Concentratio		D	Relative Percent Difference	Acceptance limits		QC Within Control		
	Dupliç	ate 9		983034		2.63		2.63			0.00%	<u><</u> 20%		Yes		
QC Std I.D.	Lab Number	Coi uns sar	nc.of piked mple		Added Spike Conc.	MS Amount		Measure Conc. of spiked sample	1	Theoretical Conc. of spiked sample	MS% Recovery		Acceptance limits		QC Within Control	
MŚ	983073	0).00 1.06		1.00	1.00 1		1.08		1.06	102%		90 - 110%		Yes	
		QC Std I.D.		С	Measured oncentration	Theoretical Concentration		n Perc on Reco	ent very	Acceptan Limits	ce	e QC With Contro				
			Blank		-	ND		<0.200			<0.200		Yes			
		MRCCS MRCVS#1		ŝ		5.02		5.00	100	%	90% - 110)% Yes			
					10.1	10.0		101	%	95% - 105	5% Yes					
			MRCVS#2		10.0		10.0			%	95% - 105	5% Yes				
		- <u>-</u> '	MRCVS#3			10.1	10.0		101	<u>%</u>	95% - 105	%	Yes			
				5.02	5.00		100	<u>%</u>	<u>90% 11</u> 0%		Yes					

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services
EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983073

Date: May 6, 2009 Collected: April 30, 2009 Received: April 30, 2009 Prep/ Analyzed: May 1, 2009 Analytical Batch: 05TUC09A

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Units	- DF	RL	Results
983073	SC-700B-WDR-201	10:02	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	QC STD I.D. Laboratory Number		Concentra	tion	Dupi Concer	icat e ntration	F F D	Relative Percent	Acceptance limits		QC Within Control
Duplicat			ND		ND		0.00%		<u>≤</u> 20%		Yes
	9	C Std I.D.	Measured Concentration	The Conc	oretical entration	Percen Recove	nt ry	Accepta Limit	ince s	QC Withir Control	
		Blank	ND	<	0.100			<0.10	0	Yes	-
		LCS	7.72		<u>8</u> .00	96.5%	,	90% - 1	10%	Yes	
		LCS	7.80		8.00	97.5%	,	90% - 1	10%	Yes	1

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.; 379209.01.02

Laboratory No.: 983073

Date: May 6, 2009 Collected: April 30, 2009 Received: April 30, 2009 Prep/ Analyzed: May 1, 2009 Analytical Batch: 05EC09A

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u> ŤLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	Results
983073	SC-700B-WDR-201	µmhos/cm	EPA 120.1	1.00	2.00	6780

			-			· · · · · ·				
QC STD I.D.	Laborato Number	ry Concentrati	ion	n Duplicate Concentration 6790		Rela	itive Percent Difference	Acceptance limits		QC Within Control
Duplicate	983073	6780					0.15%		<u>≺</u> 10%	Yes
•	QC Std I.D.	Measured Concentration	Т Со	heoretical ncentration	Perc Reco	ent very	Acceptane Limits	C@	QC Within Control	<u>יייי</u>
	Blank	ND		<2.00			<2.00		Yes	1
	CCS	695		706	98.4	1%	90% - 110	%	Yes	1
	CVS#1			1000	97.7	7%	<u>90%</u> - 110	%	Yes	1
	CVS#2	977		1000	97.7	%	90% - 110	%	Yes	1
	LCS	695		706	98.4	1%	90% - 110	%	Yes	7
	LCSD	695		706	98.4	1%	90% - 110	%	Yes	

QA/QC Summary

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983073

Collected: April 30, 2009

Received: April 30, 2009

Prep/ Analyzed: May 4, 2009 Analytical Batch: 05TDS09A

Date: May 6, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
983073	SC-700B-WDR-201	mg/L	SM 2540C	250	3980
		QA/QC Su	ummary		

QC STD I	I.D.	Laborator, Number	Y Concentrat	llon	Duplic Concent	ate ration	F Di	Percent ifference	Ace	ceptance limits	QC Within Control
Duplicat	te	983071	395		392	2		0.38%		<u><</u> 5%	Yes
	¢	C Std I.D.	Measured Concentration	Th Con	eoretical centration	Percer Recove	nt rry	Accepta Limit	nce \$	QC Withir Control	ĩ
		Blank	ND		<25.0		_	<25.0)	Yes	-
		LCS 1	497		500	99.4%	,	90% - 1	10%	Yes	1

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

fur

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

May 28, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-202 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 983164

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-202 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on May 6, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Seen Com

46 - Mona Nassimi Manager, Analytical Scrvices

K. R. P. Syer

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01

Laboratory No.: 983164 Date: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009

ANALYST LIST

MET HOD	PARAMETER	AMALVET
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Daniel Kang / Romuel Chavez
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT www.truesdail.com

Laboratory No.: 983164

Prep/ Analyzed: May 7, 2009 Analytical Batch: 05EC09C

Collected: May 6, 2009

Received: May 6, 2009

Date: May 28, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI_I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
983164-1	SC-7008-WDR-202	µmhos/cm	EPA 120.1	1.00	2.00	6770
983164-2	SC-100B-WDR-202	µmhos/cm	EPA 120.1	1.00	2.00	7740

QA/QC Summarv

QC STI	D Laborato Number	ry Concent	tration	Duplica Concentra	nte ation	Rei Pe Diffe	lative rcent erence	Acc	eptance imits	QC Within Control
Duplicat	le 983165-3	2 326	60	8270		0.12%		<u><</u> 10%		Yes
	QC Std I.D.	Measured Concentratio	n Co	heoretical	Percen Recove	it ry	Acceptar Limits	ice	QC Within Control	n
Ľ	Blank	ND		<2.00			<2.00		Yes	
Γ.	CCS	695		706	98.4%	,	90% - 11	0%	Yes]
	CVS#1	976		1000	97.6%	,	90% - 11	0%	Yes	
	CV\$#2	977		1000	97.7%	,	90% - 11	0%	Yes	
	LÇ\$	695		706	98.4%	,	90% - 11	0%	Yes	
	LCSD	695		706	98.4%	,	90% - 11	0%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

SemCarl

k - Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 Client: E2 Consulting Engineers, Inc. REPORT www.truesdail.com 155 Grand Ave. Suite 1000

Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
983164-1	SC-700B-WDR-202	mg/L	SM 2540C	250	4360
983164-2	SC-100B-WDR-202	mg/L	SM 2540C	250	4650

QA/QC Summary

QC STD I.	D. Laborato Number	ry Concentra	Concentration C		Duplicate Concentration D		Percent	Acc	eptance limits	QC Within Control
Duplicate	983165-	2 5020		495	0		0.70%		<u><</u> 5%	Yes
ſ	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Perce Recov	nt ery	Accepta Limit	ince S	QC Withi Control	n
	Blank	ND	4	<25.0			<25.	0	Yes	
[LCS 1	499		500	99.89	%	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 983164

Collected: May 6, 2009

Received: May 6, 2009

Prep/ Analyzed: May 8, 2009 Analytical Batch: 05TDS09C

Date: May 28, 2009

4.00 Mona Nassimi, Manager **Analytical Services**

EXCELLENCE IN INDEPENDENT TESTING
Established 1931
I4201 FRANKLIN AVENUE
TUSTIN, CALIFORNIA 92780-7008
(714) 730-6239 · FAX (714) 730-6462
WWW.truesdail.com
Oakland, CA 94612
Attention: Shawn Duffy

Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01 Laboratory No.: 983164 Date: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009 Prep/ Analyzed: May 7, 2009 Analytical Batch: 05TUC09F

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983164-1	SC-700B-WDR-202	13:00	NTU	1.00	0.100	ND
983164-2	SC-100B-WDR-202	13:11	NTU	1.00	0.100	0.101

QA/QC Summary

QC STD I	.D.	Laborator Number	У	Concentra	tion	Duplic Concent	cate tration	F I Di	Relative Percent ifference	Acc	eptance limits	QC Within Control
Duplicat	983164-2		2	0.101		0.102 0.99%		<u>≤</u> 20%		Yes		
	Q	QC Std I.D. C		Measured ncentration	The Conc	Theoretical Percent Acce Concentration Recovery Li		Accepta Limit	Ince S	QC Within Control	n	
		Blank		ND		<0.100		- <0.1		0 Yes		
		LCS		7.80		8.00	97.59	%	90% - 1	10%	Yes	
		LCS		7.90		8.00	98.89	%	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01 Prep. Batch: 05CrH09E

Laboratory No.: 983164

Date: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009 Prep/ Analyzed: May 7, 2009 Analytical Batch: 05CrH09E

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Run Time	Units	DF	RL	<u>Results</u>
983164-1	SC-700B-WDR-202	13:00	09:48	μg/L	1.05	0.20	ND
983164-2	SC-100B-WDR-202	13:11	09:58	μg/L	105	21.0	1150

QA/QC Summary

	QC STO) I,D,		Labor Nurr	atory aber	Sample Concentra	• ition	Dup Conce	olica entra	ite ation	R F Di	Relative Percent ifference	Acc I	eptançe Imits	QC Within Control	
	Duplic	ate		9831	64-2	1150		1	140			0.87%	-	20%	Yes	
QC Std I.D.	Lab Number	Cone unsp sam	c.of iked ple	Dilut	ion Factor	Added Spike Conc.	Ar	MS nount	M C S	easured onc. of spiked sample		Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
MS	983164-1	0.0)Ó		1,06	1.00		1.06		1.00		1.06		4.3%	90-110%	Yes
MS	983164-2	115	50		105	15.0		1575		2680		2725	<u>ا</u>	7.1%	90-110%	Yes
		Q	C Std	I,Ð,	Mea Conce	sured Intration	TI Con	heoretica ncentratio	l on	Percei Recove	nt ery	Accepta Limite	nce s	QC Within Control	ſ	
			Blan	k	. 1	VD.		<0.200		_		<0.20	2	Yes		
			MRCO	S	5	.07		5.00		101%	6	90% - 11	0%	Yes		
		M	IRCV:	5#1	1	0.3		10.0		103%	6	95% - 10	5%	Yes		
		M	RCV	S#2	9	.84		10.0		98.49	6	95% - 10	5%	Yes		
		M	RCV	5#3	1	0.0		10.0		100%	6	95% - 10	5%	Yes		
		M	IRCV:	5#4	1	0.0		10.0		100%	6	95% - 10	5%	Yes		
			LCS	6	5	.01		5.00		100%	6	90% - 11	0%	Yes		

ND: Selow the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Hona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983164

Collected: May 6, 2009

Received: May 6, 2009

Prep/ Analyzed: May 11, 2009 Analytical Batch: 05NH3-E09C

Date: May 28, 2009

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Method	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983164-1	SC-700B-WDR-202	13:00	SM 4500-NH3 D	mg/L	1.00	0.500	ND
983164-2	SC-100B-WDR-202	13:11	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

	QC STD	I.D.	L	aborato Numbe	ory r	Concentra	itlon	Du Çonc	piica entr	ate ation	R P Dif	leiative Percent fference	Acc li	eptance imits		Within ontrol	
	Duplic	ate		983164	2	ND			ND		I	0.00%	<	20%		Yes	
QC Std I.D.	Lab Number	Cor uns sai	nc.of piked mple	Dilı Fa	rtion ctor	Added Spike Conc.	Ar	MS mount	M C	easured Conc. of spiked sample	T	heoretical Conc. of spiked sample	l Re	MS% covery	Acc	eptance limits	QC Within Control
MŞ	983164-2	0	.00	1,	00	6.00		6.00		6.22		6.00	1	04%	78	5-125%	Yes
			QC Sto	I I.D.	Me Con	easured centration	TI Coi	heoretica ncentrati	il on	Percei Recove	nt ary	Acceptar Limits	ice	QC With Contro	nin : st		
			Blar	ık		ND		<0.500				<0.500)	Yes			
			MRC	cs		6.22		6.00		104%	٥ [,]	90% - 11	0%	Yes			
			MRCV	S#1		6.07		6.00		101%	6	90% - 11	0%	Yes			
			MRCV	S#2		6.18		6.00		103%	6	90% - 11	0%	Yes			
			LC	5		10.2	[10.0		102%	6	90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

investigation:

Laboratory No.: 983164 Date: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009 Prep/ Analyzed: May 7, 2009 Analytical Batch: 05AN09E

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983164-1	SC-700B-WDR-202	13:00	10:34	mg/L	5.00	0.500	2.38
983164-2	SC-100B-WDR-202	13:11	10:45	mg/L	5.00	0.500	2.74

QA/QC Summary

	QC STC) I.D.	La	iborat Numb	огу er	Concentra	ition	Dup Conce	licate ntration	R P Dif	telative Percent fference	Acc I	eptance imits	QC Within Control	
	Duplic	ate	9	83148	3-1	NĎ		٢	<u>م</u> ا		0.00%	<	20%	Yes	
QC Std I.D.	Lab Number	Cor unsi sar	nc.of piked nple	Dili Fa	ution ctor	Added Spike Conc.	Ar	MS nount	Measured Conc. of spiked sample	1	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
MS	983148-1	0.	360	1	.00	4.00		4.00	4.50		4.36		104%	85-115%	Yes
			QC Std	1.D.	Mo	easured centration	TI Coi	neoretical ncentratio	Perce n Recov	ent ery	Acceptar Limits	ice	QC Wit Contr	hin ol	
			Blan	ĸ		NØ		<0.500			<0.500)	Yes		
			MRCO	s		4.04		4.00	101	%	90% - 11	0%	Yes		
			MRCV	5#1		3.08		3.00	103	%	90% - 11	0%	Yes		
			MRCV	S#2		3.16		3.00	105	%	90% - 11	0%	Yes		
			LCS	5		4.08		4.00	102	%	90% - 11	0%	Yes		

ND; Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖅 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

013

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983164

Collected: May 6, 2009

Received: May 6, 2009

Prep/ Analyzed: May 7, 2009 Analytical Batch: 05AN09E

Date: May 28, 2009

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983164-1	SC-700B-WDR-202	13:00	12:50	mg/L	50.0	25.0	486
983164-2	SC-100B-WDR-202	13:11	13:02	mg/L	50.0	25.0	574

QA/QC Summary

	QC STD) I.D.	La	aborat Numb	ory er	Concentra	ation	Dup Conce	olicate entration	F F Di	Relative Percent ifference	Acc I	eptance imits		2C Within Control	
	Duplic	ate	ç	83155	5-1	238			240		0.84%	4	20%		Yes	
QC Std I.D.	Lab Number	Cor unsj san	nc.of piked nple	Dil Fa	ution ctor	Added Spike Conc.	Ar	MŜ nount	Measured Conc. of spiked sample	1	Theoretical Conc. of spiked sample	Re	MS% covery	A	cceptance limits	QC Within Control
MS	983155-1	2	38	1	00	4.00		400	644		638		102%		85-115%	Yes
		G	C Std	LD.	Me Cond	easured	TI Coi	heoretica ncentratic	l Perce on Recov	ent /ery	Acceptan Limits	ice	QC Wit Contr	hin ol		
			Blan	k		ND		<0.500			<0.500)	Yes			
			MRC	CS .		20.2		20.0	101	%	90% - 11	0%	Yes			
		1	MRCV	S#1		15.0		15.0	100	%	90% - 110	0%	Yes			
		1	MRCV	S#2		14.9		15.0	99.3	%	90% - 11	0%	Yes			
			LCS	3		20.2		20.0	101	%	90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected). DE: Dilution Eactor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983164 Date: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009 Prep/ Analyzed: May 7, 2009 Analytical Batch: 05AN09E

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI 1.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983164-1	SC-700B-WDR-202	13:00	10:34	mg/L	5.00	1.00	2.71
983164-2	SC-100B-WDR-202	13:11	10:45	mg/L	5.00	1.00	3.01

QA/QC Summary Relative Acceptance QC Within Laboratory Duplicate QC STD I.D. Concentration Percent Number Concentration limits Difference < 20% 983155-3 ND ND 0.00% Duplicate Measured Theoretical Added Conc.of MS Conc. of MS% Acceptance Dilution Conc. of unspiked Spike Factor Amount spiked spiked Recovery sample Conc. sample sample 1.00 2.00 2.00 2.00 106% 85-115% 0.00 2.12

ſ	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
[Blank	ND	<0.500		<0.500	Yes
- [MRCCS	4.04	4.00	101%	90% - 110%	Yes
[MRCVS#1	3.01	3.00	100%	90% - 110%	Yes
[MRCVS#2	3.01	3.00	100%	90% - 110%	Yes
[MRCVS#3	3.03	3.00	101%	<u>90% - 110%</u>	Yes
[MRCVS#4	3.04	3.00	101%	90% - 110%	Yes
[LCS	4.04	4.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

Lab

Number

983155-3

DF: Dilution Factor.

QC Std

1.D.

MŚ

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Control

Yes

limits

QC Within

Control

Yes

For Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983164 Date: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009 Prep/ Analyzed: May 7, 2009 Analytical Batch: 05NO209C

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>TLH.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Unițs</u>	DF	<u>RL</u>	Results
983164-1	SC-700B-WDR-202	13:00	16:02	mg/L	1.00	0.0050	ND
983164-2	SC-1008-WDR-202	13:11	16:03	mg/L	1.00	0.0050	ND

						QA	/Q	C Su	m	mary	/						
	QC STE) I.D.	L	abor: Num	atory ber	Concentra	ation	Du Conc	plic enti	ate ration	4 9 10	Relative Percent Ifference	Acc I	eptance imits	6	C Within Control	
	Duplic	ate		9831	64-1	ND			NĎ		•	0.00%	. <	20%		Yes	
QC Std I.D.	Lab Number	Con- unsp sam	c.of liked lple	Di F	ilution actor	Added Spike Conc.	Аг	MS nount	M C	leasured Conc. of Spiked sample		Theoretical Conc. of spiked sample	Re	VIS% covery	Ac	ceptance limits	QC Within Control
MS	983164-1	0.0	00		1.00	0.0200	0.	0200		0.0192		0.0200	9	6.0%	-	75-125%	Yes
		Q	C Std	1.D.	Mea Conce	asured entration	Tł Cor	eoretica icentratio	i on	Percen Recover	nt Accepta iry Limits		s QC Wit		in t		
			Blank			ND		<0.0050				<0.005	0	Yes			
			MRCC	s	0.	0277		0.0270		103%		90% - 11	0%	Yes			
		M	IRCVS	;#1	0.	0200	<u> </u>	0.0200		<u>1</u> 00%		90% - 11	0%	Yes			
		M	IRCVS	#2	0.	0197		0.0200		98.5%		90% - 11	0%	Yes			
			LCS		0.	0458		0.0450		102%		90% - 11	0%	Yes			
			LCSE)	0 .	0455		0.0450		101%		90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to the sample of the client to be applied on the whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

016

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

Established 1931

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983164 Reported: May 28, 2009 Collected: May 6, 2009 Received: May 6, 2009 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01 investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	SC-700B-WDR-202	Time Col	lected;	13:00			983164-1	····
Parameter	64 - 45 - 4	Reported				-	Date	Time
1 818/10/01	Method	Value	DF	Units	<u>RL</u>	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	_µg/L	50.0	051409A	05/14/09	13:18
Antimony	EPA 200.8	ND	5.00	μg/L	10.0	050709A	05/07/09	14:46
Arsenic	EPA 200.8	4.24	5.00	μg/L	1.00	050709A	05/07/09	14:46
Barium	EPA 200.8	12.3	5.00	μ g /Ļ	10.0	050709A	05/07/09	14:46
Chromium	EPA 200.8	ND	5.00	μ g /L	1.00	052209A	05/22/09	12:44
Copper	EPA 200.8	ND	5.00	μg/L	5.00	050709A	05/07/09	14:46
Lead	EPA 200.8	ND	5.00	μg/L	10.0	050709A	05/07/09	14:46
Manganese	EPA 200.8	13.2	5.00	μg/L	10.0	050709A	05/07/09	14:46
Molybdenum	EPA 200.8	20.0	5.00	μg/L	10.0	050709A	05/07/09	14:46
Nickel	EPA 200.8	ND	5.00	<u></u> µg/L	10.0	050709A	05/07/09	14:46
Zinc	EPA 200.8	ND	5.00	μg/L	10.0	050709A	05/07/09	14:46
Boron	EPA 200.7	1020	1.00	μg/L	200	051209A	05/12/09	15:20
Iron	EPA 200.7	ND	1.00	μg/L	20.0	051209A	05/12/09	15:20

Report Continued

SAMPLE ID:	SC-100B-WDR-202	Time Col	locted: 1	3:11				
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date	Time
Aluminum	EPA 200.8	ND	5.00	µg/L	50.0	051409A	05/14/09	12:25
Antimony	EPA 200.8	ND	5.00	μα/L	10.0	050709A	05/07/09	15:12
Arsenic	EPA 200.8	3.50	5.00	µg/L	1.00	050709A	05/07/09	15:12
Barium	EPA 200.8	26.1	5.00	μg/L	10.0	050709A	05/07/09	15:12
Chromium	EPA 200.8	1130	5.00	μα/L	1.00	052209A	05/22/09	12:50
Copper	EPA 200.8	ND	5.00	цд/L	5.00	050709A	05/07/09	15:12
Lead	EPA 200.8	NĎ	5.00	μα/L	10.0	050709A	05/07/09	15:12
Manga <mark>nese</mark>	EPA 200.8	ND	5.00	μα/L	10.0	050709A	05/07/09	15:12
Molybdenum	EPA 200.8	30.5	5.00	µa/L	10.0	050709A	05/07/09	15:12
Nickel	EPA 200.8	ND	5.00	ug/L	10.0	050709A	05/07/09	16:12
Zinc	EPA 200.8	ND	5.00	<u> </u>	10.0	0507094	05/07/09	10,12
Boron	EPA 200.7	1110	1.00	μ <u>α/L</u>	200	051209A	05/10/09	45,97
Iron	EPA 200.7	ND	1.00	μg/L	20.0	052709A	05/27/09	14:47

ND: Not detected or below limit of detection, DF: Dilution factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

en Cen

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

018

	TRUESDAIL LABOR 14201 Franklin Aven (714)730-6239 FAX	ATORIES, INC. Nue, Tustin, CA 92 : (714) 730-6462	780-7008		CHAIL	IM OF	CUST 3Plan		REC(B B C	2	9		OC NU URNAR	mber Kound	 ₩	M3Plant-W 10 Day PAGE	0R-202	- [
·	COMPANY CH2M HILI	L Æ2				_		(1:5								-	_	COMMENT	97
	PROJECT NAME PG&E TOP	ock IM3						t> 1-			MOIR	-20s						ĝ	100F
	PHONE 530-2.	29-3303	FAX 530-30	39-3303			500			- 18/7		'20N				Sb	ha Ha	0'L	13.15
	ADORESS 155 Grand Oakland, C	Ave Ste 1000 A 94612					1(500'2			00S (2.	(EHN	E NO3	10/10			NTAINE/	- H - F	3.4B	13:19 1333
	P.O. NUMBER 379209.01	.03.01				7e7 (g	S/7 84	()	(4200 2 (500	± (0.0	() (0:00	s (200			0030	je Je	8	a)(c)
	SAMPLERS (SIGNATURE	Alperial 1			~	S Wet	50.1)	0792	WEIS		08) 50	01ES) E) SU	lejew.						
		DATE	TIME	DESCRIPTION	בינאיי	2 əqi1	1) 23	1 gini	/ejoj			Pol B			NUN				
7	SC-700B-WDR-202	02/06/03	13:00		×	Ê	×	×	×	×	×				4			₩ M	2
\sim	SC-100B-WDR-202	02/06/05	13:11	-	×	Ê	×	×	×	×	×				₽-			m	<u>(</u>)
								\square		\square				_				-	
				Γ.									T	ł					
						$\left \right $	† .				5	udit	One						
				S				90	E E	S	<u>a k</u> t	hadhad	P						
		1 tevel		2			<u> </u>			╟╋				<u> </u>					
	SC-100B 78.8°	EC 9.43	* 	1,20	<u> </u>	3	<u> </u>								$\boldsymbol{\omega}$	TOTAL	NUMBER O	CONTAIN	ERS
١	Time 13:20	or:6	13:24	6661		$\boldsymbol{<}$													ſ
		CHAIN OF	CUSTOD	Y SIGNATUI	RER	COR 1	٥							•,	SAMPLE	CONDIT	SNO		
	Signature Cluur W	Printed Name	Cikinght	Company		W.			<u>ത</u> ് പ.	-9-5	406	RECE	VED	COOL		WAR		•	<u>ب</u> ا
	Signature Signature	Printed Name	A Com	Company Act Agency		T'U		Tin Oal	ίδι Β	25	2 20	cust.	ODY SE/	VLED	YES		D 9		
	Signature (Relinnuished)	Printed	A B	(Company		re.	0		N E	900 900	22	ECIM	REQUIRE	MENTS					
C	Signature A Malu	hinted	haly	K-1 Lan Agency	1, J	ר 17		3 F		20	6	A The n Mo, N	ietals in i, Fe, Zi	clude:	C, A	Sb, As, E	Ba, B, Cu,	Pb, Mn,	
)76	Signature (Relinguished)	Printed Name		Company Agency	14			äĘ∣	<u>e</u> e		220	£							
•	Signature (Received)	Printed Name		Company Agency	1 4			å₽	ja e										

۱.

•

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

May 26, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-203 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983307

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-203 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on May 13, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

- Mona Nassimi Manager, Analytical Services

K.R.P. Syle

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 983307 Date: May 26, 2009 Collected: May 13, 2009 Received: May 13, 2009

ANALYST LIST

na na santa tang ang santa santa ang kata santa s	a an		
EPA 120.1	5	Specific Conductivity	Tina Acquiat
SM 2540C		Fotal Dissolved Solids	Tina Acquiat
SM 2130B		Furbidity	Gautam Savani
EPA 200.8	7	Fotal Chromium	Linda Saetern
EPA 218.6	4	lexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT www.truesdall.com Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 983307 Sample: One (1) Groundwater Sample Date: May 26, 2009 Project Name: PG&E Topock Project Collected: May 13, 2009 Project No.: 379209.01.02 Received: May 13, 2009 P.O. No.: 379209.01.02 Prep/ Analyzed: May 15, 2009 Prep. Batch: 051509A Analytical Batch: 051509A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TL</u> 9833	<u>I I.D.</u> 307	<u>Field </u> SC-70	<u>.р.</u> ов-wd)R-2	03		<u>Units</u> μg/L	<u>M</u> EP/	ethod A 200.8		<u>Ru</u> 14	<u>n T</u> 4:2	<u>Гіте</u> :0	<u>[</u> 5)F .00		<u>RL</u> 1.00	<u>Results</u> ND
							QA	/Q	C Su	m	mar	у						
		QC STD	I.D.	Labo Nu	oratoi imber	y	Concentra	tion	Duj Conce	olica	nte ation	R P OH	Relative Percent Ifference	Acci Ii	eptance mits	G	C Within Control	
		Duplica	ite 📃	983	108-1	2	22.8			2.8			0.00%	_ <	20%		Yes	
	QC Std I.D.	Lab Number	Conc. unspik sampi	of æd lø	Dilut Fact	ion tor	Added Spike Conc.	Ar	MS nount	M C s	easured Conc. of spiked sample	st	Theoretical Conc. of piked sample	Re	MS% covery	A	cceptance limits	QC Within Control
M	S	983108-12	22.8		5.0	00	50.0		250		269		273		98.5%		75-125%	Yes
			ac	Std I.	.D.	M Cor	leasured centration	TI Cor	heoretica ncentratio	l on	Percei Recove	nt ary	Acceptane Limits	69	QC With Contro	vin >l		
			e	<u>3</u> lank			ND		<1.00				<1,00		Yes			
			M	RCCS	s		51.1		50.0		102%	5	90% - 110	%	Yes			
			MR	CVS	#1		51.1		50.0		102%		90% - 110	%	Yes			
				CVS	#2		50.9		50.0		102%	<u> </u>	90% - 110	%	Yes			
				ICS			44.4		50.0		88.8%	6	80% - 120	%	Yes			
				LCS			50.9		50.0		102%	\$	90% - 110	%	Yes			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983307

Collected: May 13, 2009

Received: May 13, 2009

Prep/ Analyzed: May 14, 2009 Analytical Batch: 05CrH09L

Date: May 26, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983307	SC-700B-WDR-203	07:50	07:21	μg/L	1.05	0.20	ND

QA/QC Summarv

	QC ST) I.D.	Lat	oorato umbei	r y r	Concentrati	on	Dup Conce	licate ntration	F F Di	Relative Percent ifference	Acc	eptance limits	QC Within Control	
	Duplic	ate	98	3308-	1	2330		23	300		1.30%		< 20%	Yés	
QC Std I.D.	Lab Number	Cor uns sar	nc.of pikeđ npie	Dilut Fac	tion tor	Added Spike Conc.	Ar	MS nount	Measured Conc. of spiked sample	1	Theoretical Conc. of spiked sample	R	MS% ecovery	Acceptance lim	QC ts Within Control
MS	983307	0	.00	1.0)6	1.00		1.06	1.08		1.06		102%	90 - 110%	Yes
		G	C Std	I.D.	С	Measured oncentration	Th Cor	neoretical Icentratio	Perce n Recov	ent /ery	Acceptar Limits	100	QC With Contro	hin M	
			Bian	k		ND		<0.200	+		<0.200)	Yes	-	
			MRCC	;s		5.08		5.00	102	%	90% - 11	0%	Yes	_	
		,	MRCVS	3#1		9.91		10.0	99.1	%	95% - 10	5%	Yes		
			MRCVS	\$#2		9.82		10.0	98.2	%	95% - 10	5%	Yes		
			MRĊV	5#3		9.74		10.0	97.4	%	95% - 10	5%	Yes		
			LCS			5.06		5.00	101	%	90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without any advertising or publicity matter authorization from Truesdall Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE

REPORT

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983307

Date: May 26, 2009 Collected: May 13, 2009 Received: May 13, 2009 Prep/ Analyzed: May 14, 2009 Analytical Batch: 05TUC09L

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983307	SC-700B-WDR-203	07:50	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.	.D.	Laborator Number	У	Concentrati	on	Dupii Concen	cate tration	R P Di	telative Percent fference	Acc	eptance : imits	QC Within Control
Duplicate	e	983307		ND		N	D		0.00%	1	<u><</u> 20%	Yes
	QC	Std I.D.	M Con	leasured Icentration	Theo Conce	oretical entration	Percen Recove	it ry	Accepta Limit	ince S	QC Withi Control	n
	E	Blank		ND	<(0.100			<0.10	0	Yes	1
		LCS		8.05		3,00	101%		90% - 11	10%	Yes	1

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

For Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
983307	SC-700B-WDR-203	umbos/cm	EPA 120.1	1.00	2.00	6870

QA/QC Summary

QC S I.D,	TD Laborate Numbe	ory r	Concentrati	on	Duplica Concentra	t e Ition	Rela	itive Percent Ifference	Ac	ceptance limits	QC Within Control
Duplic	ate 983307	7	6870		6880			0.15%		<u><</u> 10%	Yes
	QC Std I.D.	M Col	leasured ncentration	Т Со	heoretical incentration	Perc Reco	ent very	Acceptane Limits	ĊØ	QC Within Control	n
	8lank	ND			<2.00			<2.00		Yes	
	ccs		695		706	98.4	1%	90% - 110	%	Yes	
	CVS#1		977		1000	97.7	'%	90% - 110	%	Yes	
	LCS		695		706	98.4	1%	90% - 110	%	Yes	
	LCSD		695		706	98.4	1%	90% - 110	%	Yes	1

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without **OPO** inten authorization from Truesdail Laboratories.

Laboratory No.: 983307

Date: May 26, 2009 Collected: May 13, 2009 Received: May 13, 2009 Prep/ Analyzed: May 14, 2009 Analytical Batch: 05EC09F

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Date: May 26, 2009

Laboratory No.: 983307

Collected: May 13, 2009 Received: May 13, 2009 Prep/ Analyzed: May 18, 2009 Analytical Batch: 05TDS09G

Investigation:

<u>TLI I.D.</u> 983307 Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

	<u>Field I.</u> SC-700	<u>D.</u>)B-WDR-203	<u>Units</u> mg/L	<u>n</u> Sn	<u>RL</u> 125	<u>Results</u> 4280		
_			QA/Q	C Summar	У			
4	C STD 1.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control	
	Dunlingto	092207	1000			- 59/		

- apricat				<u> </u>	0.70%	- • //	<u>Y</u> es
	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control	
	Blank	ND	<25.0		<25.0	Yes	1
	LCS 1	499	500	99.8%	90% - 110%	Yes	1
Ĺ	LCS 2	502	500	100%	90% - 110%	Yes	1

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

June 1, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK 1M3PLANT-WDR-204 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983419

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-204 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on May 19, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Sen Cum -Mona Nassimi

Mona Nassimi Manager, Analytical Services

K. R. P. Inger

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 983419 Date: June 1, 2009 Collected: May 19, 2009 Received: May 19, 2009

ANALYST LIST

and the second second second second	n an ann an an an an Anna an A Anna an Anna an	
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Daniel Kang
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

14201 FR TUSTIN, CAL (714) 730-6239

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Prep. Batch: 052009A

Laboratory No.: 983419

Date: June 1, 2009 Collected: May 19, 2009 Received: May 19, 2009 Prep/ Analyzed: May 20, 2009 Analytical Batch: 052009A

Investigation:

ation: Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

REPORT

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	<u>Resultş</u>
983419	SC-700B-WDR-204	µg/Լ	EPA 200.8	17:16	5.00	1.00	ND

QA/QC Summary

·	QC STD) I.D.	Lai N	oorato umbe	ry r	Concentra	tion	Du Conc	plic: entr	ate ration	Ř P Di	Relative Percent Ifference	Ace	ceptance limits	Q	C Within Control	
	Duplic	ate	98	3286-	8	22.3			22.3			0.00%		<u>≺</u> 20%		Yes	
QC Std I.D. MS	Lab Number	Cor uns sar	nc.of piked nple	Dilu Fac	tion tor	Added Spike Conc.	A	MS mount		leasured Conc. of spiked sample	8	Theoretical Conc. of piked samp	le F	MS% lecovery	Ac	ceptance limits	QC Within Control
	983286-8	3286-8 2	2.3	5.	00	50.0	50.0			268	272			98.3%		/5-125%	Yes
			C Std	I.D.	N Cor	leasured ncentration	T Co	heoretica ncentrati	ıl on	Percea Recove	nt ary	Accepta Limit	nce s	QC Witi Contro	hin Si		
			Blani	<u>(</u>		ND		<1.00				<1.00)	Yes			
			MRCC	ິ		50.2		50.0		100%		90% - 11	10%	Yes			
			MRCVS	;# 1		50.4		50.0		101%	<u>6</u>	90% - 11	0%	Yes			
			MRCVS	;# 2		49.9		50.0		99.8%	6	90% - 11	10%	Yes			
			_ICS			50.4		50.0		101%	ó	80% - 12	20%	Yes			
			LCS			52.3		50.0		105%		90% - 11	10%	Vac			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Laboratory No.: 983419

Collected: May 19, 2009

Received: May 19, 2009

Prep/ Analyzed: May 21, 2009 Analytical Batch: 05CrH09Q

Date: June 1, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209,01.02

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Resuits</u>
983419	SC-700B-WDR-204	08:00	06:38	μg/L	1.05	0.20	NĎ

QA/QC Summarv

	QC ST) I.D.	Lat N	orato umbei	ry r	Concentrati	on	Du Conc	iplicat entrat	e tion	R P Dif	elative ercent iference	Acc I	optance imits		QC Within Control		
	Duplic	ate	98	3418-	4	852			853		(0.12%	4	20%		Yes		
QC Std I.D.	Lab Number	Col uns sai	nc.of piked npie	Dilut Fac	tor	Added Spike Conc.	An	MS nount	Mea Coi sp sa	isured nc. of iiked mple	1	Theoretical Conc. of spiked sample	R	MS% ecovery	Ac	cceptance limi	ts	QC Within Control
	983419	0	.00	1,0)6	1.00		1.06	1	.04		1.06		98.1%		90 - 110%		Yes
		4	QC Std	I,D,	c	Measured oncentration	Th Cor	neoretic: ncentrati	al ion	Perce Recov	nt ery	Accepta Limite	nce S	QC Wit Contr	hin ol			
			Blan	k		ND		<0.200				<0.20	0	Yes		1		
			MRCO	:s		5.06		5.00		1019	6	90% - 11	0%	Yes	·			
		1	MRCV	S#1		10.1		10.0		1019	6	95% - 10)5%	Yes]		
			MRCV	5#2		10.0		10.0		100%	6	95% - 10)5%	Yes]		
			LĊS	;		5.08		5.00		1029	6	90% - 11	0%	Yes]		

ND: Below the reporting limit (Not Detected). **DF:** Ollution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

だ~Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983419

Date: June 1, 2009 Collected: May 19, 2009 Received: May 19, 2009 Prep/ Analyzed: May 19, 2009 Analytical Batch: 05TUC09M

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983419	SC-700B-WDR-204	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.	D. Labor Num	itory ber	Concentrat	ion	Dupl Concer	icate itration	R F Di	Percent Difference		eptance imits	QC Within Control
Duplicate	e 98336	9-16	ND		ND			0.00%	• •	<u>≤</u> 20%	Yeş
	QC Std I.D.		Measured The Concentration Conc		oretical entration	Percer Recove	nt vry	Accepta Limit	ance QC Withi ts Control		n
	Blank		ND	۲ ۲	0.100		- <0.10		00	Yes	
	LCS		8.23		8.00	103%	,	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Excellence in Independent Testing			Established 1931
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Attention: Shawn Duffy		I	_aboratory No.: 983419

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Date: June 1, 2009 Collected: May 19, 2009 Received: May 19, 2009 Prep/ Analyzed: May 21, 2009 Analytical Batch: 05EC09

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
983419	SC-700B-WDR-204	umhos/cm	EPA 120.1	1.00	2.00	7020

QA/QC Summarv

QC S I.D.	TD Laborato Numbe	ry Cor	Concentration 7020		Duplica Concentra	te tion	Rela C	itive Percent)ifference	Acc	eptance limits	QC Within Control
Duplic	ate 983419				[·] 7030			0.14%	<u>≤</u> 10%		Yes
	QC Std I.D.	Measu Concent	Measured Ti Concentration Co		Theoretical oncentration	Perc Reco	ent very	Acceptan Limits	CÐ	QC Withi Control	n
	Blank	NE)		<2.00		-	<2.00		Yes	
	CCS	69	3		706	98.6	3%	90% - 110	1%	Yes	
	CVS#1	97	3		1000	97.8	3%	90% - 110)%	Yes	
	LCS	69	5		706	98.6	6%	90% - 110)%	Yes	
	LCSD	69	6		706	98.6	3%	90% - 110)%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

/ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

 Established 1931

 14201 FRANKLIN AVENUE

 TUSTIN, CALIFORNIA 92780-7008

 (714) 730-6239 · FAX (714) 730-6462

 www.truesdail.com

Laboratory No.: 983419

Collected: May 19, 2009

Received: May 19, 2009

Prep/ Analyzed: May 21, 2009 Analytical Batch: 05TDS09K

Date: June 1, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

т

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
983419	SC-700B-WDR-204	mg/L	SM 2540C	250	4460
		0 N/00 8.			

QA/	Summary

QC STD I.D. Laboratory Number		у	Concentration		Duplicate Concentration		Percent Difference		Acceptance limits		QC Within Control	
Duplicate 983419			4460		4330		1.48%			<u><</u> 5%	Yes	
	Q	C Std I.D.	Mi Coni	easured centration	Th Con	eoretical centration	Perce Recov	nt ery	Accepta Limit	ince S	QC Within Control	n
		Blank		ND		<25.0			<25.0	0	Yes	
		LCS 1		497		500	99.49	6	90% - 1	10%	Yes	
		LCS 2		498		500	99.6%	%	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

- Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 2, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-205 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983539

Truesdail Laboratorics, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-205 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on May 27, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the matrix spike for Hexavalent Chromium analysis by EPA 218.6 was 3 seconds outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Sema

4. – Mona Nassimi Manager, Analytical Services

K. R. P. Soll

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 983539

Date: June 2, 2009 Collected: May 27, 2009 Received: May 27, 2009

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
ŚM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Michael Nonezyan
EXCELLENCE IN INDEPENDENT TESTING

	E	ste	ablished	1931
		_		
201	COANIZ	ÍNI		

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Prep. Batch: 052809A

Laboratory No.: 983539

Date: June 2, 2009 Collected: May 27, 2009 Received: May 27, 2009 Prep/ Analyzed: May 28, 2009 Analytical Batch: 052809A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	<u>RL</u>	<u>Results</u>
983539	SC-700B-WDR-205	μ g/ L	EPA 200.8	12:59	5.00	1.00	NĎ

						QA	vQ	C Su	Im	mar	y .						
	QC STD) I.D.	Lat N	borato	эгу ar	Concentra	tion	Duj Conce	olica entr	ite ation	R/ P/ Dif	elative ercent ference	Acc	eptance limits	6	C Within Control	
	Duplica	ate	ġ	83539		ND			ND		C	0.00%		<u><</u> 20%	L	Yes	
QC Std I.D.	Lab Number	Coi uns sar	nc.of piked nple	Dilu Fai	ition ctor	Added Spike Conc.	Ar	MS nount		easured ionc. of spiked sample	г sp	Theoretical Conc. of liked sampl	• R	MS% ecovery	A	cceptance limits	QC Within Control
MS	983539	0	.00	5.	00	50.0		250		244		250		97.6%		75-125%	Yes
		4	QC Std	I.D.	N Cor	leasured ncentration	Tł Cor	neoretica ncentratio	l Sn	Percer Recove	nt xry	Acceptar Limits	nce	QC With Contro	nin 21		
			Blani	ĸ		ND		<1.00				<1.00		Yes			
			MRCC	s		48.3		50.0		96.6%	, D	90% - 11	0%	Yes			
			MRÇV	5#1		48.5		50.0		97.0%	6	90% - 11	0%	Yes			
			ICS			49.5		50.0		99.0%	6	80% - 12	0%	Yes			
			LCS			49.6		50.0		99.2%	6	90% - 11	0%	Yes			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983539

Date: June 2, 2009 Collected: May 27, 2009 Received: May 27, 2009 Prep/ Analyzed: May 28, 2009 Analytical Batch: 05CrH09S

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983539	SC-700B-WDR-205	09:08	13:33	μg/L	1.05	0.20	NĎ

							<u>u u</u>			IIII CAI	L						
	QC ST	D 1.D.	Lat	xorato umbei	ry ′	Concentration		Duplicate Relative Concentration Difference		telative Percent ifference	Acceptance limits			QC Within Control			
	Duplic	ate	98	3539 5	x	ND			ND		(0.00%	,	20%		Yes	
QC Std I.D.	Lab Number	Cor uns sar	nc.of piked nple	Dilut Fac	tion tor	Added Spike Conc.	Ап	MS nount	N C T S	easured Conc. of spiked sample	sp	Theoretical Conc. of piked sample	R	MS% ecovery	Ac	ceptance limits	QC Within Control
MŞ	983539	0	.00	1.0)6	1.00	. 1	1.06		1.03		1.06		97%		90 - 110%	Yes
		4	QC Std	I.D.	C	Measured oncentration	Th Con	eoretica centratio	n on	Percer Recove	nt ery	Acceptan Limits	ce	QC With Contro	хіл Ы		
			Blan	ĸ		ND		<0.200				<0.200		Yes			
		_	MRCC	ş		5.04		5.00		101%	,	90% - 110)%	Yes			
			MRCVS	;#1		10.1		10.0		101%	,	95% - 105	5%	Yes			
			MRCV	\$#2		9.98		10.0		99.8%	, D	95% - 10	5%	Yes			
			MRCV	5#3		9.86		10.0		98.6%	, D	95% - 105	5%	Yes			
			MRCV	5#4		9.79		10.0		97.9%	b	95% - 105	5%	Yes			
			LÇŞ			5.04	•	5.00		101%	,	90% - 110	5%	Yes			

QA/QC Summary

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

+--- Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983539

Date: June 2, 2009 Collected: May 27, 2009 Received: May 27, 2009 Prep/ Analyzed: May 28, 2009 Analytical Batch: 05TUC09Q

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u> TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983539	SC-700B-WDR-205	09:08	NTU	1.00	0.100	NÐ

QA/QC Summary

QC STD I.	D. Laborat Numbe	ory er	Concentration		Dupi Concer	Relative Percent Difference		Acceptance limits		QC Within Control	
Duplicate	e 98353	9	ND		N	ND 0.00%		0.00%	<u><</u> 20%		Yes
	QC Std I.D.	c	Measured oricentration	The Conc	oretical entration	Percer Recove	nt ry	Accepta Limit	ince S	QC Within Control	ו
1	Blank		ND	<	0,100	ł		<0.10	0	Yes	
	LCS		7.72		B.00	96.5%	,	90% - 1	10%	Yes	
	LCS		7.70		8.00	96.3%	,	90% - 1	10%	Yes]

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Hona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
983539	SC-700B-WDR-205	µmhos/cm	EPA 120.1	1.00	2.00	6750

						_				
QC \$* 1.D,	TD Laborato Numbe	r Concentrat	ion	Duplica Concentra	te stion	Rela	itive Percent Difference	Aç	ceptance limits	QC Within Control
Dupliç	ate 983539	6750		6760			0.15%		<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration	т Со	heoretical incentration	Perc Reco	ent very	Acceptan Limits	C ®	QC Withi Control	n
[Blank	ND		<2.00			<2.00		Yes	
	CCS	696		706	98.6	3%	90% - 110	%	Yes	1
	CVS#1	977		1000	97.7	%	90% - 110	%	Yes	
	LCS	696		706	98.6	3%	90% - 110	%	Yes	
	LCSD	696		706	98.6	5%	90% - 110	%	Yes	

QA/QC Summary

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, Investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without **Def Ori**tien authorization from Truesdall Laboratories.

Laboratory No.: 983539

Date: June 2, 2009 Collected: May 27, 2009 Received: May 27, 2009 Prep/ Analyzed: May 28, 2009 Analytical Batch: 05EC09K

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983539

Date: June 2, 2009 Collected: May 27, 2009 Received: May 27, 2009 Prep/ Analyzed: May 28, 2009 Analytical Batch: 05TDS09N

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 983539 Field I.D. SC-700B-WDR-205 <u>Units</u> mg/L

<u>M</u>	<u>athod</u>
SM	2540C

<u>RL</u> <u>Results</u> 250 4390

QA/QC Summary

QC STD I	.D. Laborator Number	Y Concentra	Concentration Duplicate Concentration		Percent Difference		Acceptance limits		QC Within Control	
Duplicat	e 983539	4390		429	0		1.15%		<u><</u> 5%	Yes
	QC Std I.D.	Measured Concentration	Th Con	eoretical icentration	Perce Recov	nt èry	Accepta Limit	nce B	QC Within Control	'n
	Blank	ND		<25.0			<25.0	0	Yes	-
	LCS 1	499		500	99.8%	6	90% - 1	10%	Yes	
Į	LCS 2	499		500	99.8%	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 19, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-206 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 983651

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-206 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 3, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Sample SC-701-WDR-206 for metals by EPA 200.8 were analyzed at a dilution of 20x due to interference from high cation concentrations. Therefore, some metals are reported as non-detect at reporting limits that exceed the contract required detection limits.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted. TRUESDAIL LABORATORIES, INC.

Sen Cand fu- Mona Nassimi

Manager, Analytical Services

K. R. P. Syl

K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

003

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Daniel Kang
EPA 245.1	Mercury	Kris Collins
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983651

Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009

EXCELLENCE IN INDEPENDENT TESTING

14201 FRAN TUSTIN, CALIFO (714) 730-6239 - F

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: June 19, 2009

Collected: June 3, 2009

Received: June 3, 2009

Laboratory No.: 983651

Prep/ Analyzed: June 4, 2009 Analytical Batch: 06EC09D

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
983651-1	SC-700B-WDR-206	µmhos/cm	EPA 120.1	1.00	2.00	7150
983651-2	SC-100B-WDR-206	µmhos/cm	EPA 120.1	1.00	2.00	7940
983651-3	SC-701-WDR-206	µmhos/cm	ËPA 120.1	1.00	2.00	61800

QA/QC Summary

QC ST I.D.	D Laborato Number	ry Concentrati	ion	Duplic: Concentr	ate ation	C	Relative Percent Difference	Ac	ceptance limits	QC Within Control
Duplica	ate 983651-	3 61800	61800		61900			<u><</u> 10%		Yes
	QC Std I.D.	Measured Concentration	Ca	Theoretical oncentration	Percei Recove	nt :ry	Acceptar Limits	Ce	QC Within Control	n
	Blank	ND		<2.00			<2.00		Yes	-
	CCS	696	706		98.6%		90% - 11	2%	Yes	7
	CVS#1	978		1000	97.8%	4	90% - 11	0%	Yes	
Ļ	LCS	696		706	98.6%	6	90% - 11)%	Yes	1
	LCSD	696		706	98.6%	\$	90% - 11)%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

155 Grand Ave. Suite 100 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983651

Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06TDS09B

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	RL	Results
983651-1	SC-700B-WDR-206	ma/L	SM 2540C	250	4370
983651-2	SC-100B-WDR-206	mg/L	SM 2540C	250	4890
983651-3	SC-701-WDR-206	mg/L	SM 2540C	1250	51400

QA/QC Summary

QC STD I.I	D. Laborator Number	Concentra	tion	Duplic Concent	ate ration	D	Percent ifference	Acc	eptance limits	QC Within Control	
Ouplicate	983651-2	3651-2 4890		4960			0.71%	<u><</u> 5%		Yes	
	QC Std I.D.	Measured Concentration	The Cone	eoretical centration	Perce Recove	nt ∌ry	Accepta Limit	nce S	QC Within Control		
	Blank	NĎ		<25.0			<25.0)	Yes	-	
L	LCS 1	500		500	100%	, þ	90% - 11	0%	Yes	-	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

t - Mona Nassimi, Manager Analytical Services

Prep/ Analyzed: June 4, 2009 Analytical Batch: 06TUC09E

Investigation:

Project No.: 379209.01.03.01

P.O. No.: 379209.01.03.01

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	Units	DF	<u>RL</u>	<u>Results</u>
983651-1	SC-700B-WDR-206	09:03	NTU	1.00	0.100	ND
983651-2	SC-100B-WDR-206	08:58	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	I.D.	Laborator Number	у	Concentra	tion	Duplic Concent	ate ration		Relative Percent ifference	Aço	eptance limits	QC Within Control		
Duplicat	cate 983651-2		2	ND		ND)	0.00%			<u><</u> 20%	Yes		
	QC Std I.D. C.		QC Std I.D.		Cd	Measured oncentration	The Cone	eoretical centration	Perce Recov	nt ery	Accepta Limit	INCO S	QC Within Control	n
		Blank	ND		<0.100				<0.10	0	Yes			
		LCS		7.58		8.00	94.89	6	90% - 1	10%	Yes			
		LCS		7.63		8.00	95.49	6	90% - 1	10%	Yes			

ND: Below the reporting limit (Not Detected). OF: Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Received: June 3, 2009

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01 Prep. Batch: 06CrH09A

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Unitş</u>	DF	RL	<u>Results</u>
983651-1	SC-700B-WDR-206	09:03	10:07	μg/L	1.05	0.20	ND
983651-2	SC-100B-WDR-206	08:58	10:18	μg/L	105	21.0	1110
983651-3	SC-701-WDR-206	09:09	13:36	μg/L	26.2	5.24	ND

OA/OC Summany

							1.14	JOUI	mnai	<u>y</u>					
	QC STO	QC STD I.D. Laboratory Number		atory ber	Sample Concentra	e ition	Dup Conce	licate ntration		Relative Percent Ifference	Acc í	eptance imits	QC Within Control		
	Duplic	ate		9836	50-1	18.7		11	8.6		0.54%	4	20%	Yes	
QC Std I.D.	Lab Number	Cor uns san	nc.of piked nple	Dilu	ion Factor	Added Spike Conc.	Ar	MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Withi Control
MS	983651-1	. 0.	00		1.06	1.00		1.06	1.14		1.06	,	08%	90-110%	Yes
MŚ	983651-2	11	110		105	15.0		1575	2680		2685	9	9.7%	90-110%	Yes
MS	983651-3	Ô.	00		26.2	1.00		26.2	27.6		26.2		05%	90-110%	Yes
	QC Std I.D.		I. D.	Mea Conce	sured ntration	Th Cor	eoretical scentratio	Perce n Recove	nt ary	Acceptan Limits	ce	QC With Contro	in 1		
			Blan	k	Ň	ND.		<0.200			<0.200		Yes		
			MRCC	;ş	5	.09		5.00	102%	6	90% - 110	%	Yes	-	
		N	/RCV:	5#1	9	.87		10.0	98.7%	6	95% - 105	%	Yes		
		Ν	ARCV:	#2	1	0.0		10.0	100%	6	95% - 105	%	Yes		
		N	/RCVS	3#3	9	.95		10.0	99.5%	6	95% - 105	%	Yes		
			LCS		5	.06		5.00	101%	6	90% - 110	%	Yes		

ND: Below the reporting limit (Not Optected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, Investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

Laboratory No.: 983651 Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06CrH09A

EXCELLENCE IN INDEPENDENT TESTING

14201 FRAN

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	Sample Time	Method	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983651-1	SC-700B-WDR-206	09:03	SM 4500-NH3 D	mg/L	1.00	0.500	ND
983651-2	SC-100B-WDR-206	08:58	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

					4		_												
	QC STE) I.D.	Li	aborate Numbe	элу «r	Concentra	tion	Du Conce	plic. entr	ate ation	F F Di	Relative Percent ifference	Acc I	eptance imits	,	QC Within Control			
	Duplic	ate	ų,	83651	-1	ND			NĎ			0.00%	1	20%	-	Yes			
QC Std I.D.	Lab Number	Lab Number 983651-2 0.00		Conc.4 unspik sampl		Dilu Fa	ition ctor	Added Spike Conc.	Ar	MS nount		leasured Conc. of spiked sample		Theoretical Conc. of spiked sample	Re	MS% covery	,	Acceptance limits	QC Within Control
MS	983651-2	0	.00	1,	00	6.00		6.00		6.00	1	6.00		00%		75-125%	Yes		
		-	QC Std	I.D.	M	leasured Icentration	TI Coi	heoretica ncentrati	il on	Percen Recove	it ry	Acceptan Limits	ce	QC Witi Contro	hin Si				
			Blan	k		ND		<0.500				<0.500		Yes	·				
			MRCO	CS		5.68		6.00		94.7%	, ,	<u>90% - 110</u>	%	Yes					
			MRCV	S#1		5.91		6.00		98.5%)	90% - 110	%	Yes					
			MRÇV	\$ # 2		5,98	I	6.00		99.7%	<u>,</u>	90% - 110	%	Yes					
			LCS	3	1	10.2		10.0		102%		90% - 110	1%	Yes					

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Investigation:

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Laboratory No.: 983651 Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06NH3-E09A

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983651 Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06AN09D

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
983651-1	SC-700B-WDR-206	09:03	10:18	mg/L	5.00	0.500	2.45
983651-2	SC-100B-WDR-206	08:58	10:29	mg/L	5.00	0.500	2.89
983651-3	SC-701-WDR-206	09:09	10:41	mg/L	5.00	0.500	23.2

QA/QC Summary

	QC ST	D I.D.	Li	sbora Numb	tory er	Concentr	ation	Dur Conce	olicate entration		Relative A Percent Difference		eptance limits	QC Within Control	
	Duplic	ate	9	8365	1-1	2.45		2	.42		1.23%		<u><</u> 20%	Yes	
QC Std I.D.	DescriptionLab Lab NumberConc.of unspiked sampleDilution FactorS983651-12.455.00		ution Ictor	Added Spike Conc.	Ап	MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample	R	MS% acovery	Acceptance limits	QC Within Control		
MS			83651-1 2.45 5.00		.00	4.00	14	20.0	23.2		22.5		104%	85-115%	Yes
		Q	C Std	I.D.	Me Cone	asured centration	Th Con	eoretical centratio	Percer n Recove	nt ¥ry	Acceptan Limits	Ce	QC With Contro	in I	
			Blank	(NĎ	Ď .				<0.500		Yes		
			MRCC	s		4 05		4.00	101%	, ·	90% - 110)%	Yes		
		MRCVS#1	;#1		3.11		3.00	104%	5	90% - 11()%	Yes			
		N	IRCVS	;#2		3.15		3.00	105%	,	90% - 110)%	Yes		
			LCS			4.06		4.00	102%	5	90% - 110)%	Yes	1	

ND: Below the reporting limit (Not Detected), DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983651

Collected: June 3, 2009

Received: June 3, 2009

Prep/ Analyzed: June 8, 2009 Analytical Batch: 06AN09F

Date: June 19, 2009

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
983651-1	SC-700B-WDR-206	09:03	12:11	mg/L	100	50.0	511

QA/QC Summary

							_								
	QC STO) I.D.	La N	borat lumb	ory er	Concentra	Concentration		licate Intration	Relative Percent Differenc	. /	Acc	eptance limits	QC Within Control	
	Duplic	ate	98	<u>33651</u>	-1	511				1.98%		<u><</u> 20%		Yes	
QC Std I.D.	Lab Number	Cor unsi san	nc.of piked nple	Dil Fa	ution ictor	Added Spike Conc.	Ar	MS nount	Measured Conc. of spiked sample	Theoret Conc. spike samp	lcal of d le	Re	MS% covery	Acceptance limits	QC Within Control
MS	983651-1	5	11	1	00	10.0	1	1000	1530	1511			102%	85-115%	Yes
		q	IC Std I	.D.	Ma Cone	easured centration	Th Cor	neoretical Incentratio	Percen Recover	t Acce y Li	ptance mits	I	QC Within Control	J	
			Blank			ND		<0.500		<(.500		Yes	-1	
			MRCC	s		19.9		20.0	99.5%	90%	- 110%		Yes	1	
		۸	/RCVS	#1		15.1		15.0	101%	90%	- <u>11</u> 0%		Yes	1	
		N	/RCVS	#2		15.4		15.0	103%	90%	- 110%		Yes	7	
		N	/IRCVS	#3		15.3		15.0	102%	90%	- 110%		Yes]	
			LCS			20.1		20.0	101%	90%	- 110%		Yes	7	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

 14201 FRAI

 TUSTIN, CALIF

 (714) 730-6239 ·

 WWW.th

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06AN09D

Laboratory No.: 983651

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
983651-2	SC-100B-WDR-206	08:58	11:26	mg/L	100	50.0	575

QA/QC Summary

	QC ST) I.D.	La	borat lumb	огу ər	Concent	Concentration		ation Duplicate Concentration		Relative Percent Difference		eptance limits	QC Within Control	
	Duplic	ate	9	83651	-2	575			575		0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Cor unsj san	nc.of piked nple	DII Fa	ution ictor	Added Spike Conc.	l Am	MS Iount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample	R	MS% covery	Acceptance limits	QC Within Control
MS	983651-2	5	75		00	5.00	5	500	1060		1075		97.0%	85-115%	Yes
		a	C Std	1.D.	Ma Cone	asured centration	Th Con	eoretical centration	Percei Recove	nt Hry	Acceptan Limits	CO	QC Within Control	ייי	·
			Blank			ND		<0.500			<0.500		Yes		
			MRCC	S		19.8		20.0	99.0%	6	<u>9</u> 0% - 110)%	Yes	1	
			/IRCV\$	#1		15.2		15.0	101%	5	90% - 110)%	Yes		
			/RCV\$	#2		15.3		15.0	102%	, ,	90% - 110)%	Yes		
			LCS			19.8		20.0	99.0%	6	90% - 110)%	Yes	7	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983651 Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06AN09D

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

ON/OC Summany

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
983651-1	SC-700B-WDR-206	09:03	10:18	mg/L	5.00	1.00	2.76
983651-2	SC-100B-WDR-206	08:58	10:29	mg/L	5.00	1.00	3.11

								2 JU		ary					
	QC STD	I.D.	La	iborat Numb	ory er	Concentr	ation	Du Conce	plicate entrati	on	Relative Percent Difference	Acc	eptance Imits	QC Within Control	
	Duplica	te	9	83651	-2	3.11			3.11		0.00%	-	20%	Yes	
QC Std I.D.	Lab Number	Cor unsj san	nc.of piked nple	Dil Fa	ution ictor	Added Spike Conc.	An	MS Yount	Meas Con spi san	ured c. of ked nple	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
MS	983651-2	3.	.11	5	.00	4.00	2	20.0	23	3.6	23.1		102%	85-115%	Yes
		a	C Std	I.D.	Me Cone	asured centration	Th Con	eoretical centratio	n R	Percent ecovery	Acceptan / Limits	CÐ	QC Withi Control	n	
			Blank	<u>د</u>		ND		<0.500			<0.500		Yes		
		-	MRCC	s		3.97		4.00		99.3%	90% - 110	%	Yes	1	
			/IRCVS	3#1	_	3.00		3.00		100%	90% - 110	%	Yes	-	
			IRCVS	;#2		3.02		3.00		101%	90% - 110	%	Yės	7	
			_LCS			3.97		4.00		99.3%	90% - 110	%	Yes	1	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

F -- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

016

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983651 Date: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06NO209D

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>TLI I.D.</u>	<u>Fleid I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
983651-1	SC-700B-WDR-206	09:03	14:45	mg/L	1.00	0.0050	ND
983651-2	SC-100B-WDR-206	08:58	14:46	mg/L	1.00	0.0050	ND

OA/OC Summa

							W	2 Su	<u></u>	illar y						
	QC STE) I.D.	L	abora Numi	itory ber	Concentration		tion Duplicate Concentration		ate ation	Relative Percent Difference		Acc	eptance limits	QC Within Control	
	Duplic	ate	1	98365	<u>i1-1</u>	ND			ND		(0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc unspl samj	c.of Iked ple	D I	ilution Factor	Added Spike Conc.	An	MS nount		easured Conc. of Spiked sample	Т	heoretical Conc. of spiked sample	Re	MS% Icovery	Acceptance limits	QC Within Control
MS	983651-1	0.0	0		1.00	0.0200	0.	0200		0.0195		0.0200		97.5%	75-125%	Yes
		qq	C Std I	.D.	Mea Conce	sured ntration	Th Con	eoretica centrati	il on	Percent Recover	i y	Acceptan Limits	ce	QC With Contro	in	
			Blank		1	VD.		<0.0050			╈	<0.0050)	Yes		
		N N	ARCC	S	0.0)267		0.0270		98.9%		90% - 11()%	Yes		
		M	RCVS	#1	0.0	0199		0.0200		99.5%		90% - 110)%	Yes		
		L	LĊŚ		0.0)456		0.0450		101%	T	90% - 110)%	Yes	1	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Ser Co

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983651 Reported: June 19, 2009 Collected: June 3, 2009 Received: June 3, 2009 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	SC-700B-WDR-206	Time Col	lected: 09	9:03		LAB ID): 983651-1	
Parameter	Method	Reported	DE	Units	Ċ.	(Detek	Date	Time
Aluminum	EPA 200.8	65.4	5.00	- "	<u>RL</u>	Batch	Analyzed	Analyzed
		00.4		<u>µg/⊾</u> _	50.0	061009A	06/10/09	17:06
Antimony	EPA 200.8	<u>ND</u>	5.00	μ <u>φ/L</u>	10.0	061709A	06/17/09	17:12
Arsenic	EPA 200.8	ND	5.00	μg/L	1.00	061009A	06/10/09	17:06
Barium	EPA 200.8	13.9	5.00	μ g/L	10.0	061009A	06/10/09	17:06
Chromium	EPA 200.8	ND	5.00	μ g/L	1.00	061009A	06/10/09	17:06
Copper	EPA 200.8	ND	5.00	μg/L	5.00	061009A	06/10/09	17:06
Lead	EPA 200.8	ND	5.00	µ g/ L	10.0	061009A	06/10/09	17:06
Manganese	EPA 200.7	30.3	1.00	μ g/L	10.0	060509A	06/05/09	11:35
Molybdenum	EPA 200.8	17.3	5.00	μg/L	10.0	061009A	06/10/09	17:06
Nickel	EPA 200.8	ND	5.00	μg/L	10.0	061009A	06/10/09	17:08
Zinc	EPA 200.8	ND	5.00	μg/L	10.0	061009A	06/10/09	17:06
Boron	EPA 200.7	966	1.00		200	060509A	06/05/09	11:35
Iron	EPA 200.7	ND	1.00	μ <u>g/L</u>	20.0	061009A	06/10/09	10:29

SAMPLE ID:	SC-100B-WDR-206	Time Co	llected:	08:58	·	LAB IC): 983661-2	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date	Time
Aluminum	EPA 200.8	ND	5.00	μ g /L	50.0	061009A	06/10/09	17:14
Antimony	EPA 200.8	ND	5.00	µg/L,	10.0	061709A	06/17/09	17:37
Arsenic	EPA 200.8	2.27	5.00	μg/L	1.00	061009A	06/10/09	17:14
Barlum	EPA 200.8	25.0	5.00	μg/L	10.0	061009A	06/10/09	17.14
Chromium	EPA 200.8	1140	5.00	μg/L	1.00	061009A	06/10/09	17:14
Copper	EPA 200.8	ND	5.00	μ g/L	5.00	061009A	06/10/09	17:14
Lead	EPA 200.8	ND	5.00		10.0	061009A	06/10/09	17:14
Manganese	EPA 200.7	ND	5.00	μ α/L	10.0	060509A	06/05/09	<u> </u>
Molybdenum	EPA 200.8	21.4	5.00	ug/L	10.0	061009A	06/10/09	17:14
Nickel	EPA 200.8	ND	5.00	ua/L	10.0	061009A	06/10/09	
Zinc	EPA 200.8	ND	5.00	μα/L	10.0	0610094	06/10/09	47:44
Boron	EPA 200.7	1000	1.00		200	0605094	06/06/09	17.14
Iron	EPA 200.7	ND	1.00	μg/L	20.0	061009A	06/10/09	10:35

Report Continued

SAMPLE ID:	SC-701-WDR-206	Time Col	liected:	09:09		LABIC): 983651-3	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date	Time
Antimony	EPA 200.8	ND	20.0	μα/L	10.0	0617094		
Arsenic	EPA 200.8	ND	20.0	<u></u>	4.00	0610094	08/10/09	17:44
Barlum	EPA 200.8	190	20.0	μ <u>η/L</u>	10.0	061009A	06/10/09	17:21
Beryllium	EPA 200.8	ND	20.0	μα/L	4.00	061009A	06/10/09	. 17.21
<u>Cadmium</u>	EPA 200.8	ND	20.0	μο/L	4.00	061009A	06/10/09	17:21
Chromium	EPA 200.8	7.42	20.0	<u></u> цд/L	4.00	061009A	06/10/09	17:21
Cob <u>alt</u>	ÉFA 200.8	ND	20.0	μα/L	5.00	061009A	06/10/09	17:21
Copper	EPA 200.8	94.7	20.0	µg/L	5.00	061009A	06/10/09	17:21
Lead	EPA 200.8	ND	20.0	μg/L	10.0	061009A	06/10/09	17:21
Mercury	EPA 245.1	ND	1.00	μg/L	0.20	06Ha09B	06/05/09	N/A
Molybdenum	EPA 200.8	224	20.0	μ g/L	10.0	061009A	06/10/09	17:21
Nickel	EPA 200.8	19.2	20.0	μg/L	10.0	061009A	06/10/09	17.21
Selenium	EPA 200.8	26.0	20.0	μ g/L	10.0	061009A	06/10/09	17:21
Silver	EPA 200.8	6.56	20.0	μg/L	5.00	061009A	06/10/09	17:21
Thallium	EPA 200.8	ND	20.0	μ g /L	4.00	061009A	06/10/09	17:21
Variadium	EPA 200.8	ND	20.0	μg/L	5.00	061009A	06/10/09	17:21
Zinç	EPA 200.8	ND	20.0	μg/L	20.0	061009A	06/10/09	17:21

ND: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

f_

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 25, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-206 PROJECT, SLUDGE MONITORING,

TLI NO.: 983652

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-206 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 3, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

Mr. Shawn Duffy of CH2M Hill added Nitrate as N by EPA 300.0 and Manganese by SW 6010B to the list of requested analytes.

Zinc by SW 6010B was detected in the method blank. Because the sample result was more than ten times greater than the blank detection, the data is accepted.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

≁ Mona Nassimi Manager, Analytical Services

Ali Whanf

For K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983652

Collected: June 3, 2009

Received: June 3, 2009

Date: June 25, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 379209.01.03.01

ANALYST LIST

	and a second	
EPA 300.0	Fluoride	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Kris Collins
SW 6020	Metals by ICP/MS	Daniel Kang / Romuel Chaves
SW 7471A	Mercury	Kris Collins
SW 7199	Hexavalent Chromium	Michael Nonezyan

003

EXCELLENCE IN INDEPENDENT TESTING

Laboratory No.: 983652

Collected: June 3, 2009

Received: June 3, 2009

Prep/ Analyzed: June 5, 2009

Analytical Batch: 06CrH09B

Date: June 25, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01 Prep. Batch: 06CrH09B

Investigation:

Hexavalent Chromium by IC Using Method SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
983652	SC-Sludge-WDR-206	09:28	14:28	mg/kg	10.0	15.0	188

								<u>- Su</u>	mmar	y .					
	QC STO) I.D.	L	Labor Nun	ratory 1ber	Sample Concentra	e itlon	Du Conc	plicate entration	A F Di	Telative Percent ifference	Acc	eptance Imits	QC Within Control	
	Duplic	ate		9834	71-8	ND.			ND		0.00%		20%	Yes	
QC Std I.D.	Lab Number	Conc unspl sam	c.of iked ple	Dilut	ion Factor	Added Spike Conc.	Ал	MS nount	Measured Conc. of spiked sample	Ì	Conc. of spiked sample	Re	M\$% covery	Acceptance Ilmits	QC Within Control
MS	983471-8	0.0	0		<u>10.0</u>	8.62	1	86.2	84.9	+	86.2		8.4%	75-125%	Vec
IMS	983471-8	0.0	Ó		50.0	17.4		872	809		872		12.7%	76-125%	- Tos
PDMS	983471-8	0.0	0		25.0	6.90		173	177		173		102%	75-125%	Vee
		QC	Std I	I.D.	Mea: Conce	sured ntration	Th Con	eoretica icentratio	l Perce on Recove	nt ery	Accepta Limits	nce S	QC Withi Control	n	163
			Blank		N	0		<0.400			<0.40)	Yes		
		N	ARCC	S	2.	04		2.00	102%	b	90% - 11	0%	Yes	-	
		M	RCVS	#1	2.	04		2.00	102%		90% - 11	0%	Yes		
														-	

2.00

2.00

2.00

103%

104%

103%

A 100 0

ND: Below the reporting limit (Not Detected).

MRCVS#2

MRCVS#3

LCS

2.06

2.07

2.05

DF: Dilution Factor.

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Yes

Yeş

Yes

80%<u>-120%</u>

80% - 120%

80% - 120%

to - Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without provide without provi authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983652

Date: June 25, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 9, 2009 Analytical Batch: 06SOLID09A

Investigation:

Total Solids by SM 2540 B

Analytical Results % Moisture

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	<u>Results</u>
983652	SC-Sludge-WDR-206	09:28	%	73.3

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	983652-1	73.3	73.7	0.54%	<u><</u> 20%	Yes

ND: Below the reporting limit (Not Detected). **DF- Dilution Factor**

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

forma Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation:

Laboratory No.: 983652

Date: June 25, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06AN09D

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

	<u>D.</u>	<u>Field I.D</u>	<u>.</u>			<u>Sample 1</u>	<u>Fime</u>	<u>Ru</u>	<u>n Time</u>	<u>t</u>	<u>Jnits</u>	D		RL	Results
9836	52	SC-Slud	ge-WDR-:	206		09:28	3	1	2:23	ń	ng/kg	1.0	0	15.0	56.1
						QA	/Q	C Su	mm	ary	7				
		QC STE) I.D. L	aborat Numb	ory er	Concentra	ation	Dup Conce	licate ntration		Relative Percent	Acc I	eptance imits	QC Within Control]
		Duplic	ate :	983651	-1	2.45		2	.42		1.23%	4	20%	Yes	-
	QC Std I.D.	Lab Number	Conc.of unspiked sample	Diit Fa	ution ctor	Added Spike Conc.	An	MS nount	Measu Conc. spike samp	red of d le	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
	MS	983651-1	2.45	5.	.00	4.00	1	20.0	23,2		22.5		04%	85-115%	Yes
			QC Std	I I.D .	M Con	easured centration	Th Con	eoretical	n Pe	rcent overy	Acceptar Limits	IC O	QC Withi Control	n	
			Blan	ık		ND		<0.500			<0.500)	Yes	-	
			MRCO	CS		4.05		4.00	1)1%	90% - 110	3%	Yes		
			MRCV	S#1		3.11		3,00	1)4%	90% - 110	0%	Yes		
			MRCV	S#2		<u>3.1</u> 5		<u>3.</u> 00	1()5%_	90% - 110	0%	Yes	-	
			LCS	\$		4.06		4.00	1()2%	90% - 110	0%	Yes		

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

4-- Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92760-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Laboratory No.: 983652

Date: June 25, 2009 Collected: June 3, 2009 Received: June 3, 2009 Prep/ Analyzed: June 4, 2009 Analytical Batch: 06AN09D

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

REPORT

Analytical Results Nitrate as N

<u>TLI 1.(</u>	<u>).</u>	<u>Field I.D</u>	<u>.</u>			Sample 1	<u> Fime</u>	Ru	n 1	<u> Fime</u>	<u>Units</u>	D		<u>RL</u>	<u>Results</u>
98365	52	SC-Sludg	ge-WDR-:	206		09:28	3		12::	23	mg/kg	1.0	0	15.0	21.3
						QA	VQ	C Su	m	nmar	y				
		QC STE	D I.D.	aborat Numb	ory er	Concentra	ation	Duj Conce	olic: entr	ate ration	Relative Percent Difference	Acc	eptance imits	QC Within Control	-
		Duplic	ate	983651	-2	3.11			3.11		0.00%	4	20%	Yes	1
	QC Std I.D.	Lab Number	Conc.of unspiked sample	Diit Fa	ution ctor	Added Spike Conc.	Ап	MS nount	M C	easured Conc. of spiked sample	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
	MS	983651-2	3.11	5.	.00	4.00		20.0		23.6	23.1		102%	85-115%	Yes
			QC Std	I I.D.	Me Cone	easured centration	Th Cor	eoretica Icentratic	l on	Percen Recove	it Acceptar ry Limits	nce ;	QC Within Control		
			Blan	ık		ND		<0.500			<0.500)	Yes	1	
			MRC	ĊŚ		3.97		4.00		99.3%	90% - 11	0%	Yes		
			MRCV	S#1		3.00		3.00		100%	.90% - 11	0%	Yes		
			MRCV	S#2		3.02		3.00		101%	90% - 11	0%	Yes		
			LCS	3		3.97		4.00		99.3%	90% - 11	0%	Yes]	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

tor

Mona Nassimi, Manager
 Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983652 Reported: June 25, 2009 Collected: June 3, 2009 Received: June 3, 2009 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 379209.01.03.01 P.O. No.: 379209.01.03.01

Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID: SC	-Sludge-WDR-206	Time Coll	ected: 09):28		LAB ID:	983652	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Antimony	SW 6020	ND	10.0	mg/kg	2.00	061109B	06/11/09	15:42
Arsenic	SW 6020	31.7	10.0	mg/kg	1.87	061009A	06/10/09	18:12
Barium	SW 60108	127	1.00	mg/kg	1.87	061909A	06/19/09	10:26
Beryllium	SW 6010B	217	1.00	mg/kg	1,87	061909A	06/19/09	10:26
Cadmium	SW 6010B	48.2	1,00	mg/kg	3.74	061909A	06/19/09	10:26
Chromium	SW 6010B	12900	10.0	mg/kg	18.7	061909A	06/19/09	10:43
Cobalt	SW 6010B	3.95	1.00	mg/kg	1.87	061909A	06/19/09	10:26
Copper	SW 6020	110	10.0	mg/kg	1.87	061009A	06/10/09	18:12
Lead	SW 6010B	ND	1.00	mg/kg	3.74	061909A	06/19/09	10:26
Manganese	SW 6010B	367	1.00	mg/kg	1.87	061509A	06/15/09	14:35
Mercury	SW 7471A	0.204	1.00	mg/kg	0.147	06HG09E	06/12/09	N/A
Molybdenum	SW 6020	69.8	10.0	mg/kg	1.87	061009A	06/10/09	18:12
Nickel	SW 6010B	ND	1.00	mg/kg	1.87	061909A	06/19/09	10:26
Selenium	SW 6020	ND	10.0	mg/kg	1.87	061009A	06/10/09	18:12
Silver	SW 6010B	ND	1.00	mg/kg	3,74	061909A	06/19/09	10:26
Thallium	SW 6010B	12.6	1.00	mg/kg	3.74	061909A	06/19/09	10:26
Vanadium	SW 6010B	347	1.00	mg/kg	1.87	061909A	06/19/09	10:26
Zinc	SW 6010B	691	1.00	mg/kg	9.35	061909A	06/19/09	10:26

NOTES:

Sample results and reporting limits reported on a dry weight basis.

ND: Not detected or below limit of detection.

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Hona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

June 18, 2009

 \sim

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-207 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983769

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-207 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 10, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

A- Mona Nassimi Manager, Analytical Services

K. R. P. Syc

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project 14201 FRANKLIN AVENUĘ TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983769 Date: June 18, 2009 Collected: June 10, 2009 Received: June 10, 2009

Project No.: 379209.01.02

ANALYST LIST

		anda an
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chaves
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Excellence	IN INDEPENDENT TESTING			Established 1931
Client: Attention:	E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Shawn Duffy	REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Sample:	One (1) Groundwater Sample			Date: June 18, 2009
Project Name:	PG&E Topock Project			Collected: June 10, 2009
Project No.:	379209.01.02			Received: June 10, 2009
P.O. No.:	379209.01.02		Prep	Analyzed: June 11, 2009
Prep. Batch:	061109A		Analy	tical Batch: 061109A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>Run Time</u>	DF	<u>RL</u>	<u>Results</u>
983769	SC-700B-WDR-207	μ g/L	EPA 200.8	11:58	5.00	1.00	ND

						- Ger		0 30	100	IIIIai	<u>y</u> _						
	QC STO) I.D.	Lai N	oorato umbe	ry r	Concentra	tion	Du Conc	plica entr	ate ation	R P Dii	Relative Percent Ifference	Ac	ceptance limits	ſ	C Within Control	
	Duplic	ate	9	83769)	NĎ			ND			0.00%		<u>≤</u> 20%		Yes	
QC Std I.D.	Lab Number	Co uns sa	nc.of piked mple	Dilu Fac	tion tor	Added Spike Conc.	Aı	MS nount	M C	easured Conc. of spiked sample	s;	Theoretical Conc. of piked sampl	•	MS% Recovery	A	cceptance limits	QC Within Control
MS	983769	0	00.00	5.	00	50.0		250		234		250	Τ	93.6%		75-125%	Yes
		(QC Std	1.D.	N Cor	leasured ncentration	T Co	heoretice ncentrati	ıl on	Percea Recove	nt ary	Acceptar Limits	nce i	QC With Contro	hin ol		
			Blani	ĸ		NĎ		<1.00		·		<1.00		Yes			
			MRCC	s		49.3		50.0		98.6%	6	90% - 11	0%	Yes		l	
			MRÇVS	5#1		51.4		50.0		103%	6	90% - 11	0%	Yes			
			MRCVS	5#2		48.6		50.0		97.2%	6	90% - 11	0%	Yes			
			MRCVS	S#3		48.2		50.0		96.4%	6	90% - 11	0%	Yes			
			ICS			49.3		50.0		98.6%	6	80% - 12	0%	Yes			
			LCS			49.4	1	50.0		98.8%	6	90% - 11	0%	Yes			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Aun Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom It is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

OA/OC Summary

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	Units	DF	<u>RL</u>	<u>Results</u>
983769	SC-700B-WDR-207	08:00	07:35	μ g/L	1.0 5	0.20	ND

											• 7							
	QC STE	STD I.D. Laboratory Number Concentration		ion Duplicate Relative Concentration Difference		elative ercent fference	Acceptance limits			QC Within Control								
	Dupiic	ate	90	3770-1		340		L	340			0.58%		20%		res		
QC Std I.D.	Lab Number	Conc.of unspiked sample Dilution Added Spike MS Conc. of Conc. of MS% Added Spike Added Spike MS Conc. of Conc. of MS% Added Spike Added Spike MS Conc. of Spiked Spiked		Ac	ceptance limi	ts	QC Within Control											
MS	983769	0	.00	1.00	6	1.00		1.06		1.00		1.06		94.3%		90 - 110%		Yeş
		4	QC Std	I.D.	C	Measured oncentration	Th Cor	neoretica ncentrati	al Ion	Perce Recov	nt ery	Accepta Limit	ince S	QC With Contro	hín ol			
			Blan	k .		ND		<0.200				<0.20	0	Yes				
			MRCO	s		5.03		5.00		101%	6	90% - 1	10%	Yes		1		
			MRCV	S#1		10.0		10.0		100%	6	95% - 1	05%	Yes				
			MRCV	5#2		10.0		10.0		100%	6	95% - 1	05%	Yes				
			MRCV	S#3		9.84		10.0		98.49	%	95% - 1	05%	Yes				
			MRCV	S#4		10.0		10.0		100%	6	95% - 1	05%	Yes]		
			LCS	;		5.03		5.00		1019	6	90% - 1	10%	Yes				

QA/QC Summary

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

For- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without arror written authorization from Truesdail Laboratories.

Laboratory No.: 983769

Date: June 18, 2009 Collected: June 10, 2009 Received: June 10, 2009 Prep/ Analyzed: June 11, 2009 Analytical Batch: 06CrH09F

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983769

Date: June 18, 2009 Collected: June 10, 2009 Received: June 10, 2009 Prep/ Analyzed: June 11, 2009 Analytical Batch: 06TUC09J

Investigation:

Turbidity by Method SM 2130B

REPORT

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
983769	SC-700B-WDR-207	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.	D. Laborato	ry Con	centration	Dupl Concer	Duplicate Concentration		Relative Percent Difference		eptance limits	QC Within Control
Duplicate	. 983756-2	7	ND	N	D .	0.00%		<u><</u> 20%		Yes
	QC Std I.D.		ed The ation Conc	Theoretical Concentration		nt ery	t Acceptan ry Limits		QC Withi Control	n
	Blank	ND		0.100			<0.10	00	Yes	
	LCS	7.70		8.00	96.3%	b	90% - 1	10%	Yes	
	LCS	7.73		8.00	96.6%	, P	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Ser

A.-- Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: June 18, 2009

Collected: June 10, 2009

Received: June 10, 2009

Laboratory No.: 983769

Prep/ Analyzed: June 11, 2009 Analytical Batch: 06EC09F

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
983769	SC-700B-WDR-207	umhos/cm	EPA 120.1	1.00	2.00	7290

QA/QC Summary

QC S I.D	TD Labora Numb	tory ær	Concentrati	ion	Dupiica Concentra	te Ition	Rela C	tive Percent Ofference	Ac	ceptance limits	QC Within Control	
Duplic	Duplicate 983769		7290		7300			0.14%	<u><</u> 10%		Yes	
	QC Std I.D.	c	Measured Concentration	ו Co	heoretical	Perc Reco	ent very	Acceptan Limits	ĊØ	QC Withi Control	n	
	Blank		ND		<2.00			<2.00		Yes	-	
	CCS		696		706	98.6	ì%	90% - 110	%	Yes	-	
	CVS#1		977		1000	97,7	%	90% - 110	%	Yes		
	LCS		696		706	98.6	5%	90% - 110	%	Yes		
	LCSD		696		706	98.6	5%	90% - 110	%	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

≁ – Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

P.O. No.: 379209.01.02

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
983769	SC-700B-WDR-207	mg/L	SM 2540C	250	4340

QA/QC Summary

QC STD I.D. Laboratory Number		У	Concentrat	ion	Duplicate Concentration			Percent Difference		eptance limits	QC Within Control	
Duplicat	Duplicate 983769			4340		437)	0.34%		<u>≤</u> 5%		Yes
	QC Std I.D.		Measured Concentration		Theoretical Concentration		Perce Recov	nt Accept ery Limi		nçe S	QC Withi Control	n
		Blank		ND		<25.0			<25.)	Yes	
		LÇS 1		501		500	100%	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🚣 – Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Laboratory No.: 983769 Date: June 18, 2009 Collected: June 10, 2009 Received: June 10, 2009 Prep/ Analyzed: June 11, 2009 Analytical Batch: 06TDS09G

REPORT

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 24, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-208 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983863

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-208 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory teports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 16, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact mc at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Scrvices

K. R. P. Jyl

K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983863

Collected: June 16, 2009 Received: June 16, 2009

Date: June 24, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chaves
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Prep. Batch: 061809A

Laboratory No.: 983863

Date: June 24, 2009 Collected: June 16, 2009 Received: June 16, 2009 Prep/ Analyzed: June 18, 2009 Analytical Batch: 061809A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Units	Method	Pup Time			
983863	SC-700B-WDR-208			<u>Kun Time</u>	DF	<u></u>	<u>Results</u>
		49/E	EPA 200.8	12:28	5.00	1.00	ND

			_	-	_	Q/	<u>\/Q(</u>	C Su	Im	mar	V									
	QC ST	D I.D.	La N	Laboratory Number		Concentra	Concentration		tion Duplicate Concentration		Relative Percent Difference		Acceptance limits		Acceptance limits <20%		Acceptance limits		QC WithIn Control	
<u>г </u>		ate r		8386	3					0.00%		Yes								
QC Std 1.D.	Lab Number	Cor uns; san	nc.of piked nple	Dili Fa	ution ctor	Added Spike Conc.	N Am	IS ount	Mea Co \$0 68	nc. of hiked mple	r sp	Theoretical Conc. of Iked sample	R	MS% acovery	Acceptance	QC Within Control				
MS	983863	0.	00	5	.00	50.0	2	50		42		250	\vdash			┫				
		•	C Std	I.D.	M Cor	leasured centration	The Conc	oretical entratio	n	Percen Recover	t ry	Acceptance Limits	;e	QC Withi Control		Yes				
			Blank		┣	ND		1.00				<1.00		Yes	-					
			MRCC	<u>s</u>	 	49.6		50.0		99.2%		90% - 1109	%	Yes	-1					
		IV	IRCVS	#1	 	49.7		50.0		99.4%		90% - 1109	%	Yes						
					·	48.8	!	50.0		97.6%		80% - 1209	%	Yes						
Not detector	d of connection		LCS			49.9		50.0		99.8%		90% - 1109	6	Yes						

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 983863

Collected: June 16, 2009

Received: June 16, 2009

Prep/ Analyzed: June 18, 2009 Analytical Batch: 06CrH09)

Date: June 24, 2009

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TULI.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	DF	RL	Results
983863	SC-7008-WDR-208	08:00	15:32	μg/L	1.05	0.20	ND

					_	<u></u>				innai	y						
	QC ST) I.D.	Lat N	orato umbe	ry r	Concentrat	on	Du Conc	plic; entr	ate ation	R P Dif	elative ercent ference	Ac	ceptance limits	QC Within Control]	
	Duplic	ate	9	83863		<u>N</u> Q			ND		(0.00%		< 20%	Yes	1	
QC Std I.D.	Lab Number	Coi uns sar	nc.of piked mple	Dilu Fac	tion tor	Added Spike Conc.	Ап	MS Measured MS Conc. of Amount spiked sample		r sp	Theoretical Conc. of piked sample		MS% ecovery	Acceptance lim	<u> </u>	QC Within Control	
MS	983863	0	.00	1.0)6	1.00	1	1.06		1.13		1.06		107%	90 - 110%		Yes
		c	QC Std	I.D.	C	Measured oncentration	Th Con	eoretica centrati	ıl on	Percer Recove	ıt ry	Acceptan Limits	C0	QC With Contro	nin bi		
			Blan	‹		ND		<0.200			-	<0.200		Yes			
			MRCC	S.		5.24		5.00		105%		90% - 110	%	Yes			

10.0

5.00

101%

105%

OA/OC Summany

ND: Below the reporting limit (Not Detected).

MRCVS#1

LCS

10.1

5.24

DF: Dilution Factor.

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Yes

Yes

te.

95% - 105%

90% - 110%

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that It is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdaii.com

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983863

Date: June 24, 2009 Collected: June 16, 2009 Received: June 16, 2009 Prep/ Analyzed: June 17, 2009 Analytical Batch: 06TUC09L

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

100 L L L 100	— •••••					
<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Units	DE	RI	Reculte
093963				<u></u>		<u>iveanta</u>
900000	SC-700B-WDR-208	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	D. Laborato	ry Concentr	ation	on Duplic		Relative Percent Difference		Relative Percent II		QC Within Control
_ Duplicate	<u>983841-</u>	0.119)	0.1	1.67%			<u><</u> 20%	Yes	
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percen Recove	it ry	Accepta Limit	ince s	QC Within Control	n
	Blank	ND		0.100			<0.10	0	Yes	-
	LÇS	7.90		8.00	98.8%		90% - 1	10%	Yes	
	LCS	8.03		8.00	100%		90% - 1	10%	Vee	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

t. -

Mona Nassimi, Manager
Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.; 379209.01.02 P.O. No.; 379209.01.02

Laboratory No.: 983863

Date: June 24, 2009 Collected: June 16, 2009 Received: June 16, 2009 Prep/ Analyzed: June 17, 2009 Analytical Batch: 06EC09G

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	RL	Results
983863	SC-700B-WDR-208	µmhos/cm	EPA 120.1	1.00	2.00	7080

r				_			<u> </u>				
QC S I.D	QC STD I.D. Laboratory Number Concentration Duplicate 983863 7080		ry Concentrat	Concentration		Duplicate Concentration			Acceptance limits 		QC Within Control
Duplic				7090			0.14%	Yes			
	QC Std I.D. Measured Concentration		C.	Theoretical Concentration		ent Acceptan very Limits		nce QC With Contro		n:	
		Blank	Blank ND		<2.00		<2.00			Yes	-
		CCS	700		706	99.2	99.2% 90% -		90% - 110%		-
		CVS#1	979		1000	97.9	%	90% - 110	%	Yes	1
		LCS 700			706	99.2	%	90% - 110	%	Yes	1
	LCSD 700			706	.99.2	%	90% - 110	%	Yes	1	

QA/QC Summary

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983863

Date: June 24, 2009 Collected: June 16, 2009 Received: June 16, 2009 Prep/ Analyzed: June 17, 2009 Analytical Batch: 06TDS09[

Investigation:

TLI I.D. 983863 Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>Field</u> SC-7	<u>I.D.</u> 00B-WDR-20	<u>U</u> 08 n	n its ng/L	<u>Method</u> SM 2540C				<u>RL</u> 250	<u>Resul</u> 4790
4		Q	<u> </u>	Sum	mary				
QC STD I.D	Laborator Number	y Concentra	tion	Duplic Concenti	ate ration (Percent Difference	Acc	eptance limits	QC Within Control
Duplicate	983863	4790		485)	0.62%		<u>≺</u> 5%	Yes
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percent Recovery	Accepta	ince S	QC Within Control	ר

<25.0

500

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

Blank

LCS 1

ND

499

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

Yes

<25.0

90% - 110%

99.8%

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 1, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-209 PROJECT, GROUNDWATER MONITORING, TLI NO.: 983986

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-209 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 24, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

for

Mona Nassimi Manager, Analytical Services

K.R.P. gye

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02

Laboratory No.: 983986 Date: July 1, 2009 Collected: June 24, 2009 Received: June 24, 2009

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Romuel Chaves
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 REPORT Client: E2 Consulting Engineers, Inc. www.truesdail.com 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 983986 Sample: One (1) Groundwater Sample Date: July 1, 2009 Project Name: PG&E Topock Project Collected: June 24, 2009 Project No.: 379209.01.02 Received: June 24, 2009 P.O. No.: 379209.01.02

Investigation:

Prep. Batch: 062509A

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>ŢĻ! I.D.</u>	<u>Field I.Q.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	Results
983986	SC-700B-WDR-209	μ g/L	EPA 200.8	12:12	1.00	1.00	2.62

							<u>vu</u>	<u>u</u> au	П	ımar	У						
	QC ST	QC STD I.D.). Laborato Numbe		Concentration		Du Conce	piic entr	ate ration	l D	Relative Percent Ifference	Ą	cceptar limits	nce	QC Within Control	
	Duplic	ate	e 91		}	2.62	2.5		2.57	.57		1. <u>9</u> 3%		<u>≤</u> 20%		Yes	
QC Std I.D.	Lab Number	Co uns sa	Conc.of unspiked sample		ition Stor	lon Added Spike Conc.		MS nount	M	leasured Conc. of spiked sample	5	Theoretica Conc. of piked samp	l Sle	MS% Recove	, эгу	Acceptance limits	QC Within Control
MS	983986	2	2.62	1.00				50.0		49.8		52.6	52.6		6	75-125%	Yes
			QC Std	I.D.	N Cor	feasured ncentration	Tł Cor	heoretica ncentratio	i on	Percei Recove	nt ≆ry	Acceptz	ince S		Within ontrol	n	
			Blani	ĸ		ND		<1.00				<1.0	0		Yes		
			MRCC	<u>\$</u>		49.8		50.0		99.6%	6	90% - 1	10%		Yes		
		—	MRCVS	5#1	<u> </u>	47.1		50.0		94.2%	6	90% - 1	10%		Yes		
			ICS			46.2		50.0		92.4%	0	<u>80% - 1</u> :	20%	, T.,	Yeş		
			LCS			49.7		_ 50.0		99.4%	6	90% - 1	10%		Yes		

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to products. As a mutual protection to clients, the public, and these laborationes, this report is submitted and accepted in the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without one authorization from Truesdall Laboratories.

ALAA Gumman

Prep/ Analyzed: June 25, 2009 Analytical Batch: 062509A

Established 1931

EXCELLENCE IN INDEPENDENT TESTING

				Established 1931
		REPORT		14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com
Client:	E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612			
Attention:	Shawn Duffy			Laboratory No.: 983986
Sample:	One (1) Groundwater Sample			Date: July 1, 2009
^{>} roject Name:	PG&E Topock Project			Collected; June 24, 2009
Project No.:	379209.01.02			Received: June 24, 2009
P.O. No.:	379209.01.02		Prep	Analyzed: June 25, 2009
			Analyt	ical Batch: 06CrH09J

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
983986	SC-700B-WDR-209	08:00	09:12	μ g/ L	1.05	0.20	2.46

QA/QC Summary

	QC STO	QC STD I.D. Laboratory Number		oratory umber		Concentration		on Duplicate Concentrat		te tion	Rí Pí Dif	elative ercent ference	Acc	ceptance limits	QC Within Control		
	Duplic			2.46		2		2.46	.46		0.00%		<u><</u> 20%		Yes		
QC Std I.D.	Lab Number 983986		nc.of pikeđ npie	Dilution Factor		Added Spike Conc.	An	MŞ nount	Mə Co s(asured onc. of piked ample	T spi	Theoretical Conc. of iked sample	R	MS% ecovery	Ac	cceptance limit	QC Within Contro
MS			983986 2.46		5.00) 6			7.92	7.76		103%		90 - 110%		Yes
		•	C Std	I.D.	M Con	easured centration	Th Cor	eoretica	ıl on	Percei Recove	nt Hry	Acceptar Limits	1C8	QC Wit Contr	hin ol		
		<u> </u>	Blani	<		ND		<0.200				<0.200)	Yes			
		MRCCS 5.08 5.00 102% 9		90% - 110% Yes		Yes		1									
		Ņ	NRCVS	\$#1		10.2		10.0		102%	2	95% - 10	5%	Yes]	
			LĊŚ			5.05		5.00		101%	,	90% - 110	0%	Yes		1	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used. In whole or in part, in any advertising or publicity matter without **products** authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 983986

Date: July 1, 2009 Collected: June 24, 2009 Received: June 24, 2009 Prep/ Analyzed: June 25, 2009 Analytical Batch: 06TUC09P

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	<u>DF</u>	RL	<u>Results</u>
983986	SC-700B-WDR-209	08:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.	D. Laborato	Concentra	tion	Duplicate Concentration			Relative Percent fference	Acceptance limits		QC Within Control
Duplicate	e 983986	ND	ND			0.00%		<u><</u> 20%		Yes
	QC Std I.D.	Measured Concentration	ND <0		Percer Recove	ent Accept ery Limi		ince S	QC Within Control	י ו
	Blank	ND						0	Yes	
	LCS	7.79		8.00	97.4%	,	90% - 110%		Yes	
ł	LCS	8,00	8,00		100%	90% - 11		10%	Yes	

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

f. - Mona Nassimi, Manager

Analytical Services

Project Name: PG&E Topock P Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
983986	SC-700B-WDR-209	µmhos/cm	EPA 120.1	1.00	2.00	6050

QA/QC Summary

QC ST I.D.	TD Laborato Numbe	ry Concentrat	lon	Dupilca Concentra	te Ition	Rela	tive Percent lifference	Ac	ceptance limits	QC Within Control	
Duplica	ate 983986	6050		6060			0.17%	<u><</u> 10%		Yes	
	QC Std I.D.	Measured Concentration	Ca	heoretical	Perc Reco	ent very	Acceptane Limits	C0	QC Within Control	n	
	Blank	k ND		<2.00	_		<2.00		Yes		
	CCS	705		706	99.9	1%	90% - 110	%	Yes	-	
	CVS#1	998		999	99.9	1%	90% - 110	%	Yes	-	
	LCS	705		706	99.9	1%	90% - 110	%	Yes	1	
L	LCSD	705		706	99.9	9%	90% - 110	%	Yes	1	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Received: June 24, 2009

Prep/ Analyzed: June 25, 2009 Analytical Batch: 06EC09J

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDÉPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 983986	<u>Fie</u> SC	<u>id I.</u> -700	<u>.D.</u> 08-WDR-20	09	<u>U</u> m	<u>Units</u> mg/L			<u>Method</u> SM 2540C				<u>Results</u> 3460
	<u> </u>				Q/								
	QC STD I.D. Laboratory Number			y	Concentrat	Duplicate Concentration			Percent ifference	Acceptance limits		QC Within Control	
	Duplicat	te	983986		3460		3420)		0.58%		<u><</u> 5%	Yes
		a	IC Std I.D.	¢	Measured oncentration	TI Cor	heoretical ncentration	Perce Recov	nt ery	Accepta Limit	nce B	QC Withi Control	n

<25.0

500

99.8%

h.

ND: Below the reporting limit (Not Detected). **RL: Reporting Limit.**

Blank

LCS 1

ND

499

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

Yes

Laboratory No.: 983986

Date: July 1, 2009

Collected: June 24, 2009

Received: June 24, 2009

Prep/ Analyzed: June 25, 2009 Analytical Batch: 06TDS09M

<25.0

90% - 110%

Mona Nassimi, Manager Analytical Services

