

Curt Russell

Topock Site Manager Chromium Remediation Gas Transmission & Distribution Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address
P.O. Box 337
Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

July 15, 2008

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Board Order R7-2006-0060; WDID No. 7B 36 2033 001

PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System

Discharge to Injection Wells

June 2008 and Second Quarter 2008 Monitoring Report / Semiannual

January 1 – June 30, 2008 Operation and Maintenance Report

Dear Mr. Perdue:

Enclosed is the combined *June 2008 and Second Quarter 2008 Monitoring Report / Semiannual January 1 – June 30, 2008 Operation and Maintenance Report* for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued on September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) under Order R7-2006-0060. The WDRs apply to IM No. 3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell

Topock Site Manager

Enclosures:

Robert Perdue Page 2 July 15, 2008

Combined report: *June 2008 and Second Quarter 2008 Monitoring Report / Semiannual January 1 – June 30, 2008 Operation and Maintenance Report* for IM No. 3 Groundwater Treatment System.

cc: Abdi Haile, Water Board Cliff Raley, Water Board Tom Vandenberg, State Water Resources Control Board Aaron Yue, California Department of Toxic Substances Control

Combined Report

June 2008 and Second Quarter 2008 Monitoring Report/January 1–June 30, 2008 Operation and Maintenance Report

Waste Discharge Requirements Board Order No. R7-2006-0060 WDID No. 7B 36 2033 001

Interim Measure No. 3 Groundwater

Treatment System

PG&E Topock Compressor Station

Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

July 15, 2008

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

Combined Report:

June 2008 and Second Quarter 2008 Monitoring Report /
Semi-Annual January 1 – June 30, 2008 Operation and Maintenance
Report

Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060 WDID No. 7B 36 2033 001 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

July 15, 2008

No. C68986

This report was prepared under the supervision of a

California Certified Professional Engineer

Dennis Fink, P.E.

Project Engineer

Contents

		Page
Acro	onyms and Abbreviations	v
1.0	Introduction	1-1
2.0	Sampling Station Locations	2-1
3.0	June 2008 and Second Quarter 2008 Monitoring Activities	
3.0	3.1 Groundwater Treatment System	
	3.2 Groundwater Treatment System Flow Rates for June 2008	
	3.2.1 Treatment System Influent	
	3.2.2 Effluent Streams	
	3.3 Sampling and Analytical Procedures	
4.0	Monitoring Analytical Results	4-1
5.0	Semi-Annual Operation and Maintenance	5-1
	5.1 Flowmeter Calibration Records	
	5.2 Volumes of Groundwater Treated	5-2
	5.3 Residual Solids Generated (Sludge)	5-2
	5.4 Reverse Osmosis Concentrate Generated	
	5.5 Summary of WDR Violations	5 - 3
	5.6 Operation and Maintenance - Required Shutdowns	5-3
	5.7 Treatment Plant Modifications	5 - 3
6.0	Conclusions	6-1
7.0	Certification	7-1
Tabl	les .	
1	Sampling Station Descriptions	
2	Flow Monitoring Results	
3	Board Order No. R7-2006-0060 Waste Discharge Requirements Influent	
	Monitoring Results	
4	Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent	
	Monitoring Results	
5	Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse O	smosis
	Concentrate Results	
6	Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge	
	Monitoring Results	
7	Board Order No. R7-2006-0060 Waste Discharge Requirements	
	Monitoring Information	

BAO\081970005

Figures

TP-PR-10-10-11 Influent Metering Locations TP-PR-10-10-04 Raw Water Storage and Treated Water Storage Tanks and Sampling Locations TP-PR-10-10-08 Reverse Osmosis Storage Tank Sampling and Metering Locations	1 IM No. 3 P	roject Site Features
TP-PR-10-10-04 Raw Water Storage and Treated Water Storage Tanks and Sampling Locations TP-PR-10-10-08 Reverse Osmosis Storage Tank Sampling and Metering Locations	TP-PR-10-10-03	Effluent Metering Locations
Locations TP-PR-10-10-08 Reverse Osmosis Storage Tank Sampling and Metering Locations	TP-PR-10-10-11	Influent Metering Locations
TP-PR-10-10-08 Reverse Osmosis Storage Tank Sampling and Metering Locations	TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling
0 1 0 0		Locations
TP-PR-10-10-06 Sludge Storage Tanks Sampling Locations	TP-PR-10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
	TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations

Appendixes

- A Operations and Maintenance Log
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D June 2008 Laboratory Analytical Reports

BAO\081970005

Acronyms and Abbreviations

IM Interim Measure

IW injection well

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

USEPA United States Environmental Protection Agency

Water Board California Regional Water Quality Control Board, Colorado River

Basin Region

WDR Waste Discharge Requirements

BAO\081970005 v

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area. (All figures are located at the end of this report.)

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006 and is the successor to Order No. R7-2004-0103. The Monitoring and Reporting Program (MRP) under the Order requires monthly monitoring reports to be submitted by the fifteenth day of the following month.

This combined report covers June 2008 and Second Quarter 2008 monitoring activities, and January 1, 2008 through June 30, 2008 Semiannual operation and maintenance activities related to operation of the IM No. 3 groundwater treatment system. The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover as part of the Compliance Monitoring Program.

BAO\081970005 1-1

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations (all tables are located at the end of this report). The locations of the sampling stations are shown on process and instrumentation diagrams TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, which were previously provided in PG&E's Sampling Locations letter to the Water Board Executive Officer, dated June 29, 2005. These diagrams are attached after Figure 1.

BAO\081970005 2-1

3.0 June 2008 and Second Quarter 2008 Monitoring Activities

This combined report covers June 2008 monitoring activities, the second quarter 2008 monitoring activities, and the January 1, 2008 through June 30, 2008 operation and maintenance activities related to the IM No. 3 groundwater treatment system. IM No. 3 monitoring activities between January 1, 2008 and May 31, 2008 were reported in the following monitoring reports:

- January 2008 Monitoring Report, submitted to the Water Board February 15, 2008.
- February 2008 Monitoring Report, submitted to the Water Board March 14, 2008.
- March 2008 / 1st Quarter 2008 Monitoring Report, submitted to the Water Board April 15, 2008.
- April 2008 Monitoring Report, submitted to the Water Board May 15, 2008.
- May 2008 Monitoring Report, submitted to the Water Board June 13, 2008.

3.1 Groundwater Treatment System

Influent to the treatment facility, permitted by Order R7-2006-0060, includes the following sources:

- Groundwater from extraction wells.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

Operation of the groundwater treatment system results in the following three effluent streams:

- **Treated Effluent**: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis Concentrate (brine)**: Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first.

BAO\081970005 3-1

3.2 Groundwater Treatment System Flow Rates for June 2008

Periods of planned and unplanned extraction system downtime are summarized in the Operations and Maintenance Log provided in Appendix A. Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

3.2.1.1 Groundwater Extraction Wells Flow Rate

During June 2008, extraction wells TW-2D, TW-3D, and PE-1 operated at a target pump rate of at 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction well TW-2S did not operated during June 2008. The IM No. 3 facility treated approximately 5,719,841 gallons of extracted groundwater during June 2008. The June 2008 monthly average influent flow rate from extraction wells is shown in Table 2.

The operational run time for the IM No. 3 groundwater extraction system (combined or individual pumping from TW-2D, TW-3D, and PE-1) was approximately 99 percent during the June 2008 reporting period.

3.2.1.2 Groundwater Monitoring Program Generated Water

During June 2008, approximately 1,065 gallons of water were generated from the groundwater monitoring program and were pumped into the IM No. 3 treatment system.

3.2.1.3 Injection Wells Maintenance Program Treated Water

Approximately 15,300 gallons of water were generated from injection well redevelopment during June 2008.

3.2.2 Effluent Streams

3.2.2.1 Treatment System Effluent (Injection Wells)

The treatment system effluent flow rate was measured by flow meters mounted in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11) and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM No. 3 facility injected 5,553,857 gallons of treatment system effluent during June 2008. The June 2008 monthly average effluent flow rate to injection wells is shown in Table 2.

3.2.2.2 Reverse Osmosis Concentrate

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-PR-10-10-08). The IM No. 3 facility generated 218,548 gallons of reverse osmosis concentrate during June 2008. The June 2008 monthly average reverse osmosis concentrate flow rate is shown in Table 2.

BAO\081970005 3-2

3.2.2.3 Sludge

The sludge flow rate is measured by the size and weight of containers shipped offsite. No sludge containers were shipped offsite from the IM No. 3 facility during June 2008. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

Samples were collected at the designated sampling locations and were placed directly into containers provided by Truesdail Laboratories, Inc. Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to Truesdail via courier service under chain-of-custody documentation. The laboratory confirmed the samples were received in chilled condition upon arrival. Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program.

Analyses were performed in accordance with the latest edition of the "Guidelines Establishing Test Procedures for Analysis of Pollutants" (40 Code of Federal Regulations Part 136) promulgated by the United States Environmental Protection Agency (USEPA).

Between January 1, 2008 and June 30, 2008, analysis of pH was conducted at Truesdail for each sample. Analysis of pH was also conducted by field method pursuant to the Water Board letter dated October 16, 2008 (Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and were field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling was conducted in accordance with the sampling frequency required by the MRP (see Section 4.0). The June 2008 sampling analytical results are shown in Tables 3, 4, 5, and 6.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060 and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area,* which was submitted to the Water Board June 17, 2005. Groundwater monitoring analytical results and groundwater levels for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document.

BAO\081970005 3-3

4.0 Monitoring Analytical Results

The analytical results and laboratory reports for the IM No. 3 groundwater treatment system monitoring program between January 1, 2008 and May 31, 2008 were included in previous monthly reports submitted to the Water Board (see Section 3.0 for a complete listing of reports).

The June 2008 analytical results from groundwater treatment system influent, effluent, reverse osmosis concentrate, and sludge samples are shown on Tables 3, 4, 5, and 6, respectively. The June 2008 laboratory reports prepared by the certified analytical laboratories are included in Appendix D.

In accordance with the WDR reporting requirements, the following sampling frequency schedule was followed during June 2008:

- The influent was sampled monthly; sample date was June 4, 2008. Results are presented in Table 3.
- The effluent was sampled weekly; sample dates were June 4, 11, 17, and 26, 2008. Results are presented in Table 4.
- The reverse osmosis concentrate was sampled monthly; sample date was June 4, 2008. Results are presented in Table 5.
- The sludge was sampled monthly; sample date was June 4, 2008. In accordance with WDRs, sludge is to be sampled each time it is transported offsite (unless sludge is transported offsite more frequently than monthly, in which case, the sampling frequency is monthly). Results are presented in Table 6.
- The sludge is required to have an aquatic bioassay test quarterly; the second quarter 2008 aquatic bioassay test was performed on a sludge sample collected April 9, 2008. The results were presented in the *April 2008 WDR Monitoring Report* submitted to the Water Board on May 15, 2008.

Table 7 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

BAO\081970005 4-1

5.0 Semiannual Operation and Maintenance

Pursuant to the WDRs Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Water Board Office twice annually.

This section includes the Semiannual Operation and Maintenance Report for the IM No. 3 groundwater treatment system for the period January 1, 2008 through June 30, 2008. All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operations and maintenance records are also archived using maintenance software. The following sections summarize the operations and maintenance activities during this semiannual reporting period.

5.1 Flowmeter Calibration Records

The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a timely manner consistent with the use, flow, material, and manufacturer recommendations. The following flowmeters are used at the plant to measure groundwater flow.

Location	Flowmeter Location ID	Current Flowmeter Serial No.	Date of Most Recent Re- Calibrated Meter Installation	Previous Flowmeter Serial No.
Extraction well PE-1	FIT-103	6C036F16000	January 4, 2007	6A022216000
Extraction well TW-3D	FIT-102	6C037016000	January 25, 2008	6A022116000
Extraction well TW-2D ^a	FIT-101	6A021F16000	July 28, 2005	
Extraction well TW-2S ^b	FIT-100	6A022016000	July 28, 2005	
Injection well IW-02	FIT-1202	6A022116000	February 2, 2007	6C037016000
Injection well IW-03	FIT-1203	6C037216000	April 9, 2008	7700F216000
Reverse osmosis concentrate	FIT-701	6C022216000	February 2, 2007	6C037316000

Notes:

BAO\081970005 5-1

^a TW-2D is a backup extraction well only operated for brief testing and sampling periods since January 2006.

^b TW-2S is a backup extraction well only operated for brief testing and sampling periods since October 2005.

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated are provided in Appendix B. Approximately 32,934,702 gallons of groundwater were extracted and treated between January 1, 2008 and June 30, 2008. Additionally, approximately 41,515 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 331,600 gallons of injection well re-development water were treated at the IM No. 3 facility during the January 1, 2008 through June 30, 2008 semiannual period. Treatment of this water at the IM No. 3 facility is being performed in accordance with the conditions of Order No. R7-2006-0060. A total of 31,464,892 gallons of treated groundwater was injected back into the Alluvial Aquifer.

5.3 Residual Solids Generated (Sludge)

During the January 1, 2008 through June 30, 2008 reporting period, eight containers of sludge were shipped offsite for disposal. The sludge was shipped to Chemical Waste Management at Kettleman Hills for disposal. A listing of each shipment during this period is provided below.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests (cubic yards)	Approximate Wet Weight (lbs)	Type of Shipment
1/11/2008	10	15,000	non-RCRA hazardous waste
1/25/2008	9	14,400	non-RCRA hazardous waste
2/1/2008	8	12,240	non-RCRA hazardous waste
3/26/2008	10	15,100	non-RCRA hazardous waste
3/31/2008	9	12,160	non-RCRA hazardous waste
4/17/2008	9	14,400	non-RCRA hazardous waste
5/14/2008	9	12,580	non-RCRA hazardous waste
5/20/2008	8	14,340	non-RCRA hazardous waste

Note: The approximate wet weight is provided by the disposal facility based on full container weight less the empty container weight.

RCRA = Resource Conservation and Recovery Act.

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figure TP-PR-10-10-08). From January 1, 2008 through June 30, 2008, approximately 1,787,821 gallons of reverse osmosis concentrate were transported to Liquid Environmental Solutions in Phoenix, Arizona for disposal.

BAO\081970005 5-2

5.5 Summary of WDR Violations

No WDR violations were identified during the January 1, 2008 through June 30, 2008 semiannual reporting period. No corrective actions were required.

5.6 Operation and Maintenance – Required Shutdowns

Appendix A contains a summary of the operation or maintenance issues that required shut down of the groundwater extraction system during this semiannual reporting period. Records of routine maintenance are kept onsite.

5.7 Treatment Plant Modifications

In addition to the planned and unplanned extraction system downtime Operations and Maintenance Log provided in Appendix A, the following treatment plant activities were conducted during the January 1, 2008 through June 30, 2008 reporting period:

- During February 2008, PG&E conducted well rehabilitation activities on injection well IW-2 in an attempt to restore the specific injectivity of the injection well to acceptable levels. The well rehabilitation work was conducted while IW-2 was offline and IW-3 was in service. The well rehabilitation efforts included pumping tests, wire brushing, and well surging to remove sediments. The water produced during these activities was trucked to the IM No. 3 treatment plant for processing. The initial result of this maintenance work on IW-2 is some improvement in performance, but additional well rehabilitation work will continue to further improve the well performance.
- During March 2008, PG&E continued well rehabilitation activities on IW-2 to improve the specific injectivity of the injection well to effective levels. The well rehabilitation work was conducted while IW-2 was offline and IW-3 was in service. The well rehabilitation efforts included well purging, back-washing, and surging to remove sediments. The water produced during these activities was treated at the IM No. 3 treatment plant for processing. The initial result of this maintenance work on IW-2 is some improvement in performance; however, additional well rehabilitation work will continue to improve the well performance.
- During April 2008, PG&E conducted annual preventative maintenance on equipment, tanks, and pipes during a week-long planned extraction system outage from April 21-28, 2008. The annual maintenance included cleaning the process tanks, the clarifier, and the pipe reactor.
- During May 2008, PG&E conducted aquifer testing of monitoring and extraction wells during a two-day planned extraction system outage from May 29-30, 2008.

BAO\081970005 5-3

6.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period, and no events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units were identified during the reporting period.

BAO\081970005 6-1

7.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 12, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0600 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated October 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	Schmin
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Onsite Project Manager
Date:	July 15, 2008

BAO\081970005 7-1

TABLE 1 Sampling Station Descriptions June 2008 Monthly Report for Interim Measure No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-PR-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-PR-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-PR-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-PR-10-10-06).

Note:

^{### =} Sequential sample identification number at each sample station.

a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

TABLE 2 Flow Monitoring Results

June 2008 Monthly Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,b}	System Effluent ^{b,c}	Reverse Osmosis Concentrate ^{b,d}
Average Monthly Flowrate (gpm)	132.4	128.6	5.1

Notes:

gpm: gallons per minute. ^a Extraction wells TW-2D, TW-3D, and PE-1 were operated during June 2008.

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during June 2008 is less than 1 percent, which is within the range of acceptable accuracy (considering the margin of error for onsite instrumentation, the water contained within the sludge, purge water, and injection well development water treated at the IM No. 3 facility; in addition to the water from extraction wells and differences in the inventory of water in the treatment system between the beginning and end of the reporting period).

^c Effluent was discharged into injection well IW-03 during June 2008.

TABLE 3
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Influent Monitoring Results

June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling F	Frequency											N	onthly												
	Analytes Units b MDL	TDS mg/L 50.4	Turbidity NTU 0.0070	Specific Conductance µmhos/cm 0.153	Lab ^c pH pHunits 0.0700	Field ^d pH pHunits		Hexavalent Chromium µg/L 3.04	Aluminium μg/L 0.256	Ammonia (as N) mg/L 0.0090	Antimony μg/L 0.0225	Arsenic μg/L 0.0150	Barium µg/L 0.0162	Boron mg/L 0.0048	μg/L	Fluorid mg/L 0.0250	μg/L	Manganese µg/L 0.0161	Molybdenum μg/L 0.0168	Nickel μg/L 0.127		mg/L	Sulfate mg/L 1.20	Iron μg/L 2.40	Zinc µg/L 0.115
SC-100B-WDR-154	6/4/2008	5100 250	ND (0.100) 0.100	7970 2.00	7.38 J 2.00	7.40 	1250 1.00	1250 21.0	ND (50.0) 50.0	ND (0.500) 0.500	ND (3.00) 3.00	ND (5.00) 5.00	ND (300) 300	1.07 I 0.200	ND (10.0) 10.0	2.79 0.500	ND (2.00) 2.00	ND (20.0) 20.0	21.1 5.00	ND (20.0) 20.0	2.84 N	ID (0.005 0	592 N 25.0	ND (20.0) 20.0	ND (20.0) 20.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

μg/L = micrograms per liter

mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

RL = project reporting limit

N = nitrogen

^a Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

b Units reported in this table are those units required in the WDRs

c pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 4 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Effluent Monitoring Results a June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

WDRs Effluent	Ave. Monthly	NA	NA	NA	6.5-8.4	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA	6.5-8.4	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Required Sampli	ing Frequency			We	ekly												Monthly	у							
	Analytes	TDS	Turbidity	Specific Conductance	Lab ^e e pH	Field ^f pH	Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
	Units ^c	mg/L	NTU	µmhos/cm	pHunits	pHunits	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L	μg/L	μg/L
	MDLd	50.4	0.0070	0.153	0.0700		0.0532	0.0304	0.256	0.0090	0.0225	0.0150	0.0162	0.0048	0.130	0.0250	0.0182	0.0161	0.0168	0.127	0.0350	0.0010	1.20	2.40	0.115
Sample ID	Date																								
SC-700B-WDR-15	54 6/4/2008	4090	ND (0.100) 7010	8.12 J	8.20	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (3.00)	ND (5.00)	ND (300) 1.33	ND (10.0	0) 2.37	ND (2.00) 105	15.1	ND (20.0)	2.61	ND (0.0050)	508	ND (20.0)	ND (20.0)
RL		250	0.100	2.00	2.00		1.00	0.200	50.0	0.500	3.00	5.00	300	0.200	•	0.500	2.00	20.0	5.00	20.0	1.00	0.0050	25.0	20.0	20.0
SC-700B-WDR-15	55 6/11/2008	4520	ND (0.100) 6970	8.09 J	8.10	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00	2.00		1.00	0.200																	
SC-700B-WDR-15	66 6/17/2008	4680	ND (0.100) 6940	8.10 J	8.00	ND (1.00)	ND (0.200)J																	
RL		125	0.100	2.00	2.00		1.00	0.200																	
SC-700B-WDR-15	57 6/26/2008	4730	ND (0.100) 6990	8.02 J	8.10	ND (1.00)	ND (0.200)																	
RL		250	0.100	2.00	2.00		1.00	0.200																	

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

NA = not applicable

μg/L = micrograms per liter

mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

RL = project reporting limit

MDL = method detection limit

N = nitrogen

^a Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04)

b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health

^c Units reported in this table are those units required in the WDRs

d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.

e pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

f Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 - Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 5 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Reverse Osmosis Concentrate Results ^a June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Samplin	ng Frequency	,										ļ	Monthly											
	Analytes Units ^b	TDS mg/L	Specific Conductanc µmhos/cm	Lab ^c e pH pHunits	Field ^c pH pHunits	Chromium	Hexavalent Chromium mg/L	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Cobalt mg/L	Copper mg/L	Fluoride mg/L	Lead mg/L	Molybdenur mg/L	n Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
Sample ID	Date	126	0.153	0.0700		0.00027	0.00015	0.00011	0.000075	0.000081	0.00019	0.000058	0.00013	0.00065	0.0250	0.00009	1 0.000084	0.000030	0.00064	0.000081	0.00011	0.000090	0.000062	0.00058
SC-701-WDR-15	64 6/4/2008	20500	29700	7.92 J	7.90	0.00102	ND (0.0010)	ND (0.0030)	ND (0.0050)	ND (0.300)	ND (0.0010)	ND (0.0020)	0.00613	0.0111	10.5	ND (0.002	0) 0.0855	ND (0.00020)	ND (0.0200)	0.0170	ND (0.0050) ND (0.0010) ND (0.0050)	ND (0.0200)
RL		625	2.00	2.00		0.0010	0.0010	0.0030	0.0050	0.300	0.0010	0.0020	0.0050	0.0100	0.500	0.0020	0.0050	0.00020	0.0200	0.0050	0.0050	0.0010	0.0050	0.0200

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

µg/L = micrograms per liter

mg/L = milligrams per liter

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

RL = project reporting limit

^a Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

b Units reported in this table are those units required in the WDRs

^c pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 6 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a

June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling	Frequency										Monthly	С								
Sample ID	Analytes Units ^b MDL Date	Chromium mg/kg 0.0821	Hexavalent Chromium mg/kg 2.85	Antimony mg/kg 0.0285	Arsenic mg/kg 0.0435	Barium mg/kg 0.0126	Beryllium mg/kg 0.0145	Cadmium mg/kg 0.0246	Cobalt mg/kg 0.0097	Copper mg/kg 0.0164	Fluoride mg/kg 0.0242	Lead mg/kg 0.0271	Molybdenum mg/kg 0.0130	Mercury mg/kg 0.0145	Nickel mg/kg 0.0164	Selenium mg/kg 0.0072	Silver mg/kg 0.0082	Thallium mg/kg 0.0353	Vanadium mg/kg 0.0164	Zinc mg/kg 0.0150
SC-Sludge-WDR-154	4 6/4/2008	16700	263	221	69.9	104	309	33.3	ND (2.50)	110	92.9	ND (4.79)	ND (2.50)	ND (0.0963)	ND (2.50)	236	ND (4.79)	ND (4.79)	169	183
RL		24.0	19.3	4.79	2.50	2.50	2.50	4.79	2.50	2.50	19.3	4.79	2.50	0.0963	2.50	12.0	4.79	4.79	2.50	12.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

mg/kg = milligrams per killogram

mg/L = milligrams per liter MDL = method detection limit

RL = project reporting limit

Page 1 of 1

^a Sampling Location for all Sludge Samples is the Sludge Collection Bin (see attached P&ID TP-PR-10-10-06)

b Units reported in this table are those units required in the WDR

c Sludge shall be tested for the listed constituents each time sludge is transported offsite, unless transport is more frequent than monthly, in which case the sampling frequency shall be monthly

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-154	John Deetz	6/4/2008	9:25:00 AM	TLI	EPA 120.1	SC	6/5/2008	Tina Acquiat/Gautam Savani
					TLI	EPA 200.7	FE	6/10/2008	Hao Ton
					TLI	EPA 200.7	В	6/10/2008	Hao Ton
					TLI	EPA 200.8	ZN	6/9/2008	Linda Saetern
					TLI	EPA 200.8	SB	6/12/2008	Linda Saetern
					TLI	EPA 200.8	PB	6/6/2008	Linda Saetern
					TLI	EPA 200.8	NI	6/6/2008	Linda Saetern
					TLI	EPA 200.8	MO	6/6/2008	Linda Saetern
					TLI	EPA 200.8	MN	6/6/2008	Linda Saetern
					TLI	EPA 200.8	CU	6/9/2008	Linda Saetern
					TLI	EPA 200.8	CR	6/6/2008	Linda Saetern
					TLI	EPA 200.8	BA	6/6/2008	Linda Saetern
					TLI	EPA 200.8	AS	6/6/2008	Linda Saetern
					TLI	EPA 200.8	AL	6/6/2008	Linda Saetern
					TLI	EPA 218.6	CR6	6/5/2008	Jean Paul Gleeson
					TLI	EPA 300.0	FL	6/5/2008	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/5/2008	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/5/2008	Giawad Ghenniwa
					FIELD	HACH	PH		John Deetz
					TLI	SM2130B	TRB	6/5/2008	Gautam Savani
					TLI	SM2540C	TDS	6/5/2008	Tina Acquiat
					TLI	SM4500-HB	PH	6/5/2008	Tina Acquiat
					TLI	SM4500NH3D	NH3N	6/9/2008	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	6/6/2008	Tina Acquiat
SC-700B	SC-700B-WDR-154	John Deetz	6/4/2008	9:45:00 AM	TLI	EPA 120.1	SC	6/5/2008	Tina Acquiat/Gautam Savani
					TLI	EPA 200.7	В	6/10/2008	Hao Ton
					TLI	EPA 200.7	FE	6/10/2008	Hao Ton
					TLI	EPA 200.8	AS	6/6/2008	Linda Saetern
					TLI	EPA 200.8	ZN	6/9/2008	Linda Saetern
					TLI	EPA 200.8	SB	6/12/2008	Linda Saetern
					TLI	EPA 200.8	PB	6/6/2008	Linda Saetern
					TLI	EPA 200.8	NI	6/6/2008	Linda Saetern
					TLI	EPA 200.8	MO	6/6/2008	Linda Saetern
					TLI	EPA 200.8	MN	6/6/2008	Linda Saetern
					TLI	EPA 200.8	CU	6/9/2008	Linda Saetern
					TLI	EPA 200.8	CR	6/6/2008	Linda Saetern

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-154	John Deetz	6/4/2008	9:45:00 AM	TLI	EPA 200.8	AL	6/6/2008	Linda Saetern
					TLI	EPA 200.8	BA	6/6/2008	Linda Saetern
					TLI	EPA 218.6	CR6	6/5/2008	Jean Paul Gleeson
					TLI	EPA 300.0	NO3N	6/5/2008	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/5/2008	Giawad Ghenniwa
					TLI	EPA 300.0	FL	6/5/2008	Giawad Ghenniwa
					FIELD	HACH	PH		John Deetz
					TLI	SM2130B	TRB	6/5/2008	Gautam Savani
					TLI	SM2540C	TDS	6/5/2008	Tina Acquiat
					TLI	SM4500-HB	PH	6/5/2008	Tina Acquiat
					TLI	SM4500NH3D	NH3N	6/9/2008	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	6/6/2008	Tina Acquiat
SC-700B	SC-700B-WDR-155	John Deetz	6/11/2008	8:45:00 AM	TLI	EPA 120.1	SC	6/12/2008	Tina Acquiat
					TLI	EPA 200.8	CR	6/13/2008	Linda Saetern
					TLI	EPA 218.6	CR6	6/11/2008	Jean Paul Gleeson
					FIELD	HACH	PH		John Deetz
					TLI	SM2130B	TRB	6/12/2008	Iordan Stavrev
					TLI	SM2540C	TDS	6/12/2008	Tina Acquiat
					TLI	SM4500-HB	PH	6/12/2008	Tina Acquiat
SC-700B	SC-700B-WDR-156	John Deetz	6/17/2008	3:00:00 PM	TLI	EPA 120.1	SC	6/20/2008	Tina Acquiat
					TLI	EPA 200.8	CR	6/25/2008	Linda Saetern
					TLI	EPA 218.6	CR6	6/19/2008	Jean Paul Gleeson
					FIELD	HACH	PH		John Deetz
					TLI	SM2130B	TRB	6/19/2008	Gautam Savani
					TLI	SM2540C	TDS	6/20/2008	Tina Acquiat
					TLI	SM4500-HB	PH	6/19/2008	Tina Acquiat
SC-700B	SC-700B-WDR-157	Ron Phelps	6/26/2008	1:30:00 PM	TLI	EPA 120.1	SC	6/27/2008	Tina Acquiat
					TLI	EPA 200.8	CR	6/27/2008	Linda Saetern
					TLI	EPA 218.6	CR6	6/27/2008	Jean Paul Gleeson
					FIELD	HACH	PH		Ron Phelps
					TLI	SM2130B	TRB	6/27/2008	Gautam Savani
					TLI	SM2540C	TDS	6/27/2008	Tina Acquiat
					TLI	SM4500-HB	PH	6/27/2008	Tina Acquiat
SC-701	SC-701-WDR-154	John Deetz	6/4/2008	9:35:00 AM	TLI	EPA 120.1	SC	6/5/2008	Tina Acquiat/Gautam Savar
					TLI	EPA 200.8	CR	6/6/2008	Linda Saetern

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-154	John Deetz	6/4/2008	9:35:00 AM	TLI	EPA 200.8	PB	6/6/2008	Linda Saetern
					TLI	EPA 200.8	ZN	6/9/2008	Linda Saetern
					TLI	EPA 200.8	V	6/6/2008	Linda Saetern
					TLI	EPA 200.8	TL	6/6/2008	Linda Saetern
					TLI	EPA 200.8	CD	6/6/2008	Linda Saetern
					TLI	EPA 200.8	SB	6/12/2008	Linda Saetern
					TLI	EPA 200.8	NI	6/6/2008	Linda Saetern
					TLI	EPA 200.8	MO	6/6/2008	Linda Saetern
					TLI	EPA 200.8	CU	6/9/2008	Linda Saetern
					TLI	EPA 200.8	CO	6/6/2008	Linda Saetern
					TLI	EPA 200.8	BE	6/10/2008	Linda Saetern
					TLI	EPA 200.8	BA	6/6/2008	Linda Saetern
					TLI	EPA 200.8	AS	6/6/2008	Linda Saetern
					TLI	EPA 200.8	AG	6/12/2008	Linda Saetern
					TLI	EPA 200.8	SE	6/6/2008	Linda Saetern
					TLI	EPA 218.6	CR6	6/5/2008	Jean Paul Gleeson
					TLI	EPA 245.1	HG	6/10/2008	Michel Mendoza
					TLI	EPA 300.0	FL	6/5/2008	Giawad Ghenniwa
					FIELD	HACH	PH		John Deetz
					TLI	SM2540C	TDS	6/5/2008	Tina Acquiat
					TLI	SM4500-HB	PH	6/5/2008	Tina Acquiat
nase Seperator	SC-Sludge-WDR-154	John Deetz	6/4/2008	8:04:00 AM	TLI	EPA 300.0	FL	6/6/2008	Giawad Ghenniwa
					TLI	EPA 6010B	MO	6/19/2008	Hao Ton
					TLI	EPA 6010B	ZN	6/16/2008	Hao Ton
					TLI	EPA 6010B	V	6/16/2008	Hao Ton
					TLI	EPA 6010B	TL	6/16/2008	Hao Ton
					TLI	EPA 6010B	SE	6/19/2008	Hao Ton
					TLI	EPA 6010B	SB	6/19/2008	Hao Ton
					TLI	EPA 6010B	AG	6/19/2008	Hao Ton
					TLI	EPA 6010B	NI	6/16/2008	Hao Ton
					TLI	EPA 6010B	CU	6/16/2008	Hao Ton
					TLI	EPA 6010B	CR	6/16/2008	Hao Ton
					TLI	EPA 6010B	CO	6/16/2008	Hao Ton
					TLI	EPA 6010B	CD	6/16/2008	Hao Ton
					TLI	EPA 6010B	BE	6/16/2008	Hao Ton
					TLI	EPA 6010B	BA	6/16/2008	Hao Ton

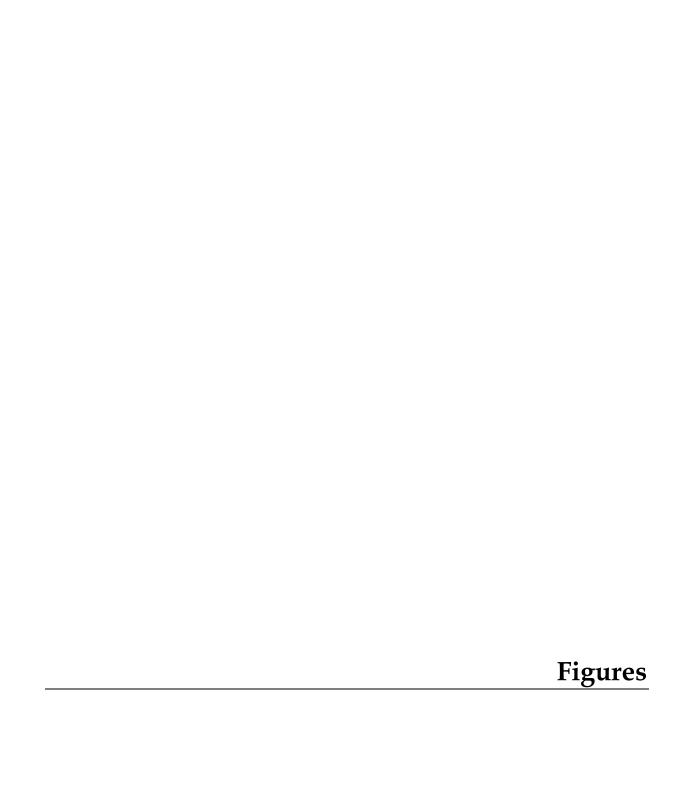
TABLE 7
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
June 2008 Monthly Report for Interim Measures No.3 Groundwater Treatment System

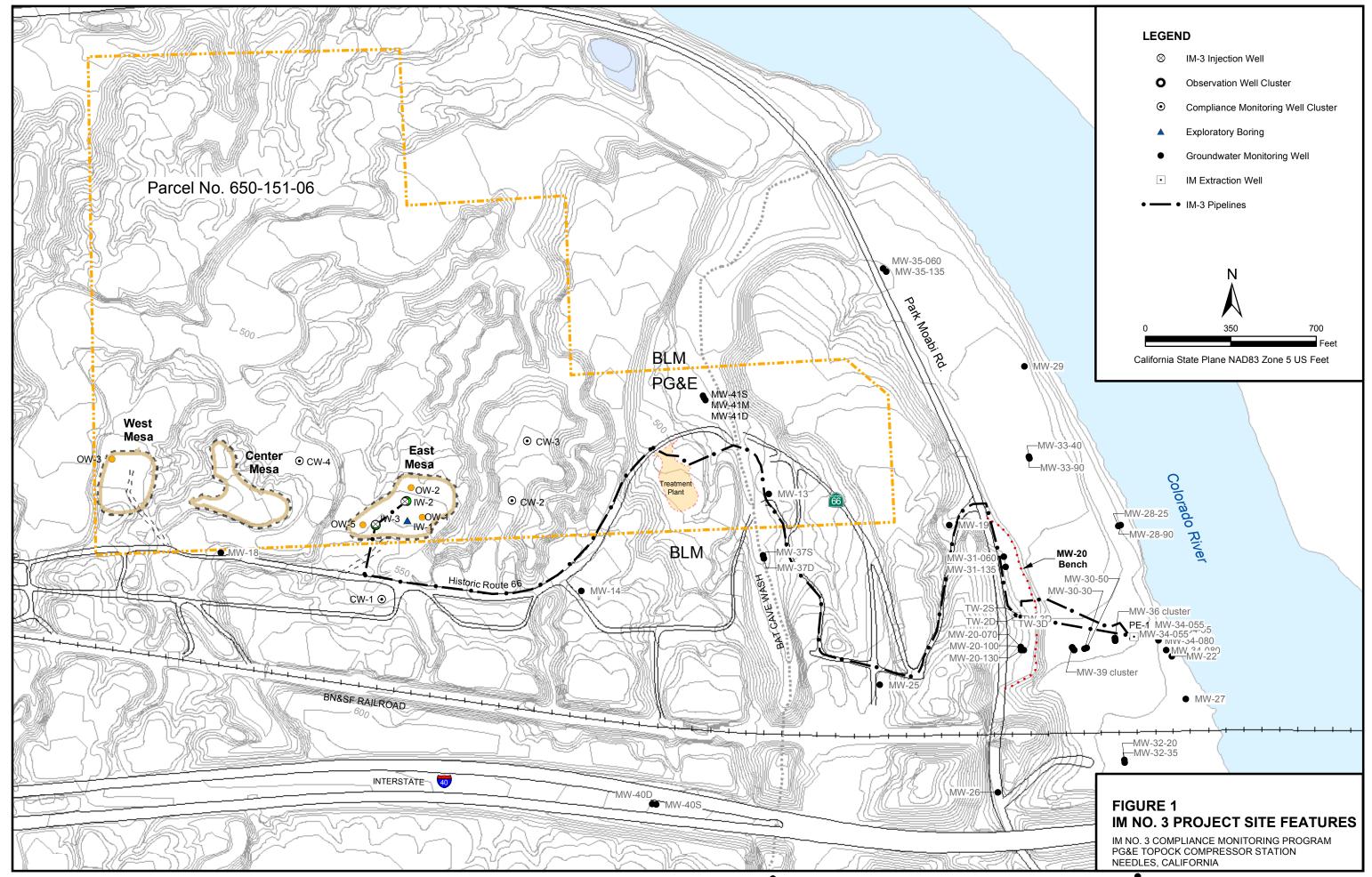
Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Seperator	SC-Sludge-WDR-154	John Deetz	6/4/2008	8:04:00 AM	TLI	EPA 6010B	AS	6/16/2008	Hao Ton
					TLI	EPA 6010B	PB	6/16/2008	Hao Ton
					TLI	EPA 7471A	HG	6/10/2008	Michel Mendoza
					TLI	SW 7199	CR6	6/12/2008	David Blackburn

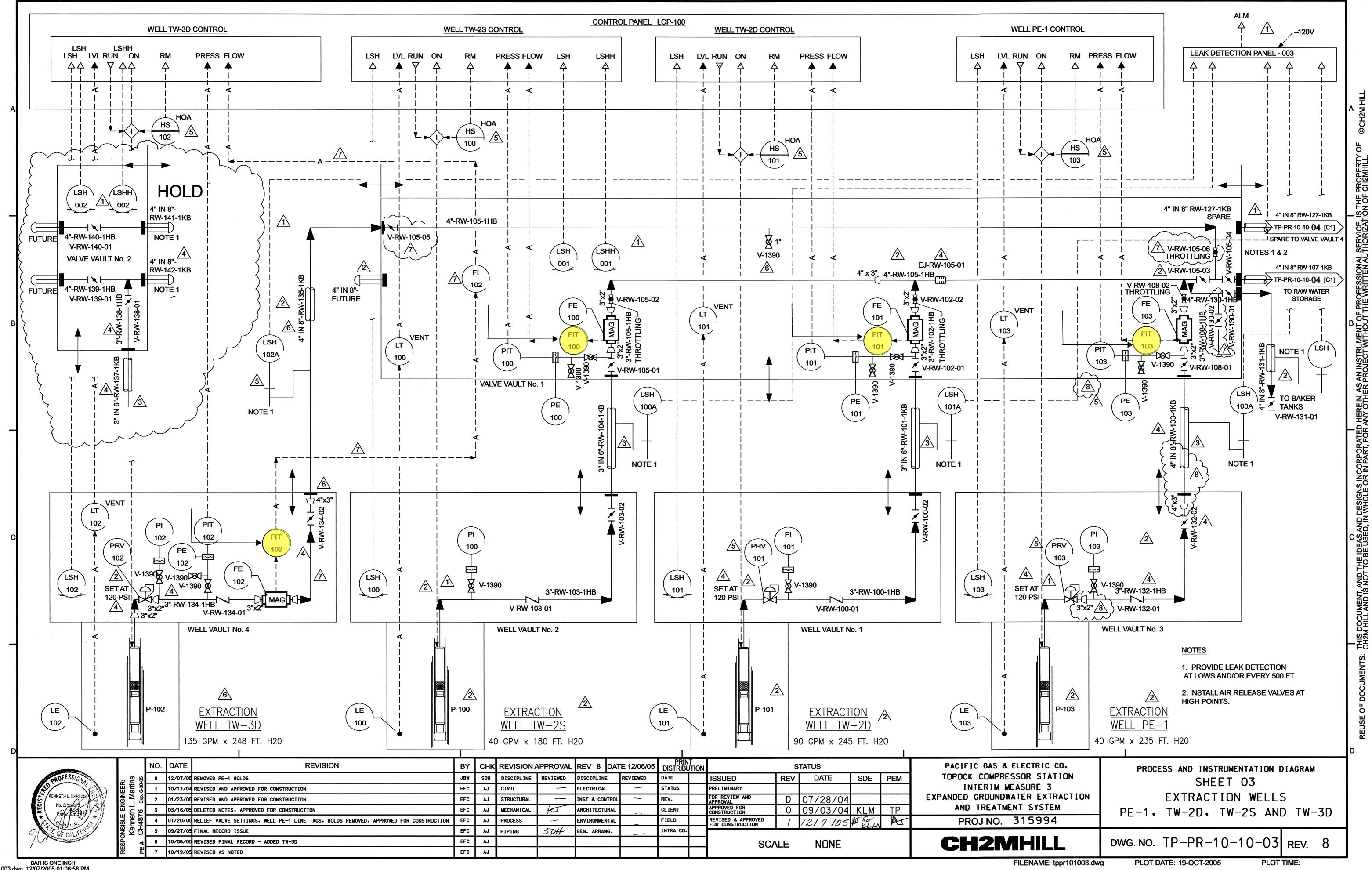
NOTES:

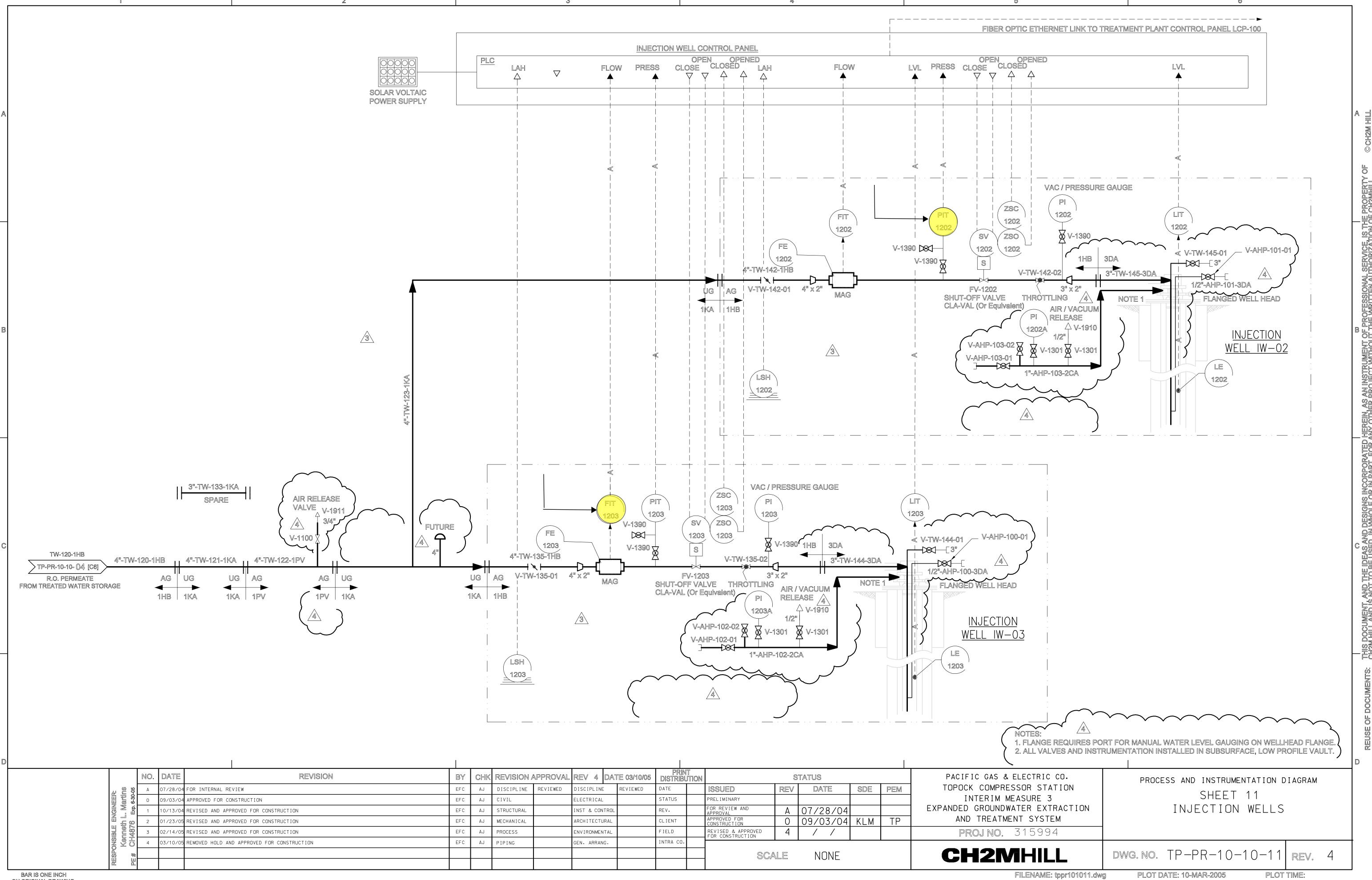
SC-700B = Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

SC-100B = Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

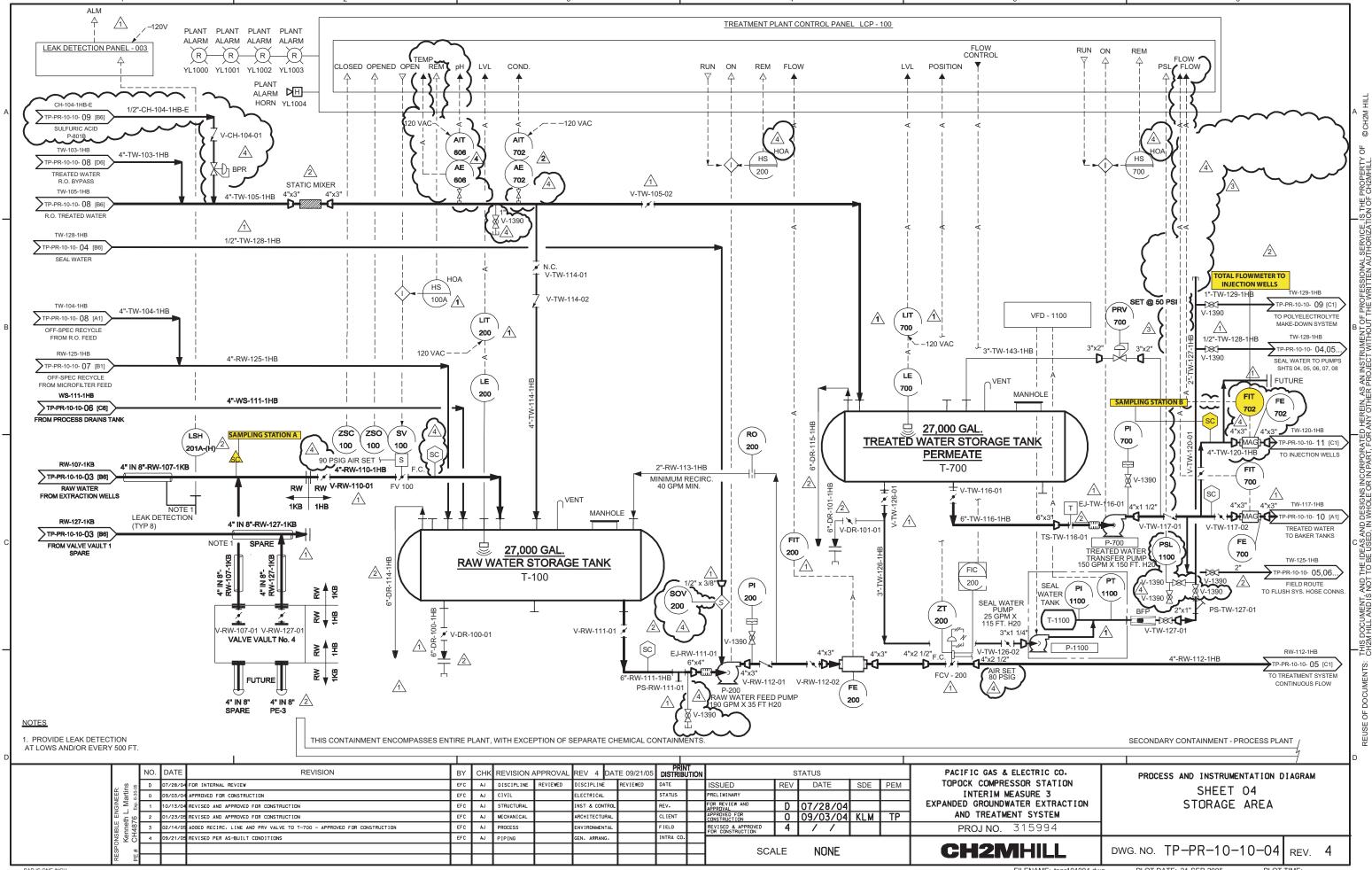

SC-701 = Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

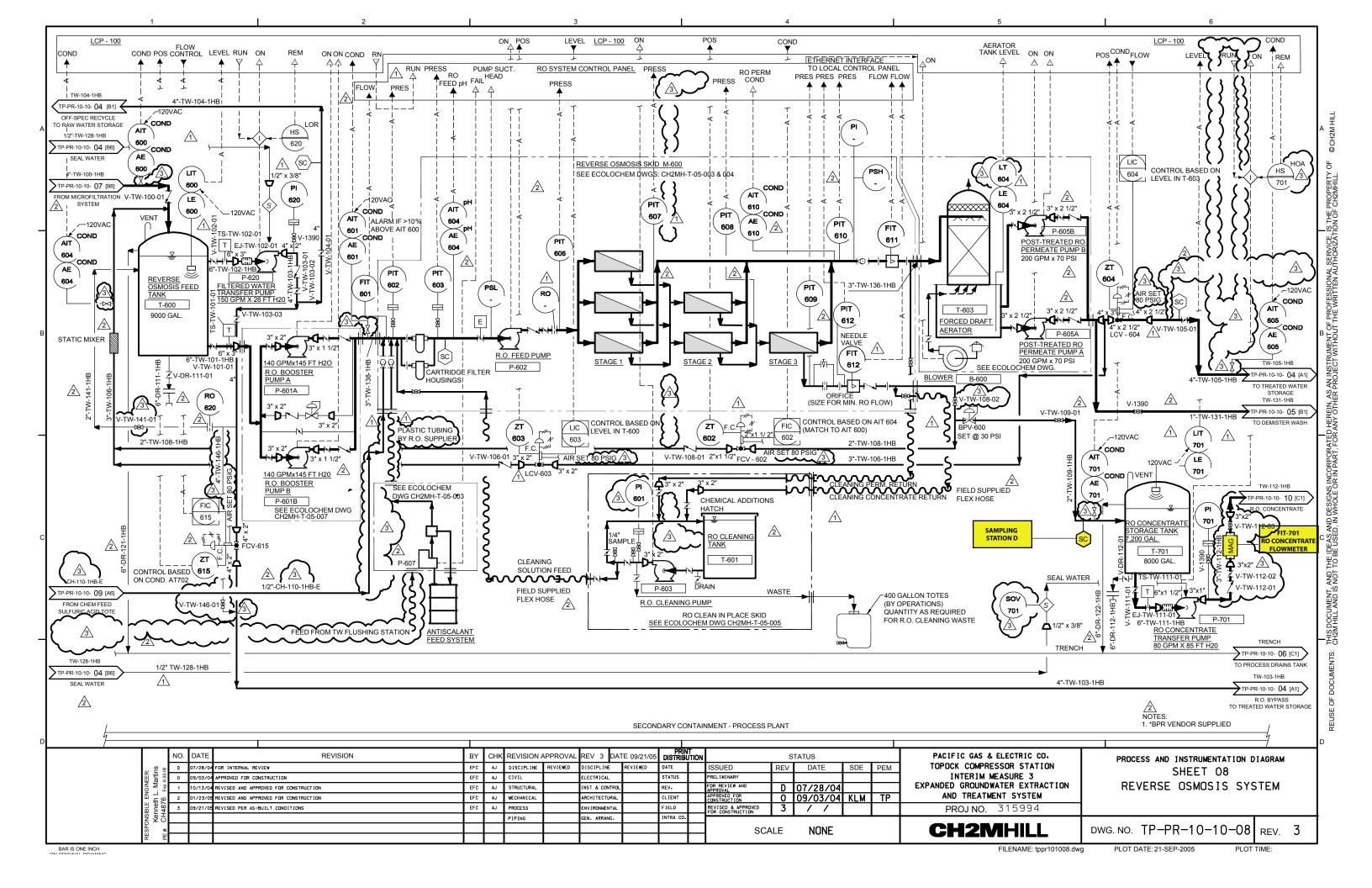

Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.


TLI = Truesdail Laboratories, Inc.

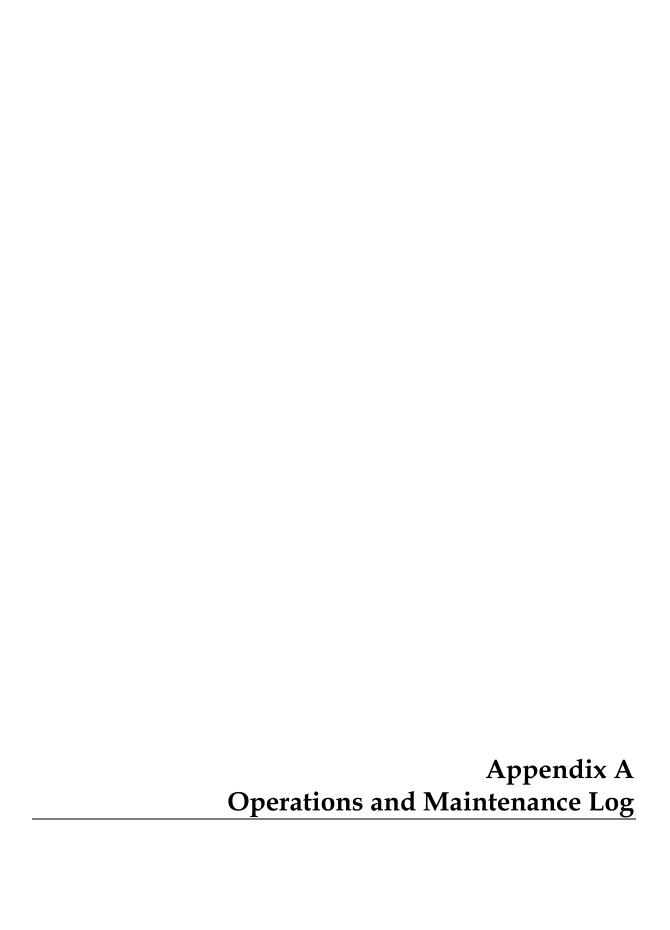

ATL = Aquatic Testing Laboratories

SC =	specific conductance	MO =	molybdenum
PH =	pH	NI =	nickel
TDS =	total dissolved solids	PB =	lead
TRB =	turbidity	HG =	mercury
CR =	chromium	SE =	selenium
CR6 =	hexavalent chromium	TL =	thallium
FL =	fluoride	CO =	cobalt
AL =	aluminum	CD =	cadmium
B =	boron	BE =	beryllium
FE =	iron	AG =	silver
MN =	manganese	V =	vanadium
ZN =	zinc	NO3N =	nitrate (as N)
SB =	antimony	NH3N =	ammonia (as N)
AS =	arsenic	NO2N =	nitrite (as N)
BA =	barium	SO4 =	sulfate
CU =	copper		






BAR IS ONE INCH ON ORIGINAL DRAWING.


FILENAME: tppr101011.dwg

PLOT TIME:

APPENDIX A

Semiannual Operations and Maintenance Log January 1, 2008 through June 30, 2008 Interim Measures No. 3 Groundwater Treatment System

Records of IM No. 3 operations and maintenance activities are maintained onsite using operations software. Periods of planned and unplanned treatment system and resulting extraction system downtime from January 1, 2008 through June 30, 2008 attributed to system operations and maintenance are listed below. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site.

January 2008

- January 2, 2008 (planned): The extraction well system was temporarily offline from 8:41 am until 1:25 p.m. and from 1:28 p.m. until 1:53 p.m. to complete reverse osmosis unit maintenance and replace two valves within the IM No. 3 facility process piping. Extraction system downtime was 5 hours 9 minutes.
- **January 9, 2008 (planned):** The extraction well system was temporarily offline from 11:34 a.m. until 11:39 a.m., 11:40 a.m. until 11:45 a.m., and 12:10 p.m. until 1:34 p.m. to clean the iron oxidation tank piping. Extraction system downtime was 1 hour 34 minutes.
- January 16, 2008 (planned): The extraction well system was temporarily offline from 7:34 a.m. until 1:46 p.m. and from 2:42 p.m. until 2:44 p.m. to repair two joints of the treated water pipeline between the IM No. 3 treatment plant and injection well field. The repairs were accomplished at the flanged ends between the pipe sections and were identified during routine pipeline inspections when droplets were identified on the two joints. Only a few fluid ounces of treated water leaked from each location. Extraction system downtime was 6 hours 14 minutes.
- **January 23, 2008 (planned):** The extraction well system was temporarily offline from 9:34 a.m. until 12:34 p.m. and 2:36 p.m. until 4:34 p.m. to switch to a clean bank of microfilter modules. Extraction system downtime was 4 hours 58 minutes.
- **January 25, 2008 (unplanned):** The extraction well system was temporarily offline from 7:21 a.m. until 8:10 a.m. for microfilter repairs. Extraction system downtime was 49 minutes.
- **January 28, 2008 (unplanned):** The extraction well system was temporarily offline from 8:15 p.m. until 8:23 p.m. to re-start the facility after an in-line pH probe failure and repair. Extraction system downtime was 8 minutes.

February 2008

- **February 13, 2008 (planned):** The extraction well system was offline from 9:15 a.m. until 3:54 p.m. to complete electrical testing, maintenance on the microfilter unit, servicing the air compressor, and replacing/cleaning select inline instrumentation. Extraction system downtime was 6 hours 39 minutes.
- **February 20, 2008 (unplanned):** The extraction well system was offline from 2:59 p.m. until 3:08 p.m. and 3:21 p.m. to until 3:28 p.m. due to temporary loss of City of Needles power. Extraction system downtime was 16 minutes.
- **February 21, 2008 (unplanned):** The extraction well system was offline from 9:49 a.m. until 9:50 a.m. while transferring operations to generator power and 12:15 p.m. until 12:21 p.m. to return operations to City of Needles power. Extraction system downtime was 7 minutes.
- **February 24, 2008 (unplanned):** The extraction well system was offline from 7:03 a.m. until 7:09 a.m. to transfer operations to generator power and 8:14 a.m. to until 8:20 a.m. to return operations to City of Needles power. Extraction system downtime was 12 minutes.

March 2008

- March 2, 2008 (unplanned): The extraction well system was offline from 5:41 a.m. until 7:25 a.m., 7:38 a.m. until 8:04 a.m., 8:12 a.m. until 8:26 a.m., 8:41 a.m. until 8:45 a.m., 4:24 p.m. until 4:26 p.m., and 4:41 p.m. until 5:05 p.m. to repair a microfilter feed tank valve. Extraction system downtime was 2 hours 54 minutes.
- March 8, 2008 (planned): The extraction well system was offline from 7:42 p.m. until 8:51 p.m., while replacing a valve on the microfilter feed tank, and 11:22 p.m. until 11:29 p.m. to switch brine tanks. Extraction system downtime was 1 hour 17 minutes.
- March 9, 2008 (planned): The extraction well system was offline from 5:30 a.m. until 8:54 a.m. and 8:55 a.m. until 11:36 a.m. to replace a polymer system pump. Extraction system downtime was 6 hours 6 minutes.
- March 11, 2008 (unplanned): The extraction well system was offline from 7:48 a.m. until 8:13 a.m. to repair a microfilter feed tank valve. Extraction system downtime was 25 minutes.
- March 12, 2008 (unplanned): The extraction well system was offline from 7:43 a.m. until 8:24 a.m. to install backup control air compressor. Extraction system downtime was 41 minutes.
- March 12, 2008 (unplanned): The extraction well system was offline from 2:15 p.m. until 3:33 p.m. for continued work on control air compressor installation. Extraction system downtime was 1 hour 18 minutes.
- March 18 25, 2008 (planned): The extraction well system was offline periodically (typically individual 1-hour periods) during this time to allow for treatment of

approximately 290,080 gallons of injection well backwash/re-development water. Daily extraction system downtimes are summarized below:

- March 18 1 hour 35 minutes
- March 19 2 hours 9 minutes
- March 20 5 hours 33 minutes
- March 21 4 hours 18 minutes
- March 22 5 hours 31 minutes
- March 23 3 hours 58 minutes
- March 24 4 hours 37 minutes
- March 25 3 hours 19 minutes
- March 28, 2008 (unplanned): The extraction well system was offline from 2:58 a.m. until 1:58 p.m. to replace the flocculator rake drive on the clarifier. Extraction system downtime was 11 hours.

April 2008

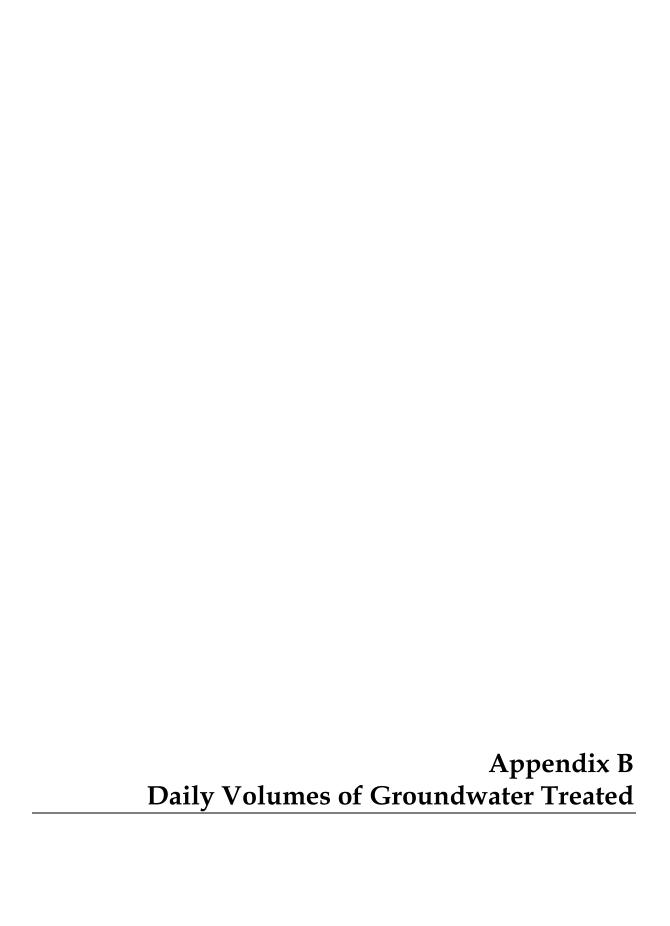
- April 8, 2008 (unplanned): The extraction well system was offline from 9:07 p.m. until 9:09 p.m. when a City of Needles power supply imbalance alarm shut down the extraction wells. Extraction system downtime was 2 minutes.
- **April 9, 2008 (unplanned)**: The extraction well system was offline from 2:57 p.m. until 3:53 p.m. due to backwash operation for Injection Well IW-03. Extraction system downtime was 56 minutes.
- April 19, 2008 (unplanned): The extraction well system was offline from 4:59 a.m. to 5:56 a.m. due to low seal water pump pressure alarm. Extraction system downtime was 57 minutes.
- April 21 28, 2008 (planned): The extraction well system was offline for a total of 7 days and 52 minutes between April 21st at 6:56 a.m. and April 28th at 9:07 a.m. to perform annual preventative maintenance.
 - April 21, 6:56 a.m. April 27^t11:19 a.m. Extraction downtime during this period was 6 days, 4 hours, and 23 minutes.
 - April 27 Extraction wells were intermittently operated April 27 for a total of 2 hours and 52 minutes to bring extraction well water to the plant for startup. The extraction well system was offline for the following times on April 27:

```
- from 0:00 to 11:19 a.m. (11 hours, 19 minutes)
```

from 11:50 a.m. to 11:54 a.m. (4 minutes)
from 1:25 p.m. to 2:09 p.m. (44 minutes)
from 2:59 p.m. to 11:59 p.m. (9 hours)

- April 28, The extraction well system was offline on April 28:
 - from 0:00 until 9:07 a.m. (9 hours, 7 minutes)

- IM No. 3 facility startup began on April 28 at 9:07 a.m. April 28th - Two outage periods following facility startup were due to the adjustment of unit processes as the plant came online:


from 10:13 a.m. to 11:46 a.m. (1 hour, 33 minutes)
from 11:50 a.m. to 11:51 a.m. (0 hours, 1 minute)

May 2008

- May 1, 2008 (unplanned): The extraction well system was offline from 12:10 a.m. to 12:13 a.m. when a City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 3 minutes.
- May 8, 2008 (planned): The extraction well system was offline from 9:06 a.m. to 1:53 p.m. while switching the microfilter from the east bank to the west bank. Extraction system downtime was 4 hours and 47 minutes.
- May 20, 2008 (unplanned): The extraction well system was offline from 5:41 p.m. to 6:34 p.m. when a programming error caused the microfilter to shut down. Extraction system downtime was 53 minutes.
- May 23, 2008 (unplanned): The extraction well system was offline from 12:18 a.m. to 12:35 a.m., from 6:20 a.m. to 6:30 a.m., from 1:23 a.m. to 1:38 p.m., and from 7:56 p.m. to 8:02 p.m. when City of Needles power supply imbalances alarmed and shut down the extraction wells. Extraction system downtime was 48 minutes.
- May 29-30, 2008 (planned): The extraction well system was offline from 3:00 p.m. to 11:59 p.m. on May 29, and it was offline from 12:00 a.m. to 7:10 a.m. and from 10:03 a.m. to 10:04 a.m. on May 30 due to aquifer testing. Extraction system downtime was 16 hours and 10 minutes.

June 2008

- **June 11, 2008 (planned):** The extraction well system was offline from 1:55 p.m. to 2:03 p.m. and from 3:19 p.m. to 3:27 p.m. when emergency generator checks were performed. Extraction system downtime was 17 minutes.
- **June 18, 2008 (planned):** The extraction well system was offline from 7:02 a.m. to 2:34 p.m. and from 3:54 p.m. to 4:30 p.m. for scheduled monthly maintenance. Extraction system downtime was 8 hours and 8 minutes.
- **June 21, 2008 (unplanned):** The extraction well system was offline from 9:42 a.m. to 9:48 a.m. and from 8:05 p.m. to 8:17 p.m. when emergency generator was brought online due to storm events. Extraction system downtime was 18 minutes.
- **June 23, 2008 (planned):** The extraction well system was offline from 6:42 a.m. to 6:43 a.m. and from 7:40 a.m. to 9:22 a.m. when the City of Needles installed taps to onsite transformer. Extraction system downtime was 1 hour and 43 minutes.

January 2008 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extrac	tion Well Syste	m ^{a,b}		Inje	ction Well Sy	stem ^a	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January	1	2008		21	149,541	45,786	195,347		183,539	183,539	11,554
January	2	2008		21	115,968	36,129	152,117		127,448	127,448	6,068
January	3	2008		25	148,979	45,861	194,865		195,018	195,018	13,388
January	4	2008		17	149,192	45,710	194,918		184,817	184,817	11,934
January	5	2008		18	149,233	45,574	194,826		181,946	181,946	10,292
January	6	2008		17	149,416	45,391	194,824		180,356	180,356	10,131
January	7	2008		17	149,370	45,430	194,817		180,968	180,968	13,579
January	8	2008		20	149,486	45,428	194,933		182,752	182,752	10,306
January	9	2008		20	137,572	42,874	180,466		160,988	160,988	10,265
January	10	2008		17	148,609	45,618	194,245		188,419	188,419	15,813
January	11	2008		18	148,769	45,539	194,326		181,498	181,498	10,348
January	12	2008		12	149,008	45,241	194,261		184,596	184,596	13,609
January	13	2008		22	149,037	45,349	194,408		178,466	178,466	10,176
January	14	2008		17	149,078	45,432	194,528		179,827	179,827	10,173
January	15	2008		20	149,171	45,375	194,566		184,659	184,659	13,720
January	16	2008		15	108,668	33,771	142,454		127,112	127,112	6,780
January	17	2008		13	148,349	45,672	194,034		187,970	187,970	13,706
January	18	2008		16	148,317	45,863	194,195		187,329	187,329	12,352
January	19	2008		20	148,281	45,910	194,211		180,217	180,217	10,280
January	20	2008		15	148,247	45,903	194,165		183,452	183,452	10,205
January	21	2008		19	148,060	46,051	194,130		180,421	180,421	13,562
January	22	2008		19	147,878	46,056	193,954		183,864	183,864	10,197
January	23	2008		18	117,167	33,122	150,307		118,478	118,478	16,187
January	24	2008		19	147,942	46,030	193,992		191,022	191,022	10,104
January	25	2008		2,650	139,344	44,766	186,760		177,837	177,837	13,564
January	26	2008		16	148,029	46,284	194,330		181,310	181,310	10,308
January	27	2008		17	148,185	46,086	194,288		183,475	183,475	10,205
January	28	2008		19	147,041	45,605	192,664		180,489	180,489	11,673
January	29	2008		17	148,622	45,387	194,026		186,109	186,109	12,673
January	30	2008		18	148,796	45,204	194,018		182,823	182,823	10,943
January	31	2008		18	148,860	45,181	194,058		185,753	185,753	11,929
Total Monthl	y Volumes (gal)	0	3,193	4,484,216	1,377,627	5,865,036	0	5,492,958	5,492,958	356,024
Average Pur	np/Injection	Rates (gpm)	0.0	0.1	100.5	30.9	131.4	0.0	123.1	123.1	8.0

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from the data historian at the IM-3 Facility.

^bSmall readings from TW-2D are associated with flowmeter margin of error. However, the data is included in the monthly record to be consistent with the data historian.

February 2008 Operational DataIM-3 Groundwater Extraction and Treatment System
PG&E Topock Compressor Station, Needles California

				Injection Well System ^a			RO Brine ^a				
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
February	1	2008			148,843	45,227	194,071		179,538	179,538	11,859
February	2	2008			148,675	45,382	194,057		184,438	184,438	10,350
February	3	2008			148,515	45,501	194,017		177,634	177,634	13,604
February	4	2008			148,297	45,698	193,995		187,494	187,494	10,130
February	5	2008			148,353	45,519	193,872		185,987	185,987	10,177
February	6	2008			148,454	45,464	193,918		189,810	189,810	13,657
February	7	2008			148,444	45,574	194,018		186,747	186,747	10,415
February	8	2008			148,862	45,277	194,140		184,978	184,978	12,116
February	9	2008			149,410	45,150	194,561		188,690	188,690	10,229
February	10	2008			149,300	45,218	194,518		181,038	181,038	13,765
February	11	2008			149,337	45,106	194,443		180,279	180,279	10,514
February	12	2008			149,219	45,056	194,275		184,005	184,005	11,268
February	13	2008			106,335	33,100	139,434		124,377	124,377	9,442
February	14	2008			148,049	46,164	194,214		199,008	199,008	10,068
February	15	2008			148,449	45,720	194,168		184,425	184,425	12,862
February	16	2008			148,685	45,361	194,046		181,865	181,865	10,292
February	17	2008			148,633	45,169	193,802		190,847	190,847	13,727
February	18	2008			148,514	45,386	193,899		179,679	179,679	10,218
February	19	2008			148,388	45,342	193,730		183,969	183,969	11,076
February	20	2008			145,203	44,864	190,068		177,502	177,502	13,179
February	21	2008			146,618	45,317	191,935		181,955	181,955	11,563
February	22	2008			148,081	45,637	193,718		183,763	183,763	11,305
February	23	2008			148,408	45,408	193,816		180,862	180,862	10,150
February	24	2008			146,550	44,785	191,335		176,487	176,487	10,253
February	25	2008			149,065	45,917	194,982		189,135	189,135	13,635
February	26	2008			149,202	45,838	195,040		180,672	180,672	10,184
February	27	2008			149,196	45,932	195,128		188,514	188,514	10,138
February	28	2008			149,203	46,028	195,231		183,122	183,122	13,612
February	29	2008			149,054	46,104	195,158		186,853	186,853	10,084
Total Monthly	Volumes (gal)	0	0	4,263,341	1,306,246	5,569,588	0	5,283,674	5,283,674	329,872
Average Pum	p/Injection	Rates (gpm)	0.0	0.0	102.1	31.3	133.4	0.0	126.5	126.5	7.9

NOTES:

---: Not in operation during reporting period.

gal: gallons gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from the data historian at the IM-3 Facility.

March 2008 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

	Extraction Well System ^a					Inje	ection Well Sys	stem ^a	RO Brine ^a		
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
March	1	2008			148,925	46,045	194,970		182,857	182,857	10,321
March	2	2008			127,056	40,792	167,849		147,603	147,603	10,161
March	3	2008			147,691	46,153	193,844		192,327	192,327	13,568
March	4	2008			147,781	46,161	193,942		179,105	179,105	10,114
March	5	2008			147,094	45,529	192,623		180,707	180,707	10,731
March	6	2008			147,803	46,065	193,867		186,797	186,797	12,531
March	7	2008			147,928	46,016	193,944		187,522	187,522	11,336
March	8	2008			138,153	43,834	181,988		153,663	153,663	10,293
March	9	2008			108,678	34,912	143,590		141,745	141,745	6,869
March	10	2008			147,279	46,500	193,779		186,747	186,747	13,907
March	11	2008			144,070	45,672	189,742		176,432	176,432	10,209
March	12	2008			133,639	42,718	176,356		174,378	174,378	10,156
March	13	2008			147,851	46,342	194,194		186,402	186,402	13,130
March	14	2008			148,295	46,068	194,363		190,131	190,131	10,244
March	15	2008			148,296	46,175	194,471		181,052	181,052	13,640
March	16	2008			148,319	46,249	194,569		187,927	187,927	10,204
March	17	2008			148,508	46,015	194,524		185,257	185,257	10,125
March	18	2008			137,615	43,197	180,812		168,941	168,941	10,979
March	19	2008			132,774	42,528	175,302		194,205	194,205	10,125
March	20	2008			110,614	36,191	146,804		187,834	187,834	11,215
March	21	2008			118,083	38,629	156,712		193,045	193,045	12,319
March	22	2008			107,619	36,400	144,019		197,143	197,143	10,241
March	23	2008			120,078	39,443	159,521		187,951	187,951	10,071
March	24	2008			115,885	38,180	154,065		181,205	181,205	10,041
March	25	2008			126,110	40,498	166,608		190,652	190,652	10,256
March	26	2008			148,007	46,722	194,729		192,069	192,069	13,411
March	27	2008			147,901	46,924	194,825		184,350	184,350	10,073
March	28	2008			79,506	25,359	104,865		96,658	96,658	6,785
March	29	2008			148,007	46,705	194,713		188,442	188,442	10,144
March	30	2008			148,077	46,619	194,697		183,655	183,655	10,166
March	31	2008			148,151	46,551	194,703		183,782	183,782	10,024
Total Monthl	y Volumes (g	gal)	0	0	4,215,795	1,335,196	5,550,991	0	5,550,583	5,550,583	333,389
Average Pun	np/Injection	Rates (gpm)	0.0	0.0	94.4	29.9	124.4	0.0	124.3	124.3	7.5

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from the data historian at the IM-3 Facility.

April 2008 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extrac	tion Well Syste	m ^{a,b}		Inje	ction Well Sys	stem ^a	RO Brine ^{a,b}
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
April	1	2008			147,085	46,685	193,769		183,851	183,851	10,010
April	2	2008			147,846	46,832	194,677		186,759	186,759	13,413
April	3	2008			147,685	47,061	194,746		181,389	181,389	10,059
April	4	2008			147,871	46,754	194,625		185,880	185,880	10,068
April	5	2008			148,161	46,412	194,573		185,365	185,365	10,130
April	6	2008			148,114	46,559	194,673		181,462	181,462	10,589
April	7	2008			148,236	46,419	194,655		185,099	185,099	9,963
April	8	2008			147,773	46,576	194,349		180,105	180,105	10,072
April	9	2008			141,176	44,974	186,150		90,804	90,804	10,370
April	10	2008			147,843	46,321	194,164		107,845	107,845	13,473
April	11	2008			148,435	46,131	194,566		188,867	188,867	10,129
April	12	2008			148,877	46,009	194,886		190,220	190,220	10,085
April	13	2008			148,915	46,087	195,002		186,045	186,045	10,195
April	14	2008			149,073	45,992	195,065		180,833	180,833	9,988
April	15	2008			149,168	45,867	195,035		183,165	183,165	11,502
April	16	2008			149,147	46,140	195,288		185,808	185,808	11,971
April	17	2008			149,268	46,086	195,354		191,922	191,922	10,145
April	18	2008			149,331	46,055	195,386		177,050	177,050	11,069
April	19	2008			142,030	44,362	186,392		180,724	180,724	10,220
April	20	2008			148,483	46,161	194,645		176,530	176,530	11,497
April	21	2008			42,822	13,456	56,278		66,910	66,910	6,606
April	22	2008			14	16	30		0	0	5
April	23	2008			15	19	34		0	0	4
April	24	2008			15	18	34		0	0	6
April	25	2008			15	21	36		0	0	7
April	26	2008			13	23	36		0	0	6
April	27	2008			16,056	5,738	21,794		0	0	6,594
April	28	2008			83,738	21,418	105,156		76,555	76,555	5,293
April	29	2008			148,436	46,660	195,096		199,541	199,541	12,174
April	30	2008			149,769	44,201	193,970		188,243	188,243	10,405
Total Month	ly Volumes (g	gal)	0	0	3,395,408	1,055,054	4,450,463	0	4,040,973	4,040,973	256,049
Average Pur	np/Injection	Rates (gpm)	0.0	0.0	78.6	24.4	103.0	0.0	93.5	93.5	5.9

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from the data historian at the IM-3 Facility.

^bSmall readings from April 22-26 are associated with flowmeters' margin of error. However, the data is included in the monthly record to be consistent with the data historian.

May 2008 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syste	em ^a		Inje	ction Well Sy	stem ^a	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
May	1	2008			148,849	46,459	195,308		187,885	187,885	10,362
May	2	2008			149,244	46,702	195,946		187,560	187,560	10,342
May	3	2008			149,459	46,385	195,844		183,353	183,353	10,434
May	4	2008			149,023	46,902	195,925		188,423	188,423	10,595
May	5	2008			148,947	46,940	195,887		185,430	185,430	10,214
May	6	2008			147,398	46,896	194,293		188,949	188,949	10,032
May	7	2008			148,455	46,488	194,943		180,043	180,043	9,968
May	8	2008			117,698	37,318	155,016		157,049	157,049	11,751
May	9	2008			147,369	46,074	193,443		191,617	191,617	9,887
May	10	2008			147,481	45,972	193,452		174,361	174,361	10,008
May	11	2008			147,580	45,980	193,560		186,273	186,273	7,839
May	12	2008			147,477	46,239	193,715		185,558	185,558	12,063
May	13	2008			147,260	46,694	193,955		186,993	186,993	10,011
May	14	2008			147,777	46,057	193,834		184,426	184,426	8,374
May	15	2008			147,983	45,827	193,809		180,153	180,153	8,263
May	16	2008			148,261	45,546	193,806		197,964	197,964	12,109
May	17	2008			148,534	45,313	193,848		185,015	185,015	9,898
May	18	2008			148,576	45,423	193,999		185,206	185,206	8,172
May	19	2008			148,655	45,421	194,076		185,959	185,959	8,338
May	20	2008			142,229	44,025	186,253		171,586	171,586	9,802
May	21	2008			146,871	46,326	193,197		193,512	193,512	9,109
May	22	2008			146,824	46,358	193,182		175,815	175,815	9,919
May	23	2008			149,994	27,242	177,236		183,249	183,249	10,127
May	24	2008			146,852	46,948	193,800		185,064	185,064	9,905
May	25	2008			146,917	46,780	193,697		186,411	186,411	9,952
May	26	2008			147,009	46,712	193,721		186,540	186,540	9,427
May	27	2008			146,996	46,784	193,779		173,730	173,730	7,137
May	28	2008			146,331	46,699	193,030		163,950	163,950	9,858
May	29	2008			91,246	13,565	104,811		141,899	141,899	3,315
May	30	2008			102,990	5,388	108,378		85,882	85,882	6,757
May	31	2008			146,919	46,120	193,039		192,993	192,993	9,974
	ly Volumes (0	0	4,447,202	1,331,581	5,778,784	0	5,542,847	5,542,847	293,939
Average Pur	mp/Injection	Rates (gpm)	0.0	0.0	99.6	29.8	129.5	0.0	124.2	124.2	6.6

NOTES:

---: Not in operation during reporting period.

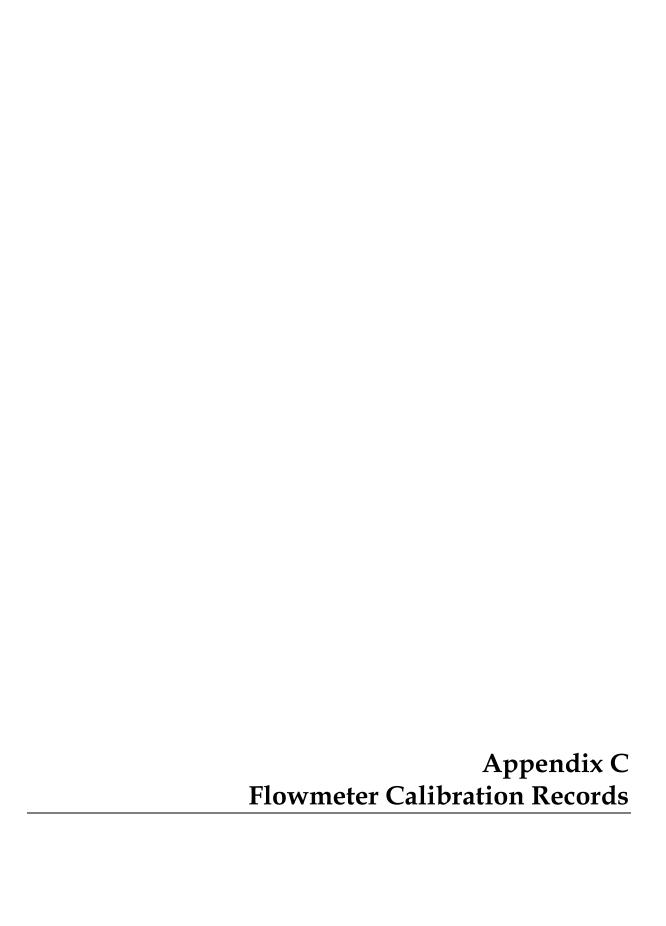
gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from the data historian at the IM-3 Facility.

June 2008 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California


				Extr	action Well S	System ^a		Injec	tion Well Sys	tem ^a	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
	-		(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
June	1	2008			147,808	46,178	193,986		179,021	179,021	9,913
June	2	2008			147,754	46,323	194,077		194,146	194,146	8,962
June	3	2008			146,436	46,328	192,764		179,734	179,734	9,762
June	4	2008			147,194	46,548	193,742		190,923	190,923	6,642
June	5	2008		1,067	146,398	46,253	193,718		199,099	199,099	6,477
June	6	2008			147,441	45,960	193,401		187,741	187,741	8,288
June	7	2008			147,708	45,791	193,500		188,847	188,847	9,675
June	8	2008			147,513	46,200	193,713		180,351	180,351	6,432
June	9	2008			147,584	46,218	193,803		191,662	191,662	9,626
June	10	2008			147,741	46,142	193,882		185,703	185,703	6,501
June	11	2008			145,098	45,312	190,410		178,442	178,442	6,880
June	12	2008			147,102	46,393	193,495		193,480	193,480	9,387
June	13	2008			147,534	45,979	193,513		184,717	184,717	6,416
June	14	2008			147,988	45,526	193,514		187,986	187,986	9,679
June	15	2008			148,114	45,430	193,544		185,462	185,462	6,643
June	16	2008			148,394	45,159	193,554		191,474	191,474	6,430
June	17	2008			148,513	45,095	193,608		187,697	187,697	9,633
June	18	2008			96,541	30,208	126,749		115,020	115,020	3,205
June	19	2008			147,561	45,482	193,043		196,075	196,075	9,688
June	20	2008			147,939	45,087	193,026		187,823	187,823	4,058
June	21	2008			144,130	45,843	189,973		184,844	184,844	6,376
June	22	2008			147,802	45,126	192,927		189,295	189,295	6,419
June	23	2008			136,420	42,500	178,919		168,054	168,054	6,811
June	24	2008			147,683	46,031	193,714		191,922	191,922	6,362
June	25	2008			147,821	45,949	193,770		193,106	193,106	6,354
June	26	2008			148,038	45,761	193,799		185,779	185,779	6,334
June	27	2008			148,127	45,715	193,842		185,583	185,583	6,491
June	28	2008			148,424	45,409	193,833		199,302	199,302	6,453
June	29	2008			148,484	45,447	193,931		187,971	187,971	6,332
June	30	2008			148,532	45,558	194,090		182,598	182,598	6,318
	thly Volume		0	1,067	4,363,823	1,354,951	5,719,841	0	5,553,857	5,553,857	218,548
Average F	Pump/Injection	on Rates (gpm)	0.0	0.0	101.0	31.4	132.4	0.0	128.6	128.6	5.1

NOTES:

---: Not in operation during reporting period. gal: gallons gpm: gallons per minute

RO: Reverse Osmosis

^aFlow Readings tabulated from the date historian at the IM-3 Facility.

30092302-1304705

WWRA-000923-F

Purchase order number

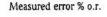
US-19050353-30 / Endress+Hauser Flowtec

Order Nº/Manufacturer

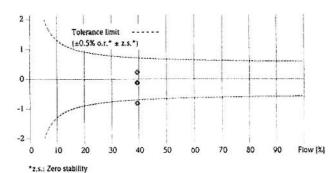
23P50-AL1A1AA022AW

Order code

PROMAG 23 P 2"


Transmitter/Sensor

6C036F16000


FIT-1201- FIT-103/PE-1/installed 1/4/07
Tag No.

FCP-0.F	
Calibration rig	THE COLUMN TWO IS NOT THE OWNER.
155.6102 GPM Calibrated full scale	(≙ 100%)
Current 4 - 20 mA Calibrated output	
0.9148	
Calibration factor	
0	
Zero point	
72.3 °F	
Water temperature	

Flow	Flow	Duration [sec]	V target (US GAL)	V meas.	Δ o.r.• %	Outp.**
39.5	61.5	30.1	30.816	30.002	-2.64	10.15
39.5	61.5	30.1	30.807	30.875	0.22	10.34
39.5	61.5	30.1	30.813	30.772	-0.13	10.31
39.5	61.5	30.1	30.812	30.561	-0.81	10.27
-	-	-	-	-	-	- 1
-	-	-	-	-	-	-
-	-	-	-	-	-	- !
-	-	-		-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

COD & E

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

12-04-2006 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

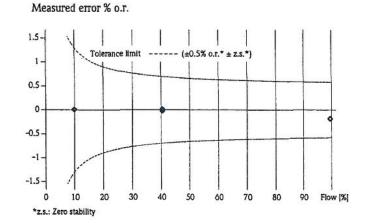
Tim Swick

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

mSwint

^{*}o.r.: of rate


^{**}Calculated value | 14 - 20 mA|

30107893-1304706

WWRA-002048-F FCP-6.F Purchase order number Calibration rig US-19054161-10 / Endress+Hauser Flowtec 155.6102 GPM 100%) Order N°/Manufacturer Calibrated full scale 23P50-AL1A1AA022AW 4 - 20 mA Current Order code Calibrated output PROMAG 23 P 2" 0.9154 Transmitter/Sensor Calibration factor 0 6C037016000 Zero point TW-3D/installed 1/25/08 76.2 °F Water temperature

Flow	Flow [GPM]	Duration [sec]	V target (US GAL)	V meas. [US GAL]	∆ o.r.* [%]	Outp.**
9.9	15.5	30.1	7.7531	7.7537	0.01	5.59
40.5	63.0	30.1	31.560	31.554	-0.02	10.47
40.5	63.0	30.1	31.569	31.574	0.01	10.48
99.5	154.8	30.1	77.589	77.448	-0.18	19.89
		-	-	-	-	-
-	-	- 1	_	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	- 1	. 	-	-	-
-	-	-	-	-	-	-

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TT), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA) and Aurangabad (IN).

09-12-2007

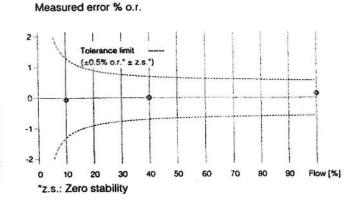
Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Tim Swick

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

mSwint


People for Process Automation

30057866-1275190

41/24888	
Purchase Order Number	
USA-49310090-40 / Endress+Hauser Flo	owtec
Order Nº/Manufacturer	
23P50-AL1A1RA022AW	
Order Code	
PROMAG 23 P 2"	
Transmitter/Sensor	
6A021F16000	
Serial No. / TW-20 /installed 7/28/	05
Tag №	

FCP-6.C	
Calibration rig	A CONTRACTOR OF THE PROPERTY O
155.6102 GPM	(≙ 100%)
Calibrated full scale	The second secon
Current 4 - 20 mA	
Calibrated output	The state of the s
0.9178	
Calibration factor	**************************************
0	
Zero point	
72.9 °F	
Water temperature	

Flow	Flow	Duration	V target	V meas.	∆ o.r.*	Outp.**
(%)	(GPM)	[sec]	[US GAL]	[US GAL]	[%]	[mA]
10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59
39.9	62.1	30.0	31.071	31.070	0.00	10.38
39.9	62.1	30.0	31.073	31.078	0.02	10.38
100.2	156.0	30.0	78.041	78.156	0.15	20.06
-	-	-	(5)	-	-	-
-		-		-	-	-
-	1-1	-	-	-	-	-
-	-	-	171	-	-	-
-	-	-	(%)	-	-	-
- 1	-	-	-	-	-	-

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

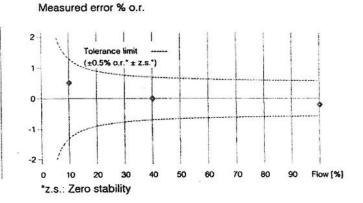
Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143 Tim Swick

Operator

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2



30057870-1275191

41724888	
Purchase Order Number	
USA-49310090-40 / Endress+Hauser Fl	owtec
Order №/Manufacturer	
23P50-AL1A1RA022AW	
Order Code	
PROMAG 23 P 2"	
Transmitter/Sensor	
6A022016000	
Serial No FIT-101 / TW-25/installed 7/	28/05
Tag №	

FCP-6.C	
Calibration rig	Company of the Compan
155.6102 GPM	(
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	
Water temperature	

Flow (%)	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	Δ o.r.* [%]	Outp.**
10.0	15.6	30.0	7.7910	7.8318	0.52	5.61
40.0	62.3	30.0	31.157	31.160	0.01	10.40
40.1	62.4	30.0	31.229	31.229	0.00	10.42
100.2	155.9	30.0	78.017	77.856	-0.21	20.00
-	-	-	-	-	-	-
-	•	-	-	-	(**	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004 Date of calibration

Endress+Hauser 2350 Endress Place

Greenwood, IN 46143

Tim Swick

Operator

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2

30094933-1275192

WWRA-001176-F
Purchase order number

US-19051105-10 / Endress+Hauser Flowtec

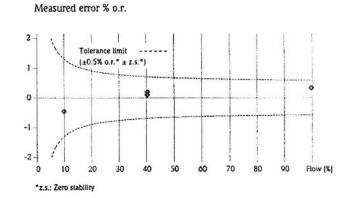
Order N°/Manufacturer

23P50-AL1A1RA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor


6A022116000

Serial N°
FIT-1202 / IW-02 / instelled 02/02/07

Tag N°

FCP-6.F	
Calibration rig	CONTRACTOR
155.6102 GPM	(≙ 100%)
Calibrated full scale	M. S.
Current 4 - 20 mA	
Calibrated output	
0.9214	
Calibration factor	
0	
Zero point	
72.3 °F	
Water temperature	

Flow	Flow [GPM]	Duration [sec]	V target (US GAL)	V meas. [US GAL]	Δ o.r.*	Outp.**
9.9	15.5	30.1	7.7413	7.7054	-0.46	5.58
40.5	63.0	30.1	31.575	31.604	0.09	10.48
40.5	63.0	30.1	31.562	31.621	0.19	10.49
99.8	155.3	30.1	77.847	78.099	0.32	20.02
-	-	-	-	-	-	-
- 1	- 5	-	-	- 1	-	-
-	-	-		-	150	-
-	-	-	-	-	1.00	-
-	1-12	-	-	-	-	-
-	-	-	-	-	170	-

*o.r.: of rate

**Calculated value [4 - 20 mA]

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-23-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Jim Baase

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

30116785-1304708

WWRA-002642-F	FCP-6.F	*
Purchase order number	Calibration rig	
US-19056062-10 / Endress+Hauser Flowtec	155.6102 GPM	(≙ 100%)
Order N°/Manufacturer	Calibrated full scale	_
23P50-AL1A1AA022AW	Current 4-20 mA	34 367 (14
Order code	Calibrated output	**
PROMAG 23 P 2"	0.9312	•
Transmitter/Sensor	Calibration factor	
6C037216000	20	
Serial N°	Zero point	
FIT-1204 FIT-1203/IW-03/installed 4/9/08	71.1 °F	
Tag N°	Water temperature	

Flow (%)	Flow [GPM]	Duration [sed]	V target (US GAL)	V meas.	∆ o.r.* [%]	Outp.** [mA]	
10.0	15.5	30.1	7.7698	7.7384	-0.40	5.59	
40.5	63.0	30.1	31.589	31.594	0.02	10.48	
40.5	63.1	30.1	31.617	31.612	-0.02	10.49	
100.3	156.0	30.1	78.191	78.296	0.13	20.06	
-	-	-	-	- 1	-	-	
1"	-	-	-	-	-	-	
-	-	-	-	-	-	- 1	
-	-	l - i	-	- 1	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	

*o,r.; of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA) and Aurangabad (IN).

02-18-2008 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Taylor Shepard

Measured error % o.r.

*z.s.: Zero stability

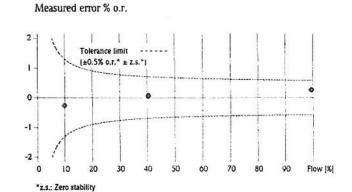
Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg-N° 030502.2

^{**}Calculated value (4 - 20 mA)

People for Process Automation

Flow Calibration with Adjustment


30094931-1275193

WWRA-001178-F

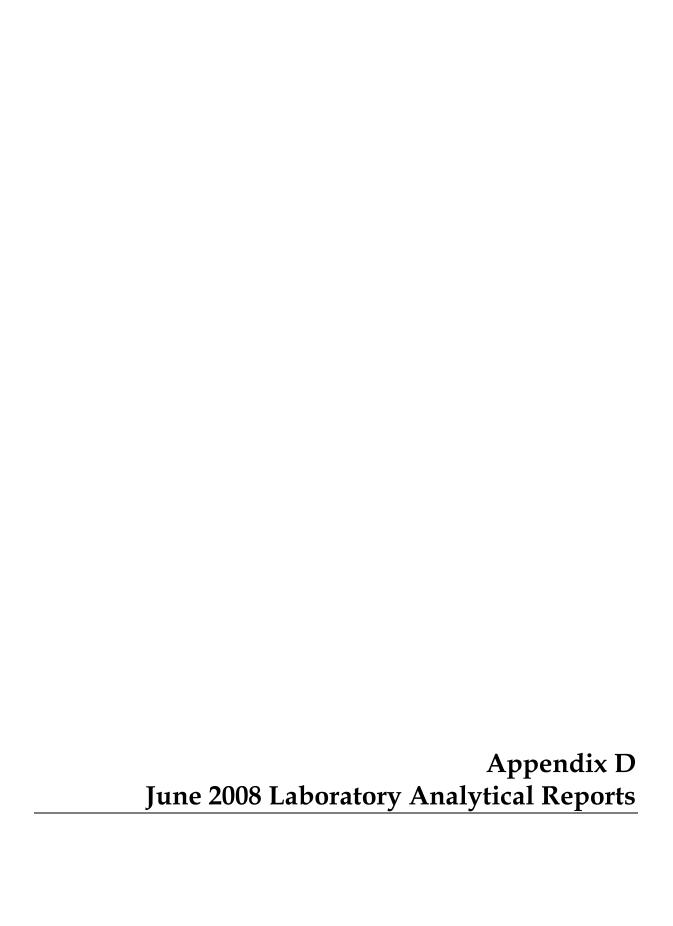
11 11101 0011701	1 01 0.1	
Purchase order number	Calibration rig	
US-19051105-30 / Endress+Hauser Flowtec	155.6102 GPM	(≙ 100%)
Order N°/Manufacturer	Calibrated full scale	· · · · · · · · · · · · · · · · · · ·
23P50-AL1A1RA022AW	Current 4 - 20 mA	
Order code	Calibrated output	The state of the second
PROMAG 23 P 2"	0.9235	
Transmitter/Sensor	Calibration factor	A Vend the Vanish season 1000
6A022216000	0	
Serial Nº	Zero point	**************************************
FIT-103 RO Concentrate installed 02/02/07	72.2 °F	
Tag N°	Water temperature	

FCP-6.F

	Flow [%]	Flow [GPM]	Duration sec	V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.**	
-	10.0	15.5	30.1	7.7833	7.7628	-0.26	5.59	
	40.5	63.1	30.1	31.600	31.613	0.04	10.49	
	40.6	63.1	30.1	31.650	31.674	0.07	10.50	
	99.7	155.1	30.1	77.720	77.919	0.26	19.98	
1	-	-		-	- 1	4	-	
	-	-	-	-	-	-	-	
	-	-	-	_	-	-	-	
-	-	-	-	-	-	-	-	
	-	-	-	-	-		-	
	-	-	-	-	- 1		-	

*o.r.: of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.


01-23-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Jim Baase Operator

> Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

fin Basse

^{**}Calculated value (4 - 20 mA)

June 18, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-154 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 976160

Trucsdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-154 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 4, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the matrix spike for sample SC-700B-WDR-154 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

The matrix spike run at a dilution of 5x for sample SC-701-WDR-154 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 10x dilution agree with those from the 5x run, the data from the 5x run is reported

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

K-R. P. Re

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters 'roject Name: PG&E Topock Project Project No.: 358342.TM.02.00 Laboratory No.: 976160

Date: June 18, 2008 Collected: June 4, 2008 Received: June 4, 2008

ANALYST LIST

electric de la companya de la compa		
PA 120.1	Specific Conductivity	Tina Acquiat / Gautam Savani
М 4500-Н В	рН	Tina Acquiat
M 2540C	Total Dissolved Solids	Tina Acquiat
M 2130B	Turbidity	Gautam Savani
PA 300.0	Anions	Giawad Ghenniwa
M 4500-NH3 B	Ammonia	Iordan Stavrev
M 4500-NO2 B	Nitrite as N	Tina Acquiat
PA 200.7	Metals by ICP	Hao Ton
PA 200.8	Metals by ICP/MS	Linda Saetern
PA 245.1	Mercury	Michel Mendoza
PA 218.6	Hexavalent Chromium	Jean Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters oject Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008 Collected: June 4, 2008

Received: June 4, 2008 Prep/ Analyzed: June 5, 2008

Analytical Batch: 06PH08F

vestigation:

pH by SM 4500-H B

Analytical Results pH

<u>TLI 1.D.</u>	<u>Field I.D.</u>	<u>Run Time</u>	<u>Units</u>	<u>MDL</u>	<u>RL</u>	<u>Results</u>
976160-1	SC-100B-WDR-154	08:50	pH	0.0700	2.00	7.38
976160-2	SC-700B-WDR-154	08:52	pH	0.0700	2.00	8.12
976160-3	SC-701-WDR-154	08:55	pH	0.0700	2.00	7.92

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	976161-2	7.35	7.36	0.01	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC WithIn Control
LCS	7.08	7.00	80.0	+ 0.100 Units	Yes
LCS#1	7.08	7.00	0.08	<u>+</u> 0.100 Units	Yes
LCS #2	7.06	· 7.00	0.06	+ 0.100 Units	Yes

D: Below the reporting limit (Not Detected).

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

L: Reporting Limit.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters roject Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008 Collected: June 4, 2008 Received: June 4, 2008 Prep/ Analyzed: June 5, 2008

Analytical Batch: 06EC08D

ivestigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

TLI I.D.	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
976160-1	SC-100B-WDR-154	μmhos/cm	EPA 120.1	1.00	2.00	7970
976160-2	SC-700B-WDR-154	μmhos/cm	EPA 120.1	1.00	2.00	7010
976160-3	SC-701-WDR-154	μmhos/cm	EPA 120.1	1.00	2.00	29700

QA/QC Summary

QC STD I,D,	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	976146	1070	1070	0.00%	<u>≤</u> 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<2.00		<2.00	Yeş
ccs	699	706	99.0%	90% - 110%	Yes
CVS#1	972	996	97.6%	90% - 110%	Yes
CVS#2	974	996	97.8%	90% - 110%	Yes
LCS	700	706	99.2%	90% - 110%	Yes
LCSD	700	706	99.2%	90% - 110%	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters oject Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008 Collected: June 4, 2008

Received: June 4, 2008 Prep/ Analyzed: June 5, 2008

Analytical Batch: 06TDS08B

vestigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field 1.D.</u>	<u> Units</u>	<u>Method</u>	<u>RL</u>	Results
976160-1	SC-100B-WDR-154	mg/L	SM 2540C	250	5100
976160-2	SC-700B-WDR-154	mg/L	SM 2540C	250	4090
976160-3	SC-701-WDR-154	mg/L	SM 2540C	625	20500

QA/QC Summary

QC STD I,D,	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	976161-2	5220	5200	0.19%	<u>≺</u> 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<25.0		<25.0	Yes
LCS 1	497	500	99.4%	90% - 110%	Yes
LCS 2	497	500	99.4%	90% - 110%	Yes

ID: Below the reporting limit (Not Detected).

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Analytical Services

tL: Reporting Limit.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008 Collected: June 4, 2008

Received: June 4, 2008 Prep/ Analyzed: June 5, 2008 Analytical Batch: 06TUC08E

nvestigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Fleid I.D.	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
976160-1	SC-100B-WDR-154	09:25	NTU	1.00	0.100	ND
976160-2	SC-700B-WDR-154	09:45	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	976160-1	ND	ND	0.00%	<u>≤</u> 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0,100	-	<0.100	Yes
LCS	8.20	8.00	103%	90% - 110%	Yes
LCS	8.10	8.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Eactor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

tu - Mona Nassimi, Manager

Analytical Services

Truesdail Laboratories, Inc.

Laboratory

Number

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters

'roject Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

QC STD I.D.

Prep. Batch: 06CrH08C

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008

QC Within

Collected: June 4, 2008

Received: June 4, 2008

Prep/ Analyzed: June 5, 2008 Analytical Batch: 06CrH08C

Acceptance

Relative

Percent

nvestigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
976160-1	SC-100B-WDR-154	09:25	08:26	μg/L	105	21.0	1250
976160-2	SC-700B-WDR-154	09:45	08:36	μg/L	1.05	0.20	ND
976160-3	SC-701-WDR-154	09:35	10:00	μ g/L	5.25	1.05	ΝĎ

QA/QC Summary

Sample

Concentration

			Number	Concentra	ation	Conc	entration	Difference	limits	Control		
	Duplic	ate	976160-1	1250		,	260	0.80%	<u><</u> 20%	Yes		
QC Std I,D,	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	i .	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control	
//S	976160-1	1250	105	15.0	·	1575	2750	2825	95.2%	90-110%	Yes	ĺ
/IS	976160-2	0.00	1.06	1.00		1.06	0.993	1.06	93.7%	90-110%	Yes	ĺ
AS .	976160-3	0.00	5.25	1.00		5.25	4.84	5.25	92.2%	90-110%	Von	ı

Duplicate

Concentration

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	4.79	5,00	95.8%	90% - 110%	Yes
MRCVS#1	9.75	10.0	97.5%	95% - 105%	Yes
MRCVS#2	9.69	10.0	96.9%	95% - 105%	Yeş
MRÇVS#3	9.77	10.0	97.7%	95% - 105%	Yes
MRCVS#4	9.68	10.0	96.8%	95% - 105%	Yes
MRCVS#5	9.65	10.0	96.5%	95% - 105%	Yes
LCS	A 77	5.00	05.49/	009/ 1109/	V

ND; below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

🎶 / Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

012

Truesdail Laboratories, Inc.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters roject Name: PG&E Topock Project Project No.: 358342.TM,02,00

P.O. No.: 358342.TM,02,00

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

Laboratory No.: 976160

Date: June 18, 2008

Collected: June 4, 2008 Received: June 4, 2008

Prep/ Analyzed: June 9, 2008

Analytical Batch: 06NH3-E08A

vestigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>.l I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Method</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
6160-1	SC-100B-WDR-154	09:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND
6160-2	SC-700B-WDR-154	09:45	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

		QC ST) I.D.		iboratory Number	Concentre	ition	_ '	plicate entration	Percent Difference	Acceptance limits	QC Within Control	
		Duplic	ate	9	76160-2	. ND			ND	0.00%	≤ 20%	Yes	
	QC Std 1.D.	Lab Number	unsp	c.of oiked ople	Dilution Factor	Added Spike Conc.	_ `	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
l	MS	976160-2	0.0	00	1.00	6.00	ϵ	3.00	5.96	6.00	99.3%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	5.98	6.00	99.7%	90% - 110%	Yes
MRCVS#1	6.05	6.00	101%	90% - 110%	Yes
LCS	10.3	10.0	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

013

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters

QC STD I.D.

Project No.: 358342.TM.02.00

Project Name: PG&E Topock Project

P.O. No.: 358342.TM.02.00

Laboratory No.: 976160

Date: June 18, 2008

QC Within

Collected: June 4, 2008 Received: June 4, 2008

Prep/ Analyzed: June 5, 2008

Analytical Batch: 06AN08D

Acceptance

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>'LI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
76160-1	SC-100B-WDR-154	09:25	10:50	mg/L	5.00	0.500	2.79
76160-2	SC-700B-WDR-154	09:45	11:01	mg/L	5.00	0.500	2.37
76160-3	SC-701-WDR-154	09:35	11:13	mg/L	5.00	0.500	10.5

QA/QC Summarv

			Number	00110411111		Conc	entration	Difference	limits	Control	
	Duplic	ate	976149	0.455		0	.452	0.66%	<u>≤</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	_		Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	976149	0.455	1.00	2.00	-	2.00	2.39	2.46	96.8%	75-125%	Yes
		QC Std Lab I.D. Number	QC Std Lab Number Conc.of unspiked sample	QC Std Lab Conc.of unspiked sample Dilution Factor	Duplicate 976149 0.455 QC Std Lab Number unspiked sample Factor Conc.	Duplicate 976149 0.455 QC Std Lab Number Conc.of unspiked sample Dilution Factor Conc. An	OC Std Lab Number Sonce Spike Conc. Number Score Conc. of Unspiked Spike Conc. Number Sonce Conc. of Unspiked Spike Conc.	QC Std I.D. Number Concentration Duplicate 976149 0.455 0.452	OC Std I.D. Number Concentration Difference	Number Concentration Difference Ilmits	Number Concentration Difference limits Control

Duplicate

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	4.07	4.00	102%	90% - 110%	Yes
MRCVS#1	3.11	3.00	104%	90% - 110%	Yes
MRCVS#2	3.11	3.00	_104%	90% - 110%	Yes
LCS	4,17	4.00	104%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

l∕∞ ⊂ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland CA 04612

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

Laboratory No.: 976160

Date: June 18, 2008 Collected: June 4, 2008

Received: June 4, 2008

Prep/ Analyzed: June 5, 2008 Analytical Batch: 06AN08D

Acceptance

investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>LI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
76160-1	SC-100B-WDR-154	09:25	16:59	mg/L	50.0	25.0	592
76160-2	SC-700B-WDR-154	09:45	17:10	mg/L	50.0	25.0	508

QA/QC Summary

	40311	, i.D.	Number	Concentra	ation	Conc	entration	Difference	limits	Control	
	Duplic	ate	976148	319			316	0.94%	_ <u>≤</u> 20%	Yes	
QC Std I.D,	Lab Number	Conc.c unspike sampi	d Dilution	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	976148	_ 319	100	4.00		400	712	719	98.3%	85-115%	Yes

Duplicate

Relative

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	19.8	20.0	99.0%	90% - 110%	Yes
MRCVS#1	15,1	15.0	<u>1</u> 01%	90% - 110%	Yes
MRCVS#2	15.3	15.0	102%	90% - 110%	Yes
MRCVS#3	15.3	15.0	102%	90% - 110%	Yes
MRCVS#4	15.2	15.0	101%	90% - 110%	Yes
LCS	20.2	20.0	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

La – Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, Investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O15

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Relative

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters roject Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

QC STD I.D.

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008

QC Within

Collected: June 4, 2008 Received: June 4, 2008

Prep/ Analyzed: June 5, 2008 Analytical Batch: 06AN08D

nvestigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

<u>LI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
76160-1	SC-100B-WDR-154	09:25	10:50	mg/L	5.00	1.00	2.84
76160-2	SC-700B-WDR-154	09:45	11:01	mg/L	5.00	1.00	2.61

QA/QC Summary

	7		Number			Conce	entration	Difference	limits	Control		
	Duplica	te	976149	1.73			.72	0.58%	≤ 20%	Yes		
QC Std I.D.	Lab Number	Conc.of unspiked sample	I Dilution	Added Spike Conc.		IS ount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control	
MS	976149	1.73	1.00	2.00	2.	.00	3.73	3.73	100%	75-125%	Yes	l

Duplicate

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	3.95	4.00	98.8%	90% - 110%	Yes
MRCVS#1	2.99	3.00	99.7%	90% - 110%	Yes
MRCVS#2	2.98	3.00	99.3%	90% - 110%	Yes
MRCVS#3	2.98	3,00	99.3%	90% - 110%	Yes
LCS	4.00	4.00	100%	90% - 110%	Ves

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

Acceptance

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O16

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160

Date: June 18, 2008

Collected: June 4, 2008 Received: June 4, 2008

Prep/ Analyzed: June 6, 2008 Analytical Batch: 06NO208C

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

TLI I.D. Field I.D. Sample Time <u>Run Time</u> <u>Units</u> DF RL Results 976160-1 SC-100B-WDR-154 09:25 08:43 mg/L 1.00 0.0050 ND 976160-2 SC-700B-WDR-154 09:45 08:44 mg/L, 1.00 0.0050 ND

QA/QC Summary

	QC ST) I.D.	Laboratory Number	Concentra	ation		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	976160-2	ND			ND	0.00%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	i Dilution	Added Spike Conc.	_	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	976160-2	0.00	1.00	0.0200	O.	0200	0.0198	0.0200	99.0%	75-125%	Yes

QC Std 1.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.0050		<0.0050	Yes
MRCCS	0.0204	0.0200	102%	90% - 110%	Yes
MRCVS#1	0.0200	0.0200	100%	90% - 110%	Yes
LC\$	0.0404	0.0400	101%	90% - 110%	Yes
LCSD	0.0405	0.0400	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

たっ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976160 Reported: June 18, 2008 Collected: June 4, 2008 Received: June 4, 2008 Analyzed: See Below

Samples: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Attention: Shawn Duffy

Investigation: Total Metal Analyses as Requested

Client: E2 Consulting Engineers, Inc.

Oakland, CA 94612

155 Grand Ave. Suite 1000

Analytical Results

SAMPLE ID:	SC-100B-WDR-154	Time Coll	ected:	09:25		LAB II	976160-1	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time
Aluminum	EPA 200.8	ND	1.00	μg/L	50.0	060608A	06/06/08	Analyzed 14:03
Antimony	EPA 200.8	ND	1.00	μg/L	3.00	061208A	06/12/08	14:51
Arsenic	EPA 200.8	ND	1.00	μg/L	5.00	060608A	06/06/08	14:03
Barium	EPA 200.8	ND	1.00	μg/L	300	060608A	06/06/08	14:03
Chromium	EPA 200.8	1250	5.00	μg/L	1.00	060608A	06/06/08	14:11
Copper	EPA 200.8	ND	1.00	μg/L	10.0	060908A	06/09/08	14:46
Lead	EPA 200.8	ND	1.00	μg/L	2.00	060608A	06/06/08	14:03
Manganese	EPA 200.8	ND	1.00	μg/L	20.0	060608A	06/06/08	14:03
Molybdenum	EPA 200.8	21.1	1.00	μg/L	5.00	060608A	06/06/08	14:03
Nickel	EPA 200.8	ND	1.00	μg/L	20.0	060608A	06/06/08	14:03
Zinc	EPA 200.8	ND	1.00	μg/L	20.0	060908A	06/09/08	14:46
Boron	EPA 200.7	1070	1.00	μg/L	200	061008A	06/10/08	11:44
Iron	EPA 200.7	ND	1.00	μg/L	20.0	061008A	06/10/08	11:44

SAMPLE ID: SC-7	00B-WDR-154	Time Coll	ected:	09:45		LAB ID:	976160-2	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	1.00	μg/L	50.0	060608A	06/06/08	14:17
Antimony	EPA 200.8	ND	1.00	μg/L	3.00	061208A	06/12/08	14:57
Arsenic	EPA 200.8	ND	1.00	μg/L	5.00	060608A	06/06/08	14:17
Barium	EPA 200.8	ND	1.00	μg/L	300	060608A	06/06/08	14:17
Chromium	EPA 200.8	ND	1.00	μg/L	1.00	060608A	06/06/08	14:17
Copper	EPA 200.8	ND	1.00	μg/L	10.0	060908A	06/09/08	15:10
Lead	EPA 200.8	ND	1.00	μg/L	2.00	060608A	06/06/08	14:17
Manganese	EPA 200.8	105	1.00	μg/L	20.0	060608A	06/06/08	14:17
Molybdenum	EPA 200.8	15.1	1.00	μg/L	5.00	060608A	06/06/08	14:17
Nickel	EPA 200.8	ND	1.00	μg/L	20.0	060608A	06/06/08	14:17
Zinc	EPA 200.8	ND	1.00	μg/L	20.0	060908A	06/09/08	15:10
Boron	EPA 200.7	1330	1.00	μg/L	200	061008A	06/10/08	12:13
Iron	EPA 200.7	ND	1.00	μg/L	20.0	061008A	06/10/08	12:13

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 018

Report Continued

SAMPLE ID:	SC-701-WDR-154	Time Col	lected:	09:35		LAB ID	976160-3	
Parameter	Method	Reported Value	D.F.	Units			Date	Time
Antimone			DF	Units	RL	Batch	Analyzed	Analyzed
Antimony	EPA 200.8	ND	5.00	μg/L	3.00	061208A	06/12/08	15:03
Arsenic	EPA 200.8	ND	5.00	μg/L	5.00	060608A	06/06/08	14:53
Barium	EPA 200.8	ND	5.00	μg/L	300	060608A	06/06/08	14:53
Beryllium	EPA 200.8	ND	5.00	μg/L	1.00	061008A	06/10/08	11:56
Cadmium	EPA 200.8	ND	5.00	μg/L	2.00	060608A	06/06/08	14:53
Chromium	EPA 200.8	1.02	5.00	μg/L	1.00	060608A	06/06/08	14:53
Cobalt	EPA 200.8	6.13	5.00	μg/L	5.00	060608A	06/06/08	14:53
Copper	EPA 200.8	11.1	5.00	μg/L	10.0	060908A	06/09/08	15:16
Lead	EPA 200.8	ND	5.00	μg/L	2.00	060608A	06/06/08	14:53
Mercury	EPA 245.1	ND	1.00	μg/L	0.20	0610HG08A	06/10/08	N/A
Molybdenum	EPA 200.8	85.5	5.00	μg/L	5.00	060608A	06/06/08	14:53
Nickel	EPA 200.8	ND	5.00	μg/L	20.0	060608A	06/06/08	
Selenium	EPA 200.8	17.0	5.00	μg/L	5.00	060608A	06/06/08	14:53
Silver	EPA 200.8	ND	5.00	μg/L	5.00	061208A		14:53
Thallium	EPA 200.8	ND	5.00		encorrentes.		06/12/08	15:03
Vanadium	EPA 200.8	ND		μg/L	1.00	060608A	06/06/08	14:53
Zinc			5.00	μg/L	5.00	060608A	06/06/08	14:53
21110	EPA 200.8	ND	5.00	μg/L	20.0	060908A	06/09/08	15:16

ND: Not detected,or below limit of detection.

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services このこのナケ

Ŗ 10 Days PAGE TURNAROUND TIME COC Number DATE

	TRUE 14201 (714)7 www.1	TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 {714}730-6239 FAX: (714) 730-6462 www.truesdail.com	UES, INC. Ustin, CA 927) 730-6462	80-7008		CHAI	CHAIN OF CUSTODY RECORD [IM3Plant-WDR-154]	CUS'	I OF CUSTODY RE [IM3Plant-WDR-154]	REC [54]	0 <u>%</u> 0					COC Number TURNAROUN DATE	COC Number FURNAROUND TIME DATE	JIME	10 PAGE	10 Days	# p	
.	COMPANY	E2				-				Re	Rec'd	/90	04/08		/			******		00	COMMENTS	
	PROJECT NAME	PG&E Topock								•	ලා කී	9.	976160	0				_	_	_	-	
	PHONE	(530) 229-3303		** (530	FAX (530) 339-3303		*****		CONTRACTOR S	•		-	£0/	•	- A	-	•	- 38	900)	3	75	_
	ADDRESS	155 Grand Ave Ste 1000 Oakland CA 94612	Ste 1000 4612	ı			P	-(7:005) D.Mo.N.	W SS W	(102	•		V 'ZON '#	- AN . S.	nous	(E)		3VIATV	12-27	8.1	179	· ·
	P.O. NUMBER	358342.TM.02.00	00	TEAL .	-		de Filler	A CLUEDA (2007) TI	(2007) Li CILPLA	+VI	-	H (0)	OS '5) (0)		(05 15M)	Nonchu		00 40 S	~~~	7.84	22	N
	SAMPLERS (SIGNATURE	ATURE				0 016	2/ (9:0	s _{lejew}	uoo y	OS MASONS)	ννε) ₈₂ .	00ε) sz.	(6614)	109) ou	S) Au		- an	A SOL	opt-ame	97.6	- A	و
	SAMPLE LD.		DATE	TIME	DESCRIPTION	<i>99</i> 0	*P7P	/40 <u>/</u>	SQI	_	,,, T	10pu	9/2		ARI	+	^^ \	<u>.</u>	יון			
7	- SC-100B-WDR-154	R-154	2260 80-h-91	22,60	Water	×	×		×	×		×	_	×	×	-	2	_	ر د ار			
	100 TOOL	0 154	المارية	700	Water	×	×	-	× ×	×	_	×		×	×		5		7:4			
(SC-1005-WDR-154	<u> </u>	1-4-00 AG2C	2027	Water	×		×	×	×	×						7	٠	2=4			
ر ر	- 5 SC-/01-WUR-104	-104	3	017		$\frac{1}{1}$		1	╣			1					ρI	TOT	TOTAL NUMBER OF CONTAINERS	ROFCON	TAINERS	S

Level III QC

Car Sample Conditions

ned) Name Company!	Signature Signature (Received) Row facio Daylog Name John Detz Company Signature (Received) Row facio Daylog Name Bow PACIO MYK Agency Signature (Received) Row facio Daylog Name Bow PACIO MYK Agency Signature (Received) Row facio Daylog Name Row PACIO MYK Agency Signature (Received) Mame Detz Agency Signature O Signature O Signature O Signature O Signature O Signature	SIGNATURE RECORD Company! Company! Company! Company! Agency Company! Agency Company! Agency Company! Agency	Date! 6-4-28 Time 10:00 Date! 6-4-58 Time 5-4-58 Time 2,3-2 Date! 6,4-08 Time 2,3-2 Date! 7,408 Time 2,3-3 Time 2,3-3	SAMPLE CONDITIONS RECEIVED COOL WARM P CUSTODY SEALED YES NO P SPECIAL REQUIREMENTS:
Apelicy	ed)		Date/ Time	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 23, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-155 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 976375

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-155 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 11, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

The straight run for the matrix spike for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

6/ K.R.P. Iyer

Quality Assurance/Quality Control Officer

Ali Khang

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 **Date:** June 23, 2008

Collected: June 11, 2008 Received: June 11, 2008

ANALYST LIST

The state of the s		
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	lordan Stavrev
EPA 200.8		Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

J 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Prep. Batch: 061308B

Laboratory No.: 976375

Date: June 23, 2008

Collected: June 11, 2008

Received: June 11, 2008

Prep/ Analyzed: June 13, 2008

Analytical Batch: 061308B

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using EPA 200.8

Analytical Results Total Chromium

Results Run Time DF RL TLI I.D. Field I.D. <u>Units</u> Method 16:07 1.00 1.00 ND SC-700B-WDR-155 μg/L EPA 200.8 976375

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance Ilmits	QC Within Control
Duplicate	976404-7	2.38	2.45	2.90%	<u>≤</u> 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MŞ	976404-7	2.38	1.00	50.0	50.0	44.3	52.4	83.8%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<1.00	***	<1.00	Yes
MRCCS	47.7	50.0	95.4%	90% - 110%	Yes
MRCVS#1	47.3	50.0	94.6%	90% - 110%	Yes
MRCVS#2	47.4	50,0	94.8%	90% - 110%	Yes_
ics	47.0	50.0	94.0%	80% - 120%	Yes
LCS	46.8	50.0	93.6%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Truesdail Laboratories, Inc.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE
TUSTIN, CALIFORNIA 92780-7008
(714) 730-6239 · FAX (714) 730-6462
www.truesdall.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 976375

Date: June 23, 2008 Collected: June 11, 2008

Received: June 11, 2008

Prep/ Analyzed: June 11, 2008 Analytical Batch: 06CrH08H

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time Run Time Units DF RLResults 976375 SC-700B-WDR-155 08:45 22:09 μg/L 1.05 0.20 ND

QA/QC Summary

	QC ST) I.D.		oratory imber	Concentrati	ion	1 .	plicate entration	Percent Difference		eptance limits	1 -	C Within Control	
	Duplic	cate	97	6374-1	1270		1	310	3.10%	•	<u><</u> 20%		Yes	
QC Std	Lab Number	Conc unspil samp	ked	Dilution Factor		Ι.	MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample		MS% ecovery	Acce	ptance limits	QC Within Control
MS	976375	0.00	0	1.06	1.00		1.06	1.03	1.06	,	97.2%	. 9	90 - 110%	Yes
		QC	Std	I.D.	Measured Concentration	Ι.	neoretica ncentratio		-		QC With	1		

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	4.81	5.00	96.2%	90% - 110%	Yes
_MRCVS#1	9.73	10.0	97.3%	95% - 105%	Yes
MRCVS#2	9.84	10.0	98.4%	95% - 105%	Yes
MRCVS#3	9.89	10.0	98.9%	95% - 105%	Yes
MRCV\$#4	10.1	10.0	101%	95% - 105%	Yes
LCS	4.85	5.00	97.0%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 976375

Date: June 23, 2008

Collected: June 11, 2008

Received: June 11, 2008 Prep/ Analyzed: June 12, 2008

Analytical Batch: 06TUC08U

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

 TLI I.D.
 Field I.D.
 Sample Time
 Units
 DF
 RL
 Results

 976375
 SC-700B-WDR-155
 08:45
 NTU
 1.00
 0.100
 ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	976375	ND	ND	0.00%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.100		<0.100	Yes
LCS	8.40	8.00_	105%	90% - 110%	Yes
LCS	8.39	8,00	105%	90% - 110%_	Yes
LCS	8,20	8.00	103%_	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 976375

Date: June 23, 2008 Collected: June 11, 2008

Received: June 11, 2008 Prep/ Analyzed: June 12, 2008

Analytical Batch: 06PH08O

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D.

Field I.D.

Sample Time

Run Time

Units

MDL

<u>RL</u>

Results

976375

SC-700B-WDR-155

08:45

08:20

pΗ

0.0700

2.00

8.09

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	976375	8.09	8.09	0.00	+ 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.03	7.00	0.03	+ 0.100 Units	Yes
LC\$ #1	7.04	7.00	0.04	<u>+</u> 0.100 Units	Yes
LCS #2	7.04	7.00	0.04	# 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

√w Mona Nassimi, Manager Analytical Services

Truesdail Laboratories, Inc.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

vn Duffy
Laboratory No.: 976375

(1) Groundwater Samples

Date: June 23, 2008 Collected: June 11, 2008 Received: June 11, 2008 Prep/ Analyzed: June 12, 2008

Analytical Batch: 06EC08G

investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI I.D.
 Fleld I.D.
 Units
 Method
 DF
 RL
 Results

 976375
 SC-700B-WDR-155
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6970

QA/QC Summarv

ı ı		_ [' Concentrat	lon	on Duplicate F Concentration		Relative Percent Difference		Acceptance ilmits		QC Within Control
Duplicate 9763		ate 976375	6970		6970			0.00%	:	≤ 10%	Yes
		QC Std I.D.	Measured Concentration		Theoretical oncentration	Perce Recov		Acceptano Limits	ce	QC Within	n
		Blank	ΝĎ		<2.00			<2.00		Yes	
	Į	ccs	701		706	99.3	%	90% - 110	%	Yes	
	ļ	CVS#1	974		996	97.8	%	90% - 110	%	Yes	
	L	CVS#2	975		996	97.9	%	90% - 110	%	Yes	
	Ĺ	LCS	701		706	99.3	%	90% - 110	%	Yes	
	ĺ	LCSD	701		706	99.3	%	90% - 110	%	Yes	7

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O11

Truesdail Laboratories, Inc.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Laboratory No.: 976375

Collected: June 11, 2008

Date: June 23, 2008

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Received: June 11, 2008 Prep/ Analyzed: June 12, 2008 Analytical Batch: 06TDS08F

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 976375 Field I.D.

SC-700B-WDR-155

Units mg/L

Method SM 2540C

RL250 Results 1 4 1 4520

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance ilmits	QC Within Control
Duplicate	976375	4520	4490	0.33%	<u><</u> 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	D	<25.0	-	<25.0	Yes
LCS 1	500	500	100%	90% - 110%	Yes
LCS 2	496	500	99.2%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 012

E # 6 8	
ر ا	

PROJECT NAME

COMPANY

RUESDAIL LABORATORIES, INC. 4201 Franklin Avenue, Tustin, CA 92780-7008 14)730-6239 FAX: (714) 730-6462

CHAIN OF CUSTODY

COC Number	THE SOUTH STATE OF THE
RECORD	

COMMENTS

뚱

10 Days

PAGE NUMBER OF CONTAINERS **TURNAROUND TIME** DATE \$5.4 834 £08 Turbidity (SM2730) [IM3Plant-WDR-155] (8HOOS MIS) Hd Specific Conductance (120.1) FAX (530) 339-3303 TEAM 155 Grand Ave Ste 1000 Oakland, CA 94612 358342.TM.02.00 (530) 229-3303 PG&E Topock SAMPLERS (SIGNATURE 囧

Level III QC ALERT!!

Constitute Conditions Definition Alkanded

TOTAL NUMBER OF CONTAINERS

3

6-40

×

×

×

×

×

<u>84</u>2

25-08 0-1-08

SC-700B-WDR-155

SAMPLE I.D.

P.O. NUMBER

ADDRESS

PHONE

DESCRIPTION Water

퍪

동	CHAIN OF CUSTODY SIGNATURE RECORD	SNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed John Deetz Rompar	Company/ * Agency OM (Date/ 6 - (1 - 0 8 Time 08 50	RECEIVED COOL WARM F
Signature J', Printed Printed Compa (Received) Sourtacio Daylog Name BoutFACLO DAYLA Agency	Printed Name BoviFAC.10 VAYAG	Company! 72-7	Date/ 6-11-08 1530	CUSTODY SEALED YES 🗍 NO 🗍
Signature Signature Printed B. DATKG	Printed B. DAYK	Company/ Agency (C)	Date/6-11-08 Time 2,30	SPECIAL REQUIREMENTS:
Signature (Salar) (Dough	Frinted Rafer	Company! T.L.T.	Date/ 6-1/-08 Time 2/:70	
Signature // (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 2, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-156 PROJECT, GROUNDWATER

MONITORING, TLI No.: 976565

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-156 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 18, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample was received past the method specified holding time for pH by SM 4500H B. In addition, the sample for Hexavalent Chromium analysis by EPA 218.6 appeared to be either improperly preserved or not preserved with buffer in the field (pH of 6 or 7 in Hexavalent Chromium bottle). Therefore, this sample was received and preserved in the laboratory past the 24-hour method specified holding time.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

The straight run for the matrix spike for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution (in analytical batch 06CrH08Q) agree with those from the straight run, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to ← Mona Nassimi

Manager, Analytical Services

K. R. P. Tye

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 **Date:** July 2, 2008

Collected: June 17, 2008 Received: June 18, 2008

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Relative

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 062508A

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976565

Date: July 2, 2008

Collected: June 17, 2008 Received: June 18, 2008 Prep/ Analyzed: June 25, 2008

Analytical Batch: 062508A

Acceptance | QC Within

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

TLI I.D. Field I.D. <u>Units</u> <u>Method</u> Run Time <u>DF</u> <u>_RL</u> <u>Results</u> 976565 SC-700B-WDR-156 μg/L **EPA 200.8** 11:01 1.00 1.00 ND

QA/QC Summarv

Duplicate

	40.010	'	Number	Concentra	Conc	entration	Difference	limits	Control	
	Duplic	ate 9	76519-1	55.8		57.4	2.83%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	. Solke	MS Amount	Measured Conc. of Spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	976519-1	55.8	1.00	50.0	50.0	102	106	92.4%	70-130%	Yes
		QC Std	I I.D.	Measured oncentration	Theoretica Concentration					

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<1.00		<1.00	Yes
MRCCS	50.1	50.0	100%	90% - 110%	Yes
MRCVS#1	48.6	50.0	97.2%	90% - 110%	Yes
MRCVS#2	47.7	50.0	95.4%	90% - 110%	Yes
MRCVS#3	50.5	50.0	101%	90% - 110%	Yes
ICS	49.5	50.0	99.0%	80% - 120%	Yes
LCS	50.4	50.0	101%	90% - 110%	Vac

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Î)=

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Laboratory

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342,TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 976565

Date: July 2, 2008

Collected: June 17, 2008

Received: June 18, 2008 Prep/ Analyzed: June 19, 2008

Analytical Batch: 06CrH08P

Acceptance

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time Run Time <u>Units</u> DF RLResults 976565 SC-700B-WDR-156 15:00 09:43 μg/L 1.05 0.20 ND J

QA/QC Summary

Duplicate

	Duplic		1umber 76566-1	ND		Concentration	Difference	limits	Control	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution	Added Spike Conc.	MS Amou	Measured Conc. of	Theoretica Conc. of spiked sample	< 20% MS% Recovery	Yes Acceptance limits	QC Within Control
MS	976565	0.00	1.06	1.00	1.00	6 1.07	1.06	101%	90 - 110%	Yes
			-					r		

QC Std 1.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	5.18	5.00	104%	90% - 110%	Yes
MRCVS#1	9.97	10.0	99.7%	95% - 105%	Yes
MRCVS#2	9,80	10.0	98.0%	95% - 105%	Yes
MRCVS#3	9.66	10.0	96.6%	95% - 105%	Yes
LCS	5.16	5.00	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

www.truesdail.com

ND

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342,TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 976565

Date: July 2, 2008 Collected: June 17, 2008

Received: June 18, 2008 Prep/ Analyzed: June 19, 2008 Analytical Batch: 06TUC08X

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D. Field I.D. Sample Time <u>Units</u> DF Results RL 976565 SC-700B-WDR-156 15:00 NTU 1.00 0.100

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentratio	n n	Dupl Concer		Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	976589-1	2.85		2.	36	0.35%	≤ 20%	Yes
	<u> </u>	Managerad	Thee					

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.100		<0.100	Yes
LCS	7.94	8.00	99.3%	90% - 110%	Yes
LCS	8.05	8.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 009

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 976565

Date: July 2, 2008 Collected: June 17, 2008 Received: June 18, 2008 Prep/ Analyzed: June 19, 2008

Analytical Batch: 06PH08W

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D. Field I.D. Sample Time Run Time <u>Units</u> MDL. RL Results 976565 SC-700B-WDR-156 15:00 10:25 pН 0.0700 2.00 8.10 J

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance Ilmits	QC Within Control
Duplicate	976565	8.10	8.10	0.00	± 0.100 Units	Yes

					
QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.04	7.00	0.04	+ 0.100 Units	Yes
LC\$ #1	7.05	7.00	0.05	+ 0.100 Units	Yes
LCS #2	7.04	7.00	0.04	+ 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 976565

Date: July 2, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: June 17, 2008 Received: June 18, 2008

Prep/ Analyzed: June 20, 2008

Analytical Batch: 06EC08J

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

TLI I.D. Field I.D. Units Method <u>DF</u> <u>RL</u> Results 976565 SC-700B-WDR-156 umhos/cm EPA 120.1 1.00 2.00 6940

QA/QC Summary

ł .							
QC ST		(Oncontrati	ion Duplic Concenti		Relative Percent Difference	Acceptance limits	QC Within Control
Duplic	ate 976534-	1 1990	2000)	0.50%	≤ 10%	Yes
	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percer Recove		ce QC With	
	Blank	ND	<2.00		<2.00	Yes	-
	ccs	702	706	99.4%	90% - 110		
ļ	CVS#1	977	996	98.1%	90% - 110)% Yes	
ļ	CVS#2	978	996	98.2%	90% - 110	% Yes	
	LCS	702	706	99.4%	90% - 110	% Yes	
	LCSD	702	706	99.4%	90% - 110		7

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom It is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 976565

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Date: July 2, 2008

Collected: June 17, 2008 Received: June 18, 2008

Prep/ Analyzed: June 20, 2008 Analytical Batch: 06TDS08N

Investigation:

Total Dissolved Sollds by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 976565 <u>Field I.D.</u>

SC-700B-WDR-156

<u>Units</u> mg/L Method SM 2540C

<u>RL</u> 125 Results 4680

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	976519-3	1220	1190	1.24%	<u>≤</u> 5%	Yes

QC Std I,D,	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<25.0		<25.0	Yes
LCS 1	504	500	101%	90% - 110%	Yes
LCS 2	501	500	100%	90% - 110%	Yes

NO: Below the reporting limit (Not Detected).

RL: Reporting Limit.

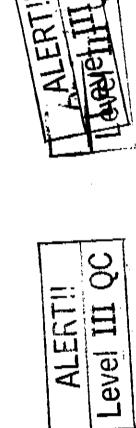
Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

5959£6


CHAIN OF CUSTODY RECORD

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

[IM3Plant-WDR-156]

10 Days	PAGE 1 OF 1
TURNAROUND TIME	DATE 6-17-08

COMPANY	E2		: 				•	•	•	•		_	•		•	***			
PROJECT NAME	PG&E Topock					****		•	*****	•	`~_		990	18/08	_			COMMEN	
PHONE	(530) 229-3303		FAX (530) 339-3303	339-3303		*****	un,	-	•		ž G	304 F.		55.55			3		-
ADDRESS	155 Grand Ave Ste 1000	Ste 1000	ı			Chrom	(Chrom)	(10									NNER	1-8.0	
9	258342 TM 02 00	71Q 0.	 	•		P∂ PI	E107 (7	ZL) 02.		((TNO:	5912-	
	000042. I M. 02.	3		-		(S) (qe	anct ^o			DE 171		****			****	•)))	. (
SAMPLERS (SIGNATURE	ATURE				(98	S/e _{/e}	Con	ペンフィル	$v_{OS_{P_i}}$	······································	•	-	****	*****		•	B TEMP-	P-88.7	
G H I I I I I I I I I I I I I I I I I I		DATE		DESCRIPTION	Cr6 (27,	MIBIOT	Dechi		MR) HQ	_	•					- "IN	alva	77/	
SC-700B-WDR-156		647-08 15:00	15,100	Water	×	<u>-</u>	×		×	十	\vdash	igspace			†-	3			
			3				1				-	-			1	ω		TOTAL NUMBER OF CONTAINERS	_s

For Second Continue

SAMPLE CONDITIONS	RECEIVED COOL □ WARM □ *F	CUSTODY SEALED YES 🔲 NO 🗓	SPECIAL REQUIREMENTS:			
	Date/ 6-17-00 Time /51/0	Date (-18-08)	Date 6-18.08	Date/ Torth	Date/ 1450 PT ST PT	Date/ Time
CHAIN OF CUSTODY SIGNATURE RECORD	in Deet 2 Agency Omi	L. Y. T. K. J. J. L. J.	las he 'Agency [. L.]	Company/ Agency	Company/ Agency	Company/ Agency
CHAIN OF CU	Dect Printed John	Da / 1/k Name	Printed //	Printed Name	Printed Name	Printed Name
	Signature (Relinquished)	Signature : The (Received)	Signature (Relinquished)	Signature (CReceived)	Signature (Relinquished)	Signature (Received)

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 2, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-157 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 976734

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-157 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 26, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

The straight run for the matrix spike for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

K. R. P. S.K.

Sean Gunda

K.R.P. Iver

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976734

Date: July 2, 2008 Collected: June 26, 2008 Received: June 26, 2008

ANALYST LIST

	William To Committee of the Committee of	
l = =	Specific Conductivity	Tina Acquiat
SM 4500-H B	pH	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

155 Grand Ave. Suite 1000

Client: E2 Consulting Engineers, Inc.

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 062708A

Laboratory No.: 976734

Date: July 2, 2008

Collected: June 26, 2008 Received: June 26, 2008

Prep/ Analyzed: June 27, 2008

Analytical Batch: 062708A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

Field I.D. TLI_I.D. <u>Units</u> <u>Method</u> Run Time DF RL Results 976734 SC-700B-WDR-157 μg/L **EPA 200.8** 10:07 1.00 1.00 ND

QA/QC Summarv

	QC STD	, I.D.	sboratory Number	Concent	ration		licate ntration	Percent Difference	Ac	ceptance limits	QC Within Control	
	Duplic	ate	976734	ND	<u> </u>	^	4D □	0.00%		<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilutio Facto	Snike		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample		MS% ecovery	Acceptance limits	QC Within Control
MS	976734	0.00	1.00	50.0		50.0	56.5	50.0		113%	70-130%	Yes
		QC Sto	i I.D.	Measured Concentration		eoretical icentratio				QC With	in	•

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<1.00		<1.00	Yes
MRCCS	50.9	50.0	102%	90% - 110%	Yes
MRCVS#1	47.8	50.0	95.6%	90% - 110%	Yes
ics	48,1	50,0	96.2%	_80% - 120%	Yes
LCS	48.8	50.0	97.6%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 976734

Date: July 2, 2008

Collected: June 26, 2008 Received: June 26, 2008

Prep/ Analyzed: June 27, 2008 Analytical Batch: 06CrH08U

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time Run Time <u>U</u>nits DF RL Results 976734 SC-700B-WDR-157 13:30 08:22 μg/L 1.05 0.20 ND

QA/QC Summary

					_				*******	ч.	<u> </u>					
	QC ST	D I.D.		orator umber	У	Concentrati	on		licate ntration	1	Relative Percent Difference		eptance limits		QC Within Control	
	Duplic	ate	97	6733-4		3720		34	180		6.67%		≤ 20%	十	Yes	
QC Std I.D.	Lab Number	Con unsp sam	iked	Diluti Facto		Added Spike Conc.	_ `	MS nount	Measur Conc. c spiked sample	of I	Theoretical Conc. of spiked sample	İ	MS% scovery	Ac	ceptance limits	QC Within Control
MS	976734	0.0	00	1.0€	;	1.00	1	1.06	0.992		1.06	_,	93.6%	_	90 - 110%	Yes
		Q	C Std	I.D.	С	Measured oncentration		eoretical centratio		ent very	Acceptan Limits		QC With			
			Blan	k		ND		<0.200	_		<0.200		Yes			
			MRC	cs		5.17		5.00	10	3%	90% - 110		Yes			

101%

99.6%

103%

10.0

10.0

5.00

ND: Below the reporting limit (Not Detected).

MRCVS#1

MRCVS#2

LCS

10.1

9.96

5.17

DF: Dilution Factor.

Respectfully submitted,

95% - 105%

95% - 105%

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

Yes

Yes

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 976734

Date: July 2, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdall.com

Collected: June 26, 2008

Received: June 26, 2008 Prep/ Analyzed: June 27, 2008

Analytical Batch: 06TUC08AB

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D. 976734 Field I.D.

SC-700B-WDR-157

Sample Time

13:30

<u>Units</u> NTU

<u>DF</u> 1.00

<u>RL</u>

Results

0.100 ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	976729-1	3.41	3.43	0.58%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.100		<0.100	Yes
LCS	7.45	8.00	93.1%	90% - 110%	Yes
LCS	7.58	8.00	94.8%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Ollution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

009

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 976734

Date: July 2, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: June 26, 2008 Received: June 26, 2008

Prep/ Analyzed: June 27, 2008 Analytical Batch: 06PH08DD

Investigation:

pH by SM 4500-H B

Analytical Results pH

<u>TLI I.D.</u> 976734

<u>Field I.D.</u>

SC-700B-WDR-157

Sample Time 13:30 Run Time 10:14

<u>Units</u> pH MDL 0.0700 <u>RL</u> 2.00

Results 8.02

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	976734	8.02	8.02	0.00	<u>+</u> 0.100 Units	Yės

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
MRCVS	7.00	7.00	0.00	+ 0.100 Units	Yes
LCS	7,03	7.00	0.03	± 0.100 Units	Yes

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

F., Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.; 976734

Date: July 2, 2008 Collected: June 26, 200

Collected: June 26, 2008 Received: June 26, 2008 Prep/ Analyzed: June 27, 2008

Analytical Batch: 06EC08P

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI I.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 976734
 SC-700B-WDR-157
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6990

QA/QC Summary

QC S		ratory nber	Concentrati	on	on Duplicate Concentration		Relative Percent Difference		Acceptance limits		QC Within Control
Duplic	Duplicate 976734		6990		6990			0.00%		≤ 10%	Yes
	QC Std I.I	o. c	Measured oncentration		heoretical incentration	Perce Recov		Acceptano Limits	:e	QC With	
	Blank		ND		<2.00		<2.00		Yes		-
	ccs		702		706	99.4	%	90% - 110	%	Yes	
	CVS#1		977		996	98.19	%	90% - 110		Yes	-
	LCS		702	_	706	99.49	%	90% - 110	%	Yes	
	LCSD		702		706	99.49	%	90% - 110	%	Vee	7

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 976734

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Date: July 2, 2008

Collected: June 26, 2008

Received: June 26, 2008

Prep/ Analyzed: June 27, 2008 Analytical Batch: 06TDS08S

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 976734

<u>Field I.D.</u>

SC-700B-WDR-157

<u>Units</u> mg/L Method SM 2540C

<u>RL</u> 250 <u>Results</u> 4730

QA/QC Summary

Duplicate 976734 4730 4840 1.15% ≤ 5% Yes	QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
100	Duplicate	976734	4730	4840	1.15%	≤ 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<25.0		<25.0	Yes
LCS 1	498	500	99.6%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

012

TRUESDAIL LABORATORIES, INC.
14201 FRANKLIN AVENUE - TUSTIN, CA 92780-7008
(714) 730-6239 - FAX (714) 730-6462
www.fruesdail.com

CHAIN OF CUSTODY RECORD

PAGE /

DATE 6-36-08

METHODS

TURNAROUND TIME

Ŷ TOTAL NUMBER OF CONTAINERS COMMENTS YES ON O SAMPLE CONDITIONS COOLD WARMD NUMBER OF CONTAINERS Samule Conditions M CUSTODY SEALED SPECIAL REQUIREMENTS: RECEIVED SHOOT HOUSE Date 6 - 26-08 Date: 6-36-09 Dates 6-26-08 Time 1525 Dates 6-26:08 2100 Date/ Time Date/ Oate/ Time Company, Om / CHAIN OF CUSTODY SIGNATURE RECORD Company! × Company/ Agency Company/ Agency Company/ Agency Company/ Agency Company/ Agency Company/ Agency Printed
Name BOWITACIO DAYAG S Bonifacid Dayag Name BONIFACIO DAYAB E068-939 339-3303 DESCRIPTION a Printed // Name // Oc. Printed Name 02.00 1330 Printed Name Printed Name Printed Name 5-708-408-40 CN PHONE (530) 229-3303 155 GRAND DG3E 358342 Signature (Relinquished) Bonyacco SAMPLERS (SIGNATURE), Signature (Relinquished) Signature (Refinquished) P.O. NUMBER Signature (Refinquished Signature (Received) Signature (Received) Signature (Received) Signature (Received) COMPANY.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 24, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-154 PROJECT, SLUDGE

MONITORING,

TLI No.: 976159

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-154 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on June 4, 2008, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

Results above the reporting limit were detected in the Method Blank (Blank Bead) for Selenium SW 6010B. The sample result was over ten times the blank detection, therefor the data was accepted.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

√ Mona Nassimi

Manager, Analytical Services

Al. Khang

Fol K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

Laboratory No.: 976159

Date: June 24, 2008 Collected: June 4, 2008 Received: June 4, 2008

ANALYST LIST

<u>Marking and a second as a sec</u>		And the state of t
EPA 300.0	Fluoride	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Hao Ton
SW 7471A	Mercury	Michel Mendoza
SW 7199	Hexavalent Chromium	David Blackburn

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Relative

Percent

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 976159

Date: June 24, 2008 Collected: June 4, 2008 Received: June 4, 2008

QC Within

Prep/ Analyzed: June 12, 2008 Analytical Batch: 06CrH08N

Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Prep. Batch: 06CrH08N

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Investigation:

Hexavalent Chromium by IC Using Method SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u> Fleid I.D. Sample Time Run Time Units DF RL Results 976159 SC-Sludge-WDR-154 08:04 13:57 mg/kg 10.0 19.3 263

QA/QC Summarv

Duplicate

Sample:

				Number	Concentra	ition	Conce	ntration	Difference	limits	Control	
	Duplicate 976159		263 226		26	15.3%	≤ 20%	Yes				
QC Std I.D.	Lab Number	Conc unspi sam	iked	Dilution Factor	Added Spike Conc.	_ `	MS rount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	976159	26	3	10.0	38.6	·,	386	633	649	95.8%	75-125%	Yes
IM\$	976159	26	3	40.0	98.1	3	924	3760	4187	89.1%	75-125%	Yes
PDMS	976159	26	3	25.0	30.9		773	1000	1036	95.4%	75-125%	Yes
		- 1				1		1 _	. 1	l		

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	מא	<0.400		<0.400	Yes
MRCCS	2.08	2.00	104%	80% - 120%	Yes
MRCVS#1	2.09	2.00	104%	80% - 120%	Yes
LCS	2.12	2.00	106%	80% - 120%	Yes

NO: Below the reporting limit (Not Detected).

QC STD I.D.

DF: Dilution Factor.

Respectfully submitted.

Acceptance

TRUESDAIL LABORATORIES, INC.

√u∠ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

800

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976159

Date: June 24, 2008

Collected: June 4, 2008

Received: June 4, 2008 Prep/ Analyzed: June 9, 2008

Analytical Batch: 06SOLID08B

Investigation:

Total Solids by SM 2540 B

Analytical Results % Moisture

 TLI I.D.
 Field I.D.
 Sample Time
 Units
 Results

 976159
 SC-Sludge-WDR-154
 08:04
 %
 79.3

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	976159	79.3	78.3	1.27%	<u><</u> 20%	Yes

ND: Below the reporting limit (Not Detected).

DF: Ollution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

009

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976159

Date: June 24, 2008 Collected: June 4, 2008

Received: June 4, 2008 Prep/ Analyzed: June 6, 2008

Analytical Batch: 06AN08E

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

TLI I.D. Field I.D. Sample Time Run Time Units DF RLResults 976159 SC-Sludge-WDR-154 08:04 16:46 mg/kg 1.00 19.3 92.9

QA/QC Summarv

	QC STD) I.D. '	Number		Concentration		Concentration		Percent Difference		imits	Control	
	Duplic	ate	97622	2-2	0.223		0.2	22	0.45%		20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	1	ution ictor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MS	976222-2	0.223	1	.00	2.00		2.00	2.34	2.22	1	106%	85-115%	Yes
		QC St	d I.D.		easured centration	_	neoretical ncentration	Percer Recove	-		QC With		

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	4.07	4.00	102%	90% - 110%	Yes
MRCVS#1	3.10	3.00	103%	90% - 110%	Yes
MRCV\$#2	3.10	3.00	103%	90% - 110%	Yes
MRCVS#3	3.10	3.00	103%	90% - 110%	Yes
LCS	4.18	4.00	105%	90% - 110%	Ves

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Samples: One (1) Soil Sample
Project Name: PG&E Topock Project
Project No.: 358342,TM.02.00
P.O. No.: 358342,TM.02.00

Investigation: Total Metal Analyses as Requested

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 976159 Reported: June 24, 2008 Collected: June 4, 2008 Received: June 4, 2008 Analyzed: See Below

Analytical Results

REPORT

SAMPLE ID: SC-SI	udge-WDR-154	Time Coll	ected; 0	8:04		LAB ID:	976159	
		Reported		•			Date	Time
Parameter	Method	Value	DF	Units	<u>R</u> L	Batch	Analyzęd	Analyzed
Antimony	SW 6010B	221	1.00	mg/kg	4.79	061908A	06/19/08	11:00
Arsenic	SW 6010B	69.9	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Barlum	SW 6010B	104	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Beryllium	SW 6010B	309	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Cadmium	SW 6010B	33.3	1.00	mg/kg	4.79	061608A	06/16/08	12:43
Chromium	SW 6010B	16700	10.0	mg/kg	24.0	061608A	06/16/08	12:26
Cobalt	SW 6010B	ND	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Copper	SW 6010B	110	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Lead	SW 6010B	ND	1.00	mg/kg	4.79	061608A	06/16/08	12:43
Mercury	SW 7471A	ND	100	mg/kg	0.0963	0610HG08C	06/10/08	N/A
Molybdenum	SW 6010B	ND	1.00	mg/kg	2.50	061908A	06/19/08	11:00
Nickel	SW 6010B	ND	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Selenium	SW 6010B	236	1.00	mg/kg	12.0	061908A	06/19/08	11:00
Silver	\$W 60108	ND	1.00	mg/kg	4.79	061908A	06/19/08	11:00
Thallium	SW 6010B	ND	1.00	mg/kg	4.79	061608A	06/16/08	12:53
/anadium	SW 6010B	169	1.00	mg/kg	2.50	061608A	06/16/08	12:43
Zinç	SW 6010B	183	1.00	mg/kg	12,0	061608A	06/16/08	12:43

NOTES:

Sample results and reporting limits reported on a dry weight basis.

ND: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

976159

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdall.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-154]

10 Days

COC Number

Days	 გ	COMMENTS				
9	PAGE.					
TURNAROUND TIME	DATE		58	(EHN)	-	_
-	_	വ വ യ	N.	6 Z. Merca	06 15M2) F	Turbidity AmmoniA

,						l	Ī			200	9	l	ŀ		•		
COMPANY	E2					•		Rec	Kec'd U	00/04/08	_					-	COMMENTS
PROJECT NAME	PG&E Topock					_		· ·	တ် •	် <u>စ</u> ်	ກ ີ	- : -		•	_	_	
PHONE	(530) 229-3303		FAX (530) 339-3303	339-3303			ZOJY CND								S		
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 4612	1 1			- (LOOZ) 5	(1200.7)	(12)		ON 'ZON 'M	Z, Merri	A) a	•		RENIATY		
P.O. NUMBER	358342.TM.02.00	8	TEAM	-	de Filier	CILPE	COO.7)	(20	17 (OS 12	Θ _{β/1} (8	(0E12		330	02		
SAMPLERS (SIGNATURE	ATURE				7 (98	Jan P	PUOS	Ote zu	0'00ε) 0'00ε)	(66)	0109)	1/S) e _{[L}	-	∀. 7€			
SAMPLE I.D.		DATE	3	DESCRIPTION	Ce (54	W/EJO/	S) SQ1 S) SQ1	VS)Hd	enoina enoina	198W (2) 9/3	MAN	KOULUY	_]	MUN			
SC-Sludge-WDR-154	/DR-154	16-4-08 B:04	B:04	Sludge						×				7			
		· · · · · · · · · · · · · · · · · · ·												77	TOTAL	UMBER OF (TOTAL NUMBER OF CONTAINERS

For Sample Conditions Serving Renge

Level III QC **ALERT!!**

	<u>پ</u>		:	•		
SAMPLE CONDITIONS	RECEIVED COOL WARM	CUSTODY SEALED YES \(\Boxed{\omega}\) NO \(\Boxed{\omega}\)	Date 64.08 2/3 SPECIAL REQUIREMENTS:			
	Date/ 6-4-06 Time 8:20	Date/ 6-4-08 Time 1530	Date 64.08 213	Date/ 6/4/08 Time 2(36	Date/ Time	Date/ Time
SIGNATURE RECORD	cf2_ Agency OM /	Company! T.C.I	Company/ 7L) Agency 7L)	Company TLI	Company/ Agency	Company/ Agency
CHAIN OF CUSTODY SIGNAL	Finled John Deet Agency	Signature Printed Printed Comp Comp	Signature Signature B. UNIAG Perinted B. UNIAG	Name Duck	Printed Name	Printed Name
(Signature (Relinquished)	Signature (Received) (300 Jacob	Signature (Relinquished)	Signature X	Signature (Relinquished)	Signature (Received)

055