

Curt Russell

Topock Onsite Project Manager GT&D Remediation

Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

February 15, 2008

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Board Order R7-2006-0060

PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System

Discharge to Injection Wells January 2008 Monitoring Report

Dear Mr. Perdue:

Enclosed is the January 2008 Monitoring Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) under Order R7-2006-0060. The WDRs apply to IM No. 3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell

Topock Onsite Project Manager

Enclosures:

January 2008 Monitoring Report for the IM No. 3 Groundwater Treatment System

cc: Abdi Haile, Water Board Cliff Raley, Water Board

Tom Vandenberg, State Water Resources Control Board

Aaron Yue, DTSC

January 2008 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Waste Discharge Requirements Board Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

on behalf of

Pacific Gas and Electric Company

February 15, 2008

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

January 2008 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

February 15, 2008

No. C68986

This report was prepared under the supervision of a California Certified Professional Engineer

Dennis Fink, P.E. No. 68986

Project Engineer

Contents

		Page
Acro	nyms and Abbreviations	v
1.0	Introduction	1-1
2.0	Sampling Station Locations	2-1
3.0	Description of Activities	3-1
4.0	Groundwater Treatment System Flow Rates	4-1
5.0	Sampling and Analytical Procedures	5-1
6.0	Analytical Results	6-1
7.0	Conclusions	7-1
8.0	Certification	8-1
Table	es	
1	Sampling Station Descriptions	
2	Flow Monitoring Results	
3	Board Order No. R7-2006-0060 Waste Discharge Requirements Influent Monitoring Results	
4	Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent Monitoring Results	
5	Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse O Concentrate Monitoring Results	smosis
6	Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge Monitoring Results	
7	Board Order No. R7-2006-0060 Waste Discharge Requirements Monitoring Information	

BAO\080440001

Figures

1	IM No. 3 Facility and Site Features
TP-PR-10-10-03	Effluent Metering Locations
TP-PR-10-10-11	Influent Metering Locations
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
TP-PR-10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations

Appendix

A January 2008 Laboratory Analytical Reports

BAO\080440001 iv

Acronyms and Abbreviations

EPA U.S. Environmental Protection Agency

gpm gallons per minute

IM Interim Measure

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

PST Pacific Standard Time

TOC total organic carbon

Truesdail Laboratories, Inc.

Water Board California Regional Water Quality Control Board, Colorado River

Basin Region

WDR Waste Discharge Requirements

BAO\080440001 v

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area. All figures are located at the end of this report.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006, and is the successor to Order No. R7-2004-0103. The Monitoring and Reporting Program (MRP) under the order requires monthly monitoring reports to be submitted by the fifteenth day of the following month.

This report covers monitoring activities related to operation of the IM No. 3 groundwater treatment system during January 2008. The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

BAO\080440001 1-1

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. (All tables are located at the end of this report.) Sampling station locations are shown on the process and instrumentation diagrams: Figures TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06.

BAO\080440001 2-1

3.0 Description of Activities

The treatment system was initially operated between July 25 and July 28, 2005 for the WDR-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, permitted by Order R7-2006-0060 (successor to Order R7-2004-0103), includes the following components:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

During January 2008, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gallons per minute (gpm) excluding periods of planned and unplanned downtime. Extraction well TW-2D was operated for a short period on January 25th while replacing a flow meter on extraction well TW-3D. The operational run time for the IM groundwater extraction system (combined or individual pumping) was 98 percent during the January 2008 reporting period.

Operation of the groundwater treatment system results in the following three out-flow components:

- **Treated Effluent**: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis Concentrate (brine)**: Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility. Disposal occurs each time a sludge waste storage bin reaches capacity or within 90 days of the start date for accumulation in the storage container.

BAO\080440001 3-1

4.0 Groundwater Treatment System Flow Rates

The January 2008 treatment system monthly average flow rates (influent, effluent, and reverse osmosis concentrate) are presented in Table 2.

The system influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-RP-10-10-03). The treatment system effluent flow rate was measured by flow meters in the piping into injection wells IW-2 and IW-3 (Figure TP-RP-10-10-11). The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-RP-10-10-08).

The IM No. 3 facility treated approximately 5,865,036 gallons of extracted groundwater during January 2008. The IM No. 3 facility also treated approximately 2,455 gallons of water generated from the groundwater monitoring program. Two containers of solids from the IM No. 3 facility were transported offsite during January 2008.

Periods of planned and unplanned extraction system down time (that together resulted in less than 3 percent downtime during January 2008) are summarized below. The times shown are in Pacific Standard Time (PST) to be consistent with other data collected (e.g., water level data) at the site.

- **January 2, 2008 (planned):** The extraction well system was temporarily offline from 8:41 am until 1:25 pm and from 1:28 pm until 1:53 pm to complete reverse osmosis unit maintenance and replace two valves within the IM No. 3 facility process piping. Extraction system downtime was 5 hours 9 minutes.
- **January 9, 2008 (planned):** The extraction well system was temporarily offline from 11:34 am until 11:39 am, 11:40 am until 11:45 am, and 12:10 pm until 1:34 pm to clean the iron oxidation tank piping. Extraction system downtime was 1 hour 34 minutes.
- January 16, 2008 (planned): The extraction well system was temporarily offline from 7:34 am until 1:46 pm and from 2:42 pm until 2:44 pm to repair two joints of the treated water pipeline between the IM No. 3 treatment plant and injection well field. The repairs were accomplished at the flanged ends between the pipe sections, and were identified during routine pipeline inspections when droplets were identified on the two joints. Only a few fluid ounces of treated water leaked from each location. Extraction system downtime was 6 hours 14 minutes.
- **January 23, 2008 (planned):** The extraction well system was temporarily offline from 9:34 am until 12:34 pm and 2:36 pm until 4:34 pm to switch to a clean bank of microfilter modules. Extraction system downtime was 4 hours 58 minutes.

BAO\080440001 4-1

- **January 25, 2008 (unplanned):** The extraction well system was temporarily offline from 7:21 am until 8:10 am for microfilter repairs. Extraction system downtime was 49 minutes.
- **January 28, 2008 (unplanned):** The extraction well system was temporarily offline from 8:15 pm until 8:23 pm to re-start the facility after an in-line pH probe failure and repair. Extraction system downtime was 8 minutes.

BAO\080440001 4-2

5.0 Sampling and Analytical Procedures

With the exception of pH, all samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to Truesdail via courier under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival.

Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program.

California certified laboratory analyses were performed in accordance with the latest edition of the "Guidelines Establishing Test Procedures for Analysis of Pollutants" (40 Code of Federal Regulations Part 136), promulgated by the United States Environmental Protection Agency (EPA).

During January 2008, analysis of pH was conducted at Truesdail for each sample. Starting November 20, 2007, analysis of pH was also conducted by field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling were conducted in accordance with the sampling frequency required by the MRP. The sampling analytical results are shown in Tables 3, 4, 5, and 6, respectively.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060, and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Water Board on June 17, 2005. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

BAO\080440001 5-1

6.0 Analytical Results

Laboratory reports for samples collected in January 2008 were prepared by certified analytical laboratories, and are presented in Appendix A.

The January 2008 analytical results from groundwater treatment system influent, effluent, reverse osmosis concentrate, and sludge samples are presented in Tables 3, 4, 5, and 6, respectively.

In accordance with the WDR reporting requirements, the following sampling frequency was followed:

- The influent was sampled monthly; the sampling date was January 3, 2008. Results are presented in Table 3.
- The effluent was sampled weekly; the sample dates were January 3, 9, 16, 23 and 30, 2008. Results are presented in Table 4.
- The reverse osmosis concentrate was sampled monthly; the sample date was January 3, 2008. Results are presented in Table 5.
- The sludge was sampled monthly; the sample date was January 3, 2008. In accordance with the WDRs, sludge is required to be sampled each time it is transported offsite (unless sludge is transported offsite more frequently than monthly, in which case the sampling frequency is monthly). Results are presented in Table 6.
- The sludge is required to have an aquatic bioassay test quarterly; the First Quarter 2008
 aquatic bioassay test was performed on a sludge sample collected January 3, 2008.
 Results are presented in Table 6.

Table 7 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

BAO\080440001 6-1

7.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period, and no events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units, were identified during the reporting period.

BAO\080440001 7-1

8.0 Certification

On August 12, 2005, PG&E submitted a signature delegation letter to the Water Board, delegating PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0600 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated December 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	Schmun
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Onsite Project Manager
Date:	February 15, 2008

BAO\080440001 8-1

TABLE 1 Sampling Station Descriptions January 2008 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-RP-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-RP-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-RP-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-RP-10-10-06).

Note:

BAO\080440001 TABLES-1

^{### =} Sequential sample identification number at each sample station.

a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

TABLE 2 Flow Monitoring Results January 2008 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^{b,c} (gpm)	Reverse Osmosis Concentrate ^b (gpm)
January 2008 Average Monthly Flowrate	131.4	123.1	8.0

Notes:

gpm: gallons per minute. ^a Extraction wells TW-3D and PE-1 were operated during January 2008. Extraction well TW-2D was operated for a short period on January 25th while replacing a flow meter on Extraction well TW-3D. ^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during January 2008 is less that 0.3 percent, which is within the range of acceptable accuracy considering the margin of error for onsite instrumentation, the water contained within the sludge, purge water treated at the IM No. 3 facility in addition to the extraction wells, and differences in the inventory of water in the treatment system between the beginning and end of the reporting period.

^c Effluent was discharged into injection well IW-03 during January 2008.

BAO\080440001 TABLES-2

TABLE 3 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Influent Monitoring Results a January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Frequency											N	onthly												
Analytes Units ^b MDL	TDS mg/L 50.4	Turbidity NTU 0.0070	Specific Conductance µmhos/cm 0.153		Field d pH pHunits		Hexavalent Chromium µg/L 2.9	Aluminium µg/L 0.26	Ammonia (as N) mg/L 0.0710	Antimony µg/L 0.022	Arsenic µg/L 0.015	Barium µg/L 0.016	Boron mg/L 0.0048	Copper µg/L 0.13	Fluoride mg/L 0.0250	μg/L	Manganese µg/L 0.016	Molybdenum µg/L 0.017			Nitrite (as N) mg/L 0.0010	Sulfate mg/L 1.20	Iron μg/L 2.4	Zinc μg/L 0.12
Sample ID Date SC-100B-WDR-132 1/3/2008 RL	5170 250	0.158 0.100	7980 2.00	7.50 J 2.00	7.50	1630	1500 20.0	ND (50.0) 50.0	ND (0.500) 0.500	ND (3.0)	ND (5.0) 5.0	ND (300)	0.622 N	ID (10.0) 10.0	2.88 0.500	ND (2.0) 2.0	ND (20.0) 20.0	20.0 5.0	ND (20.0) 20.0	3.60 N	ID (0.0050 0.0050) 641 N 25.0	ND (20.0) 20.0	ND (20.0) 20.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

μg/L = micrograms per liter mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

RL = project reporting limit

N = nitrogen

^a Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

b Units reported in this table are those units required in the WDRs

c pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 4
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Effluent Monitoring Results

January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Ave. Monthly	NA	NA	NA	6.5-8.4	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Max Daily	NA	NA	NA	6.5-8.4	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ing Frequency			We	ekly												Monthly								
Analytes	TDS	Turbidity	Specific Conductance	Lab ^e e pH	Field ^f pH	Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead N	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
Units ^c	mg/L	NTU	µmhos/cm	pHunits	pHunits	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L	μg/L	μg/L
MDLd	50.4	0.0070	0.153	0.0700		0.053	0.14	0.26	0.0710	0.022	0.015	0.016	0.0048	0.13	0.0250	0.018	0.016	0.017	0.13	0.0350	0.0010	1.20	2.4	0.12
Date																								
32 1/3/2008	4130	ND (0.100)	6680	8.19 J	8.10	ND (1.0)	ND (1.0)	ND (50.0)	ND (0.500)	ND (3.0)	ND (5.0)	ND (300)	1.12	ND (10.0) 2.18	ND (2.0)	30.1	14.1	ND (20.0)	2.89	ND (0.0050)	517	ND (20.0)	ND (20.0)
	250	0.100	2.00	2.00		1.0	1.0	50.0	0.500	3.0	5.0	300	0.200	10.0	0.500	2.0	20.0	5.0	20.0	1.00	0.0050	25.0	20.0	20.0
34 1/9/2008	4100	ND (0.100)	6870	8.14 J	7.80	1.0	0.57																	
	250	0.100	2.00	2.00		1.0	0.20																	
33 1/16/2008	4000	ND (0.100)	6780	8.25 J	7.90	ND (1.0)	ND (0.20)																	
	250	0.100	2.00	2.00		1.0	0.20																	
35 1/23/2008	4020	ND (0.100)	6650	8.21 J	8.10	ND (1.0)	ND (0.20)																	
	250	0.100	2.00	2.00		1.0	0.20																	
36 1/30/2008	4260	ND (0.100)	6670	7 96 .1	7 90	ND (1.0)	ND (0.20)																	
		(000)	00.0	7.500	7.50	140 (1.0)	ND (0.20)																	
3	Max Daily ng Frequency Analytes Units ^C MDL ^d Date 2 1/3/2008 4 1/9/2008 5 1/23/2008	Max Daily NA ng Frequency Analytes Units c mg/L MDL d 50.4 Date 2 1/3/2008 4130 250 4 1/9/2008 4000 250 5 1/23/2008 4020 250	Max Daily NA NA ng Frequency TDS Turbidity mg/L NTU 0.0070 MDL ^d Date 50.4 0.0070 2 1/3/2008 4130 H0 (0.100) 250 0.100 4 1/9/2008 4100 H0 (0.100) 250 0.100 3 1/16/2008 4000 H0 (0.100) 250 0.100 5 1/23/2008 4020 H0 (0.100) 250 0.100	Max Daily NA NA NA Analytes Units C Date TDS Turbidity Mphos/cm Specific Conductance pumbos/cm MDLd Date NTU pumbos/cm NTU pumbos/cm 2 1/3/2008 4130 Policy ND (0.100) 6680 Policy ND (0.100) 4 1/9/2008 4100 Policy ND (0.100) 6870 Policy ND (0.100) 3 1/16/2008 4000 Policy ND (0.100) 6780 Policy ND (0.100) 5 1/23/2008 4020 Policy ND (0.100) 6650 Policy ND (0.100) 250 O.100 2.00	Max Daily NA NA NA 6.5-8.4 Max Daily NA NA 6.5-8.4 Weekly Analytes Units ° Date TDS Turbidity Conductance PH (Conductance) Lab ° PH (Conductance) PH (Conduc	Max Daily NA NA NA NA 6.5-8.4 6.5-8.4 6.5-8.4 mg Frequency Weekly Analytes Units ° Duits ° Dui	Max Daily NA NA NA 6.5-8.4 6.5-8.4 50 requency Weekly Analytes Units ^c Units ^c Date TDS Turbidity Conductance Specific Conductance Lab PH	Max Daily NA NA NA 6.5-8.4 6.5-8.4 5.0 16 mg Frequency Weekly Analytes Units C Unit C Units C Unit C Units	Max Daily NA NA NA 6.5-8.4 6.5-8.4 50 16 NA Max Daily NA Analytes Turbidity Conductance Lab P Field f Phunits Hexavalent Chromium Chromium Aluminium μg/L 0.05 0.04 ND (1.0 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (0.20)	Max Daily NA NA NA 6.5-8.4 6.5-8.4 50 16 NA NA Nag Frequency Weekly Analytes Units °	Max Daily NA NA NA NA NA NA NA 6.5-8.4 6.5-8.4 50 16 NA	Max Daily NA NA NA NA 6.5-8.4 6.5-8.4 50 16 NA NA NA NA NA NA NA N	Max Daily NA NA NA NA NA S.5-8.4 S.5-8.4 S.5 S.5	Max Daily NA NA NA NA 6.5-8.4 6.5-8.4 50 16 NA NA NA NA NA NA NA N	Max Daily NA NA NA NA NA NA 6.5-8.4 6.5-8.4 50 16 NA	Max Daily NA	Max Daily NA	Max Daily Na	Max Daily NA	Max Daily NA	Max Daily NA	Max Daily Na	Max Daily Na Dail	Max Dally Na Na Na Na Na Na Na N

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

NA = not applicable

μg/L = micrograms per liter

mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

RL = project reporting limit

MDL = method detection limit

N = nitrogen

^a Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04)

b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health

^c Units reported in this table are those units required in the WDRs

d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.

e pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

f Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 5 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Reverse Osmosis Concentrate Results ^a

January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Frequency	y											Monthly											
Analytes Units b MDL Sample ID Date	TDS mg/L 50.4	Specific Conductance µmhos/cm 0.153	Lab ^c pH pHunits 0.0700	Field ^d pH pHunits	Chromium mg/L 0.00027	Hexavalent Chromium mg/L 0.00014	Antimony mg/L 0.00011	Arsenic mg/L 0.000075	Barium mg/L 0.000081	Beryllium mg/L 0.000038	Cadmium mg/L 0.000058	Cobalt mg/L 0.00013	Copper mg/L 0.00065	Fluoride mg/L 0.0250	Lead mg/L 0.00009	Molybdenum mg/L 1 0.000084	Mercury mg/L 0.000030	Nickel mg/L 0.00064	Selenium mg/L 0.000080	Silver mg/L 0.00011	Thallium mg/L 0.000090	Vanadium mg/L 0.000062	Zinc mg/L 0.00058
SC-701-WDR-132 1/3/2008	20000	27100	7.99 J	8.10	ND (0.0010)	ND (0.0010) I	ND (0.0030) I	ND (0.0050)	ND (0.300)	ND (0.0010)	ND (0.0020)	ND (0.0050) ND (0.010	0) 11.0	ND (0.002	0) 0.0578 I	ND (0.00020)	ND (0.0200)	0.0127	ND (0.0050)ND (0.0010) ND (0.0050)	ND (0.0200)
RL	250	2.00	2.00		0.0010	0.0010	0.0030	0.0050	0.300	0.0010	0.0020	0.0050	0.0100	0.500	0.0020	0.0050	0.00020	0.0200	0.0050	0.0050	0.0010	0.0050	0.0200

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

µg/L = micrograms per liter

mg/L = milligrams per liter

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

RL = project reporting limit

^a Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

b Units reported in this table are those units required in the WDRs

^c pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 6Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results ^a

January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Samplin	ng Frequency									Monthly	, с										Quarterly ^d
Sample ID	Analytes Units ^b MDL Date		Hexavalent Chromium mg/kg 0.00029	Antimony mg/kg 0.295	Arsenic mg/kg 0.0066	Barium mg/kg 0.0370	Beryllium mg/kg 0.0308	Cadmium mg/kg 0.0238	Cobalt mg/kg 0.0374	Copper mg/kg 0.123	Fluoride mg/kg 0.100	Lead mg/kg 0.154	Molybdenum mg/kg 0.0074	Mercury mg/kg 0.0029	Nickel mg/kg 0.0647	Selenium mg/kg 0.0142	Silver mg/kg 0.0185	Thallium mg/kg 0.105	Vanadium mg/kg 0.0334	Zinc mg/kg 0.946	Bioassay e % Survival at 750 mg/L 5%
<u> </u>	Date																				
SC-Sludge-WDR-1	132 1/3/2008	23000	295	422	71.0	129	248	48.1	12.2	440	78.5	52.8	65.1	ND (0.0922)	23.2	ND (4.14)	ND (20.7)	ND (4.15)	128	967	100
RL		208	18.9	4.15	20.7	2.50	2.50	4.15	2.50	5.00	9.43	4.15	20.7	0.0922	2.50	4.14	20.7	4.15	2.50	116	5

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

ND = parameter not detected at the listed reporting limit

J = concentration or reporting limits estimated by laboratory or validation

mg/kg = milligrams per killogram

mg/L = milligrams per liter

MDL = method detection limit

RL = project reporting limit

- **b** Units reported in this table are those units required in the WDR
- c Sludge shall be tested for the listed constituents each time sludge is transported offsite, unless transport is more frequent than monthly, in which case the sampling frequency shall be monthly
- d Sludge shall have an aquatic bioassay test performed each time sludge is transported offsite, unless transport is more frequent than quaterly, in which case the sampling frequency shall be quarterly.
- ^e Concentration of sludge per 1 liter of water.

^a Sampling Location for all Sludge Samples is the Sludge Collection Bin (see attached P&ID TP-PR-10-10-06)

TABLE 7
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-132	J. Aide	1/3/2008	10:30:00 AM	TLI	EPA 120.1	SC	1/4/2008	Tina Acquiat
					TLI	EPA 200.7	FE	1/24/2008	Michel Mendoza/Mark Kotani
					TLI	EPA 200.7	В	1/8/2008	Michel Mendoza/Mark Kotani
					TLI	EPA 200.8	NI	1/7/2008	Linda Saetern
					TLI	EPA 200.8	ZN	1/7/2008	Linda Saetern
					TLI	EPA 200.8	PB	1/7/2008	Linda Saetern
					TLI	EPA 200.8	MO	1/7/2008	Linda Saetern
					TLI	EPA 200.8	MN	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CU	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CR	1/7/2008	Linda Saetern
					TLI	EPA 200.8	BA	1/7/2008	Linda Saetern
					TLI	EPA 200.8	AS	1/7/2008	Linda Saetern
					TLI	EPA 200.8	AL	1/7/2008	Linda Saetern
					TLI	EPA 200.8	SB	1/7/2008	Linda Saetern
					TLI	EPA 218.6	CR6	1/4/2008	Jean Paul Gleeson
					TLI	EPA 300.0	NO3N	1/4/2008	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	1/4/2008	Giawad Ghenniwa
					TLI	EPA 300.0	FL	1/7/2008	Giawad Ghenniwa
					FIELD	HACH	PH	1/3/2008	Joe Aide
					TLI	SM2130B	TRB	1/4/2008	Gautam Savani
					TLI	SM2540C	TDS	1/7/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/4/2008	Tina Acquiat
					TLI	SM4500NH3D	NH3N	1/7/2008	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	1/4/2008	Tina Acquiat
SC-700B	SC-700B-WDR-132	J. Aide	1/3/2008	10:00:00 AM	TLI	EPA 120.1	SC	1/4/2008	Tina Acquiat
					TLI	EPA 200.7	В	1/8/2008	Michel Mendoza/Mark Kotani
					TLI	EPA 200.7	FE	1/8/2008	Michel Mendoza/Mark Kotani
					TLI	EPA 200.8	MN	1/7/2008	Linda Saetern
					TLI	EPA 200.8	AL	1/7/2008	Linda Saetern
					TLI	EPA 200.8	AS	1/7/2008	Linda Saetern
					TLI	EPA 200.8	BA	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CU	1/7/2008	Linda Saetern
					TLI	EPA 200.8	MO	1/7/2008	Linda Saetern
					TLI	EPA 200.8	NI	1/7/2008	Linda Saetern
					TLI	EPA 200.8	PB	1/7/2008	Linda Saetern
					TLI	EPA 200.8	SB	1/7/2008	Linda Saetern

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information

January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

_ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-132	J. Aide	1/3/2008	10:00:00 AM	TLI	EPA 200.8	ZN	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CR	1/7/2008	Linda Saetern
					TLI	EPA 218.6	CR6	1/4/2008	Jean Paul Gleeson
					TLI	EPA 300.0	FL	1/7/2008	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	1/4/2008	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	1/4/2008	Giawad Ghenniwa
					FIELD	HACH	PH	1/3/2008	Joe Aide
					TLI	SM2130B	TRB	1/4/2008	Gautam Savani
					TLI	SM2540C	TDS	1/7/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/4/2008	Tina Acquiat
					TLI	SM4500NH3D	NH3N	1/7/2008	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	1/4/2008	Tina Acquiat
SC-700B	SC-700B-WDR-133	J. Aide	1/16/2008	9:30:00 AM	TLI	EPA 120.1	SC	1/17/2008	Tina Acquiat
					TLI	EPA 200.8	CR	1/17/2008	Linda Saetern
					TLI	EPA 218.6	CR6	1/16/2008	Jean Paul Gleeson
					FIELD	HACH	PH	1/16/2008	Joe Aide
					TLI	SM2130B	TRB	1/18/2008	Gautam Savani
					TLI	SM2540C	TDS	1/17/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/17/2008	Tina Acquiat
SC-700B	SC-700B-WDR-134	J. Aide	1/9/2008	9:15:00 AM	TLI	EPA 120.1	SC	1/10/2008	Tina Acquiat
					TLI	EPA 200.8	CR	1/11/2008	Linda Saetern
					TLI	EPA 218.6	CR6	1/10/2008	Jean Paul Gleeson
					FIELD	HACH	PH	1/9/2008	Joe Aide
					TLI	SM2130B	TRB	1/10/2008	Gautam Savani
					TLI	SM2540C	TDS	1/10/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/10/2008	Tina Acquiat
SC-700B	SC-700B-WDR-135	Joe Aide	1/23/2008	8:30:00 AM	TLI	EPA 120.1	SC	1/24/2008	Tina Acquiat
					TLI	EPA 200.8	CR	1/24/2008	Linda Saetern
					TLI	EPA 218.6	CR6	1/24/2008	Jean Paul Gleeson
					FIELD	HACH	PH	1/23/2008	Joe Aide
					TLI	SM2130B	TRB	1/24/2008	Gautam Savani
					TLI	SM2540C	TDS	1/24/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/24/2008	Tina Acquiat
SC-700B	SC-700B-WDR-136	Joe Aide	1/30/2008	2:30:00 PM	TLI	EPA 120.1	SC	2/1/2008	Tina Acquiat
					TLI	EPA 200.8	CR	1/31/2008	Linda Saetern

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information

January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-136	Joe Aide	1/30/2008	2:30:00 PM	TLI	EPA 218.6	CR6	1/31/2008	Jean Paul Gleeson
					FIELD	HACH	PH	1/30/2008	Joe Aide
					TLI	SM2130B	TRB	1/31/2008	Gautam Savani
					TLI	SM2540C	TDS	1/31/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/31/2008	Tina Acquiat
SC-701	SC-701-WDR-132	J. Aide	1/3/2008	10:15:00 AM	TLI	EPA 120.1	SC	1/4/2008	Tina Acquiat
					TLI	EPA 200.8	PB	1/7/2008	Linda Saetern
					TLI	EPA 200.8	V	1/7/2008	Linda Saetern
					TLI	EPA 200.8	MO	1/7/2008	Linda Saetern
					TLI	EPA 200.8	ZN	1/7/2008	Linda Saetern
					TLI	EPA 200.8	TL	1/7/2008	Linda Saetern
					TLI	EPA 200.8	SE	1/7/2008	Linda Saetern
					TLI	EPA 200.8	SB	1/7/2008	Linda Saetern
					TLI	EPA 200.8	NI	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CU	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CO	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CD	1/7/2008	Linda Saetern
					TLI	EPA 200.8	BE	1/10/2008	Linda Saetern
					TLI	EPA 200.8	BA	1/7/2008	Linda Saetern
					TLI	EPA 200.8	AG	1/7/2008	Linda Saetern
					TLI	EPA 200.8	AS	1/7/2008	Linda Saetern
					TLI	EPA 200.8	CR	1/7/2008	Linda Saetern
					TLI	EPA 218.6	CR6	1/4/2008	Jean Paul Gleeson
					TLI	EPA 245.1	HG	1/6/2008	Michel Mendoza
					TLI	EPA 300.0	FL	1/7/2008	Giawad Ghenniwa
					FIELD	HACH	PH	1/3/2008	Joe Aide
					TLI	SM2540C	TDS	1/7/2008	Tina Acquiat
					TLI	SM4500-HB	PH	1/4/2008	Tina Acquiat
Phase Seperator	SC-Sludge-WDR-132	J. Aide	1/3/2008	10:40:00 AM	TLI	EPA 300.0	FL	1/7/2008	Giawad Ghenniwa
					TLI	EPA 6010B	NI	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	ZN	2/4/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	V	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	TL	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	SB	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	РВ	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	FE	1/16/2008	Mark Kotani/Michel Mendoza

TABLE 7
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

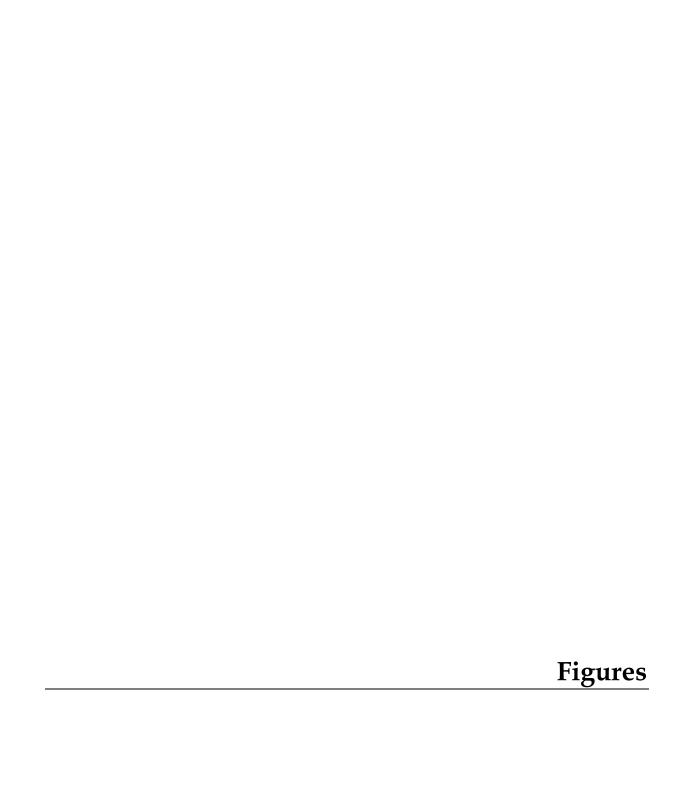
Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Seperator	SC-Sludge-WDR-132	J. Aide	1/3/2008	10:40:00 AM	TLI	EPA 6010B	CU	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	CR	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	CO	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	CD	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	BA	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 6010B	BE	1/16/2008	Mark Kotani/Michel Mendoza
					TLI	EPA 7471A	HG	1/6/2008	Michel Mendoza
					TLI	SM2540B	MOIST	1/21/2008	Gautam Savani
					TLI	SW 6020A	AG	1/31/2008	Linda Saetern
					TLI	SW 6020A	AS	1/28/2008	Linda Saetern
					TLI	SW 6020A	MO	1/28/2008	Linda Saetern
					TLI	SW 6020A	SE	1/31/2008	Linda Saetern
					TLI	SW 7199	CR6	1/10/2008	David Blackburn

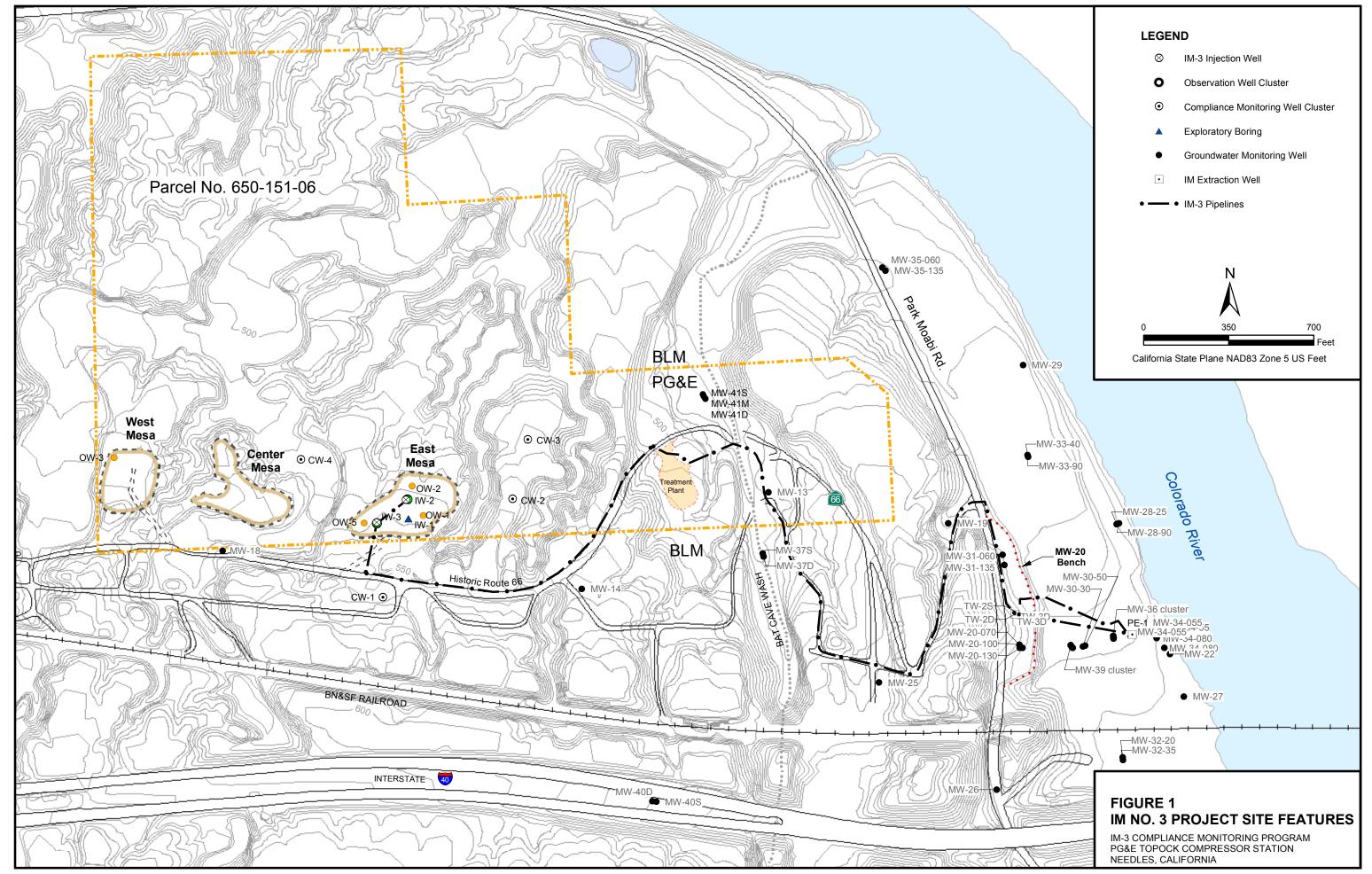
TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information January 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

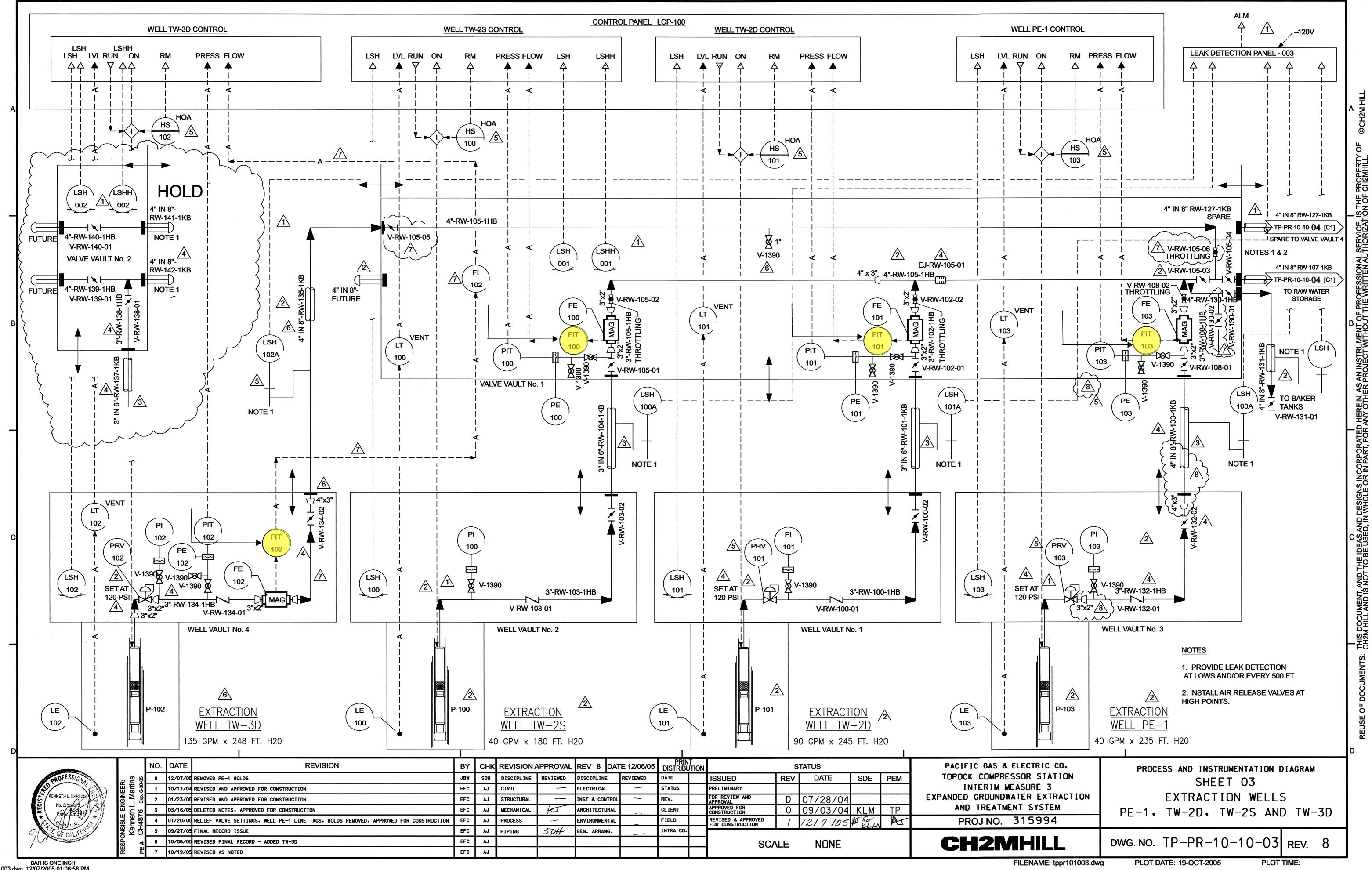
Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Seperator	SC-Sludge-WDR-132	J. Aide	01/3/2008	10:40:00 AM	ATL	96-Hour Acute Aquatic Toxicity Screening Test	BIO	1/24//2008 - 01/28/2008	Lori Montoya

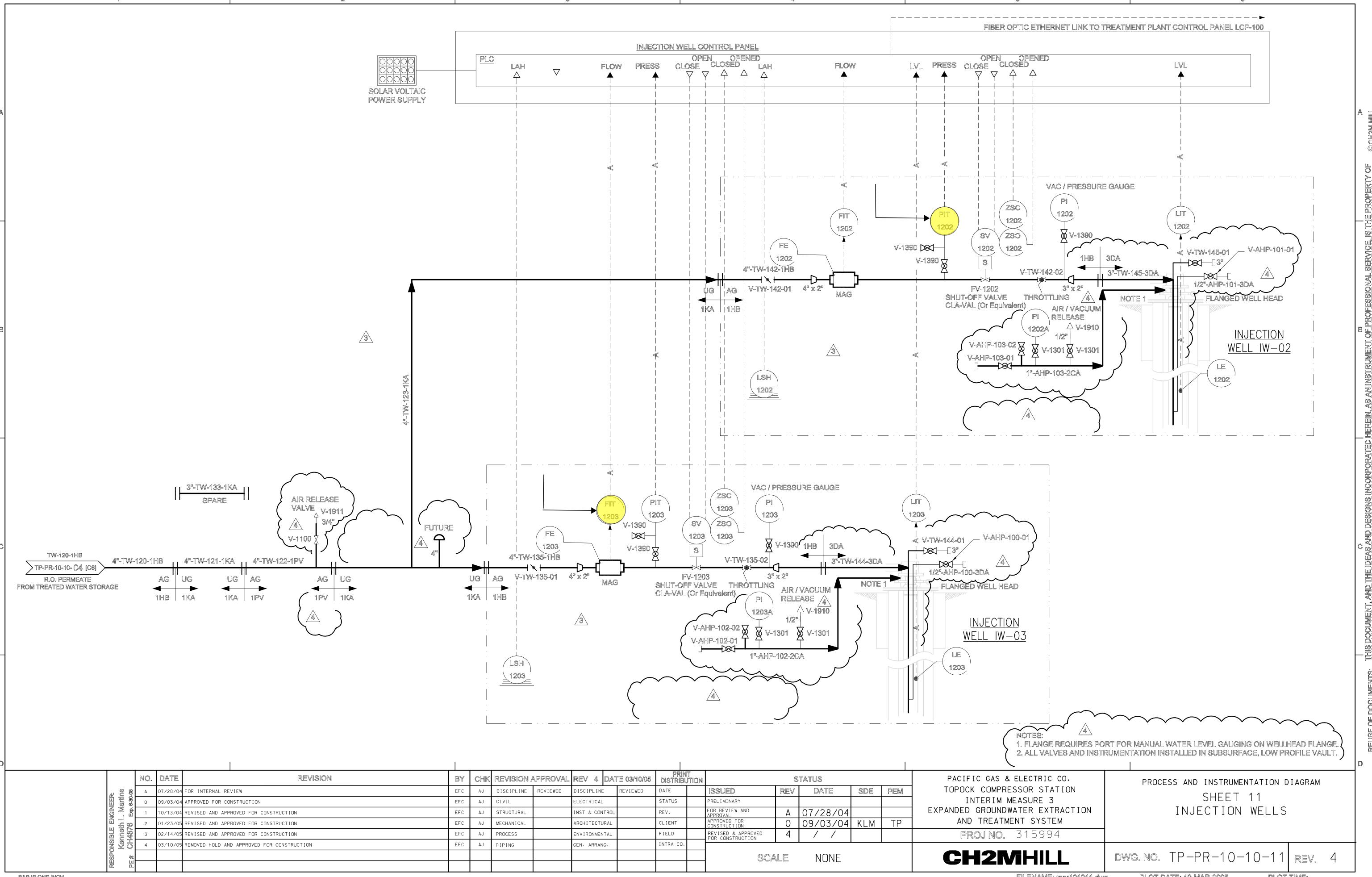
NOTES:

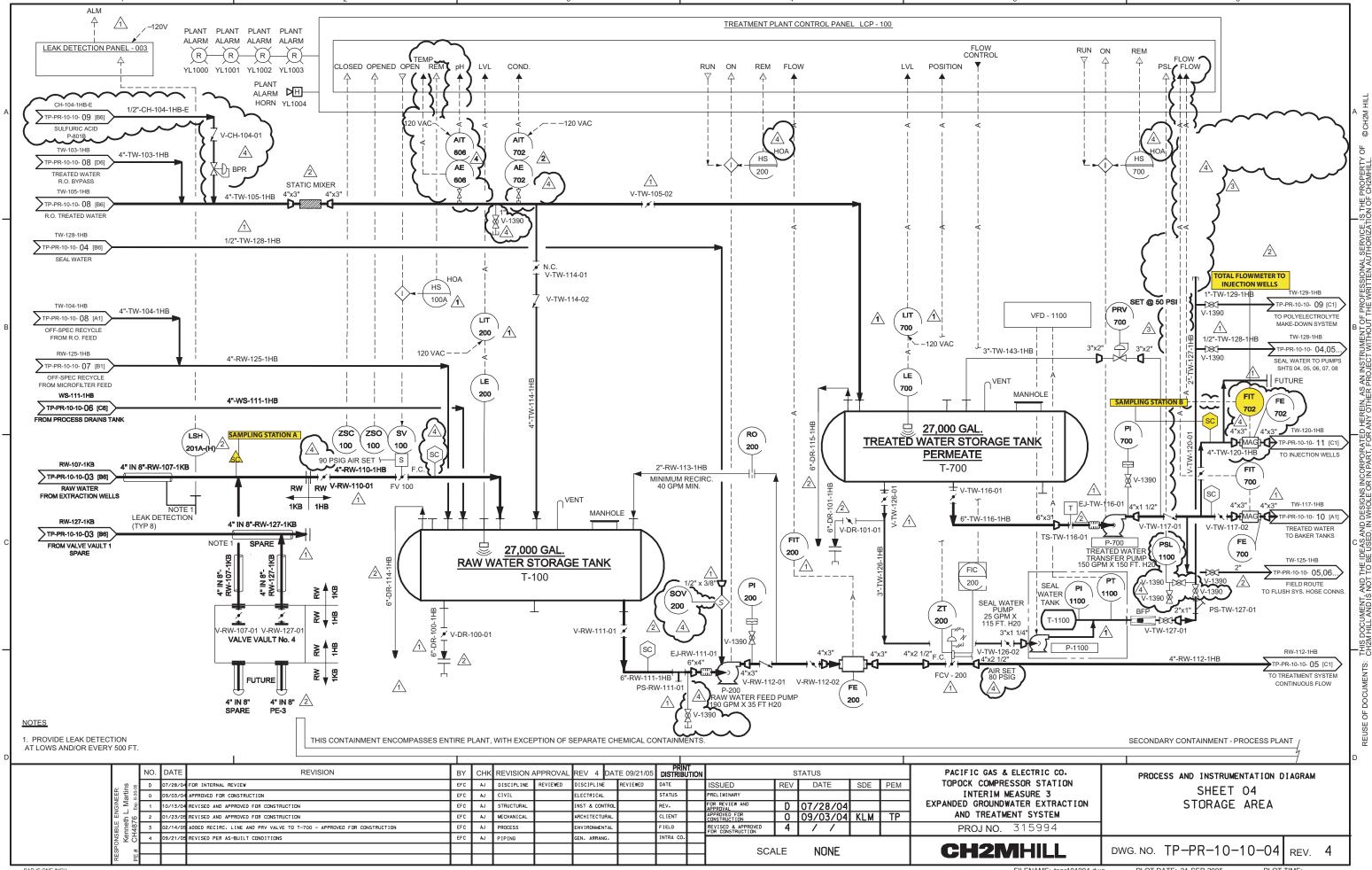
SC-700B = Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

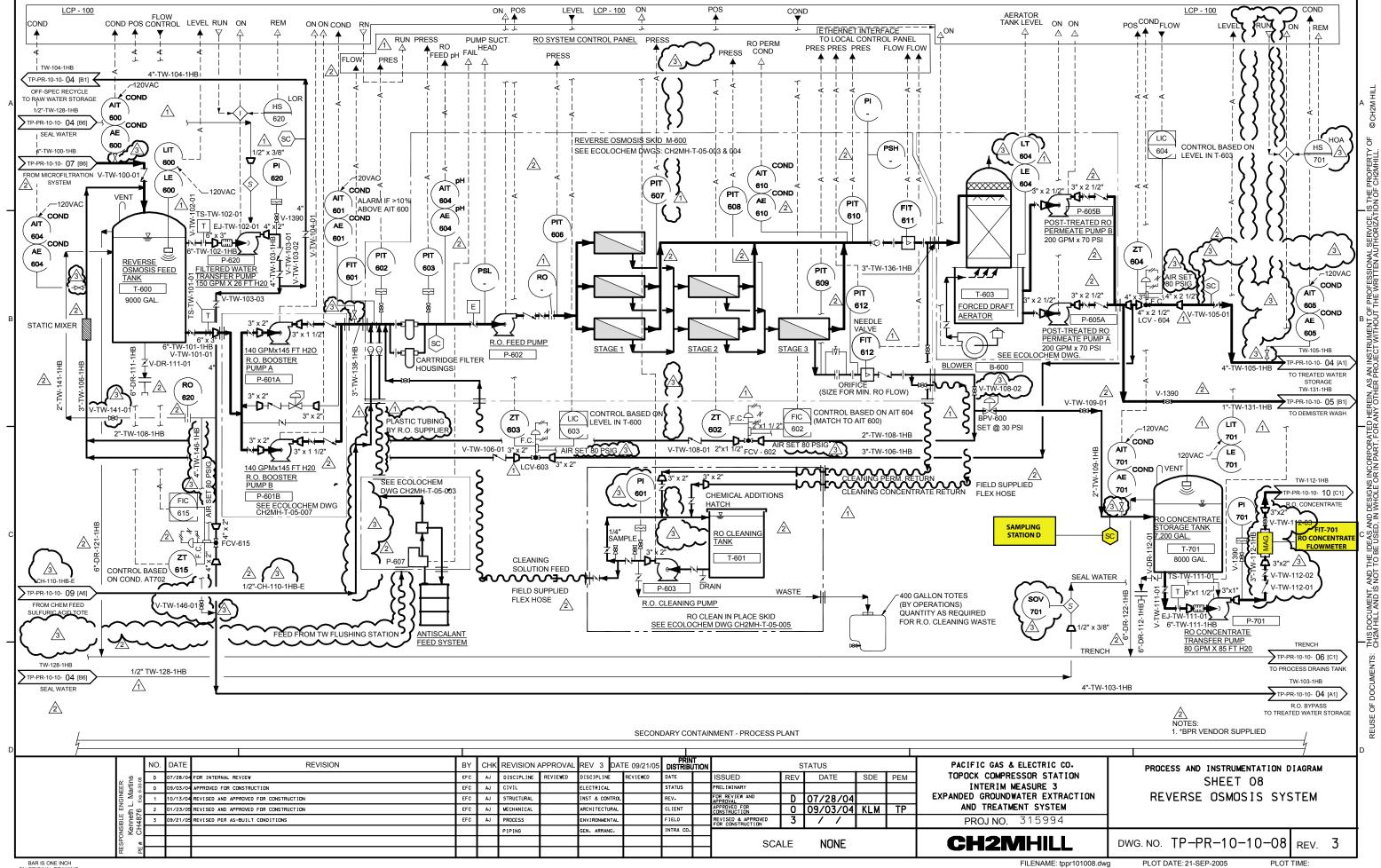

SC-100B = Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)


SC-701 = Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

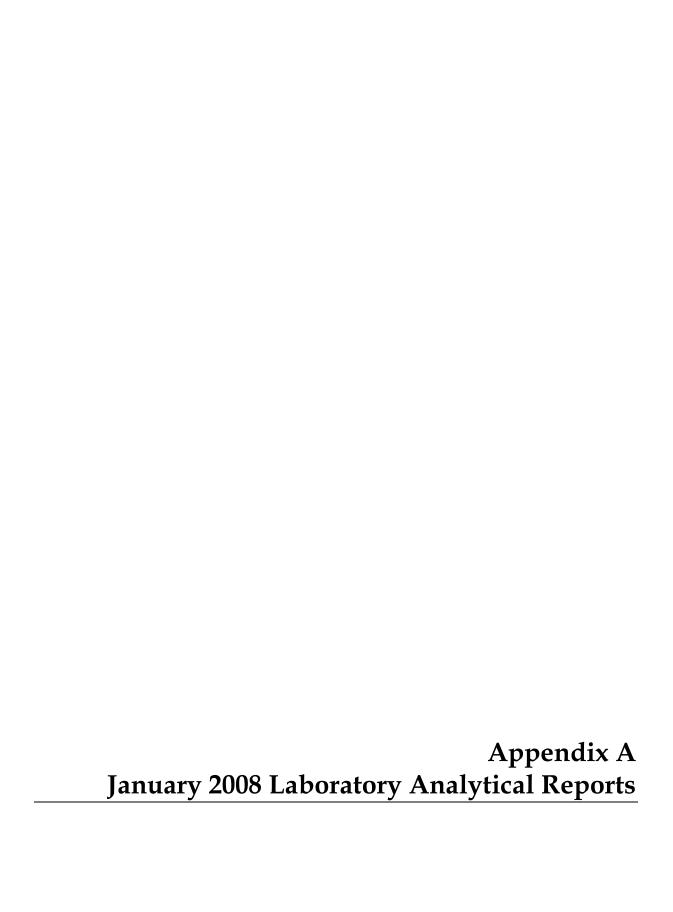

Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.


TLI = Truesdail Laboratories, Inc.


ATL = Aquatic Testing Laboratories







TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 29, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-132 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 972413

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-132 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 3, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

A result for Hexavalent Chromium by EPA 218.6 is reported in the matrix spike calculations for sample SC-701-WDR-132 although it is below the reporting limit due to the small amount of Hexavalent Chromium detected in the sample.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona I

Manager, Analytical Services

K. R. P. Tyen

K.R.P. Iver

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007 Received: January 3, 2007

ANALYST LIST

	\$	
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 B	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Michel Mendoza / Mark Kotani
EPA 200.8	Metals by ICP/MS	Linda Saetern
EPA 245.1	Mercury	Michel Mendoza
EPA 218.6	Hexavalent Chromium	Jean Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007

Received: January 3, 2007 Prep/ Analyzed: January 4, 2008

Analytical Batch: 01PH08D

Investigation:

pH by SM 4500-H B

Analytical Results pH

<u>TL11.D.</u>	<u>Field I.D.</u>	Run Time	<u>Units</u>	MDL	<u>RL</u>	<u>Results</u>
972413-1	SC-100B-WDR-132	08:43	рН	0.0700	2.00	7.50
972413-2	SC-700B-WDR-132	08:47	рН	0.0700	2.00	8.19
972413-3	SC-701-WDR-132	08:50	рН	0.0700	2.00	7.99

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	972413-3	7.99	8.00	0.01	± 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7,05	7.00	0.05	<u>±</u> 0.100 Units	Yes
LCS#1	7.05	7.00	0.05	+ 0.100 Units	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007 Received: January 3, 2007

Prep/ Analyzed: January 4, 2008

Analytical Batch: 01EC08B

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
972413-1	SC-100B-WDR-132	μmhos/cm	EPA 120.1	1.00	2.00	7980
972413-2	SC-700B-WDR-132	μmhos/cm	EPA 120.1	1.00	2.00	6680
972413-3	SC-701-WDR-132	μmhos/cm	EPA 120.1	1.00	2.00	27100

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Dupilcate Concentration	Relative Percent Difference	limits	QC Within Control
Duplicate	972413-3	27100	27200	0.37%	<u>≤</u> 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
ccs	690	706	97.7%	90% - 110%	Yes
CVS#1	945	996	94.9%	90% - 110%	Yes
LCS	689	706	97.6%	90% - 110%	Yes

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007

Received: January 3, 2007 Prep/ Analyzed: January 7, 2008

Analytical Batch: 01TDS08B

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D.	Field I.D.	<u>Units</u>	<u>Method</u>	RL	Results
972413-1	SC-100B-WDR-132	mg/L	SM 2540C	250	5170
972413-2 972413-3	SC-700B-WDR-132 SC-701-WDR-132	mg/L	SM 2540C	250	4130
3747100	30-701-VVDR-132	mg/L	SM 2540C	250	20000

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	972412-1	3790	3760	0.40%	<u><</u> 5%	Yes

	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
L	LCS 1	499	500	99.8%	90% - 110%	Yeş

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Laboratory No.; 972413

Date: January 29, 2008 Collected: January 3, 2007 Received: January 3, 2007

Prep/ Analyzed: January 4, 2008 Analytical Batch: 01TUC08E

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
972413-1	SC-100B-WDR-132	10:30	NTU	1,00	0.100	0.158
972413-2	SC-700B-WDR-132	10:00	NTU	1,00	0.100	ND

QA/QC Summary

Duplicate 972372-4 ND ND 0.00% 5.20% Yes	QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
	Duplicate	972372-4	ND	NDND	0.00%	<u>≤</u> 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.50	8.00	93.8%	90% - 110%	Yes
LCS	7.35	8.00	91.9%	90% - 110%	Yes
LCS	7.52	8.00	94.0%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O 1 1

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Prep. Batch: 01CrH08A

Laboratory No.: 972413

Date: January 29, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: January 3, 2007 Received: January 3, 2007

Prep/ Analyzed: January 4, 2008

Analytical Batch: 01CrH08A

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TL1 I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>_RL</u>	Results
972413-1	SC-100B-WDR-132	10:30	06:39	mg/L	100	0.0200	1.50
972413-2	SC-700B-WDR-132	10:00	07:19	mg/L	5.00	0.0010	ND
972413-3	SC-701-WDR-132	10:15	07:29	mg/L	5.00	0.0010	ND

QA/QC Summary

	QC STD I.D.	Laboratory Number	Sample Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance Ilmits	QC Within Control
į	Duplicate	972413-1	1.50	1.51	0.66%	≤ 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	M\$% Recovery	Acceptance limits	QC Within Control
MS	972 <u>4</u> 13-1	1.50	100	0.0150	1.50	3.03	3.00	102%	90-110%	Yes
MS	972413-2	0.00	5.00	0.00100	0.00500	0.00520	0.00500	104%	90-110%	Yes
MS	972413-3	0.00043	5.00	0.00100	0.00500	0.00572	0.00543	106%	90-110%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00506	0.00500	101%	90% - 110%	Yes
MRCVS#1	0.00995	0.0100	99.5%	95% - 105%	Yes
MRCV\$#2	0.00992	0.0100	99.2%	95% - 105%	Yes
LCS	0.00505	0.00500	101%	90% - 110%	Yes
LCSD	0.00504	0.00500	101%	90% - 110%	Yes

NU: Below the reporting limit (Not Detected).

OF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM,02.00
P.O. No.: 358342.TM,02.00

Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Received: January 3, 2007 Prep/ Analyzed: January 7, 2008

Analytical Batch: 01NH3-E08B

Investigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI 1.D.</u>	Field I.D.	Sample Time	<u>Method</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
972413-1	SC-100B-WDR-132	10:30	SM 4500-NH3 D	mg/L	1.00	0.500	ND
972413-2	SC-700B-WDR-132	10:00	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

		Number		Concentra	Concentration Concentration Di		Relative Percent Difference		eptance limits	QC Within Control				
	Duplic	ate	972434	-1	1.63		1	.69		3.61%		≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample		ition ctor	Added Spike Conc.	MS Amount				Theoretical Conc. of spiked sample	MS% Recovery		Acceptance limits	QC Within Control
MS	972434-1	1.63	1.	00	6.00	6	.00	7.31		7.63		94.7%	75 - 125%	Yes
	QC Std I.D.			easured centration				ent			QC Withi Control	·· I		
		LC	S		10.4		10.0	10	1%	90% - 110)%	Yes	1	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM,02.00 Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007 Received: January 3, 2007

Prep/ Analyzed: January 7, 2008

Analytical Batch: 01AN08E

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
972413-1	SC-100B-WDR-132	10:30	14:06	mg/L	5.00	0.500	2.88
972413-2	SC-700B-WDR-132	10:00	14:17	mg/L	5.00	0.500	2.18
972413-3	SC-701-WDR-132	10:15	14:29	mg/L	5.00	0.500	11.0

QA/QC Summary

	QC STO		Nı	oratory umber 2372-6	Concentra	ation	Conce	entration	Percent Difference 0.0%	Acceptance limits	QC Within Control	
QC Std	Lab Number	Conc. unspik samp	bes	Dilution Factor	Added Spike Conc.		//S ount	Measured Conc. of spiked sample			Acceptance	QC Within Control
MS	972372-6	1,81	$\underline{\bot}$	1.00	4.00	4.	.00	5.63	5.81	95.5%	75-125%	Yes
				Ma	Seurad	The				T		

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4,18	4.00	105%	90% - 110%	Yes
MRCVS#1	3.14	3.00	105%	90% - 110%	Yes
MRCVS#2	3.11	3.00	104%	90% - 110%	Yes
LCS	4.14	4.00	104%	90% - 110%	Yes
LCSD	4.18	4.00	105%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

Laboratory No.: 972413

Date: January 29, 2008 Collected: January 3, 2007

Received: January 3, 2007 Prep/ Analyzed: January 4, 2008

Analytical Batch: 01AN08D

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
972413-1	SC-100B-WDR-132	10:30	19:16	mg/L	50.0	25.0	641
972413-2	SC-700B-WDR-132	10:00	18:41	mg/L	50.0	25.0	517

QA/QC Summary

	QC STE		Labor Num 9724	ber	Concentra 517	Concentration 517		On Duplicate Concentration 517		Acceptance limits		QC Within Control Yes	
QC Std I.D.	Lab Number	Conc. unspik samp	red D	llution actor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample		MS% ecovery	Acceptance limits	QC Within Control
мѕ	972413-2	517		50.0	10.0		500	1030	1017	—	103%	85-115%	Yes
				M	easured	Th	reoretical	Percer	at Accents	nce	OC With	in l	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	20.1	20.0	101%	90% - 110%	Yes
MRCVS#1	13.8	15.0	92.0%	90% - 110%	Yes
MRCVS#2	15.4	15.0	103%	90% - 110%	Yeş
MRCVS#3	15.4	15.0	103%	90% - 110%	Yes
MRCVS#4	15,5	15.0	103%	90% - 110%	Yes
LCS	20,2	20.0	101%	90% - 110%	Yes
LCSD	20.4	20.0	102%	90% - 110%	Vao

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

k-

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

REPORT

Laboratory No.: 972413

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: January 29, 2008

Collected: January 3, 2007 Received: January 3, 2007 Prep/ Analyzed: January 4, 2008

Analytical Batch: 01AN08D

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
972413-1	SC-100B-WDR-132	10:30	12:09	mg/L	5.00	1.00	3.60
972413-2	SC-700B-WDR-132	10:00	12:20	mg/L	5.00	1.00	2.89

QA/QC Summary

	QC STD			eborato Numbe	r	Concentra	ation		Concentration Di		Rela Perc Differ	ent		eptance imits		QC Within Control							
	Duplica	ite	9	7241 <u>6</u> -	38	3.18			3.33		4.6	1%	- :	≤ 20%	7	Yes							
QC Std	Lab Number	Con unsp sam	iked	Dilu Fac		Added Spike Conc.	l	MS nount	C.	asured onc. of piked ample	Co	oretical nc. of piked mple	_	MS% covery	,	Acceptance fimits	QC Within Control						
MS	972416-38	3.1	18 .	1.0	00	4.00		4.00		7.46	7	7.18 1		107%		75-12 5 %	Yes						
		Q	C Std	I.D.	_	easured centration		neoretica ncentratio		Percent Recovery		cceptar Limits		QC With									
			MRCC	cs		4.04		4.00		101%		90% - 110		0% Yes		0% Yes		0% Yes		0% Yes			
		M	IRCV:	5#1		2.75		3.00		91.7%	9	0% - 110			-								
		<u> </u>	RCV	S#2		3.06		3.00		102%	9	0% - 110	0%	Yes									

3.00

4.00

4.00

102%

102%

103%

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

MRCVS#3

LCS

LCSD

3.06

4.07

4.11

Respectfully submitted,

90% - 110%

90% - 110%

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

Yes

Yes

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Relative

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 972413

Date: January 29, 2008

Collected: January 3, 2007 Received: January 3, 2007

Prep/ Analyzed: January 4, 2008 Analytical Batch: 01NO208C

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>TLI I.D.</u>	<u>Fleid I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
972413-1	SC-100B-WDR-132	10:30	13:42	mg/L	1.00	0.0050	ND ND
972413-2	SC-700B-WDR-132	10:00	13:43	mg/L	1.00	0.0050	ND

QA/QC Summary

		QC ST		Nu	oratory imber	Concentra	ation		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
,		Dupilo	ate	972	2413-2	ND			ND	0.00%	<u><</u> 20%	Yes	
	QC Std I.D.	Lab Number	Conc. unspik samp	ed	Dilution Factor	Added Spike Conc.	_	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
Į	MS	972413-2	0.00		1.00	0.0200	0.	0200	0.0193	0.0200	96.5%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0223	0.0230	97.0%	90% - 110%	Yes
MRCVS#1	0.0196	0.0200	98.0%	90% - 110%	Yes
LCS	0.0289	0.0290	99,7%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

🚣 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972413
Reported: January 29, 2008
Collected: January 3, 2007
Received: January 3, 2007
Analyzed: January 6 - 24, 2007

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Samples: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342,TM,02,00
P.O. No.: 358342,TM,02,00


Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID: 8	SC-100B-WOR-132	Time Col	lected:	10:30		LAB ID:	972413-1	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Aluminum	EPA 200.8	ND	1.00	mg/L	0.0500	010708A	01/07/08	10:33
Antimony	EPA 200.8	ND	1.00	mg/L	0.0030	010708A	01/07/08	10:33
<u>Arsenic</u>	EPA 200.8	ND	1.00	mg/L	0.0050	010708A	01/07/08	10:33
Barium	EPA 200.8	<u>ND</u>	1.00	mg/L	0.300	010708A	01/07/08	10:33
Chromium	EPA 200.8	1.63	5.00	mg/L	0.0010	010708A	01/07/08	10:57
Copper	EPA 200.8	ND .	1.00	mg/L	0.0100	010708A	01/07/08	10:33
Lead	EPA 200.8	ND	1.00	mg/L,	0.0020	010708A	01/07/08	10:33
<u>Manganese</u>	EPA 200.8	ND .	1.00	mg/L	0.0200	010708A	01/07/08	10:33
Molybdenum	EPA 200.8	0.0200	1.00	mg/L	0.0050	010708A	01/07/08	10:33
Nickel	EPA 200.8	ND	1.00	mg/L	0.0200	010708A	01/07/08	10:33
Zinc	EPA 200.8	ND	1.00	mg/L	0.0200	010708A	01/07/08	10:33
Boron	EPA 200.7	0.622	1.00	mg/L	0.200	010808A	01/08/08	16:11
Iron	EPA 200.7	ND	1.00	mg/L	0.0200	012408A	01/24/08	12:31

SAMPLE ID: SC	-700B-WDR-132	Time Col	ected;	10:00	_	LAB ID:	972413-2	# !
Parameter	Method	Reported Value	DF	Units	RŁ	Batch	Date Analyzed	Time Analyzed
Alumin <u>um</u>	EPA 200.8	ND	1,00	mg/L	0.0500	010708A	01/07/08	11:03
Antimony	EPA 200.8	ND	1.00	mg/L	0.0030	010708A	01/07/08	11:03
<u>Arsen</u> ic	EPA 200.8	ND	1.00	mg/L	0.0050	010708A	01/07/08	11:03
Barium	EPA 200.8	ND	1.00	mg/L	0.300	010708A	01/07/08	11:03
Chromium	EPA 200.8	ND	1.00	mg/L	0.0010	010708A	01/07/08	11:03
Copper	EPA 200.8	ND	1.00	mg/L	0.0100	010708A	01/07/08	11.03
<u>Lea</u> d	EPA 200.8	ND	1.00	mg/L	0.0020	010708A	01/07/08	11:03
Manganese	EPA 200.8	0.0301	1.00	mg/L	0.0200	010708A	01/07/08	11:03
Molybdenum	EPA 200.8	0.0141	1.00	mg/L	0.0050	010708A	01/07/08	11:03
Nickel	EPA 200.8	ND .	1.00	mg/L	0.0200	010708A	01/07/08	11:03
Zinc	EPA 200.8	ND ND	1.00	mg/L	0.0200	010708A	01/07/08	11:03
Boron	EPA 200.7	1.12	1.00	mg/L	0.200	010808A	01/08/08	11:03 16:15
Iron	EPA 200.7	ND	1.00	mg/L	0.0200	010808A	01/08/08	16:15

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Report Continued

SAMPLE ID: SC-70	01-WDR-132	Time Coll	ected: 1	0:15		LAB ID:	972413-3	· ·
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Antimony	EPA 200.8	ND	5.00	mg/L	0.0030	010708A	01/07/08	12:14
Arsenic	EPA 200.8	ND	5.00	mg/L	0.0050	010708A	01/07/08	12:14
Barium	EPA 200.8	ND	5.00	mg/L	0.300	010708A	01/07/08	12:14
Beryllium	EPA 200.8	<u>ND</u>	1.00	mg/L	0.0010	011008A	01/10/08	11:51
<u>Cadmium</u>	EPA 200.8	ND	5.00	mg/L	0.0020	010708A	01/07/08	12:14
Chromium	EPA 200.8	ND	5.00	mg/L	0.0010	010708A	01/07/08	12:14
Cobalt	EPA 200.8	ND_	5.00	mg/L	0.0050	010708A	01/07/08	12:14
<u>Copper</u>	EPA 200.8	ND	5.00	mg/L	0.0100	010708A	01/07/08	12:14
Lead	EPA 200.8	<u>N</u> D	5.00	mg/L	0.0020	010708A	01/07/08	12:14
Mercury	EPA 245.1	ND	1.00	mg/L	0.00020	01HG08Aa	01/06/08	N/A
Molybdenum	EPA 200.8	0.0578	5.00	mg/L	0.0050	010708A	01/07/08	12:14
<u>Nickel</u>	EPA 200.8	ND	5.00	mg/L	0.0200	010708A	01/07/08	12:14
Selenium	EPA 200.8	0.0127	5.00	mg/L	0.0050	010708A	01/07/08	12:14
S <u>ilver</u>	EPA 200.8	ND .	5.00	mg/L	0.0050	010708A	01/07/08	12:14
Thalllum	EPA 200.8	ND	5.00	mg/L	0.0010	010708A	01/07/08	12:14
Vanadium	EPA 200.8	ND	5.00	mg/L,	0.0050	010708A	01/07/08	12:14
Zinc	EPA 200.8	ND	5.00	mg/L	0.0200	010708A	01/07/08	12:14

ND: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

972413

/	\
	┌ `
[🔻	ر_ا
1	

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-132] 972413 TURNA DATE

COC Number
TURNAROUND TIME

10 Days

PAGE OF

~											- 1	- 6		•	Ŧ			_				•		_		-
COMPANY	E2		-				-/	\neg	7	\neg	7	_/	7	7	7	7	T	7	/	I	7	7	~~	MMENT	•]
PROJECT NAME	PG&E Topock	(/	/	/	/	/	/	/	/	/	/	/	/			/	/		MHME III	J	l
PHONE	(530) 229-330	13	FAX (530) 339-3303			/	/ ŝ	15	Ι.	/ ,	/	/ /	(/ /	Ι,	/ /	/	/	/ /		/				
ADDRESS	155 Grand Av	e Ste 1000	_			1		\ 3	Lingue V	_/			/ / <u>:</u>	ž/		<i>§</i> /	/	/	/		š/	•				
	Oakland, CA 9	94612				/¿	, <u>R</u>			ž/		/	804 NOS	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/ _{\$\bar{P}\$}	/	/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/					
P.O. NUMBER	358342.TM.02	2.90	TEAM	1	Ι,	Fille	S.C.C.D.	d i	100	/s /	/ _{aa} /	/4	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	/ /	710	ag	<i>\</i> ¥005/	% /	/	ပ္မွ						Ì
SAMPLERS (SIGNA	ATURE	Van B			1/.	97/		\$ \		\S/\S	# / E	00/	000	, /s	§`/{					°/						l
			/030 TIME	A	8	1.06) Lab Fillera	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Specific Court Tile 2 Lines	TDS (Sur Conductance)	PH (SALLS	Antons 130	100	Con (77.90.0)	Metals (6017)	Turbidhy (S. Tille	Signal Signal	Bioassay Self	Ι.	 	CONTAINS						
SAMPLE I.D. SC-100B-WD	R-132	1-2-08	10.50	Water	/ X	/ x	<u> </u>	×	×	×	/ <u>*</u>	×		*/	x	X	/ 40 /	ヿ゙	Ź	99	./	•	7.	T _p A	1	H
SC-700B-WD	R-132	1-3-08	1000	Water	×	x	 	x	x	x		х		一	х	х		1	5	22	3	0	<i>S</i> .	/ 5H	, ,	
SC-701-WDR	-132	1-3-08	1015	Water	×	Ī	×	×	x	x	x		Ħ					Ī	4	29	./	0	8.	_	7	ĭ
						<u> </u>			e e e e	· · · · · · · · · · · · · · · · · · ·		•	'					7	14	то	TAL N	IUMBE		NTAINE	,	ĺ
									: Έγες :	ringa (}	io (٠ م		الحرشيط ا	. سر حـــــــــــــــــــــــــــــــــــ	Γ		^	r		T11		7	
									• `	\	2.34	•	열달병	15 m	ار و خواد د استام	ં. 	Marian	ł		А	L	∴K]] !!		ľ	

	0.1	CHAIN OF CUSTODY SI	GNATURE RECORD		SAMPLE CONDITIONS
	Signature (Relinquished)	Printed A.D.	Company/	Date/ /- 5-07 Time /0 55	RECEIVED COOL WARM WARM
	Signature (Received)	Printed Rafaul	Company/ Agency 7 · / ±	Date/ /- 3 - 0 8 Time 7:16	CUSTODY SEALED YES NO NO
	Signature (Relinquished)	Printed Rafal	Agency / T. L. I	Date/	SPECIAL REQUIREMENTS:
2	Signature (Received)	Printed Name	Company/ * Agency	Date/ 40195	
Š	Signature (Relinquished)	Printed ⁴ Name	Company/ Agency	Oale/ Time	
	Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 15, 2007

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-134 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 972566

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-134 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 9, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

£∠ Mona Nassimi

Manager, Analytical Services

K. R. P. 9ye

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

Laboratory No.: 972566 Date: January 15, 2008

Collected: January 9, 2008 Received: January 9, 2008

ANALYST LIST

	Tana and a same same	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 011108A

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Laboratory No.: 972566

Date: January 15, 2008 Collected: January 9, 2008 Received: January 9, 2008 Prep/ Analyzed: January 11, 2008

Analytical Batch: 011108A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using EPA 200.8

Analytical Results Total Chromium

DF RL Results Run Time Units Method TLI I.D. Field I.D. 10:59 1.00 0.0010 0.0010 EPA 200.8 SC-700B-WDR-134 mg/L 972566

QA/QC Summary

	QC STD	I.D.	Laboratory Number	Concentrati	lon c	Duplicate encentration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplica	até	972566	0.0010		0.0010	0.00%	<u><</u> 20%	Yes	
844	Lab	Conc.	of Dilution	Added	MS	Measured Conc. of		MS%	Acceptance	

QC Std I,D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	972566	0.0010	1,00	0.0500	0.0500	0,0528	0.0510	104%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0510	0.0500	102%	90% - 110%_	Yes
MRCVS#1	0.0497	0.0500	99.4%	90% - 110%	Yes
ICS	0.0518	0.0500	104%	80% - 120%	Yes
LCS	0.0526	0.0500	105%	90% - 110%	Yes

ND: Not detected at reporting limit

DF; Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

F-/ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proportion authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 REPORT (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972566

Date: January 15, 2008 Collected: January 9, 2008 Received: January 9, 2008

Prep/ Analyzed: January 10, 2008 Analytical Batch: 01CrH08B

investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>. Field I.D. Sample Time Run Time <u>Units</u> <u>D</u>F ŖL Results 972566 SC-700B-WDR-134 09:15 07:44 mg/L 1.05 0.00020 0.00057

QA/QC Summany

								(U U	u,	ııııaı	У					
	QC ST		N	oorato	•	Concentrat	lon	Duj Conce	plica entra	ation	Relative Percent Difference		ceptance limits		QC Within Control	
	<u>Duplic</u>	cate	9	72566		0.00057		0.0	0005		1.74%		< 20%	+	Yes	
QC Std I.D.	Lab Number	unsp	ic.of olked ople	Dilut Fact		Added Spike Conc.		MS nount	Co	easured onc. of piked ample	Theoretical Conc. of spiked		MS% ecovery	Ac	ceptance limits	QC Within
MS	972566	0.00	057	1.0	6	0.00100	0.0	00106		.00165	9.00163	╁	102%		00.1100/	
		a	C Std	I.D.		Measured oncentration		eoretical centratio	- 1	Percent Recover	Acceptan	ice	QC With		90-110%	Yes
		<u> </u>	MRCQ	:s		0.00504		0.00500	_	101%	90% - 110	19/		\dashv		
		<u>_ N</u>	IRCV\$	3# 1		0.00992		0.0100	1	99.2%	95% - 105		Yes			
		<u></u>	<u>LC</u> S			0.00506	0	.00500	\dashv	101%	90% 116		Yes Yes			

101%

0.00500

ND: Below the reporting limit (Not Detected).

LCSD

0.00505

DF: Dilution Factor.

Respectfully submitted,

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

√ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior witten authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972566

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: January 15, 2008 Collected: January 9, 2008

Received: January 9, 2008 Prep/ Analyzed: January 10, 2008

Analytical Batch: 01PH08K

investigation:

pH by SM 4500-H B

Analytical Results pH

<u>TLI I.D.</u> 972566

Field I.D.

SC-700B-WDR-134

Sample Time 09:15

Run Time 08:40

Units pН

MDL 0.0700

<u>RL</u> 2.00

Results 8.14

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance	QC Within
Duplicate	972566	8.14	8.14			
			0.14	0.00	<u>+ 0.100 Units</u> .	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.06	7.00	0.08	<u>+</u> 0.100 Units	
LCS #1	7.04	7.00	0.06	+ 0.100 Units	Yes
			.0.00	- 0.700 Onas	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

 \pounds_{\sim} Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342,TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972566

Date: January 15, 2008 Collected: January 9, 2008

Received: January 9, 2008 Prep/ Analyzed: January 10, 2008

Analytical Batch: 01TUC08K

investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u> Field I.D. 972566

Sample Time

Units

DF

RL

<u>Results</u>

SC-700B-WDR-134

09:15

NTU

1.00

0.100

ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent	Acceptance limits	QC Within
Duplicate	972587-1	1.80	1.83	Difference 1.65%	< 20%	Yes
						- 69

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.70	8.00	96.3%	90% - 110%	Yes
LCS	7.55	8.00	94.4%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected),

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

😓 – Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without property ten authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972566

Date: January 15, 2008

Collected: January 9, 2008 Received: January 9, 2008

14201 FRANKLIN AVENUE

Prep/ Analyzed: January 10, 2008 Analytical Batch: 01EC08D

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI I.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 972566
 SC-700B-WDR-134
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6870

QA/QC Summary

QC 81	- 1	Laborato Number	' I Concontrat	tion	Duplica Concentra			ative Percent Difference		eptance limits	QC Within Control
Duplica	ate	972566	6870		6870			0.00%		≤ 10%	Yes
	Q.	C Std I,D.	Measured Concentration	4	Theoretical oncentration	Perce Recov		Acceptant Limits	;e	QC Withi Control	n
-		ccs	689		706	97.69	%	90% - 110	%	Yes	┪
		CVS#1	946		996	95.09	%	90% - 110	_	Yes	-
L		LCS	689		706	97.65	%	90% - 110		Yes	7

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972566

Date: January 15, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: January 9, 2008 Received: January 9, 2008

Prep/ Analyzed: January 10, 2008

Analytical Batch: 01TDS08D

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 972566 Field I.D. SC-700B-WDR-134 Units mg/L Method SM 2540C <u>RL</u> 250 Results 4100

QA/QC Summary

QC STD I.D.	Laboratory Concentration		Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	972566	4100	4170	0.85%	≤ 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control	
LCS 1	500	500	100%	90% - 110%	Yes	
LCS 2	500	500	100%	90% - 110%	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without propressive authorization from Truesdail Laboratories.

Rec'd 01/09/08 Lab.# **972**566

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com CHAIN OF CUSTODY RECORD
[IM3Plant-WDR-134]

 COC Number
 10 Days

 TURNAROUND TIME
 10 Days

 DATE
 PAGE 1 OF 1

~												•	• -	-		-								
COMPANY	E2						7	T	7	7	\mathcal{I}	7	7	7	7	7	7	7	7	7	\mathcal{T}	7	OMMENTS	s
PROJECT NAME	PG&E Topock						/		/	/	/	/	/	/	/	/	/				/ /	·		
PHONE	(530) 229-330	3 F.	ax <u>(530)</u>	339-3303			/ /	/ <u>s</u> /	/ /	/	/ /	/ /	/ /	/ /	/ /	. /	/ /	/	Ι,	/ /	<u>/</u> /			
ADDRESS	155 Grand Ave	e Ste 1000	_			-/	//	e (120 II)	\mathcal{I}	/	/	/	/	/	/	/	/	1	-/		88/			
	Oakland, CA 9	4612	_			/&		(L20.1)	/ .	/	/	Γ.	/	/	/	/	/	/	/	15	1	_	11	~
P.O. NUMBER	358342.TM.02	00	TEAM		1 /	b Filliared	[j	181	5/	a /	<u> </u>		/ /	/ /	' /	/	/ /		/ /		10	リン	27.	7
SAMPLERS (SIGN.	ATURE	RAO.			1/	87 (g)	* / * * / S			$\frac{1}{2}$		/	/	/	/	/	/	/		°/	ייץ	-	ナロ	
					Co (210 g	Total Man	Specific	70S (SM2.58.52)	PH (SM4SOM	Turbidity (Sa.	Ί,	/ ,	/	Ι.	Ι,	/	Ι.	/	NUMBE	7				
SAMPLE I.D.		DATE	TIME	DESCRIPTION	<u> </u>	/ 	۲,	/~ /	~ /	\sim $^{\prime}$							- /	-	_		- · ·			
SC-700B-WD	R-134	1-9-08	0915	Water	х	x	x	x	x	x]	3	1	111	2		
															-				5	TO	TAL NUMB	ER OF C	CONTAINE	RS
																		•						

ALERT!! Level III QC For Sample Conditions See Form Attached

	CHAIN OF CUSTODY SI	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed ADK	Company/ Agency	Date/ D4/5	RECEIVED COOL WARM C
Signature (Received)	Printed //Or/	Company/ Agency	Date/ /53 Time a /- og - de	O CUSTODY SEALED YES NO NO
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	SPECIAL REQUIREMENTS:
Gignature (Received)	Day Le Name Raford	Company/ T. L. I	Date/ /- 9-08 Time 20:45	
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	·

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

January 24, 2007

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-133 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 972734

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-133 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 16, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

A result for Hexavalent Chromium by EPA 218.6 is reported in the matrix spike calculation although it is below the reporting limit due to the small amount of Hexavalent Chromium detected in the sample.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

₺∽ Mona Nassimi

Manager, Analytical Services

Sem Canda

K. R. P. gyen

K.R.P. Iver

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 Laboratory No.: 972734

Date: January 24, 2008 Collected: January 16, 2008 Received: January 16, 2008

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 011708A

Laboratory No.: 972734

Date: January 24, 2008 Collected: January 16, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Received: January 16, 2008

Prep/ Analyzed: January 17, 2008

Analytical Batch: 011708A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

<u>TLI I.D.</u> Field I.D. Units <u>Method</u> Run Time DF RL Results 972734 SC-700B-WDR-133 mg/L **EPA 200.8** 10:45 1.00 0.0010 ND

QA/QC Summarv

				<u></u>			
QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control	
Duplicate	972735-1	ND	ND	0.00%	<u>≤</u> 20%	Yes	
		· · · · ·	Manager	Theresis			-

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
мѕ	972735-1	0.00	1.00	0.0500	0.0500	0.0484	0.0500	96.8%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0485	0.0500	97.0%	90% - 110%	Yes
MRCV\$#1	0.0488	0.0500	97.6%	90% - 110%	Yes
MRCVS#2	0.0482	0,0500	96.4%	90% - 110%	Yes
ICS	0,0483	0.0500	96.6%	80% - 120%	Yes
LCS	0.0492	0.0500	08.4%	009/ 1109/	Van

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972734

Date: January 24, 2008

Collected: January 16, 2008 Received: January 16, 2008

Prep/ Analyzed: January 16, 2008

Analytical Batch: 01CrH08F

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time **Run Time** Units DF RL Results 972734 SC-700B-WDR-133 09:30 23:17 ma/L 1.05 0.00020 ND

QA/QC Summary

	QC STO		N	oratory umber 72734	Concentrat	ion	Du Conc	plica entra ND	ation	Relative Percent Difference 0.00%	eptance limits		QC Within Control Yes	
QC Std I.D.	Lab Number	unsp	nc.of piked nple	Dilutio Factor	n Added Spike	I .	MS nount	Me C	easured onc. of spiked sample	Theoretical Conc. of spiked sample	MS% ecovery	Ac	ceptance limits	QC Within Control
мѕ	972734	0.00	017	1,06	0.00100	0.0	00106	0	.00129	0.00123	106%		90-110%	Yes
			C Std		Measured Concentration	Cor	neoretica ncentrati		Percen		QC Witi Contro			

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00493	0.00500	98.6%	90% - 110%	Yes
MRCVS#1	0.0102	0.0100	102%	95% - 105%	Yes
MRCVS#2	0.0103	0.0100	103%	95% - 105%	Yes
LCS	0.00508	0.00500	102%	90% - 110%	Yes
LCSD	0.00493	0.00500	98.6%	90% - 110%	Ves

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Results

ND

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972734

Date: January 24, 2008 Collected: January 16, 2008 Received: January 16, 2008

0.100

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Prep/ Analyzed: January 18, 2008

Analytical Batch: 01TUC08N

1.00

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D. Field I.D. Sample Time Units DF RL 972734 SC-700B-WDR-133 09:30 NTU

QA/QC Summary

QC STD I,D,	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	972729-22	0.118	0.119	0.84%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.79	8,00	97.4%	90% - 110%	Yes
LCS	7.65	8.00	95.6%	90% - 110%	Yes
LCS	7.50	8.00	93.8%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected),

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 972734

Date: January 24, 2008 Collected: January 16, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Received: January 16, 2008 Prep/ Analyzed: January 17, 2008

Analytical Batch: 01PH08R

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D.

Field I.D.

Sample Time

Run Time

Units

MDL

RL

Results

010

972734

SC-700B-WDR-133

09:30

08:47

рΗ

0.0700

2.00

8.25

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	972734	8.25	8.25	0.00	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.07	7.00	0.07	+ 0.100 Units	Yes
LCS #1	7.06	7.00	0.06	+ 0.100 Units	Yes

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager **Analytical Services**

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972734

Date: January 24, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: January 16, 2008

Received: January 16, 2008 Prep/ Analyzed: January 17, 2008

Analytical Batch: 01EC08G

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D</u>.

Field I.D.

<u>Units</u>

<u>Method</u>

<u>DF</u>

<u>RL</u>

Results

972734

SC-700B-WDR-133

µmhos/cm

EPA 120.1

1.00

2.00

6780

QA/QC Summary

QC S			Laboratory Conce Number		Concentration Duplical Concentra			Relative Percent Difference			eptance limits	QC Within Control
Duplic	plicate 972734			6780		6790			0.15%		10%	Yes
	Q	QC Std I.D.		Measured Concentration		heoretical ncentration	Perce Recov				QC Withi Control	
		ccs		690		706	97.7	%	90% - 110	%	Yes	7
		CVS#1		947		996	95.19	%	90% - 110	%	Yes	
	L	LCS		690		706	97.7	%	90% - 110	%	Yes	

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM,02.00 P.O. No.: 358342.TM,02.00

Laboratory No.: 972734

Date: January 24, 2008 Collected: January 16, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Received: January 16, 2008

Prep/ Analyzed: January 17, 2008 Analytical Batch: 01TDS08H

investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 972734 Fleid I.D.

SC-700B-WDR-133

<u>Units</u> mg/L

<u>Method</u> SM 2540C

<u>RL</u> 250 Results 4000

012

QA/QC Summary

	<u></u>					
QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	972734	4000	3980	0.25%	<u><</u> 5%	Yes
				<u> </u>		·¬ ··· —

QC Std I.D.	Measured	Theoretical	Percent	Acceptance	QC Within	
	Concentration	Concentration	Recovery	Limits	Control	
LCS 1	498	500	99.6%	90% - 110%	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

√--- Mona Nassimi, Manager

Analytical Services

_	\sim
ſ 	T .
Ų.	ftl
<u> </u>	

TRUESDAL LABORATONIES, INC.

14201 Franklin Avenue, Tustin, CA 92780-7008

(714)730-6239 FAX: (714) 730-6462

14201 Franklin Avenue, Tustin, CA 92780-7008

[774)730-6239 FAX: (714) 730-6462

[774)730-6239 FAX: (714) 730-6462

CHAIN OF CUSTODY RECORD

COC Number

TURNAROUND TIME	10	Days		
DATE	PAGE	1	OF	

~			_		- :															
COMPANY	E2	•			T		/	7	-/	-/		- /	7	-/	7	7	\mathcal{T}	7	7	COMMENTS
PROJECT NAME	PG&E Topock						/	/	/	/	/		$R\epsilon$	ec'd	0.	1/16/	/02	,		/ / COMMENTS
PHONE	(530) 229-3303	<u> </u>	fax (530	339-3303			Ι.	/ <u>s</u> /	Ι,	Ι,	Ι.	/	93	65	9	72	7 3	4:/	1	/ / /
ADDRESS	155 Grand Ave	Ste 1000					[]	e (120 milm	•/	/		1	1	1	7	1	7	/	/	PH -7.9
	Oakland, CA 94	1612				/ { }		45 / E					/	/	/	/	Ι,	Ι,	/	\$ pH - 7.9
P.O. NUMBER	358342.TM.02.	00	TEAM	_1_		b Filler	1.	, ,,,,	/ م ا	/ ₈₀ /		/ /	/ /	/ /		/ /	' /	/		[8] F '' '''
SAMPLERS (SIGN.	ATURE				1/	(6.6) (ab	\$ / \$ / S				₹/	/	/	/	/	/	/			18/Temp-74.1
SAMPLE I.D.		DATE	TIME	DESCRIPTION	C.8 (2)		Specific	TOS (Sures	PH(Sunc)	Turbidii.	(08/12/180)	/	/ ,	/ /	Ι,	/ /	/ /	//	NUMBER	/ ' '
SC-700B-WD	R-133		0930	Water	×	х	х	х	x	x								_	3	DH=2
						-	-				-				•		•	,	3	TOTAL NUMBER OF CONTAINERS

CH CH	IAIN OF CUSTODY SI	GNATURE RECORD	1.1/-18	SAMPLE CONDITIONS
Signature (Relinquished	Printed ALDE	Company/ Agency O/// +	Date/ / / / / / Time 0945	RECEIVED COOL WARM M
Signature (Received) Bonifacio Dogo	Printed	Company/ Magency 7C/	Date! , -16-08 1515	CUSTODY SEALED YES NO NO
Sinnature	Printed Name B. DAYAG	Company/ Agency TU/	Date() -186_08 Time 2015	SPECIAL REQUIREMENTS:
Signature // A V	Printed Suaby m'n	Company/ TL/	Date/ JAN 1 & 2008	20:15 Sagarda 6
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	A Secretary
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

February 4, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-135 PROJECT, GROUNDWATER

MONITORING, TLI No.: 972943

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-135 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 23, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

A result for Hexavalent Chromium by EPA 218.6 is reported in the matrix spike calculation although it is below the reporting limit due to the small amount of Hexavalent Chromium detected in the sample.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

f → ~ Mona Nassimi

Manager, Analytical Services

K. R. P. Gyan

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 Laboratory No.: 972943

Date: February 4, 2008 Collected: January 23, 2008 Received: January 23, 2008

ANALYST LIST

	74-14-1-16-16-16-16-16-16-16-16-16-16-16-16-1	
	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 012408A

Laboratory No.: 972943

Prep/ Analyzed: January 24, 2008

Date: February 4, 2008 Collected: January 23, 2008 Received: January 23, 2008

Analytical Batch: 012408A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

TLI I.D. Field I.D. <u>Units</u> <u>Method</u> Run Time RL <u>DF</u> Results 972943 SC-700B-WDR-135 mg/L EPA 200.8 09:17 1.00 0.0010 ND

QA/QC Summary

	QC STD I,D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
	Duplicate	972943	ND	ND	0.00%	<u>≤</u> 20%	Yes
Т				Moneyroa	Theoretica		

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	M\$% Recovery	Acceptance limits	QC Within Control
MS	972943	0.00	1.00	0.0500	0.0500	0.0517	0.0500	103%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0505	0.0500	101%	90% - 110%	Yes
MRCVS#1	0.0548	0.0500	110%	90% - 110%	Yes
ICS	0.0525	0.0500	105%	80% - 120%	Yes
LCS	0.0509	0.0500	102%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Oilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972943

Date: February 4, 2008 Collected: January 23, 2008 Received: January 23, 2008

Prep/ Analyzed: January 24, 2008

Analytical Batch: 01CrH08M

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D</u>. <u>Field I.D.</u> Sample Time Run Time Units <u>DF</u> ŔL <u>Results</u> 972943 SC-700B-WDR-135 08:30 05:04 mg/L 1.05 0.00020 ND

QA/QC Summary

	QC ST		N	orato umbei	r	Concentration		Duplicate Concentration		Relative Percent Difference		ceptance limits	QC Within Control			
	Duplic	cate	97	2944-	<u> </u>	ND			ND		0.00%		≤ 20%	Yes	7	
QC Std I.D.	Lab Number	บทรเ	nc.of piked nple	Dilut Fact		Added Spike Conc.		MS nount	Co Sj	asured onc. of piked ample	Theoretics Conc. of spiked sample		MS% ecovery	Acceptance lin	nits	QC Within Control
MS	972943	0.00	0013	13 1.06		0.00100	0.0	0.00106		00117	0.00119		98.1%	90-110%		Yes
		٥	IC Std	I.D.	O	Measured oncentration		eoretica		Percent Recover			QC Witi			
			MRC	cs		0.00487		0.00500		97.4%	90% - 1	10%	Yes	\dashv		
			/RCV	\$#1		0.00979		0.0100		97.9%			Yes	_		

96.4%

97.0%

96.6%

0.0100

0.00500

0.00500

ND: Below the reporting limit (Not Detected).

MRCVS#2

LCS

LCSD

0.00964

0.00485

0.00483

OF: Dilution Factor.

Respectfully submitted.

95% - 105%

90% - 110%

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

Yes

Yes

**/Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

-008

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.; 972943

Date: February 4, 2008 Collected: January 23, 2008

14201 FRANKLIN AVENUÉ

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Received: January 23, 2008

Prep/ Analyzed: January 24, 2008 Analytical Batch: 01TUC08R

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D.

Field I.D.

Sample Time

<u>Units</u>

<u>DF</u>

RL Results

972943

SC-700B-WDR-135

08:30

NTU

1.00

0.100

ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	972933-18	, ND	ND	0.00%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.53	8.00	94.1%	90% - 110%	Yes
LCS	7.60	8.00	95.0%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

ło∽ Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 972943

Date: February 4, 2008 Collected: January 23, 2008

Received: January 23, 2008 Prep/ Analyzed: January 24, 2008

Analytical Batch: 01PH08X

investigation:

pH by \$M 4500-H B

Analytical Results pH

TLI I.D. Field I.D. Sample Time

Run Time

Units

MDL

RL

Results

972943

SC-700B-WDR-135

08:30

07:57

Hq

0.0700

2.00

8.21

010

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	972943	8.21	8.21	0.00	± 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.08	7.00	0.08	+ 0.100 Units	Yes
LCS #1	7.07	7.00	0.07	+ 0.100 Units	Yes
LCS #2	7.08	7.00	0.08	<u>+</u> 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

∱⊳∽ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612
Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972943

Date: February 4, 2008 Collected: January 23, 2008 Received: January 23, 2008 Prep/ Analyzed: January 24, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462

www.truesdail.com

Analytical Batch: 01EC08K

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI I.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 972943
 SC-700B-WDR-135
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6650

QA/QC Summary

QC S I.D.		Laborato Number	-	Concentrați	on	Duplica Concentra			ative Percent Difference		eptance Imits	QC Within Control			
Duplic	ate	e 972943		6650		6660			0.15%		10%	Yes			
QC :		QC Std I.D.		QC Stat.O. I		QC Std I.D. Measured Concentration			heoretical incentration	Perce Recov		Acceptane Limits	ce	QC Within	n
		ccs		694		706	98.3	%	90% - 110	%	Yes]			
		CVS#1		946		996	95.0	%	90% - 110	%	Yes				
	CVS#2		945		996	94.9	%	90% - 110	%	Yes	3				
	L.,	LCS		694		706	98.3	%	90% - 110	%	Yes				

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972943

Date: February 4, 2008 Collected: January 23, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462

www.truesdail.com

Received: January 23, 2008 Prep/ Analyzed: January 24, 2008

Analytical Batch: 01TDS08M

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 972943 Field I.D. SC-700B-WDR-135

Units mg/L Method SM 2540C <u>RL</u> 250 Results 4020

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control	
Duplicate	972944-1	4090	4180	1.09%	≤ 5%	Yes	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Coπtrol
LCS 1	500	500	100%	90% - 110%	Yes
LCS 2	498	500	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

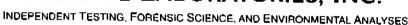
This report applies only to the sample, or samples, Investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

012

Rec'd 01/23/08 Lab.# 972943

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdall.com

CHAIN OF CUSTODY RECORD


COC Number

TURNAROUND TIME	10	Day	s	
DATE	PAGE	1_	OF	

(714)	730-6239 FAX: (71 truesdall.com		/80-/008			[tM	3Pla	nt- W l	DR-1	35]	۹.	72	2	91	4	3	TURI DAT		UND	TIME		10 PAGE		OF _	1
COMPANY	E2						7	7	\neg	\neg	7	7	7	7	7	7	\mathcal{T}	7	7	7	\mathcal{T}	7	сомм	ENTS	
PROJECT NAME	PG&E Topock									/	/	/	/	/	/	/	/	/	/	/	/ /		COMIN	ENIS	
PHONE	(530) 229-330	3	FAX (530)	339-3303		,	/ /	/ <u>\$</u> /	/ /	/ /	/ /	/ /	/ /	/ /		/ /	/ /	' /	/	/ /	[
ADDRESS	155 Grand Ave	e Ste 1000					/8	21)	. /	/	/	/	/	/	/	/	/	/	/	7.4	ğ/				
	Oakland, CA 9	4612				/>	1 70	(120,11)	/	/	/	/	/	/	/	/	/	/	/	Ė	7				
P.O. NUMBER	358342.TM.02	.00	TEAM	_1_	l ,	b Fillered	1 (L'00)	/ gy /	/ /	/ & /	(R)	/ /	/ /	/ /	/	/ /	/ /	/ /		9.00 0.00 0.000	Ten	<i>1</i> /) ~	77.	5	
SAMPLERS (SIGN)	ATURE					6.6)	Specific C	TDS (SM2.5.	PH (SMM SOC)	Turbidity (Sur		/		/	/	/	/		NUMBEC	۶ <u>/</u>	p#	- 8	t. /		
SAMPLE I.D.		DATE	TIME	DESCRIPTION	Co (27.0 E.	, 10m	Specif		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ziging.	/_/		/ /	/ /	/	/_,	/ /		3	_					
SC-700B-WD	R-135	1-23-08	0830	Water	x	x	x	x	x	x									3	-	PH	-6	L		
			1									•			· ·			Ţ	3	TO	TAL NUM	BER O	F CONTA	AINERS	

ALERT!! Level III QC For Sample Conditions
See Form Attached

	1	CHAIN OF CUSTODY S	IGNATURE RECORD		SAMPLE CONDITIONS
	Signature (Relinquished)	Printed Jou - Aide	Company/ Agency OMI	Date/ 1-23-08 Time 08-30	RECEIVED COOL WARM O °F
	Signature (Received) pon facio bana	Printed Name B. PAMG	Company/ Agency <i>アピノ</i>	Oale/ 1-23-08 Time /535	CUSTODY SEALED YES NO
	(Relinquished) Benifoco 1	Printed OcyaName B. DAYA G	Company/ Agency <i>TL</i> /	Date//+23-08 Time 2045	SPECIAL REQUIREMENTS:
,	(Received) Davi	Printed Name	Company/ J . L . T	Date/ 1-23-08 Time 30:45	
4	Signature (Relinquished)	Printed (Name	Company/ Agency	Date/ Time	·
1	Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

February 5, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-136 PROJECT, GROUNDWATER

MONITORING, TLI No.: 973134

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-136 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 30, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

A result for Hexavalent Chromium by EPA 218.6 is reported in the matrix spike calculation although it is below the reporting limit due to the small amount of Hexavalent Chromium detected in the sample.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

⊬_ Mona Nassimi

Manager, Analytical Services

K.R.P. gyer

K.R.P. Iver

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 Laboratory No.: 973134

Date: February 5, 2008 Collected: January 30, 2008 Received: January 30, 2008

ANALYST LIST

		ANIAGYES
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 013108A

Laboratory No.: 973134

Date: February 5, 2008

Collected: January 30, 2008 Received: January 30, 2008

Prep/ Analyzed: January 31, 2008

Analytical Batch: 013108A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

TLI I.D. <u>Field I.D.</u> <u>Units</u> Method Run Time DF RL Results 973134 SC-700B-WDR-136 mg/L EPA 200.8 09:27 1.00 0.0010 ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	973134	ND	ND	0.00%	≤20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	973134	0.00	1.00	0.0500	0.0500	0.0497	0.0500	99.4%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0482	0.0500	96.4%	90% - 110%	Yes
MRCVS#1	0.0473	0.0500	94.6%	90% - 110%	Yes
ics	0.0484	0.0500	96.8%	80% - 120%	Yes
LCS	0.0488	0.0500	97.6%	90% - 110%	Voe

ND: Not detected at reporting limit

OF: Dilution Factor

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.; 973134

Date: February 5, 2008 Collected: January 30, 2008

Received: January 30, 2008

Prep/ Analyzed: January 31, 2008

Analytical Batch: 01CrH08Q

Investigation;

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time Run Time <u>Units</u> <u>DF</u> RLResults 973134 SC-700B-WDR-136 14:30 07:23 mq/L 1.05 0.00020 ND

					Q/	\ C	C S	ur	nmai	ŋ	/					
	QC ST	D I.D.		ooratory umber	Concentrati	on	_	plic entr	ration	F	Relative Percent Ifference		eptance limits		QC Within Control	
	Duplic	ate	9	73134	ND			ND			0.00%		20%	$oxed{T}$	Yes	
QC Std I.D.	Lab Number	unst	nc.of piked nple	Dilution Factor	Added Spike Conc.		MS nount	C	easured Conc. of spiked sample	٦	Theoretical Conc. of spiked sample		MS% covery	Ac	ceptance limits	QC Within Control
мŝ	973134	0.00	2011	1.06	0.00100	0.0	00106	(0.00120	I	0.00117		103%		90-110%	Yes
		٥	IC Std	1.D.	Measured Concentration	_	neoretica ncentrati		Percen Recover		Acceptan Limits	ce	QC With			
			MRC	os	0.00509		0.00500		101.8%	Ġ	90% - 110)%	Yes	\neg		
		T.	IRCV	S#1	0.00993		0.0100		99.3%		95% - 105	5%	Yes			
		N	MRCV:	S#2	0.00978		0.0100		97.8%		95% - 105	%	Yes			
			LCS	3	0.00510		0.00500		102.0%	6	90% - 110)%	Yes			
			LCS	D	0.00508		0.00500		101.6%	6	90% - 110)%	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 973134

Date: February 5, 2008 Collected: January 30, 2008 Received: January 30, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Prep/ Analyzed: January 31, 2008

Analytical Batch: 01TUC08V

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

 TLI I.D.
 Field I.D.
 Sample Time
 Units
 DF
 RL
 Results

 973134
 SC-700B-WDR-136
 14:30
 NTU
 1.00
 0.100
 ND

QA/QC Summarv

	QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent	Acceptance limits	QC Within Control
r	Duplicate	973144-2	ND	ND ND	Difference 0.00%	< 20%	
_		7. 4.77	140	IND	0.00%	2 20 %	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.35	8.00	91.9%	90% - 110%	Yes
LCS	7.40	8.00	92.5%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 973134

Date: February 5, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Collected: January 30, 2008 Received: January 30, 2008

Prep/ Analyzed: January 31, 2008

Analytical Batch: 01PH08FF

Investigation:

pH by SM 4500-H B

Analytical Results pH

<u>TLI I.D.</u> Field I.D. Sample Time Run Time Units MDL RLResults | 973134 SC-700B-WDR-136 14:30 10:52 pΗ 0.0700 2.00 7.96

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	973134	7.96	7.96	0.00	+ 0.100 Units	Ves

QC Std 1.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.07	7.00	0,07	+ 0.100 Units	Yes
LCS #1	7.05	7.00	0.05	+ 0.100 Units	Yes

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

h- Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 973134

Date: February 5, 2008 Collected: January 30, 2008 Received: January 30, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Prep/ Analyzed: February 1, 2008

Analytical Batch: 02EC08A

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI 1.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 973134
 SC-700B-WDR-136
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6670

QA/QC Summary

Ľ	I.D.	Number		Concentration		Duplicate Concentration		Relative Percent Difference		Acceptance limits		QC Within Control
[uplicate	973134		6670		6680			0.15%	:	≤ 10%	Yes
	٥	C Std 1.D.		Measured encentration		heoretical incentration	Perce Recov		Acceptance Limits	:6	QC Withi Control	
		ccs		693		706	98.2	%	90% - 110	%	Yes	
		CVS#1		946		996	95.0	%	90% - 110	%	Yes	7
	<u> </u>	LCS		693		706	98.2	%	90% - 110	%	Yes	7

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

← ✓ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 973134

Date: February 5, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 FAX (714) 730-6462

www.truesdail.com

Collected: January 30, 2008 Received: January 30, 2008

Prep/ Analyzed: January 31, 2008

Analytical Batch: 01TDS08R

investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 973134 <u>Field I.D.</u>

SC-700B-WDR-136

Units mg/L Method SM 2540C

<u>RL</u> 250 Results 4260

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Ouplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	973134	4260	4330	0.81%	≤ 5%	Yės

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS 1	498	500	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

√ Mona Nassimi, Manager

Analytical Services

_	F
1	الرسا

TRUESDA'L LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-136]

Rec'd 01/30/08

COC	Number

TURNAROUND TIME DATE

PAGE 1

~	1/3/34 ==================================
COMPANY E2	////////////comments
PROJECT NAME PG&E Topock	
PHONE (530) 229-3303 FAX (530) 339-3303	
ADDRESS 155 Grand Ave Ste 1000	CONTAINERS
Oakland, CA 94612	
P.O. NUMBER 358342.TM.02.00 TEAM 1	
SAMPLERS (SIGNATURE	Secrification of the state of t
	Tong. 78.4
SAMPLE I.D. DATE TIME DESCRIPTION	10 2 3 2 2 2 1
SC-700B-WDR-136 / 19-08 /430 Water	x x x x x x x 3 PH-2 Rata
	9 FOTAL NUMBER OF CONTAINERS

For Sample Conditions See Form Attached

RUS/!!

ALERT!! Level III QC

	CHAIN OF CUSTODY S	IGNATURE RECORD	•	SAMPLE CONDITIONS
Signature (Retinquished)	Printed OF AIDE	Company/ Agency	Date/ /-30-08 Time /430	RECEIVED COOL WARM *F
Signature (Received)	placed Da Name Rafed	Company/ Agency T · L · F	Date/ - 30 - 0 8 Time 15:30	CUSTODY SEALED YES NO
Signature/ (Relinquished)	I Davidsame Rafal	Company/ T · L · I	Date/ ! - 30 - 0 8 Time	SPECIAL REQUIREMENTS:
Signature (Received)	Day Printed Rofal	Company/ T. L. I	Date/ 1-30-08 Time 20:30	
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

February 4, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-132 PROJECT, SLUDGE

MONITORING,

TLI No.: 972414

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-132 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 3, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

Results above the reporting limit were detected in the Method Blank (Blank Beads), which in turn caused the Laboratory Control Sample (LCS) recovery to exceed the acceptance limits, for Iron by SW 6010B. The sample result is over ten times the blank detection therefor the data was accepted.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

For K.R.P. Iyer

Quality Assurance/Quality Control Officer

Ali Hharias

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

Laboratory No.: 972414

Date: February 6, 2008 Collected: January 3, 2008 Received: January 3, 2008

Revision 1

ANALYST LIST

WETHOD	editoria si decidente de la	THE REPORT OF THE PARTY OF THE
EPA 300.0	Fluoride	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Mark Kotani / Michel Mendoza
SW 6020	Metals by ICP/MS	Linda Saetern
SW 7471A	Mercury	Michel Mendoza
SW 7199	Hexavalent Chromium	David Blackburn

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 358342,TM.02.00

P.O. No.: 358342.TM.02.00

Prep. Batch: 01CrH08C

Laboratory No.: 972414

Date: February 4, 2008

Collected: January 3, 2008 Received: January 3, 2008

Prep/ Analyzed: January 10, 2008

Analytical Batch: 01CrH08C

Investigation:

Hexavalent Chromium by IC Using Method SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field J.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>R</u> L	<u>Results</u>
972414	SC-Studge-WDR-132	2 10:40	11:02	mg/kg	10.0	18.9	295

QA/QC Summary

QC STC) I.D.	Laboratory Number	Sample Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control	
Duplio	ate	972414	295	311	5,28%	<u><</u> 20%	Yes	l
 1 L	Conc.of		Added	Measure	d Theoretica	<u> </u>		٦

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	972414	295	25.0	15.1	378	680	673	102%	75-125%	Yes
IMS	972414	295	40.0	96.7	3868	4000	4163	95.8%	75-125%	Yes
PDMS	972414	295	25.0	30.2	755	950	1050	86.8%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0517	0.0500	103%	90% - 110%	Yes
MRCVS#1	0.0508	0.0500	102%	90% - 110%	Yes
LCS	0.0512	0.0500	102%	80% - 120%	Yes
LCSD	0.0518	0.0500	104%	80% - 120%	VAS

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

龙 - Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972414

Date: February 4, 2008 Collected: January 3, 2008 Received: January 3, 2008 Prep/ Analyzed: January 21, 2008

Analytical Batch: 01SOLID08D

Investigation:

Total Solids by SM 2540 B

Analytical Results % Moisture

 TLI I.D.
 Field I.D.
 Sample Time
 Units
 Results

 972414
 SC-Sludge-WDR-132
 10:40
 %
 78.8

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	972414	78.8	79.2	0.51%	<u><</u> 20%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted,

TRUESDÁIL LABORATORIES, INC.

Hora Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

009

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972414

Date: February 4, 2008 Collected: January 3, 2008 Received: January 3, 2008

Prep/ Analyzed: January 7, 2008 Analytical Batch: 01AN08E

Investigation;

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

TLI I.D. Field I.D. Sample Time Run Time <u>Units</u> DF RL Results 972414 SC-Sludge-WDR-132 10:40 14:40 mg/kg 20.0 9.43 78.5

QA/QC Summarv

	QC STD			borat Number 72372	er	Concentra	ation	Conc		ation	Relati Perce <u>Differe</u> 0.00°	nt nce	Acceptance limits		limits		1	Within Control	
QC Std I.D.	Lab Number	Cond unspl sam	c.of lked	Dilı	ution etor	Added Spike Conc.	MS Co		easured Conc. of spiked sample	Theoretical		I		Acceptance fimits		QC Within			
мѕ	972372-6	1,8	31	1.	.00	4.00		4.00		5.63	5.81		95.5%		. 8	5-115%	Yes		
		Q	C Std	I.D.		easured centration		Theoretical Concentration		Percer Recove	1		I			•			
			MRCC	s		4.18		4.00		105%	90	% - 110	-)%	Yes	\neg				

MRCV\$#1 3.14 3.00 105% 90% - 110% Yes MRCVS#2 3.11 3.00 104% 90% - 110% Yes LCS 4.14 4.00 104% 90% - 110% Yes LCSD 4.18 4.00 105% 90% - 110% Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

f⊳∽ Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

010

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Samples: One (1) Soil Sample
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

investigation: Total Metal Analyses as Requested

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972414 Reported: February 4, 2008 Collected: January 3, 2008 Received: January 3, 2008

Analyzed: See Below

Analytical Results

REPORT

SAMPLE ID: SC-SI	udge-WDR-132	Time Col	lected: 10	:40	12.44	LAB ID:	972414	
_		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Antimony	SW 6010B	422	44.0	mg/kg	4.15	011608A	01/16/08	12:44
Arsenic	SW 6020	71.0	439	mg/kg	20.7	012808B	01/28/08	16:25
Barium	SW 6010B	129	44.0	mg/kg	2.50	011608A	01/16/08	12:44
Beryllium	\$W 6010B	248	44.0	mg/kg	2.50	011608A	01/16/08	12:44
Cadmium	SW 6010B	48.1	44.0	mg/kg	4.15	011608A	01/16/08	12:44
Chromium	SW 6010B	23000	4400	mg/kg	208	011608A	01/16/08	13:50
Cobalt	SW 6010B	12.2	44.0	mg/kg	2.50	011608A	01/16/08	12:44
Copper	SW 6010B	440	44.0	mg/kg	5.00	011608A	01/16/08	12:44
Lead	SW 6010B	52.8	44.0	mg/kg	4.15	011608A	01/16/08	12:44
Mercury	SW 7471A	ND	97.8	mg/kg	0.0922	01HG08Ac	01/06/08	N/A
Molybdenum	SW 6020	65.1	439	mg/kg	20.7	012808B	01/28/08	16:25
Nickel	SW 6010B	23.2	44.0	mg/kg	2.50	011608A	01/16/08	12:44
Selenium	SW 6020	ND	879	mg/kg	4.14	013108B	01/31/08	14:21
Silver	SW 6020	ND	879	mg/kg	20.7	013108B	01/31/08	14:21
<u>Thallium</u>	SW 6010B	ND	44.0	mg/kg	4.15	011608A	01/16/08	12:44
Vanadium	SW 6010B	128	44.0	mg/kg	2.50	011608A	01/16/08	12:44
Zlnc	SW 6010B	967	490	mg/kg	116	020408A	02/04/08	12:18
Iron	SW 6010B	439000	22000	mg/kg	10400	011608A	01/16/08	14:05

NOTES:

Sample results and reporting limits reported on a dry weight basis.

ND: Not detected,or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

✓ Mona Nassimi, Manager Analytical Services

1420 (7f4)	ESDAIL LABORATOR 1 Franklin Avenue, T 730-6239 FAX: (714 .truesdall.com	ustin, CA 92	780-7008				JSTOD' nt-WDR			24	.	4			er ND TIME	PAG	10 Day	OF
COMPANY	E2					7	7/	/	77	$\overline{}$	7	/	/ /	T	7 7	\Box	CON	MENTS
PROJECT NAME	PG&E Topock						//	I/I	/ /		/ ,	/ /		//	/ /	//		
PHONE	(530) 229-3303		fax <u>(530)</u>	339-3303		/,	The 2: Mercury	/ /	/ ,	/ /	/ ھ	/	//	/ /	/	/ _s /		
ADDRESS	155 Grand Ave	Ste 1000	_			/ k		_/ _	/ /	/3	§/	/ King	/ /		/ /	ğ/		
İ	Oakland, CA 94	612	_		/	8 E			/ /	SOA. NO.	7	1786 22, Mercuny	\ _{\\tilde{\pi}\}	I/I		7		
P.O. NUMBER	358342.TM. 12.0	00 1	TEAM	_1_		F A Q		/ ₅ / ₄	, /@ ,		/ /			/#g/	ြို့	•		
SAMPLERS (SIGN)	ATURE	S.			Cre (278.6) La	1/4 B. B. B. C.	Specific Conductions	PH (SIMISOHE)	Anions (300.0)	Cos (7186)	Metals (8010p)	Turberiny (SMZ130)	Breassan (SM45)0N/H3)	J. Sohr Baute	NUMBER OF CONTAIL			
SAMPLE I.D.		DATE	TIME	DESCRIPTION	/ઙ૿/	4 2	/\$ /£	$ \mathcal{E} $	₹ / ₹	/ઉં/	§ /	<i>\$</i> / ₹			<u>₹</u> /			
SC-Sludge-W	/DR-132	1-3-08	1040	Sludge					x	x	x		x	<u> </u>	<u>'†</u>	6°		
					- 								-		1 10	TAL NUMBER	OF CON	ITAINERS

The state of the s	
For Sample Conditions See Form Attached	ALERT!!
	Level III QC

	CHAIN OF CUSTODY SIGNATURE RECORD				SAMPLE CONDITIONS
	Signature (Relinquished)	Printed AND	Company/ MIT	Date/ Time /055	RECEIVED COOL WARM M
	Signature (Received)	Printed Radel	Company/ T.A.Z	Date/ / - 3 - 0 8 Time - 2 / 5	CUSTODY SEALED YES NO D
	Signature (Relinquished)	Dov Name Rolad	Agency T L-T	Date/ /- 3 - 0 3	SPECIAL REQUIREMENTS:
_	Signature (Received)	Printed Name	Company/ Agency	Date/ A0795	
7	Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
1	Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

LABORATORY REPORT

Date:

January 28, 2008

Client:

Truesdail Laboratories, Inc.

14201 Franklin Avenue Tustin, CA 92780

Attn: Sean Condon

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08012302-001

Sample ID.:

972414

Sample Control:

The sample was received by ATL in a chilled state, with the chain of custody record

attached.

Date Sampled:

01/03/08

Date Received:

01/23/08

Date Tested:

01/24/08 to 01/28/08

Sample Analysis:

The following analyses were performed on your sample:

CCR Title 22 Fathead Minnow Hazardous Waste Screen Bioassay (Polisini & Miller 1988).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID.

Results

972414

 \overline{PASS} (LC50 > 750 mg/l)

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

FATHEAD MINNOW HAZARDOUS WASTE SCREEN BIOASSAY

Aquatic Testing Laboratories

Lab No.: <u>A080 | 2302 - 00 |</u> Client/ID: <u>Truesdail 9724/4</u>

TEST SUMMARY

Species: Pimephales prometas.

Fish length (mm); av: 32; min; 31; max: 33. Fish weight (gm): av: 56; min: 48; max: 64.

Test chamber volume: 10 liters.

Temperature; 20 +/- 2°C.

Aeration: Single bubble through narrow bore tube.

Number of replicates: 2.

Dilution water: Soft reconstituted water (40 - 48 mg/l CaCO₃).

QA/QC Batch No.: RT-080123.

Source: In-Lab Culture, Regulations: CCR Title 22,

Test Protocol: California F&G/DHS 1988.

Endpoints: Survival at 96 hrs.

Test type: Static. Feeding: None.

Number of fish per chamber: 10. Photoperiod: 16/8 hrs light/dark.

		i	TEST DATA	_	
	INITIAL	24 Hr	48 Hr	72 Hr	96 Hr
Date/Time:	1-24:08 103	1-25-08 1100	1-26-08 1130	1-27-08 1130	1-28-08 1100
Analyst:		Ru	~~~	2	1-25-08 11av
	°C DO pH	°C DO pH #D	°C DO pH #D	°C DO pH #D	°C DO pH #D
Control A	19.48.8 2.2	20.7 8.5 200	2078421 (20.7 8.0 7.1 0	
Control B	193 88 7.2	20485200	24 600 21		
400 mg/l A	19.4 8.8 7.2	20.78.17.00	20.7 29 71 0		20.7 86 2.1 0
400 mg/l B	19.3 89 7.2		20.68.6 7.1 0		20776700
750 mg/l A		البحايية الما	2 1 2 1 2 1		20784710
750 mg/l B	19.29.0 7.2	20.4 8.7 7.1 0	20586210		766 El 2110
Comments:	Extraction meth	nod: Mechanical shakir	20 -		24612-1 1/1/
		None (aqueous solut	tion)		
	Dissolved Oxyger	n (DO) readings in mg/l (O ₂ .		

	CONTROL		HIGH CONCENTRATION		
	Alkalinity	Hardness	Alkalinity	Hardness	
Initial	22 mg/l CaCO,	45 mg/1 CaCO,	23 mg/I CaCO,	// mg/l CaCO,	
Final	2 3 mg/1 CaCO,	4 S mg/l CaCO,	2 3 mg/l CaCO,	47 mg/1 CaCO,	

Total Number Dead		
Control	O /20	
400 mg/l	O /20	
750 mg/l	/20	

RESULTS

✓ (one)	Result	Description	
V	PASSED	LC50 > 750 mg/l (<40% dead in 750 mg/l conc.)	
	FAILED	≥40% dead in 750 mg/l (definitive test recommended)	
	FAILED	LC50 < 400 mg/l (>60% dead in 400 mg/l conc.)	