

Curt Russell Topock Onsite Project Manager Environmental Affairs Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: <u>gcr4@pge.com</u>

July 14, 2006

Mr. Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: PG&E Topock Compressor Station Interim Measure No. 3 Groundwater Treatment System Board Order R7-2004-0103, Discharge to Injection Wells June 2006 Monitoring Report / Second Quarter 2006 Monitoring Report / Semi-Annual January 1, 2006 – June 30, 2006 Operation and Maintenance Report WDID No. 7B 36 2033 001

Dear Mr. Perdue:

Enclosed is the June 2006 Monitoring Report, Second Quarter 2006 Monitoring Report, and January 1 to June 30, 2006 Semi-Annual Operation and Maintenance Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System. This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued by the Colorado River Basin Regional Water Quality Control Board (Water Board) under Board Order R7-2004-0103.

WDRs under Board Order R7-2004-0103 apply to IM No. 3 Treatment System discharge by subsurface injection wells only. In addition, the Water Board issued WDRs for IM No. 3 Treatment System discharge to the Colorado River (Board Order R7-2004-0100) and IM No. 3 Treatment System discharge to the PG&E Compressor Station (Board Order R7-2004-0080). Reporting of Board Order R7-2004-0080 and Board Order R7-2004-0100 activities are submitted under separate covers.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell Topock Onsite Project Manager

Page 2 July 14, 2006

Enclosures:

Board Order R7-2004-0103 IM No. 3 Groundwater Treatment System June 2006 Monitoring Report / Second Quarter 2006 Monitoring Report / January 1, 2006 to June 30, 2006 Semi-Annual Operation and Maintenance Report

cc: José Cortez, RWQCB Liann Chavez, RWQCB Tom Vandenberg, RWQCB Chris Guerre, DTSC

June 2006 Monitoring Report, Second Quarter 2006 Monitoring Report, and Semi-Annual Operation and Maintenance Report for January 1–June 30, 2006

Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2004-0103 WDID No. 7B 36 2033 001 PG&E Topock Remediation Facility Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

July 14, 2006

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

Combined Report June 2006 Monitoring Report, Second Quarter 2006 Monitoring Report, and Semi-Annual Operation and Maintenance Report January 1 – June 30, 2006

Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2004-0103 PG&E Topock Remediation Facility Needles, California

Prepared for Pacific Gas and Electric Company

July 14, 2006

This report was prepared under the supervision of a California Certified Professional Engineer

enni

Dennis Fink, P.E. No. 68986 Project Engineer

7

Contents

Acro	nyms a	and Abbreviations	v
1.0	Intro	oduction	1-1
2.0	Sam	pling Station Locations	2- 1
3.0	June	2006 Monitoring and Second Quarter 2006 Monitoring	
	3.1	Description of June 2006 Activities	
	3.2	Groundwater Treatment System Flow Rates	3-2
		Treatment System Influent (Extraction Wells) Flow Rate	
		Outflow Components:	
	3.3	Sampling and Analytical Procedures	
4.0	Mor	nitoring Analytical Results	4-1
5.0	Sem	i-Annual Operation and Maintenance	
	5.1	Analytical Results	5-1
	5.2	Flowmeter Calibration Records	5-1
	5.3	Volumes of Groundwater Treated	5-2
	5.4	Groundwater Monitoring Data	5-2
	5.5	Residual Solids Generated (Sludge)	5-2
	5.6	Reverse Osmosis Concentrate Generated	5-3
	5.7	Summary of WDR Violations	5-3
	5.8	Operation and Maintenance - Required Shutdowns	5-3
	5.9	Treatment Plant Modifications	5-3
6.0	Con	clusions	6-1
7.0	Cert	ification	7-1
Table	es		
1	Sam	pling Station Descriptions	
-	Call	I0II	

- 2 Flow Monitoring Results
- 3 Board Order No. R7-2004-0103 Waste Discharge Requirements Influent Monitoring Results
- 4 Board Order No. R7-2004-0103 Waste Discharge Requirements Effluent Monitoring Results
- 5 Board Order No. R7-2004-0103 Waste Discharge Requirements Reverse Osmosis Concentrate Monitoring Results

- 6 Board Order No. R7-2004-0103 Waste Discharge Requirements Sludge Monitoring Results
- 7 Board Order No. R7-2004-0103 Waste Discharge Requirements Monitoring Information

Figures

1	IM No. 3 Pı	roject Area Site Features
TP-PR-	10-10-03	Effluent Metering Locations
TP-PR-	10-10-11	Influent Metering Locations
TP-PR-	-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
TP-PR-	10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
TP-PR-	10-10-06	Sludge Storage Tanks Sampling Locations

Appendixes

- A June 2006 Laboratory Analytical Reports
- B Flowmeter Calibration Records
- C Daily Volumes of Groundwater Treated
- D Operations and Maintenance Log

Acronyms and Abbreviations

BLM	United States Bureau of Land Management
DTSC	California Department of Toxic Substances Control
gpm	gallons per minute
IM	Interim Measure
mg/kg	milligram per kilogram
mg/L	milligram per liter
MBC	MBC Applied Environmental Sciences Laboratories
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
PLC	process logic controller
STL	Severn Trent Laboratories, Inc.
Truesdail	Truesdail Laboratories, Inc.
Water Board	California Regional Water Quality Control Board, Colorado River Basin Region
WDR	Waste Discharge Requirements

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater near the Topock Compressor Station in Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as the IM No. 3 groundwater treatment system. Figure 1 provides a map of the project area.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2004-0103 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. The Monitoring and Reporting Program (MRP), under the order, requires monitoring reports to be submitted by the 15th day of the month following the end of the monitoring and reporting period. **This IM No. 3 groundwater treatment system combined report includes June 2006 monthly monitoring**, 2nd **Quarter 2006 monitoring**, and January 1, 2006 to June **30, 2006 Semi-Annual operation and maintenance**.

In addition to Board Order No. R7-2004-0103, the Water Board issued Waste Discharge Requirements (WDRs) for IM No. 3 Treatment System discharge to the Colorado River (Board Order R7-2004-0100) and IM No. 3 Treatment System discharge to the PG&E Compressor Station (Board Order R7-2004-0080). To date, there has been no IM No. 3 Treatment System discharge to the Colorado River or the PG&E Compressor Station. PG&E has no plans to discharge IM No. 3 Treatment System effluent to the Colorado River or the PG&E Compressor Station at this time. Reporting of Board Order R7-2004-0080 and Board Order R7-2004-0100 activities will be submitted under separate cover.

The treatment system initially operated between July 25, 2005 and July 28, 2005; this was the startup phase as mandated by the order's WDRs. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with the WDRs. Full-time operation of the treatment system commenced in August 2005.

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. The locations of the sampling stations are provided in process and instrumentation diagrams TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, which were previously provided in PG&E's Sampling Locations letter to the Water Board Executive Officer, dated June 29, 2005. These diagrams are provided again at the end of this report.

3.0 June 2006 Monitoring and Second Quarter 2006 Monitoring

IM No. 3 monitoring activities between January 1, 2006 and May 30, 2006 are included in the following monitoring reports for IM No. 3 Treatment System discharge to injection wells under Board Order R7-2004-0103:

- January 2006 Monitoring Report, submitted to the Water Board February 15, 2006.
- *February 2006 Monitoring Report,* submitted to the Water Board March 15, 2006.
- March 2006 / 1st Quarter 2006 Monitoring Report, submitted to the Water Board April 14, 2006.
- April 2006 Monitoring Report, submitted to the Water Board May 15, 2006.
- *May 2006 Monitoring Report,* submitted to the Water Board June 15, 2006.

Quarterly monitoring requirements, in addition to monthly monitoring requirements, are limited to an aquatic bioassay analysis of the sludge generated during the quarter. The 1st Quarter 2006 aquatic bioassay analysis was conducted on a sludge sample collected February 15, 2006; the results were presented in the *March 2006 / 1st Quarter 2006 Monitoring Report*, submitted to the Water Board April 14, 2006. The 2nd Quarter 2006 aquatic bioassay analysis was conducted April 5, 2006; the results were presented in the *March 2006*, the results were presented in the *April 2006 Monitoring Report*, submitted to the Water Source analysis was conducted on a sludge sample collected April 5, 2006; the results were presented in the *April 2006 Monitoring Report*, submitted to the Water Board April 5, 2006; the results were presented in the *April 2006 Monitoring Report*, submitted to the Water Board May 15, 2006.

3.1 Description of June 2006 Activities

During June 2006, the IM No. 3 groundwater treatment system treated groundwater extracted from extraction wells TW-3D and PE-1. Treatment system effluent was discharged to injection well IW-2. Figure 1 shows the locations of the IM No. 3 system extraction and injection wells.

The IM No. 3 facility treated approximately 5,612,324 gallons of groundwater from extractions wells TW-3D and PE-1 during June 2006, of which approximately 5,050,593 gallons of treated water was injected into injection well IW-2 and 540,703 gallons of reverse osmosis brine was generated for offsite disposal. The IM No. 3 facility also treated approximately 4,080 gallons of water generated from the groundwater monitoring program during June 2006. Treatment of this water at the IM No. 3 facility, under Order No. R7-2004-0103, was approved by the Regional Board on January 26, 2006.

Reverse osmosis brine was transported offsite to U.S. Filter Corporation in Los Angeles for disposal during June 2006; and two containers of solids from the IM No. 3 facility were transported to the Chemical Waste Management at the Kettleman Hills facility during June 2006.

3.2 Groundwater Treatment System Flow Rates

The June 2006 treatment system monthly average flow rates are presented in Table 2. The flow monitoring include both treatment system influent (extraction wells) and treatment system out-flow. Operation of the groundwater treatment system results in the following three out-flow components:

- Treated Effluent: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis Concentrate**: Treatment byproduct that is transported and disposed of off-site.
- **Solids (Sludge):** Treatment byproduct that is transported off-site for disposal each time a sludge waste storage bin reaches capacity or within 90 days of the start date for accumulation in the storage container.

Treatment System Influent (Extraction Wells) Flow Rate

System influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, and TW-3D (Figure TP-PR-10-10-03). During June 2006, extraction wells TW-3D and PE-1 operated at a target pump rate of at 135 gallons per minute (gpm) excluding periods of planned and unplanned downtime. The operational run time for the IM No. 3 groundwater extraction system (combined or individual pumping from TW-3D and PE-1) was approximately 98 percent of the June 2006 reporting period.

Periods of planned and unplanned extraction system downtime during June 2006 are summarized in the Operations and Maintenance Log provided in Appendix D.

Outflow Components:

Treatment System Effluent (Injection Wells)

The treatment system effluent flow rate was measured by flow meters in the piping into injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11), and in the piping from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04).

Reverse Osmosis Concentrate

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-PR-10-10-08).

Sludge

Two containers of solids (approximately 14 cubic yards each) were generated and shipped off-site from the IM No. 3 facility during June 2006. The sludge was shipped to Chemical Waste Management at Kettleman Hills for disposal.

3.3 Sampling and Analytical Procedures

Monitoring samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail) or Severn Trent Laboratories, Inc. (STL). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a cooler at 4° Celsius and transported to Truesdail or STL via courier service under chain-of-custody documentation. Truesdail transported a portion of the sludge sample to MBC Applied Environmental Sciences Laboratories (MBC) for the aquatic bioassay analysis.

Truesdail is certified by the California Department of Health Services (Certification #1237) under the State of California's Environmental Laboratory Accreditation Program. STL is certified by the California Department of Health Services (Certification #1118) under the Environmental Laboratory Accreditation Program. MBC is certified by the California Department of Health Services (Certification # 1788) under the State of California's Environmental Laboratory Accreditation Program. MBC is certified by the California Department of Health Services (Certification # 1788) under the State of California's Environmental Laboratory Accreditation Program.

All analyses were performed in accordance with the latest edition of the "Guidelines Establishing Test Procedures for Analysis of Pollutants" (40 CFR Part 136), promulgated by the United States Environmental Protection Agency.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling was conducted in accordance with the sampling frequency required by the MRP (see Section 4.0). The June 2006 sampling analytical results are shown in Tables 3, 4, 5 and 6, respectively.

Groundwater quality is being monitored in observation and compliance wells according to procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* (CH2M HILL, 2005). Reporting of quarterly groundwater monitoring analytical results will be submitted in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

4.0 Monitoring Analytical Results

The analytical results and laboratory reports for the IM No. 3 groundwater treatment system monitoring program between January 1, 2006 and May 31, 2006 were provided in previous monthly reports submitted to the Water Board (see Section 3.0 for a complete listing of reports).

The June 2006 analytical results from groundwater treatment system influent, effluent, reverse osmosis concentrate, and sludge samples are presented in Tables 3, 4, 5, and 6 respectively. The June 2006 laboratory reports prepared by the certified analytical laboratories are presented in Appendix A.

In accordance with the WDR reporting requirements, the following sampling frequency schedule was followed during June 2006:

- The influent was sampled monthly, on June 15, 2006.
- The effluent was sampled weekly, on June 1, 8, 15, 21 and 28, 2006.
- The reverse osmosis concentrate was sampled monthly, on June 15, 2006.
- The sludge was sampled monthly on June 15, 2006. WDR requirements state that sludge is to be sampled each time it is transported offsite unless sludge is transported offsite more frequently than monthly, in which case, the sampling frequency shall be monthly.
- The sludge is required to have an aquatic bioassay test quarterly; the 1st Quarter 2006 bioassay analysis was conducted on a sludge sample collected February 15, 2006; the results were presented in the *March 2006 / 1st Quarter 2006 Monitoring Report*, submitted to the Water Board April 14, 2006. The 2nd Quarter 2006 bioassay analysis was conducted on a sludge sample collected April 5, 2006; the results were presented in the *April 2006 Monitoring Report*, submitted to the Water Board April 14, 2006.
- Additional analysis of the sludge sample collected June 15, 2006 was completed for the purpose of waste characterization; the waste characterization analytical results are included in the laboratory reports provided in Appendix A.

Table 7 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

5.0 Semi-Annual Operation and Maintenance

Pursuant to the WDRs Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Board Office twice annually.

This section includes the Semi-Annual Operation and Maintenance Report for the IM No. 3 groundwater treatment system for the period January 1, 2006 to June 30, 2006.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational process logic controller (PLC) data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via a data historian. Operations and Maintenance records are also archived using maintenance software. The following sections summarize the operations and maintenance activities during this semi-annual reporting period.

5.1 Analytical Results

System monitoring analytical results for January 1, 2006 through May 31, 2006 were previously provided in the appropriate monthly monitoring report (see Section 3.0 for complete listing of reports). The June 2006 analytical results are summarized in Tables 3 through 7, and June 2006 laboratory reports are provided in Appendix A.

There were no occurrences of non-compliant discharge to the injection wells during the January 1, 2006 to June 30, 2006 reporting period.

5.2 Flowmeter Calibration Records

The IM No. 3 groundwater treatment system flowmeter calibration records are provided in Appendix B. The following flowmeters were used to record the flows to each area of the treatment system:

- Influent flowmeter FIT-100 which records flow from extraction well TW-2S;
- Influent flowmeter FIT-101 which records flow from extraction well TW-2D;
- Influent flowmeter FIT-102 which records flow from extraction well TW-3D;
- Effluent flowmeter FIT-1202 which records flow to injection well IW-2;
- Effluent flowmeter FIT-1203 which records flow to injection well IW-3; and

- Effluent flowmeter FIT-702 which records combined flow to injection wells IW-2 and IW-3.
- Reverse osmosis concentrate flowmeter FIT-701 recorded flow to the reverse osmosis concentrate storage tank.

Communications to injection well flow meters FIT-1202 and FIT-1203 located at the injection well heads for IW-2 and IW-3 malfunctioned November 14, 2005. Repairs were completed January 24, 2006 to restore communications to the flow meters. During the communications malfunction between November 14, 2005 and January 24, 2006, flow meter FIT-702 was used to calculate effluent volumes and flow rates. This flow meter, located at the IM No. 3 facility, measures the total flow from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04).

5.3 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated are provided in Appendix C. An estimated volume of 33,867,597 gallons of groundwater was extracted and treated between January 1, 2006 and June 30, 2006. Approximately 30,765,384 gallons of treated groundwater was injected back into the Alluvial Aquifer and approximately 2,970,656 gallons of water was treated offsite as reverse osmosis concentrate (i.e., brine).

The differences in the estimated influent volumes and the sum of effluent and reverse osmosis concentration volumes is approximately 0.4 percent over the six month period, which is within the range of acceptable accuracy considering the margin of error for on-site instrumentation, the water contained within the sludge, and differences in the inventory of water in the treatment system between the beginning and end of each reporting period.

Approximately 74,725 gallons of well purge water (generated during well development, monitoring well sampling, and aquifer testing) was treated at the IM No. 3 facility during the January 1, 2006 to June 30, 2006 semi-annual period. Treatment of this water at the IM No. 3 facility, in accordance with the conditions of Order No. R7-2004-0103, was approved by the Regional Board in a letter dated January 26, 2006.

5.4 Groundwater Monitoring Data

Groundwater quality is being monitored in observation and compliance wells according to procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* (CH2M HILL, 2005). Reporting of quarterly groundwater monitoring analytical results is issued separately to the Water Board, in conjunction with groundwater level maps of the same monitoring wells.

5.5 Residual Solids Generated (Sludge)

Ten containers of residual solids (i.e., sludge) were sampled and shipped off-site for disposal from January 1, 2006 to June 30, 2006 as a non-RCRA hazardous waste. A listing of each shipment during this period is provided below.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests	Approximate Wet Weight (Ibs)
6-Jan-06	15 yards	23,160
6-Feb-06	14 yards	24,560
21-Feb-06	12 yards	22,060
9-Mar-06	14 yards	23,300
31-Mar-06	14 yards	3,560
19-Apr-06	13 yards	29,840
28-Apr-06	14 yards	27,060
22-May-06	15 yards	22,400
6-Jun-06	15 yards	22,680
26-Jun-06	12 yards	20,660

Note: The approximate wet weight is provided by the disposal facility prior to disposal.

5.6 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix C, as measured by flowmeter FIT-701 (Figure TP-PR-10-10-08). Between January 1, 2006 and June 30, 2006, approximately 2,970,656 gallons of reverse osmosis concentrate was transported to U.S. Filter Corporation in Los Angeles, California for disposal based on on-site metering.

5.7 Summary of WDR Violations

No WDRs violations were identified during the January 1, 2006 to June 30, 2006 semi-annual reporting period. Therefore, no corrective actions were required.

5.8 Operation and Maintenance – Required Shutdowns

A summary of the operation or maintenance issues that required shutting down the treatment system during this semi-annual reporting period is provided in Appendix D. Records of routine maintenance are maintained onsite.

5.9 Treatment Plant Modifications

There were no treatment plant modifications that affected the capacity or performance of the extraction and treatment system during the January 1, 2006 to June 30, 2006 reporting period.

The following modifications that did not affect the capacity or performance of the extraction and treatment system were made:

- Extraction Well PE-1 was installed in March 2005 per California Department of Toxic Substances Control (DTSC) direction. A Final Work Plan to construct conveyance piping and power supply from PE-1 to the IM No. 3 treatment system was submitted to the DTSC and BLM on July 29, 2005. DTSC conditionally approved the work plan in October 5, 2005 and BLM approved the work plan on December 9, 2005. Construction of the conveyance piping and power supply began on December 12, 2005. The construction and testing of the pipeline was completed in January 2006. Extraction well PE-1 was brought into full-time service on January 26, 2006.
- A second set of ten Microfilter modules was added to the existing Micro Filter on January 15, 2006. This arrangement allows ten modules to be cleaned while the other ten modules are in service, reducing system down time.
- Non-intrusive testing of the piping of the facility reverse osmosis unit was completed in April 2006 after observing pinhole leaks develop in the piping. It was recommended that new piping with improved metallurgy be fabricated to replace the existing piping. A temporary reverse osmosis unit provided by U.S. Filter was subsequently installed on May 24, 2006 and brought into service on May 25, 2006. This allowed for the existing piping to be taken to the welder's shop for accurate measurements while fabricating the new piping. The facility reverse osmosis unit will be brought back into service in mid-July 2006 after the replacement piping is installed. The temporary reverse osmosis unit will be returned to U.S. Filter at that time.
- On March 5, 2006, the T-301A tank was drained and the air distribution header was dismantled and inspected. The sparging holes were showing signs of fouling. The original FRP piping was replaced with Duraplus® pipe. After the T301A tank was returned to service, the T-301B tank was drained, the sparging holes in the original FRP piping were cleaned of fouling, and T-301B was returned to service.

6.0 Conclusions

There were no exceedances of the effluent limitations during the reporting period. In addition, no incidents of non-compliance were identified during the reporting period, and no events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units were identified during the reporting period.

7.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 12, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	behumn
Name:	Curt Russell
Company:	Pacific Gas and Electric Company
Title:	Topock Onsite Project Manager
Date:	July 14, 2006

Tables

TABLE 1 Sampling Station Descriptions June 2006 Report for IM No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-PR-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-PR-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-PR-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-PR-10-10-06).

Note: ^a The sample event is included at the end of the sample ID (e.g. SC-100B-WDR-015).

Flow Monitoring Results

June 2006 Report for IM No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,d}	System Effluent ^{b,d}	Reverse Osmosis Concentrate ^{c,d}
Average Monthly Flowrate (gpm)	129.9	116.9	12.5

Note:

gpm: gallons per minute.

^a Extraction wells TW-3D and PE-1 were operated during June 2006.

^b All effluent was discharged into injection wells IW-2 and IW-3. Flow meter readings from FIT-702 were used in January 2006 to record system effluent due to communication difficulties with FIT-1202 at the injection wellhead.

^c Reverse Osmosis flow meter reading from FIT-701.

^d The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates is approximately 0.4 percent, which is within the range of acceptable accuracy considering the margin of error for onsite instrumentation, the water contained within the sludge, and differences in the inventory of water in the treatment system between the beginning and end of the reporting period.

Required Sampling	g Frequency		Monthly																					
Sample ID	Analytes Units ^b Date	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	e pH pHunits	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium µg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic µg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	Lead µg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc µg/L
SC-100B-WDR-051	6/15/2006	4850	0.129	10000	7.52	1970	1950 J	ND (52)	ND (0.5)	ND (3.0)	7.90	ND (300)	1.36	95.0	2.72	ND (2.0)	ND (500)	14.8	ND (20)	3.21	0.027	682	ND (300)	ND (20)

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program µg/L = micrograms per liter
mg/L = milligrams per liter
NTU = nephelometric turbidity units
µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limitJ = concentration or reporting limits estimated by laboratory or validation

^a Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

^b Units reported in this table are those units required in the WDRs

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Effluent Monitoring Results^a June 2006 Monthly Report for Interim Measures No.3 Groundwater Treatment System

WDRs Effluent Limits ^b	Ave. Monthly Max Daily	NA NA	NA NA	NA NA	6.5-8.4 6.5-8.4	25 50	8 16	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Required Sampli	ng Frequency			We	eekly											Mont	hly							
Sample ID	Analytes Units ^c Date	TDS mg/L	Turbidity NTU	Specific Conductanc µmhos/cm	e pH pHunits	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium µg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic µg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	Lead µg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron µg/L	Zinc μg/L
SC-700B-WDR-049	6/1/2006	4300	ND (0.1)	7320	7.75	ND (1.0)	ND (1.0)																	
SC-700B-WDR-050	6/8/2006	3380	ND (0.1)	6350	8.17	ND (1.0)	ND (1.0)																	
SC-700B-WDR-051	6/15/2006	4030	ND (0.1)	7420	7.88	ND (1.0)	ND (2.0)J	ND (52)	ND (0.5)	ND (3.0)	ND (5.0)	ND (300)	1.10	71.3	1.97	ND (2.0)	ND (500)	6.20	21.8	2.44	0.0118	471	ND (300)	23.2
SC-700B-WDR-052	6/21/2006	4240	ND (0.1)	7450	8.18	ND (1.0)	ND (1.0)																	
SC-700B-WDR-053	6/28/2006	3380	0.105	7180	8.10	ND (1.0)	ND (1.0)																	

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program NA = not applicable $\mu g/L$ = micrograms per liter mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limit

J = concentration or reporting limits estimated by laboratory or validation

^a Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

^b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.

^c Units reported in this table are those units required in the WDRs

Required Sampli	ng Frequency		Monthly																				
Sample ID	Analytes Units ^b Date	TDS mg/L	Specific Conductance µmhos/cm	pH pHunits	Chromium mg/L	Hexavalent Chromium mg/L	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Cobalt mg/L	Copper mg/L	Fluoride mg/L	Lead mg/L	Molybdenum mg/L	Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
SC-701-WDR-051	6/15/2006	26400	38700	7.89	ND (0.001)	ND (0.002)J	ND (0.01)	0.0302	ND (0.3)	ND (0.0052)	ND (0.0052)	ND (0.01)	0.361	2.19	ND (0.005	2) 0.0524	ND (0.0002)	0.0348	0.0265	ND (0.01) ND (0.0052	2) 0.0164	0.0207

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

μg/L = micrograms per liter mg/L = milligrams per liter μmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limit J = concentration or reporting limits estimated by laboratory or validation

^a Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

 $^{\mbox{ b}}$ Units reported in this table are those units required in the WDRs

TABLE 6 Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a June 2006 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sam	pling Frequency		Monthly ^c																			
Sample ID	Analytes Date Units ^b	Chromium mg/kg	Hexavalent Chromium mg/kg	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Cobalt mg/kg	Copper mg/kg	Fluoride mg/kg	Lead mg/kg	Molybdenum mg/kg	Mercury mg/kg	Nickel mg/kg	Selenium mg/kg	Silver mg/kg	Thallium mg/kg	Vanadium mg/kg	Zinc mg/kg		
SC-SLUDGE-WDR-051	6/15/2006	22000	110	ND (33)J	19.0	98.0	ND (2.8)	6.60	ND (28)	140	13.0	ND (2.8) 64.0	2.50 J	46.0	9.70	ND (5.6)	17.0 J	110	66.0		=

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program ND = parameter not detected at the listed reporting limit

J = concentration or reporting limits estimated by laboratory or validation

mg/kg = milligrams per killogram

mg/L = milligrams per liter

^a Sampling Location for all Sludge Samples is the Sludge Collection Tanks (see attached P&ID TP-PR-10-10-06)

 $^{\mbox{\bf b}}$ Units reported in this table are those units required in the WDR

^c Sludge shall be tested for the listed constituents each time sludge is transported offsite, unless transport is more frequent than monthly, in which case the sampling frequency shall be monthly.

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information *June 2006 Monthly Report for Interim Measures No.3 Groundwater Treatment System*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-051	Gary Sibble	6/15/2006	11:45:00 AM	TLI	EPA 120.1	SC	6/16/2006	Tina Acquiat
					TLI	EPA 150.1	PH	6/16/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	6/22/2006	Tina Acquiat
					TLI	EPA 180.1	TRB	6/16/2006	Gautam Savani
					TLI	EPA 200.7	MN	6/16/2006	Victoria Than
					TLI	EPA 200.7	В	6/16/2006	Victoria Than
					TLI	EPA 200.7	BA	6/16/2006	Victoria Than
					TLI	EPA 200.7	AL	6/21/2006	Victoria Than
					TLI	EPA 200.7	FE	6/16/2006	Victoria Than
					TLI	EPA 200.7	NI	6/16/2006	Victoria Than
					TLI	EPA 200.7	ZN	6/16/2006	Victoria Than
					TLI	EPA 200.7	CRT	6/16/2006	Victoria Than
					TLI	EPA 200.8	PB	7/6/2006	Victoria Than
					TLI	EPA 200.8	AS	7/6/2006	Victoria Than
					TLI	EPA 200.8	CU	7/6/2006	Victoria Than
					TLI	EPA 200.8	MO	7/6/2006	Victoria Than
					TLI	EPA 200.8	SB	7/6/2006	Victoria Than
					TLI	EPA 300.0	FL	6/16/2006	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/16/2006	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/16/2006	Giawad Ghenniwa
					TLI	EPA 350.2	NH3N	6/16/2006	lordan Stavrev
					TLI	EPA 354.1	NO2N	6/16/2006	Tina Acquiat
					TLI	EPA Method 218.6	CR6	6/16/2006	Jorge Arriaga
SC-700B	SC-700B-WDR-049	Kevin Mullin	6/1/2006	3:00:00 PM	TLI	EPA 120.1	SC	6/2/2006	Tina Acquiat
					TLI	EPA 150.1	PH	6/2/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	6/2/2006	Emilia Haley
					TLI	EPA 180.1	TRB	6/1/2006	Gautam Savani
					TLI	EPA 200.7	CRT	6/5/2006	Victoria Than
					TLI	EPA Method 218.6	CR6	6/2/2006	Jorge Arriaga
SC-700B	SC-700B-WDR-050	Gary Sibble	6/8/2006	11:23:00 AM	TLI	EPA 120.1	SC	6/9/2006	Tina Acquiat
					TLI	EPA 150.1	PH	6/9/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	6/13/2006	Tina Acquiat
					TLI	EPA 180.1	TRB	6/9/2006	Gautam Savani
					TLI	EPA 200.7	CRT	6/15/2006	Victoria Than
					TLI	EPA Method 218.6	CR6	6/9/2006	Jorge Arriaga
SC-700B	SC-700B-WDR-051	Gary Sibble	6/15/2006	12:00:00 PM	TLI	EPA 120.1	SC	6/16/2006	Tina Acquiat
					TLI	EPA 150.1	PH	6/16/2006	Tina Acquiat

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information *June 2006 Monthly Report for Interim Measures No.3 Groundwater Treatment System*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-051	Gary Sibble	6/15/2006	12:00:00 PM	TLI	EPA 160.1	TDS	6/22/2006	Tina Acquiat
					TLI	EPA 180.1	TRB	6/16/2006	Gautam Savani
					TLI	EPA 200.7	ZN	6/16/2006	Victoria Than
					TLI	EPA 200.7	AL	6/21/2006	Victoria Than
					TLI	EPA 200.7	В	6/16/2006	Victoria Than
					TLI	EPA 200.7	BA	6/16/2006	Victoria Than
					TLI	EPA 200.7	CRT	6/27/2006	Victoria Than
					TLI	EPA 200.7	FE	6/16/2006	Victoria Than
					TLI	EPA 200.7	MN	6/16/2006	Victoria Than
					TLI	EPA 200.7	NI	6/16/2006	Victoria Than
					TLI	EPA 200.8	SB	7/6/2006	Victoria Than
					TLI	EPA 200.8	PB	7/6/2006	Victoria Than
					TLI	EPA 200.8	MO	7/6/2006	Victoria Than
					TLI	EPA 200.8	AS	7/6/2006	Victoria Than
					TLI	EPA 200.8	CU	7/6/2006	Victoria Than
					TLI	EPA 300.0	FL	6/16/2006	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/16/2006	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/16/2006	Giawad Ghenniwa
					TLI	EPA 350.2	NH3N	6/16/2006	lordan Stavrev
					TLI	EPA 354.1	NO2N	6/16/2006	Tina Acquiat
					TLI	EPA Method 218.6	CR6	6/16/2006	Jorge Arriaga
SC-700B	SC-700B-WDR-052	Erik Johannsen	6/21/2006	1:00:00 PM	TLI	EPA 120.1	SC	6/22/2006	Alex Hernandez
					TLI	EPA 150.1	PH	6/22/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	6/22/2006	Tina Acquiat
					TLI	EPA 180.1	TRB	6/22/2006	Gautam Savani
					TLI	EPA 200.7	CRT	6/27/2006	Victoria Than
					TLI	EPA Method 218.6	CR6	6/22/2006	Jorge Arriaga
SC-700B	SC-700B-WDR-053	David Chaney	6/28/2006	12:30:00 PM	TLI	EPA 120.1	SC	6/29/2006	Tina Acquiat
					TLI	EPA 150.1	PH	6/29/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	6/29/2006	Tina Acquiat
					TLI	EPA 180.1	TRB	6/29/2006	Gautam Savani
					TLI	EPA 200.7	CRT	6/30/2006	Victoria Than
					TLI	EPA Method 218.6	CR6	6/29/2006	Jorge Arriaga
SC-701	SC-701-WDR-051	Gary Sibble	6/15/2006	12:45:00 PM	TLI	EPA 120.1	SC	6/16/2006	Tina Acquiat
					TLI	EPA 150.1	PH	6/16/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	6/22/2006	Tina Acquiat
					TLI	EPA 200.7	ZN	6/16/2006	Victoria Than

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information *June 2006 Monthly Report for Interim Measures No.3 Groundwater Treatment System*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-051	Gary Sibble	6/15/2006	12:45:00 PM	TLI	EPA 200.7	BA	6/16/2006	Victoria Than
					TLI	EPA 200.7	CRT	6/27/2006	Victoria Than
					TLI	EPA 200.7	NI	6/16/2006	Victoria Than
					TLI	EPA 200.8	AS	7/6/2006	Victoria Than
					TLI	EPA 200.8	V	7/6/2006	Victoria Than
					TLI	EPA 200.8	CO	7/6/2006	Victoria Than
					TLI	EPA 200.8	TL	7/6/2006	Victoria Than
					TLI	EPA 200.8	SE	7/6/2006	Victoria Than
					TLI	EPA 200.8	SB	7/6/2006	Victoria Than
					TLI	EPA 200.8	PB	7/6/2006	Victoria Than
					TLI	EPA 200.8	MO	7/6/2006	Victoria Than
					TLI	EPA 200.8	CU	7/6/2006	Victoria Than
					TLI	EPA 200.8	CD	7/6/2006	Victoria Than
					TLI	EPA 200.8	AG	7/6/2006	Victoria Than
					TLI	EPA 200.8	BE	7/6/2006	Victoria Than
					TLI	EPA 245.1	HG	7/7/2006	Aksiniya Dimitrova
					TLI	EPA 300.0	FL	6/16/2006	Giawad Ghenniwa
					TLI	EPA Method 218.6	CR6	6/16/2006	Jorge Arriaga
SC-Sludge	SC-SLUDGE-WDR-051	Gary Sibble	6/15/2006	12:10:00 PM	STL	EPA 160.3	MOIST	7/6/2006	Florian Zimmermann
					TLI	EPA 300.0	FL	6/16/2006	Giawad Ghenniwa
					STL	EPA 6010B	CU	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	ZN	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	V	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	TL	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	SE	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	SB	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	PB	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	AG	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	MO	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	CRT-TCLP	6/21/2006	Josephine Asuncion
					STL	EPA 6010B	CRT-STLC	6/22/2006	Josephine Asuncion
					STL	EPA 6010B	CRT	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	CO	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	CD	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	BE	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	BA	6/25/2006	Josephine Asuncion
					STL	EPA 6010B	AS	6/25/2006	Josephine Asuncion

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information *June 2006 Monthly Report for Interim Measures No.3 Groundwater Treatment System*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-Sludge	SC-SLUDGE-WDR-051	Gary Sibble	6/15/2006	12:10:00 PM	STL	EPA 6010B	NI	6/25/2006	Josephine Asuncion
					STL	EPA 7471A	HG	6/22/2006	Hao Ton
					STL	SW 7199	CR6	6/20/2006	Yuriy Zakhrabov
					STL	SW 7199	CR6	6/21/2006	Yuriy Zakhrabov

NOTES:

SC-700B = Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

SC-100B = Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

SC-701 = Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

TLI = Truesdail Laboratories, Inc.

STL = Severn Trent Laboratories, Inc.

<u> </u>	anagifia ganduatanga	MO	maluhdanum
SC =	specific conductance	WO =	molybdenum
PH =	рН	NI =	nickel
TDS =	total dissolved solids	PB =	lead
TRB =	turbidity	HG =	mercury
CRT =	chromium	SE =	selenium
CR6 =	hexavalent chromium	TL =	thallium
FL =	fluoride	CO =	cobalt
AL =	aluminum	CD =	cadmium
B =	boron	BE =	beryllium
FE =	iron	AG =	silver
MN =	manganese	V =	vanadium
ZN =	zinc	NO3N =	nitrate (as N)
SB =	antimony	NH3N =	ammonia (as N)
AS =	arsenic	NO2N =	nitrite (as N)
BA =	barium	SO4 =	sulfate
CU =	copper		

Figures

BAO \\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MXD\2006\IM3_PROJECT_AREA.MXD IM3_PROJECT_AREA.PDF 3/9/2006 15:54:15

tppr101003.dwg 12/07/2005.01:06:58 PM

REVISION A	REVISION APPROVAL REV 4 DATE 03/10/05 D				PRIN DISTRIBI	PRINT ISTRIBUTION STATUS						PACIFIC GAS & E
DISCIPLINE	REVIEWED	DISCIPLINE	E f	REVIEWED	DATE		ISSUED	REV	DATE	SDE	PEM	TOPOCK COMPRESS
CIVIL		ELECTRICAL			STATUS		PRELIMINARY					INTERIM MEA
STRUCTURAL		INST & CON	ITROL		REV.		FOR REVIEW AND APPROVAL	Α	07/28/04			EXPANDED GROUNDWA
MECHANICAL		ARCHITECTU	JRAL		CLIENT		APPROVED FOR CONSTRUCTION	0	09/03/04	KLM	TP	AND TREATMEN
PROCESS		ENVIRONMEN	ITAL		FIELD		REVISED & APPROVED	4				PROJ NO. 5
PIPING		GEN. ARRAN	IG.		INTRA CO.							
							SCA	LE	NONE			
						-						

Appendix A June 2006 Laboratory Analytical Reports

Table of ContentsTLI Laboratory Data Package

For Laboratory Number: 955424

ITEM	Section
Case Narrative and Analyst List	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

June 8, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-049 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 955424

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-049 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 1, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample for Total Chromium analysis was preserved in the lab.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDATA LABORATORIES, INC.

Monz

Manager, Analytical Services

K. R. P. Jye-

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

.

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955424

Received: June 1, 2006

Date: June 8, 2006 Collected: June 1, 2006

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
EPA 150.1	pH	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Emilia Haley
EPA 180.1	Turbidity	Gautam Savani
EPA 200.7	Total Chromium	Victoria Than-Thiem
EPA 218.6	Hexavalent Chromium	Jorge Arriaga

Section 2.0

Summary Table of Final Results

TRUESD INDEPENDENT TE	AIL LABORAT	ORIES, INC. Denvironmental Analysi	ES				Established 19	31
						14201 FF (714) 70	ZANKLIN AVENUE- TUSTIN, 30-6239 - FAX (714) 730-	CALIFORNIA 92780-7008 6462 · www.truesdail.com
Client: C 1 C C C C C C C	CH2M HILL 55 Grand Ave. Suite 10 Dakland, CA 94612 thawn Duffy	00					Laboratory No.: Date Received:	955424 June 1, 2006
Project Name: F Project No.: 3 P.O. No.: 9	0G&E Topock Project 34168.IM.04.00 11248							
			Analyt	iical Resu	lts Sumr	<u>nary</u>		
<u>Lab I.D.</u>	Sample I.D.	Sample Time	<u>EPA 200.7</u> Chromium Total	EPA 218.6 Chromium Heveralant	EPA 180.1 Turbidity	<mark>EPA 150.1</mark> pH	EPA 120.1 EC	EPA 160.1 7DS
955424	SC-700B-WDR-04	9 15:00	ng/L ND	DND DND	DLN	Unit 7.75	μ mhos/cm 7320	mg/L 4300
ND: Non Detects	eđ (below reporting lánul)							
Note: The Servin Results belo Result abov Cuality Con	g "Significant Figures" mie has b 24 0.01 will have two (2) significa e or equal to 0.01 will have three trot data will always have three (3	een applied to all results: at figures. (3) significant figures.) significant figures.						
005								
This report applie: and these laboration they matter will	s only to the sample, or sampl ories, this report is submitted thout prior written authorizatic	tes, investigated and is no f and accepted for the exc on from these laboratories	t necessarily indicativ Susive use of the clier	re of the quality or cont It to whom it is addres	dition of apparently id sed and upon the co	entical or similar proc ndition that it is not to	dects. As a mutual protec be used, in whole or in p	tion to clients, the public, sart, in any advertising or

Section 3.0

Final Reports

155 Grand Ave. Suite 1000

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955424

Date: June 8, 2006 Collected: June 1, 2006 Received: June 1, 2006 Prep/ Analyzed: June 5, 2006 Analytical Batch: 060506A

Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Client: CH2M HILL

Prep. Batch: 060506A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	<u>Results</u>
955424	SC-700B-WDR-049	mg/L	EPA 200.7	11:45	1.04	0.0010	ND

QA/QC Summary

	QC STC) I.D.	Lai N	borato lumbe	ory r	Concentra	tion	Duj Conce	plica entra	ite ation	R P Dif	Relative Percent fference	Acc	eptance imits	QC WithIn Control	
	Duplic	ate	9)55424	١	ND			ND			0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Cor unsy san	nc.of biked nple	Dilu Fac	tion tor	Added Spike Conc.	Ar	MS nount	M C	easured onc. of spiked sample	Т	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC Within Control
MS	955381	0.	00	1.0	04	0.0100	0	.0104		0.0118		0.0104		113%	75-125%	Yes
		¢	C Std	I.D.	N Cor	leasured acentration	Ti Cor	neoretica ncentratio	l Sn	Percer Recove	nt ery	Acceptan Limits	1C 0	QC With Contro	un H	
			MRÇÇ	ŝ		0.00982		0.0100		98%		90% - 110	0%	Yes		
		Ň	IRCV	S#1		0.00977		0.0100		97.7%	6	90% - 110	0%	Yes		
			ICS			0.0102		0.0100		102%	5	80% - 120	0%	Yes		
			LCS			0.0106		0.0100		106%	5	90% - 110	0%	Yes		

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, ABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

155 Grand Ave. Suite 1000

Oakland, CA 94612

Sample: One (1) Groundwater Sample

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955424

Date: June 8, 2006 Collected: June 1, 2006 Received: June 1, 2006 Prep/ Analyzed: June 2, 2006 Analytical Batch: 06CrH06B

Client: CH2M HILL

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
955424	SC-700B-WDR-049	15:00	13:09	mg/L	5.00	0.0010	ND

|--|

	QC STI	D I.D.	Lal N	oorato umber	ry	Concentrati	ion	Du Conc	plic ent	ate ration	R I Di	Relative Percent ifference	Ac	ceptarice limits	T	QC Within Control		
	<u>Duplic</u>	ate	9	55424		ND			ND			0.00%		< 20%	╈	Yes		
QC Std I.D.	Lab Number	Con unsp san	nc.of piked hple	Diluti Fact	lon or	Added Spike Conc.	An	MS nount	M	leasured Conc. of spiked sample	Theoretica Conc. of spiked sample		R	MS% acovery	A	cceptance limit	s QC Withi Control	in
MS	955424	0.00	0000	5.0	0	0.00100	0.0	00500	(0.00512	┢	0.00500		102%		90-110%	Vec	-
MSD	955424	0.00	0000	5.0	0	0.00100	0.0	00500	(0.00513	Т	0.00500		103%	-	90-110%	Vec	-
		•	C Std	I. D ,	с	Measured oncentration	Th Con	eoretica centratic	d on	Percen Recover	it ry	Acceptan Limits	ce	QC With Contro	din M			
			MRCO	s		0.00495	(0.00500		99.0%		90% - 110	%	Yes				
		_∿	IRCV:	S#1		0.00999		0.0100		99.9%		95% - 105	%	Yes				
		<u>N</u>	IRCV	S#2		0.00976		0.0100		97.6%		95% - 105	%	Yes				
		N	IRCV:	S#3		0.0100		0.0100		100%		95% - 105	%	Yes				
		M	RCV	5#4		0.00999		0.0100		99.9%		95% - 105	%	Yes	-			
		M	IRÇV:	S#5		0.00988		0.0100	_	98.8%		95% - 105	%	Yes				
			_LCS			0.00514	0	.00500		103%		90% - 110	%	Yes				
			LČSI)		0.00518	0	0.00500		104%		90% - 110	%	Yes				

ND: Below the reporting limit (Not Detected).

DF Dilution Fector

Respectfully submitted,

TRUESDAIL LABORATORIES, INC. Mona Massimi, Managei

Analytical Services

155 Grand Ave. Suite 1000

Oakland, CA 94612

Sample: One (1) Groundwater Sample

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955424

Date: June 8, 2006 Collected: June 1, 2006 Received: June 1, 2006 Prep/ Analyzed: June 1, 2006 Analytical Batch: 06TUC06A

Investigation:

Client: CH2M HILL

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
955424	SC-700B-WDR-049	15:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.	D. Laborator Number	Concentra	tion	Dupi Concer	icate ntration	F F Di	Relative Percent fference	Acc	ceptance limits	QC Within Control
Duplicate	e 955389-3	ND		. N	D		0.00%	:	<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration	The Conce	oretical entration	Percen Recove	ıt ry	Accepta Limit	ince S	QC Within Control	
	LCS	8.03		3.00	100%		90% - 11	10%	Yes	4
	LCS	7.93	ε	3.00	<u>9</u> 9.1%		90% - 11	10%	Yes	
	LCS	7.50	8	3.00	93.8%		90% - 11	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESPAIL LABORATORIES, INC.

alsula 1

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955424

Date: June 8, 2006 Collected: June 1, 2006 Received: June 1, 2006 Prep/ Analyzed: June 2, 2006 Analytical Batch: 06PH06B

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	MDL	<u>RL</u>	Results
955424	SC-700B-WDR-049	15:00	09:44	pH Units	0.0570	2.00	7.75

QA/QC Summary

QC STD	I.D. Laborate Numbe	огу Эг	Concentr	ation	Duplic Concent	ate ration	Di	fference (Units)	Acc	eptance limits	QC Within Control
Ouplicat	le 955424	4	7.75		7.7	5		0.00	<u>+</u> 0.	100 Units	Yes
	QC Std I.D.	M Con	easured centration	Th Con	eoretical centration	Differe (Unit	nce s)	Accepta Limit	INC O S	QC Withi Control	n
	LCS		6.97		7.00	0.03	3	+ 0.100	Units	Yes	-
	LCS #1		6.98		7.00	0.02)	± 0,100 I	Units	Yes	

Respectfully submitted, TRUESPAIL LABORATORIES, INC.

N Veria Mona Nassimi, Manad

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955424

Date: June 8, 2006 Collected: June 1, 2006 Received: June 1, 2006 Prep/ Analyzed: June 2, 2006 Analytical Batch: 06EC06B

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u> 955424		<u>Field</u> SC-70	<u>I.D.</u> 00B-W	/DR-049	<u>Uni</u> µmho	i <u>ts</u> s/cm l	<u>Metho</u> EPA 12	o <u>d</u> 0.1	<u>DF</u> 10.0		<u>RL</u> 20.0))	Results 7320
					QA/	QC Su	mma	ıry					_
	QC STI 1.D.	D La N	borator lumber	y Concen	tration	Duplica Concentr	ate ation	Rela D	itive Percent lifference	Aco	eptance limits	QC Withir Control	
	Duplica	le 9	955424	732	20	7310			0.14%	-	<u><</u> 10%	Yes	1
	QC Std I.D.		I I.D.	Measured Concentratio	n Co	fheoretical Perconcentration Reco		ent Acceptance /ery Limits		9	QC Within Control	n	-
		ccs	ŝ	670		706	94.99	6	90% - 110%		Yeş	1	
		CVS	#1	993		1000	99.3%	6	90% - 110%	,	Yes		
	_	LCS	3	669		706	94.8%	6	90% - 110%	, D	Yes		
		LCS	<u>0</u>	671		706	95.0%	6	<u>90% - 110%</u>	6	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

he alora

Mona Nassimi, Manager Analytical Services

155 Grand Ave. Suite 1000

Oakland, CA 94612

Sample: One (1) Groundwater Sample

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955424

Date: June 8, 2006 Collected: June 1, 2006 Received: June 1, 2006 Prep/ Analyzed: June 2, 2006 Analytical Batch: 06TDS06B

Investigation:

Client: CH2M HILL

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168 IM.04.00

P.O. No.: 911248

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 955424	<u>Fie</u> SC	-700	. <u>D.</u> 0 B- WDR-04	49	<u>U</u> п	nits 1g/L		<u>M</u> EP	<u>eth</u> A 1(<u>od</u> 60.1		<u>RL</u> 250	<u>Results</u> 4300
					QA	/Q(C Sun	nmar	У_				
	QC STD	I.D.	Laborator Number	У	Concentrat	ion	Dupik Concent	ate : ration	P Dif	ercent fference	Aco	eptance limits	QC Within Control
	Duplica	te	955424		4300		429	0		0.12%		<u>≺</u> 5%	Yes
		G	C Std I.D.	С	Measured oncentration	The Conc	oretical centration	Percer Recove	it iry	Accepta Limit	ince S	QC Within Control	n
			LCS 1		498		500	99.6%	;	90% - 1	10%	Yes	-
			LCS 2		488		500	97.6%	;	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESPAIL LABORATORIES, INC.

< (

Mona Nassimi, Manager Analytical Services

			921	5424		ſ	, ·
TRUESDAL LABORATI 14201 Franklin Avenue (714)730-6239 FAX: (7	DRES, INC. , Tuatin, CA 92780-7001 14) 730-6482		CHAIN OF CUS [IM3Pla	TODY RECORD Int-WDR-049]	COC Numi TURNARO DATE <u>6/1</u>	ber IM3Pfarft-WDR-C UND TIME 5 Døys 1/06 PAGE 1	49 4
COMPANY CH2M HILL PROJECT MAME PG&E TOPOCI	c IM3			(1 5 102 '6	/////	- ///	tue:
PHONE 530-229- ADDRESS 155 Grand Av Oakland, CA	3303 FMX 5 e Ste 1000 94612	30-339-3303	((500.7 ac	(1000) (1000)		Sugar	
Р.О. НИМИЕЕК P.O. # 911248 ЗАМРИ-ЕРА (SEIGNATURE	1 Mart		50.1) 01. 5 Wedders (19) 5 (218.6) (80	2 (0.00) s 0.031 Weters 0.031 Weters 0.031 (0.00) 0.031 (0.00) 0.03		AND JO MA	5
SAMPLE LD.	DATE . THE	DESCRIPTION	CCV) LING S	100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Rec'd	06/01/06 5 5 4 2 4
SC-700B-WDR-049	6/1/06 \$500		~ × ×			3	tend
		ALEI	RTII				
		Level 1	100 H				
						3 TOTAL NUMBER OF COM	WEB
	CHAIN OF CUST	ODY SIGNATUF	LE RECORD		15	APLE CONDITIONS	
Signature (Relinvictional) AMULC	Printed Kevin	Multin Agency	してい	Date 6-1-2006	RECEIVED COOL [<u>ب</u>
Signature Received M. C. B. C. V.	We wante XJM	Company Company	121	Time 6/1/06	CUSTOOY SEALED	YES D NO D	
Signature (Reitnquished)	Printed Neme	Companyl		Time 21.15	SPECIAL REQUIREMENTS:		
Signature (Received)	Printed Name	Company Agency		Deter Time			
Signalure (Reitnovishad)	Printed Name	Company Agancy		Data/ Time	Jume	Conditions	
Signature (Received)	Printed Name	Company		Date/ Time	1 FOT Sality	a Attached	

,

For Sample Conditions See Form Attached

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 955642

ITEM	<u>Section</u>
Case Narrative and Analyst List	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

June 22, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-050 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 955642

Trucsdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-050 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 8, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Scrvices

K.R.P. gozen

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955642 Date: June 22, 2006

Collected: June 8, 2006 Received: June 8, 2006

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

ì

ANALYST LIST

WETHOD		AKALYON
EPA 120.1	Specific Conductivity	Tina Acquiat
EPA 150.1	рН	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Tina Acquiat
EPA 180.1	Turbidity	Gautam Savani
EPA 200.7	Total Chromium	Victoria Than-Thiem
EPA 218.6	Hexavalent Chromium	Jorge Arriaga

Section 2.0

٠

Summary Table of Final Results

T RUESD INDEPENDENT TE	AIL LABORATC	DRIES, INC. Environmental Analyi	SES	< P			Estebiished 19	31
				₹`\ 		14205 FR [7] 4] 73	RANKLIN AVENUE - TUSTIN, 30-6239 - FAX (714) 730-	CALIFORNIA 92780-7008 6462 - www.truesdaii.com
Client: (5 Attention: S	CH2M HiLL 155 Grand Ave. Suite 100 Dakland, CA 94612 Shawn Duffy	g					Laboratory No.: { Date Received: .	955642 June 8, 2006
Project Name: F Project No.: 3 P.O. No.: 9	9G&E Topock Project 34168.IM.04.00 111248							
			<u>Analyt</u>	ical Resu	<u>lts Sumr</u>	nary		
<u>Lab I.D.</u>	Sample I.D.	Sample Time	EPA 200.7 Chromium Totel	EPA 218.6 Chromium Heveralent	EPA 180.1 Turbidity	<mark>EPA 150.1</mark> pH	EPA 120.1 EC	EPA 160.1 TDS
955642	SC-700B-WDR-050	11:23	mg/L ND	UN Tigm	NTU UD	Unit 8.17	μ mhos/cm 6350	mg/L 3380
005								
NO: Non Detect	ied (below reporting limit)							
Note: The followi Results bel Result abor Quality Cor	ng "Significant Figures" rule thas bet ow 0.01 with have two (2) significant ve or equal to 0.01 with have three (3) thol data will always have three (3):	en applied to all results: figures. 3) significant figures. significant figures.						
This report applie and these laborat publicity matter wi	s only to the sample, or sample ories, this report is submitted a thout prior written authorization	is, investigated and is n and accepted for the ex a from these laboratorie:	ot necessarily indicativ clusive use of the clien s.	re of the quality or conc at to whom it is addres:	lition of apparently id sed and upon the co	entical or similar prod ndition that it is not to	ducts. As a mutual protec i be used, in whole or in p	tion to clients, the public, art, in any advertising or

Section 3.0

Final Reports

.

155 Grand Ave. Suite 1000

Oakland, CA 94612

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955642

Date: June 22, 2006 Collected: June 8, 2006 Received: June 8, 2006 Prep/ Analyzed: June 15, 2006 Analytical Batch: 061506A

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Client: CH2M HILL

Attention: Shawn Duffy

Prep. Batch: 061506A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

Analytical Results Total Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	Run Time	DF	<u>RL</u>	<u>Results</u>
955642	SC-700B-WDR-050	mg/L	EPA 200.7	9:44	1.04	0.0010	ND

QA/QC Summary

	QC STD) I,D,	La N	borato lumbe	ory H	Concentra	tion	Du(Conce	elica entr	ate ation	R P Di	lelative Percent fference	Acc li	eptance imits	Q (Within Control	
	Duplic	ate	ę	955642	2	ND			ND			0.00%	Ň	20%		Yes	
QC Std I.D.	Lab Number	Coi uns sar	nc.of piked nple	Dilu Fac	tion tor	Added Spike Conc.	Ar	MS nount	M C	easured Conc. of spiked sample	1	Theoretical Conc. of spiked sample	Re	WS% covery	Acc	:eptance limit s	QC Within Control
MS	955642	0	.00	1.	04	0.0100	0	.0104		0.0101		0.0104	9	7.1%	75	5-125%	Yes
			QC Std	1.D,	N Cor	leasured icentration	TI Çoi	heoretica ncentratio	l on	Percer Recove	nt vry	Acceptan Limits	ice	QC Witi Contro	hin ol		
			MRCO	<u></u>		0.00995		0.0100		99.5%	6	90% - 110	אנ	Yes			
			MRCV	S#1		0.00961		0.0100		96,1%	ő	90% - 11(2%	Yeş			
			MRCV	S#2		0.00994		0.0100		99.4%	6	90% - 110)%	Yes			
			ICS	;		0.0109		0.0100		109%)	80% - 120	0%	Yes			
			LCS	3		0.00992		0.0100		99.2%	6	90% - 110)%	Yes			

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955642

Date: June 22, 2006 Collected: June 8, 2006 Received: June 8, 2006 Prep/ Analyzed: June 9, 2006 Analytical Batch: 06CrH06I

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955642	SC-700B-WDR-050	11:23	06:56	mg/L	5.00	0.0010	ND

QA/QC Summary

	QC STE	DI.D.	Lab Nu	oratory umber	Concentrati	óπ	Du Conc	plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	99	55642	ND			ND	0.00%	<u>≺</u> 20%	Yes	
QC Std 1.D.	Lab Number	Conc unspi sam	o.of iked ple	Dilution Factor	Added Spike Conc.	Ап	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limit	8 QC Within Control
MS	955642	0.0	ю	1.06	0.00100	0.0	00106	0.00122	0.00106	115%	90-110%	No
MSD	955642	0.0	0	5.00	0.00100	0.0	00500	0.00521	0.00500	104%	90-110%	Yes
MS	955642	0.0	0	5.00	0.00100	0.	0050	0.00535	0.0050	107%	90-110%	Yes

	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
	MRCCS	0.00502	0.00500	100%	90% - 110%	Yes
L	MRCVS#1	0.00982	0.0100	98.2%	95% - 105%	Yes
	LCS	0.00515	0.00500	103%	90% - 110%	Yes
Ľ	LCSD	0.00513	0.00500	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected). DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 955642

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Established 1931

Date: June 22, 2006 Collected: June 8, 2006 Received: June 8, 2006 Prep/ Analyzed: June 9, 2006 Analytical Batch: 06TUC06I

Investigation:

1

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955642	SC-700B-WDR-050	11:23	NTU	1.00	0.100	ND

QA/QC Summary

	QC STD I.	D. Laborato Number	ry Concent	ration	Dupl Concer	Icate ntration	F P Di	Relative Percent Ifference	Aco	eptance Imits	QC Within Control
1	Duplicate	955634-	2 0.14	9	0.1	50		0.67%	2	<u><</u> 20%	Yes
	ŗ	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percer Recove	nt ery	Accepta Limit	ince S	QC Within Control	n
		LCS	8.07		8.00	101%	,	90% - 1	10%	Yes	
		LCS	8.01		8.00	100%	2	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

An Na

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.1M.04.00 P.O. No.: 911248

Investigation:

REPORT

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955642

Date: June 22, 2006 Collected: June 8, 2006 Received: June 8, 2006 Prep/ Analyzed: June 9, 2006 Analytical Batch: 06PH06H

pH by EPA 150.1

Analytical Results pH

<u>TLH.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	MDL	<u>RL</u>	<u>Results</u>
955642	SC-700B-WDR-050	11:23	10:10	pH Units	0.0570	2.00	8.17

QA/QC Summary

QC STD	I.D. Laborato Numbe	ory Ir	Concentr	ation	Duplic Concent	ate ration	Dit (iference Units)	Acc	eptance imits	QC Within Control
Duplica	te 955637-	1	2.08		2.08	3		0.00	<u>+</u> 0.1	100 Units	Yes
	QC Std I.D.	Me Con	easured centration	Th Con	eoretical centration	Differe (Unit	nce s)	Accepta Limit	nce S	QC With Control	in I
	LCS		7.03		7.00	0.03	3	<u>+</u> 0.100 (Units	Yes	
	LCS #1		7.03		7.00	0.03	3	<u>+</u> 0.100 (Jnits	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u> 955642		<u>Fi</u> Si	ield_I.D. C-700B-W	/DR-050	<mark>Un</mark> µmho	l <u>ts</u> s/cm E	<u>Metho</u> EPA 12	o <u>d</u> 0.1	<u>DF</u> 10.0		<u>RL</u> 20.0	· <u>F</u>	Results 6350
					QA	QC Su	mma	ary	/				_
	QC ST	G	Laborator Number	Concentr	ation	Duplica Concentra	te ation	Re	lative Percent Difference	Acc	eptance Imits	QC Withir Control	1
	Duplica	ate	955642	6350)	6360			0.16%	-	<u>:</u> 10%	Yes	
		Q	C Std I.D.	Measured Concentration	C C	Theoretical oncentration	Perce Recov	ent ery	Acceptanc Limits	₽	QC Withi Control	in	_
	ľ		CCS	682		706	96.6	%	90% - 110%	6	Yes		
			CVS#1	940		1000	94.0	%	90% - 110%	6	Yes		
	[CVS#2	938		994	94.4	%	90% - 110%	6	Yes		
			LCS	669		706	94.8	%	90% - 110%	6	Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Date: June 22, 2006

Laboratory No.: 955642

Prep/ Analyzed: June 9, 2006 Analytical Batch: 06EC06D

Collected: June 8, 2006

Received: June 8, 2006

Mona Nassimi, Manager Analytical Services

155 Grand Ave. Suite 1000

Oakland, CA 94612

Sample: One (1) Groundwater Sample

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955642

Date: June 22, 2006 Collected: June 8, 2006 Received: June 8, 2006 Prep/ Analyzed: June 13, 2006 Analytical Batch: 06TDS06E

Investigation:

Client: CH2M HILL

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 955642	<u>Fiel</u> SC-	<u>Id I.D.</u> -700B-WDR-0	50 n	<u>Inits</u> ng/L		<u>M</u> EP	leth A 1	od 60.1		<u>RL</u> 500	<u>Results</u> 3380
			QA	VQ(C Sun	nmar	[•] У				
	QC STD I	.D. Laborator Number	Concentrat	tion	Dupile Concent	cate tration	P Di	Percent fference	Acc	eptance limits	QC Within Control
	Duplicat	e 955642	3380		332	20		0.90%		<u><</u> 5%	Yes
		QC Std I.D.	Measured Concentration	The	eoretical centration	Perce Recove	nt ary	Accepta Limit	INCO S	QC Within Control	n
		LCS 1	520		500	104%		90% - 1	10%	Yes	
	[LCS 2	499		500	99.8%	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 955857

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

.

.

,

.

.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 7, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-051 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 955857

Truesdail Laboratories, Inc. is pleased to submit this report summatizing the Topock IM3Plant-WDR-051 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 15, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The samples for Hexavalent Chromium analysis were inadvertently delivered to EMAX Laboratories by the courier and had to be retrieved by Truesdail Personnel. Due to the late arrival of the samples, all runs of SDG's 955857-1 and 955857-2 were out of holding time. The straight run for 955857-3 was within holding time but the analysis at a 10X dilution and the associated matrix spike was out of holding time.

The samples for metals analysis were received with a pH of 7 and therefore were preserved in the lab.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K.R.P. Fran

K.R.P. Iyer Quality Assurance/Quality Control Officer

002

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857

Collected: June 15, 2006

Received: June 15, 2006

Date: July 7, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.; NA

ANALYST LIST

ł

EPA 120.1	Specific Conductivity	Tina Acquiat
EPA 150.1	рН	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Tina Acquiat
EPA 180.1	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
EPA 350.2	Ammonia	lordan Stavrev
EPA 354.1	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Victoria Than
EPA 200.8	Metals by ICP/MS	Victoria Than
EPA 245.1	Mercury	Aksiniya Dimitrova
EPA 218.6	Hexavalent Chromium	Jorge Arriaga

Section 2.0

Summary Table of Final Results

Consumptions, in the constraint of the co								14201 FRANKLIN AV [714] 730-6239 ·	ENUE - TUSTIN, CALIFORNIA 92780-7008 FAX (714) 730-6462 - www.fluesdail.com			
Image: Stand Dig For the Stand	Client: E	E2 Consulting Engineers, I i55 Grand Ave. Suite 1000 Dakland, CA 94612	Э Ц						Laboratory No.: 955857 Date Received: June 15, 2006			
Motor Frage Poport Nume Call Color Frage Poport Nume Policy Linux Poport Nume Policy Linux Poport Nume Policy Linux Poport Nume Policy Linux Policy Linux Amotor Policy Linux Poport Nume Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux Policy Linux P	Attention: 5	Shawn Duffy										
Image: Im	Project Name: F Project No.: N P.O. No.: A	PG&E Topock Project 4A 4A										
Jabla Sample II, pH FA 180, pH FA 380, pH				Ā	<u>nalytical</u>	Results \$	<u>Summary</u>					
Mits Immos/m Mits Immos/m Mit Mits Mits 5556571 SC-700H-WDR-061 12.00 7.80 4.000 MD <td><u>Lab I.D.</u></td> <td>Sample I.D.</td> <td>Sample Time</td> <td><mark>EPA 150.1</mark> pH</td> <td>EPA 120.1 EC</td> <td>EPA 160.1 TDS</td> <td>EPA 180.1 Turbidity</td> <td>EPA 218.6 Hexavalent</td> <td><mark>EPA 350.2</mark> Amnonia</td>	<u>Lab I.D.</u>	Sample I.D.	Sample Time	<mark>EPA 150.1</mark> pH	EPA 120.1 EC	EPA 160.1 TDS	EPA 180.1 Turbidity	EPA 218.6 Hexavalent	<mark>EPA 350.2</mark> Amnonia			
Lab L0. Sample L0. Sample L0. Sample L0. Sample L0. FA 300. FA 300. FA 300. FA 364. 956357.1 SC-700B-WDR-651 12.00 197 Mirrle as N Mirrle as N 956357.1 SC-700B-WDR-651 12.00 197 Mirrle as N Mirrle as N 956357.2 SC-7014WDR-651 12.44 0.0118 Mirrle as N Nr. Ion Demond (Below moning limi) 12.45 2.19 3.24 0.0118 Mg. Instant per limit. 12.45 2.19 3.24 0.0118 Mg. Instant per limit. 12.45 2.19 0.0118 Mg. Instant per limit. 12.45 2.19 0.0118 0.0018 Mg. Instant per limit. 12.45 2.19 0.0118 0.0018	955857-1 955857-2 955857-3	SC-700B-WDR-051 SC-100B-WDR-051 SC-701-WDR-051	12:00 11:45 12:45	Units 7.88 7.52 7.89	μmhos/cm 7420 10000 38700	mg/L 4030 4850 26400	NTU ND 0.129	nomum mg/L U D J U D J U D J	ng/1 dn DN DN			
95857-1 SC-700B-WDR-051 12:00 197 mg/L	<u>.0.1 de.l</u>	Sample I.D.	<u>Sample Time</u>	EPA 300.0 Fluoride	EPA 300.0 Sulfate	EPA 300.0 Nitrate as N	EPA 354.1 Nitrite as N					
ND: Nor Delacted (below reporting limit) mg/L. Mitigams per liter. Mote: The following "Significant Figures' rule has been applied to all results: Results below 0.01 ppm will have the (2) significant figures. Result above or equal to 0.01 ppm will have three (3) significant figures. Quality Control data will always have litere (3) significant figures.	955857-1 955857-2 955857-2	SC-700B-WDR-051 SC-100B-WDR-051 SC-701-WDR-051	12:00 11:45 12:45	mg/L 1.97 2.72 2.19	mg/L 471 682	mg/L 2.44 3.21	mg/L 0.0118 0.0270					
Note: The following "Significant Figures' rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	ND: Non Detect mg/L: Milfigrams (ed (below reporting limit) per liter.										
005	Note: The following the Results to Results to Results to Result at	ng "Significant Figures" rule has been below 0.010pm will have han (2) signif pove or equal to 0.01ppm will have th control data will always have three (3).	t applied to all results: Rand figures. ree (3) significant figures. significant figures.									
	005											
						\$/			14201 FRA1 (714) 730-	NIQLIN AVENUE - 6239 - FAX (71	TUSTIN, CALIFORNI 4] 730-6462 - www	A 92780-7008 Ctruesdail.com
------------------	---	--	-----------------------------------	-------------------------------	-------------------------------	------------------------------	-------------------------------	-------------------------------	--------------------------	-----------------------------------	--	--------------------------------
	Client: E2 C(155 G Oakla	onsulting En irand Ave. S ind, CA 9463	gineers, Inc. Juite 1000 12				ם ב	iboratory Ni ate Receive	o.: 955857 d' June 15	2006		
C.	Attention: Shaw roject Name: PG&E Project No.: NA P.O. No.: NA	n Duffy : Topack Prr	j ject				I			200		
				<u>Ana</u>	lytical	Result	s Sumi	mary				
METALS /	WALYSIS: Total M	letal Analyses	as Requested	_				1				
			Aluminum EPA 200.7	Antimony EPA 200.8	Arsenic EPA 200.8	Barium EPA 200.7	Beryllium EPA 200.8	Cadmium EPA 200.8	Chromium EPA 200.7	Cobait EPA 200.6	Copper EPA 200 8	Lead EDA 200 9
Lab I.D.	Date Sample ID	of Analysis: Time Coll.	06/21/06 mg/L	07/06/06 mg/L	07/06/06 mg/L	04/11/06 mg/L	07/06/06 mg/L	07/06/06 mg/L	06/27/06 ma/L	07/06/06 ma/f	07/06/06	07/06/06
955857-1	SC-700B-WDR-051	12:00	QN	₽	Q	9			, u		18	- Ru
955857-2	SC-100B-WDR-051	11:45	Q	₽	0.0079	QN			1.97	1	0.0050	
P-/02005	150-MDM-021	12:45	1	Q	0.0302	QN	QN	Q	₽	Q	0.3610	
			Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	2
Lab I.D.	Date Sample ID	of Analysis: Time Coll.	EPA 200.7 04/11/06 mg/L	EPA 245.1 07/07/06 mg/L	EPA 200.8 07/06/06 mg/L	EPA 200.7 04/1/06 ma/L	EPA 200.8 07/06/06 mo/L	EPA 200.8 07/06/06 mr/l	EPA 200.8 07/06/06	EPA 200.8 07/06/06 1	EPA 200.7 06/16/06	
955857-1	SC-700B-WDR-051	12:00	Q		0.0062	0.0218			1	- Ingur	n gur	
955857-2	SC-1008-WDR-051	11:45	Ð	1	0.0148	Q	I		1	 	ND ND	
6-/0900A	SC-/UI-WUK-051	12:45	1	9	0.0524	0.0348	0.0265	Ð	Q	0.0164	0.0207	
			Boron EBA 200.7	lron Ed 200 T								
D. D.	Date (Samnia ID	of Analysis:	06/16/06	04/11/06								
955857-1	SC-7008-WDR-051	12:00	1									
966857-2	SC-100B-WDR-051	11:45	1.36	2 2								
955857-3	SC-701-WDR-051	12:45	1	1								
<u>چ</u> 9006	vot detected, or b el ow firm	nit of detection										

and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Section 3.0

Final Reports

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Established 1931

Laboratory No.: 955857

Date: July 7, 2006 Collected: June 15, 2006 Received: June 15, 2006 Prep/ Analyzed: June 16, 2006 Analytical Batch: 06PH06M

Investigation:

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	Field I.D.	<u>Run Time</u>	<u>Units</u>	<u>MDL</u>	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	08:22	pH Units	0.0570	2.00	7.88
955857-2	SC-100B-WDR-051	08:25	pH Units	0.0570	2.00	7.52
955857-3	SC-701-WDR-051	08:28	pH Units	0.0570	2.00	7.89

QA/QC Summary

QC STD I	.D.	Laborato Number	r y r	Concentra	ition	Dupli Concen	cate tration	Di	fference (Units)	Acc	eptance limits	QC Within Control
Duplicat	e	955857-	3	7.89		7.8	9		0.00	+ 0.	100 Units	Yes
	QC Std I.D.	C Std I.D.	M Con	leasured icentration	The Conc	oretical entration	Differer (Units	nce 3)	Accepta Limit	nce 5	QC Withir Control	<u>י</u>
		LCS		7.01		7.00	0.01		<u>+</u> 0.100 (Jnits	Yes	
	1	LCS #1		7.02		7.00	0.02		<u>+</u> 0.100 (Jnits	Yes	
l		LCS #2		7.02		7.00	0.02		<u>+</u> 0.100 (Jnits	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Investigation:

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955857

Date: July 7, 2006 Collected: June 15, 2006 Received: June 15, 2006 Prep/ Analyzed: June 16, 2006 Analytical Batch: 06EC06J

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI 1.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	<u>RL</u>	Results
955857-1	SC-700B-WDR-051	µmhos/cm	EPA 120.1	10.0	20.0	7420
955857-2	SC-100B-WDR-051	µmhos/cm	EPA 120.1	10.0	20.0	10000
955857-3	SC-701-WDR-051	µmhos/cm	EPA 120.1	10.0	20.0	38700

QA/QC Summary

QC S I.D	TD	Laborato Number	ry r	Concentrati	on	Duplica Concentra	ite ation	C	Relative Percent Difference	Aco	eptance limits	QC Within Control
Duplic	cate	955857-	3	38700		38800)		0.26%		<u><</u> 10%	Yes
	Q	C Std I.D.	Q	Measured Concentration	۲ Co	heoretical	Perce Recov	nt ⊪ry	Acceptar Limits	1C 0	QC With Control	in
		CCS		672		706	95.2%	6	90% - 11	0%	Yes	
		CVS#1		944		1000	94.49	6	90% - 11	0%	Yes	
		LCS		674		706	95.5%	%	6 90% - 11(Yes	
I		LCSD		674		706	95.5%	/6	90% - 11	0%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857 Date: July 7, 2006

Collected: June 15, 2006

Received: June 15, 2006

Prep/ Analyzed: June 22, 2006

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Analytical Batch: 06TDS06G

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	RL	<u>Results</u>
955857-1	SC-700B-WDR-051	mg/L	EPA 160.1	250	4030
955857-2	SC-100B-WDR-051	mg/L	EPA 160.1	312	4850
955857-3	SC-701-WDR-051	mg/L	EPA 160.1	1250	26400

QA/QC Summary

QC STD I	. D.	Laborator Number	У	Concentra	tion	Duplic Concent	ate ration	F Di	Percent fference	Acc I	eptance imits	QC Within Control
Duplicat	e	955857-1		4030		414	0		1.35%		<u><</u> 5%	Yes
	C	C Std I.D.	Co	Measured incentration	The Conc	eoretical entration	Perce Recov	nt əry	Accepta Limit	ince s	QC Withi Control	n
		LCS 1		494		500	98.89	6	9 0% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857

Collected: June 15, 2006

Received: June 15, 2006

Prep/ Analyzed: June 16, 2006 Analytical Batch: 06TUC06M

Date: July 7, 2006

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA

P.O. No.: NA

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	NTU	1.00	0.100	ND
955857-2	SC-100B-WDR-051	11:45	NTU	1.00	0.100	0.129

QA/QC Summary

QC STD I	.D. Laborate Numbe	ory er	Concentra	tion	Duplic Concent	cate tration	F I D	Relative Percent Ifference	Acc	eptance Ilmits	QC Within Control
Duplicat	e 955841	4	0.125		0.12	20		4.08%		<u><</u> 20%	Yes
	QC Std I.D.	Ca	Measured oncentration	The Conc	oretical centration	Perce Recov	nt ery	Accepta Limit	ince s	QC Withi Control	n
	LĊŚ		7.85		8.00	98,1%	<u>/o</u>	90% - 1	10%	Yes	
	LCS		7.90		8.00	98.89	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected).

DE Dilution Eactor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955857 Date: July 7, 2006 Collected: June 15, 2006 Received: June 15, 2006 Prep/ Analyzed: June 16, 2006 Analytical Batch: 06CrH06Q

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Prep. Batch: 06CrH06Q

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Run Time	<u>Units</u>	DF	<u>_RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	15:33	mg/L	10.0	0.0020	ND J
955857-2	SC-100B-WDR-051	11:45	14:05	mg/L	100	0.0200	1.95 J
955857-3	SC-701-WDR-051	12:45	14:43	mg/L	10.0	0.0020	ND J

QA/QC Summary

	QC STD) I.D.		Labor Num	atory ber	Sample Concentra	tion	Dup Conce	lica ntra	te tion	R P Dif	elative Percent Iference	Acc. li	eptance imits		2C Within Control	
	Duplic	ate		9558	57-2	1,95		1.	.95		(0.00%	<	20%		Yęş	
QC Std I.D.	Lab Number	Con unsp san	ic.of olked ople	Dilut	on Factor	Added Spike Conc.	Ar	MS nount	Me Co S	asured onc. of piked ample	T	heoretical Conc. of spiked sample	R.	MS% covery	A	cceptance limits	QC Within Control
MS	955857-1	0.0	00		1.06	0.00100	0.	00106	0	.00117		0.00106	1	10%		90-110%	No
MS	955857-1	0.0	00		10.0	0.00100	0	,0100	с С	0.0101		0.0100		01%		90-110%	Yes
MS	955857-2	1.9	95		100	0.0200		2.00		3.89	1	3.95	9	7.0%		90-110%	Yes
MŚ	955857-3	0.	00		10.0	0.00100	0	.0100	(0.0106		0.0100	-	06%		<u>90-110%</u>	Yes
		٩	C Std	I.D.	Mea Conce	sured intration	TI Coi	heoretical ncentratio	'n	Percer Recove	nt Hry	Accepta Limite	nce S	QC Witi Contro	nin ol		
			MRC	cs	0.0	0498		0.00500		99.6%	6	90% - 11	0 <u>%</u>	Yes			
			MRCV	5#1	0.0	0103		0.0100		103%	u .	95% - 10)5%	Yes			
		N	MRCV	s#2	0.	0103		0.0100		103%	, P	95% - 10)5%	Yes			
		Ň	MRCV	\$#3	0.	0102		0.0100		102%	- a	95% - 10)5%	Yes			
		Ň	MRCV	5#4	0.	0101		0.0100		101%	,	95% - 10)5%	Yeş			
			MRCV	S#5	0.0	0961	ļ	0.0100		96.1%	6	95% - 10)5%	Yes			
			MRCV	S#6	0.0	0961		0.0100		96.1%	6	95% - 10)5%	Yes			
			LCS	3	0.0	0511		0.00500		102%	4	90% - 1	10%	Yes			

ND: Below the reporting limit (Not Detected).

ĻÇŞD

0.00508

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

0.00500

012

90% - 110%

102%

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857

Collected: June 15, 2006

Received: June 15, 2006

Prep/ Analyzed: June 16, 2006 Analytical Batch: 06NH306C

Date: July 7, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Investigation:

Ammonia as N by Method EPA 350.2

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	Sample Time	Method	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	EPA 350.2	mg/L	1.00	0.500	ND
955857-2	SC-100B-WDR-051	11:45	EPA 350.2	mg/L	1.00	0.500	ND

QA/	QC	Summary

							-									
	QC ST	D I.D.	L	aborato Numbe	rry r	Concentra	ation	Du Conc	plicate entrat	e ion	Relative Percent Difference	Acc I	eptance imits	QC Wi Cont	thin rol	
	Duplic	ate	ç	955857-	2	ND			ND		0.0%	<u><</u>	20%	Yes	5	
QC Std I.D.	Lab Number	Cor uns sar	nc.of piked mple	Dilution Factor		Added Spike Conc.	MS Amount		Measured Conc. of spiked sample		Theoretica Conc. of spiked sample	Re	MS% covery	Accept limit	ance ts	QC Within Control
MS	955857-1	0	.00	1.	00	10.0		10.0		9.90	10.0	1 6	9.0%	75-12	.5%	Yes
			QC Std I.D. Mea Conce		asured Theoretic centration Concentral		neoretica ncentrati	al Ion I	Percen Recover	it Accepta ry Limit	INCO S	QC With Contro	iln 1			
			LCS	3		9.90		10.0		99.0%	90% - 1	10%	Yes			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE

Established 1931

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Laboratory No.: 955857

Date: July 7, 2006 Collected: June 15, 2006 Received: June 15, 2006 Prep/ Analyzed: June 16, 2006 Analytical Batch: 06AN06O

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	17:59	mg/L	1.00	0.200	1.97
955857-2	SC-100B-WDR-051	11:45	18:10	mg/L	1.00	0.200	2,72
955857-3	SC-701-WDR-051	12:45	20:49	mg/L	5.00	1.00	2.19

QA/QC	Summary
-------	---------

	QC STO) I.D.	Li	aborat Numb	tory er	Concentra	ition	Dur Conce	pilcat entra	te tion	Re Pe Diff	elative ercent ference	Acc I	eptance imits	QC Within Control	
	Duplic	ate	ģ	65857	7-1	1,97		1	1.95		1	.02%	4	20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample		Dil Fa	ution ictor	Added Spike Conc.	ded MS ike Amou nc.		Me Co Si	asured onc. of piked ample	T	heoretical Conc. of spiked sample	Re	MŠ% covery	Acceptance limits	QC Within Control
MŚ	955857-1	1.	1.97 1.0		.00	0 4.00		4.00		5.85		5.97	ç	7.0%	75-125%	Yes
		G	C Std	I.D.	Me Cone	easured	Th Cor	neoretica ncentratic	l on	Percen Recove:	t ry	Acceptar Limits	ice	QC Witi Contro	nin St	
			MRC	;s		4.16		4.00		104%		90% - 110	2%	Yes		
		Ν	MRCV	5#1		3.19		3.00		106%		90% - 110	0%	Yes		
		<u>۱</u>	MRCV:	S#2		3.18		3.00		106%		<u>90% - 11</u>	0%	Yes		
			LCS	5		4.14		4.00		104%		90% - 110	0%	Yes		
			LCS	D		4.17		4.00		104%		90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Client: E2 Consulting Engineers, Inc.

Sample: Three (3) Groundwater Samples

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

155 Grand Ave. Suite 1000

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857 Date: July 7, 2006 Collected: June 15, 2006 Received: June 15, 2006 Prep/ Analyzed: June 16, 2006 Analytical Batch: 06AN06O

Investigation:

Project No.: NA

P.O. No.: NA

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	18:38	mg/L	25.0	12.5	471
955857-2	SC-100B-WDR-051	11:45	18:49	mg/L	50.0	25.0	682

QA/QC Summary

	QC STD) I.D.	Li I	aborat Numb	tory er 7-2	Concentra 682	ation	Dup Conce	olica ontra	te ation	Re Pe Diff	elative ercent ference	Acc	eptance îmits : 20%	(2C Within Control	
QC Std I.D.	Lab Number	er Conc.of unspiked sample		Dili Fa	ution	Added Spike Conc.	MS Amount		Me Cr S	asured onc. of piked ample	т; (heoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits		QC Within Control
MS	955857-2	6	82	5	0.0	20.0		1000		1690		1682		101%		75-125%	Yes
		a	C Std	I.D.	Me Cone	asured centration	TI Cor	heoretical ncentratic	ən	Percent Recover	t y	Acceptan Limits	CĐ	QC Wit Contr	hin ol		
			MRCO	⊳s		20.2		20.0		101%		90% - 110)%	Yes			
		N	/RCV	S#1		15.2		15.0		101%		90% - 110)%	Yes			
			ARCV	S#2		15.3		15.0		102%		90% - 110)%	Yes			
		Ĺ	LCS	5		19.7		20.0		98.5%		90% - 110)%	Yes	_		
			LCSI	Ď		19.9		20.0		99.5%		90% - 110)%	Yes			

ND: Below the reporting limit (Not Delected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

 ~ -015

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Éstablished 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857

Collected: June 15, 2006

Received: June 15, 2006

Prep/ Analyzed: June 16, 2006 Analytical Batch: 06AN06O

Date: July 7, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA

P.O. No.: NA

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	17:59	mg/L	1.00	0.200	2.44
955857-2	SC-100B-WDR-051	11:45	18:10	mg/L	1.00	0.200	3.21

QA/QC Summary

	QC STD	I.D.	Li	aborat Numb	iory er	Concentration		Duplicate Concentratio		ate ation	R P Dif	telative Percent fference	Acc I	eptance imits	QC Within Control	
	Duplica	te	9	955857	7-1	2.44			2,44		(0.00%	۲	20%	Yes	
QC Std I.D.	Lab Number	Coi uns sar	nc.of piked npie	Dili Fa	ution ctor	Added Spike Conc.	Ar	MS mount	Mi C	easured Conc. of Spiked Sample	T	heoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits	QC WithIn Control
MS	955857-1	2	.44	1	.00	4.00		4.00		6.38	Ι	6.44	.9	8.5%	75-125%	Yes
		6	QC Std	i.D.	Me Cone	asured centration	TI Cor	heoretica ncentrati	l on	Percer Recove	nt ory	Acceptar Limits	nce	QC With Contro	ln I	
			MRCO	cs		4.02		4.00		101%	,	90% - 11	0%	Yes		
			MRCV	5#1		3.03		3.00		101%		90% - 11	0%	Yes		
			MRCV	S#2_		3.03		3.00		101%	, D	90% - 11	0%	Yes		
			LCS	3		4.02		4.00		101%	ò	90% - 11	0%	Yes		
			LCS	D		4.04		4.00		101%	¢.	90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Oilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857

Collected: June 15, 2006

Received: June 15, 2006 Prep/ Analyzed: June 16, 2006

Analytical Batch: 06NO206F

Date: July 7, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Nitrite as N by Method EPA 354.1

Analytical Results for Nitrite as N

TLI I.D.	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
955857-1	SC-700B-WDR-051	12:00	14:58	mg/L	1.00	0.0050	0.0118
955857-2	\$C-1008-WDR-051	11:45	15:02	mg/L	1.00	0.0050	0.0270

							1.96	<u>o ou</u>		inan y						
	QC STD	I.D. 1	i.	abora Numi	itory ber	Concentra	tion	Du Conce	plica entra	ite ation	Relative Percent Difference	Acc I	eptance imits	QC C	Within Control	
	Duplic	ate		95585	i7-1	0.0118	\$	0.	011	5	2.58%	5	20%		Yes	
QC Std 1.D.	Lab Cor Number san 955813-10 0.0		nc.of biked nple	of ed Factor		Added Spike Conc.		MS Amount		easured onc. of spiked sample	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limits		QC Within Control
MS	955813-10	0.0	126		1.00	0.100	C	.100		0.114	0.113		101%	7	5-125%	Yes
		G	C Std	I.D.	Mea Conce	asured entration	Tł Cor	neoretica	l on	Percen Recover	t Accepta ry Limit	nce s	QC With Contro	in sl		
			MRCO	S	0.	0935		0.0900		104%	90% - 11	0%	Yes			
			MRCV:	S#1	0.	0921		0.100		92.1%	90% - 11	0%	Yes			
			MRCV:	S#2	0.	.0921		0.100		92.1%	90% - 1	10%	Yes			
			LCS	3	0	.191		0.180		106%	90% - 1	10%	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Investigation:

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories. 017

OA/OC Summany

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955857

Reported: July 7, 2006 Collected: June 15, 2006 Received: June 15, 2006 Analyzed: June 16 - July 7, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Samples: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: NA P.O. No.; NA

Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	\$C-7008-WDR-051	Time Col	lected:	12:00		LAB ID;	955857-1	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date	Time Analyzed
Aluminum	EPA 200.7	ND	1.04	mg/L	0.0520	062106C	06/21/06	19:12
Antimony	EPA 200.8	ND	2.08	mg/L	0.0030	070606A	07/06/06	15:10
Arsenic	EPA 200.8	ND	2.08		0.0050	070606A	07/06/06	15:10
Barium	EPA 200.7	ND	1.04	mg/L	0.300	061606B	06/16/06	15:16
Chromium	EPA 200.7	ND	1.04		0.0010	062706a	06/27/06	09:40
Copper	EPA 200.8	0.0713	2.08	mg/L	0.0100	070606A	07/06/06	15:10
Lead	EPA 200.8	ND	2.08	mg/L	0.0020	070606A	07/06/06	15:10
Manganese	EPA 200.7	ND	1.04	mg/L	0.500	061606B	06/16/06	15:16
Molybdenum	EPA 200.8	0.0062	2.08	mg/L	0.0050	070606A	07/06/06	15:10
Nickel	EPA 200.7	0.0218	1.04	mg/L	0.0200	0616068	06/16/06	15:16
Zinc	EPA 200.7	0.0232	1.04	mg/L	0.0200	061606B	06/16/06	15:16
Boron	EPA 200.7	1,10	1.04	mg/L	0.200	061606B	06/16/06	15:16
Iron	EPA 200.7	ND	1.04	mg/L	0.300	061606B	06/16/06	15:16

SAMPLE ID:	SC-100B-WDR-051	Time Co	llected:	11:45		LAB ID:	955857-2	
Parameter	M - 44 - 4	Reported					Date	Time
- 014110(01	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.7	<u> </u>	1.04	mg/L	0.0520	062106C	06/21/06	19:16
Antimony	EPA 200.8	ND	2.08	mg/L	0.0030	070606A	07/06/06	15:16
Arsenic	EPA 200.8	0.0079	2.08	mg/L	0.0050	070606A	07/06/06	15:16
Barium	EPA 200.7	NĎ	1.04	mg/L	0.300	061606B	06/16/06	15:20
Chromium	EPA 200.7	1.97	1.04	mg/L	0.0104	061606B	06/16/06	15:20
Copper	EPA 200.8	0.0950	2.08	mg/L	0.0100	070606A	07/06/06	15:16
Lead	EPA 200.8	ND	2.08	mg/L	0.0020	070606A	07/06/06	15:16
Manganese	EPA 200.7	NĎ	1.04	mg/L	0.500	061606B	06/16/06	15:20
Molyboenum	EPA 200.8	0.0148	2.08	mg/L	0.0050	070606A	07/06/06	15:16
Nickel	EPA 200.7	ND	1.04	mg/L	0.0200	061606B	06/16/06	15:20
Zinc	EPA 200.7	ND	1.04	mg/L	0.0200	0616068	06/16/06	15:20
Boron	EPA 200.7	1.36	1.04	mg/L	0.200	061606B	06/16/06	15:20
Iron	EPA 200.7	ND	1.04	mg/L	0.300	061606B	06/16/06	15:20

Report Continued

SAMPLE ID:	SC-701-WDR-051	Time Co	llected:	12:45		LAB ID:	955857-3	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch_	Analyzed	Analyzed
Antimony	EPA 200.8	ND	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Arsenic	EPA 200.8	0.0302	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Barium	EPA 200.7	ND	1.04	mg/L	0.300	0616068	06/16/06	15:33
Beryllium	ÉPA 200.8	ND	10.4	mg/L	0.0052	070606A	07/06/06	15:21
Cadmium	EPA 200.8	NĎ	10.4	mg/L	0.0052	070606A	07/06/06	15:21
Chromium	EPA 200.7	ND	1.04	mg/L	0.0010	062706A	06/27/06	09:53
Cobalt	EPA 200.8	NØ	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Copper	EPA 200.8	0.361	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Lead	EPA 200.8	ND	10.4	mg/L	0.0052	070606A	07/06/06	15:21
Mercury	EPA 245.1	ND	1.00	mg/L	0.00020	07Hg068	07/07/06	NA
Molybdenum	EPA 200.8	0.0524	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Nickel	EPA 200.7	0.0348	1.04	mg/L	0.0200	061606B	06/16/06	15:33
Selenium	EPA 200.8	0.0265	10.4	mg/L	0.0208	070606A	07/06/06	15:21
Silver	EPA 200.8	ND	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Thallium	EPA 200.8	ND	10.4	mg/L	0.0052	070606A	07/06/06	15:21
Vanadium	ÉPA 200.8	0.0164	10.4	mg/L	0.0104	070606A	07/06/06	15:21
Zinc	EPA 200.7	0.0207	1.04	mg/L	0.0200	061606B	06/16/06	15:33

ND: Not detected or below limit of detection. DF: Dilution factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

m N

Mona Nassimi, Manager Analytical Services

	DAIL LAB(ESTING, FORENSIC S	DRATO CIENCE, AND E	RIES, NVIRONMENT.	NC. ALANALYSES		<u></u>					Established 193		
							∮ ∕		14201 [7]4]	FRAMKLIN AVE 730-6239 - F	NUE - TUSTIN, C AX (714) 730-6	ALIFORNIA 92 462 - www.true	780-7008 Sdall .com
	Client: E2 Co 155 G Oaklay	insulting Er irand Ave. (nd, CA 946	igineers, l Suite 1000 112	<u>و</u>									
₹ v	ttention: Shaw amples: Three	n Duffy (3) Ground	twater Sal	mples					<u> </u>	aboratory eported:	No.: 95585 Uly 7, 2006		
Projec Pro	st Name: PG&E ject No.: NA P.O. No.: NA	Topock P	roject						U K	ollected: . (eceived: .	lune 15, 200 lune 15, 200	φφ	
				Quality	Contro	//Quality	Assurar	ice Rep	ort				
			DIGE	STED BLANK		PC				LFB			
						Observed	TRUE	*	Control	Observed	TRUE	*	Control
Parameter	Method	Batch	Units	LRB	RL	Vatue	Value	Rec	Limits	Value	Value	Rec	Limits %
Mercurv	EPA 245.1	07Hq06B	mg/L	QN	0.00020	0.00049	0:00050	98.0%	95-105%	0.00048	0.00050	36.0%	85-115%
(incolored		2		DRY CONTROL	SAMPLES		SA	MPLE DUPLI	CATES				
													Precision
Parameter	Method	Units	SOT	rcs	*	Control	••	SAMPLE	SAMPLE	DUP			Control
		ı	obs.	Theo.	Rec.	LImits		0	RESULT	RESULT	ž	5	Limits %
Mercury	EPA 245.1	mg/L	0.00050	0:00050	100%	90-110%		55857-3	Q	Q	0:0	0%	<20
													Accuracy
MAI KIA JEINE						Sample		Spike	Total Amt.	Theo.	SW	*	Control
Sample ID P.	araméter			Method	Units	Result	DF	Level	of Spike	Value	Obs.	Rec.	Limits %
955857-3 M	ercury			EPA 245.1	цĝ	00:0	1.00	0:00050	0.00050	0.00050	0.00059	118%	75-125%

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Report Continued

				BLANK		MRCCS				MRCVS			
1			ĩ			Observed	TRUE	*	Control	Observed	TRUE	*	Control
Parameter	Method	Batch	Units	Blank	RL	Value	Value	Rec	Limits	Value	Value	Rec	Limits %
Aluminum	EPA 200.7	062106C	mg/L	QN	0.0500	5.19	5.00	104%	95-105%	5.29	5.00	106%	90-110%
Antimony	EPA 200.8	070606A	тgп	QN	0:0030	0.0506	0.0500	101%	95-105%	0.0493	0.0500	98.6%	90-110%
Arsenic	EPA 200.8	070606A	աք/լ	QN	0.0050	0.0503	0.0500	101%	95-105%	0.0493	0.0500	98.6%	90-110%
Barium	EPA 200.7	061606B	шĝŗ	QN	0.300	4.88	5.00	97.6%	95-105%	4.66	2:00	93.2%	90-110%
Beryllium	EPA 200.8	070606A	ngAL	QN	0.0010	0.0503	0.0500	101%	95-105%	0.0476	0.0500	95.2%	90-110%
Cadmium	EPA 200.8	070606A	mg/L	Q	0.0020	0.0510	0.0500	102%	95-105%	0.0485	0.0500	97.0%	90-110%
Chromium	EPA 200.7	061606B	mg/L	QN	0.0010	0.0104	0.0100	104%	95-105%	0.0100	0.0100	100%	90-110%
Chromium	EPA 200.7	061606B	ngľt	ND	0.0050	4.97	5.00	99.4 %	95-105%	4.96	5.00	99.2%	90-110%
Cobalt	EPA 200.8	070606A	тgʻ	Q	0.0050	0.0499	0.0500	99.8%	95-105%	0.0498	0.0500	9 9 .6%	90-110%
Copper	EPA 200.8	070606A	mg/L	Q	0.0100	0.0506	0.0500	101%	95-105%	0.0519	0.0500	104%	90-110%
Lead	EPA 200.8	070606A	ացՂ	QN	0.0020	0.0502	0.0500	100%	95-105%	0.0464	0.0500	92.8%	90-110%
Manganese	EPA 200.7	061606B	mg/L	QN	0.500	4.86	5.00	97.2%	95-105%	4.84	5.00	96.8%	90-110%
Molybdenum	EPA 200.8	070606A	mgŀĿ	Q	0.0050	0.0509	0.0500	102%	95-105%	0.0484	0.0500	96.8%	90-110%
Nickel	EPA 200.7	061606B	mg'L	QN	0.0200	4.89	5.00	97.8%	95-105%	4.78	5.00	95.6%	90-110%
Selenium	EPA 200.8	070606A	mgrl	QN	0:0050	0.0486	0.0500	97.2%	95-105%	0.0479	0.0500	95.8%	90-110%
Silver	EPA 200.8	070606A	mg/L	QN	0:0050	0.0507	0.0500	101%	95-105%	0.0483	0.0500	96.6%	90-110%
Thallium	EPA 200.8	070606A	mg/L	QN	0.0010	0.0500	0.0500	100%	95-105%	0.0465	0.0500	93.0%	90-110%
Vanadium	EPA 200.8	070606A	mgſ	Q	0.0050	0.0498	0.0500	99.6%	95-105%	0.0482	0.0500	96.4%	S0-110%
Zinc	EPA 200.7	061606B	тg/Г	Q	0.0200	5.08	5.00	102%	95-105%	4.79	5.00	95.8%	90-110%
Boron	EPA 200.7	061606B	<u>mg/L</u>	QN	0.200	4.99	5.00	100%	95-105%	4.76	5.00	95.2%	90-110%
lron	EPA 200.7	061606B	mg/L	Q	0.300	4.89	5.00	97.8%	95-105%	4.93	5.00	98.6%	90-110%

021

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

, ۱

. *

۰.

Report Continued

			LABORATO	RY CONTROL	SAMPLES		SAMPLE DUPL	ICATES			
Parameter	Mathad	l inite	عر ا	2	÷	1000					Precision
			2	5	¢	CONTROL	SAMPLE	SAMPLE	DUP	*	Control
			Obs.	Theo.	Rec.	Limits	₽	RESULT	RESULT	RPD	Lfmits %
Aluminum	EPA 200.7	mg/L	4.86	5.00	97.2%	90-110%	955857-3	QN	Ð	0.00%	5
Antimony	EPA 200.8	mg/L	0.0487	0.0500	97.4%	90-110%	955857-3	2	QN	0.00%	5
Arsenic	EPA 200.8	mg/L	0.0494	0.0500	98.8%	90-110%	955857-3	0.0302	0.0282	6.85%	00
Barium	EPA 200.7	ացլ	4.61	5.00	92.2%	90-110%	955857-2	Q	Q	0.00%	6
Beryttum	EPA 200.8	ացլ	0.0504	0.0500	101%	90-110%	955857-3	QN	Q	0.00%	Ş
Cadmium	EPA 200.8	ոցվե	0.0501	0.0500	100%	90-110%	955857-3	Q	Q	0.00%	5
Chromium	EPA 200.7	mg/L	0.00985	0.0100	98.5%	90-110%	955857-1	Ð	P	500%	Ş
Chromium	EPA 200.7	ացվե	5.04	5.00	101%	90-110%	955857-2	1.97	1.86	5.74%	5
Cobalt	EPA 200.8	ոցլ	0.0488	0.0500	97.6%	90-110%	955857-3	QN	Q	0.00%	1 1 1
Copper	EPA 200.8	щ <mark>о</mark> г	0.0498	0.0500	39.6%	90-110%	955857-3	0.361	0.363	0.55%	
Lead	EPA 200.8	mg/L	0.0490	0.0500	98.0%	90-110%	955857-3	Q	QN	0.00%	200
Manganese	EPA 200.7	mg/L	4.77	5.00	95.4%	90-110%	955857-2	9	Ð	0.00%	A22
Molybdenum	EPA 200.8	mg/L	0.0483	0.0500	96.6%	90-110%	955857-3	0.0524	0.0534	1.89%	3 7
Nickel	EPA 200.7	ngl	4.53	5.00	90.6%	90-110%	955857-2	Q	Q	0.00%	
Selenium	EPA 200.8	ացչ	0.0483	0.0500	96.6%	90-110%	955857-3	0.0265	0.0282	6.22%	16
Silver	EPA 200.8	mg/L	0.0497	0.0500	99.4%	90-110%	955857-3	QN	Ð	0.00%	
Thallium	EPA 200.8	mg/L	0.0491	0.0500	98.2%	90-110%	955857-3	Q	QN	0.00%	5
Vanadium	EPA 200.8	ոցվե	0.0479	0.0500	95.8%	90-110%	955857-3	0.0164	0.0169	3.00%	โ
Zinc	EPA 200.7	ացլ	4.99	5.00	%8.66	90-110%	955857-2	Q	Q	0.00%	ŝ
Boron	EPA 200.7	ացչէ	4.94	5.00	98.8%	90-110%	955857-2	1.36	1.32	2.99%	Š
Iron	EPA 200.7	mg/L	5.07	5.00	101%	90-110%	955857-2	QN	QN	0.00%	Î 5
											Ì

LABORATORY CONTROL SAMPLES

022

Report Continued

Accuracy

MATRIX SPIKE

				Sample		Spike	Total Amt.	Theo.	SW	×	Control
Sample ID	Parameter	Method	Units	Result	Ŀ	Levei	of Spike	Value	Obs.	Rec.	Limits %
955857-3	Auminum	EPA 200.7	mg/L	0.00	1.04	3.00	3.12	3.12	3.19	102%	70-130%
955857-3	Antimony	EPA 200.8	-1 ⁰ ա	0.00	10.4	0.0500	0.520	0.520	0.543	104%	70-130%
955857-3	Arsenic	EPA 200.8	mg/L	0.0302	10.4	0.0500	0.520	0.550	0.551	100%	70-130%
955857-2	Banium	EPA 200.7	ոցՂ	0.00	1.04	3.00	3.12	3.12	2.78	89.1%	70-130%
955857-3	Beryllium	EPA 200.8	mg/L	0:00	10.4	0.0500	0.520	0.520	0.600	115%	70-130%
955857-3	Cadmium	EPA 200.8	mg/L	0.0	10.4	0.0500	0.520	0.520	0.484	93.1%	70-130%
955857-1	Chromium	EPA 200.7	mg/L	0.00	1.04	0.0100	0.0104	0.0104	0.0100	96.2%	70-130%
955857-2	Chromium	EPA 200.7	ացո՞ւ	1.97	1.04	3.00	3.12	5.09	4.76	89.4%	70-130%
955857-3	Cobalt	EPA 200.8	mg/L	0.00	10.4	0.0500	0.520	0.520	0.472	90.8%	70-130%
955857-3	Copper	EPA 200.8	ղծա	0.361	10.4	0.0500	0.520	0.861	0.795	83.5%	70-130%
955857-3	Lead	EPA 200.8	ոց Լ	0.0	10.4	0.0500	0.520	0.520	0.442	85.0%	70-130%
955857-2	Manganese	EPA 200.7	mg/L	0.00	1.04	3.00	3.12	3.12	2,84	91.0%	70-130%
955857-3	Molybdenum	EPA 200.8	mg/L	0.0524	10.4	0.0500	0.520	0.572	0.609	107%	70-130%
955857-2	Nickel	EPA 200.7	mgAL	0:00	1.04	3.00	3.12	3.12	2.63	84.3%	70-130%
955857-3	Selenium	EPA 200.8	mg/L	0.0265	10.4	0.0500	0.520	0.547	0.515	93.9%	70-130%
955857-3	Silver	EPA 200.8	шgЛ	00:0	10.4	0.0500	0.520	0.520	0.470	90.4%	70-130%
955857-3	Thallium	EPA 200.8	щg/L	0.00	10.4	0.0500	0.520	0.520	0.424	81.5%	70-130%
955857-3	Vanadium	EPA 200.8	mgrľ	0.0164	10.4	0.0500	0.520	0.536	0.514	95.7%	70-130%
955857-2	Zinc	EPA 200.7	mg/L	0:00	1.04	3.00	3.12	3.12	2.87	92.0%	70-130%
955857-2	Boron	EPA 200.7	mg/L	1.36	1.04	3.00	3.12	4.48	4.26	92.9%	70-130%
955857-2	Iron	EPA 200.7	mg/L	0:00	1.04	3.00	3.12	3.12	2.85	91.3%	70-130%

ND: Not detected, or below limit of detection.

DF: Dilution Factor

TRUESDAIL LABORATORIES, INC. Respectfully submitted,

Mona Nassimi, Manager Kr

Analytical Services

1×00/Z00121

CHER HILL

08/12/2008 TO:32 LVY 2205427824

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

T

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 7, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Avc., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: REVISED CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-052 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 956046

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-052 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 21, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the dilution of the Hexavalent Chromium sample, the result is below the detection limit of 0.001 mg/L but the result of 0.00043 mg/L is reported in the QC to pass the matrix spike.

The pH was not recorded on the chain of custody during log-in. After re-checking the pH on the Total Chromium sample it was determined that the pH was 2 and that sample had been preserved in the field.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDOIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K. R. P. 922

K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 956046

Collected: June 21, 2006

Received: June 21, 2006

Date: July 6, 2006

1

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA

ANALYST LIST

	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Alex Hemandez
EPA 150.1	рН	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Tina Acquiat
EPA 180.1	Turbidity	Gautam Savani
EPA 200.7	Total Chromium	Victoria Than-Thiem
EPA 218.6	Hexavalent Chromium	Jorge Arriaga

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA Prep. Batch: 062706A REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 956046

Date: July 6, 2006 Collected: June 21, 2006 Received: June 21, 2006 Prep/ Analyzed: June 27, 2006 Analytical Batch: 062706A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

Analytical Results Total Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	<u>Results</u>
956046	SC-700B-WDR-052	mg/L	EPA 200.7	9:28	1.04	0.0010	ND

QA/QC Summary

	QC STC) 1. D.	La N	borato lumbe	ry r	Concentra	tion	Duj Conce	olic: ontr	ate ation	R F Di	telative Percent fference	Acc I	eptance imit s	QC Within Control	
	Duplic	ate	<u> </u>	56046		ND			ND			0.00%		20%	Yes	
QC Std I.D.	Lab Number	Cor uns sar	nc.of piked nple	Dilut Fac	tion tor	Added Spike Conc.	A	M\$ nount	M C	easured Conc. of spiked sample	1	Theoretical Conc. of spiked sample	Re	MS% covery	Acceptance limite	QC Within Control
MŞ	956046	0	00	1.()4	0.0100	0	.0104		0.0106	T	0.0104		102%	75 - 125%	Yes
			C Std	I.D.	N Cor	leasured ncentration	T Co	heoretica ncentratio	l on	Perce Recove	nt ery	Acceptar Limits	108	QC With Contro	nin pi	
			MRC	cs		0.0104		0.0100		104%	ሪ	90% - 11	0%	Yes		
			MRCV	\$#1		0.0100		0.0100		100%	6	90% - 11	0%	Yes		
			IC\$			0.0101		0.0100		101%	6	80% - 12	0%	Yes		
		- I -	LCS	5 I		0.00985		0.0100		98.59	6	90% - 11	0%	Yes		

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 956046

Date: July 6, 2006 Collected: June 21, 2006 Received: June 21, 2006 Prep/ Analyzed: June 22, 2006 Analytical Batch: 06CrH06V

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
956046	SC-700B-WDR-052	13:00	07:07	mg/L	5.00	0.0010	NĎ

QA/QC Summary

							-	<u> </u>									
	QC ST) I.D.	Lat N	orator umber	y	Concentrati	on	Du Conc	plic enti	ate ration	R P Di	lelative Percent fference	Acc	eptance imits		QC Within Control	
	Duplic	ate	9	56046		ND			ND			0.00%	3	20%		Yes	
QC Std I.D.	Lab Number	Cor uns san	nc.of piked nple	Diluti Facto	on or	Added Spike Conc.	Ап	MS nount	M C	easured Conc. of spiked sample	ſ	heoretical Conc. of spiked sample	Re	MS% covery	Ac	ceptance limits	QC Within Control
MS	956046	0.0	0043	5.00)	0.00100	0.0	00500	(0.00554		0.00543		102%		90-110%	Yes
		c	IC Std	I.D.	C	Measured oncentration	Th Con	ieoretica icentrati	al on	Percer Recove	nt my	Acceptan Limits	C O	QC With Contro	hin ol		
			MRC	CS		0.00491		0.00500		98.2%	÷	90% - 110	0%	Yes			
			MRCV	S#1		0.00997		0.0100		99.7%	,	95% - 105	5%	Yes			
			LCS	5		0.00500		0.00500		100%	,	90% - 110)%	Yes			
			LCS	D		0.00497		0.00500		99.4%	ζ	90% - 110	1%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Fector

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager astrum

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Laboratory No.: 956046

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Established 1931

Date: July 6, 2006 Collected: June 21, 2006 Received: June 21, 2006 Prep/ Analyzed: June 22, 2006 Analytical Batch: 06TUC06S

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
956046	SC-700B-WDR-052	13:00	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	.D. Laborato Numbe	ry Concentr	ation	Dupl Concer	icate ntration	F F Di	telative Percent fference	Aco	ceptance limits	QC WithIn Control		
Duplicat	e 956040-	17 0.145	5	0.1	150		3.39%		<u><</u> 20%	Yes		
	QC Std I.D.	Measured Concentration	The Conc	oretical entration	Percei Recove	nt ery	Accepta Limit	ance ts	QC Within Control	ו		
	LCS	8.02		8.00	100%	100% 90% - 1 100% 90% - 1 99,8% 90% - 1		10% Yes				
	LCS	8.03		8.00	100%			90% - 1		10%	Yes	
	LCS	7.98		8,00	99.8%			10%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC. Mun

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA

P.O. No.: NA

Investigation:

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 956046

Date: July 6, 2006 Collected: June 21, 2006 Received: June 21, 2006 Prep/ Analyzed: June 22, 2006 Analytical Batch: 06PH06R

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	MDL	<u>RL</u>	<u>Results</u>
956046	SC-700B-WDR-052	13:00	09:06	pH Units	0.0570	2.00	8.18

QA/QC Summary

QC STD I,I	D. Laborate Numbe	o ry ir	Concentr	ation	Duplic Concent	ate ration	Di (fference Units)	Acc	eptance imits	QC Within Control
Duplicate	95604	3	8.18		8.10	3		0.00	<u>+</u> 0.	100 Units	Yes
Γ	QC Std I.D.	M Con	easured centration	Th Con	eoretical centration	Differe (Unit	nce s)	Accepta Limit	ance s	QC With Contro	in I
	LCS		7.00		7.00	0.0	0	<u>+</u> 0.100	Units	Yés	
	LCS #1		7.00		7.00	0.0	0	<u>+</u> 0.100	Units	Yes	

Respectfully submitted, TRUESD ABOR ORIES, INC. Mona Nassimi, Manade

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN. CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 956046

Date: July 6, 2006 Collected: June 21, 2006 Received: June 21, 2006 Prep/ Analyzed: June 22, 2006 Analytical Batch: 06EC06K

investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u> 956046	ļ	Field I.D. SC-700B-V	VDR-052	<mark>Uni</mark> µmho	i <u>ts</u> s/cm i	<u>Metho</u> EPA 12	o <u>d</u> 0.1	<u>DF</u> 10.0		<u>RL</u> 20.0		Results 7450
				QA	QC Su	mma	ary					_
	QC STD I.D.	Laborato Number	Concent	Iration	Duplica Concentra	ite ation	Rei	ative Percent Difference	Acceptance (limits		QC Within Control	
	Duplicate	956046	745	iQ	7400			0.67%		10%	Yes]
	(QC Std I.D.	Measured Concentratio	n Co	Theoretical oncentration	al Percei on Recove		Acceptance Limits)	QC With Control	in I	-
		CCS	672		706	95.2	%	90% - 110%	6	Yes		
		CVS#1	945		1000	94.5	%	<u>90% - 110</u> %	ó	Yes		
		ĊV\$#2	935		1000	93.5	%	90% - 110%	6	Yes		
		LCS	675		706	95.6	%	90% - 110%		Yes		
		LCSD	674		706	95.5		90% - 110%		Yes		

Respectfully submitted. ORIES, INC. IL LABOR

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project

Project No.: NA P.O. No.: NA REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 956046

Date: July 6, 2006 Collected: June 21, 2006 Received: June 21, 2006 Prep/ Analyzed: June 22, 2006 Analytical Batch: 06TDS06G

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 956046	<u>Fiel</u> SC-3	<u>d I.D.</u> 700B-WDR-05	52 n	n its ng/L	<u>Me</u> EPA	<u>thod</u> 160.1	<u>RL</u> 250	<u>Results</u> 4240
			QA	VQC Su	mmary	<u> </u>		
	QC STD 1.1	D. Laborator Number	y Concentra	tion Dup Conce	dicate Intration	Percent Difference	Acceptance limits	QC Within Control
	Duplicate	955857-1	4030	4	140	1.35%	<u>≤</u> 5%	Yes
		QC Std I.D.	Std I.D. Measured Concentration		Percent Recover	Acceptant y Limits	ce QC With Contro	in I
		LCS 1	494	500	98.8%	90% - 110	% Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

NO ora Keun Moha Nassimi, Manager

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 6, 2006

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dcar Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-053 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 956269

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-053 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 28, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the dilution of the Hexavalent Chromium sample, the result is below the detection limit of 0.001 mg/L but the result of 0.00041 mg/L is reported in the QC to pass the matrix spike. In addition, the sample was analyzed along with other samples that were analyzed by SW 7199. No duplicate was run on the EPA 218.6 sample but was run on the SW 7199 sample which has the same QC recovery range for the duplicates. Therefore, the duplicate of sample 956270-1 was used for both methods in the batch.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

Ali Kharray

62

Fel K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 956269

Collected: June 28, 2006

Received: June 28, 2006

Revision 1

Date: July 7, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA

ANALYST LIST

	EARAND	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
EPA 150.1	рН	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Tina Acquiat
EPA 180.1	Turbidity	Gautam Savani
EPA 200.7	Total Chromium	Victoria Than-Thiem
EPA 218.6	Hexavalent Chromium	Jorge Arriaga

<u> 993</u>

Client: E2 Consulting Eng 155 Grand Ave. Su Oakland, CA 9461 Attention: Shawn Duffy roject Name: PG&E Topock Proj Project No.: NA P.O. No.: NA P.O. No.: NA P.O. No.: NA	jineers, Inc.		$ \rangle$	X	(714) 7:	30-6239 · FAX [714] 730	
Client: E2 Consulting Eng 155 Grand Ave. Su Oakland, CA 9461; Attention: Shawn Duffy roject Name: PG&E Topock Proj Project No.: NA P.O. No.: NA P.O. No.: NA P.O. No.: Sample I.D.	jneers, Inc.						-6462 • www.truesdail.cor
roject Name: PG&E Topock Proj Project No.: NA P.O. No.: NA Lab I.D. Sample I.D.	lite 1000 2				·	Laboratory No.: Date Received: Revision 1	956269 June 28, 2006
Lab I.D. Sample I.D.	ject						
Lab I.D. Sample I.D.		Analyt	ical Resu	Its Sumn	nary		
	Sample Time	EPA 200.7 Chromium	EPA 218.6 Chromium	EPA 180.1 Turbidity	EPA 150.1 pH	EPA 120.1 EC	EPA 160.1 TDS
956269 SC-700B-WI	DR-053 12:30	ng/L ND	nexavaient mg/L ND	NTU 0.105	Unit 8.10	μmhos/cm 7180	mg/L 3380
ND: Non Detected (below reporting famit)							
Note: The Kolowing 'Significant Figures' ru Results befow 0.01 wat have two (2) Result above or equal to 0.01 with har Quarty Control data will ahways have	ile has been applied to all results: significant figures. we three (3) significant figures. s three (3) significant figures.						
005							
this removes the second s	r comntae invactinated and is not	i nevses rijv indirativ	e of the custity of cood	dion of annaranth id.	antinal or similar and	irde. Åe a mutural moder	fion to clients the nut

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA Prep. Batch: 063006A REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 956269

Date: July 7, 2006 Collected: June 28, 2006 Received: June 28, 2006 Prep/ Analyzed: June 30, 2006 Analytical Batch: 063006A Revision 1

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

Analytical Results Total Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	RL	Results
956269	SC-700B-WDR-053	mg/L	EPA 200.7	11:57	1.04	0.0010	ND

QA/QC Summary

		QC STD) I,D.	Lal N	boratory umber	Concentra	tion	Du Conc	plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
.—		Duplic	ate	g	56269	ND			ND	0.00%	<u><</u> 20%	Yes	
	QC Std I.D.	Lab Number	Con unsp sam	c.of iked iple	Dilution Factor	Added Spike Conc.	Ar	MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample	MS% Recovery	Acceptance Ilmits	QC Within Control
м	5	956269	0.0	00	1.04	0.0150	0	.0156	0.0160	0.0156	103%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0102	0,0100	102%	90% - 110%	Yes
MRCVS#1	0.0102	0.0100	102%	90% - 110%	Yes
MRCVS#2	0.00989	0.0100	98.9%	90% - 110%	Yes
IĊŚ	0.00986	0.0100	98.6%	80% - 120%	Yes
LCS	0.0103	0.0100	103%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC. Seca

Mona Nassimi, Manager Analytical Services

Client: E2 Consulting Engineers, Inc.

Oakland, CA 94612

Sample: One (1) Groundwater Sample

155 Grand Ave, Suite 1000

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 956269

Date: July 7, 2006 Collected: June 28, 2006 Received: June 28, 2006 Prep/ Analyzed: June 29, 2006 Analytical Batch: 06CrH06Z Revision 1

Project No.: NA

P.O. No.: NA

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Investigation:

Hexavalent Chromlum by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLII.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
956269	SC-700B-WDR-053	12:30	09:35	mg/L	5.00	0.0010	ND

QA/QC Summary

	QC ST	0 I.D.	Lat N	oratory umber	,	Concentrati	on	Dup Conce	olica entra	ite ation I	Relative Percent Difference	Ac	ceptance limits		QC Within Control				
	Duplic	ate	95	6270 - 1		0.976		0	.973		0.31%		<u><</u> 20%		Yes				
QC Std I.D.	Lab .Number	Cor unsj sar	nc.of piked nple	Dilutic Facto	on r	Added Spike Conc.	Ал	MS nount	Me Ce S	asured onc. of piked ample	Theoretic Conc. of spiked sample	al F	MS% lecovery	Ac	cceptance limit	GC Within Control			
MSD	956269	0.0	0041	5.00	Į	0.00100	0.0	00500	0.	.00553	0.00541		102%		90-110%	Yes			
		QC 5		QC Std I.D.		Measured Concentration		neoretica ncentratic	l n	Percent Recover,	t Accept y Limi	ance ts	QC Wit Contr	hin ol					
			MRC	CS		0.00505	0.00505	0.00505	0.00505	0.00505	05 0.00500 101		101%	101% 90% - 1109	10%	Yes			
		Ņ	MRCV	S#1		0.01010		0.0100		101%	95% - 1	05%	Yes						
		MRCVS#2		0.01000		0.0100		100%	95% - 1	05%	Yes								
	LCS		0.00515		0.00500		103%	% 90% - 11		0% Yes		1							
			LĊŚ	D		0.00509		0.00500		102%	90% -	110%	Yes		1				

ND: Below the reporting limit (Not Detected). DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABOR RIEŞ, INC. Jesour ona b

Mona Naesimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Laboratory No.: 956269

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Established 1931

Date: July 7, 2006 Collected: June 28, 2006 Received: June 28, 2006 Prep/ Analyzed: June 29, 2006 Analytical Batch: 06TUC06W Revision 1

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
956269	SC-700B-WDR-053	12:30	NTŲ	1.00	0.100	0.105

QA/QC Summary

QC STD I.D. Laboratory Number		Y Concentra	Concentration		Duplicate Concentration		Relative Percent Difference		eptance limits	QC Within Control
Duplicate 956267-37		7 ND	ND		ND		0.00%		<u><</u> 20%	Yes
	QC Std I.D.	Measured Concentration	Theo Conce	oretical entration	Percer Recove	nt ry	Accepta Limit	nce s	QC Withir Control	1
	LCS	7.70	8	3.00	96.3%	,	90% - 11	10%	Yes	1
	LCS	7.72	8	3.00	96.5%	,	90% - 1 ⁻	10%	Yes	7
	LCS	7.82	<u> </u>	3.00	97.8%	,	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESPAIL LABORATORIES, INC.

-for ULDUC NG Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 956269

Date: July 7, 2006 Collected: June 28, 2006 Received: June 28, 2006 Prep/ Analyzed: June 29, 2006 Analytical Batch: 06PH06Z Revision 1

Investigation:

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	MDL	RL	<u>Results</u>
956269	SC-700B-WDR-053	12:30	08:07	pH Units	0.0570	2.00	8.10

QA/QC Summary

QC STD	I.D. Laborat Numb	Laboratory Number Col 956269		Concentration		Duplicate Concentration 8.10		Difference Acc (Units) 0.00 ± 0.		eptance limits	QC Within Control Yes
Duplica	te 95626									100 Units	
	QC Std I.D.	M Con	easured centration	The Con	eoretical centration	Differe (Unit	nce s)	Accepta Limit	ince s	QC With Contro	in
	LCS		7.01		7.00	0.0	1	+ 0.100	Units	Yes	-1
	LCS #1		7.01		7.00	0.0	1	<u>+</u> 0.100	Units	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

besin Br deoria)

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA

P.O. No.: NA

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 956269

Date: July 7, 2006 Collected: June 28, 2006 Received: June 28, 2006 Prep/ Analyzed: June 29, 2006 Analytical Batch: 06EC06R Revision 1

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Fleid I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
956269	SC-700B-WDR-053	µmhos/cm	EPA 120.1	10.0	20.0	7180

QA/QC Summary

QC STD Laboratory I.D. Number		ry r	Concentration		Duplicate Concentration			lative Percent Difference	Acceptance limits		QC Within Control		
Duplic	Duplicate 956269			7180		7190			0.14%		<u><</u> 10%	Yes	
	QC	Std I.D.	Ċ	Measured oncentration	Cd	Theoretical oncentration	Perce Recov	nt ery	Acceptanc Limits	e	QC Withi Control	n	
		CCS		672		706	95.29	%	90% - 1109	6	Yes		
	C	VS#1		930		1000	93.09	%	90% - 1109	6	Yes		
		LCS		673		706	95.39	%	90% - 110%	6	Yes		

Respectfully submitted, TRUESDAIL/LABORATORIES, INC.

4 Nossein

Mona Nassimi, Manage Analytical Services
TRUESDAIL LABORATORIES, INC. INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES Established 1931 14201 FRANKLIN AVENUE REPORT Client: E2 Consulting Engineers, Inc. TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 155 Grand Ave, Suite 1000 www.truesdail.com

Laboratory No.: 956269

Date: July 7, 2006 Collected: June 28, 2006 Received: June 28, 2006 Prep/ Analyzed: June 29, 2006 Analytical Batch: 06TDS06J **Revision 1**

Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: NA P.O. No.: NA

Investigation;

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 956269	<u>Field I.D.</u> SC-700B-WDR-053		<u>U</u> m	nits ng/L		<u>Method</u> EPA 160.1			<u>RL</u> 250	<u>Results</u> 3380			
					QA	/Q(C Sun	ımar	У				
	QC STD	. D ,	Laborator Number	У	Concentrat	ion	Duplic Concent	cate tration	F Di	^o ercent ifference	Ace	ceptance limits	QC Within Control
	Duplical	e	956269		3380		340	0		0.29%	·······	<u>≤</u> 5%	Yes
		q	C Std I.D.	С	Measured Concentration	The Conc	oretical entration	Percer Recove	nt vry	Accepta Limit	nce S	QC Within Control	·]
			LCS 1		484		500	96.8%	6	90% - 11	10%	Yes	1

ND: Below the reporting limit (Not Detected), RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

200/2000

06/27/2006 10:44 FAX 5302431654

ANALYTICAL REPORT

PG & E TOPOCK

Lot #: E6F160255

Shawn Duffy

CH2M Hill Inc

SEVERN TRENT LABORATORIES, INC.

Marisol Tabirara Project Manager

July 6, 2006

EXECUTIVE SUMMARY - Detection Highlights

E6F160255

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
SC-SLUDGE-WDR-051 06/15/06 12:10 001				
Chromium	140	0.10	mg/L	SW846 6010B
Mercury	2.5	0.56	mg/kg	SW846 7471A
Arsenic	19	5.6	mg/kg	SW846 6010B
Barium	98	11	mg/kg	SW846 6010B
Cadmium	6.6	2.8	mg/kg	SW846 6010B
Chromium	22000	5.6	mg/kg	SW846 6010B
Selenium	9.7	2.8	mg/kg	SW846 6010B
Copper	140	14	mg/kg	SW846 6010B
Molybdenum	64	22	mg/kg	SW846 6010B
Nickel	46	22	mg/kg	SW846 6010B
Thallium	17	5.6	mg/kg	SW846 6010B
Vanadium	110	28	mg/kg	SW846 6010B
Zinc	66	11	mg/kg	SW846 6010B
Dissolved Hexavalent Chromium	0.0083	0.0010	mg/L	SW846 7199
Percent Moisture	82	0.10	00	MCAWW 160.3 MOD
Hexavalent Chromium	110	2.8	mg/kg	SW846 7199

METHODS SUMMARY

E6F160255

ANALYTICAL	PREPARATION
METHOD	METHOD
SW846 7199	SW846 STLC
SW846 7199	SW846 3060A
SW846 6010B	SW846 CAM TITLE
SW846 6010B	SW846 1311/3010
SW846 6010B	SW846 3050B
SW846 7471A	SW846 7471A
MCAWW 160.3 MOD	MCAWW 160.3 MOD
	ANALYTICAL <u>METHOD</u> SW846 7199 SW846 7199 SW846 6010B SW846 6010B SW846 6010B SW846 7471A MCAWW 160.3 MOD

References:

- MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
- SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

E6F160255

ANALYTICAL		ANALYST
METHOD	ANALYST	ID
MCAWW 160.3 MOD	FLORIAN ZIMMERMANN	000064
SW846 6010B	Josephine Asuncion	021088
SW846 7199	Yuriy Zakhrabov	000022
SW846 7471A	Hao Ton	000023

References:

MCAWW	"Methods	for	Chem	ical A	nalys	is of	Water	and	Wastes",
	EPA-600/4	l-79-	-020,	March	1983	and	subsequ	lent	revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E6F160255

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
н7к2т	001	SC-SLUDGE-WDR-051	06/15/06	12:10
NOTE (S	3):			

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: SC-SLUDGE-WDR-051

TOTAL Metals

Matrix..... SO

Lot-Sample #...: E6F160255-001 Date Sampled...: 06/15/06 12:10 Date Received..: 06/16/06 08:55 % Moisture....: 82

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 6172259 Arsenic SW846 6010B 06/21-06/25/06 H7K2T1AA 19 5.6 mg/kg Analysis Time..: 00:02 Dilution Factor: 1 Analyst ID....: 021088 Instrument ID..: M01 MS Run #.....: 6172136 Antimony ND 33 SW846 6010B 06/21-06/25/06 H7K2T1AC mq/kq Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 MS Run #.....: 6172136 Instrument ID..: M01 Barium 98 11 mg/kg SW846 6010B 06/21-06/25/06 H7K2T1AD Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 MS Run #.....: 6172136 Instrument ID..: M01 6.6 Cadmium 2.8 mg/kg SW846 6010B 06/21-06/25/06 H7K2T1AE Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 Instrument ID..: M01 MS Run #.....: 6172136 SW846 6010B 06/21-06/25/06 H7K2T1AF Chromium 22000 5.6 mg/kg Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 6172136 Beryllium ND 2.8 SW846 6010B 06/21-06/25/06 H7K2T1AG mq/kq Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 6172136 Lead ND 2.8 SW846 6010B 06/21-06/25/06 H7K2T1AH mq/kq Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 6172136 Selenium 9.7 2.8 SW846 6010B 06/21-06/25/06 H7K2T1AJ mq/kq Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 6172136 SW846 6010B Silver ND 06/21-06/25/06 H7K2T1AK 5.6 mg/kg Dilution Factor: 1 Analysis Time..: 00:02 Analyst ID....: 021088 MS Run #....: 6172136 Instrument ID..: M01

(Continued on next page)

Client Sample ID: SC-SLUDGE-WDR-051

TOTAL Metals

Lot-Sample #...: E6F160255-001

Matrix..... SO

		REPORT.	ING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Cobalt	ND	28	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AL
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Copper	140	14	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AM
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Molybdenum	64	22	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AN
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Nickel	46	22	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AP
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Thallium	17	5.6	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AQ
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Vanadium	110	28	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AR
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Zinc	66	11	mg/kg	SW846 6010B	06/21-06/25/06 H7K2T1AT
		Dilution F	actor: 1	Analysis Time:	00:02 Analyst ID: 021088
		Instrument	ID: M01	MS Run #:	6172136
Prep Batch #.	: 6172261				
Mercury	2.5	0.56	mg/kg	SW846 7471A	06/21-06/22/06 H7K2T1AU
-		Dilution F	actor: 1	Analysis Time:	12:58 Analyst ID: 000023
		Instrument	ID: M04	MS Run #:	6172142
NOTE(S):					

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: SC-SLUDGE-WDR-051

TCLP Metals

Lot-Sample #. Date Sampled. Leach Date	: E6F160255 : 06/15/06 : 06/19/06	-001 12:10 Date H Leach	Received. Batch #.	.: 06/16/06 08:55 .: P617014	Matrix:	SO
		REPORTING	3		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	<u>ORDER #</u>
Prep Batch #.	: 6171547					
Chromium	ND	0.50	mg/L	SW846 6010B	06/20-06/21/06	H7K2T1AX
		Dilution Fact	or: 1	Analysis Time: 15:25	Analyst ID	: 021088
		Instrument ID	0: M01	MS Run #: 617135	7	

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

Client Sample ID: SC-SLUDGE-WDR-051

STLC Metals

Lot-Sample #: E Date Sampled: (Leach Date: (E6F160255-001 06/15/06 12:10 06/19/06	Date Received Leach Batch #	: 06/16/06 08:55 : P617012	Matrix:	SO
	REP	ORTING		PREPARATION-	WORK
PARAMETER RE	ESULT LIM	IT <u>UNITS</u>	METHOD	ANALYSIS DATE	<u>ORDER #</u>
Prep Batch #: 6	5172561				
Chromium 14	40 0.1	0 mg/L	SW846 6010B	06/21-06/22/06	H7K2T1A0
	Diluti	on Factor: 1	Analysis Time: 18:53	Analyst ID	: 021088
	Instru	ment ID: M01	MS Run #: 61723	16	

NOTE(S):

Soluable Threshold Limit Concentration (STLC) done in accordance with App II: Waste Extraction procedures. CCR Title 22.

Client Sample ID: SC-SLUDGE-WDR-051

TOTAL General Chemistry

Lot-Sample #: H	E6F160255-001	Work Order #: H7K2T	Matrix SO
Date Sampled: (06/15/06 12:10	Date Received: 06/16/06 08:55	
<pre>% Moisture: 8</pre>	82	Leach Date: 06/19/06	Leach Batch #: P617013

					PREPARATION-	PREP
PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	ANALYSIS DATE	BATCH #
Dissolved Hexavalent	0.0083	0.0010	mg/L	SW846 7199	06/21/06	6172540
Chromium						
		Dilution Facto	or: 1	Analysis Time: 16:44	Analyst ID	.: 000022
		Instrument ID.	.: W18	MS Run #: 617233	38	

Client Sample ID: SC-SLUDGE-WDR-051

General Chemistry

Lot-Sample #...: E6F160255-001 Work Order #...: H7K2T Matrix.....: S0 Date Sampled...: 06/15/06 12:10 Date Received..: 06/16/06 08:55 % Moisture....: 82

					PREPARATION-	PREP
PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	ANALYSIS DATE	<u>BATCH</u> #
Hexavalent Chromium	110	2.8	mg/kg	SW846 7199	06/19-06/20/06	6170236
		Dilution Fact	or: 2.5	Analysis Time: 13:04	Analyst ID	.: 0000228
		Instrument ID	: W18	MS Run #: 617015	8	
Percent Moisture	82	0.10	90	MCAWW 160.3 MOD	07/05-07/06/06	6186468
		Dilution Fact	or: 1	Analysis Time: 08:30	Analyst ID	.: 0000648
		Instrument ID	: W15	MS Run #: 618632	1	

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

3

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 3, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK PROJECT, SLUDGE SAMPLE-9, TLI NO.: 955851

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock project, Sludge Sample-9. A summary table for this sample delivery group is included in Section 2. Complete laboratory report, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The sample was received and delivered with the chain of custody on June 15, 2006, intact and in chilled condition. The sample will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 cxt. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K.R. P. Inta

K.R.P. lyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 955851

Collected: June 15, 2006

Received: June 15, 2006

Date: July 3, 2006

Client: CH2M HILL. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

ANALYST LIST

		AUALYS
EPA 300.0	Fluoride	Giawad Ghenniwa

TRUESDAIL LABORATORIES, INC.

155 Grand Ave. Suite 1000 Oakland, CA 94612

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 955851 Date: July 3, 2006 Collected: June 15, 2006 Received: June 15, 2006 Prep/ Analyzed: June 16, 2006 Analytical Batch: 06AN06O

Investigation:

Client: CH2M HILL

Attention: Shawn Duffy

Sample: One (1) Soil Sample

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Fluoride by Ion Chromatography Using EPA 300.0

		Analytic	al Results				
<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>Run Time</u>	DF	<u>RL</u>	<u>Results</u>
955851	SC-Sludge-WDR-051	mg/kg	EPA 300.0	21:19	19.6	3.92	13.0

QA/QC Summary

	QC STD	1.D.		Laboratory Number		Concentration		Duplicate Concentration		Relative Percent Difference		Acceptance limits		1	QC Within Control			
	Duplic	ale		955857-1		1.97	1.		.95		1.02%	<u><</u> 20	%		Yes			
QC Std I.D.	Lab Number	Conc unspi sam	c.of iked ple	Conc.of napiked sample	Dilution Fac	tor	Added Spike Conc,	N Am	1S ount	feasured Conc. of spiked sample		Theoretical Conc. of spiked sample	MS Reco	% very	Acc	çeptance lim	its	QC Within Control
MS	955857-1	1.9	17	1,00		4.00	4	.00	5.85		5,97	97.0)%		85-115%		Yes	
			QC	Std I.D.	l Co	Measured ncentration	Th Con	eoretical centration	Percen Recove	nt ry	Accepta Limit	1nce :\$	QC With Conf	C nin trol				
			M	RCCS		4.16		4.00	104%	,	90% - 1	10%	Ye	\$				
			MR	CVS#1		3.19		3.00	106%	_	90% - 1	10%	Ye	\$				
			MR	CV\$#2		3.18		3.00	106%		90% - 1	10%	Ye	\$				
				LCS		4.14		4.00	104%		90% - 1	10%	Ye	s				
			L	CSD		4.17		4.00	104%	·	90% - 1	10%	Ye	8	}			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Appendix B Flowmeter Calibration Records

Flow Calibration with Adjustment

People for Process Automation

30057866-1275190

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

PROMAG 23 P 2"

Transmitter/Sensor

6A021F16000

Serial Nº

FIT-100

Tag Nº

Flow	Flow	Duration	V target	V meas.	Δ o.r.*	Outp.**
[%]	[GPM]	[sec]	[US GAL]	[US GAL]	[%]	[mA]
10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59
39.9	62.1	30.0	31.071	31.070	0.00	10.38
39.9	62.1	30.0	31.073	31.078	0.02	10.38
100.2	156.0	30.0	78.041	78.156	0.15	20.06
-	-	-		2-	-	-
-	-	-	-	-	-	-
-	-	- 1	8 2	-	-	+
-		-	81 4	-	-	-
	-	-	-	-	-	-
-	-	-		-	5 <u>2</u> 7	

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9178	
Calibration factor	
0	
Zero point	
72.9 °F	
Water temperature	

Measured error % o.r.

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Swint

Tim Swick

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Parameter Setting

1275190

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

6A021F16000

Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transm./Sensor

2"

Nominal diameter

FIT-100

Tag №

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

11-29-2004

Date

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

	COMPONENT						MA	NUFACTU	RER		PROJECT					
Code:				-		Nam	ne: Fndr	ess +	Hause	~	Numt	ber:				
Name:		60000000				Mod	lel: 23P5	Ø-AL1	AIRAÓ	22 AW	Name	: -	FUPACIC	IM3		
						Seria	al#: 6AM	21 F11	000	and the baseline						
						L	W-19/-	FUNCT	TONE	AND DESCRIPTION OF STREET						
	1	RANG	E	VALUE	UNIT	s I	COMPUTING I	UNCTION	S? Y/N	an e staat hours	CON	NTROL?	Y/N)			
	-	-									Ac	tion? dire	ct reverse			
Indicate	<u>M</u>	Chart:					Describe:				Mo	odes? P /]	1/2			
Record? Y		Scale:	0	-50	Spr	2					SWI	ITCH? Y	\mathbb{N}			
Transmit/		Input:	10	3-50	GPA	1					Dif	fferential:		fixed/adjustal	hle	
Convert? Y	Ϋ́N	Output	: 4	4-20	MA						Re	set? autor	natic / manual			
			ANA	LOG CAL	IBRATI	ONS			1	DIS	CRET	TE CALI	BRATIONS		Note	
	REQUIRED AS CALIBRATED									REOUIR	ED		ASCAL	BRATED	No	
Input	Indic	ated	Outor	nt In	oreacing I	Input Decreasing Input			Number	The Del			T' D'	DIGATED	110	
input	maio		Ouipt	··· ····	creasing I	npar	Decreasi	ng mput	Number	1 Inp Pol	nt j R	leset PL	1 np Point	Reset Pt.		
0.0		<u>-</u>	11 X	Indic	ated (Output	Indicated	Output	l	(note ris	ing or :	falling)	(note rising	g or falling)		
	- 0.1		410		4	4,00			2							
25.0	25	01	2.0						3.							
									4.							
58.0	50	0	10.0	2					5.		_					
						-	~		6.							
CONTROL	MOD	E SETTI	NGS:	P:	I:		D:		7.			- autor and				
# NOT	ES:	<u> </u>										Co	mponent Calib	rated and Read	y for Start-up	
-U	erit	ied	M	odel	Nz	ŧ	Tag.	,								
P	Bai	rAn	ine	d to	ic t	: 1	Deeckin	ting				By	C I	Actua	-	
P	ored	U. Ca	1	from	JA	- 17	5 0 010	J.	0.5	50.00				10 det		
1	<u>,</u>	Di	1	0	L.		JUL	- <u>TO</u>	0	- gp	m		ie: 7-	18-42		
	ma	ual	20.	Cerry	end	00	upict 4	, 0, 1	2,16,	1-2	2	Ta	g No.: F17	F-100		

Ť.

CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

Flow Calibration with Adjustment

People for Process Automation

30057870-1275191

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Duration

[sec]

30.0

30.0

30.0

30.0

÷

4

-

_

-

V target

[US GAL]

7.7910

31.157

31.229

78.017

-

-

V meas.

[US GAL]

7.8318

31.160

31.229

77.856

2

-

Order Code

PROMAG 23 P 2"

Flow

[GPM]

15.6

62.3

62.4

155.9

-

Transmitter/Sensor

6A022016000

Serial Nº

FIT-101

Tag №

Flow

[%]

10.0

40.0

40.1

100.2

-

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	- (1963-5-17-17-17-16-16-16-16-16-16-16-16-16-16-16-16-16-
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	

Measured error % o.r.

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

mSwint

Tim Swick

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Outp.**

[mA]

5.61

10.40

10.42

20.00

-

-

_

-

Δ o.r.*

[%]

0.52

0.01

0.00

-0.21

-

-

-

_

-

Parameter Setting

People for Process Automation

1275191

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

6A022016000

Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transm./Sensor

2"

Nominal diameter

FIT-101

Tag №

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

11-29-2004

Date

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

		сом	PONI	ENT				M	ANUFACTU	RER				PRO	DJECT	
Code:							Nar	ne: End	ress +	Haus	er	Nu	mber:			
Name:							Mo	del: 23P	50-AL	ARA	022AW	Na	me: 😁	Topock	IM3	
			-				Ser	ial#: &A	\$220	6000	5					
									FUNCT	TIONS				~		
		RAN	IGE	VAI	LUE	UNI	TS	COMPUTING	FUNCTION	IONS? Y / N CONTROL? Y (N)						
Indicate? Y	N	Char	t:					Describe:					Modes? P	I/D		
Record? Y	(\mathbb{N})	Scale):	0-1	20	GPI	9					S	WITCH?	(\mathbb{O})		
Transmit/	ÍN	Input	t:	0-1	20	GPI	<u>n</u>					ļ	Differentia	k	fixed/adjusta	ble
- Contract		[Ouip		19	20	1015	1l	***	(785)); (7 <u>85)</u>	7			Resel? aut	omatic / manual		
			A	NALO	GCA	LIBRAT	TIONS				DIS	SCR	ETE CAI	IBRATIONS		Note.
	REQUIRED					AS C	ALIBRATED			REQUIR	ED		AS CAL	IBRATED	No	
Input	Indic	cated	Ou	itput	In	creasing	Input	Decrea	Number	Trip Poi	nt	Reset Pt.	Trip Point	Reset Pt.		
~~~			- 17	-	Indic	ated	Outpu	t Indicated	Output	_	(note ris	ing c	or falling)	(note risin	g or falling)	
200			7:	0	0		4.0			1.		_				
60,0			12	0					-	2.						
90.0			16	0	Caller					4		-				
120,0			20	.0					-	5.	-	-				
										6.						
CONTROL	MOD	E SET	TING	S:	P:	I	:	D:		7.						
# NOT	ES: c	1	1		1	<i>i</i>	٩						0	omponent Calil	orated and Read	ly for Start-up
$-\nu$	err	tice	1	Mo	ide	IN	6.	& Tag							1	· · · · · · · · · · · · · · · ·
R	er	4nc	sea	7 4	ro	mi	0-1	15 90th	, to	0120	Japh	n	в	y: 0 1	LASTING	15
P	req	SAN	in	red	1	ag	€	Descr	ietioi	)	31-		D	ate: 4-	18-05	1
	ind	14	ted	m	A	eet/	sut	- 4, 8,	12,16	€20	)		Т	ag No.: FI	T-101	

## CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

## Flow Calibration with Adjustment



People for Process Automation

30057871-1275192

### 41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

PROMAG 23 P 2"

Transmitter/Sensor

#### 6A022116000

Serial Nº

FIT-102

Tag №

Flow	Flow	Duration	V target	V meas.	Δ ο.г.*	Outp.**
[%]	[GPM]	[sec]	[US GAL]	[US GAL]	[%]	[mA]
10.0	15.6	30.0	7.7896	7.8356	0.59	5.61
39.9	62.1	30.0	31.069	31.073	0.01	10.38
39.9	62.1	30.0	31.070	31.063	-0.02	10.38
100.2	155.9	30.0	78.008	78.072	0.08	20.04
-	-	-	÷	-	-	-
	-	-	-	-		-
-	¥ ¥	-	-	-	-	-
848	2		-	-0	-	-
12	2	-	-	-	-	-
	2	-	2	-	2	-
*o.r.; of rate				6 L.		S (1

Calibration rig	6 (P) (P) (P) (P) (P)
155.6102 GPM	( ≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9214	
Calibration factor	
0	
Zero point	
74.9 °F	
Water temperature	

Measured error % o.r.



"Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Smit

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

## **Parameter Setting**



1275192

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

6A022116000

Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

### PROMAG 23 P

Transm./Sensor

2"

Nominal diameter

FIT-102

Tag Nº

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

11-29-2004 Date

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

	COMPONENT							МА	NUFACTI	RER		PROJECT						
Code:							Nam	Endres	55+1-	tauser	-	Numb	er:					
Name:							Mod	lel:				Name:	To	poork.	TW3			
							Seria	al#: 6Ad	22/16	0000			•	poen	2			
									FUNCT	TIONS								
		RAI	NGE	VAI	LUE	UNI	TS	COMPUTING FUNCTIONS? Y/N					CONTROL? V/N)					
Indicate	IN	Char			an a			D										
Record? Y	IN	Scale	e:			-		Describe:				Mod	ies? P/I	/D				
	$\underline{\circ}$						1					Uni	Range:	(M)				
Transmit/	G.,	Inpu	t:	0-	50	GP	nu					Diff	erential:		fixed/adjustal	ole		
Converter	IN	Outp	out:	4-	201	(m	AL					Res	et? autor	natic / manual	· · · ·			
			AN	IALO	G CAL	IBRAT	TIONS			1	DIS	CRET	E CALI	BRATIONS		Note		
	REQUIRED AS CALIBRATED								REOUR			ASCAL	PRATED	N-				
Input	Indic	cated	Output Increasing		Input	nput Decreasing Input			Trin Poin	t R	cat Dt	Trin Point	DIGATED	INO				
					Indica	ted	Output	Indicated	Output		(note rici		lling)	Thp Point Reset Pt.				
0.0	C	),	42	20	Ø		4.0		Output	1.	(note fist		unug)	(note risin	g or falling)			
12.5	12.	5	8.0	10			1			2.								
23.00	25	.0	12.0	00				_		3.								
50.0	50	2	10.	00						4.		_						
- 410	20	.0	au.	00			1000-00		-	13.								
CONTROL	MOD	E OFT	TDICO					-		0.								
# NOT	TC.	E SEI	TINGS	<u>i                                     </u>	<u>P:</u>		:	D:		7.								
	Jeri	1F.	ed	. 1	Vind	et	No	\$ 400					Co	mponent Calib	rated and Read	y for Star <b>t-up</b>		
	Po-	A	iapo	1.	fin	2.	11-	he T	to	12-	FA .			<u> </u>	tation			
	Pro	200	4		100	<u>n</u>	0	13 APL	1 10		<u>&gt;0 g</u>	n	By:	C.A	has mg	5		
	C	9	TH	my	e a	Tac	9 4	apsc/	aptic	9iu			Dat	e: 4-	18-45			
	SIN	mu	an	24	m	4	Out	put: "	1 8,	12 16	€ Z	Ow	A Tag	No: FI	T-102			

## CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

Endress+Hauser

People for Process Automation

Flow Calibration with Adjustment

30060317-1304709

### 41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec Order N°/Manufacturer

23P50-AL1A1AA022AW Order code

PROMAG 23 P 2"

Transmitter/Sensor

6C037316000

Serial Nº (put into service as)

Tag N°

Flow I%I	Flow [GPM]	Duration [sec]	V target (US GAL)	V meas. [US GAL]	∆ o.r.* [%]	Outp.** [mA]
8.2	12.7	61.3	13.009	12.942	-0.51	5.30
39.5	61.4	61.6	63.049	63.061	0.02	10.32
40.2	62.5	60.9	63.388	63.377	-0.02	10.43
97.9	152.4	62.1	157.766	157.275	-0.31	19.62
-	-	-	-	-	-	-
-	-	-		-	-	-
-	-	-		-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Calibration rig	
155.6102 GPM	( ≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9152	
Calibration factor	
0	
Zero point	
72.0 °F	
Water temperature	

Measured error % o.r.



*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-31-2005

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

in Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2



### People for Process Automation

## **Parameter Setting**

1304709

### 41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1AA022AW

Order code

6C037316000 Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

### PROMAG 23 P

Transmitter/Sensor 2" Nominal diameter AB -FIT-1205 FIT-701 (put into service)

Tag Nº

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

01-31-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

COMPONENT						MANUFACTURER						PROJECT						
Code:				13	0-20100		Na	Name: Endress + Hauser N						Number:				
Name:								del: 23P	50-AL	1A1AA	ne: 🗂	Topock	IM3					
							Ser	ial #: 6C	637316	466			3.) 1910 - Maria Maria					
									FUNCT	TONS	the second distances of							
RANGE VALUE UNIT							S	COMPUTING	FUNCTION	S?Y/N		CO	ONTROL?	Y/(N)	er og okon statestike			
	<u></u>			-								A	ction? dire	ect / reverse				
Indicate? Y	<b>DN</b>	Chart	:	~	72	1.0		Describe:				M	fodes? P /					
Record? 1	$\odot$	Scale		0-0	(S)	61	m					U	SWITCH? Y (N)					
Transmit/		Input		0-	25	GP	M					Differential: fixed/adjustable						
Convert Y	YN	Outpu	ut:	4-	20	ma	·					R	leset? auto	matic / manual	-			
			A	NALO	G CAI	LIBRAT	IONS	ONS DIS						SCRETE CALIBRATIONS Note.				
	REQU	JIRED					AS C	S CALIBRATED REQUIR					ED AS CALIBRATED No					
Input	Indic	cated	Ou	utput		Increasing In		Decre	Decreasing Input		Trip Poi	nt	Reset Pt.	Trip Point	Reset Pt.			
				-	Indicated		Outpu	nt Indicated	Output		(note ris	ing of	r falling)	(note rising or falling)				
$\phi.\phi$	0	0	4.	0	Ø.	Ø	4.0			1.	1.							
4:25	6	25	8	0	-					2.		3						
12.5	ia.	50	13	.0						3.		-						
18:15	18.	75	16	0						4.								
254	20	AN	20	10	-		1.000		-	5.		-	-					
120	100	00	au	<u>, 0</u>			-			0.								
CONTROL	, MOD	E SET	TING	S:	P:	I	:	D:		7.				1				
# NOT	ES:			1	0							-	C	omponent Calib	orated and Read	ly for Start-up		
Recanced from 0-75 com to 0-25 com																		
Programmind, the & Description Bu C. Histings								7										
Similated Output 04 8, 12 1/2 & ZOMA Date:										5								
		-1			7		1	-,, <i>,</i> ,	47-7-2				Т	No ·	T-120	5		
										1 Inp	<u> </u>							

### CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

AB FIT-701 (put into service as FIT-701)



# Flow Calibration with Adjustment

Replica 30067967-1385113

### 41743399

Purchase order number

US-49316500-10 / Endress+Hauser Flowtec

Order N°/Manufacturer

23P80-AL1A1AA022AW

Order code

PROMAG 23 P 3"

Transmitter/Sensor

7700C616000

Serial N°

## - FIT-702 AR

Tag N°

Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.**		
9.9	9.9 39.5		79.279	79.569	0.36	5.59		
40.8	40.8 162.7		165.107	165.096	-0.01	10.53		
40.9	162.7	60.5	164.200	164.202	0.00	10.54		
97.9	390.1	60.8	395.561	396.199	0.16	19.69		
-	-	-	-	-	-	-		
-	<del>.</del>	-	-	:: <del></del> :	×	-		
÷	-	-	: <del></del> :	<del></del>	-			
-			: <del></del>	2 <del>0</del>	<del></del>			
=				<del>.</del>	-	-		
		-	-	-	3 <del>.</del> 8	-		

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

07-27-2005

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

Calibration rig	
398.3621 GPM	( ≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
1.1476	
Calibration factor	
35	
Zero point	
77.1 °F	

Water temperature

Measured error % o.r.



4LI

John Redmon Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2



## **Parameter Setting**

Replica 1385113

### 41743399

Purchase order number

US-49316500-10 / Endress+Hauser Flowtec

Order N°/Manufacturer

23P80-AL1A1AA022AW

Order code

7700C616000 Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

### PROMAG 23 P

Transmitter/Sensor

3"

Nominal diameter

FIT-702 00 _ Tag Nº

0 USgal/min 200 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

07-27-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

People for Process Automation

# Flow Calibration with Adjustment

30060305-1304706

### 41729921

Purchase order number

### US-49311914-10 / Endress+Hauser Flowtec Order Nº/Manufacturer

### 23P50-AL1A1AA022AW

Order code

### PROMAG 23 P 2"

Transmitter/Sensor

### 6C037016000

Serial Nº

### FIT-1202

Tag Nº

Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.** [mA]
10.6	16.5	58.3	16.013	16.111	0.61	5.71
38.1	59.3	64.6	63.940	63.944	0.01	10.10
40.1	62.3	61.2	63.602	63.598	-0.01	10.41
97.6	151.9	61.2	154.838	154.134	-0.45	19.55
-	-	-	57	-	-)	-
-	-	-	70	-	-	-
-	-	-	<b>5</b> 80	-	-	-
-	-	-	<b></b>	-	-	-
-			<b>5</b> 0	-	-	-
-	-	-	<b>7</b> 31	-	-	-

FCP-20 SMALL	
Calibration rig	
155.6102 GPM	( ≙ 100%)
Calibrated full scale	
Current 4 - 20 m	nA

Calibrated output

#### 0.9212

Calibration factor

### 0

Zero point

71.6 °F

Water temperature

Measured error % o.r.



**Calculated value (4 - 20 mA)

*o.r.: of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-31-2005

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

fin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2



People for Process Automation

# **Parameter Setting**

1304706

### 41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1AA022AW

# Order code

6C037016000 Serial Nº

<u>Current Output 1</u>

Value for 0/4mA Value for 20mA Current Span PROMAG 23 P

Transmitter/Sensor

2"

Nominal diameter

FIT-1202 Tag N°

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

01-31-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

COMPONENT					MANUFACTURER						PROJECT							
Code:							Name: Endress + Hauser						Number:					
Name: Model: 23P5								del: 23P50-ALLAA022AW Name:					me:	Tor	pock	IMB		
							Seri	al#: 60 1)	37161	lo chaid				. 1	5			
				*****			1.2.00		FUNCT	TONE	the state of the	l			2012/1912/2/167-201			
RANGE VALUE UNITS							s T	COMPUTING F	UNCTION	S?YN)		TC	ONTRO	.? Y/	(N)			
	<u> </u>									0		-	Action? d	irect /	reverse			
Indicate?	AN	Chart	:					Describe:					Modes? P	/1/1	2			
Record? Y	$\mathbb{N}$	Scale	:	0-2	5	GPA	1		S	WITCH?	Y C	9						
Transmit/		Input	:	0-2	5	GPH	n						Differential: fixed/adjustable					
Convert?	1N	Outpu	ut:	4-2	20	inA							Reset? au	tomat	ic / manual			
ANALOG CALIBRATIONS								SCRETE CALIBRATIONS					Note.					
	REOU	IRED					ASCA	LIBRATED	BRATED REOUIR					ED AS CALIBRATED				
Input	Indic	cated O		tout Inc		ocreasing Input		t Decreasing Input		Number	mber Trip Poi		nt Reset Pt.		Trip Point	Reset Pt		
				. 1	Indicated		Output	t Indicated	Outrut		(note riv	sing	or falling	ing) (note risir		or falling)		
0.0	0.	0	4.	0	0	4	1.00	2	output	1.	(101011	Juin		-	(nore nom)	, or running)		
6.25	6.	25	8	,0			n z s			2.								
12.5	la.	50	12	6						3.		1						
18.75	18	75	16	.0						4.								
250	25	0	20	.0						5.			6	-				
	1									6.								
CONTROL	LMOD	E SET	TING	S:	P:	I:		D:		7.								
# NOT	ES:		1		1.								T	Com	oonent Calib	rated and Rea	ly for Start-up	
Upridled Model No. & Tan																		
Retranged from 0-75 and to 0-25 anim									Bv:	0,1	4 Actin	100						
Programmed too & Description										Date:	4-7	0-15	1					
	3	)		~ ~		3		0000	410					Date.		- 12 -	~	
									-		Tagh	10.: F-1	$T - 1 \neq \varphi$	×				

### CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.066.05.92
People for Process Automation

## Flow Calibration with Adjustment

30060319-1304707

#### 41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec

#### Order Nº/Manufacturer

#### 23P50-AL1A1AA022AW

Order code

PROMAG 23 P 2"

#### Transmitter/Sensor

6C037116000

#### Serial Nº

FIT-1203

Tag N°

Flow [%]	Flow [gpm]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ 0.r.* [%]	Outp.** [mA]
10.0	15.5	61.2	15.818	15.853	0.22	5.60
41.6	64.7	61.2	66.050	65.948	-0.15	10.64
41.6	64.8	61.3	66.120	66.024	-0.14	10.65
100.1	155.8	61.2	158.973	158.403	-0.36	19.96
5	-	-	-	-	87	-
	<u>~</u>	-	7. <del></del> :	-		-
-	-	-	-	-	8. <del>5</del>	87
		-	-	-	8. <del></del>	1.7
-	-			- 3	-	-
-	-	-	() <b>-</b> ()	-	-	-

( ≙ 100%)

Water temperature

Measured error % o.r.



*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-31-2005

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

fin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

# **Parameter Setting**

1304707

#### 41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec Order N^o/Manufacturer

Order N-7 Manufacturer

23P50-AL1A1AA022AW

Order code

6C037116000 Serial N°

Current Output 1 Value for 0/4mA Value for 20mA Current Span

#### PROMAG 23 P

Endress+Hauser

People for Process Automation

Transmitter/Sensor

2"

Nominal diameter

FIT-1203 Tag N°

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

01-31-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143



	COMPONENT								MAI	NUFACTU	RER		PROJECT				
Code:							Nar	ne: En	Idre	ss+	HAUSE	er	Nu	mber:			
Name:							Mo	del: 23	3P5	O-AL	1AAØ.	22AN	Na	me:	Topod	KI	M3
							Ser	ial #: 6	CO	37114	6000				•		-
										FUNCT	TONS						
~		RAN	IGE	VAI	LUE	UNI	TS	COMPU	TING F	UNCTION	VS? Y/N CONTROL? Y/N Action? direct/ reverse						
Indicate	IN	Chart				Describe:						Modes? P / I / D					
Record? Y	$\mathbb{N}$	Scale	:	ز+ ل	15	9pm	n				SWITCH? Y N Unit Bange						
Transmit	ransmit/ Input: 0-25 GPM											1 1	Differentia	 I:	fixed/adju	istable	
Convert? Y/N Output: 4-20 mA												Reset? auto	matic / manua	1			
	24		A	NALO	G CA	LIBRAT	TONS				1	DIS	SCR	ETE CAL	BRATIONS		Note,
REQUIRED AS CALIBRATED									REQUIR	ED		AS CA	LIBRATED	No			
Input	Indic	cated	Ou	ıtput	In	Increasing Input Decreasing Input					Number	Trip Poin	nt	Reset Pt.	Trip Point	Reset Pt.	
					Indic	ated	Outpu	t Indi	icated	Output		(note ris	ing	or falling)	(note ris	ing or falling)	
0.0	0.	.0	4	10							1.						
6.25	6	25	_\$	:0							2.						
12.5	12.	50	12	.0				_			3.						
18,75	10	275	16	5.0							4.						_
25.0	25	20	20	0.0				_			5.						
	1				-						6.						
CONTROL	, MOD	E SET	TING	S:	P:	1	:	D:			7.						
# NOT	NOTES: Component Calibrated and Ready for Start-up																
1	Reprogrammed from 0-75 and to 0-25 By. C. HASTINGS																
	200	ark	Em	m	-d	To	ag	ŧ	De	crip	tion			D	ate: 4	-20-9	15
	Simulated out and : 4, 8, 12 16 & ZUMa Tag No.: FIT-1203																

### CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

Appendix C Daily Volumes of Groundwater Treated

#### January 2006 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extrac	tion Well Syster	n (1)	Inje	RO Brine			
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January	1	2006		84,624	108,894		193,518	181,257		181,257	14,845
January	2	2006		84,836	108,655		193,491	171,078		171,078	18,403
January	3	2006		84,861	108,501		193,361	176,844		176,844	18,504
January	4	2006		84,953	108,367		193,320	166,007		166,007	14,216
January	5	2006		84,740	108,784		193,525	172,470		172,470	18,176
January	6	2006		84,744	111,225		195,969	177,463		177,463	19,067
January	7	2006		84,587	111,313		195,899	178,380		178,380	18,373
January	8	2006		84,741	111,081		195,822	175,107		175,107	21,737
January	9	2006		84,506	111,217		195,722	186,678		186,678	13,758
January	10	2006		84,388	111,310		195,698	183,522		183,522	10,338
January	11	2006		84,395	111,277		195,672	187,889		187,889	15,132
January	12	2006		84,489	111,152		195,641	178,545		178,545	12,672
January	13	2006		84,283	111,272		195,554	181,867		181,867	13,720
January	14	2006		84,255	111,225		195,480	183,681		183,681	11,368
January	15	2006		84,381	111,109		195,491	178,432		178,432	13,194
January	16	2006		84,150	111,360		195,510	180,805		180,805	14,262
January	17	2006		39,245	38,363		77,608	57,809		57,809	3,423
January	18	2006		83,558	79,587		163,144	153,919		153,919	14,110
January	19	2006		84,634	111,287		195,921	173,897		173,897	13,858
January	20	2006		84,427	111,413		195,840	189,464		189,464	13,823
January	21	2006		1,362	1,805		3,166	8		8	-70
January	22	2006		36,973	29,142		66,115	42,407		42,407	14,241
January	23	2006		84,621	111,384		196,005	194,906		194,906	11,141
January	24	2006		84,658	111,281		195,939	188,639		188,639	14,181
January	25	2006		44,056	123,544	20,192	187,792	171,896		171,896	14,048
January	26	2006		-135	134,236	51,443	185,544	165,618		165,618	17,887
January	27	2006		-136	135,676	55,308	190,848	174,864		174,864	15,513
January	28	2006		-136	138,497	54,855	193,216	176,227		176,227	18,375
January	29	2006		-133	139,178	53,559	192,604	172,804		172,804	18,257
January	30	2006		-124	139,220	53,459	192,555	170,601		170,601	18,163
January	31	2006		-124	139,413	53,065	192,354	174,475		174,475	14,464
<b>Total Month</b>	ly Volumes	(gal)		1,895,680	3,310,767	341,880	5,548,327	5,067,560		5,067,560	449,178
Average Pump/Injection Rates (gpm)		n Rates (gpm)		42.5	74.2	7.7	124.3	113.5		113.5	10.1

NOTES:

gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

(1) Negative daily volumes reflect periods when extraction well TW-3D was offline and are a result of small computational errors. The negative values are nonetheless kept as part of the monthly record for any well (injection or extraction) that was operated during the month to maintain consistency with the onsite electronic records.

#### February 2006 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syst	em	Inject	tion Well Syst	em (1)	RO Brine	
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
February	1	2006			139,301	53,141	192,443	175,420	-162	175,257	17,929
February	2	2006			139,570	52,567	192,137	176,396	-160	176,236	14,167
February	3	2006			137,886	51,859	189,746	177,495	-157	177,338	14,641
February	4	2006			141,026	51,878	192,903	173,121	-159	172,962	20,082
February	5	2006			142,978	52,010	194,988	171,573	-163	171,410	16,181
February	6	2006			142,930	52,204	195,134	174,489	-167	174,322	16,672
February	7	2006			140,860	50,480	191,340	170,821	-163	170,659	18,227
February	8	2006			136,426	49,850	186,276	165,142	-156	164,986	14,587
February	9	2006			141,274	54,244	195,518	182,860	-157	182,703	18,224
February	10	2006			141,120	54,903	196,023	186,573	-163	186,410	18,810
February	11	2006			141,048	54,925	195,973	171,795	-164	171,631	14,467
February	12	2006			141,491	54,408	195,898	178,297	-161	178,136	19,813
February	13	2006			141,718	53,985	195,703	181,421	-168	181,253	14,855
February	14	2006			139,219	52,249	191,468	163,773	-160	163,613	18,270
February	15	2006			141,683	53,233	194,916	188,187	-161	188,025	15,920
February	16	2006			140,965	52,845	193,809	173,487	-168	173,319	17,216
February	17	2006			144,834	47,472	192,307	178,084	-165	177,920	17,376
February	18	2006			141,383	53,047	194,429	175,061	-165	174,896	15,354
February	19	2006			141,691	52,785	194,475	174,123	-166	173,957	17,824
February	20	2006			141,845	52,775	194,620	179,234	-169	179,064	18,444
February	21	2006			141,528	52,646	194,174	170,686	-168	170,518	14,758
February	22	2006			141,807	52,552	194,359	176,851	-167	176,684	18,388
February	23	2006			141,680	52,518	194,198	176,998	-165	176,833	16,989
February	24	2006			146,773	43,737	190,510	76,962	100,957	177,919	15,635
February	25	2006			129,670	49,577	179,247	-120	134,843	134,723	20,160
February	26	2006			141,496	52,533	194,029	-112	182,575	182,463	18,555
February	27	2006			141,725	52,935	194,661	63,743	119,712	183,455	18,422
February	28	2006			141,642	52,907	194,549	179,984	-153	179,831	15,312
<b>Total Monthl</b>	ly Volumes	(gal)			3,945,567	1,460,265	5,405,832	4,362,343	534,179	4,896,522	477,279
Average Pun	np/Injection	n Rates (gpm)			97.9	36.2	134.1	108.2	13.2	121.4	11.8

NOTES:

gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

(1) Negative Daily Volumes reflect periods when the injection well was offline and are a result of small computational errors. The negative values are nonetheless kept

as part of the monthly record for any well (injection or extraction) that was operated during the month to maintain consistency with the onsite electronic records.

#### March 2006 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syst	em		Inject	RO Brine		
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
March	1	2006			141,489	52,990	194,479	179,179		179,179	17,455
March	2	2006			141,567	52,891	194,458	174,126		174,126	18,278
March	3	2006			141,670	52,724	194,393	183,092		183,092	16,097
March	4	2006			141,456	52,867	194,323	176,144		176,144	17,503
March	5	2006			141,264	52,440	193,704	167,876		167,876	14,439
March	6	2006			140,979	52,630	193,609	182,443		182,443	18,201
March	7	2006			137,930	51,932	189,862	173,719		173,719	15,741
March	8	2006			141,127	50,537	191,664	177,133		177,133	16,828
March	9	2006			140,785	54,333	195,118	178,417		178,417	17,927
March	10	2006			149,440	40,222	189,663	174,782		174,782	14,843
March	11	2006			152,210	35,284	187,494	150,361		150,361	14,266
March	12	2006			139,164	51,668	190,832	184,546		184,546	18,829
March	13	2006			141,212	53,312	194,523	181,607		181,607	14,727
March	14	2006			140,911	53,604	194,515	175,913		175,913	18,324
March	15	2006			139,500	52,842	192,342	176,375		176,375	18,376
March	16	2006			141,856	52,121	193,978	176,600		176,600	18,412
March	17	2006			141,895	51,443	193,338	167,529		167,529	14,604
March	18	2006			142,886	51,031	193,917	186,455		186,455	18,421
March	19	2006			143,501	49,854	193,355	158,198		158,198	16,692
March	20	2006			144,423	49,115	193,538	192,316		192,316	17,069
March	21	2006			144,431	49,429	193,861	170,541		170,541	18,297
March	22	2006			144,299	49,563	193,862	178,284		178,284	15,039
March	23	2006			143,316	51,088	194,404	173,597		173,597	18,210
March	24	2006			142,828	51,267	194,095	177,856		177,856	18,281
March	25	2006			124,159	44,659	168,818	151,224		151,224	14,278
March	26	2006			125,162	45,616	170,778	153,895		153,895	14,804
March	27	2006			142,217	51,264	193,480	170,748		170,748	17,514
March	28	2006			142,198	51,140	193,338	176,598		176,598	15,688
March	29	2006			142,303	50,730	193,033	171,225		171,225	18,263
March	30	2006			141,456	50,526	191,981	186,583		186,583	18,886
March	31	2006			139,791	50,817	190,608	177,862		177,862	15,879
<b>Total Month</b>	ly Volumes	(gal)			4,377,424	1,559,939	5,937,363	5,405,223	0	5,405,223	522,172
Average Pump/Injection Rates (gpm)		n Rates (gpm)			98.1	34.9	133.0	121.1	0.0	121.1	11.7

NOTES:

gal: gallons gpm: gallons per minute RO: Reverse Osmosis

#### April 2006 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syst	em	Inje	RO Brine			
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
April	1	2006			142,451	50,326	192,777	168,803		168,803	14,589
April	2	2006			145,485	49,903	195,389	184,102		184,102	18,197
April	3	2006			142,247	49,701	191,948	176,989		176,989	14,395
April	4	2006			99,989	36,157	136,146	110,472		110,472	10,786
April	5	2006			125,105	45,824	170,929	177,792		177,792	15,070
April	6	2006			134,003	51,721	185,725	168,792		168,792	14,245
April	7	2006			136,603	50,265	186,868	145,376		145,376	19,667
April	8	2006			137,332	49,255	186,587	188,154		188,154	14,269
April	9	2006			141,507	49,558	191,064	176,761		176,761	18,361
April	10	2006			144,646	49,927	194,573	173,268		173,268	18,899
April	11	2006			144,609	49,958	194,568	174,880		174,880	17,806
April	12	2006			123,973	44,531	168,504	133,607		133,607	12,493
April	13	2006			143,120	51,594	194,714	188,280		188,280	19,127
April	14	2006			139,404	50,214	189,617	165,270		165,270	18,993
April	15	2006			143,130	51,798	194,928	178,565		178,565	16,930
April	16	2006			143,561	51,166	194,726	181,903		181,903	16,193
April	17	2006			143,577	51,018	194,595	184,968		184,968	18,719
April	18	2006			143,743	50,735	194,478	179,503		179,503	17,459
April	19	2006			141,572	51,143	192,715	149,587		149,587	20,424
April	20	2006			143,221	51,971	195,193	185,073		185,073	23,773
April	21	2006			143,515	51,441	194,955	174,954		174,954	18,125
April	22	2006			143,875	50,964	194,839	186,083		186,083	14,579
April	23	2006			144,057	50,695	194,752	171,504		171,504	18,147
April	24	2006			143,745	50,352	194,098	180,655		180,655	14,526
April	25	2006			143,903	49,937	193,840	174,410		174,410	18,188
April	26	2006			46,446	15,917	62,364	38,946		38,946	10,253
April	27	2006			144,171	50,864	195,035	186,754		186,754	21,901
April	28	2006			144,838	50,112	194,950	178,523		178,523	14,414
April	29	2006			145,083	49,356	194,440	177,921		177,921	14,415
April	30	2006			144,828	49,124	193,952	177,759		177,759	15,437
Total Month	nly Volumes	(gal)			4,103,740	1,455,527	5,559,267	5,039,655		5,039,655	500,381
Average Pump/Injection Rates (gpm)				95.0	33.7	128.7	116.7		116.7	11.6	

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

#### May 2006 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syst	Inje	RO Brine				
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
May	1	2006			144,303	49,862	194,164	182,130		182,130	14,190
May	2	2006			143,811	50,538	194,349	177,016		177,016	16,940
May	3	2006			142,830	49,076	191,907	174,173		174,173	15,338
May	4	2006			145,412	47,634	193,046	175,331		175,331	14,096
May	5	2006			145,803	47,213	193,015	153,137		153,137	18,828
May	6	2006			146,060	46,695	192,754	186,806		186,806	14,308
May	7	2006			145,999	46,763	192,762	176,820		176,820	14,266
May	8	2006			131,851	47,566	179,416	166,108		166,108	14,131
May	9	2006			136,151	50,220	186,371	166,015		166,015	14,015
May	10	2006			131,461	51,228	182,689	174,532		174,532	13,345
May	11	2006			122,494	50,874	173,368	173,593		173,593	19,484
May	12	2006			143,368	50,443	193,810	177,034		177,034	14,740
May	13	2006			132,787	45,473	178,260	155,959		155,959	15,352
May	14	2006			146,133	47,418	193,551	180,574		180,574	15,578
May	15	2006			146,170	48,558	194,728	182,502		182,502	16,041
May	16	2006			145,814	48,858	194,673	171,282		171,282	14,032
May	17	2006			144,069	48,293	192,362	182,097		182,097	18,003
May	18	2006			145,562	48,548	194,110	174,565		174,565	15,120
May	19	2006			145,837	48,111	193,948	185,404		185,404	13,986
May	20	2006			145,870	47,994	193,864	174,941		174,941	14,330
May	21	2006			122,198	42,011	164,208	146,111		146,111	15,699
May	22	2006			115,630	41,782	157,413	133,892		133,892	10,655
May	23	2006			143,352	51,387	194,739	180,884		180,884	14,168
May	24	2006			104,714	37,151	141,865	134,944		134,944	20,860
May	25	2006			127,065	43,719	170,784	146,974		146,974	20,775
May	26	2006			144,261	46,552	190,812	173,248		173,248	13,990
May	27	2006			145,409	49,662	195,070	181,106		181,106	17,764
May	28	2006			145,296	51,650	196,947	177,418		177,418	15,239
May	29	2006			144,907	52,523	197,429	184,620		184,620	14,594
May	30	2006			144,253	53,097	197,350	175,945		175,945	14,026
May	31	2006			142,629	52,087	194,715	180,667		180,667	17,051
Total Month	ly Volumes	(gal)			4,311,499	1,492,985	5,804,484	5,305,831		5,305,831	480,943
Average Pump/Injection Rates (gpm)		n Rates (gpm)			96.6	33.4	130.0	118.9		118.9	10.8

NOTES:

gal: gallons gpm: gallons per minute RO: Reverse Osmosis

#### June 2006 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syst	em	Inje	RO Brine			
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
June	1	2006			142,051	52,197	194,248	182,273		182,273	15,026
June	2	2006			144,594	52,965	197,558	175,749		175,749	16,147
June	3	2006			140,874	51,573	192,448	168,531		168,531	14,368
June	4	2006			139,191	52,838	192,029	172,608		172,608	15,033
June	5	2006			146,250	51,539	197,788	190,491		190,491	18,951
June	6	2006			147,596	44,389	191,985	177,753		177,753	14,963
June	7	2006			144,701	52,662	197,364	179,667		179,667	14,808
June	8	2006			136,101	50,507	186,608	158,294		158,294	19,356
June	9	2006			143,966	52,320	196,285	188,435		188,435	15,069
June	10	2006			145,203	52,150	197,353	177,270		177,270	20,588
June	11	2006			144,103	52,095	196,198	180,023		180,023	17,463
June	12	2006			113,652	48,621	162,273	145,142		145,142	17,294
June	13	2006			84,417	36,525	120,943	99,436		99,436	10,545
June	14	2006			108,386	34,700	143,086	125,707		125,707	17,680
June	15	2006			146,505	48,415	194,920	183,192		183,192	19,084
June	16	2006			144,650	47,777	192,427	178,216		178,216	21,125
June	17	2006			144,418	48,181	192,598	165,328		165,328	18,467
June	18	2006			144,067	48,769	192,836	169,605		169,605	19,581
June	19	2006			144,045	48,923	192,967	179,158		179,158	20,279
June	20	2006			144,269	49,089	193,358	162,946		162,946	19,444
June	21	2006			143,567	50,327	193,894	186,144		186,144	19,512
June	22	2006			143,591	50,223	193,813	168,759		168,759	19,492
June	23	2006			143,820	49,627	193,447	171,028		171,028	19,974
June	24	2006			133,406	45,418	178,824	159,634		159,634	20,495
June	25	2006			137,181	51,384	188,565	175,204		175,204	19,168
June	26	2006			136,484	52,994	189,479	162,983		162,983	19,020
June	27	2006			141,002	52,572	193,573	173,440		173,440	23,009
June	28	2006			141,405	52,615	194,020	176,612		176,612	19,113
June	29	2006			129,330	50,478	179,808	154,677		154,677	19,034
June	30	2006			130,139	51,489	181,628	162,290		162,290	16,616
Total Month	nly Volumes	(gal)			4,128,962	1,483,362	5,612,324	5,050,593		5,050,593	540,703
Average Pump/Injection Rates (gpm)				95.6	34.3	129.9	116.9		116.9	12.5	

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

Appendix D Operations and Maintenance Log

# APPENDIX D Semi Annual Operations and Maintenance Log January 1, 2006 through June 30, 2006 Interim Measures No. 3 Groundwater Treatment System

Records of IM-3 Operations and Maintenance activities are maintained onsite using operations software. Periods of planned and unplanned treatment system and resulting extraction system downtime between January 2006 and June 2006 attributed to system operations and maintenance are listed below.

## January 2006

- January 17, 2006 (planned): A scheduled shutdown of the extraction well system was conducted to complete the PE-1 pipeline construction tie-ins to the IM-3 facility. Additional IM-3 maintenance was completed concurrent with the construction tie-ins. The extraction well system was shut down at 8:08 am. The extraction system was restarted at 12:25 pm, at reduced pumping rates between 40 and 70 gpm. The pumping rate was increased to approximately 135 gpm by 8:30 am on January 18. Extraction system downtime was approximately 4 hours 17 minutes.
- January 21 and 22, 2006 (unplanned): The IM-3 extraction well system was shut-off at 12:26 am on Saturday, January 21. A hose ruptured during a clean-in-place of the spare microfilter modules, resulting in approximately 200 gallons of citric acid solution draining into the process drain tank (T-900), and being introduced back into the system. The citric acid affected the iron oxidation process and solids removal in the clarifier. The system operated in a re-circulation mode until plant conditions returned to normal. The extraction well system was re-started on Sunday, January 22, at a flow rate of 78 gpm at 12:31 pm and increased to 135 gpm at 7:05 pm. No non-compliant water was discharged into the injection wells during this event. Extraction system downtime was approximately 36 hours 5 minutes.
- January 25 and 26, 2006 (planned): Commissioning of extraction well PE-1 occurred on January 25, 2006 at an initial pumping rate of approximately 37 gpm. Full-time operation of extraction wells TW-3D and PE-1 at the target pumping rate of 135 gpm began on January 26, 2006. Extraction well TW-2D was taken offline.

## February 2006

• February 8, 14, 17, 24, and 26 (unplanned): Extraction well PE-1 was automatically shut down for short-periods due to low water level above the well pump. This alarm condition protects the submersible well pump from damage due to overheating. The well pump was re-started after groundwater conditions had sufficiently recovered in the well. Periods of PE-1 downtime occurred on February 8 (50 minutes), February 14 (10 minutes), February 17 (145 minutes), February 24 (250 minutes over two periods), and

February 26 (10 minutes). Extraction well TW-3D continued to operate during these periods of PE-1 downtime.

• February 25 (planned): The IM-3 extraction well system was shut-down at 2:53 am on February 25 while switching microfilter membrane modules. Extraction wells TW-3D and PE-1 were re-started at 3:55 pm. TW-3D was shut down again from 4:51 pm until 5:40 pm until normal operations resumed. Extraction system downtime (i.e., no extraction wells operating) was 1 hour 3 minutes.

## March 2006

- March 5, 8, 10, 11 and 15, 2006 (unplanned): Extraction well PE-1 was automatically shut down due to a low water level above the well pump. This alarm condition protects the submersible well pump from damage due to overheating. The well pump was restarted after groundwater levels had sufficiently recovered in the well. Periods of PE-1 downtime occurred on March 5 (9 minutes), March 8 (70 minutes), March 10 and 11 (overnight shutdown for 14 hours 54 minutes), and March 15 (11 minutes). Since March 15, the target pump rate from PE-1 was reduced from approximately 37 gpm to 36 gpm to reduce the potential for over-pumping in the well and resulting unplanned shutdown periods. Extraction well TW-3D continued to operate during each of these periods of PE-1 downtime and was temporarily increased to approximately 120 gpm during the longer downtime events until PE-1 was brought back into service.
- March 7, 2006 (unplanned): The extraction well system was shut down from 7:00 pm to 7:25 pm (26 minutes) due to power supply issues with City of Needles power.
- March 25 and 26, 2006 (unplanned): The extraction well system was shut down from 8:54 pm on March 25 to 2:42 am on March 26 to repair a pinhole leak on the reverse osmosis unit piping. Extraction system downtime was 5 hours 49 minutes.

## April 2006

- **April 4, 2006 (planned)**: The extraction well system was shut down from 10:24 a.m. until 4:50 p.m. to complete non-intrusive testing of the high-pressure piping on the reverse osmosis unit. Extraction system downtime was 6 hours, 26 minutes.
- **April 5, 2006 (unplanned)**: The extraction well system was shut down from 1:50 p.m. until 3:44 p.m. due to a power failure at the site. Extraction system downtime was 1 hour, 54 minutes.
- April 6, 2006 (unplanned): The extraction well system was shut down from 1:02 p.m. until 1:12 p.m. to switch from generator power back to Needles power. Extraction system downtime was 10 minutes.
- April 12, 2006 (unplanned): The extraction well system was shut down from 3:22 p.m. until 5:58 p.m. due to a pump motor failure on the reverse osmosis unit. Extraction system downtime was 2 hours, 36 minutes.
- April 14, 2006 (unplanned): The extraction well system was shut down from 3:41 p.m. until 3:56 p.m. and from 6:27 p.m. to 6:37 p.m. due to a power failure at the site. Extraction system downtime on April 14 was 25 minutes.

- April 19, 2006 (unplanned): The IM No. 3 extraction well system was shut down from 11:42 a.m. until 11:51 a.m. during a change out of microfilter modules. Extraction system downtime was 9 minutes.
- April 26, 2006 (planned): The extraction well system was shut down from 2:11 a.m. until 6:20 p.m. to complete general facility maintenance. Extraction system downtime was 16 hours, 9 minutes.

## May 2006

- May 9, 2006 (unplanned): The extraction well system was shut down from 12:21 a.m. until 12:55 a.m. due to a Needles power failure at the site. Another shut down occurred from 10:23 a.m. to 10:33 am to return operations from generator power to Needles power. Extraction system downtime was 44 minutes.
- May 21, 2006 (unplanned): The extraction well system was shut down from 11:47 a.m. to 1:17 pm to switch from inline microfilter modules (inline) to clean offline microfilter modules. Another shutdown occurred from 3:04 p.m. to 5:01 p.m. due to power failure at the site. Extraction system downtime was 3 hours 27 minutes.
- May 22, 2006 (unplanned): The extraction well system was shut down from 2:40 a.m. to 5:16 a.m. due to power supply issues as the site. Another shut down occurred from 6:41 p.m. to 8:21 p.m. due to a flow control valve restricting flow to Injection Well IW-2. Extraction system downtime was 4 hours 16 minutes.
- May 24, 2006 (planned): The IM No. 3 extraction well system was shut down from 6:21 a.m. until 12:42 a.m. to install a rental reverse osmosis unit. The rental until will provide temporary service as required while upgrades in piping are completed on the permanent reverse osmosis unit over the next two to three months. Extraction system downtime was 6 hours 21 minutes.
- May 25, 2006 (planned): The IM No. 3 extraction well system was shut down from 9:30 a.m. until 11:46 a.m. to return service to the permanent reverse osmosis unit after operating the temporary reverse osmosis unit for approximately 24 hours. Extraction system downtime was 2 hours 16 minutes.

## June 2006

- June 1, 2006 (unplanned): The extraction well system was shut down from 2:29 a.m. until 2:40 a.m. to train new operators on re-starting the facility on back-up power. Extraction system downtime was 11 minutes.
- June 3, 2006 (unplanned): The extraction well system was shut down from 2:23 pm to 2:27 p.m. to switch to backup power due to sagging power from Needles Electric and from 4:38 pm to 5:00 p.m. to switch back to Needles power once proper power levels were restored. Extraction system downtime was 26 minutes.
- June 4, 2006 (unplanned): The extraction well system was shut down from 11:29 a.m. to 11:44 a.m. to switch to backup power due to sagging power from Needles Electric and from 6:10 p.m. to 6:24 p.m. to switch back to Needles power once proper power levels were restored. Extraction system downtime was 29 minutes.

- June 6, 2006 (unplanned): The extraction well system was shut down from 10:18 a.m. to 10:22 a.m. to re-start the extraction well system after a low water level alarm in PE-1 and from 2:48 p.m. to 2:54 p.m. to train new operators on re-starting the facility on back-up power. Extraction system downtime was 10 minutes.
- June 8, 2006 (planned): The extraction well system was shut down from 9:24 a.m. to 10:36 a.m. to switch from the east bank of microfilter modules to the west bank of microfilter modules. Extraction system downtime was 1 hour 12 minutes.
- June 12, 2006 (unplanned): The extraction well system was shut down from 1:52 p.m. to 3:41 p.m. to switch from the west bank of microfilter modules to the east bank of microfilter modules. Extraction system downtime was 1 hour 49 minutes.
- June 13 and 14, 2006 (planned): The extraction well system pump rate was reduced at 10:40 a.m. on June 13, 2006 due to suspected residual polymer fouling of the east bank of microfilter modules that were brought into service on June 12. The west bank of modules that were taken out of service on June 12 were immediately cleaned using a caustic and sodium hypochlorite solutions to remove the suspected foulants. The reduced pump rate ranged between 80 and 90 gpm during this time. The west bank of modules was returned to service after cleaning was complete on June 14, 2006 (see June 14 downtime below) and the pump rate was back to the target rate of 135 gpm by 1:40 p.m.
- June 14, 2006 (unplanned): The extraction well system was shut down from 10:26 a.m. to 11:16 a.m. and from 12:23 p.m. to 1:02 p.m. to switch from the east bank of microfilter modules to the west bank of microfilter modules. Extraction system downtime was 1 hour 29 minutes.
- June 24, 2006 (unplanned): The extraction well system was shut down from 9:00 p.m. to 10:48 p.m. due to a loss of Needles Power and difficulties re-starting on back-up power. Extraction system downtime was 1 hour 36 minutes.
- June 25, 2006 (unplanned): The extraction well system was shut down from 6:13 a.m. to 6:26 a.m. to switch back to Needles Power and from 9:54 a.m. to 10:07 a.m. return to back-up power due to continuing sagging power supply. Extraction system downtime was 26 minutes.
- June 26, 2006 (unplanned): The extraction well system was shut down from 8:53 a.m. to 8:58 a.m. to switch back to Needles Power and from 12:43 p.m. to 1:06 p.m. for inspection of the onsite transformer by Needles Power. Extraction system downtime was 28 minutes.
- June 29, 2006 (unplanned): The extraction well system was shut down from 9:10 a.m. to 10:20 a.m. and from 10:27 p.m. to 11:01 p.m. to inspect and replace the air relief valves (ARVs) along the extraction well and brine pipelines between the MW-20 Bench and IM-3 Facility. The replacement of ARVs was completed as a follow-up preventative measure after replacing a leaking ARV on the treated water pipeline. Extraction system downtime was 1 hour 42 minutes.

• **June 30, 2006 (unplanned)**: The extraction well system was shut down from 2:20 m. to 2:52 a.m., 7:33 a.m. to 7:53 a.m., and from 7:37 p.m. to 8:08 p.m. due to power supply losses from Needles Power. Extraction system downtime was 1 hour 52 minutes.