

Curt Russell Topock Onsite Project Manager Environmental Affairs Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: <u>gcr4@pge.com</u>

January 13, 2006

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Board Order R7-2004-0103 WDID No. 7B 36 2033 001 Interim Measure No. 3 Groundwater Treatment System Discharge to Injection Well(s) – Combined Report December 2005 Monitoring Report Fourth Quarter 2005 Monitoring Report Semi-Annual Operation and Maintenance Report PG&E Topock Compressor Station, Needles, California

Dear Mr. Perdue:

Enclosed is the Board Order R7-2004-0103 Combined Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System. This Combined Report encompasses the following requirements:

- December 2005 Monitoring Report,
- Fourth Quarter 2005 Monitoring Report, and
- Semi-Annual Operation and Maintenance Report for July 1, 2005 through December 31, 2005.

This Combined Report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued by the Colorado River Basin Regional Water Quality Control Board (Water Board) under Board Order R7-2004-0103.

WDRs under Board Order R7-2004-0103 apply to IM No. 3 Treatment System discharge by subsurface injection wells only. In addition, the Water Board issued WDRs for IM No. 3 Treatment System discharge to the Colorado River (Board Order R7-2004-0100) and IM No. 3 Treatment System discharge to the PG&E Compressor Station (Board Order R7-2004-0080). Page 2 January 13, 2006

To date, there has been no IM No. 3 Treatment System discharge to the Colorado River or the PG&E Compressor Station. PG&E has no plans to discharge IM No. 3 Treatment System effluent to the Colorado River or the PG&E Compressor Station at this time. Reporting of Board Order R7-2004-0080 and Board Order R7-2004-0100 activities are submitted under separate covers.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Jahmen

Curt Russell Topock Onsite Project Manager

Enclosures:

Board Order R7-2004-0103 Combined Report for the IM No. 3 Groundwater Treatment System, including the December 2005 Monitoring Report, the Fourth Quarter 2005 Monitoring Report, and the Semi-Annual Operation and Maintenance Report.

cc: José Cortez, RWQCB Liann Chavez, RWQCB Tom Vandenberg, RWQCB Norman Shopay, DTSC

December 2005 Monthly Report, Fourth Quarter 2005 Report, and Semi-Annual Operation and Maintenance Report for July 1 –December 31, 2005

Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2004-0103 WDID No. 7B 36 2033 001 PG&E Topock Compressor Station Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

January 13, 2006

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

Combined Report December 2005 Monthly Report, Fourth Quarter 2005 Report, and Semi-Annual Operation and Maintenance Report July 1 – December 31, 2005

Interim Measures No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2004-0103 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

January 13, 2006

This report was prepared under the supervision of a California Certified Professional Engineer

Dennis Fink, P.E. No. 68986 Project Engineer

Contents

Acro	nyms a	nd Abbreviations	v
1.0	Intro	oduction	1
2.0	Sam	pling Station Locations	2
3.0	Dece	ember 2005 Monitoring and Fourth Quarter 2005 Monitoring	3
	3.1	Description of Activities	3
	3.2	Groundwater Treatment System Flow Rates	4
	3.3	Sampling and Analytical Procedures	4
4.0	Mon	itoring Analytical Results	
5.0		i-Annual Operation and Maintenance	
	5.1	Monthly Analytical Results	7
	5.2	Flowmeter Calibration Records	7
	5.3	Volumes of Groundwater Treated	8
	5.4	Groundwater Monitoring Data	9
	5.5	Residual Solids Generated (Sludge)	9
	5.6	Reverse Osmosis Concentrate Generated	9
	5.7	Summary of WDR Violations	10
	5.8	Operation and Maintenance Required Shutdowns	
	5.9	Treatment Plant Modifications	
6.0	Con	clusions	
7.0		ification	

Tables

- 1 Sampling Station Descriptions
- 2 Flow Monitoring Results
- 3 Board Order No. R7-2004-0103 Waste Discharge Requirements Influent Monitoring Results
- 4 Board Order No. R7-2004-0103 Waste Discharge Requirements Effluent Monitoring Results
- 5 Board Order No. R7-2004-0103 Waste Discharge Requirements Reverse Osmosis Concentrate Monitoring Results
- 6 Board Order No. R7-2004-0103 Waste Discharge Requirements Sludge Monitoring Results
- 7 Board Order No. R7-2004-0103 Waste Discharge Requirements Monitoring Information

Figures

1 IM No. 3	Project Area Site Features
TP-PR-10-10-03	Effluent Metering Locations
TP-PR-10-10-11	Influent Metering Locations
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
TP-PR-10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations

Appendixes

- A December 2005 Laboratory Analytical Reports
- B Flowmeter Calibration Records
- C Daily Volumes of Groundwater Treated
- D Operations and Maintenance Log

Acronyms and Abbreviations

BLM	United States Bureau of Land Management
DTSC	California Department of Toxic Substances Control
gpm	gallons per minute
IM	Interim Measure
mg/kg	milligram per kilogram
mg/L	milligram per liter
MBC	MBC Applied Environmental Sciences Laboratories
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
STL	Severn Trent Laboratories, Inc.
Truesdail	Truesdail Laboratories, Inc.
Water Board	California Regional Water Quality Control Board, Colorado River Basin Region
WDR	Waste Discharge Requirements

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as the IM No. 3 groundwater treatment system. Figure 1 provides a map of the project area.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2004-0103 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. The Monitoring and Reporting Program (MRP) under the order requires monthly monitoring reports to be submitted by the 15th day of the following month, and quarterly and semi-annual reports by January 15. **This IM No. 3 groundwater treatment system combined report includes the December 2005 Monthly Report, the Fourth Quarter 2005 Report, and the Semi-Annual Operation and Maintenance Report for the period of July 1, 2005 through December 31, 2005.**

In addition to Board Order No. R7-2004-0103, the Water Board issued WDRs for IM No. 3 Treatment System discharge to the Colorado River (Board Order R7-2004-0100) and IM No. 3 Treatment System discharge to the PG&E Compressor Station (Board Order R7-2004-0080). To date, there has been no IM No. 3 Treatment System discharge to the Colorado River or the PG&E Compressor Station. PG&E has no plans to discharge IM No. 3 Treatment System effluent to the Colorado River or the PG&E Compressor Station at this time. Reporting of Board Order R7-2004-0080 and Board Order R7-2004-0100 activities will be submitted under separate cover.

The treatment system initially operated between July 25, 2005 and July 28, 2005; this was the startup phase as mandated by the order's Waste Discharge Requirements (WDRs). Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with the WDRs. Full-time operation of the treatment system commenced in August 2005.

Table 1 lists the locations of sampling stations. The locations of the sampling stations are provided in process and instrumentation diagrams TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, which were previously provided in PG&E's Sampling Locations letter to the Water Board Executive Officer, dated June 29, 2005. These diagrams are provided again at the end of this report.

3.0 December 2005 Monitoring and Fourth Quarter 2005 Monitoring

IM No. 3 monitoring activities between October 1, 2005 and November 30, 2005 are included in the following reports:

- October 2005 Monthly Report for Interim Measures No. 3 Groundwater Treatment System, Waste Discharge Requirements Order No. R7-2004-0103, PG&E Topock Compressor Station, Needles California. Submitted to the Water Board November 15, 2005.
- November 2005 Monthly Report for Interim Measures No. 3 Groundwater Treatment System, Waste Discharge Requirements Order No. R7-2004-0103, PG&E Topock Compressor Station, Needles California. Submitted to the Water Board December 15, 2005.

Quarterly monitoring requirements, in addition to monthly monitoring requirements, are limited to sampling and analysis of the sludge generated during the quarter. The first fourth quarter 2005 sludge sampling and analysis event was conducted in November 2005 and was reported in the November 2005 Monitoring Report. The second and final fourth quarter 2005 sludge sampling and analysis event was conducted December 21, 2005, and is described in this report.

3.1 Description of Activities

During December 2005, the IM No. 3 groundwater treatment system influent consisted of groundwater extracted from extraction wells TW-2D and TW-3D. Extraction well TW-3D was brought into full-time operation on December 20, 2005 after completing construction and pump testing of the extraction well. Extraction well TW-3D was installed near TW-2D at the direction of the DTSC to provide additional pumping capacity in this area. Treatment system effluent was discharged to injection well IW-2. Figure 1 shows the locations of the IM-3 system extraction and injection wells.

Approximately 18,000 gallons of well development and test water generated from the installation of extraction well TW-3D and temporarily stored in a holding tank was transported and treated at the IM-3 facility during December 2005 after obtaining Water Board approval.

3.2 Groundwater Treatment System Flow Rates

The December 2005 treatment system monthly average flow rates are presented in Table 2. System influent flow rate was measured by flow meters at groundwater extraction wells TW-2D, TW-2S, and TW-3D (Figure TP-PR-10-10-03). The treatment system effluent flow rate was measured by flow meters in the piping into injection well IW-2 (Figure TP-PR-10-10-11), and in the piping from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). Injection well IW-3 was not used during December 2005. The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-PR-10-10-08).

Periods of treatment system and resulting extraction system downtime during December 2005 are listed below.

- **December 1 and 2, 2005**: Extraction well TW-2D was shut down to connect TW-3D piping in Valve Vault No. 1 and subsequently to repair a broken mixing shaft on the polymer feed system. Extraction system downtime for these events was 8 hours 30 minutes.
- **December 13, 2005**: Extraction well TW-2D was shut down for 27 minutes due to ferrous chloride meter testing at the IM-3 facility.
- **December 15, 2005**. Extraction well TW-2D was shut down at 2:40 pm to allow the groundwater levels in the aquifer to return to ambient conditions before starting the TW-3D pump test at 7:39 pm. Extraction system downtime was 4 hours 59 minutes.
- **December 18, 2005**: Extraction well TW-3D was shut down from 2:43 pm to 5:13 pm due to a combination of power failure, high turbidity readings during system re-start, and changing out microfilter membrane modules. Extraction system downtime was 2 hours 30 minutes.
- **December 29, 2005**: Extraction wells TW-2D and TW-3D were shut down from approximately 9:30 am to 2:29 pm to complete a partial chemical cleaning of the microfilter membranes. Extraction system downtime was 4 hours 59 minutes.

3.3 Sampling and Analytical Procedures

Monitoring samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail) or Severn Trent Laboratories, Inc. (STL). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a cooler at 4° Celsius and transported to Truesdail or STL via courier service under chain-of-custody documentation. Truesdail transported a portion of the sludge sample to MBC Applied Environmental Sciences Laboratories (MBC) for the aquatic bioassay analysis. Truesdail is certified by the California Department of Health Services (Certification #1237) under the State of California's Environmental Laboratory Accreditation Program. STL is certified by the California Department of Health Services (Certification #1118) under the Environmental Laboratory Accreditation Program. MBC is certified by the California Department of Health Services (Certification # 1788) under the State of California's Environmental Laboratory Accreditation # 1788) under the State of California's Environmental Laboratory Accreditation Program.

All analyses were performed in accordance with the latest edition of the "Guidelines Establishing Test Procedures for Analysis of Pollutants" (40 CFR Part 136), promulgated by the United States Environmental Protection Agency.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling was conducted in accordance with the sampling frequency required by the MRP. The sampling analytical results are shown in Tables 3, 4, 5 and 6, respectively.

Groundwater quality is being monitored in observation and compliance wells according to procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* (CH2M HILL 2005). Reporting of quarterly groundwater monitoring analytical results will be in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

4.0 Monitoring Analytical Results

The analytical results and laboratory reports for the IM No. 3 groundwater treatment system monitoring program between October 1, 2005 and November 30, 2005 were provided in previous monthly reports submitted to the Water Board (see Section 3.0 for a complete listing of reports).

The December 2005 analytical results from groundwater treatment system influent, effluent, reverse osmosis concentrate, and sludge samples are presented in Tables 3, 4, 5, and 6 respectively. The December 2005 laboratory reports prepared by the certified analytical laboratory(ies) are presented in Appendix A.

In accordance with the WDR reporting requirements, the following sampling frequency schedule was followed during December 2005:

- The influent was sampled monthly, on December 7, 2005. Analyses for nitrate and nitrite were conducted on December 13, 2005.
- The effluent was sampled weekly, on December 7, 14, 21, and 28, 2005. Analyses for nitrate and nitrite were conducted on December 13, 2005.
- The reverse osmosis concentrate was sampled monthly, on December 7, 2005.
- A sludge sample was collected on December 21, 2005. WDR requirements state that sludge is scheduled to be sampled each time sludge is transported offsite unless sludge is transported offsite more frequently than quarterly, in which case the sampling frequency will be quarterly.

Table 7 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

5.0 Semi-Annual Operation and Maintenance

Pursuant to the WDRs Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Board Office twice annually.

This section includes the Semi-Annual Operation and Maintenance Report for the IM No. 3 groundwater treatment system for the period July 1, 2005 to December 31, 2005.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational process logic controller (PLC) data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via a data historian. Operations and Maintenance records are also archived using maintenance software. The following sections summarize the operations and maintenance activities during this semi-annual reporting period.

5.1 Monthly Analytical Results

System monitoring analytical results for July 2005 through November 2005 were previously provided in the appropriate monthly monitoring report (see Section 3.0 for complete listing of reports). The December 2005 analytical results are summarized in Tables 3 through 6 and laboratory reports are provided in Appendix A.

There were no occurrences of non-compliant discharge to the injection wells during the July 1, 2005 to December 31, 2005 reporting period.

5.2 Flowmeter Calibration Records

The IM No. 3 groundwater treatment system flowmeter calibration records are provided in Appendix B. The following flowmeters were used to record the flows to each area of the treatment system:

- Influent flowmeter FIT-100 which records flow from extraction well TW-2S;
- Influent flowmeter FIT-101 which records flow from extraction well TW-2D;
- Influent flowmeter FIT-102 which records flow from extraction well TW-3D;

- Effluent flowmeter FIT-1202 which records flow to injection well IW-2;
- Effluent flowmeter FIT-1203 which records flow to injection well IW-3; and
- Effluent flowmeter FIT-702 which records combined flow to injection wells IM-2 and IM-3.
- Reverse osmosis concentrate flowmeter FIT-701 recorded flow to the reverse osmosis concentrate storage tank.

Between August 14, 2005 at 10:50 am and August 15 at 8:30 am, continuous influent and effluent flow data were not automatically recorded and archived while computer programming modifications were in progress. The treatment system shut down due to a power failure on August 15 at approximately 2:00 am. The influent flow that was not recorded between August 14, 2005 at 10:50 am and August 15 at 2:00 am was estimated to be approximately 62,300 gallons assuming an average system influent flowrate of about 66 gpm observed on August 14, 2005. The effluent flow during this same time period was estimated to be approximately 64,200 gallons assuming an average system effluent flowrate of about 68 gpm observed on August 14, 2005. System effluent flow rates will vary depending on system operation to the injection wells.

The reverse osmosis concentrate flowmeter was not accurately reporting flowrates from August 1 to August 18, 2005. The reverse osmosis concentrate flow meter was repaired August 18, 2005 at 4:00 PM. The average flow rate for reverse osmosis concentrate during August 2005 was estimated by calculating the August 1 to August 18, 2005 flowrate based on flowrate data from August 18 to August 31, 2005.

Communications to injection well flow meters FIT-1202 and FIT-1203 located at the injection well heads for IM-2 and IM-3 malfunctioned in December 2005. Repairs are anticipated to be completed in January 2006 to restore communications to the flow meters. During December 2005, flow meter FIT-702 was used to calculate effluent volumes and flow rates. This flow meter is located at the IM-3 facility and measures the total flow from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04).

5.3 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated are provided in Appendix C. An estimated volume of 18,905,333 gallons of groundwater was extracted and treated between August 1, 2005 after completing system start-up and December 31, 2005. Approximately 16,966,960 gallons of treated groundwater was injected back into the Alluvial Aquifer and approximately 1,739,339 gallons of water was treated offsite as reverse osmosis concentrate (i.e., brine). The differences in the estimated influent volumes and the sum of effluent and reverse osmosis concentration volumes is approximately one percent over the six month period, which is within the range of acceptable accuracy considering the margin of error for on-site instrumentation, the water contained within the sludge, and differences in the inventory of water in the treatment system between the beginning and end of each reporting period.

5.4 Groundwater Monitoring Data

Groundwater quality is being monitored in observation and compliance wells according to procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* (CH2M HILL 2005). Reporting of quarterly groundwater monitoring analytical results is issued separately to the Water Board, in conjunction with groundwater level maps of the same monitoring wells.

5.5 Residual Solids Generated (Sludge)

Three containers of residual solids (i.e., sludge) were sampled and shipped off site for disposal during July 1, 2005 to December 31, 2005.

- Sampled September 22, 2005, analytical results were provided in the September 2005 Monitoring Report; approximately 18 cubic yards of sludge was shipped off site on October 28, 2005 to Chemical Waste Management's Kettleman Hills facility for disposal as a non-RCRA hazardous waste.
- Sampled November 16, 2005, analytical results were provided in the November 2005 Monitoring Report; approximately 14 cubic yards of sludge was shipped off site on December 16, 2005 to Chemical Waste Management's Kettleman Hills facility for disposal as a non-RCRA hazardous waste.
- Sampled December 21, 2005, analytical results are presented in Table 6 of this report and the laboratory report is provided in Appendix A; approximately 14 cubic yards of sludge was shipped off site date on January 6, 2006 to Chemical Waste Management's Kettleman Hills facility for disposal as a non-RCRA hazardous waste.

5.6 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix C, as measured by flowmeter FIT-701 (Figure TP-PR-10-10-08). Between July 1, 2005 and December 31, 2005, approximately 1,739,339 gallons of reverse osmosis concentrate was transported to U.S. Filter Corporation in Los Angeles, California for disposal based on onsite metering.

5.7 Summary of WDR Violations

No WDRs violations were identified during the July 1, 2005 to December 31, 2005 reporting period; no corrective actions were required.

5.8 Operation and Maintenance Required Shutdowns

A summary of the operation or maintenance issues that required shutting down the treatment system during this semi-annual reporting period is provided in Appendix D.

5.9 Treatment Plant Modifications

There were no treatment plant modifications that affected the capacity or performance of the extraction and treatment system during the July 1, 2005 to December 31, 2005 reporting period.

The following modifications that did not affect the capacity or performance of the extraction and treatment system were made:

- As described in PG&E's letter to the Water Board Executive Officer dated July 28, 2005, the groundwater treatment system effluent sampling station used for the startup test differed from the effluent sampling station proposed in the June 29, 2005 letter in that startup effluent samples were collected upstream of the Treated Water Tank (T-700), rather than downstream of the tank. The need for an alternate effluent sampling station for the startup testing period was caused by the temporary re-routing of reverse osmosis concentrate (brine) into the treated water tank while waste profiling was being performed.
- As described in PG&E's letter to the Water Board Executive Officer dated July 28, 2005, startup effluent samples from the alternate effluent sampling station were collected as composite samples over a 40-minute period to capture variability in effluent conductivity. This sampling approach is representative of the normal treatment system effluent and meets the requirements of WDR Provision 25. The sampling station proposed in the June 29, 2005 letter has been used as the effluent sampling station for compliance monitoring since injection of effluent began.
- In a letter dated September 16, 2005, DTSC directed PG&E to install extraction well TW-3D to provide redundant pumping capacity for TW-2D and allow for extraction of groundwater from the deep portion of the alluvial aquifer up to 135 gpm. DTSC and the United States Bureau of Land Management (BLM) subsequently approved work plans for the extraction well installation and conveyance piping and power supply in October 2005. The extraction well was installed in October 2005 and completion of conveyance piping and power

supply and initial well testing was completed by December 19, 2005. TW-3D began full-time operation on December 20, 2005.

• Extraction Well PE-1 was installed in March 2005 per DTSC direction. A Final Work Plan to construct conveyance piping and power supply from PE-1 to the IM-3 treatment system was submitted to the DTSC and BLM on July 29, 2005. DTSC conditionally approved the work plan in October 5, 2005 and BLM approved the work plan on December 9, 2005. Construction of the conveyance piping and power supply began on December 12, 2005. It is anticipated that construction of the pipeline will be completed in late January 2006 and extraction well PE-1 will be brought into operation in combination with TW-3D or TW-2D.

6.0 Conclusions

There were no exceedances of the effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period, and no events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units were identified during the reporting period.

7.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 12, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature: _	behumn
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Onsite Project Manager
Date:	January 13, 2006

Tables

TABLE 1	
Sampling Station Descriptions	
December 2005 Report for IM No. 3 Groundwater Treatment System	

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-PR-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-PR-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-PR-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-PR-10-10-06).

Note: ^a The sample event is included at the end of the sample ID (e.g. SC-100B-WDR-015).

TABLE 2 Flow Monitoring Results December 2005 Report for IM No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,d}	System Effluent ^{b,d}	Reverse Osmosis Concentrate ^{c,d}
Average Monthly Flowrate (gpm)	111.1	103.5	7.5

Note:

gpm: gallons per minute.

^a Extraction wells TW-2D and TW-3D were operated during December 2005.

^b All effluent was discharged into injection well IW-2. Flow meter readings from FIT-702 were used in December 2005 to record system effluent due to communication difficulties with FIT-1202 at the injection wellhead.

^c Reverse Osmosis flow meter reading from FIT-701.

^d The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates is approximately 0.4 percent, which is within the range of acceptable accuracy considering the margin of error for onsite instrumentation, the water contained within the sludge, and differences in the inventory of water in the treatment system between the beginning and end of the reporting period.

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Influent Monitoring Results a December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Samplin	ng Frequency											N	Ionthly											
Sample ID	Analytes Units ^b Date	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	рН pHunits	Chromium	Hexavalent Chromium µg/L	Aluminium µg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic μg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	Lead µg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc µg/L
SC-100B-WDR-024	12/7/2005	5840	ND (0.1)	8780	7.40	3670	3600	ND (52)	ND (0.5)	ND (3.0)	ND (5.0)	ND (300)	1.46	ND (10)	2.86	ND (2.0)	ND (500)	19.3	ND (20)			666	ND (300)	43.7
SC-100B-WDR-024R	R 12/13/2005																			4.88	0.012			

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter NTU = nephelometric turbidity units

 μ mhos/cm = micromhos per centimeter ND = parameter not detected at the listed reporting limit J = concentration or reporting limits estimated by laboratory or validation

^a Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

^b Units reported in this table are those units required in the WDRs

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Effluent Monitoring Results a

December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

WDRs Effluent Limits ^b	Ave. Monthly Max Daily		NA NA	NA NA	6.5-8.4 6.5-8.4	25 50	8 16	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Required Sampl	ling Frequency			W	eekly											Mont	hly							
Sample ID	Analytes Units ^c Date	TDS mg/L	Turbidity NTU	Specific Conductanc µmhos/cm	ce pH pHunits	Chromium	Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic μg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	Lead µg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc µg/L
SC-700B-WDR-024	4 12/7/2005	4810	ND (0.1)	7410	7.66	ND (1.0)	ND (1.0)	ND (52)	ND (0.5)	ND (3.0)	ND (5.0)	ND (300)	1.42	ND (10)	2.31	ND (2.0)	ND (500)	12.2	ND (20)			526	ND (300)	90.5
SC-700B-WDR-024	R 12/13/2005																			4.18	0.005			
SC-700B-WDR-025	5 12/14/2005	4590	ND (0.1)	7060	7.81	ND (1.0)	ND (1.0)																	
SC-700B-WDR-026	6 12/21/2005	4330	ND (0.1)	8180	7.63	ND (1.0)	ND (1.0)																	
SC-700B-WDR-027	7 12/28/2005	4490	ND (0.1)	8230	7.63	ND (1.0)	ND (1.0)																	

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program NA = not applicable $\mu g/L$ = micrograms per liter mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limit

J = concentration or reporting limits estimated by laboratory or validation

^a Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

^b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.

^c Units reported in this table are those units required in the WDRs

Required Sampling Freque	псу										Mont	hly										
Analyte Units Sample ID Date	ь ^{' D}	Specific S Conductance L µmhos/cm	e pH pHunits		Hexavalent Chromium mg/L	Antimony mg/L	Arsenic mg/L			Cadmium mg/L	Cobalt mg/L	Copper mg/L	Fluoride mg/L	Lead mg/L	Molybdenum mg/L	Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
SC-701-WDR-024 12/7/2005	2350	0 38500	7.72	ND (0.001)	0.0029	ND (0.003)	ND (0.0052	2)ND (0.3)	ND (0.0026)	ND (0.0026)	ND (0.0052)	ND (0.01)	10.8	ND (0.002	6) 0.0621	ND (0.0002)	ND (0.02)	0.0348	ND (0.0052	2) ND (0.002	6) 0.0168	ND (0.02)

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program µg/L = micrograms per liter mg/L = milligrams per liter µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limit J = concentration or reporting limits estimated by laboratory or validation

^a Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

^b Units reported in this table are those units required in the WDRs

TABLE 6 Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sam	pling Frequency										Each Ti	me Sludg	e is Transpo	rted Offsite	c d					
	Analytes		Hexavalent Chromium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Fluoride	Lead	Molybdenum	Mercury	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Sample ID	Date Units b	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SC-Sludge-WDR-026	12/21/2005	34000	130	ND (69)	49.0	93.0	ND (5.7)	ND (5.7)	ND (57)	87.0	11.8	ND (5.7) 93.0	2.30	49.0	ND (5.7)	ND (11)	ND (11)	100	36.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program ND = parameter not detected at the listed reporting limit J = concentration or reporting limits estimated by laboratory or validation mg/kg = milligrams per killogram mg/L = milligrams per liter

^a Sampling Location for all Sludge Samples is the Sludge Collection Tanks (see attached P&ID TP-PR-10-10-06)

^b Units reported in this table are those units required in the WDR

^c Unless transport is more frequent than monthly, in which case the sampling frequency shall be monthly

^d Quarterly aquatic bioassay test was performed on sludge sample collected November 16, 2005, and reported in the November Monthly Monitoring Report submitted December 15, 2005.

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-024	Joseph Ledbetter	12/7/2005	1:15:00 PM	TLI	EPA 120.1	SC	12/8/2005	Alex Hernandez
					TLI	EPA 150.1	PH	12/8/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/8/2005	Emilia Haley
					TLI	EPA 180.1	TRB	12/8/2005	Gautam Savani
					TLI	EPA 300.0	FL	12/9/2005	lordan Stavrev
					TLI	EPA 300.0	SO4	12/9/2005	lordan Stavrev
					TLI	EPA 350.2	NH3N	12/8/2005	Alex Hernandez
					TLI	EPA 6010B	AL	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	ZN	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	NI	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	MN	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	FE	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	CRT	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	В	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	BA	12/12/2005	Riddhi Patel
					TLI	SW 6020A	SB	12/13/2005	Victoria Than
					TLI	SW 6020A	PB	12/9/2005	Victoria Than
					TLI	SW 6020A	AS	12/9/2005	Victoria Than
					TLI	SW 6020A	CU	12/9/2005	Victoria Than
					TLI	SW 6020A	MO	12/9/2005	Victoria Than
					TLI	SW 7199	CR6	12/8/2005	Jorge Arriaga
SC-100B	SC-100B-WDR-024R	Joseph Ledbetter	12/13/2005	3:00:00 PM	TLI	EPA 300.0	NO3N	12/14/2005	lordan Stavrev
					TLI	EPA 354.1	NO2N	12/14/2005	Hope Trinidad
SC-700B	SC-700B-WDR-024	Joseph Ledbetter	12/7/2005	1:30:00 PM	TLI	EPA 120.1	SC	12/8/2005	Alex Hernandez
					TLI	EPA 150.1	PH	12/8/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/8/2005	Emilia Haley
					TLI	EPA 180.1	TRB	12/8/2005	Gautam Savani
					TLI	EPA 300.0	FL	12/9/2005	lordan Stavrev
					TLI	EPA 300.0	SO4	12/9/2005	lordan Stavrev
					TLI	EPA 350.2	NH3N	12/8/2005	Alex Hernandez
					TLI	EPA 6010B	AL	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	MN	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	FE	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	CRT	12/13/2005	Riddhi Patel
					TLI	EPA 6010B	BA	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	В	12/12/2005	Riddhi Patel

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-024	Joseph Ledbetter	12/7/2005	1:30:00 PM	TLI	EPA 6010B	ZN	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	NI	12/12/2005	Riddhi Patel
					TLI	SW 6020A	PB	12/9/2005	Victoria Than
					TLI	SW 6020A	SB	12/13/2005	Victoria Than
					TLI	SW 6020A	MO	12/9/2005	Victoria Than
					TLI	SW 6020A	CU	12/9/2005	Victoria Than
					TLI	SW 6020A	AS	12/9/2005	Victoria Than
					TLI	SW 7199	CR6	12/8/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-024R	Joseph Ledbetter	12/13/2005	3:00:00 PM	TLI	EPA 300.0	NO3N	12/14/2005	lordan Stavrev
					TLI	EPA 354.1	NO2N	12/14/2005	Hope Trinidad
SC-700B	SC-700B-WDR-025	Joseph Ledbetter	12/14/2005	1:20:00 PM	TLI	EPA 120.1	SC	12/15/2005	Emilia Haley
					TLI	EPA 150.1	PH	12/15/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/15/2005	Emilia Haley
					TLI	EPA 180.1	TRB	12/15/2005	Gautam Savani
					TLI	EPA 6010B	CRT	12/19/2005	Riddhi Patel
					TLI	SW 7199	CR6	12/15/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-026	Brian Dobbs	12/21/2005	2:55:00 PM	TLI	EPA 120.1	SC	12/23/2005	Alex Hernandez
					TLI	EPA 150.1	PH	12/22/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/22/2005	Emilia Haley
					TLI	EPA 180.1	TRB	12/22/2005	Gautam Savani
					TLI	EPA 6010B	CRT	12/27/2005	Riddhi Patel
					TLI	SW 7199	CR6	12/22/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-027	Brian Dobbs	12/28/2005	1:30:00 PM	TLI	EPA 120.1	SC	12/29/2005	Alex Hernandez
					TLI	EPA 150.1	PH	12/29/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/29/2005	Emilia Haley
					TLI	EPA 180.1	TRB	12/29/2005	Gautam Savani
					TLI	EPA 6010B	CRT	1/3/2006	Riddhi Patel
					TLI	SW 7199	CR6	12/29/2005	Jorge Arriaga
SC-701	SC-701-WDR-024	Joseph Ledbetter	12/7/2005	1:50:00 PM	TLI	EPA 120.1	SC	12/8/2005	Alex Hernandez
					TLI	EPA 150.1	PH	12/8/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/8/2005	Emilia Haley
					TLI	EPA 300.0	FL	12/9/2005	lordan Stavrev
					TLI	EPA 6010B	ZN	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	NI	12/12/2005	Riddhi Patel
					TLI	EPA 6010B	CRT	12/13/2005	Riddhi Patel

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

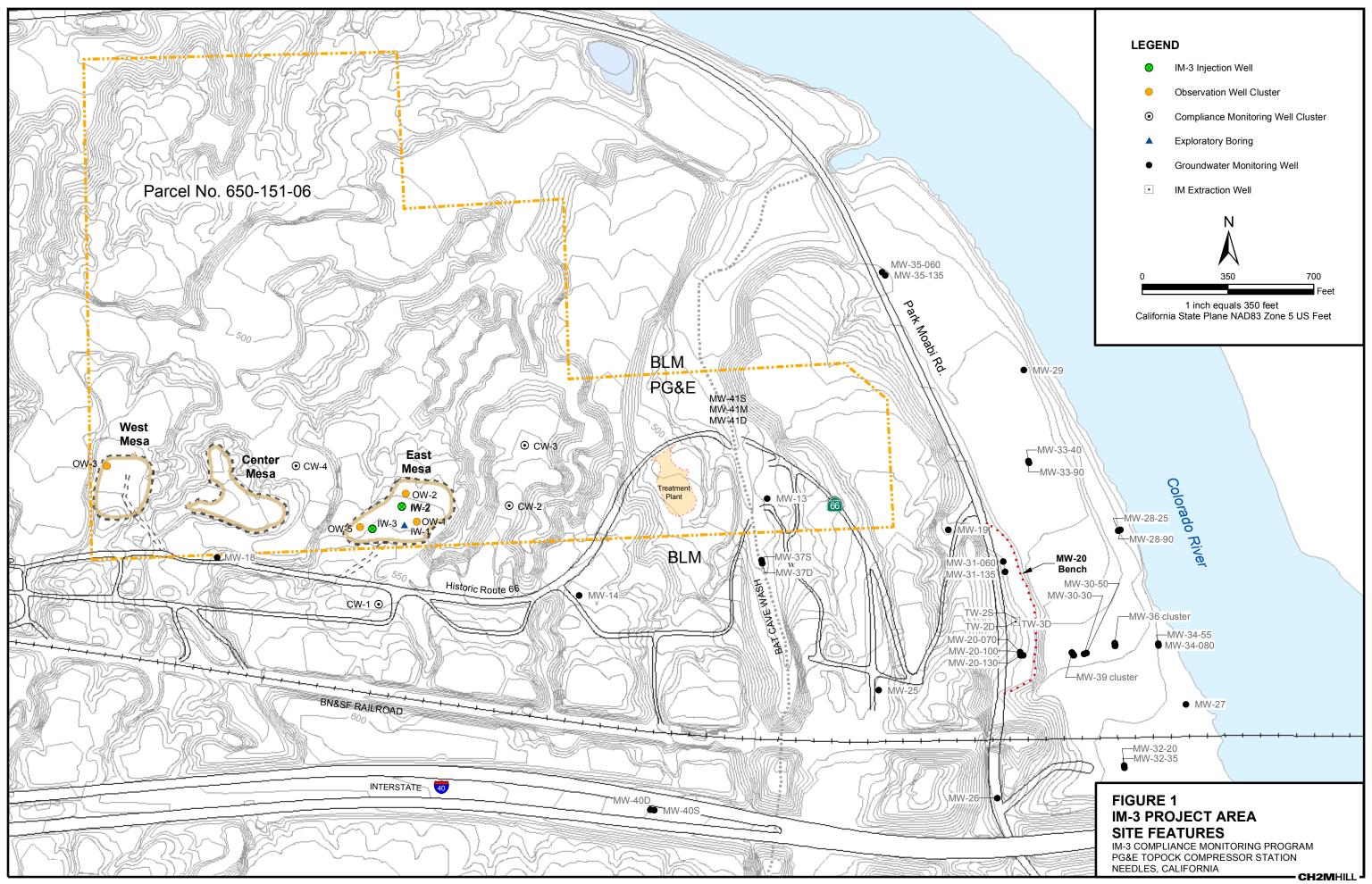
Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-024	Joseph Ledbetter	12/7/2005	1:50:00 PM	TLI	EPA 6010B	BA	12/12/2005	Riddhi Patel
					TLI	EPA 7470A	HG	12/9/2005	Laureen Tan
					TLI	SW 6020A	SB	12/13/2005	Victoria Than
					TLI	SW 6020A	V	12/9/2005	Victoria Than
					TLI	SW 6020A	SE	12/9/2005	Victoria Than
					TLI	SW 6020A	PB	12/9/2005	Victoria Than
					TLI	SW 6020A	MO	12/9/2005	Victoria Than
					TLI	SW 6020A	AG	12/9/2005	Victoria Than
					TLI	SW 6020A	СО	12/9/2005	Victoria Than
					TLI	SW 6020A	CD	12/9/2005	Victoria Than
					TLI	SW 6020A	TL	12/9/2005	Victoria Than
					TLI	SW 6020A	BE	12/9/2005	Victoria Than
					TLI	SW 6020A	AS	12/9/2005	Victoria Than
					TLI	SW 6020A	CU	12/9/2005	Victoria Than
					TLI	SW 7199	CR6	12/8/2005	Jorge Arriaga
SC-Sludge	SC-Sludge-WDR-026	Brian Dobbs	12/21/2005	3:13:00 PM	STL	EPA 160.3	MOIST	12/28/2005	Florian Zimmermann
-	-				TLI	EPA 300.0	FL	12/22/2005	lordan Stavrev
					STL	EPA 6010B	NI	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	V	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	TL	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	SE	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	SB	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	PB	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	ZN	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	MO	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	CU	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	CRT	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	со	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	CD	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	BE	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	BA	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	AG	12/29/2005	Josephine Asuncion
					STL	EPA 6010B	AS	12/29/2005	Josephine Asuncion
					STL	EPA 7471A	HG	12/28/2005	Hao Ton
					STL	SW 7199	CR6	12/27/2005	Yuriy Zakhrabov

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Monitoring Information December 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

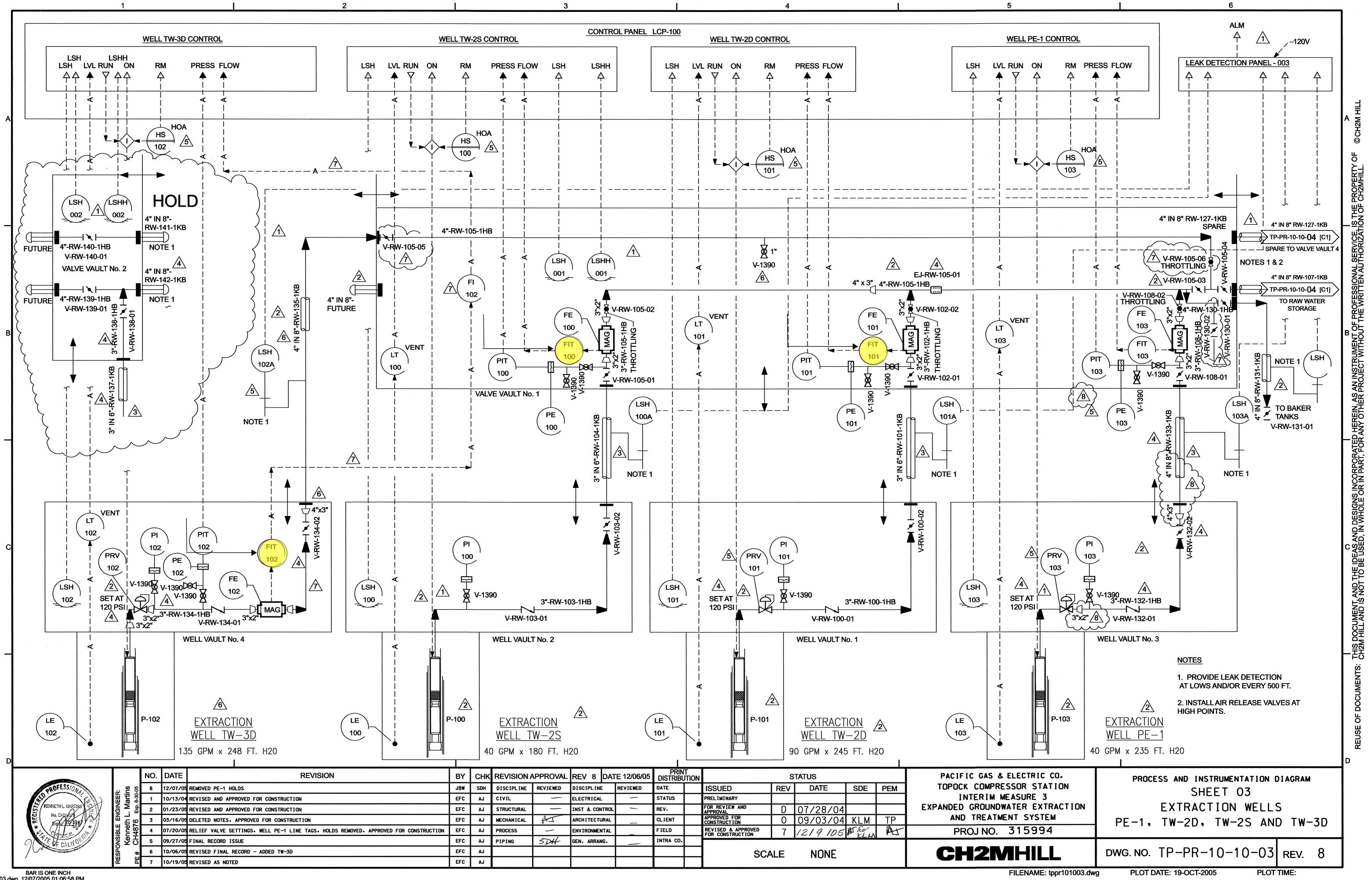
NOTES:

SC-700B = Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

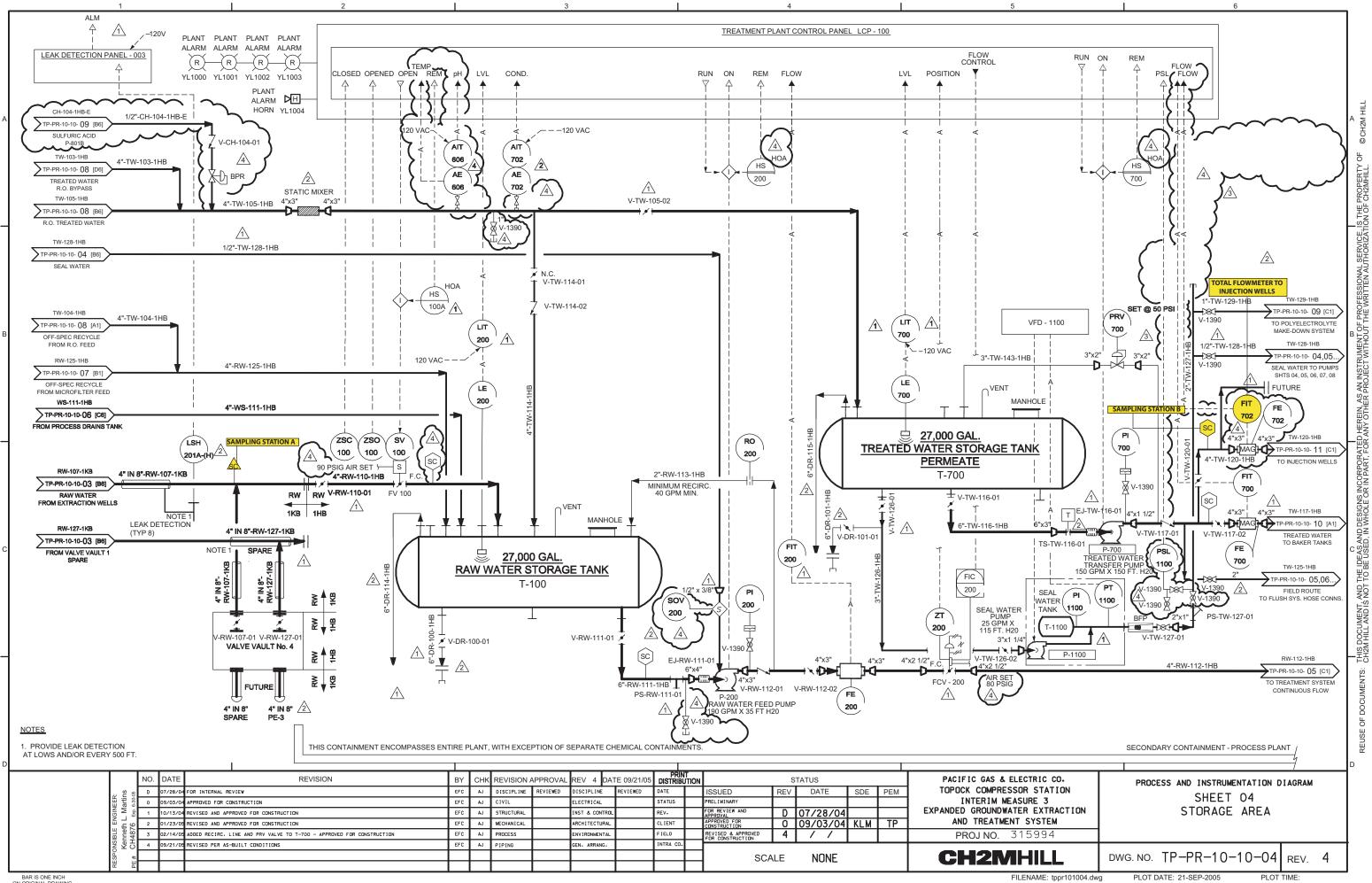
SC-100B = Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

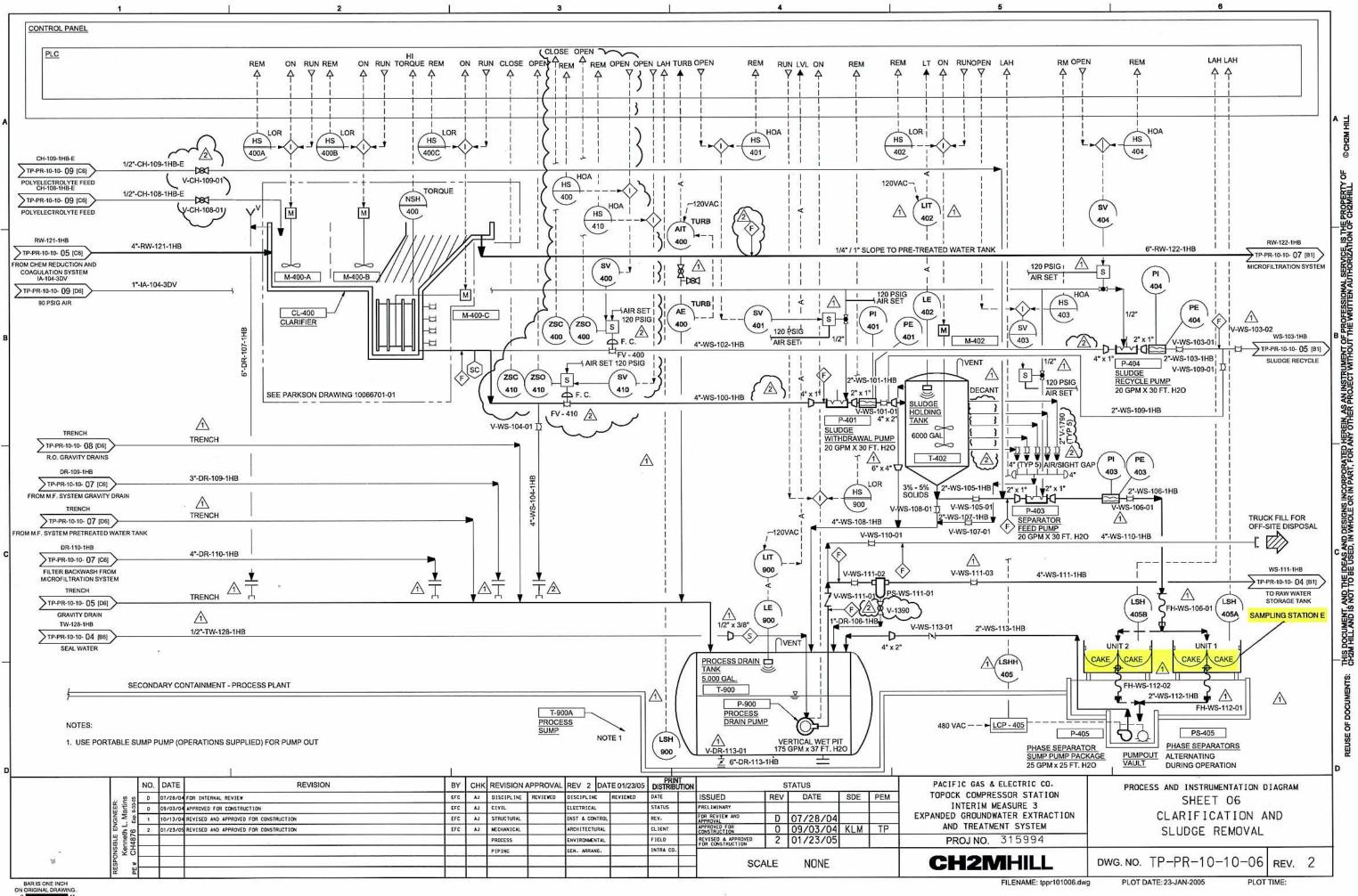

SC-701 = Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

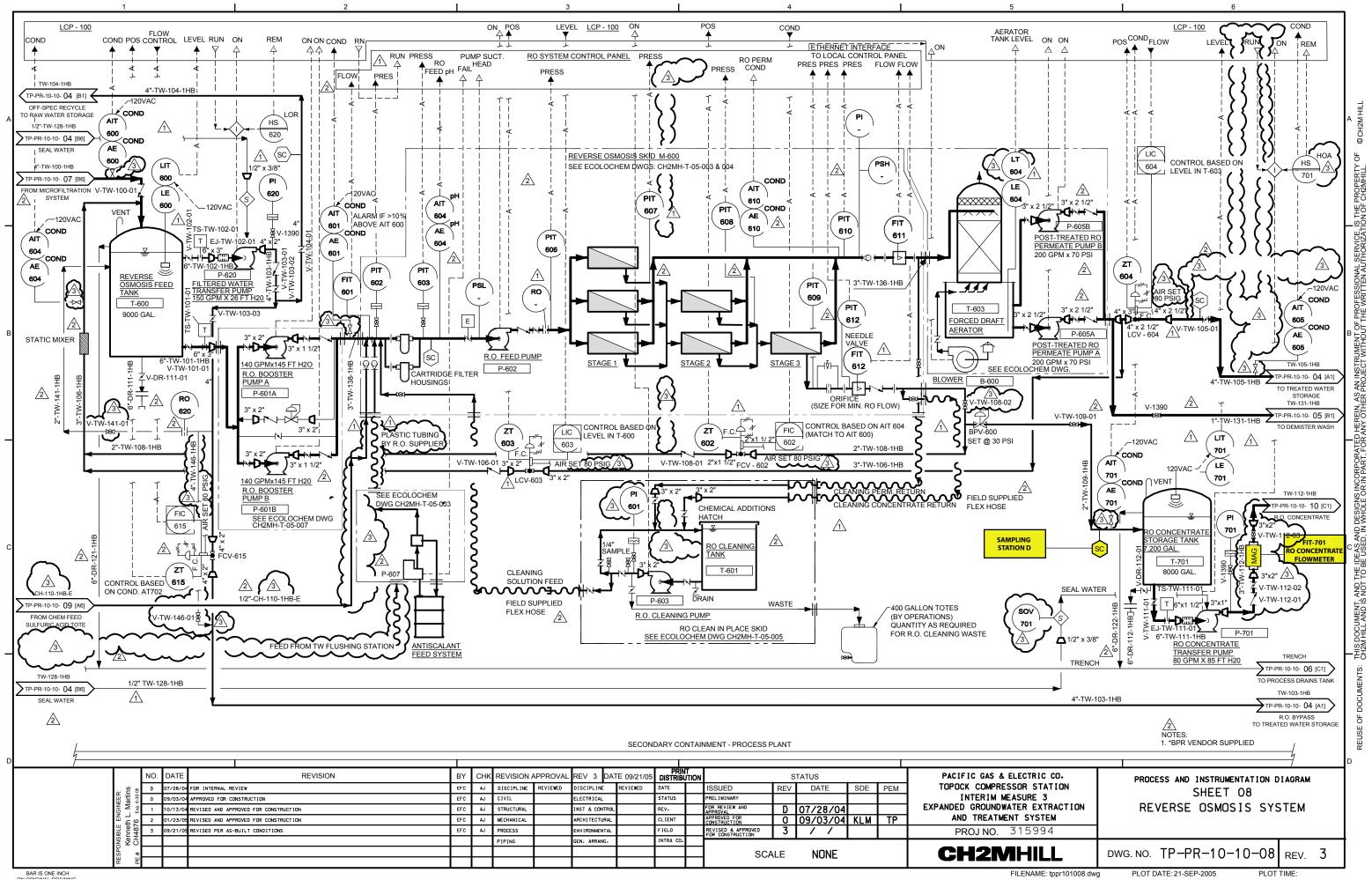
TLI = Truesdail Laboratories, Inc. MBC = MBC Applied Environmental Sciences Laboratory STL = Severn Trent Laboratories, Inc.

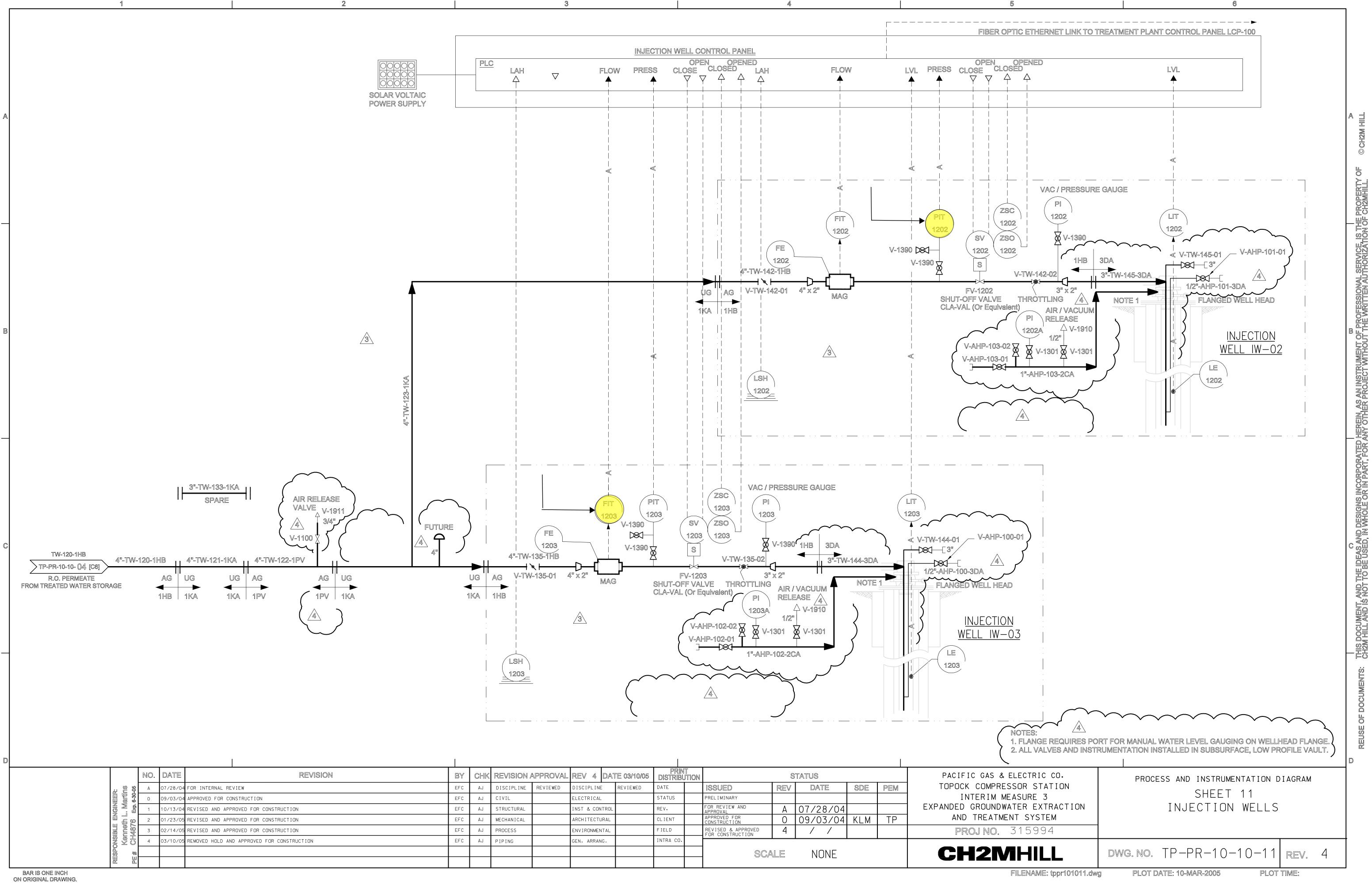

SC =	specific conductance	MO =	molybdenum
PH =	-	NI =	nickel
TDS =	total dissolved solids	PB =	lead
TRB =	turbidity	HG =	mercury
CRT =	chromium	SE =	selenium
CR6 =	hexavalent chromium	TL =	thallium
FL =	fluoride	CO =	cobalt
AL =	aluminum	CD =	cadmium
B =	boron	BE =	beryllium
FE =	iron	AG =	silver
MN =	manganese	V =	vanadium
ZN =	zinc	NO3N =	nitrate (as N)
SB =	antimony	NH3N =	ammonia (as N)
AS =	arsenic	NO2N =	nitrite (as N)
BA =	barium	SO4 =	sulfate
	00000r		

CU = copper


Figures




BAO \\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MXD\2005\IM3_PROJECT_AREA.MXD IM3_PROJECT_AREA.PDF 10/14/2005 13:56:42



tppr101003.dwg 12/07/2005.01:06:58 PM

IK	REVISION A	PPROVAL	REV 4 D)ATE 03/10/05	PRIN DISTRIBL	it Jtion		S	TATUS			PACIFIC GAS & ELE
	DISCIPLINE	REVIEWED	DISCIPLINE	REVIEWED	DATE		ISSUED	REV	DATE	SDE	PEM	TOPOCK COMPRESS
	CIVIL		ELECTRICAL		STATUS		PRELIMINARY					INTERIM MEAS
	STRUCTURAL		INST & CONTF	ROL	REV.		FOR REVIEW AND APPROVAL	Α	07/28/04			EXPANDED GROUNDWATE
	MECHANICAL		ARCHITECTUR	AL	CLIENT		APPROVED FOR CONSTRUCTION	0	09/03/04	KLM	ΤP	AND TREATMENT
	PROCESS		ENVIRONMENT	AL	FIELD		REVISED & APPROVED FOR CONSTRUCTION	4				PROJ NO. 3
	PIPING		GEN. ARRANG.		INTRA CO.							
							SCA	LE	NONE			
								کے دے	NONE			

Appendix A December 2005 Laboratory Analytical Reports

EGENV

DEC 20 2005

CH2M HILL REDDING

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

CH2M HILL PG&E Topock Project

Laboratory Number: 949622 Received: December 7, 2005

IM3 Plant-WDR-024 Project No.: 334168.IM.04.00 P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of ContentsTLI Laboratory Data Package

For Laboratory Number: 949622

ITEM	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 15, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT –WDR-024 Project, Groundwater Monitoring,

TLI NO.: 949622

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-024 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, Anions, Ammonia, Total Dissolved Solids, Title 22 and metals according to the list provided. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 7, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The results for requested Nitrate and Nitrite analyses are not enclosed in this report due to an analyst error, who overlooked the request on COC. We will provide the results for two re-sampled sites (SC-100B-WDR-024 and SC-700B-WDR-024), in a separate report (SDG949835).

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg

Manager, Analytical Services

K.R.P. gyer

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

Section 2.0

Summary Table of Final Results

TRUESDAIL INDEPENDENT TESTING, F	TRUESDAIL LABORATORIES, INC. INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES	ORIES, INC	-				Est	Established 1931
				_			14201 FRANKLIN AVENUE (714) 730-6239 · FAX (7	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com
Client: Cl 15 00 Attention: Si	Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 sntion: Shawn Duffy						Laboratory No.: 949622 Date Received: Deceml	Laboratory No.: 949622 Date Received: December 7, 2005
Project Name: P(Project No.: 33 P.O. No.: 91	PG&E Topock Project 334168.IM.04.00 911248							
			Analyti	<u>cal Resu</u>	<u>alytical Results Summary</u>	<u>ary</u>		
<u>Lab I.D.</u>	Sample I.D.	Sample Time	EPA 150.1 pH	EPA 120.1 EC	EPA 160.1 TDS	EPA 180.1 Turbidity	<mark>SW 7199</mark> Hexavalent Chromium	<mark>EPA 350.2</mark> Ammonia
		1	Units	µmhos/cm	mg/L	NTU	mg/L	mg/L
949622-1 949622-2 040622-3	SC-100B-WDR-024 SC-700B-WDR-024 SC-701-MDR-024	13:15 13:30 13:50	7.70	8/80 7410 38500	5840 4810 23500	ON I	3.60 ND	QN I UN
			4				04000	
<u>Lab I.D.</u>	<u>Sample I.D.</u>	Sample Time	EPA 300.0 Fluoride	<u>EPA 300.0</u> Sulfate				
			mg/L	mg/L	i i			
949622-1	SC-100B-WDR-024	13:15	2.86	666				
949622-3	SC-701-WDR-024	13:50	10.8	OZC 1				
ND: Non Detected (beic mg/L: Millgrams per liter.	ND: Non Detected (below reporting limit) ig/L: Milligrams per liter.	•						
lote: The following Results belv Result abov Quality Conl	Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	pplied to all results: an figures. e (3) significant figures. gnificant figures.					·	
report applies o these laboratorio icity matter withc	This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.	, investigated and is not id accepted for the excl rom these laboratories.	t necessarily indicat lusive use of the clie	ive of the quality or shown it is add	condition of apparer dressed and upon th	ntly Identical or simi ne condition that it i	lar products. As a mutual s not to be used, in whole	protection to clients, the public, or in part, in any advertising or

TeleFore-off Control TeleFore-off Control Clant: CF2/N HIL TeleFore-off Control TeleFore-off Control Clant: CF2/N HIL TeleFore-off Control Clant: CF2/N HIL TeleFore-off Control Control <th>Client: CH2M HILL 155 Grand Ave. Sulte 1000 Castand Ave. Sulte 1000 Castand Ave. Sulte 1000 Castand Ave. Sulte 1000 Attention: Stand Mor Project Name: PC&E Topock Project Project Name: PC&E Topock Project PC. No.: 911248 Attention: 9112</th> <th>T R</th> <th>TRUESDAIL LABORATORIES, INC. INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES</th> <th>ABORAT(</th> <th>ORIES, II</th> <th>NC. LANALYSES</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Estab</th> <th>Established 1931</th> <th></th>	Client: CH2M HILL 155 Grand Ave. Sulte 1000 Castand Ave. Sulte 1000 Castand Ave. Sulte 1000 Castand Ave. Sulte 1000 Attention: Stand Mor Project Name: PC&E Topock Project Project Name: PC&E Topock Project PC. No.: 911248 Attention: 9112	T R	TRUESDAIL LABORATORIES, INC. INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES	ABORAT(ORIES, II	NC. LANALYSES						Estab	Established 1931	
Clent: CH2M HILL 156 Grand Ave. Suite 1000 Oaktor Col 94012 Tist Grand Ave. Suite 1000 Oaktor Col 94012 Tist Grand Ave. Suite 1000 Oaktor Col 94012 Tist Grand Ave. Suite 1000 Tist Grand Ave. Suite 1000 Tist Attern Average Police I Non: 334168 MIG.(0) Average at Average and Miniterim Average at Average and Miniterim Average at Average a	Clent: CH2M HIL 165 Grand Ave. Sulte 1000 Stanton: Stavn Dufy Project Non: 334581 Mod.00 Project Non: 334581 Mod.00 Project Non: 334168 Mod.00 Project Non: 3341788 Project Project Project Non Project Non: 3241788 Project Project Project Non Project Non: 3241788 Project Project Project Project Project Project Project Non Project Non: 3241788 Project Projec							× 			14201 FRAI (714) 730	-6239 · FAX (71	TUSTIN, CALIFORI 4) 730-6462 · w	ulA 92780-7008 w.truesdail.com
Attention: Shawn Dufy Project Name: PossE Topook Project Project Name: 9038. Topook Project Project Name: 9038. Topook Project Project Name: 9038. Topook Project Analysis	Attention: Shawn Duffy Project Name: 1945. Topolo: Project Project Name: 334168. M.O.4.00 P.O. No.: 911248 Project Name: 1942. Topolo: Project Name: 234168. M.O.4.00 P.O. No.: 911248 Analysis: Total Meral Analyses as Requested Automined Name/sease as Reversed as Reversed as Reversed Automined Name/sease as Reversed as Reversed as Reversed as Reversed as Reversed as Reversed Automined Name/sease as Reversed as Revers		Client: C	:H2M HILL 55 Grand Ave. akland, CA 946	Suite 1000 312				ΩĽ	aboratory N ate Receive	lo.: 949622 ed: Decemb	er 7, 2005		
AMALYSIS: Total Metal Analyses as Requested AMALYSIS: Total Metal Analyses as Requested AMALYSIS: Total Metal Analyses as Requested Analysis: Total Metal Analyses as Requested Analysis: Total Metal Analyses as Requested Animinum Animinum Animinum Animinum Animinum Colspan="6">Colspan="6"Colspan	AMALYSIS: Total Meral Analyses as Requested Amalysis: Total Meral Analyses Amalyses Amalyses Mereury Magnesium Manganese Mereury Magnesium Manganese Mereury Magnesium Manganese Mereury Moly Colspan="6">Moly Colspan="6" Section-Monecee 1													

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Samples: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	SC-100B-WDR-024	Time C	ollected:	13:15		LAB ID:	949622-1	_ ·
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 6010B	ND	1.04	mg/L	0.0520	121205C	12/12/05	18:02
Antimony	EPA 6020	ND	2.08	mg/L	0.0030	121305D	12/13/05	19:34
Ar≲enic	EPA 6020	ND	2.08	mg/L	0.0050	120905A	12/09/05	16:51
Barium	EPA 6010B	ND	1.04	mg/L	0.300	121205C	12/12/05	18:02
Chromium	EPA 6010B	3.67	1.04	mg/L	0.0104	121205C	12/12/05	18:02
Copper	EPA 6020	ND	2.08	mg/L	0.0100	120905A	12/09/05	16:51
Lead	EPA 6020	ND	2.08	mg/L	0.0020	120905A	12/09/05	16:51
Manganese	EPA 6010B	ND	1.04	mg/L	0.500	121205C	12/12/05	18:02
Molybdenum	EPA 6020	0.0193	2.08	mg/L	0.0050	120905A	12/09/05	16:51
Nickel	EPA 6010B	ND	1.04	mg/L	0.0200	121205C	12/12/05	18:02
Zinc	EPA 6010B	0.0437	1.04	mg/L	0.0200	121205C	12/12/05	18:02
Born	EPA 6010B	1.46	1.04	mg/L	0.200	121205C	12/12/05	18:02
Ircon	EPA 6010B	ND	1.04	mg/L	0.300	121205C	12/12/05	18:02

SAMPLE ID:	SC-700B-WDR-024	Time C	ollected:	13:30		LAB ID:	949622-2	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 6010B	ND	1.04	mg/L	0.0520	121205C	12/12/05	18:19
Aratimony	EPA 6020	ND	2.08	mg/L	0.0030	121305D	12/13/05	19:36
Arsenic	EPA 6020	ND	2.08	mg/L	0.0050	120905A	12/09/05	16:46
Banum	EPA 6010B	ND	1.04	mg/L	0.300	121205C	12/12/05	18:19
Chomium	EPA 6010B	ND	1.04	mg/L	0.0010	121305A	12/13/05	12:47
Copper	EPA 6020	ND	2.08	mg/L	0.0100	120905A	12/09/05	16:46
Lead	EPA 6020	ND	2.08	mg/L	0.0020	120905A	12/09/05	16:46
Manganese	EPA 6010B	ND	1.04	mg/L	0.500	121205C	12/12/05	18:19
Molybdenum	EPA 6020	0.0122	2.08	mg/L	0.0050	120905A	12/09/05	16:46
Ni-ckel	EPA 6010B	ND	1.04	mg/L	0.0200	121205C	12/12/05	18:19
Zimt	EPA 6010B	0.0905	1.04	mg/L	0.0200	121205C	12/12/05	18:19
Bown	EPA 6010B	1.42	1.04	mg/L	0.200	121205C	12/12/05	18:19
Ircon	EPA 6010B	ND	1.04	mg/L	0.300	121205C	12/12/05	18:19

Laboratory No.: 949622

Revised: January 11, 2006 Reported: December 14, 2005 Collected: December 7, 2005 Received: December 7, 2005 Analyzed: December 13, 2005

						LAB ID:	949622-3	
		Reported					Date	Time
Pa rameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Antimony	EPA 6020	ND	2.08	mg/L	0.0030	121305D	12/13/05	19:40
Arsenic	EPA 6020	ND	5.21	mg/L	0.0052	120905A	12/09/05	16:57
Barium	EPA 6010B	ND	1.04	mg/L	0.300	121205C	12/12/05	18:23
Beryllium	EPA 6020	ND	5.21	mg/L	0.0026	120905A	12/09/05	16:57
Cadmium	EPA 6020	ND	5.21	mg/L	0.0026	120905A	12/09/05	16:57
Chromium	EPA 6010B	ND	1.04	mg/L	0.0010	121305A	12/13/05	12:51
Cobalt	EPA 6020	ND	5.21	mg/L	0.0052	120905A	12/09/05	16:57
Copper	EPA 6020	ND	5.21	mg/L	0.0100	120905A	12/09/05	16:57
Lead	EPA 6020	ND	5.21	mg/L	0.0026	120905A	12/09/05	16:57
Mercury	EPA 7470A	ND	1.00	mg/L	0.00020	120905A	12/09/05	NA
Molybdenum	EPA 6020	0.0621	5.21	mg/L	0.0052	120905A	12/09/05	16:57
Nickel	EPA 6010B	ND	1.04	mg/L	0.0200	121205C	12/12/05	18:23
Selenium	EPA 6020	0.0348	5.21	mg/L	0.0104	120905A	12/09/05	16:57
Silver	EPA 6020	ND	5.21	mg/L	0.0052	120905A	12/09/05	16:57
Th allium	EPA 6020	ND	5.21	mg/L	0.0026	120905A	12/09/05	16:57
Vanadium	EPA 6020	0.0168	5.21	mg/L	0.0052	120905A	12/09/05	16:57
Zinc	EPA 6010B	ND	1.04	mg/L	0.0200	121205C	12/12/05	18:23

ND: Not detected, or below limit of detection. DF: Dilution factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

> > .

Julia Nayberg, Manager Analytical Services

,

Section 3.0

Final Reports

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 949622

Date: December 14, 2005 Collected: December 7, 2005 Received: December 7, 2005 Prep/ Analyzed: December 8, 2005 Analytical Batch: 12PH05J

Investigation:

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	Field I.D.	Run Time	<u>Units</u>	MDL	RL	<u>Results</u>
949622-1	SC-100B-WDR-024	07:00	pH Units	0.0140	0.100	7.40
949622-2	SC-700B-WDR-024	07:05	pH Units	0.0140	0.100	7.66
949622-3	SC-701-WDR-024	07:10	pH Units	0.0140	0.100	7.72

QA/QC Summary

QC STD I	.D.	Laborato Number		Concentra	tion	Duplic Concent			fference (Units)		eptance imits	QC Within Control
Duplicat	e	949622-	1	7.40		7.4	0	•	0.00	± 0.1	100 Units	Yes
	Q	C Std I.D.		leasured ncentration		eoretical centration	Differer (Units		Accepta Limit		QC Withir Control	ı
		LCS		7.00		7.00	0.00)	<u>+</u> 0.100	Units	Yes	-
		LCS #1		7.00		7.00	0.00		<u>+</u> 0.100	Units	Yes	
		LCS #2		7.00		7.00	0.00)	<u>+</u> 0.100	Units	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

Respectfully submitted, TRUESDAIL LABORATORIES, INC. Julia Nayberg, Manager **Analytical Services**

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	MDL	RL	Results
949622-1	SC-100B-WDR-024	µmhos/cm	EPA 120.1	0.143	2.00	8780
949622-2	SC-700B-WDR-024	µmhos/cm	EPA 120.1	0.143	2.00	7410
949622-3	SC-701-WDR-024	µmhos/cm	EPA 120.1	1.43	20.0	38500

QA/QC Summary

QC S I.D		Concentra	tion	Duplica Concentra			Relative Percent Difference		eptance limits	QC Within Control
Duplic	ate 949622-	2 7410		7520			1.47%	2	<u><</u> 10%	Yes
1	QC Std I.D.	Measured Concentration	- I - I	Theoretical oncentration	Perce Recove		Acceptar Limits		QC With Contro	
	ccs	716		706	1019	6	90% - 11	0%	Yes	
	CVS#1	941		996	94.5%	%	90% - 11	0%	Yes	
	CVS#2	938		996	94.29	%	90% - 11	0%	Yes	
	LCS	703		706	99.69	%	90% - 11	0%	Yes	
	LCSD	702		706	99.49	%	90% - 11	0%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 949622

Revised: December 30, 2005

Collected: December 7, 2005 Received: December 7, 2005

Prep/ Analyzed: December 8, 2005

Analytical Batch: 12EC05E

Date: December 14, 2005

Julia Nayberg, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: December 14, 2005

Laboratory No.: 949622

Collected: December 7, 2005

Received: December 7, 2005

Prep/ Analyzed: December 8, 2005

Analytical Batch: 12TDS05D

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
949622-1	SC-100B-WDR-024	mg/L	EPA 160.1	250	5840
949622-2	SC-700B-WDR-024	mg/L	EPA 160.1	250	4810
949622-3	SC-701-WDR-024	mg/L	EPA 160.1	833	23500

QA/QC Summary

QC STD I	.D. Laborato Numbe	•	Concentra	tion	Duplic Concent			Percent fference		eptance imits	QC Within Control
Duplicat	949622-2		4810		479	90		0.21%		<u><</u> 5%	Yes
	QC Std I.D.	Measured Concentration				Perce Recov		Accepta Limit		QC Withi Control	
	LCS 1		521		500	104%	6	90% - 1	10%	Yes	
	LCS 2		503		500	1019	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

hin Noybery Julia Nayberg, Marlager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: December 14, 2005

Laboratory No.: 949622

Collected: December 7, 2005

Received: December 7, 2005

Prep/ Analyzed: December 8, 2005

Analytical Batch: 12TUC05H

Established 1931

Client: CH2M HILL 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	Units	DF	RL	<u>Results</u>
949622-1	SC-100B-WDR-024	13:15	NTU	1.00	0.100	ND
949622-2	SC-700B-WDR-005	13:30	NTU	1.00	0.100	ND

		Q		<u>0 30</u>	mne	<u> </u>				
QC STD I.	D. Laborator Number	Concentra	ation	Duplic Concent		F	Relative Percent ifference	Acceptance limits		QC Within Control
Duplicat	e 949615-8	40.168		0.16	0.60%			≤ 20%		Yes
	QC Std I.D.	Measured Concentration			Perce Recov		Accepta Limit		QC With Control	1
	LCS	<u>8.1</u> 0		8.00	1019	6	90% - 1	10%	Yes	
	LCS	8.15		<u>8.</u> 00	1029	6	90% - 1	10%	Yes	
	LCS	8.12		8.00	1029	6	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DE: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

QA/QC Summarv

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: December 14, 2005

Laboratory No.: 949622

Prep/ Analyzed: December 8, 2005

Analytical Batch: 12CrH05G

Collected: December 7, 2005

Received: December 7, 2005

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248 Prep. Batch: 12CrH05G

Investigation:

Hexavalent Chromium by IC Using Method SW 7199.

	<u>Analytic</u>	al Results	<u>Hexavale</u>	<u>ent Chro</u>	<u>omium</u>		
<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	DF	RL	Results
949622-1	SC-100B-WDR-024	13:15	11:26	mg/L	200	0.0400	3.60
949622-2	SC-700B-WDR-024	13:30	11:35	mg/L	5.00	0.0010	ND
949622-3	SC-701-WDR-024	13:50	11:44	ma/l	10.0	0.0020	0.0029

						QA/	QC	Sur	nn	nary						
	QC STD	I.D.		abora Num	atory ber	Sample Concentra		Dug Conce	olica	ation	P	elative ercent fference		ptance mits	C Within Control	
	Duplic	ate	ę	9496	19-5	0.0201		0.	020	1	(0.00%	<	20%	Yes	
QC Std I.D.	Lab Number	Conc. unspik samp	piked Dilution Factor		Added Spike Conc.	MS Amount		C t	easured conc. of spiked sample		heoretical Conc. of spiked sample		1S% covery	cceptance limits	QC Within Control	
MS	949622-1	3.60)		200	0.0200		4.00		7.64		7.60	1	01%	75-125%	Yes
MS	949622-2	0.00)		5.00	0.00100	0.	00500	0	0.00550		0.00500	1	10%	75-125%	Yes
MS	949622-3	0.002	29		10.0	0.00100	0	.0100		0.0130		0.0129	1	01%	75-125%	Yes
-		QC	Std I	I.D.		sured		heoretica ncentrati		Percei Recove		Acceptar Limits		QC With Contro		
		M	RCC	s	0.0	00511		0.00500		102%	,	90% - 11	0%	Yes		
		MF	RCVS	;#1	0.0	0989		0.0100		98.9%	6	90% - 11	0%	Yes		

0.0100

0.0100

0.0100

0.0100

0.00500

99.1%

98.1%

98.7%

98.4%

97.4%

90% - 110%

90% - 110%

90% - 110%

90% - 110%

90% - 110%

ND: Below the reporting limit (Not Detected).

MRCVS#2

MRCVS#3

MRCVS#4

MRCVS#5

LCS

0.00991

0.00981

0.00987

0.00984

0.00487

DF: Dilution Factor.

Respectfully submitted, TRUESØAIL L BORATORIES, INC. V fela Nayberg

Yes

Yes

Yes

Yes

Yes

Julia Nayberg, Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Established 1931

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 949622

Date: December 14, 2005 Collected: December 7, 2005 Received: December 7, 2005 Prep/ Analyzed: December 8, 2005 Analytical Batch: 12NH305C

Investigation:

Ammonia as N by Method EPA 350.2

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	Sample Time	Method	<u>Units</u>	DF	RL	<u>Results</u>
949622-1	SC-100B-WDR-024	13:15	EPA 350.2	mg/L	1.00	0.500	ND
949622-2	SC-700B-WDR-024	13:30	EPA 350.2	mg/L	1.00	0.500	ND

QA/QC Summary

	QC STD) I.D.		aborato Number		Concentra	tion	Du Conc	plica entra			Relative Percent Difference	li	eptance mits		Within ontrol	
	Duplic	ale	9	949621-	1	ND			ND			0.0%		20%		Yes	
QC Std I.D.	Lab Number	unsp	nc.of piked nple		tion tor	Added Spike Conc.		MS nount	C S	easured onc. of spiked ample	- 1	Theoretical Conc. of spiked sample	l I	AS% covery		eptance limits	QC Within Control
MS	949621-2	0.	.00	1.	00	10.0		10.0		7.93		10.0	7	9.3%	75	5-125%	Yes
		6	QC Std	i I.D.		easured centration		neoretica ncentrat		Perce Recov				QC With Contro			
			LCS	S		9.69		10.0	10.0 96.9		% 90% - 110		10%	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 949622

Date: December 14, 2005 Collected: December 7, 2005 Received: December 7, 2005 Prep/ Analyzed: December 9, 2005 Analytical Batch: 12AN05H

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	DF	RL	Results
949622-1	SC-100B-WDR-024	13:15	14:24	mg/L	1.00	0.200	2.86
949622-2	SC-700B-WDR-024	13:30	14:45	mg/L	1.00	0.200	2.31
949622-3	SC-701-WDR-024	13:50	15:05	mg/L	50.0	10.0	10.8

						QA	<u>/Q</u>	<u>c su</u>	Im	mar	<u>y</u>		-				
	QC STE) I.D.		borat lumb	•	Concentra	ition	Du Conc	olica entra	ation	P	elative ercent ference	Acceptance limits		C	C Within Control	
	Duplic	ate	9	49621	-1	0.292		0	.284		2	2.78%	<	20%		Yes	
QC Std I.D.	Lab Number	Con unsp sam	iked		ation ctor	Conc.		MS Amount		easured onc. of spiked ample	Theoretica Conc. of spiked sample		MS% Recovery		A	cceptance limits	QC Within Control
MS	949621-1	0.2	.92	1	.00	2.00	2.00			2.32		2.29		101%		75-125%	Yes
		Q	C Std	I.D.		easured centration		heoretica ncentrati		Percer Recove		Accepta Limits		QC Wit Contr			
			MRCO	CS		4.06		4.00		102%	,	90% - 11	0%	Yes			
		N	IRCV	S#1		3.12		3.00		104%		<u>90% - 11</u>	0%	Yes			
		N	/RCV	S#2		3.09		3.00		103%	5	<u>90% - 11</u>	0%	Yes			
		N	/RCV	S#3		3.13		3.00		104%	5	90% - 11	0%	Yes			
			LCS	5		4.06	.06			102%	, D	90% - 11	0%	Yes	;		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC. Julia Nayberg Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

QA/QC Summarv

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 949622

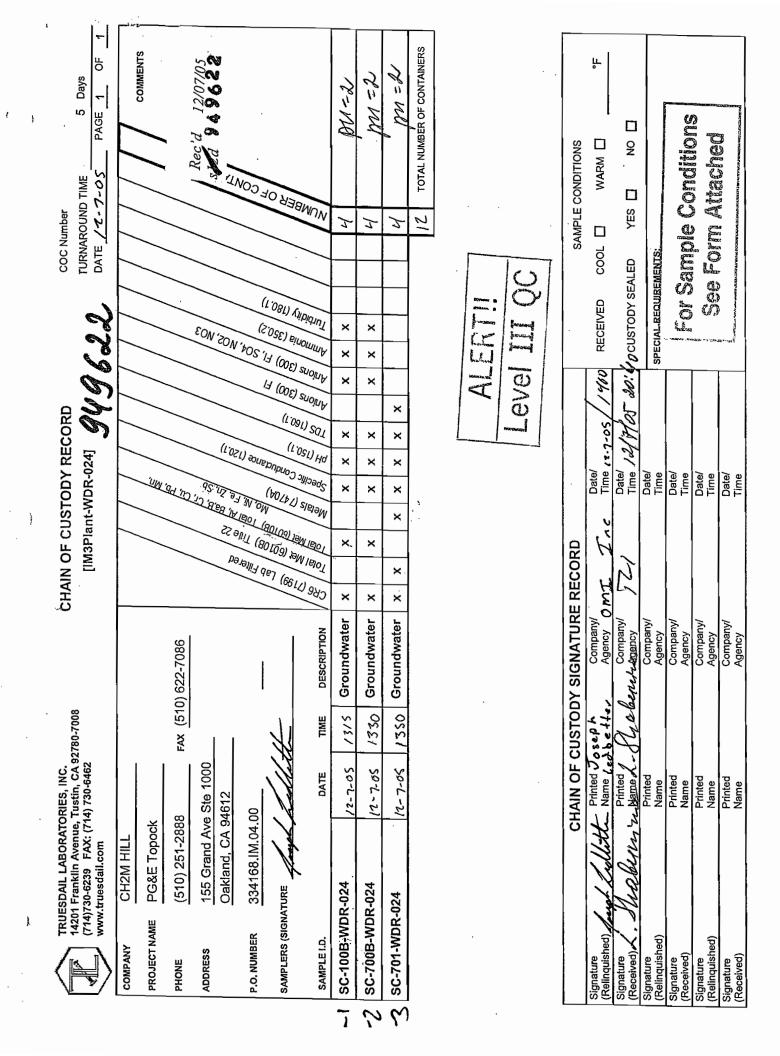
Date: December 14, 2005 Collected: December 7, 2005 Received: December 7, 2005 Prep/ Analyzed: December 9, 2005 Analytical Batch: 12AN05H

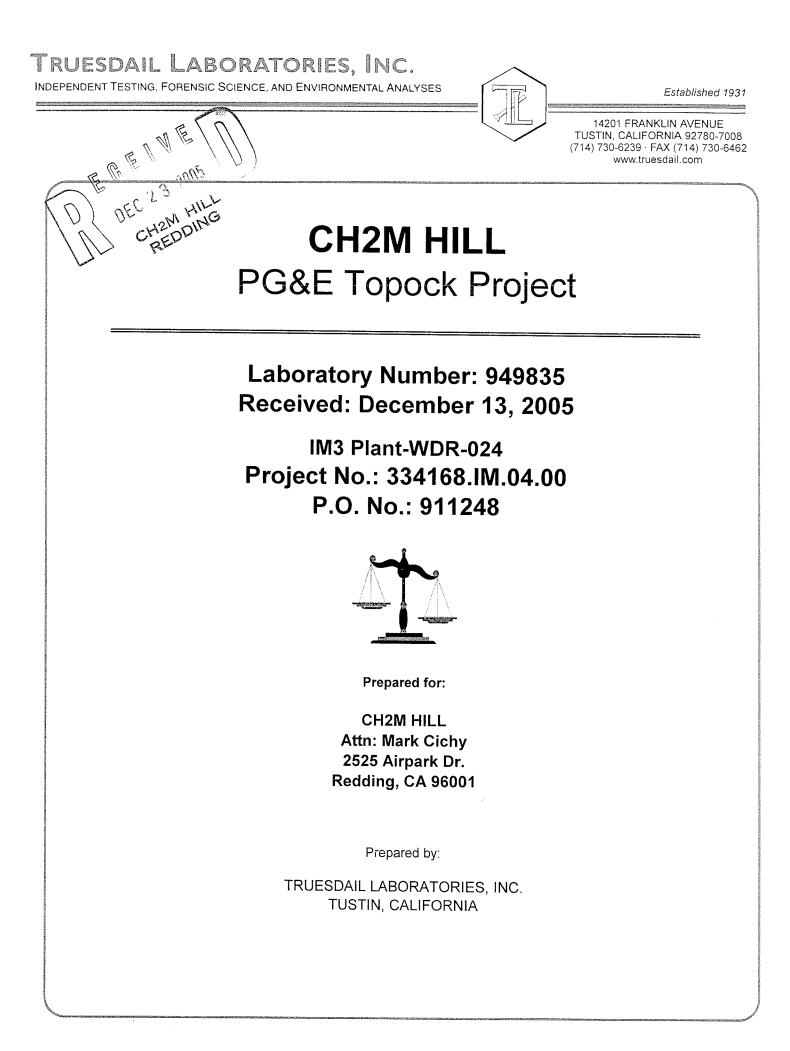
Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Run Time	<u>Units</u>	DF	RL	Results
949622-1	SC-100B-WDR-024	13:15	14:34	mg/L	50.0	25.0	666
949622-2	SC-700B-WDR-024	13:30	14:55	mg/L	50.0	25.0	526


QA/QC Summary


	QC STD	I.D.		lborate Numbe	-	Concentra	tion	Duj Conce	olica entra		P	elative ercent ference	1	eptance mits		C Within Control	
	Duplic	ate	9	49621	-1	286			288		C	0.70%	1	20%		Yes	
QC Std I.D.	Lab Number	uns	nc.of piked mple		ition ctor	Added Spike Conc.	Aı	MS Amount		easured onc. of spiked ample	1	heoretical Conc. of spiked sample			A	cceptance limits	QC Within Control
MS	949621-1	2	86	5	0.0	6.00	6.00			587		586		100%		75-125%	Yes
			QC Std	I.D.		easured centration				Percei Recove		Acceptar Limits		QC Wit Contr			
			MRC	CS		20.0		20.0	20.0 11		, ,	90% - 110		Yes			•
			MRCV	S#1		15.0		15.0		100%	6	<u>90% - 11</u>	0%	Yes			
			MRCV	S#2		<u>15</u> .0		15.0		100%	6	90% - 11	0%	Yes			
			MRCV	S#3		15.2		15.0		101%	6	90% - 11	0%_	Yes			
			LCS	s		20.0		20.0		100%	6	90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, ABORATØRIES, INC. TRUESD/AIL I Julia Nayberg, Manager

Analytical Services

Table of ContentsTLI Laboratory Data Package

For Laboratory Number: 949835

ITEM	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

December 22, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT –WDR-024 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 949835

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-024 project groundwater monitoring for Nitrates and Nitrites. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 13, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The results for requested Nitrate and Nitrite analyses were not enclosed in report for SDG 949622 due to an analyst error, who overlooked the request for Nitrites on COC and passed holding time. Two samples (SC-100B-WDR-024 and SC-700B-WDR-024) were re-sampled on Dec.13, 2005 and we report results for them in this report.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDALL LABORATORIES, INC.

Manager, Analytical Services

K.R.P. Gyen

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

Section 2.0

Summary Table of Final Results

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Laboratory No.: 949835 Date Received: December 13, 2005

■roject Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Analytical Results Summary

<u>Lab I.D.</u>	Sample I.D.	Sample Time	EPA 300.0 Nitrate	EPA 354.1 Nitrite	
			mg/L	mg/L	
949835-1	SC-100B-WDR-024R	15:00	4.88	0.0120	
949835-2	SC-700B-WDR-024R	15:00	4.18	0.0050	

ND: Non Detected (below reporting limit) mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

Section 3.0

Final Reports

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 949835

Date: December 20, 2005 Collected: December 13, 2005 Received: December 13, 2005 Prep/ Analyzed: December 14, 2005 Analytical Batch: 12AN05L

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
949835-1	SC-100B-WDR-024R	15:00	04:45	mg/L	1.00	0.200	4.88
949835-2	SC-700B-WDR-024R	15:00	04:56	mg/L	1.00	0.200	4.18

QA/QC Summary

	QC STD	I.D.		iborat Numbe	-	Concentra	tion	Concentra		entration		Relative Percent fference		eptance mits	C	QC Within Control	
	Duplica	ate	9	49821	-2	3.630		3	.620		1	0.28%	<	20%		Yes	
QC Std I.D.	Lab Number	Con unsp sam	iked		ution ctor	Added Spike Conc.		MS Co nount s		easured onc. of spiked ample	T	Theoretical Conc. of spiked sample	l r	/IS% covery	A	cceptance limits	QC Within Control
MS	949821-2	3.6	30	1	.00	4.00	4.00 4.00			7.59		7.63	9	9.0%		75-125%	Yes
		QC Std I.D.		OC Std I.D. 1		Measured Concentration 3.98		neoretica ncentrati		Perce Recove		Accepta Limits		QC Wit Contr			
			MRCCS MRCVS#1					4.00		99.5%	6	90% - 11	0%	Yes	_		
					2.97		3.00			99.0%	6	90% - 11	90% - 110%				
		Ν	ARCV	S#2		2.97		3.00		99.0%	6	90% - 11	10%	Yes			
			LCS	3		3.98		4.00		99.59	6	90% - 11	10%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 949835

Date: December 20, 2005 Collected: December 13, 2005 Received: December 13, 2005 Prep/ Analyzed: December 14, 2005 Analytical Batch: 12NO205G

Investigation:

Nitrite as N by Method EPA 354.1

Analytical Results for Nitrite as N

<u>TLI I.D.</u> 949835-1 949835-2	<u>Field I.D.</u> SC-100B-WDR-024F SC-700B-WDR-024F					00 15:52 m			m	mg/L 1		E 00 00	<u>RL</u> 0.0050 0.0050	-	<u>Results</u> 0.0120 0.0050	
					QA	/Q(C Su	m	mar	У						
	QC STD	I.D.	Labor Num	-	Concentra	ition		plicate entration		F	Relative Percent ifference	Acceptance limits		QC With Contro		
	Duplica	ate 949835-2			0.0050		0	.005)50		0.0%	<u><</u> 20%		Yes		
QC Std I.D.	Lab Number	Conc.of unspiked sample		ilution actor	Snike		MS nount			-	Theoretical Conc. of spiked sample	l MS% Recovery		Acceptance limits		QC Within Control
MS	949835-2	0.0050		1.00	0.120 0		0.120		0.142		0.125	25 11		75-125	%	Yes
		QC Std I.D.					neoretica ncentrati				Acceptar Limits		QC With Contro			
			MRCCS 0.0609		0609		0.060		102%	6	90% - 11	10% Yes				
		MRC	<u>VS#1</u>	0.	.0969		0.100		96.9%	%	90% - 11	0%	Yes			
		LC	cs	o	.129	L	0.120		108%	6	90% - 11	10% Yes				

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager (/ Analvtical Services

(714) 730-6239 FAX (714) 730-6462 www trineschall com	30-6462	と、人もちち	METU	DATE 1 4 11 2 10 2 PAGE 1 OF
CHZM H	IL L Spock			
80	FAX 1510)622-7086	1086		
ry z	Ave. Ste 1000		/ / stra 24 9835	
1.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100/20/		
ICNATI I		12/2/		
SAMPLE I.D. DATE	TIME DESC	DESCRIPTION		/ ≤ / / / ≤ /
56-100 B-WOR-0248 12/13/05	15:00 Green	Groundwater 2 2		
2 Sc-700B-WDR-024R 12/13/DS	12:00 Crown	Ground water 1 1	Dr 1	
m ~50/Eh/Zim wheoveryoweroiters	15:00 Proceed water	water water and		800 I
S	CHAIN OF CUSTODY SIGNATU	SIGNATURE RECORD		
Signature (Relinquished)	C Printed Jose DA Lea	Lealbetto, Agency OMI	Tn a Time 12-13-05	TOTAL NUMBER OF CONTAINERS
Signature (Received)	Printed A MAN	Rept in Agency	Date/ Time /2// ? /.o.]	SAMPLE CONDITIONS
(pe	Printed Name		Date 20 + 20	
Signature (Received)	Printed Name	Company/ Agency	Date/ Tīme	CUSTODY SEALED YES NO
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	PPECIAL REQUIREMENTS: POP SAMDIE CONDINIONS
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

E C E V E DEC 2 2 2005

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

CH2M HILL PG&E Topock Project

Laboratory Number: 949885 Received: December 14, 2005

IM3Plant-WDR-025 Project No.: 334168.IM.04.00 P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of ContentsTLI Laboratory Data PackageFor Laboratory Number: 949885

ITEM	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

December 20, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT –WDR-025 PROJECT, GROUNDWATER MONITORING, . TLI NO.: 949885

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-025 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 14, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Iulia Nayberg Manager, Analytical Services

K. R. P. gyer

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

ANALYSES

Section 2.0

Summary Table of Final Results

							ESTADIISHED 1931	
						14201 FR	4201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.fruesdail.com	CALIFORNIA 92780-7008 6462 · www.truesdail.com
Client: CH2M HILL 155 Grand A Oakland, CA Attention: Shawn Duffy	CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Shawn Duffy	00					Laboratory No.: 949885 Date Received: Deceml	-aboratory No.: 949885 Date Received: December 14, 2005
Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248	Topock Project 8.IM.04.00 8							
			Analyti	Analytical Results	Its Summary	nary		
Lab I.D.	Sample I.D.	Sample Time	<u>SW 6010B</u> Chromium Total	<mark>SW 7199</mark> Chromium Hexavalent	EPA 180.1 Turbidity	EPA 150.1 <i>pH</i>	EPA 120.1 <i>EC</i>	EPA 160.1 TDS
			notar mg/L	mg/L	NTU	Unit	μ mhos/cm	mg/L
949885 S	SC-700B-WDR-025	5 13:20	QN	QN	Q	7.81	7060	4590
ND: Non Detected (below reporting limit)	w reporting limit)							
Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	The following "Significant Figures" rule has been applied to all resu Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	een applied to all results: tt figures. (3) significant figures.) significant figures.						

Section 3.0

Final Reports

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Laboratory No.: 949885

Date: December 20, 2005 Collected: December 14, 2005 Received: December 14, 2005 Prep/ Analyzed: December 15, 2005 Analytical Batch: 12CrH05Q

Investigation:

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	DF	<u>RL</u>	Results
949885	SC-700B-WDR-025	13:20	10:18	mg/L	5.00	0.0010	ND

QA/QC Summarv

	QC STC			orator <u></u> umber	Con	icentrati	on	1	plicate entratior		Relative Percent Difference		eptance limits		QC Within Control								
F	Duplic	ate	9	49904		0.808		(.805		0.37%		< 20%		Yes	1							
QC Std I.D.	Lab Number	unsp	nc.of piked nple	Dilutio Facto		d Spike onc.	MS Amount		Measu Conc. spike samp	of d	Theoretical Conc. of spiked sample		MS% covery	Ac	ceptance lim	its	QC Within Control						
MS	949885	0.	00	5.00	0.0	0100	0.0	00500	0.005	27	0.00500		105% 🧹	7	75-125%		Yes						
		Q	C Std	I.D.	Measu Concent		1	ieoretica icentrati	1	rcent			QC Wit Contr				₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩						
			MRCO	cs	0.004	96	0.00500						0.00500		99	.2%	90% - 11	110% Yes					
		N	ARCV	S#1	0.009	79											Yes	-					
		N	<u>/RCV</u>	S#2	0.009	74		0.0100	9	.4%	90% - 11	0%	Yes										
		<u></u>	IRCV	S#3	0.009	88		0.0100	98	8.8%	90% - 11	0%	Yes										

0.0100

0.0100

0.00500

98.3%

97.1%

98.4%

ND: Below the reporting limit (Not Detected).

MRCVS#4

MRCVS#5

LCS

0.00983

0.00971

0.00492

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC. tila Dayberg

Yes

Yes

Yes

Julia Nayberg, Manager Analytical Services

90% - 110%

90% - 110%

90% - 110%

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 949885

Date: December 20, 2005 Collected: December 14, 2005 Received: December 14, 2005 Prep/ Analyzed: December 15, 2005 Analytical Batch: 12EC05H

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
949885	SC-700B-WDR-025	µmhos/cm	EPA 120.1	1.00	2.00	7060
		QA/QC	Summary			

						¥				·····
QC ST I.D.		Concentration	ion	Duplica Concentra			lative Percent Difference		eptance imits	QC Within Control
Duplic	ate 949883-	2 7620		7550			0.92%	1	<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration		Theoretical oncentration	Perce Recov		Acceptanc Limits	e	QC Withi Control	1 L
[CCS	720		706	1029	102% 90% -		%	Yes	
	CVS#1	921		996	92.5	%	90% - 1109	%	Yes	
	CVS#2	919		996	92.3	%	90% - 1109	%	Yes	
	LCS	729		706	103	%	90% - 1109	%	Yes	
	LCSD	725	l	706	103	%	90% - 110	%	Yes	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES Established 1931 14201 FRANKLIN AVENUE REPORT TUSTIN, CALIFORNIA 92780-7008 Client: CH2M HILL (714) 730-6239 · FAX (714) 730-6462 155 Grand Ave. Suite 1000 www.truesdail.com

Laboratory No.: 949885

Date: December 20, 2005 Collected: December 14, 2005 Received: December 14, 2005 Prep/ Analyzed: December 19, 2005 Analytical Batch: 121905A

Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248 Prep. Batch: 121905A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Using Method SW 6010B

Analytical Results Total Chromium

	<u>LI I.D.</u> 9885	<u>Field I</u> SC-70	. <u>D.</u> 0B-WDR-	025		<u>Units</u> mg/L		<u>ethod</u> / 6010B			<u>n T</u> 1:48	ime 3		<u>0F</u> .04	<u>RL</u> 0.0010	Results ND ✓
						QA	/Q(C Sui	m	mary	1					
		QC STD	1.1.1.	iborato Numbe	-	Concentra	tion	Dup Conce		1	P	elative ercent ference	rcent Acc		QC Within Control	
r		Duplica	ate 9	49884-	2	0.0286		0.	028	2	1	1.41%	_	20%	Yes	
	QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilut Fac		Added Spike Conc.		MS nount	C	easured Conc. of spiked sample		heoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
L	MS	949770	0.00	1.0)4	0.0100	0	0.0104 0.00811		0.00811		0.0104	7	8.0%	75-125%	Yes
			QC Sto	I I.D.		leasured ncentration		neoretica ncentratio		Percer Recove	- 1	Acceptar Limits		QC Wit Contr		
			MRC	cs		0.00981		0.0100		98.1%	5	90% - 11(0%	Yes		
			MRCV			0.00927		0.0100		92.7%	, 0	90% - 110	0%	Yes		
			MRCV			0.00908		0.0100		90.8%	0	90% - 11	0%	Yes		
						0.00929		0.0100		92.9%	0	80% - 12	0%	Yes		
			LCS	5		0.00976		0.0100		97.6%	0	90% - 11	0%	Yes]	

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC. Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Report

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 949885

Date: December 20, 2005 Collected: December 14, 2005 Received: December 14, 2005 Prep/ Analyzed: December 15, 2005 Analytical Batch: 12PH05O

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	MDL	RL	<u>Results</u>
949885	SC-700B-WDR-025	13:20	08:40	pH Units	0.0140	0.100	7.81

QA/QC Summary

QC STD	I.D.	Laborato Numbei		Concentra	ation	Duplic Concent			fference Units)		eptance imits	QC Within Control
Duplica	te	949883-	2	7.39		7.39)		0.00	<u>+</u> 0.1	100 Units	Yes
	C	QC Std I.D.		easured centration		eoretical centration	Differe (Unit		Accepta Limit		QC With Contro	
		LCS		7.00		7.00	0.00		+ 0.100 Units		Yes	
		LCS #1		7.01		7.00	0.0	1	<u>+</u> 0.100	Units	Yes	
	L	LCS #2		7.00	L	7.00	0.00)	<u>+</u> 0.100	Units	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

leà Wayberg

Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 949885

Date: December 20, 2005 Collected: December 14, 2005 Received: December 14, 2005 Prep/ Analyzed: December 15, 2005 Analytical Batch: 12TDS05G

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 949885		<u>ld I.D.</u> -700B-WDR-0	25 n	<u>Inits</u> ng/L \/Q(C Sun	EP		iod 60.1		<u>RL</u> 250	<u>Results</u> 4590
	QC STD I	.D. Laborato Number	1 Concentra	tion	Dupli Concen	1		Percent Ifference		ceptance limits	QC Within Control
	Duplicat	e 949885	4590		459	90		0.00%		<u>≤</u> 5%	Yes
		QC Std I.D.	Measured Concentration	1	eoretical centration	Perce Recove		Accepta Limit		QC Within Control	
		LCS 1	526		500	105%	, 0	90% - 1	10% Yes		

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

den al

Julia Nayberg, Manager Analytical Services

a Nayberg

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Report

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

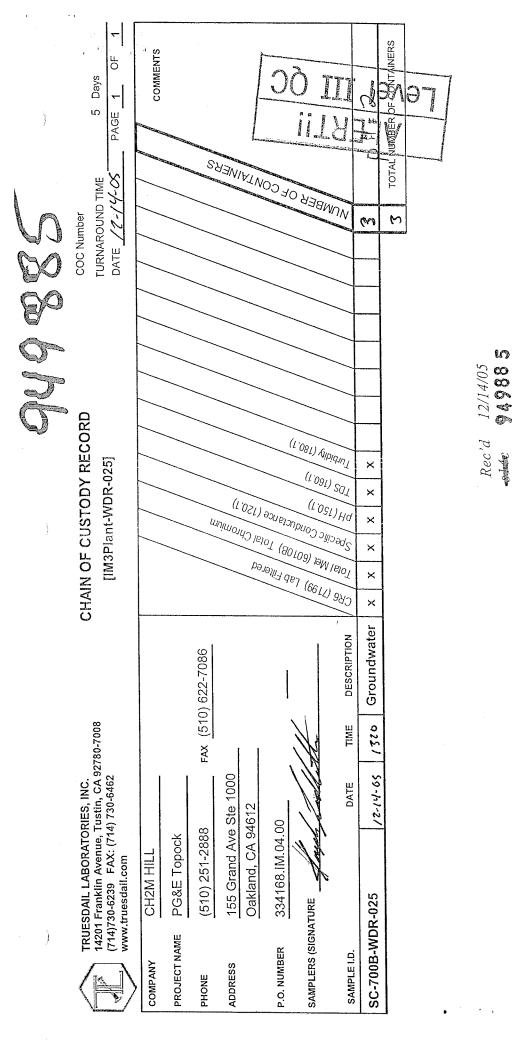
<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	<u>DF</u>	RL	<u>Results</u>
949885	SC-700B-WDR-025	13:20	NTU	1.00	0.100	ND

QA/QC Summary

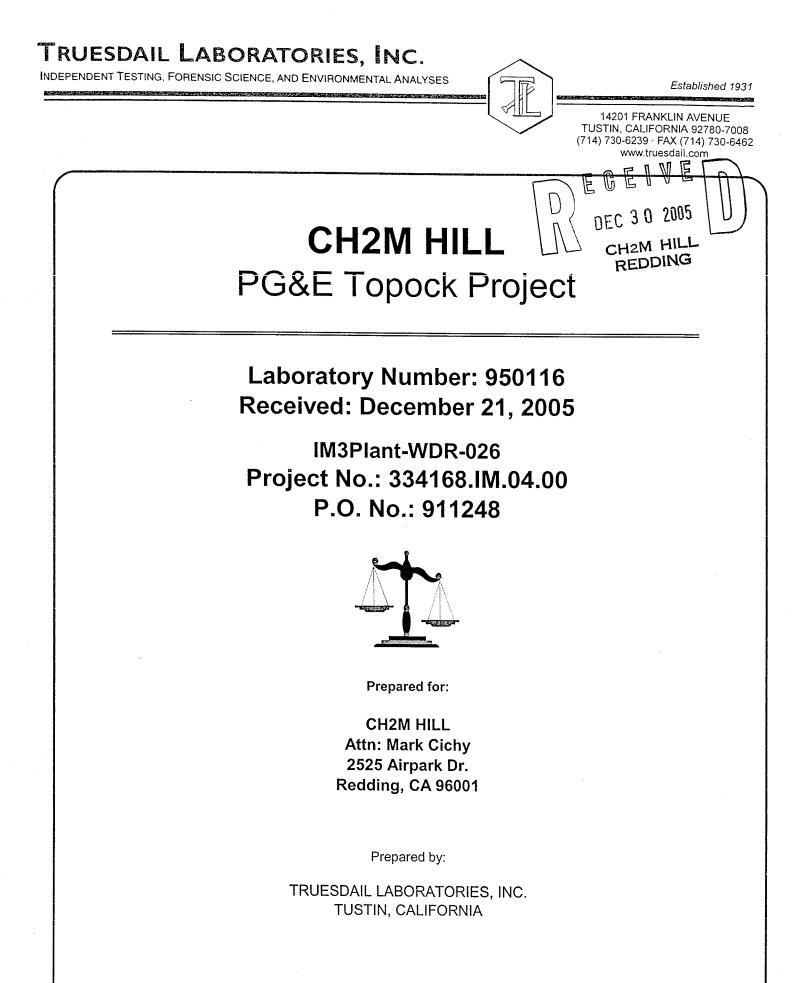
Q	IC STD I.	D. Laborato Number	Concentral	tion		icate ntration	P	elative Percent fference		eptance limits	QC Within Control
L	Duplicate	949866-9	5 ND		N	D		0.00%		<u><</u> 20%	Yes
		QC Std I.D.	Measured Concentration		oretical entration	Percer Recove		Accepta Limit		QC Withir Control	ſ
		LCS	8.50		8.00	106%	6 90% - '		10% Yes		
		LCS	8.50		8.00	106%	>	90% - 1	10%	Yes	
		LCS	8.60		8.00	108%		90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC. Collun & Hill W Laulia Wayberg, Manager


Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.


Laboratory No.: 949885 Date: December 20, 2005 Collected: December 14, 2005 Received: December 14, 2005

Collected: December 14, 2005 Received: December 14, 2005 Prep/ Analyzed: December 15, 2005

Analytical Batch: 12TUC05L

Ļ SPECIAL REQUERENTING CONDITIONS See Form Attached WARM SAMPLE CONDITIONS YES. 🗆 \Box COOL CUSTODY SEALED RECEIVED Date/ 12-14-01 Time っっっつ Datel 12/14/01-Time 2000 Date/ /1-/4-05 Time /330 Date/ Time Date/ Time Date/ Time Company/ K.K.C.C.T.NK OUDINE CHAIN OF CUSTODY SIGNATURE RECORD 0 2 4 Company/ Agency Company/ Led bette Agency Company/ Company Agency Agency Agency Agency Janua Printed Splacere Printed Name Joseph Printed Printed Printed Printed Name Name Name Name Spander 87 29 PLAC ((Relinguished) (Relinquished) (Relinquished) (Received) Signature (Received) Signature (Received) Signature Signature Signature Signature

Table of ContentsTLI Laboratory Data Package

For Laboratory Number: 950116

ITEM	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 28, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT –WDR-026 PROJECT, GROUNDWATER MONITORING, TLI NO.: 950116

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-026 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 21, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Tæller Cil Jayberg

Julia Nayberg / Manager, Analytical Services

K. R. 7. 9. me

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

Section 2.0

Summary Table of Final Results

1 1931 1988 - 1993 - 1993 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995	14201 FRANKLIN AVENUE + TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 + FAX (714) 730-6462 + www.truesdail.com	_aboratory No.: 950116 Date Received: December 21, 2005			EPA 160.1 7DS	mg/L 4330				
Established 1931	RANKLIN AVENUE - TUSTI 30-6239 - FAX (714) 73	Laboratory No.: 950116 Date Received: Decemt			EPA 120.1 <i>EC</i>	μ mhos/cm 8180				
	14201 FI (714) 7			nary	EPA 150.1 <i>pH</i>	Unit 7.63				
				ilts Sumr	EPA 180.1 Turbidity	NTU ND				
				Analytical Results Summary	SW 7199 Chromium	DND				
SE S				Analyti	SW 6010B Chromium	notar mg/L ND				
RIES, INC. Wirdnmental Analys					Sample Time	14:55		applied to all results: ures. ignificant figures. nificant figures.		
TRUESDAIL LABORATORIES, INC. INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES		Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 sntion: Shawn Duffy	Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248		Sample I.D.	SC-700B-WDR-026	ND: Non Detected (below reporting limit)	Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.		
TRUESDAIL INDEPENDENT TESTING, F		Client: CH2M HILL 155 Grand A Oakland, CA Attention: Shawn Duffy	Project Name: PG&E 1 Project No.: 334168. P.O. No.: 911248		<u>Lab I.D.</u>	950116	ND: Non Detect	Note: The followir Results bek Result abov Quality Con		

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Section 3.0

Final Reports

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00 P.O. No.: 911248

Investigation:

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 950116

Date: December 27, 2005 Collected: December 21, 2005 Received: December 21, 2005 Prep/ Analyzed: December 22, 2005 Analytical Batch: 12PH05Y

pH by EPA 150.1

REPORT

Analytical Results pH

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	MDL	<u>RL</u>	Results
950116	SC-700B-WDR-026	14:55	07:05	pH Units	0.0140	0.100	7.63

QA/QC Summary

QC STD	I.D.	Laborato Numbe		Concentr	ation	Duplic Concent			fference (Units)		eptance limits	QC Within Control
Duplica	te	e 950116		7.63		7.64			0.01	<u>+</u> 0.	100 Units	Yes
	C	QC Std I.D.	Measured Concentration		Theoretical Concentration		Differe (Unit		Accepta Limit		QC With Control	
		LCS		7.00		7.00	0.00)	+ 0.100 (Jnits	Yes	
		LCS #1		7.00		7.00	0.00)	<u>+</u> 0.100 t	Jnits	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

der G Gill ter tulia Nayberg

Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample P∎oject Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

LCS

LCSD

728

731

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 950116

Date: December 27, 2005 Collected: December 21, 2005 Received: December 21, 2005 Prep/ Analyzed: December 23, 2005 Analytical Batch: 12EC05P

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u> 950116	<mark>Field I.D.</mark> SC-700B-WDR-026							<u>od</u> 0.1	<u>DF</u> 10.0		<u>RL</u> 20.0	·	<u>esults</u> 8180
	I.D. Number				centration Duplica 8180 8200			ate Relative Per ation Difference			eptance limits < 10%	QC Within Control Yes	
	QC Std I.D. Cor		Measured Concentration	Theoretical Concentration		Perce Recov	ery	Acceptance Limits	e QC With Contro		in		
	CCS 721 CVS#1 921					706 996	102% 92.5%						

706

706

103%

104%

90% - 110%

90% - 110%

Respectfully submitted, TRUESDAIL LABORATORIES, INC. teley Cittel

Yes

Yes

the field Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 950116

Date: December 27, 2005 Collected: December 21, 2005 Received: December 21, 2005 Prep/ Analyzed: December 22, 2005 Analytical Batch: 12TDS05J

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 950116	•••••	<u>ld I.D.</u> -700B-\	NDR-02	.6 m	nits ng/L /Q(C Sun	<u>Method</u> EPA 160.1 nmary				<u>RL</u> 250	<u>Results</u> 4330
	QC STD	I.D.	aboratory Number 950116	,	Concentration		cate tration	Percent		Acceptance limits ≤ 5%		QC Within Control Yes
		QC Std I.D.		Measured Concentration 494	Measured The oncentration Conc		oretical Percel entration Recover 500 98.8%		nt Accepta ery Limit		QC Within Control Yes	7

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

ayburg

Julia Nayberd, Manager Analytical Services

Truesdail Laboratories. Inc

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: December 27, 2005

Collected: December 21, 2005

Received: December 21, 2005

Laboratory No.: 950116

Prep/ Analyzed: December 22, 2005

Analytical Batch: 12TUC05S

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Analytical Results Turbidity

Turbidity by Method EPA 180.1

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	RL	<u>Results</u>
950116	SC-700B-WDR-026	14:55	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I	C STD I.D. Laborator Number		Concentration		n Duplicate Concentration			Relative Percent fference	ercent Acc		QC Within Control
Duplicat	e	950112-2	0.185		0.184			0.54%	<u> </u>	<u><</u> 20%	Yes
	QC Std I.D.		Measured Concentration		pretical entration	Percer Recove		Accepta Limit		QC Withir Control	
	LCS LCS	7.60	6	.00	95.0%	··········	90% - 11	10%	Yes	-	
		7.58	8	3.00	94.8%	90% - 1		10%	Yes	-	
ļ		LCS	7.60	8	3.00	95.0%		90% - 1 ⁻	10%	Yes]

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC. take Cith Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Investigation:

Established 1931

155 Grand Ave. Suite 1000 Oakland, CA 94612

Sample: One (1) Groundwater Sample

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Laboratory No.: 950116

Date: December 27, 2005 Collected: December 21, 2005 Received: December 21, 2005 Prep/ Analyzed: December 22, 2005 Analytical Batch: 12CrH05Y

Investigation:

Client: CH2M HILL

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
950116	SC-700B-WDR-026	14:55	08:49	mg/L	5.00	0.0010	ND

QA/QC Summary

	QC STD I.D. Labor Num Duplicate 9501		unnet	Concentration		Concentration		Percent Difference	Acceptance limits	QC Within Control	
	Duplicate 9		0115-1	0.0030		0	.0030	0.00%	<u><</u> 20%	Yes	
QC Std I.D. N	Lab Number	Conc.of unspiked sample	ispiked Factor Conc. Amount spiked		Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Withir Control			
AS S	950116	0.00	5.00	0.00100	0.0	00500	0.00495	0.00500	99.0%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00498	0.00500	99.6%	90% - 110%	Yes
MRCVS#1	0.00974	0.0100	97.4%	90% - 110%	Yes
MRCVS#2	0.00947	0.0100	94.7%	90% - 110%	Yes
LCS	0.00488	0.00500	97.6%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

u Gltill Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00 P.O. No.: 911248 Prep. Batch: 122705B

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Using Method SW 6010B

Analytical Results Total Chromium

<u>TLI I.D.</u> 950116		<u>Field I.D.</u> SC-700B-WDR-026			<u>Units</u> mg/L				n Time DF 5:22 1.04				<u>RL</u> 0.0010	<u>Results</u> ND	
					QA	/Q(C Su	m	mary	/					
	QC STD	1.D. 1	iborato Numbe	,	Concentra	tion	Duj Conce		ation	Ρ	Relative Percent fference		eptance mits	QC Within Control	
	Duplic	ate 9	49972-	.4	0.0065		0.0065		5	0.00%		<u><</u> 20%		Yes	
QC Std I.D.	Lab Number	unspiked			Added Spike Conc.	MS Amount		C	easured Conc. of spiked sample		heoretical Conc. of spiked sample		/IS% covery	Acceptance limits	QC Within Control
MS	949972-7	0.0065	1.0)4	0.0100	0	.0104		0.0167	T	0.0169	9	8.1%	75-125%	Yes
		QC Std I.D.					heoretical ncentration		Percen Recovei		Acceptan Limits	ce	QC With Contro		
		MRCCS			0.0104		0.0100		104%		90% - 110	1%	Yes		
		MRCVS#1		(0.00989		0.0100		98.9%		90% - 110	%	Yes		
		MRCV		(0.00953		0.0100		95.3%		90% - 110	%	Yes		
		ICS			0.00983		0.0100		98.3%		80% - 120	%	Yes		
		LCS 0			0.0101	~	0.0100		101%		90% - 110	%	Yes		

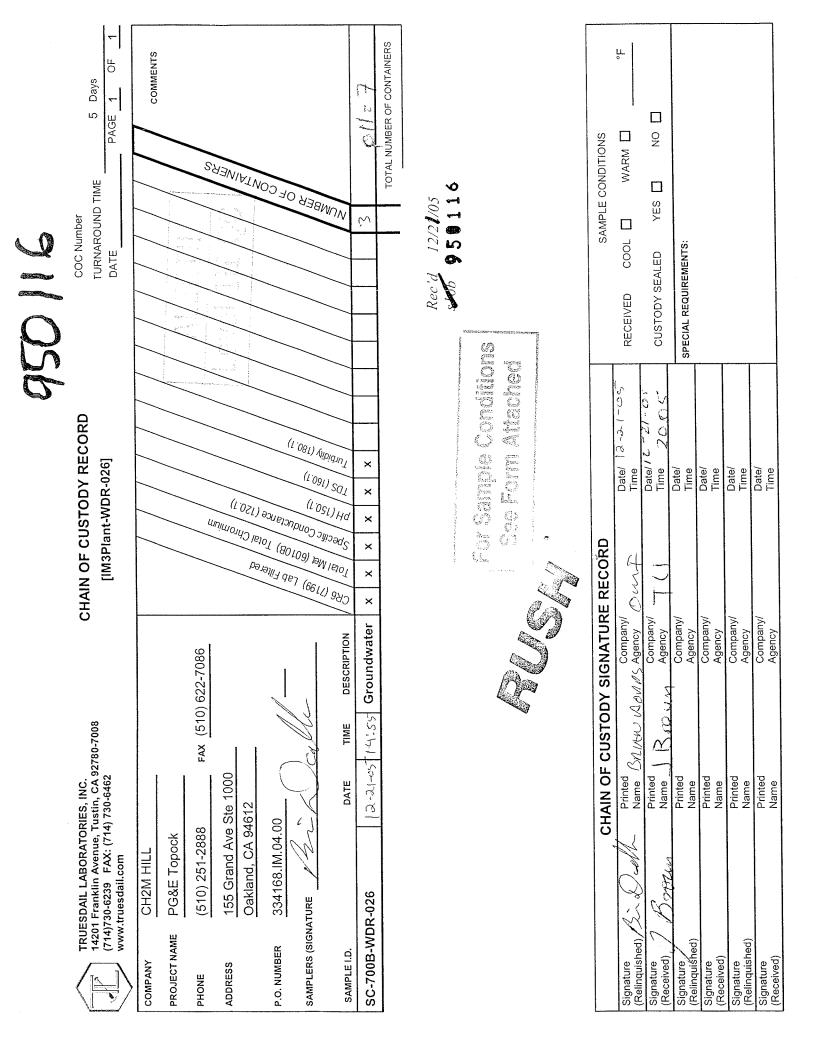
ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.


14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 950116

Date: December 27, 2005 Collected: December 21, 2005 Received: December 21, 2005 Prep/ Analyzed: December 27, 2005 Analytical Batch: 122705B

Report

E C E V 2006

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory Number: 950270 Received: December 28, 2005

CH2M HILL

PG&E Topock Project

IM3Plant-WDR-027 Project No.: 334168.IM.04.00 P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 950270

ITEM	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

IND EPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

January 3, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3 PLANT-WDR-027 PROJECT, GROUNDWATER MONITORING.

TLI NO.: 950270

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-027 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The sample was received and delivered with the chain of custody on December 28, 2005, intact and in chilled condition. The sample will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Exter Ce Hill for fulia Nayberg

Julia Nayberg Manager, Analytical Services

K.R.P. Sign

K.R.P. Iyer Quality Assurance/Quality Control Officer

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com Section 2.0

Summary Table of Final Results

Established 1931 14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92760-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com	_aboratory No.: 950270 Date Received: December 28, 2005			EPA 160.1 TDS	mg/L	4490	ection to clients, the public,	n part, in any advertising or
Established 1931 AANKLIN AVENUE - TUSTIN, CA 30-6239 - FAX (714) 730-64	Laboratory No.: 950270 Date Received: Decem			EPA 120.1 <i>EC</i>	µmhos/cm	8230	ducts. As a mutual prot	o be used, in whole or ir
14201 FF (714) 7:			nary	EPA 150.1 <i>pH</i>	Unit	7.63	dentical or similar pro	ondition that it is not t
			Its Summary	EPA 180.1 Turbidity	NTU	DN	dition of apparently i	ised and upon the co
			<u>nalytical Results</u>	SW 7199 Chromium	nexavalent mg/L	Ŋ	e of the quality or con	to whom it is addres
			Analyti	SW 6010B Chromium	1 01al mg/L	QN	and the second se	isive use of the client
TRUESDAIL LABORATORIES, INC. INDEPENDENT TESTING. FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES	1000			Sample Time		027 13:30	as been applied to all results: ificant figures. hree (3) significant figures. ee (3) significant figures.	This report apprise only to the samples, investigated and is not recessance of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or and these laboratories. This report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.
IL LABORATORIES ING. FORENSIC SCIENCE, AND ENVIRONM	Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 ention: Shawn Duffy	PG&E Topock Project 334168.IM.04.00 911248		<u>Sample I.D.</u>		SC-700B-WDR-027	 Non Detected (below reporting limit) Note: The following "Significant Figures" rule has been applied to all results. Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures. 	only to the sample, or sample ries, this report is submitter tout prior written authorizati
INDEPENDENT TESTING.	Client: C 16 0 Attention: S	Project Name: PG&E 1 Project No.: 334168 P.O. No.: 911248		<u>Lab I.D.</u>		950270	ND: Non Detec Note: The follow Result abc Quality Co	nus reportapplies and these laborator publicity matter with

Section 3.0

Final Reports

IN-®EPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Froject No.: 334168.IM.04.00 P.O. No.: 911248 Pep. Batch: 010306A

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 950270

Date: January 3, 2006 Collected: December 28, 2005 Received: December 28, 2005 Prep/ Analyzed: January 3, 2006 Analytical Batch: 010306A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Using Method SW 6010B

Analytical Results Total Chromium

_	L I I.D.)270	Field I SC-70		/DR-	027		<u>Units</u> mg/L		<u>ethod</u> 6010B			<u>n T</u> 1:29	<mark>ime</mark> 9		0 F 04	<u>_RL</u> 0.0010	<u>Results</u> ND
							QA/	Q	C Sui	nı	nary	/					
		QC STD	I.D.		oorato umbe	-	Concentra	tion	Dup Conce			Ρ	elative ercent fference		eptance mits	QC Within Control	
		Duplica	ate	ç	50270)	ND			ND		(0.00%	<	20%	Yes	
	QC Std I.D.	Lab Number	Con unsp sam	iked	Dilu Fac		Added Spike Conc.		MS nount	C s	easured onc. of spiked sample		heoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
	MS	950270	0.0	00	1.(04	0.0100	0	.0104	C	0.00957		0.0104	9	2.0%	75-125%	Yes
			Q	C Std	I.D.		leasured ncentration		heoretica ncentratio		Perce Recove		Acceptar Limits		QC With Contro		
				MRCO	CS		0.00967		0.0100		96.7%	6	90% - 11	0%	Yes		
			N	IRCV	S#1		0.00980		0.0100		98.0%		90% - 11		Yes	_	
				ICS			0.0105		0.0100		105%		80% - 12		Yes	_	
				LCS	3		0.00947		0.0100		94.79	6	90% - 11	0%	Yes		

ID: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

All lanager Julia Nayberg, Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar Doducts. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written ⇒thorization from these laboratories.

ID PENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248 REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 950270

Date: January 3, 2006 Collected: December 28, 2005 Received: December 28, 2005 Prep/ Analyzed: December 29, 2005 Analytical Batch: 12TDS05K

Imvestigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 950270		<mark>ld I.</mark> -700	<u>D.</u>)B-WDR-02	27		nits ıg/L			<mark>leth</mark> A 1	<u>iod</u> 60.1		<u>RL</u> 250	<u>Results</u> 4490
					QA	/Q(C Sun	nmai	ſy				
	QC STD I	.D.	Laborator Number	у	Concentrat	ion	Duplic Concent			Percent		eptance limits	QC Within Control
	Duplicat	e	950270		4490		442	0		0.79%		<u>≤</u> 5%	Yes
		Q	C Std I.D.	с	Measured oncentration		eoretical centration	Perce Recov		Accepta Limit		QC Withir Control	1
			LCS 1		502		500	100%	6	90% - 1	10%	Yes	

Below the reporting limit (Not Detected).R: Reporting Limit.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Eden Cilliel Via Dayberg Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar ducts. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to work it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written without prior written without prior written.

Truesdail Laboratories, Inc.

IMDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 950270

Date: January 3, 2006 Collected: December 28, 2005 Received: December 28, 2005 Prep/ Analyzed: December 29, 2005 Analytical Batch: 12EC05Q

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	Results
950270	SC-700B-WDR-027	μmhos/cm	EPA 120.1	10.0	20.0	8230

QA/QC Summary

QC S		' I Concentra	tion	Duplica Concentra		Re	elative Percent Difference		eptance imits	QC Within Control
Duplic	ate 950249	-2 479		476		0.63% <u>≤</u> 10%		<u><</u> 10%		Yes
L	QC Std I.D.	Measured Concentration	1	Theoretical oncentration	Perce Recov		Acceptanc Limits	e	QC Withi Control	
	CCS	723		706	1029	%	90% - 110%	6	Yes	
	CVS#1	921		996	92.5	%	90% - 110%	6	Yes	_
	CVS#2	923		996	92.7	%	90% - 110%	6	Yes	_
	LCS	732		706	1049	%	90% - 1109	/6	Yes	
	LCSD	729		706	103	%	90% - 1109	%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

ey GHil Julia Nayberg, Manager

Analytical Services

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

In-vestigation:

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 950270

Date: January 3, 2006 Collected: December 28, 2005 Received: December 28, 2005 Prep/ Analyzed: December 29, 2005 Analytical Batch: 12PH05AC

pH by EPA 150.1

Analytical Results pH

T LI I.D.	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	MDL	<u>RL</u>	<u>Results</u>
950270	SC-700B-WDR-027	13:30	07:05	pH Units	0.0140	0.100	7.63

QA/QC Summary

QC STD I.I	D. Laborato Numbe	r i Concentra		Concentration Duplicate Concentration		Difference (Units)			eptance imits	QC Within Control	
Duplicate	950270)	7.63		7.64	1		0.01	<u>+</u> 0.1	00 Units	Yes
· · · · · · ·	QC Std I.D.		easured centration		eoretical centration	Differe (Unit		Accepta Limit		QC With Contro	1
F	LCS		7.00		7.00	0.0	0	<u>+</u> 0.100	+ 0.100 Units		
F	LCS #1		7.01		7.00	0.0	1	<u>+</u> 0.100	Units	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Jou li Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar poducts. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to mom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written athorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 950270

Date: January 3, 2006 Collected: December 28, 2005 Received: December 28, 2005 Prep/ Analyzed: December 29, 2005 Analytical Batch: 12CrH05AC

Investigation:

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
950270	SC-700B-WDR-027	13:30	07:27	mg/L	5.00	0.0010	ND

QA/QC Summary

	QC ST) I.D.		oratory umber	Concentrati	on		licate ntration	Relative Percent Difference		eptance imits	QC Within Control	
	Duplic	ate	9:	50270	ND		1	٧D	0.00%		20%	Yes	
QC Std I.D.	Lab Number	Con unsp	ic.of biked nple	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample		MS% covery	Acceptance limit	s QC Within Control
MS	950270	0.	00	5.00	0.00100	0.	00500	0.00522	0.00500		104%	75-125%	Yes
				<u> </u>				I Dorco	nt Accenta	nce	OC Wit	hin	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00490	0.00500	98.0%	90% - 110%	Yes
MRCVS#1	0.00995	0.0100	99.5%	90% - 110%	Yes
	0.00494	0.00500	98.8%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Client: CH2M HILL 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample P ¡oject Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

is without it was a with

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 950270

Date: January 3, 2006 Collected: December 28, 2005 Received: December 28, 2005 Prep/ Analyzed: December 29, 2005 Analytical Batch: 12TUC05V

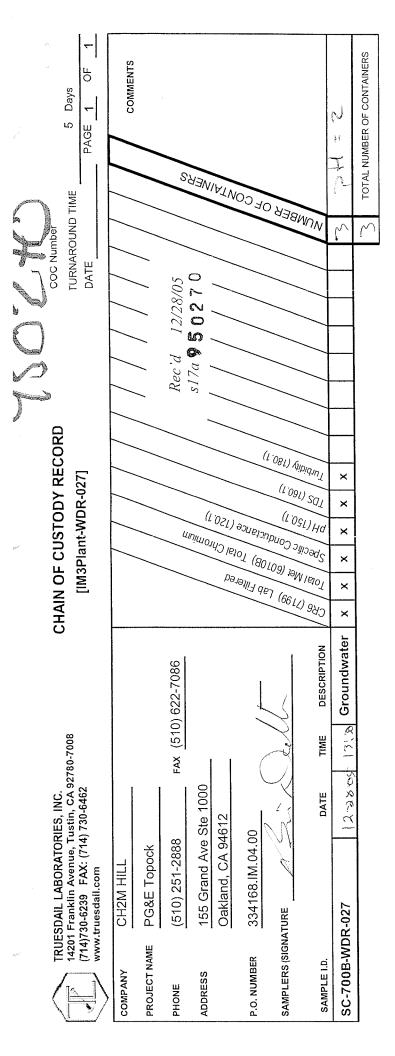
Investigation:

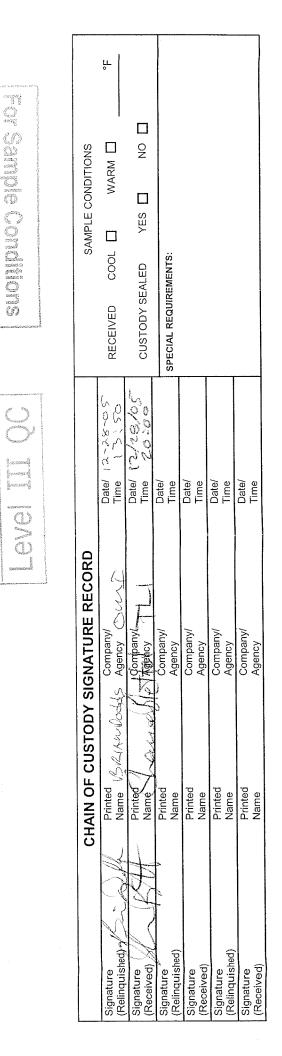
Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	RL	<u>Results</u>
	<u>ricia libi</u>			4.00	0.100	ND
950270	SC-700B-WDR-027	13:30	NTU	1.00	0.100	ND

QA/QC Summary


QC STD I.D.		Laborato Number	- 1	Concentrati	Duplicate Concentration			Relative Percent Difference		eptance imits	QC Within Control	
Duplicat	Duplicate 950200-12		2	0,106	0.105			0.95%		<u><</u> 20%	Yes	
	QC Std I.D.			Measured Concentration	Theoretical Concentration		Percent Recovery		1		QC Withi Control	
		LCS		8.45 8.54		8.00					Yes	
	LCS					3.00	107%				Yes	
	—	LCS		8.47		8.00		, 0			Yes	


ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC. den li All

Las Luclia Northerg Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

See Form Attached

ANALYTICAL REPORT

PG&E TOPOCK GWM

Lot #: E5L230328

Shawn Duffy

CH2M Hill Inc

SEVERN TRENT LABORATORIES, INC.

Marisol Tabirara Project Manager

December 30, 2005

EXECUTIVE SUMMARY - Detection Highlights

E5L230328

PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL METHOD
SC-SLUDGE-WDR-026 12/21/05 15:13	001			
Mercury	2.3	0.57	mg/kg	SW846 7471A
Arsenic	49	11	mg/kg	SW846 6010B
Barium	93	23	mg/kg	SW846 6010B
Chromium	34000	11	mg/kg	SW846 6010B
Copper	87	29	mg/kg	SW846 6010B
Molybdenum	93	46	mg/kg	SW846 6010B
Nickel	49	46	mg/kg	SW846 6010B
Vanadium	100	57	mg/kg	SW846 6010B
Zinc	36	23	mg/kg	SW846 6010B
Percent Moisture	82	0.10	00	MCAWW 160.3 MOD
Hexavalent Chromium	130	4.6	mg/kg	SW846 7199

METHODS SUMMARY

E5L230328

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Hexavalent Chromium Inductively Coupled Plasma (ICP) Metals Mercury in Solid Waste (Manual Cold-Vapor) Percent Moisture	SW846 7199 SW846 6010B SW846 7471A MCAWW 160.3 MOD	SW846 3050B SW846 7471A MCAWW 160.3 MOD

References:

- MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
- SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E5L230328

WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
HTRQW 001 SC-SLUDGE-WDR-026	12/21/05	15:13
NOTE(S):		

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-026

TOTAL Metals

Lot-Sample #...: E5L230328-001 Date Sampled...: 12/21/05 15:13 Date Received..: 12/23/05 11:20 % Moisture....: 82

REPORTING PREPARATION-WORK PARAMETER RESULT _ LIMIT____ UNITS____ METHOD ANALYSIS DATE ORDER # Prep Batch #...: 5361240 Arsenic SW846 6010B 12/27-12/29/05 HTROW1AD 49 11 mg/kg Analysis Time..: 11:57 Dilution Factor: 2 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 5361120 Antimony ND G 69 SW846 6010B 12/27-12/29/05 HTROW1AE mq/kq Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 MS Run #....: 5361120 Instrument ID..: M01 93 Barium 23 mg/kg SW846 6010B 12/27-12/29/05 HTRQW1AF Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 MS Run #.....: 5361120 Instrument ID..: M01 ND G Cadmium 5.7 mq/kq SW846 6010B 12/27-12/29/05 HTROW1AG Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 5361120 SW846 6010B 12/27-12/29/05 HTROW1AH Chromium 34000 11 mg/kg Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 5361120 Beryllium ND G 5.7 SW846 6010B 12/27-12/29/05 HTROW1AJ mq/kq Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 MS Run #....: 5361120 Instrument ID..: M01 Lead ND G 5.7 mg/kg SW846 6010B 12/27-12/29/05 HTROW1AK Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 5361120 Selenium ND G 5.7 SW846 6010B 12/27-12/29/05 HTROW1AL mg/kg Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 Instrument ID..: M01 MS Run #....: 5361120 Silver ND G SW846 6010B 12/27-12/29/05 HTRQW1AM 11 mg/kg Dilution Factor: 2 Analysis Time..: 11:57 Analyst ID....: 021088 Instrument ID..: M01 MS Run #.....: 5361120

(Continued on next page)

Matrix....: SO

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-026

TOTAL Metals

Lot-Sample #...: E5L230328-001

Matrix.....: SO

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK <u>ANALYSIS DATE</u> <u>ORDER #</u>		
Cobalt	ND G	57	mq/kq	SW846 6010B	12/27-12/29/05 HTRQW1AN		
	-	Dilution Facto	5.5	Analysis Time: 11:5			
		Instrument ID.	.: M01	MS Run #: 53613	-		
Copper	87	29	mg/kg	SW846 6010B	12/27-12/29/05 HTRQW1AP		
		Dilution Facto	or: 2	Analysis Time: 11:5	7 Analyst ID: 021088		
		Instrument ID.	.: M01	MS Run #: 5361	120		
Molybdenum	93	46	mg/kg	SW846 6010B	12/27-12/29/05 HTRQW1AQ		
		Dilution Facto	or: 2	Analysis Time: 11:5	7 Analyst ID: 021088		
		Instrument ID.	.: M01	MS Run #: 5361	120		
Nickel	49	46	mg/kg	SW846 6010B	12/27-12/29/05 HTRQW1AR		
		Dilution Facto	or: 2	Analysis Time: 11:5	7 Analyst ID: 021088		
		Instrument ID.	.: M01	MS Run #: 5361	120		
Thallium	ND G	11	mg/kg	SW846 6010B	12/27-12/29/05 HTRQW1AT		
		Dilution Facto	or: 2	Analysis Time: 11:5	7 Analyst ID: 021088		
		Instrument ID.	.: M01	MS Run #: 53612	20		
Vanadium	100	57	mg/kg	SW846 6010B	12/27-12/29/05 HTRQW1AU		
		Dilution Facto	or: 2	Analysis Time: 11:5	Analyst ID: 021088		
		Instrument ID.	.: M01	MS Run #: 5361	120		
Zinc	36	23	mg/kg	SW846 6010B	12/27-12/29/05 HTRQW1AV		
		Dilution Facto	or: 2	Analysis Time: 11:5	-		
		Instrument ID.	.: M01	MS Run #: 5361	120		
Prep Batch #	.: 5361245						
Mercury	2.3	0.57	mg/kg	SW846 7471A	12/27-12/28/05 HTRQW1AW		
-		Dilution Facto	or: 1	Analysis Time: 16:40			
		Instrument ID.	.: M04	MS Run #: 5361	122		

NOTE (S): Results and reporting limits have been adjusted for dry weight.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-026

General Chemistry

Lot-Sample #...: E5L230328-001 Work Order #...: HTRQW Matrix.....: SO Date Sampled...: 12/21/05 15:13 Date Received..: 12/23/05 11:20 % Moisture....: 82

					PREPARATION-	PREP	
PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	ANALYSIS DATE	<u>BATCH #</u>	
Hexavalent Chromium	130	4.6	mg/kg	SW846 7199	12/24-12/27/05	5358021	
	I	Dilution Fact	or: 2	Analysis Time: 10:08	8 Analyst ID: 000022		
	-	Instrument ID	D: W18	MS Run #: 535800	4		
Percent Moisture	82	0.10	90	MCAWW 160.3 MOD	12/27-12/28/05	5361300	
	I	Dilution Fact	cor: 1	Analysis Time: 12:05	Analyst ID	: 0000644	
	:	Instrument II	D: W15	MS Run #:			

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Appendix B Flowmeter Calibration Records

Flow Calibration with Adjustment

People for Process Automation

30057866-1275190

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

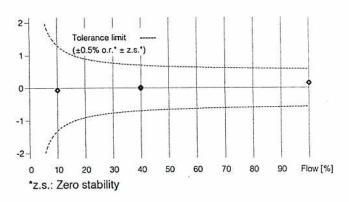
Order Code

PROMAG 23 P 2"

Transmitter/Sensor

6A021F16000

Serial Nº


FIT-100

Tag Nº

Flow	Flow [GPM]	Duration [sec]	V target	V meas. [US GAL]	∆ o.r.* [%]	Outp.** [mA]
(%) 10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59
39.9	62.1	30.0	31.071	31.070	0.00	10.38
39.9	62.1	30.0	31.073	31.078	0.02	10.38
100.2	156.0	30.0	78.041	78.156	0.15	20.06
-	-	-	3	2-	-	-
-	-	-	-	-	-	-
-	-	- 1	8 2	-		-
-	-	-	5 - 2	-	-	-
	-	-	-	-	-	-
-	-	-	-	-	5 <u>2</u> 7	1

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9178	
Calibration factor	
0	
Zero point	
72.9 °F	
Water temperature	

Measured error % o.r.

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Swint

Tim Swick

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Parameter Setting

1275190

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

6A021F16000

Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transm./Sensor

2"

Nominal diameter

FIT-100

Tag №

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

11-29-2004

Date

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

		COMP	ONENT	2			MANUFACTURER					PROJECT				
Code:						Na	me: Fndr	ess +	Hause	~	Nu	mber:				
Name:						Mo			AIRAÓ		Na	me: -	FOPOCIC	IM3		
							rial #: 6A02			<u>A3413</u>					2	
			and the second			Tou	11al #. (0/10/2			and the second second	awae na					
		RAN	GELV	ALUE	UNIT	<u>e</u> 1	COMPUTING I	FUNCTION			LC	ONTROL?		March March March 199		
0		NAL N		ALUL	UNII	3	COMPOTING	FUNCTION	13? 17 N			Action? dire				
ndicate (Y		Chart:					Describe: Modes? P / I / D									
Record? Y (N) Scale: 0-50 gpm					Sph	1					10.00	WITCH? Y	(N)			
Transmit/ Input: 0-50 GP											Unit Range:					
Convert?	YN F	Outpu		-20	MA						Differential: fixed/adjustable Reset? automatic / manual					
e)	oupu			the second second second second	and the second second			1		1					
ANALOG CALIBRATIONS										DIS	CR	ETE CALI	BRATIONS		Note.	
REQUIRED					AS C	S CALIBRATED REQUIR						AS CALI	BRATED	No		
Input Indi		ated	Output	In	creasing	Input	Decreasi	ng Input	Number	Trip Poir	nt	Reset Pt.	Trip Point	Reset Pt.		
ana ana a				Indicated		Outpu	It Indicated	Output		(note risi	ing c	or falling)	(note rising or falling)			
0.0	0.0	5	4.0	0	4	1.00	٥		1.		1		(2010 11012)	, v		
									2.							
25.0	25	0	12.0						3.		_					
56.0	50.	0	20.0						4.	in the second	-					
22.2			20.0						6.		-					
CONTROL	MODE	COTT	TNICS.	P:	I	te Colet of	D:				-					
# NOT	Contract Contractor	SELL	1105.	<u> </u>	1		<u> D:</u>		7.	and the second						
			M	11	e 9	6	4					Co	mponent Calib	rated and Read	ly for Start-u	
	ent	CONTRACTOR OF THE		del	Nr.	.¢	lag.	1 .	-							
			hhe	1 1	ige	E	Descrip	+100				By	CA	Asting	5	
-R	orAl	1,90	9 4	rom	50	-7	5 gpm	ta	0-5	50 an	n	Da	te: 4-	18-05		
1'S	imu	121	1	Cerry			whit 4	1 2 1	0 11	002	2		No. El-	E-LAd		
	Let la	In	EU.	Sw-	and .	- 01	squar 7	10,1	2,16,	1 20	2		No.: FIT	r-100		

Ť.

CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

Flow Calibration with Adjustment

People for Process Automation

30057870-1275191

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Duration

[sec]

30.0

30.0

30.0

30.0

÷

4

-

_

-

V target

[US GAL]

7.7910

31.157

31.229

78.017

-

-

V meas.

[US GAL]

7.8318

31.160

31.229

77.856

2

-

Order Code

PROMAG 23 P 2"

Flow

[GPM]

15.6

62.3

62.4

155.9

-

Transmitter/Sensor

6A022016000

Serial Nº

FIT-101

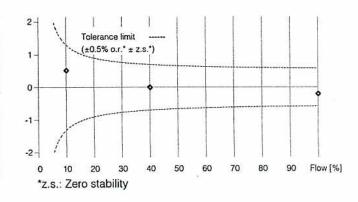
Tag №

Flow

[%]

10.0

40.0


40.1

100.2

-

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	

Measured error % o.r.

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

mSwint

Tim Swick

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Outp.**

[mA]

5.61

10.40

10.42

20.00

-

-

_

-

Δ o.r.*

[%]

0.52

0.01

0.00

-0.21

-

-

-

_

-

Parameter Setting

People for Process Automation

1275191

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

6A022016000

Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transm./Sensor

2"

Nominal diameter

FIT-101

Tag №

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

11-29-2004

Date

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

		сом	PONI	ENT				м	ANUFACTU	RER		PROJECT				
Code:							Nar	me: End	ress +	Haus	er	Num	ber:			
Name:							Mo		50-AL			Name	e: T	opock	IM3	
							Ser	ial #: 6A	\$220	6000	5		14		23 - SA	
									FUNCT	TIONS				\sim		
	RANGE VALUE UNITS COMPUTING FUNC							FUNCTION	S?Y/N			NTROL?	Y N ct / reverse			
Indicate? Y	N	Char	t:					Describe:					odes? P/1			
Record? Y	(\mathbb{N})	Scale		0-1	20	GPI	9	SWITCH? Y N Unit Range:								
Transmit/ Convert? Y	/N	Input		0-1	20	GPI						Di	ifferential:	natic / manual	fixed/adjusta	ble
- C	-fine			Contractor Co			the second s			7						
			A	NALO	GCA	LIBRAT	TIONS				DIS	CRE'	TE CALI	BRATIONS		Note.
	REQL	JIRED	-				AS C	AS CALIBRATED REQUIR						AS CAL	BRATED	No
Input	Indic	cated	Ou	itput	In	creasing	Input	Decrea	sing Input	Number	Trip Poir	t F	Reset Pt.	Trip Point	Reset Pt.	
~ ~				-	Indic		Outpu			<u> </u>	(note risi	ng or	falling)	(note rising or falling)		
30.0			4.		0		4.0			1.		_				
60,0			12							2.						
90.0				0	Caller					4.		+				
90.0			20	.0						5.	-	-				
										6.						
CONTROL	MOD	E SET	TING	S:	P:	I	:	D:		7.						
# NOT	ES: c	1	1		1	<i>i</i>	٩						Co	mponent Calib	orated and Read	ly for Start-up
$-\nu$	err	tice	1	Mo	ide	IN	6.	# Tag							1	· · · · · · · · · · · · · · · ·
R	er	<u>4nc</u>	sea	7 4	ro	mi	0-1	15 90th		0120	Sapr	n	By	CI	LASTINE	15
P	req	SAN	in	red	1	ag	€	Descri	ption		31-		Da	te: 4-	18-05	1
	ind	14	ted	m	A	eet/	sut	- 4, 8,	12,16	€20)		Tag	No.: FI	T-101	

CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

Flow Calibration with Adjustment

People for Process Automation

30057871-1275192

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

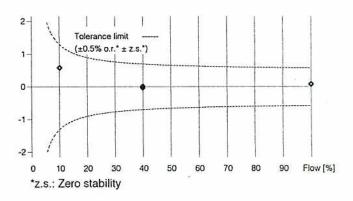
Order Code

PROMAG 23 P 2"

Transmitter/Sensor

6A022116000

Serial Nº


FIT-102

Tag №

Flow	Flow	Duration	V target	V meas.	Δ ο.г.*	Outp.**
[%]	[GPM]	[sec]	[US GAL]	[US GAL]	[%]	[mA]
10.0	15.6	30.0	7.7896	7.8356	0.59	5.61
39.9	62.1	30.0	31.069	31.073	0.01	10.38
39.9	62.1	30.0	31.070	31.063	-0.02	10.38
100.2	155.9	30.0	78.008	78.072	0.08	20.04
-	-	-	÷	-	-	-
-	-	-	-	-	-	-
-	÷ ÷	-	-	-	-	-
842	-	-	-		-	-
-	<u>~</u>	-	-	-	÷	-
-	2	-	-21		2	-

(≙ 100%)

Measured error % o.r.

"Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Smit

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Parameter Setting

1275192

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

6A022116000

Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transm./Sensor

2"

Nominal diameter

FIT-102

Tag Nº

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

11-29-2004 Date

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

		COM	PONE	NT				МА	NUFACTI	RER				PRO	DJECT	
Code:							Nam	e: Endres	55+1-	tauser	-	Number:				
Name:							Mod					Name:	To	opock	IM3	
				-			Seria	1#: 6Ad	22/10	0000				9000.0	- 0	
									FUNCT							
		RAI	IGE	VAI	LUE	UNIT	rs d	COMPUTING 1	FUNCTION	IS? Y/N)		CONTR			10000000000000000000000000000000000000	
Indicate 1	IN	Chan	t;			THURSDAY.		Describe:		<u> </u>		Action Modes		ct-Lreverse		
Record? Y		Scal	e:									SWITC	and a second of a	and the second se		
Transmit/	\sim	Inpu		-		00						Unit R	ange:	0		
Convert?	7N	Out			20	GP						Differe			fixed/adjusta	ble
	Jamas	demicrosoft	and the second se			and the bring the		THE POST OFFICE AND A		1				natic / manual		Canada and a second
				VALU	G CAL	IBRAT	IONS				DIS	CRETE	CALL	BRATIONS		Note.
· · · ·	REQU	JIRED		and a			AS CA	LIBRATED			REQUIRE	D		AS CAL	BRATED	No
Input	Indic	cated	Out	put	Inc	reasing	Input	Decreasi	ng Input	Number	Trip Poin	t Rese	t Pt.	Trip Point	Reset Pt.	
					Indica	ted	Output	Indicated	Output		(note risi	ng or falli	ng)	(note rising	g or falling)	
0.0	C		42		Ø		40			1.			- 4/		<u>, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
25.00	12.		18.0	00			-			2.		_				
37.5		1,5		00						3.						
50.0	50	.0	20.							5.						
-	1		-					-		6.						
CONTROL		E SET	TINGS	:	P:	I:		D:		7.						
# NOT	ES;	r				11							Co	mponent Calib	rated and Read	ly for Start-un
	Ari	iti	ed	11	Vlod	el	No	\$ 109							11.	F
	Re-	AN	geo	1	fior	21	0-	75,904	, to	0-	50 9	nin	By:	CA	lasting	e
	Pro	an	An	m	ed.	tac		desci		7111	đ	1.1	Dat		IG-AS	<u>,</u>
	Sir	in	11	ed	m	1	1 7	searchs in the second second second	1 Price	12 16	d -9	0. 1			<u>10 45</u>	Contractor and a second of
terror lange		in in	-4	24	rel	1	Out	Dut: 4	1 01	12 16	E L	wink	Tag	No.: HI	T-102	

CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

Endress+Hauser

People for Process Automation

Flow Calibration with Adjustment

30060317-1304709

41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec Order N°/Manufacturer

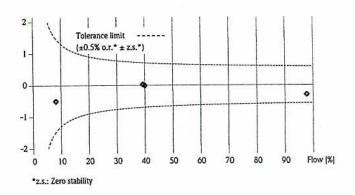
23P50-AL1A1AA022AW Order code

PROMAG 23 P 2"

Transmitter/Sensor

6C037316000

Serial Nº


Tag N°

Flow 1%	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ 0.r.* [%]	Outp.** [mA]
8.2	12.7	61.3	13.009	12.942	-0.51	5.30
39.5	61.4	61.6	63.049	63.061	0.02	10.32
40.2	62.5	60.9	63.388	63.377	-0.02	10.43
97.9	152.4	62.1	157,766	157.275	-0.31	19.62
-	-	-	-		-	-
-	-	-	-	-	-	-
-	-	-		-	-	-
-	-	-	8 4 5	-	-	-
-	-	-	-	-	-	-
-	-	-		-	-	-

(put into service as)

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9152	
Calibration factor	
0	
Zero point	
72.0 °F	
Water temperature	

Measured error % o.r.

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-31-2005


Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

hin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

People for Process Automation

Parameter Setting

1304709

41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1AA022AW

Order code

6C037316000 Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transmitter/Sensor 2" Nominal diameter AB -FIT-1205 FIT-701 (put into service)

Tag Nº

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

01-31-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

		COMP	ONE	NT				М	ANUFACTU	RER				PRO	JECT	
Code:				13			Na	me: Enc	ress t	Haus	ser	Nun	nber:			
Name:				211101010			Mo		50-AL			Nam	ne: -	Topock	IM3	
			34. 				Ser		137316				3.) 1970 - Tanan Sanata			
									FUNCT		the second distances of					
		RAN	GE	VAL	UE	UNIT	S	COMPUTING	the second se	and the second second second	1977 - 1977 -		ONTROL?		enni ela 1415 eria	
	<u></u>													ect / reverse		
Indicate? Y Record? Y		Chart: Scale:		0-2	E	1:0	-	Describe:					fodes? P / VITCH? Y		net e Alizzania e Co	
Record? 1	C	Scale.		U -a		GPI	-						Unit Range			
Transmit/		Input:		0-		GPI						-	ifferential		fixed/adjusta	ble
Convert Y	YN_	Outpu	it:	4-2	20	ma						R	leset? auto	matic / manual		
			AN	VALO	G CAI	IBRAT	IONS				DIS	SCRE	ETE CAL	BRATIONS		Note.
	REQU	ЛRED					AS C	ALIBRATED			REQUIR	ED		AS CAL	BRATED	No
Input	Indic	cated	Out	put	In	creasing	Input	Decrea	sing Input	Number	Trip Poi	nt	Reset Pt.	eset Pt. Trip Point Reset Pt.		
					Indic	ated	Outpu	nt Indicated	Output		(note ris	ing o	r falling)	(note risin	g or falling)	
Ø.Ø	0	and the second se	4.0		Ø.	Ø	4.0			1.						
4:25		25	8	0	TOG					2.						
12.5	12.		12.		-					3.		-				
18.75	18.	75	16.	0			100			4.						
250	25.	30	20	0	0-2-00					6.		-	ohn norr			
CONTROL					P:	I	b;	D:		7.						
# NOT		L OLI	1110	<u>, 1</u>	<u></u>			D.		<u> </u>	L			I Call	orated and Rea	du fan Stant un
A	5	And	300	1 0	fro	m	0-	75 gp	4	1-2	5 gp			omponene Cant	naleu anu Kea	ay 101 Start-up
F	5	ar A	/			tar	¢		ption		- OF		В	r. C. I	Histing	2:
	into	late	d	Ou	tou	f d.	4	8,121		Zoma				ate:	1	
		- 11. 11.			7		//		.,,,				Т	ng No.: -FI	T-120	5
Announce and a submatic factor	and the second se	-										-	the second s	Manager and the local data and the	Competition and statements	Contraction of the second second

CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.06.05.92

AB FIT-701 (put into service as FIT-701)

Flow Calibration with Adjustment

Replica 30067967-1385113

41743399

Purchase order number

US-49316500-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P80-AL1A1AA022AW

Order code

PROMAG 23 P 3"

Transmitter/Sensor

7700C616000

Serial N°

- FIT-702 AR

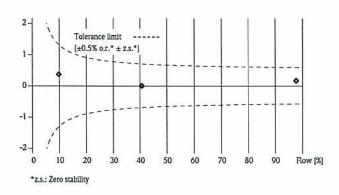
Tag N°

Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.** [mA]
9.9	39.5	120.5	79.279	79.569	0.36	5.59
40.8	162.7	60.9	165.107	165.096	-0.01	10.53
40.9	162.7	60.5	164.200	164.202	0.00	10.54
97.9	390.1	60.8	395.561	396.199	0.16	19.69
-	-	-	-	-	-	-
-	. 	-	-		÷	:.
. 	-	-	-	~ .	-	
	-	-	: 	2 7		-
-	-	-	-		-	-
-	-	-	-	-	. 	-

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

07-27-2005


Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

Calibration rig	
398.3621 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
1.1476	
Calibration factor	
35	
Zero point	
77.1 °F	

Water temperature

Measured error % o.r.

4LI

John Redmon Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

Parameter Setting

Replica 1385113

41743399

Purchase order number

US-49316500-10 / Endress+Hauser Flowtec

Order N°/Manufacturer

23P80-AL1A1AA022AW

Order code

7700C616000 Serial Nº

Current Output 1 Value for 0/4mA Value for 20mA Current Span

PROMAG 23 P

Transmitter/Sensor

3"

Nominal diameter

FIT-702 08 _ Tag Nº

0 USgal/min 200 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

07-27-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

People for Process Automation

Flow Calibration with Adjustment

30060305-1304706

41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec Order Nº/Manufacturer

23P50-AL1A1AA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor

6C037016000

Serial Nº

FIT-1202

Tag Nº

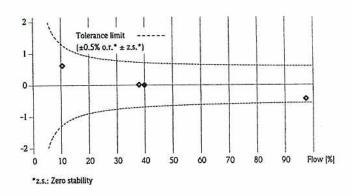
Flow	Flow (GPM)	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.** [mA]
10.6	16.5	58.3	16.013	16.111	0.61	5.71
38.1	59.3	64.6	63.940	63.944	0.01	10.10
40.1	62.3	61.2	63.602	63.598	-0.01	10.41
97.6	151.9	61.2	154.838	154.134	-0.45	19.55
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-):	-	-	-
-	-			-	-	-
3 5	-	-		-	-	- 1
-	-	-	-	-	-	200

FCP-20 S Calibration rig		
155.6102		(≙ 100%)
Calibrated full		<u> </u>
Current	4 - 20 mA	

Calibrated output

0.9212

Calibration factor


0

Zero point

71.6 °F

Water temperature

Measured error % o.r.

**Calculated value (4 - 20 mA)

*o.r.: of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-31-2005

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

fin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

People for Process Automation

Parameter Setting

1304706

41729921

Purchase order number

US-49311914-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1AA022AW

Order code

6C037016000 Serial Nº

<u>Current Output 1</u> Value for 0/4mA Value for 20mA Current Span PROMAG 23 P

Transmitter/Sensor

2"

Nominal diameter

FIT-1202 Tag N°

0 USgal/min 75 USgal/min 4-20mA HART US

The above parameters are set according to your order. Please refer to the Operating Manual for any parameters not mentioned.

01-31-2005

Date

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

		COM	PONE	ENT				MAI	NUFACTU	RER					PRO	JECT	
Code:							Nan	ne: Endre	554	Hause	r	Nu	mber:				
Name:		1						del: 23P50				Na	me: ī	Topo	ick	IM3	
							12.520			10 chal				-1-	2		
				*****			1		FUNCT		the state of the						
		RAN	GE	VAL	UE	UNIT	s T	COMPUTING F		and the second se		TC	ONTROL	2 Y /N	1		
	<u> </u>									0			Action? d	irect / re			
Indicate X		Chart						Describe:					Modes? P				
Record? Y	N	Scale	:	0-2	5	GPN	1						WITCH? Unit Rang)		
Transmit/		Input		0-2	5	GPI	n					-	Differenti			fixed/adjust	able
Convert?	NN N	Outpu		4-		inA						_	Reset? au	1993 Sec. 1997 Sec. 1	manual		
			A	NALO	G CAI	IBRATI	ONS				DI	SCR	ETE CA	LIBRA	TIONS		Note,
	REQU	IRED						ALIBRATED			REQUIR	1.1		1		IBRATED	No
		T														Carlo - Transaction	1 110
Input	Indic	ated	Ou	tput	In	creasing 1	nput	Decreasi	ng Input	Number	Trip Poi	int	Reset P	. Tri	p Point	Reset Pt.	-
	1				Indic		Outpu	the second s	Output		(note ris	sing	or falling)		note risin	g or falling)	
0.0	0,		4.		0	4	1.00	0		1.						_	
6.25	-	25		0						2.				_			
12.5	la.		13	_						3.	-			-			
18.75	18:	_	20	.0						4.							
220	23	0	au	.0						6.			-				
CONTROL		n orm					none galaria							-			
CONTROL		E SEI	TING	15:	P:	I:		D:		7.	-					1	l
# NOT	100:	1.	1-	111.	11	11.	0					-	' '	Compor	ient Calil	brated and Res	dy for Start-up
	eng	1eg		No	<u>cel</u>	100.	ð										
$\square R$	e dr	And	lec	1 +	om	0-	75	gom .	to C	1-25	902	n		By:	Cal	14Astil	193
LF	rog	rAt	in	red	+	ea	¢	H.	iptio	N	5			Date:	4-2	20-05	1
	J)				5								Tag No.:	EI	T-120	2
Concernance of the second						and the second second	-					-	-		1 1	1 10-14	

CH2M HILL INSTRUMENT CALIBRATION SHEET Rev.066.05.92

Appendix C Daily Volumes of Groundwater Treated

August 2005 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

			Extr	action Well Sys	stem	Inj	ection Well Sys	tem	RO Brine
Month	Day	Year	TW-2S	TW-2D	Total	IW-01	IM-02	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
August	1	2005	-9	92,984	92,975		74,498	74,498	See Note 1
August	2	2005	-7	73,981	73,974		64,381	64,381	See Note 1
August	3	2005	-8	73,490	73,482		54,624	54,624	See Note 1
August	4	2005	-10	100,232	100,222		90,779	90,779	See Note 1
August	5	2005	-14	98,882	98,868		65,414	65,414	See Note 1
August	6	2005	-14	106,226	106,212		106,672	106,672	See Note 1
August	7	2005	-15	99,260	99,245		73,523	73,523	See Note 1
August	8	2005	-17	100,725	100,709		83,413	83,413	See Note 1
August	9	2005	-18	85,615	85,597		73,001	73,001	See Note 1
August	10	2005	-19	101,267	101,248		76,021	76,021	See Note 1
August	11	2005	-14	93,814	93,800		75,522	75,522	See Note 1
August	12	2005	-13	93,261	93,248		79,552	79,552	See Note 1
August	13	2005	-15	98,119	98,104		84,414	84,414	See Note 1
August	14	2005	-8	43,401	43,393		37,390	37,390	See Note 1
August	15	2005	-4	26,357	26,354		23,372	23,372	See Note 1
August	16	2005	-17	98,958	98,941		98,030	98,030	See Note 1
August	17	2005	-17	99,081	99,064		87,814	87,814	See Note 1
August	18	2005	-18	104,744	104,726		82,092	82,092	See Note 1
August	19	2005	-13	101,003	100,989		81,505	81,505	See Note 1
August	20	2005	-12	101,783	101,771		80,240	80,240	See Note 1
August	21	2005	-12	94,411	94,399		71,714	71,714	See Note 1
August	22	2005	-15	94,628	94,614		97,350	97,350	See Note 1
August	23	2005	-13	98,382	98,369		68,336	68,336	See Note 1
August	24	2005	-16	95,450	95,435		87,340	87,340	See Note 1
August	25	2005	-12	103,172	103,160		88,748	88,748	See Note 1
August	26	2005	-12	99,055	99,043		89,444	89,444	See Note 1
August	27	2005	-12	101,050	101,038		77,721	77,721	See Note 1
August	28	2005	-14	97,409	97,395		87,475	87,475	See Note 1
August	29	2005	36,359	111,253	147,612		131,711	131,711	See Note 1
August	30	2005	53,981	123,157	177,138		175,080	175,080	See Note 1
August	31	2005	57,484	128,162	185,647		159,186	159,186	See Note 1
tal Monthly	Volumes (ga	I)	147,455	2,939,314	3,086,769	0	2,626,360	2,626,360	See Note 1
verage Pump	/Injection Ra	ates (gpm)	3.3	65.8	69.1	0.0	58.8	60.8	10.0

NOTES:

gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

¹The reverse osmosis concentrate (i.e., brine) flow meter was not correctly logging flow rates from August 1 to August 18, 2005. The flow meter was repaired on August 18, 2005. The average flow rate for August 2005 was estimated to be 10.0 gpm based on flow rate data from August 18 to August 31, 2005.

September 2005 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

	Day	Year	Extraction Well System			Inj	RO Brine		
Month			TW-2S	TW-2D	Total	IW-01	IM-02	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
September	1	2005	64,121	130,379	194,499	0	179,330	179,330	See Note 1
September	2	2005	63,572	130,662	194,234	0	182,101	182,101	See Note 1
September	3	2005	24,012	114,966	138,978	0	124,222	124,222	See Note 1
September	4	2005	0	100,621	100,621	0	79,684	79,684	See Note 1
September	5	2005	0	96,934	96,934	0	88,969	88,969	See Note 1
September	6	2005	0	78,646	78,646	0	59,665	59,665	See Note 1
September	7	2005	0	9,914	9,914	0	6,188	6,188	See Note 1
September	8	2005	0	27,758	27,758	0	33,413	33,413	See Note 1
September	9	2005	0	43,082	43,082	0	38,944	38,944	See Note 1
September	10	2005	0	65,371	65,371	0	48,068	48,068	See Note 1
September	11	2005	0	93,206	93,206	0	78,150	78,150	See Note 1
September	12	2005	0	86,583	86,583	0	69,074	69,074	See Note 1
September	13	2005	0	100,733	100,733	0	98,161	98,161	See Note 1
September	14	2005	0	94,905	94,905	0	76,423	76,423	See Note 1
September	15	2005	0	102,861	102,861	0	93,270	93,270	See Note 1
September	16	2005	0	131,020	131,020	0	122,862	122,862	See Note 1
September	17	2005	0	114,673	114,673	0	96,176	96,176	See Note 1
September	18	2005	0	87,800	87,800	0	77,425	77,425	See Note 1
September	19	2005	0	81,299	81,299	0	49,945	49,945	See Note 1
September	20	2005	0	132,945	132,945	0	126,453	126,453	See Note 1
September	21	2005	0	134,398	134,398	0	116,241	116,241	See Note 1
September	22	2005	0	135,157	135,157	0	119,514	119,514	See Note 1
September	23	2005	0	133,825	133,825	0	109,615	109,615	See Note 1
September	24	2005	0	133,275	133,275	0	120,573	120,573	See Note 1
September	25	2005	0	133,586	133,586	0	121,163	121,163	See Note 1
September	26	2005	0	130,791	130,791	0	106,564	106,564	See Note 1
September	27	2005	0	133,692	133,692	0	129,915	129,915	See Note 1
September	28	2005	0	133,851	133,851	0	106,052	106,052	See Note 1
September	29	2005	0	133,463	133,463	0	125,665	125,665	See Note 1
September	30	2005	0	133,774	133,774	0	120,269	120,269	See Note 1
Total Monthly Volumes (gal)			151,704	3,160,171	3,311,875	0	2,904,094	2,904,094	320,500
Average Pump	/Injection Ra	ates (gpm)	3.5	73.2	76.7	0.0	67.2	67.2	

NOTES:

gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

¹The reverse osmosis concentrate (i.e., brine) flow rate is based on the recorded volume from waste manifests during September 2005. The flow meter that monitors the reverse osmosis concentrate flow rates at the IM-3 facility recorded erroneously low measurements.

October 2005 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

			Extraction Well System			Injection Well System			RO Brine
Month	Day	Year	TW-2S	TW-2D	Total	IW-01	IM-02	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
October	1	2005		133,357	133,357		119,240	119,240	6,944
October	2	2005		133,645	133,645		118,885	118,885	10,356
October	3	2005		133,672	133,672		105,191	105,191	12,445
October	4	2005		133,804	133,804		131,514	131,514	13,016
October	5	2005		112,611	112,611		92,343	92,343	10,455
October	6	2005		133,942	133,942		116,322	116,322	14,438
October	7	2005	329	133,495	133,824		130,683	130,683	11,990
October	8	2005		133,783	133,783		119,469	119,469	13,831
October	9	2005		132,213	132,213		127,743	127,743	11,328
October	10	2005	49,164	36,791	85,955		71,495	71,495	9,707
October	11	2005	51,313	40,626	91,939		85,754	85,754	0
October	12	2005		137,458	137,458		117,752	117,752	14,786
October	13	2005		135,251	135,251		126,875	126,875	14,649
October	14	2005		141,268	141,268		127,848	127,848	15,835
October	15	2005		140,368	140,368		107,927	107,927	14,913
October	16	2005		140,861	140,861		134,491	134,491	17,449
October	17	2005		135,602	135,602		127,704	127,704	14,647
October	18	2005		141,090	141,090		119,523	119,523	17,889
October	19	2005		140,984	140,984		121,447	121,447	14,301
October	20	2005		140,361	140,361		126,012	126,012	14,319
October	21	2005		140,630	140,630		122,990	122,990	17,906
October	22	2005		140,648	140,648		123,428	123,428	14,399
October	23	2005		140,598	140,598		123,554	123,554	15,852
October	24	2005		140,256	140,256		124,007	124,007	16,035
October	25	2005		140,434	140,434		133,297	133,297	9,970
October	26	2005		138,292	138,292		103,138	103,138	6,453
October	27	2005		141,784	141,784		138,021	138,021	11,125
October	28	2005		123,128	123,128		118,685	118,685	13,324
October	29	2005		69,810	69,810		44,505	44,505	7,338
October	30	2005		121,253	121,253		106,097	106,097	12,520
October	31	2005		126,454	126,454		131,333	131,333	10,914
otal Monthly	Volumes (ga	l)	100,921 ¹	3,934,469	4,035,390	0	3,597,275	3,597,275	389,134
verage Pump			2.3	88.1	90.4	0.0	80.6	80.6	8.7

NOTES:

gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

¹The total volume shown above is based on flow accumator totals. A slight descrepancy of 115 gallons is noted on the calculated daily averages.

November 2005 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

			Extraction Well System			Inj	RO Brine		
Month	Day	Year	TW-2S	TW-2D	Total	IW-01	IM-02	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
November	1	2005		99,711	99,711		78,739	78,739	7,530
November	2	2005		97,337	97,337		104,325	104,325	6,735
November	3	2005		-157	-157		3,386	3,386	-79
November	4	2005		38,949	38,949		23,679	23,679	4,306
November	5	2005		92,374	92,374		84,531	84,531	6,741
November	6	2005		141,837	141,837		138,041	138,041	9,571
November	7	2005		141,428	141,428		126,959	126,959	6,720
November	8	2005		141,630	141,630		138,681	138,681	6,482
November	9	2005		136,376	136,376		113,994	113,994	10,888
November	10	2005		141,498	141,498		144,432	144,432	9,903
November	11	2005		137,975	137,975		126,613	126,613	7,082
November	12	2005		141,355	141,355		118,881	118,881	9,861
November	13	2005		141,211	141,211		137,027	137,027	9,275
November	14	2005		76,335	76,335		74,602	74,602	3,802
November	15	2005		46,691	46,691		43,061	43,061	4,806
November	16	2005		140,990	140,990		136,684	136,684	10,012
November	17	2005		140,556	140,556		132,494	132,494	9,843
November	18	2005		140,955	140,955		131,982	131,982	9,924
November	19	2005		140,961	140,961		123,732	123,732	9,845
November	20	2005		140,888	140,888		128,254	128,254	9,937
November	21	2005		139,775	139,775		136,764	136,764	9,732
November	22	2005		101,674	101,674		94,343	94,343	6,509
November	23	2005		-159	-159		-36	-36	-79
November	24	2005		132,573	132,573		103,423	103,423	14,652
November	25	2005		140,567	140,567		135,588	135,588	14,413
November	26	2005		140,504	140,504		128,891	128,891	10,805
November	27	2005		140,454	140,454		120,260	120,260	7,797
November	28	2005		140,354	140,354		132,198	132,198	10,432
November	29	2005		140,285	140,285		130,731	130,731	10,289
November	30	2005		140,079	140,079		124,720	124,720	9,223
Fotal Monthly Volumes (gal)			0	3,495,002	3,495,002	0	3,216,979	3,216,979	246,958
Average Pump/Injection Rates (gpm)			0.0	80.9	80.9	0.0	74.5	74.5	5.7

NOTES:

gal: gallons gpm: gallons per minute RO: Reverse Osmosis

Appendix D Operations and Maintenance Log

APPENDIX D Semi Annual Operations and Maintenance Log July 2005 through December 2005 Interim Measures No. 3 Groundwater Treatment System

Records of IM-3 Operations and Maintenance Activities are maintained onsite using operations software. Periods of treatment system and resulting extraction system downtime between August 2005 after completing system start-up and December 2005 attributed to system operations and maintenance are listed below.

August 2005

• August 3, 5, 9, 11, 12, 13, 15, 21, 23, and 24, 2005: The longest shutdown period in August 2005 occurred on August 15, which lasted about 15.5 hours (between 2:07 am and 5:39 pm) in order to troubleshoot and physically inspect the pipeline due a leak detection system alarm that occurred while re-starting the plant after a power outage. The alarm condition was determined to be a communication issue with the control panel and not a leak. The alarm condition was subsequently corrected by the manufacturer in late-August. A portable generator is onsite to provide back-up power during outages.

September 2005

- September 6 through 9: Extraction well operations were shut down periodically to conduct a DTSC-approved test to operate the treatment plant at 20 gpm. Extraction well TW-2D was operated at approximately 45 gpm during this time and cycled on and off.
- **September 10:** Extraction well operations were shut down for less than 30 minutes due to a high water level in the receiving tank while maintenance of the reverse osmosis unit was completed.
- **September 12:** Extraction well operations were shut down for approximately 3 hours due to a high water level in the receiving tank while plant maintenance was being completed.
- **September 17:** Extraction well operations were shut down for approximately 2 hours due to a high water level in the receiving tank while correcting a pressure transducer failure on the microfilter unit.
- **September 18 and 19:** Extraction well operations were shut down for approximately 17 hours. A planned performance test to assess the treatment plant response to a total loss of ferrous chloride chemical flow resulted in

partially-treated water with detections of hexavalent chromium downstream of the chrome reduction and iron oxidation process. The test was conducted with the treated water tank, and injection wells were isolated to prevent the potential for injected water not meeting discharge criteria. After conducting the test, recycling and re-treatment procedures were implemented; however, it was decided to transfer this partially-treated water to holding tanks on the MW-20 bench so that the extraction well system could be brought back into operation. Approximately 15,000 to 20,000 gallons of non-hazardous (or partially-treated) water were transported to US Filter Corporation as non-hazardous waste in conjunction with the reverse osmosis concentrate.

• September 23, 25, and 26: TW-2D was shut down for short periods (under 1 hour) to switch to backup power. The IM No. 3 facility operated on backup power between September 26, 2005 and October 26, 2005 when a transient voltage surge suppressor (TVSS) was replaced at the facility. The TVSS protects the equipment from power surges. It was determined that it would be safer to operate the facility on generator power (less likely to surge) until the TVSS could be replaced.

October 2005

- October 5, 2005: Extraction well TW-2D and IM No. 3 treatment system was shut down to install an air line connection for the microfilter system. Extraction well downtime was 4 hours 48 minutes.
- October 9, 2005: Extraction well TW-2D and IM No. 3 treatment system shut down for 12 minutes due to a low-flow alarm on a sodium hydroxide feed pump.
- October 10, 2005: Extraction well TW-2D pump failed at 6:40 a.m. and extraction well TW-2S was brought online at 7:30 a.m. The pump in extraction well TW-2D was replaced on October 11, 2005 and resumed full-time operation at 5:06 p.m. on that day. Extraction well downtime was approximately 50 minutes on October 10 to switch operation from TW-2D to TW-2S.
- October 12, 2005: Extraction well TW-2D and IM No. 3 treatment system shut down due to a microfilter pressure transducer malfunction. Extraction well downtime was 41 minutes.
- **October 13, 2005:** Extraction well TW-2D was shut down for 49 minutes due to high water level in the raw water receiving tank (T-100).
- October 17, 2005: Extraction well TW-2D and IM No. 3 treatment system shut down due to an alarm in the leak detection system following a lightning strike. The leak detection points in the pipeline were inspected and no liquid was observed. The leak detection system control panel was shipped to the manufacturer to repair the apparent lightning damage. Extraction well

downtime was 1 hour. The onsite operators physically inspected leak detection points along the pipeline for the remainder of the month while the control panel was repaired. No liquid was observed in the secondary containment pipe during any inspection. The control panel was re-installed November 7, 2005.

- October 26, 2005: Extraction well TW-2D and the IM No. 3 treatment system were shut down for 26 minutes to switch from generator power to City of Needles power. The facility was operating since September 26, 2005 on generator power until the facility TVSS could be replaced.
- October 26, 28, and 30, 2005: Extraction well TW-2D and the IM No. 3 facility were shut down to conduct chemical cleaning (i.e., clean in place) of the microfilter membranes. Extraction well TW-2D was shut down for a total of 18 hours 9 minutes while the cleaning activities were completed.
- October 31, 2005: Extraction well TW-2D and the IM No. 3 treatment system were shut down due to in-line pH meter readings outside of the operating target range. One pH meter was re-calibrated and returned to service, and one pH meter was replaced with a spare. Extraction well TW-2D downtime was 2 hours 30 minutes.

November 2005

- November 1, 2005: Extraction well TW-2D was shut down to replace pump P-201. Extraction system downtime was 7 hours 5 minutes.
- November 2 to 4, 2005: Extraction well TW-2D was shut down to complete a chemical cleaning of the microfilter membranes and further development of extraction well TW-3D. Extraction system downtime was 48 hours 52 minutes.
- November 5, 2005: Extraction well TW-2D was shut down to conduct a pump test from extraction well TW-3D. Extraction system downtime was 8 hours 2 minutes.
- **November 9, 2005:** Extraction well TW-2D was shut-down to remove an in-line static mixer. Extraction system downtime was 52 minutes.
- November 11, 2005: Extraction well TW-2D was shut-down to switch to back-up generator power during a power failure and return to Needles Power after power was restored. Extraction system downtime was 29 minutes.
- November 14 and 15, 2005: Extraction well TW-2D was shut down to complete further development and testing of extraction well TW-3D. Extraction system downtime was 27 hours 1 minute.
- November 22 to 24, 2005: Extraction well TW-2D was shut down to complete a chemical cleaning of the microfilter membranes. Extraction system downtime was 32 hours

December 2005

- **December 1 and 2, 2005**: Extraction well TW-2D was shut down to connect TW-3D piping in Valve Vault No. 1 and subsequently to repair a broken mixing shaft on the polymer feed system. Extraction system downtime for these events was 8 hours 30 minutes.
- **December 13, 2005**: Extraction well TW-2D was shut down for 27 minutes due to ferrous chloride meter testing at the IM-3 facility.
- **December 15, 2005**. Extraction well TW-2D was intentionally shut down at 2:40 pm to allow the groundwater levels in the Aquifer to return to ambient conditions before starting the TW-3D pump test at 7:39 pm. Extraction system downtime was approximately 4 hours 59 minutes.
- **December 18, 2005**: Extraction well TW-3D was shut down from 2:43 pm to 5:13 pm to a combination of power failure, high turbidity readings during system re-start, and changing out microfilter membrane modules. Extraction system downtime was approximately 2 hours 30 minutes.
- **December 29, 2005**: Extraction wells TW-2D and TW-3D were shut down from approximately 9:30 am to 2:29 pm to complete a partial chemical cleaning of the microfilter membranes. Extraction system downtime was approximately 4 hours 59 minutes.