

Curt Russell

Topock Onsite Project Manager GT&D Remediation

Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

January 15, 2008

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Board Order R7-2006-0060; WDID No. 7B 36 2033 001

PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System

Discharge to Injection Wells

December 2007 and Fourth Quarter 2007 Monitoring Report / Semi-Annual

July 1 – December 31, 2007 Operation and Maintenance Report

Dear Mr. Perdue:

Enclosed is the combined *December 2007 and Fourth Quarter 2007 Monitoring Report / Semi-Annual July 1 – December 31, 2007 Operation and Maintenance Report* for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) under Order R7-2006-0060. The WDRs apply to IM No. 3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell

Topock Onsite Project Manager

Enclosures:

Combined report: *December 2007 and Fourth Quarter 2007 Monitoring Report/Semi-Annual July 1 – December 31, 2007 Operation and Maintenance Report* for IM No. 3 Groundwater Treatment System.

Robert Perdue Page 2 January 15, 2008

cc: Abdi Haile, Water Board Cliff Raley, Water Board

Tom Vandenberg, State Water Resources Control Board

Aaron Yue, DTSC

Combined Report

December 2007 and Fourth Quarter 2007 Monitoring Report / Semi-Annual July 1-December 31, 2007 Operation and Maintenance Report

Interim Measure No. 3 Groundwater Treatment System PG&E Topock Compressor Station Needles, California Waste Discharge Requirements Board Order No. R7-2006-0060 WDID No. 7B 36 2033 001

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

January 15, 2008

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 Combined Report:

December 2007 and Fourth Quarter 2007 Monitoring Report,
and

July 1, 2007 – December 31, 2007 Semi-Annual Operation and
Maintenance Report

Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060 WDID No. 7B 36 2033 001 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

January 15, 2008

No. C68986

This report was prepared under the supervision of a California Certified Professional Engineer ESSIONAL

Dennis Fink, P.E.

Project Engineer

Contents

		Page
Acro	onyms and Abbreviations	v
1.0	Introduction	1-1
2.0	Sampling Station Locations	2-1
3.0	December 2007 and Fourth Quarter 2007 Monitoring Activities	3-1
	3.2.2 Effluent Streams	3-2
4.0	Monitoring Analytical Results	4-1
5.0	Semi-Annual Operation and Maintenance 5.1 Flowmeter Calibration Records 5.2 Volumes of Groundwater Treated 5.3 Residual Solids Generated (Sludge) 5.4 Reverse Osmosis Concentrate Generated 5.5 Summary of WDR Violations 5.6 Operation and Maintenance – Required Shutdowns 5.7 Treatment Plant Modifications	5-15-25-25-25-3
6.0	Conclusions	6-1
7.0	Certification	7-1
Tabl	es	
1	Sampling Station Descriptions	
2	Flow Monitoring Results	
3	Board Order No. R7-2006-0060 Waste Discharge Requirements Influent Monitoring Results	
4	Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent Monitoring Results	
5	Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse Os Concentrate Results	mosis
6	Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge Monitoring Results	

BAO\080140004

7 Board Order No. R7-2006-0060 Waste Discharge Requirements Monitoring Information

Figures

1 IM No. 3 Project Site Features

TP-PR-10-10-03	Effluent Metering Locations
TP-PR-10-10-11	Influent Metering Locations
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
TP-PR-10-10-08	Reverse Osmosis Storage Tank Sampling and Metering Locations
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations

Appendixes

- A Operations and Maintenance Log
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D December 2007 Laboratory Analytical Reports

BAO\080140004

Acronyms and Abbreviations

EPA U.S. Environmental Protection Agency

gpm gallons per minute

IM Interim Measure

MRP Monitoring and Reporting Program

LES Liquid Environmental Solutions

PG&E Pacific Gas and Electric Company

PLC programmable logic controller

Truesdail Laboratories, Inc.

Water Board California Regional Water Quality Control Board, Colorado River

Basin Region

WDR Waste Discharge Requirements

BAO\080140004

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area. (All figures are located at the end of this report.)

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006, and is the successor to Order No. R7-2004-0103. The Monitoring and Reporting Program (MRP) under the order requires monthly monitoring reports to be submitted by the fifteenth day of the following month.

This combined report covers December 2007 and Fourth Quarter 2007 monitoring activities, and July 1, 2007 through December 31, 2007 Semi-Annual operation and maintenance activities related to operation of the IM No. 3 groundwater treatment system. The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

BAO\080140004 1-1

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations (all tables are located at the end of this report). The locations of the sampling stations are shown on process and instrumentation diagrams TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, which were previously provided in PG&E's Sampling Locations letter to the Water Board Executive Officer, dated June 29, 2005. These diagrams are attached following Figure 1.

BAO\080140004 2-1

3.0 December 2007 and Fourth Quarter 2007 Monitoring Activities

This combined report covers December 2007 monitoring activities, the Fourth Quarter 2007 monitoring activities, and the July 1, 2007 through December 31, 2007 operation and maintenance activities related to the IM No. 3 groundwater treatment system. IM No. 3 monitoring activities between July 1, 2007 and November 30, 2007 were reported in the following monitoring reports:

- *July 2007 Monitoring Report*, submitted to the Water Board August 15, 2007.
- August 2007 Monitoring Report, submitted to the Water Board September 14, 2007.
- *September* 2007 / 3rd *Quarter* 2007 *Monitoring Report*, submitted to the Water Board October 15, 2007.
- October 2007 Monitoring Report, submitted to the Water Board November 15, 2007.
- November 2007 Monitoring Report, submitted to the Water Board December 14, 2007.

3.1 Groundwater Treatment System

Influent to the treatment facility, permitted by Order R7-2006-0060, includes the following sources:

- Groundwater from extraction wells.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

Operation of the groundwater treatment system results in the following three effluent streams:

- **Treated Effluent**: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis Concentrate (brine)**: Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first.

BAO\080140004 3-1

3.2 Groundwater Treatment System Flow Rates for December 2007

Periods of planned and unplanned extraction system downtime are summarized in the Operations and Maintenance Log provided in Appendix A. Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

Groundwater Extraction Wells Flow Rate

During December 2007, extraction wells TW-3D and PE-1 operated at a target pump rate of at 135 gallons per minute (gpm) excluding periods of planned and unplanned downtime. Extraction well TW-2S was operated on December 17th and TW-2D was operated on December 5th and 17th while collecting groundwater samples and/or in support of site activities. The IM No. 3 facility treated 5,919,990 gallons of extracted groundwater during December 2007. The December 2007 monthly average influent flow rate from extraction wells is shown in Table 2.

The operational run time for the IM No. 3 groundwater extraction system (combined or individual pumping from TW-3D and PE-1) was over 99 percent during the December 2007 reporting period.

Groundwater Monitoring Program Generated Water

During December 2007, approximately 4,295 gallons of water were generated from the groundwater monitoring program, and pumped into the IM No. 3 treatment system.

Injection Wells Maintenance Program Treated Water

No water was generated from injection well re-development during December 2007.

3.2.2 Effluent Streams

Treatment System Effluent (Injection Wells)

The treatment system effluent flow rate was measured by flow meters mounted in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11), and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM No. 3 facility injected 5,560,689 gallons of treatment system effluent during December 2007. The December 2007 monthly average effluent flow rate to injection wells is shown in Table 2.

Reverse Osmosis Concentrate

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-PR-10-10-08). The IM No. 3 facility generated 346,127 gallons of reverse osmosis concentrate during December 2007. The December 2007 monthly average reverse osmosis concentrate flow rate is shown in Table 2.

BAO\080140004 3-2

Sludge

The sludge flow rate is measured by the size and weight of containers shipped off-site. Two sludge containers were shipped off-site from the IM No. 3 facility during December 2007. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

Samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to Truesdail via courier service under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival. Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program.

Analyses were performed in accordance with the latest edition of the "Guidelines Establishing Test Procedures for Analysis of Pollutants" (40 Code of Federal Regulations Part 136), promulgated by the United States Environmental Protection Agency (EPA).

During the July 1, 2007 through December 31, 2007 period, analysis of pH was conducted at Truesdail laboratories for each sample. Starting November 20, 2007, analysis of pH was also conducted by field method pursuant to the Water Board letter dated October 16, 2007 (Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling was conducted in accordance with the sampling frequency required by the MRP (see Section 4.0). The December 2007 sampling analytical results are shown in Tables 3, 4, 5, and 6.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060, and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Water Board June 17, 2005. Groundwater monitoring analytical results and groundwater levels for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document.

BAO\080140004 3-3

4.0 Monitoring Analytical Results

The analytical results and laboratory reports for the IM No. 3 groundwater treatment system monitoring program between July 1, 2007 and November 30, 2007 were included in previous monthly reports submitted to the Water Board (see Section 3.0 for a complete listing of reports).

The December 2007 analytical results from groundwater treatment system influent, effluent, reverse osmosis concentrate, and sludge samples are shown on Tables 3, 4, 5, and 6, respectively. The December 2007 laboratory reports prepared by the certified analytical laboratories are included in Appendix D.

In accordance with the WDR reporting requirements, the following sampling frequency schedule was followed during December 2007:

- The influent was sampled monthly; sample date was December 5, 2007. Results are presented in Table 3.
- The effluent was sampled weekly; sample dates were December 5, 12, 19 and 27, 2007. Results are presented in Table 4.
- The reverse osmosis concentrate was sampled monthly; sample date was December 5, 2007. Results are presented in Table 5.
- The sludge was sampled monthly; sample date was December 5, 2007. In accordance with WDRs, sludge is to be sampled each time it is transported offsite (unless sludge is transported offsite more frequently than monthly, in which case, the sampling frequency is monthly). Results are presented in Table 6.
- The sludge is required to have an aquatic bioassay test quarterly; the 4th Quarter 2007 aquatic bioassay test was performed on a sludge sample collected October 3, 2007. The results were presented in the *October 2007 WDR Monitoring Report* submitted to the Water Board on November 15, 2007.

Table 7 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

BAO\080140004 4-1

5.0 Semi-Annual Operation and Maintenance

Pursuant to the WDRs Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Water Board Office twice annually.

This section includes the Semi-Annual Operation and Maintenance Report for the IM No. 3 groundwater treatment system for the period July 1, 2007 through December 31, 2007.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller (PLC) data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operations and Maintenance records are also archived using maintenance software.

The following sections summarize the operations and maintenance activities during this semi-annual reporting period.

5.1 Flowmeter Calibration Records

The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a timely manner consistent with the use, flow and material. The following flowmeters are used at the plant to measure groundwater flow:

Location	Flowmeter ID No.	Current Serial No.	Date of Most Recent Re-Calibrated Meter Installation	Previous Serial No.
Extraction well PE-1	FIT-103	6C036F16000	January 4, 2007	6A022216000
Extraction well TW-3D	FIT-102	6C037216000	January 4, 2007	6A022116000
Extraction well TW-2D ¹	FIT-101	6A021F16000	July 28, 2005	
Extraction well TW-2S ²	FIT-100	6A022016000	July 28, 2005	
Injection well IW-02	FIT-1202	6A022116000	February 2, 2007	6C037016000
Injection well IW-03	FIT-1203	7700F216000	December 19, 2006	
Combined flow to IW-02 and IW-03	FIT-702	7700F316000	December 19, 2006	
Reverse osmosis concentrate	FIT-701	6C037316000	February 2, 2007	6C037316000

Notes:

BAO\080140004 5-1

¹ TW-2D is a backup extraction well last operated in December 2007 for testing.

² TW-2S is a backup extraction well last operated in December 2007 for testing.

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated are provided in Appendix B. 35,278,284 gallons of groundwater were extracted and treated between July 1, 2007 and December 31, 2007. A total of 33,234,748 gallons of treated groundwater were injected back into the Alluvial Aquifer, and 1,977,774 gallons of water were shipped offsite as reverse osmosis concentrate (i.e., brine).

Approximately 25,435 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 67,035 gallons of injection well redevelopment water was treated at the IM No. 3 facility during the July 1, 2007 through December 31, 2007 semi-annual period. Treatment of this water at the IM No. 3 facility is being performed in accordance with the conditions of Order No. R7-2006-0060.

5.3 Residual Solids Generated (Sludge)

During the July 1, 2007 through December 31, 2007 reporting period six containers of sludge were shipped off-site for disposal. The sludge was shipped to Chemical Waste Management at Kettleman Hills for disposal. A listing of each shipment during this period is provided below.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests (cubic yards)	Approximate Wet Weight (Ibs)	Type of Shipment
7/25/2007	11	23,680	non-RCRA hazardous waste
8/28/2007	12	19,960	non-RCRA hazardous waste
10/8/2007	12	23,600	non-RCRA hazardous waste
11/27/2007	7	10,840	RCRA hazardous waste
12/21/2007	8	11,900	non-RCRA hazardous waste
12/31/2007	8	14,120	non-RCRA hazardous waste

Note: The approximate wet weight is provided by the disposal facility based on full container weight less the empty container weight.

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figure TP-PR-10-10-08). From July 1, 2007 through December 31, 2007 approximately 1,977,774 gallons of reverse osmosis concentrate were transported to Liquid Environmental Solutions (LES) in Phoenix, Arizona for disposal.

5.5 Summary of WDR Violations

No WDR violations were identified during the July 1, 2007 through December 31, 2007 semi-annual reporting period. No corrective actions were required.

BAO\080140004 5-2

5.6 Operation and Maintenance – Required Shutdowns

Appendix A contains a summary of the operation or maintenance issues that required shutting down the treatment system during this semi-annual reporting period. Records of routine maintenance are kept on site.

5.7 Treatment Plant Modifications

There were no treatment plant modifications that affected the capacity or performance of the extraction and treatment system during the July 1, 2007 through December 31, 2007 reporting period. The following modifications that did not affect the capacity or performance of the extraction and treatment system were made:

- Replaced turbidity meter for clarifier effluent.
- Replaced existing piping and pumps for sodium hydroxide system.
- Switched to hydrochloric acid for process pH control on September 25, 2007 following Water Board approval.
- Switched to smaller phase separators to hold and transport sludge from the facility.
- Installed drain for clarifier sample ports.
- Changed sludge recirculation pump and actuator valve diaphragms.
- Removed inline valve for 402 tank sludge taps (taps have individual valves).
- Added purge water off-loading line.
- Hard-mounted a peristaltic chemical pump for spent microfilter cleaning solution.
- Removed Pump 602A in July 2007 and operated using Pump 602B. Pump 602A was put back into service in January 2008.
- Remounted microfilter clean-in-place bag filter.

BAO\080140004 5-3

6.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period, and no events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units, were identified during the reporting period.

BAO\080140004 6-1

7.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 12, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0600 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated October 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	behumin
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Onsite Project Manager
Date:	January 15, 2008

BAO\080140004 7-1

TABLE 1 Sampling Station Descriptions December 2007 Monthly Report for Interim Measure No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-PR-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-PR-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-PR-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-PR-10-10-06).

Note:

BAO\080140004 TABLES-1

^{### =} Sequential sample identification number at each sample station.

a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

TABLE 2 Flow Monitoring Results

December 2007 Monthly Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,b}	System Effluent ^{b,c}	Reverse Osmosis Concentrate ^{b,d}
Average Monthly Flowrate (gpm)	132.6	124.6	7.8

Notes:

gpm: gallons per minute. $^{\rm a}$ Extraction wells TW-3D and PE-1 were operated during December 2007. Extraction wells TW-2S and TW-2D were operated on December 17, 2007 to collect groundwater samples.

BAO\080140004 TABLES-2

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates was approximately 0.2 percent, which is within the range of acceptable accuracy considering the margin of error for onsite instrumentation, the water contained within the sludge, purge water treated at the IM No. 3 facility in addition to the extraction wells, and differences in the inventory of water in the treatment system between the beginning and end of the reporting period.

^c Effluent was discharged into injection well IW-03 during December 2007.

^d Reverse Osmosis Concentrate flow meter reading from FIT-701.

TABLE 3
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Influent Monitoring Results

December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Frequency											N	onthly												
Analytes Units ^b	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Lab ^c pH pHunits	Field d pH pHunits		Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic µg/L	Barium µg/L	Boron mg/L	Copper	Fluoride mg/L	e Lead µg/L	Manganese μg/L	Molybdenum μg/L		Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc μg/L
Sample ID Date	50.4	0.0070	0.153	0.0700		0.27	2.9	0.26	0.0710	0.022	0.015	0.016	0.0048		0.0250		0.016	0.017	0.13	0.0350	0.0010	0.600	2.4	0.12
SC-100B-WDR-128 12/5/2007	4810 250	0.295	7890 2.00	7.35 J 2.00	7.28 2.00	1710 1.0	1500 20.0	ND (50.0) 50.0	ND (0.500) 0.500	ND (3.0)	ND (5.0) 5.0	ND (300)	1.05 N	ND (10.0) 10.0	2.66 0.500	ND (2.0)	ND (20.0) 20.0	20.8 5.0	ND (20.0) 20.0	3.20 N	ID (0.0050 0.0050) 601 N	ID (20.0) 20.0	ND (20.0)

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

μg/L = micrograms per liter

mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

RL = project reporting limit

N = nitrogen

^a Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

b Units reported in this table are those units required in the WDRs

c pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 4 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Effluent Monitoring Results a December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

WDRs Effluent	Ave. Monthly	NA	NA	NA	6.5-8.4	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA	6.5-8.4	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Required Sampli	ing Frequency			We	eekly												Monthly	<i>'</i>							
	Analytes	TDS	Turbidity	Specific Conductance	Lab ^e e pH	Field ^f pH	Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
	Units ^c	mg/L	NTU	µmhos/cm	pHunits	pHunits	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L	μg/L	μg/L
1	MDLd	50.4	0.0070	0.153	0.0700		0.053	0.030	0.26	0.0710	0.022	0.015	0.016	0.0048	0.13	0.0250	0.018	0.016	0.017	0.13	0.0350	0.0010	0.600	2.4	0.12
Sample ID	Date																								
SC-700B-WDR-12	28 12/5/2007	3830	ND (0.100) 6690	8.08 J	8.20	ND (1.0)	ND (0.20)	ND (50.0)	ND (0.500)	ND (3.0)	ND (5.0)	ND (300) 1.01	ND (10.0)	2.01	ND (2.0)	81.2	15.3	ND (20.0)	2.84	ND (0.0050)	484	97.1	ND (20.0)
RL		250	0.100	2.00	2.00	2.00	1.0	0.20	50.0	0.500	3.0	5.0	300	0.200	10.0	0.500	2.0	20.0	5.0	20.0	1.00	0.0050	12.5	20.0	20.0
SC-700B-WDR-12	29 12/12/2007	4340	ND (0.100	7100	8.28 J	8.10	3.3	ND (0.20)																	
RL		250	0.100	2.00	2.00	2.00	1.0	0.20																	
SC-700B-WDR-13	30 12/19/2007	4260	ND (0.100) 6790	8.06 J	8.00	ND (1.0)	ND (0.20)																	
RL		250	0.100	2.00	2.00	2.00	1.0	0.20																	
SC-700B-WDR-13	31 12/27/2007	4280	ND (0.100) 6180	8.23 J	7.90	ND (1.0)	ND (0.20)																	
RL		125	0.100	2.00	2.00	2.00	1.0	0.20																	

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

NA = not applicable

μg/L = micrograms per liter

mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

RL = project reporting limit

MDL = method detection limit

N = nitrogen

^a Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04)

b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health

^c Units reported in this table are those units required in the WDRs

d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.

e pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

f Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 - Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 5 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Reverse Osmosis Concentrate Results ^a December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Frequency												Monthly											
Analytes Units ^b	TDS mg/L	Conductance				Hexavalent Chromium mg/L	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Cobalt mg/L		Fluoride mg/L	Lead mg/L	Molybdenum mg/L	Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
Sample ID Date	50.4	0.153	0.0700		0.00027	0.00014	0.00011	0.000075	0.000081	0.00019	0.000058	0.00013	0.00065	0.0250	0.00009	1 0.000084	0.000030	0.00064	0.000080	0.00011	0.000090	0.000062	0.00058
SC-701-WDR-128 12/5/2007	19100	26100	7.86 J	7.82	0.0017	ND (0.0010)	ND (0.0030) I	ND (0.0050)	ND (0.300)	ND (0.0010)	ND (0.0020)	ND (0.0050) ND (0.010	0) 6.81	ND (0.002	0) 0.0712	ND (0.00020)	ND (0.0200)	0.0089	0.0062	ND (0.0010) ND (0.0050)	ND (0.0200)
RL	250	2.00	2.00	2.00	0.0010	0.0010	0.0030	0.0050	0.300	0.0010	0.0020	0.0050	0.0100	0.500	0.0020	0.0050	0.00020	0.0200	0.0050	0.0050	0.0010	0.0050	0.0200

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

µg/L = micrograms per liter

mg/L = milligrams per liter

µmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

RL = project reporting limit

^a Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

b Units reported in this table are those units required in the WDRs

^c pH results are J flagged because recent EPA requirements for pH analysis have 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 6 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a

December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Frequ	uency										Monthly	С								
	alytes Units ^b MDL ate	Chromium mg/kg 1.55	Hexavalent Chromium mg/kg 0.00029	Antimony mg/kg 0.288	Arsenic mg/kg 0.211	Barium mg/kg 0.0361	Beryllium mg/kg 0.0301	Cadmium mg/kg 0.0232	Cobalt mg/kg 0.0366	Copper mg/kg 0.120	Fluoride mg/kg 0.100	Lead mg/kg 0.150	Molybdenum mg/kg 0.100	Mercury mg/kg 0.0029	Nickel mg/kg 0.0632	Selenium mg/kg 0.464	Silver mg/kg 0.0206	Thallium mg/kg 0.103	Vanadium mg/kg 0.0327	Zinc mg/kg 0.0830
SC-Sludge-WDR-128 12/5	/5/2007	21600	293	370	68.2	108	127	57.9	17.7	906	102	111	ND (2.50)	ND (0.100)	77.4	233	ND (4.41)	ND (4.41)	124	1390
RL		110	10.3	4.41	4.41	2.50	2.50	4.41	2.50	2.50	10.3	4.41	2.50	0.100	2.50	11.0	4.41	4.41	2.50	11.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

ND = parameter not detected at the listed value

J = concentration or reporting limits estimated by laboratory or validation

mg/kg = milligrams per killogram

mg/L = milligrams per liter MDL = method detection limit

RL = project reporting limit

^a Sampling Location for all Sludge Samples is the Sludge Collection Bin (see attached P&ID TP-PR-10-10-06)

b Units reported in this table are those units required in the WDR

c Sludge shall be tested for the listed constituents each time sludge is transported offsite, unless transport is more frequent than monthly, in which case the sampling frequency shall be monthly

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-128	Dave Chaney	12/5/2007	12:50:00 PM	TLI	EPA 120.1	SC	12/10/2007	Tina Acquiat
					TLI	EPA 200.7	FE	12/12/2007	Mark Kotani
					TLI	EPA 200.7	В	12/12/2007	Mark Kotani
					TLI	EPA 200.8	ZN	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	SB	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	PB	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	NI	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	MO	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	MN	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CU	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CR	1/4/2008	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	BA	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	AS	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	AL	1/3/2008	Michel Mendoza/Linda Saetern
					TLI	EPA 218.6	CR6	12/5/2007	Jean Paul Gleeson
					TLI	EPA 300.0	FL	12/7/2007	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	12/7/2007	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	12/7/2007	Giawad Ghenniwa
					FIELD	HACH	PH	12/6/2007	Dave Chaney
					TLI	SM2130B	TRB	12/6/2007	Gautam Savani
					TLI	SM2540C	TDS	12/11/2007	Tina Acquiat
					TLI	SM4500-HB	PH	12/6/2007	Tina Acquiat
					TLI	SM4500NH3D	NH3N	12/11/2007	Jordan Stavrev
					TLI	SM4500NO2B	NO2N	12/7/2007	Tina Acquiat
SC-700B	SC-700B-WDR-128	Dave Chaney	12/5/2007	1:15:00 PM	TLI	EPA 120.1	SC	12/10/2007	Tina Acquiat
					TLI	EPA 200.7	В	12/12/2007	Mark Kotani
					TLI	EPA 200.7	FE	12/12/2007	Mark Kotani
					TLI	EPA 200.8	AS	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	ZN	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	SB	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	PB	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	NI	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	MO	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	MN	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CU	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CR	12/19/2007	Michel Mendoza/Linda Saetern

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-128	Dave Chaney	12/5/2007	1:15:00 PM	TLI	EPA 200.8	AL	1/3/2008	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	BA	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 218.6	CR6	12/6/2007	Jean Paul Gleeson
					TLI	EPA 300.0	SO4	12/7/2007	Giawad Ghenniwa
					TLI	EPA 300.0	FL	12/7/2007	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	12/7/2007	Giawad Ghenniwa
					FIELD	HACH	PH	12/6/2007	Dave Chaney
					TLI	SM2130B	TRB	12/6/2007	Gautam Savani
					TLI	SM2540C	TDS	12/11/2007	Tina Acquiat
					TLI	SM4500-HB	PH	12/6/2007	Tina Acquiat
					TLI	SM4500NH3D	NH3N	12/11/2007	Jordan Stavrev
					TLI	SM4500NO2B	NO2N	12/7/2007	Tina Acquiat
SC-700B	SC-700B-WDR-129	Dave Chaney	12/12/2007	1:30:00 PM	TLI	EPA 120.1	SC	12/14/2007	Tina Acquiat
					TLI	EPA 200.8	CR	12/18/2007	Linda Saetern
					TLI	EPA 218.6	CR6	12/12/2007	Jean Paul Gleeson
					FIELD	HACH	PH	12/13/2007	Dave Chaney
					TLI	SM2130B	TRB	12/13/2007	Gautam Savani
					TLI	SM2540C	TDS	12/14/2007	Tina Acquiat
					TLI	SM4500-HB	PH	12/13/2007	Tina Acquiat
SC-700B	SC-700B-WDR-130	Gary Sibble	12/19/2007	10:15:00 AM	TLI	EPA 120.1	SC	12/20/2007	Tina Acquiat
					TLI	EPA 200.8	CR	12/20/2007	Linda Saetern
					TLI	EPA 218.6	CR6	12/20/2007	Jean Paul Gleeson
					FIELD	HACH	PH	12/20/2007	Gary Sibble
					TLI	SM2130B	TRB	12/20/2007	Guatam Savani
					TLI	SM2540C	TDS	12/20/2007	Tina Acquiat
					TLI	SM4500-HB	PH	12/20/2007	Tina Acquiat
SC-700B	SC-700B-WDR-131	Joe Aide	12/27/2007	11:30:00 AM	TLI	EPA 120.1	SC	12/28/2007	Tina Acquiat
					TLI	EPA 200.8	CR	12/28/2007	Linda Saetern
					TLI	EPA 218.6	CR6	12/28/2007	Jean Paul Gleeson
					FIELD	HACH	PH	12/28/2007	Joe Aide
					TLI	SM2130B	TRB	12/28/2007	Guatam Savani
					TLI	SM2540C	TDS	12/28/2007	Tina Acquiat
					TLI	SM4500-HB	PH	12/28/2007	Tina Acquiat
SC-701	SC-701-WDR-128	Dave Chaney	12/5/2007	1:10:00 PM	TLI	EPA 120.1	SC	12/10/2007	Tina Acquiat
					TLI	EPA 200.8	CR	12/19/2007	Michel Mendoza/Linda Saetern

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-128	Dave Chaney	12/5/2007	1:10:00 PM	TLI	EPA 200.8	PB	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	ZN	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	V	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	TL	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CD	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	SB	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	NI	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	MO	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CU	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	CO	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	BE	1/4/2008	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	BA	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	AS	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	AG	12/19/2007	Michel Mendoza/Linda Saetern
					TLI	EPA 200.8	SE	1/4/2008	Michel Mendoza/Linda Saetern
					TLI	EPA 218.6	CR6	12/6/2007	Jean Paul Gleeson
					TLI	EPA 245.1	HG	12/15/2007	Michel Mendoza
					TLI	EPA 300.0	FL	12/7/2007	Giawad Ghenniwa
					FIELD	HACH	PH	12/6/2007	Dave Chaney
					TLI	SM2540C	TDS	12/11/2007	Tina Acquiat
					TLI	SM4500-HB	PH	12/6/2007	Tina Acquiat
Phase Seperator	SC-Sludge-WDR-128	Dave Chaney	12/5/2007	1:00:00 PM	TLI	EPA 300.0	FL	12/7/2007	Giawad Ghenniwa
					TLI	EPA 6010B	NI	12/12/2007	Mark Kotani
					TLI	EPA 6010B	ZN	12/26/2007	Mark Kotani
					TLI	EPA 6010B	V	12/12/2007	Mark Kotani
					TLI	EPA 6010B	TL	12/12/2007	Mark Kotani
					TLI	EPA 6010B	SE	12/12/2007	Mark Kotani
					TLI	EPA 6010B	AG	12/12/2007	Mark Kotani
					TLI	EPA 6010B	PB	12/12/2007	Mark Kotani
					TLI	EPA 6010B	MO	12/12/2007	Mark Kotani
					TLI	EPA 6010B	CU	12/12/2007	Mark Kotani
					TLI	EPA 6010B	CR	12/12/2007	Mark Kotani
					TLI	EPA 6010B	CO	12/12/2007	Mark Kotani
					TLI	EPA 6010B	CD	12/12/2007	Mark Kotani
					TLI	EPA 6010B	BE	12/12/2007	Mark Kotani
					TLI	EPA 6010B	BA	12/12/2007	Mark Kotani

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information December 2007 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Seperator	SC-Sludge-WDR-128	Dave Chaney	12/5/2007	1:00:00 PM	TLI	EPA 6010B	AS	12/12/2007	Mark Kotani
					TLI	EPA 6010B	SB	12/12/2007	Mark Kotani
					TLI	EPA 7471A	HG	12/17/2007	Michel Mendoza
					TLI	SM2540B	MOIST	12/10/2007	Gautam Savani
					TLI	SW 7199	CR6	12/12/2007	David Blackburn

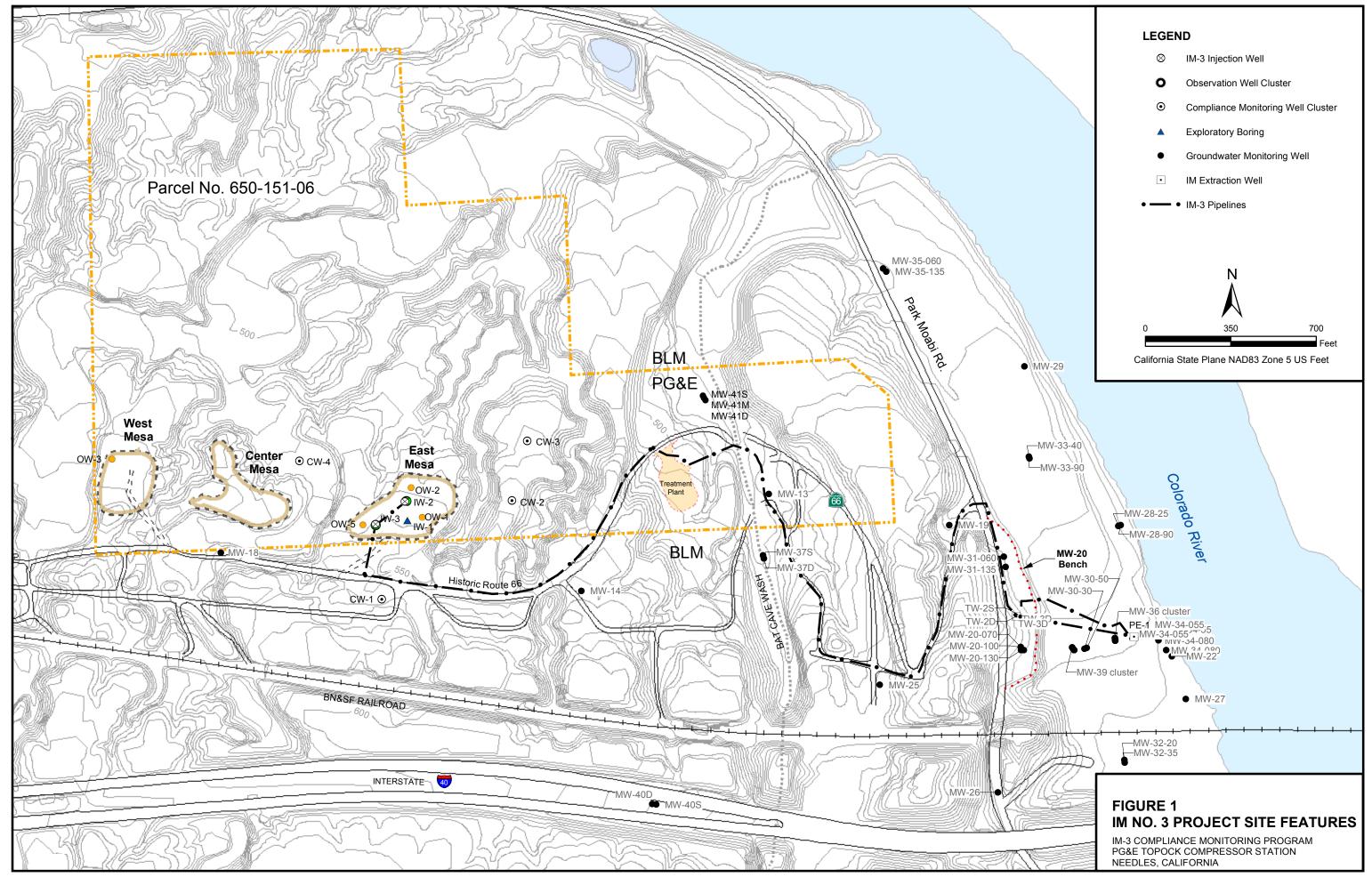
NOTES:

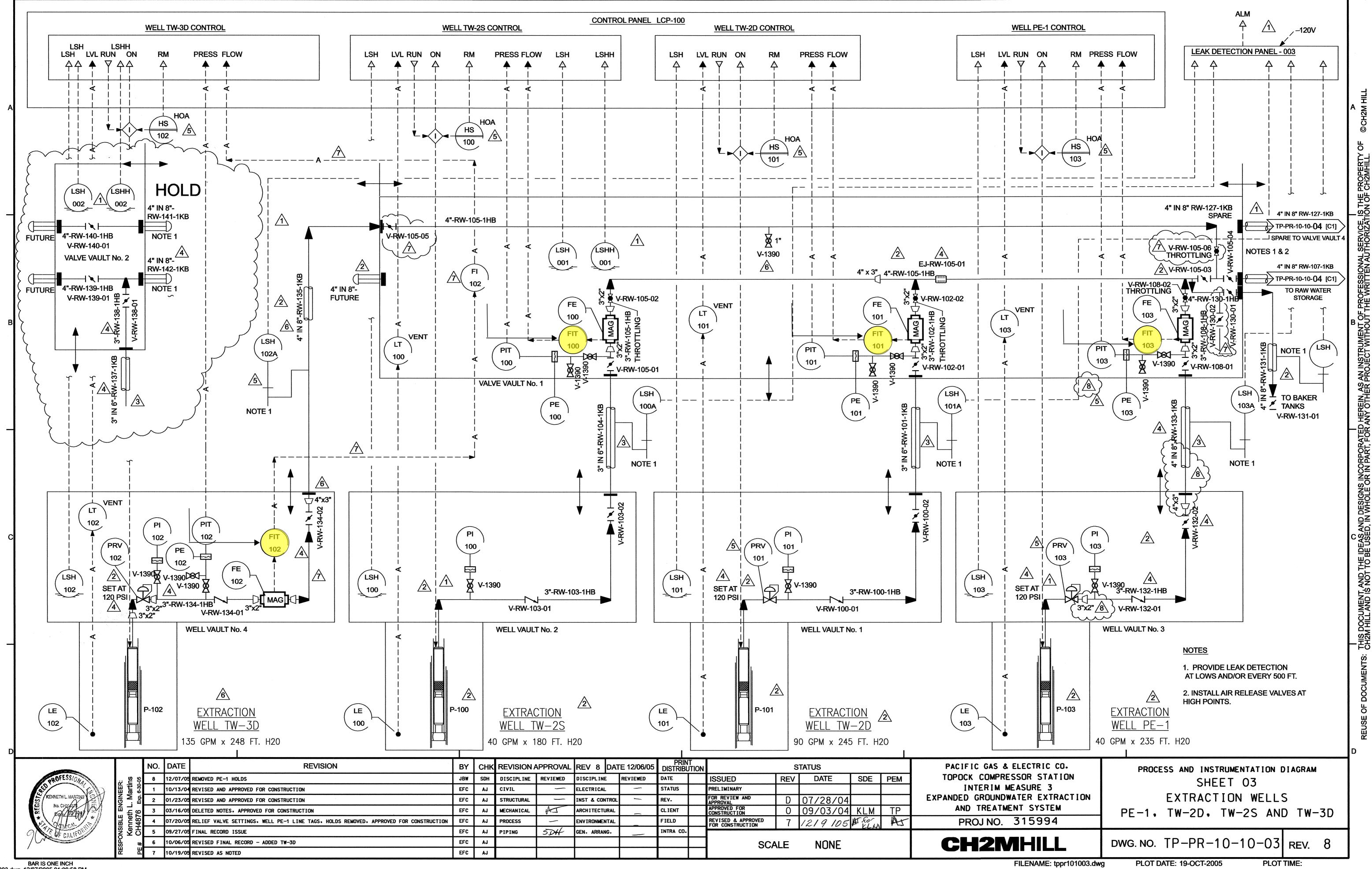
SC-700B = Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

SC-100B = Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

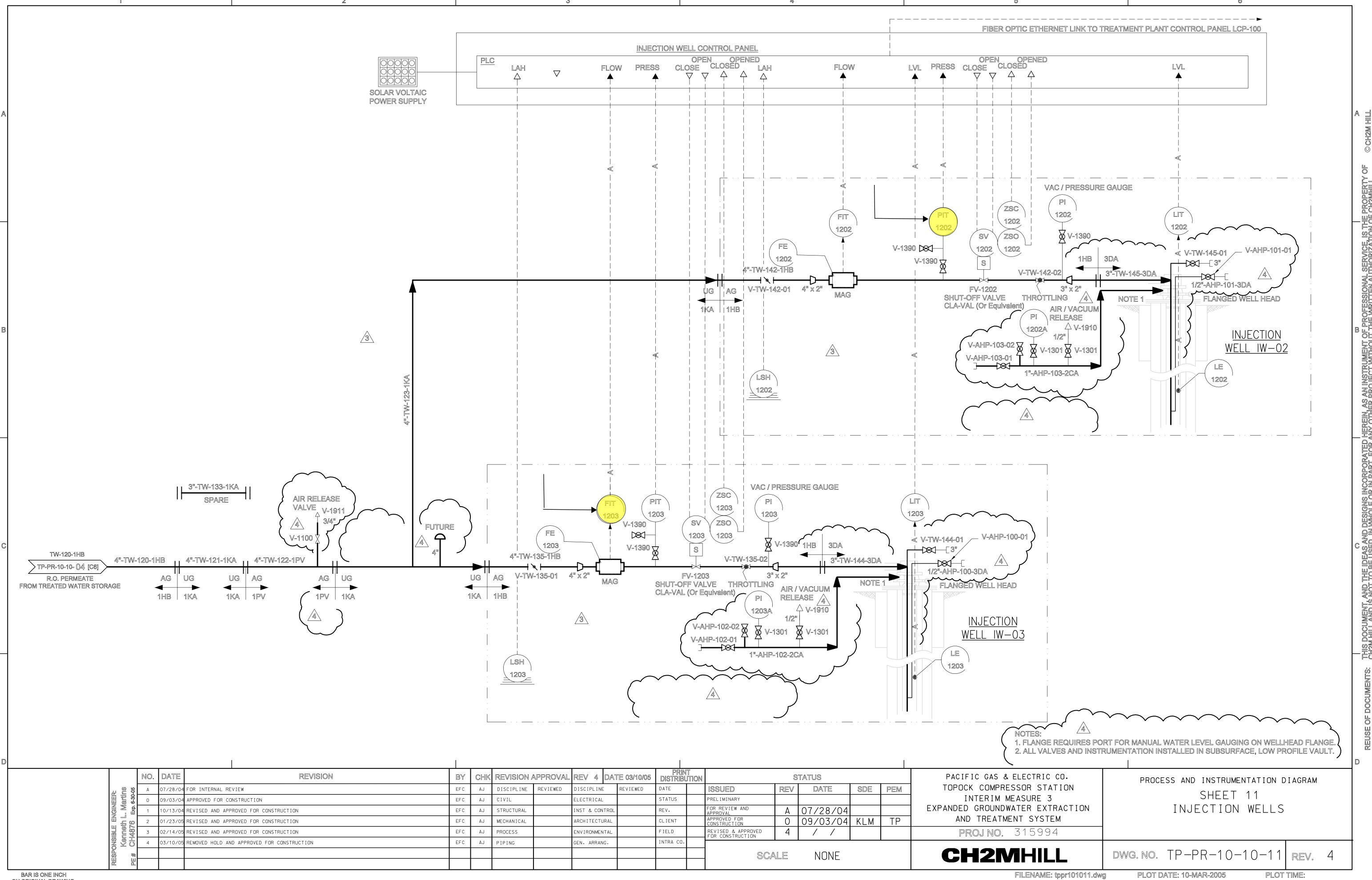
SC-701 = Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

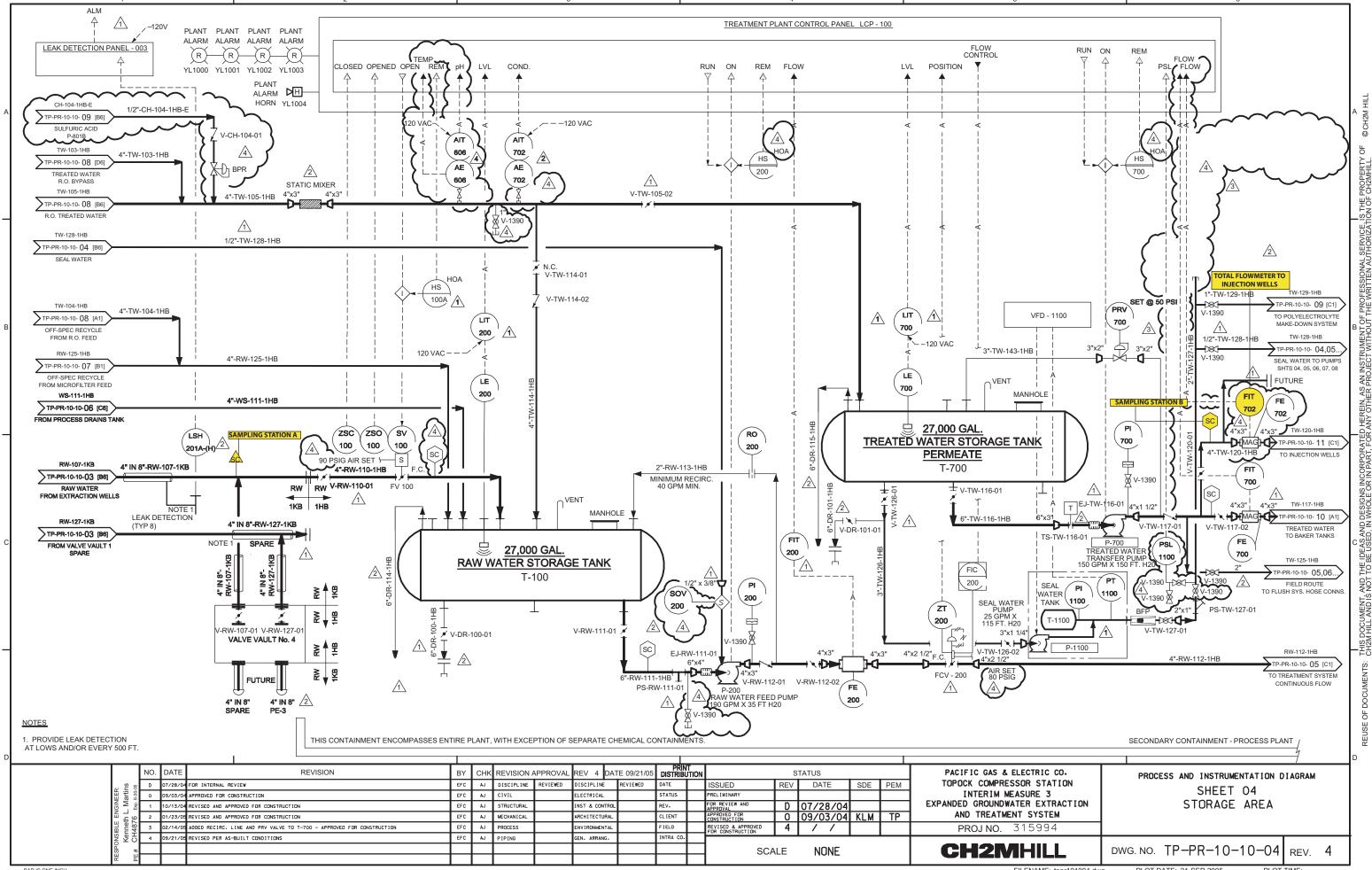

Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.

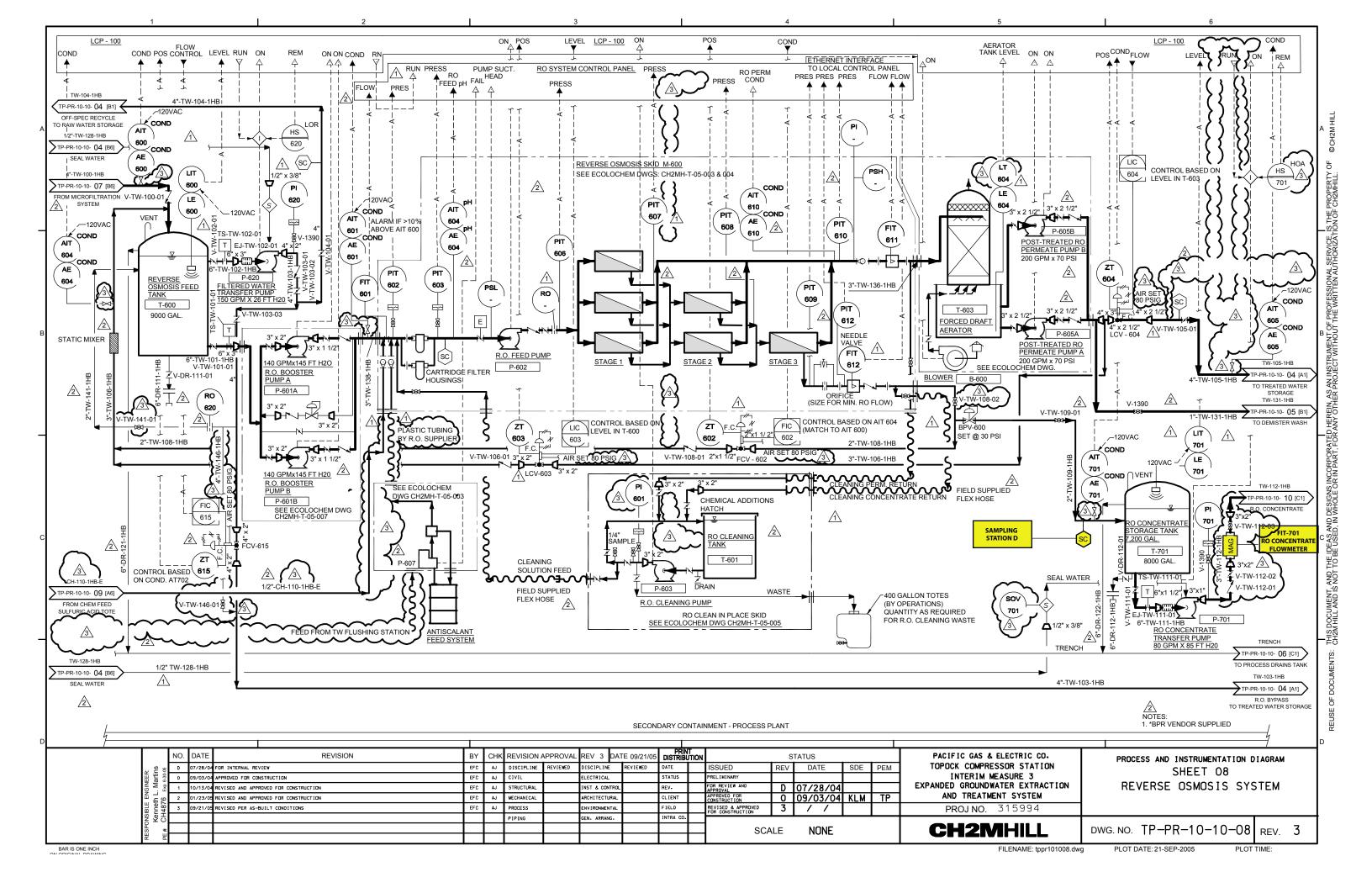

TLI = Truesdail Laboratories, Inc.

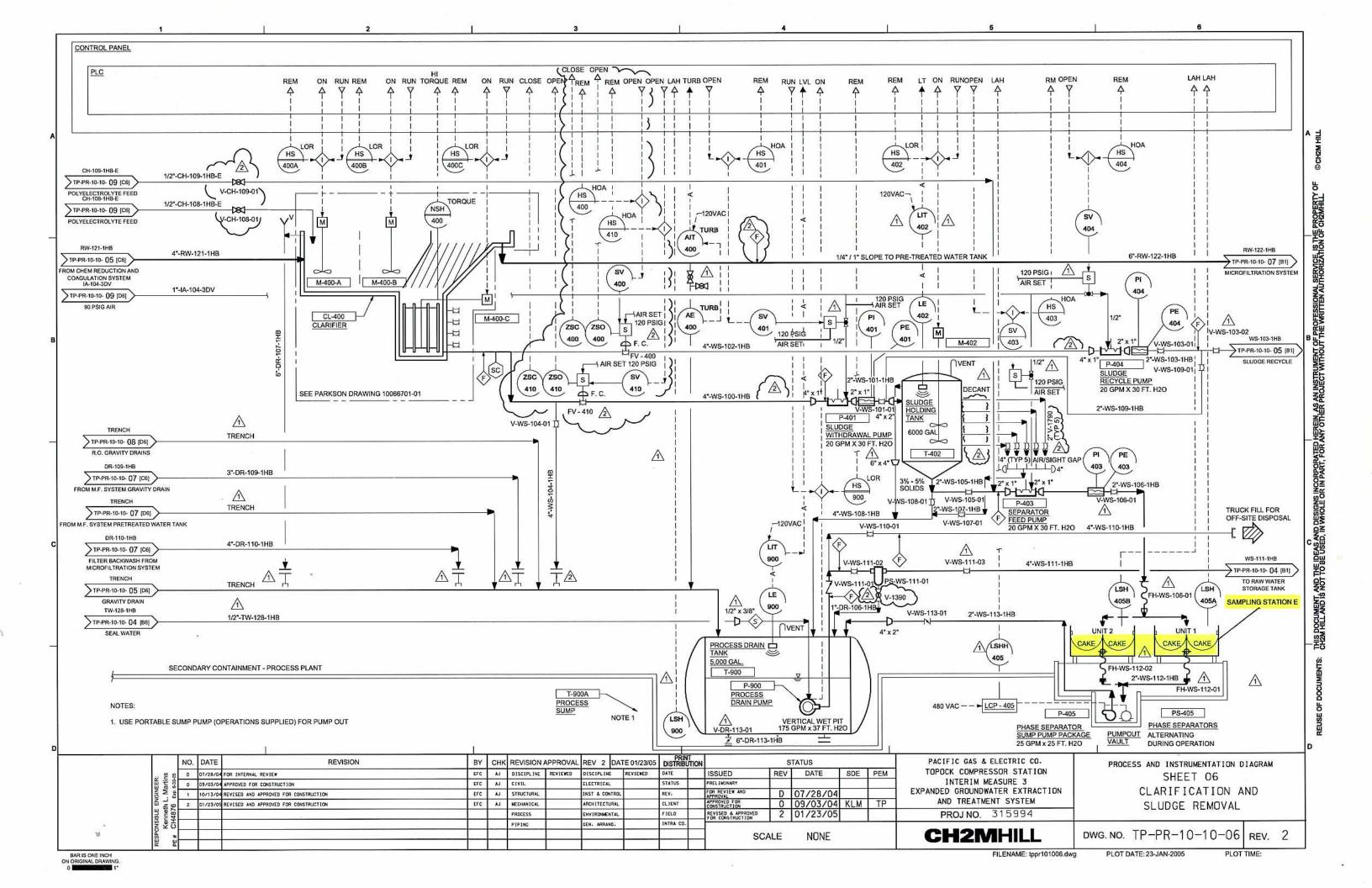

STL = Severn Trent Laboratories, Inc.

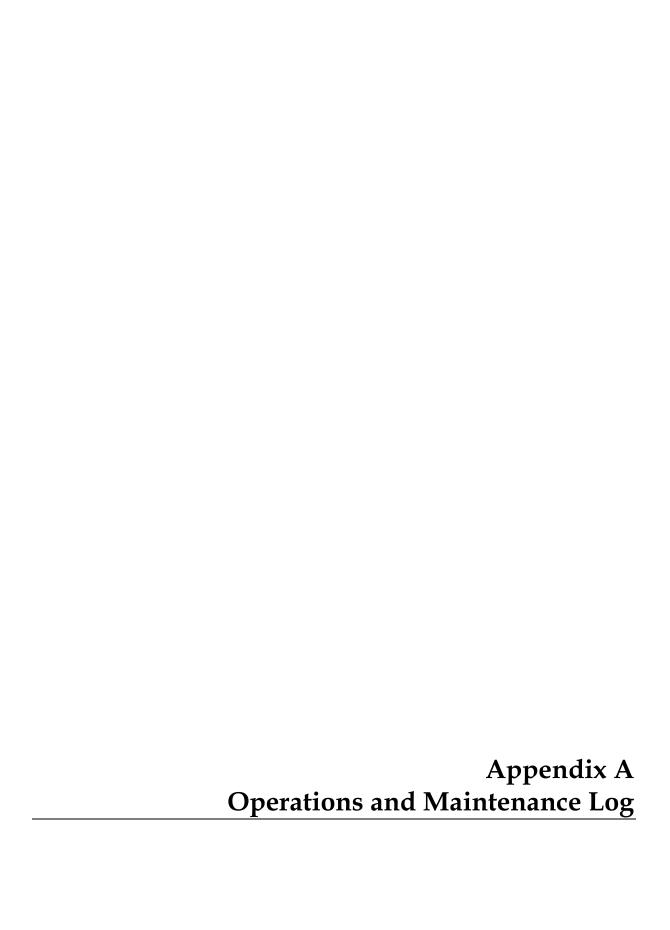
MBC = MBC Applied Environmental Sciences


SC =	specific conductance	MO =	molybdenum
PH =	pH	NI =	nickel
TDS =	total dissolved solids	PB =	lead
TRB =	turbidity	HG =	mercury
CR =	chromium	SE =	selenium
CR6 =	hexavalent chromium	TL =	thallium
FL =	fluoride	CO =	cobalt
AL =	aluminum	CD =	cadmium
B =	boron	BE =	beryllium
FE =	iron	AG =	silver
MN =	manganese	V =	vanadium
ZN =	zinc	NO3N =	nitrate (as N)
SB =	antimony	NH3N =	ammonia (as N)
AS =	arsenic	NO2N =	nitrite (as N)
BA =	barium	SO4 =	sulfate
CU =	copper		


BAR IS ONE INCH tppr101003.dwg 12/07/2005 01:06:58 PM




BAR IS ONE INCH ON ORIGINAL DRAWING.


FILENAME: tppr101011.dwg

PLOT TIME:

APPENDIX A

Semi-Annual Operations and Maintenance Log July 1, 2007 through December 31, 2007 Interim Measures No. 3 Groundwater Treatment System

Records of IM No. 3 Operations and Maintenance activities are maintained onsite using operations software. Periods of planned and unplanned treatment system and resulting extraction system downtime from July 1, 2007 through December 31, 2007 attributed to system operations and maintenance are listed below. The times shown are in Pacific Standard Time (PST) to be consistent with other data collected (e.g. water level data) at the site.

July 2007

- **July 3, 2007 (unplanned)**: The extraction well system was temporarily offline from 11:14 am until 11:19 am to switch to generator power after a City of Needles power outage. Extraction system downtime was 5 minutes.
- **July 9, 2007 (unplanned)**: The extraction well system was temporarily offline from 12:00 pm until 12:05 pm to return operations to City of Needles power supply from generator power supply. Extraction system downtime was 5 minutes.
- **July 11, 2007 (planned):** The extraction well system was temporarily offline from 8:30 am until 9:00 am to replace an air relief valve on the air compressor storage tank. The repairs were completed with onsite parts. The extraction system downtime was 30 minutes.
- **July 15, 2007 (unplanned):** The extraction well system was temporarily offline from 7:21 pm until 9:02 pm to replace the drive belts on the iron oxidation system air blower and replace a fitting on the seal water distribution system. The repairs were completed with onsite spare parts. The extraction system downtime was 1 hour 41 minutes.
- **July 23, 2007 (unplanned)**: The extraction well system was temporarily offline from 9:52 pm until 9:57 pm to switch to generator power after a City of Needles power outage. Extraction system downtime was 5 minutes.
- **July 24, 2007 (planned):** The extraction well system was temporarily offline from 10:37 am until 10:46 am to switch microfilter module banks and begin clean-in-place procedure for the offline microfilter modules. The extraction system downtime was 9 minutes.
- **July 28, 2007 (unplanned)**: The extraction well system was temporarily offline from 8:12 pm until 8:17 pm to return operations to City of Needles power supply from generator power supply. Extraction system downtime was 5 minutes.

- **July 29, 2007 (unplanned)**: The extraction well system was temporarily offline from 5:40 am until 5:45 am to switch to generator power after a City of Needles power outage. Extraction system downtime was 5 minutes.
- **July 30, 2007 (unplanned)**: The extraction well system was temporarily offline from 4:50 pm until 4:55 pm to return operations to City of Needles power supply from generator power supply. Extraction system downtime was 5 minutes.

August 2007

- August 12, 2007 (unplanned): The extraction well system was temporarily offline from 1:45 pm until 1:50 pm after a City of Needles power imbalance. Extraction system downtime was 5 minutes.
- **August 14, 2007 (unplanned)**: The extraction well system was temporarily offline from 4:50 am until 4:55 am after a City of Needles power imbalance. Extraction system downtime was 5 minutes.
- August 15, 2007 (planned): The extraction well system was temporarily offline from 9:00 am until 11:00 am to remove accumulated solids in a section of process pipe between the chrome reduction tank (T-300) and the first iron oxidation tank (T-301A). The extraction system downtime was 2 hours.
- August 16, 2007 (unplanned): The extraction well system was temporarily offline from 12:45 pm until 1:50 pm to repair two small leaks in the treated water pipeline between the IM No. 3 treatment plant and the injection wellfield. Both leaks occurred at the flanged ends between the pipe sections and were identified as part of daily pipeline inspections. Approximately 2 gallons of treated water leaked from one location and less than a gallon of treated water leaked from the second location. Both locations are on PG&E property. The wetted soil at each location was hand excavated and returned to the IM No. 3 facility where it was containerized for offsite disposal. The extraction system downtime was 1 hour and 5 minutes.
- August 17, 2007 (unplanned): The extraction well system was temporarily offline from 10:45 am until 10:50 am after a City of Needles power imbalance. Extraction system downtime was 5 minutes.
- August 20, 2007 (unplanned): The extraction well system was temporarily offline from 10:00 am until 10:15 am to switch to generator power after a City of Needles power outage. The extraction well system was again offline from 11:00 am until 11:15 am to return operations to the City of Needles power supply from generator power supply. Extraction system downtime was 30 minutes.
- August 24, 2007 (unplanned): The extraction well system was temporarily offline from 1:09 pm until 1:14 pm to switch to generator power after a City of Needles power outage. The extraction well system was again offline at 7:04 pm until 7:10 pm to return operations to the City of Needles power supply from generator power supply. Extraction system downtime was 11 minutes.

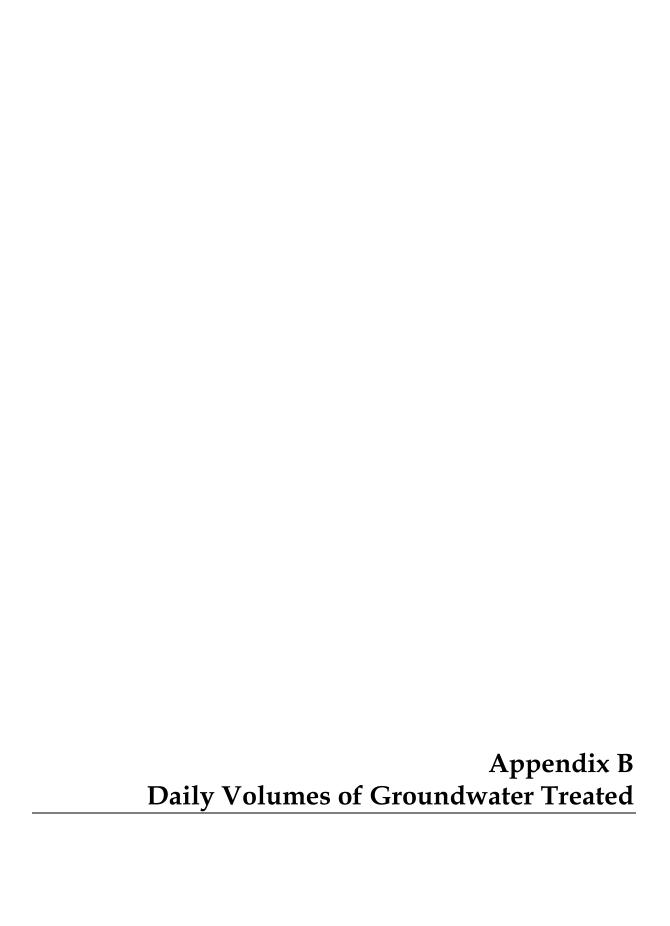
September 2007

- **September 19, 2007 (unplanned)**: The extraction well system was temporarily offline from 12:30 pm until 12:45 pm after a City of Needles power imbalance. Extraction system downtime was 15 minutes.
- **September 24, 2007 (planned):** The extraction well system was temporarily offline from 9:25 am until 11:36 am to complete plant maintenance activities including cleaning the pipe between the chemical reduction loop and Chrome Reduction Tank (T-300) and polymer system maintenance. Extraction system downtime was 2 hours 11 minutes.
- **September 27, 2007 (planned):** The extraction well system was temporarily offline from 9:15 am until 10:45 am to switch to a cleaned set of microfilter modules. Extraction system downtime was 1 hour 30 minutes.

October 2007

- October 10, 2007 (planned): The extraction well system was temporarily offline from 9:22 am until 10:00 am to complete general plant maintenance. Extraction system downtime was 38 minutes.
- October 11, 2007 (unplanned): The extraction well system was temporarily offline from 4:06 pm until 4:12 pm due to a City of Needles power imbalance. Extraction system downtime was 6 minutes.

November 2007


- **November 6, 2007 (planned):** The extraction well system was temporarily offline from 11:41 am until 11:44 am to complete operator training. Extraction system downtime was 3 minutes.
- **November 10, 2007 (unplanned):** The extraction well system was offline from 2:15 pm until 2:17 pm to re-start the facility after a City of Needles power failure. Extraction system downtime was 2 minutes.
- **November 14 and 15, 2007 (planned)**: The extraction well system was offline during November 14th and 15th two days to complete plant maintenance and re-start, as described below. The total extraction system downtime was 13 hours 31 minutes.
 - November 14th from 7:40 am until 4:03 pm to complete planned facility maintenance associated with the RO unit, iron oxidation tanks, and clarifier.
 - November 14th from 5:32 pm until 7:10 pm, and for one minute at 7:21 pm, while replacing a fouled microfilter strainer encountered while re-starting the facility.
 - November 14th from 7:23 pm until 8:38 pm to replace a failed gasket on the RO Unit discovered while re-starting the facility.
 - November 15th from 12:44 am until 12:57 am and 1:23 am until 3:24 am to operate the facility in a re-circulation mode to attain normal operating parameters while bringing the plant back on-line after maintenance activities.

- **November 19, 2007 (unplanned):** The extraction well system was offline from 2:28 am until 2:43 am and 3:14 am until 3:18 am to re-start the facility after failure of the variable frequency drive on pump P-400. Extraction system downtime was 19 minutes.
- November 21, 2007 (unplanned): The extraction well system was offline from 11:31 am until 11:33 am, 11:56 until 11:57 am, and 1:17 pm until 1:18 pm while testing the pipeline leak detection system. Extraction system downtime was 4 minutes.
- November 26, 2007 (unplanned): The extraction well system was offline from 1:30 pm until 1:34 pm, 1:39 pm until 1:42 pm, and 2:03 pm until 2:13 pm to complete testing of the City of Needles power supply and to transfer operations to generator power. Extraction system downtime was 17 minutes.
- **November 27, 2007 (unplanned):** The extraction well system was offline from 11:21 am until 11:41 am to return operation from generator power to City of Needles power. Extraction system downtime was 20 minutes.
- **November 28, 2007 (unplanned):** The extraction well system was offline from 3:15 pm until 3:21 pm to test City of Needles power. Extraction system downtime was 6 minutes.
- **November 30, 2007 (unplanned):** The extraction well system was offline from 11:02 am until 11:04 am to transfer operations from generator power to City of Needles power. Extraction system downtime was 2 minutes.
- **November 30, 2007 (unplanned):** The extraction well system was offline from 9:06 pm until 9:20 pm to transfer operations to generator power after a City of Needles power imbalance. Extraction system downtime was 14 minutes.

December 2007

- **December 1, 2007 (planned):** The extraction well system was temporarily offline from 3:13 am until 3:31 am while cleaning the screen on flow control valve FCV-200. Extraction system downtime was 18 minutes.
- **December 1, 2007 (unplanned):** The extraction well system was temporarily offline from 7:03 am until 7:05 am to return operations from generator power to City of Needles power. Extraction system downtime was 2 minutes.
- **December 1, 2007 (unplanned):** The extraction well system was temporarily offline from 9:00 pm until 9:04 pm to transfer operations to generator power after a City of Needles power failure. Extraction system downtime was 4 minutes.
- **December 2, 2007 (unplanned):** The extraction well system was temporarily offline from 7:07 am until 7:11 am to return operations from generator power to City of Needles power. Extraction system downtime was 4 minutes.
- **December 3, 2007 (unplanned):** The extraction well system was temporarily offline from 6:20 pm until 6:23 pm to transfer operations to generator power after a City of Needles power failure. Extraction system downtime was 3 minutes.
- **December 4, 2007 (unplanned):** The extraction well system was temporarily offline from 7:31 am until 7:32 am to return operations from generator power to City of Needles power. Extraction system downtime was 1 minute.

- December 4, 2007 (unplanned): The extraction well system was temporarily offline from 4:55 pm until 5:13 pm to transfer operations to generator power after a City of Needles power failure. Extraction system downtime was 18 minutes.
- **December 5, 2007 (unplanned):** The extraction well system was temporarily offline from 9:04 am until 9:10 am to return operations from generator power to City of Needles power. Extraction system downtime was 6 minutes.
- **December 5, 2007 (unplanned):** The extraction well system was temporarily offline from 8:44 pm until 8:47 pm to transfer operations to generator power after a City of Needles power failure. Extraction system downtime was 3 minutes.
- December 6, 2007 (unplanned): The extraction well system was temporarily offline from 7:26 am until 7:31 am to return operations from generator power to City of Needles power. Extraction system downtime was 5 minutes.
- December 6, 2007 (unplanned): The extraction well system was temporarily offline from 8:41 pm until 10:12 pm while transferring operations to generator power after a City of Needles power failure, during which time the unit power control source failed for the PLC and was replaced with a temporary backup. Extraction system downtime was 1 hour 31 minutes.
- **December 11, 2007 (unplanned):** The extraction well system was temporarily offline from 1:39 pm until 1:42 pm, to troubleshoot power supply at the facility. Extraction system downtime was 3 minutes.
- **December 12, 2007 (unplanned):** The extraction well system was temporarily offline from 1:38 pm until 1:42 pm, 4:02 pm until 5:02 pm, 5:39 pm until 5:42 pm, and 6:06 pm until 6:07 pm to troubleshoot power supply at the facility. Extraction system downtime was 1 hour 8 minutes.
- **December 20, 2007 (planned):** The extraction well system was temporarily offline from 7:55 am until 8:03 am while installing a new unit power control source for the PLC. Extraction system downtime was 8 minutes.
- December 27, 2007 (unplanned): The extraction well system was temporarily offline from 5:36 pm until 5:46 pm and from 7:43 pm until 8:40 pm, which was initially due to a City of Needles power outage. After switching to generator power, additional troubleshooting was required to bring the Reverse Osmosis Unit back into service and transfer operation back to City of Needles power. Extraction system downtime was 1 hour 7 minutes.

July 2007 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syst	em		Injec	tion Well Syst	:em ^{a,b,c}	RO Brine
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
July	1	2007			149,656	45,734	195,390	180,144		180,144	13,298
July	2	2007			149,864	45,430	195,294	181,712		181,712	14,389
July	3	2007			148,368	47,144	195,512	178,776		178,776	10,526
July	4	2007			149,864	47,528	197,392	182,840		182,840	13,276
July	5	2007			149,656	47,378	197,034	177,472		177,472	13,402
July	6	2007			147,160	47,836	194,996	181,144		181,144	14,339
July	7	2007			145,432	47,546	192,978	176,408		176,408	13,246
July	8	2007			144,760	46,750	191,510	181,408		181,408	10,279
July	9	2007			144,152	45,948	190,100	171,520		171,520	14,705
July	10	2007			145,920	46,768	192,688	174,776		174,776	11,290
July	11	2007			145,456	45,110	190,566	175,512		175,512	12,287
July	12	2007			149,760	45,824	195,584	180,480		180,480	10,283
July	13	2007			149,656	45,530	195,186	179,856		179,856	17,377
July	14	2007			149,864	44,780	194,644	182,624		182,624	13,352
July	15	2007			137,920	42,392	180,312	146,912		146,912	10,289
July	16	2007			147,904	46,044	193,948	185,800		185,800	14,376
July	17	2007			147,200	45,722	192,922	166,992		166,992	13,428
July	18	2007			147,096	45,762	192,858	180,240		180,240	13,405
July	19	2007			146,688	45,588	192,276	178,008		178,008	10,264
July	20	2007			147,576	44,988	192,564	66,000	110,000	176,000	13,343
July	21	2007			147,688	44,636	192,324		174,712	174,712	13,270
July	22	2007			145,032	45,500	190,532		181,256	181,256	10,171
July	23	2007			138,920	46,334	185,254		176,760	176,760	14,387
July	24	2007			143,016	46,936	189,952		157,336	157,336	11,288
July	25	2007			135,384	47,032	182,416		188,360	188,360	11,241
July	26	2007			134,528	47,290	181,818		156,864	156,864	14,244
July	27	2007			137,896	46,204	184,100		179,256	179,256	13,285
July	28	2007			136,856	45,768	182,624		180,456	180,456	13,323
July	29	2007			137,384	46,276	183,660		174,320	174,320	10,256
July	30	2007			136,896	46,848	183,744		174,504	174,504	10,253
July	31	2007			134,952	46,882	181,834		166,316	166,316	10,232
	ly Volumes				4,472,504	1,429,508	5,902,012	3,428,624	2,020,140	5,448,764	389,104
Average Pu	mp/Injection	Rates (gpm)			100.2	32.0	132.2	76.8	45.3	122.1	8.7

NOTES: gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow meter FIT-702 located on the injection well pipeline was used to record injection well flow measurements as there were communication problems with flowmeters FIT-1202 and FIT-1203 located at the injection wellheads.

^bInjection well IW-02 was shut-down at 9:15 am on July 20 and IW-03 was placed into service. The individual injection well volume shown is proportional to the total daily volume volume measured at flow meter FIT-702 (see note a above).

^cThe injection well flow measurement on July 31st was based on manual readouts from FIT-702 as the electronic data logging system was being reprogrammed.

August 2007 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syste	em ^a		Inje	ction Well Sys	tem ^{a,b}	RO Brine
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
August	1	2007		0	138,144	46,764	184,908	4	182,552	182,556	10,529
August	2	2007		0	138,336	46,560	184,896	0	177,246	177,246	10,313
August	3	2007		0	138,144	45,312	183,456	0	176,680	176,680	10,463
August	4	2007		0	138,336	45,674	184,010	4	172,628	172,632	10,217
August	5	2007		0	138,144	45,816	183,960	0	180,196	180,196	9,278
August	6	2007		0	138,336	46,100	184,436	4	181,258	181,262	10,217
August	7	2007		946	136,488	46,414	183,848	8	178,154	178,162	10,259
August	8	2007		0	138,336	47,012	185,348	4	182,442	182,446	9,238
August	9	2007		0	138,144	46,272	184,416	0	179,418	179,418	10,233
August	10	2007		0	138,336	46,182	184,518	4	182,598	182,602	10,254
August	11	2007		0	138,144	45,048	183,192	4	173,317	173,321	8,188
August	12	2007		0	141,096	45,586	186,682	0	179,533	179,533	11,412
August	13	2007		0	149,656	45,488	195,144	0	181,664	181,664	11,299
August	14	2007		540	147,480	46,072	194,092	4	192,642	192,646	10,184
August	15	2007		0	133,808	41,790	175,598	4	149,602	149,606	8,192
August	16	2007		0	140,088	44,096	184,184	4	173,356	173,360	8,138
August	17	2007		0	149,456	45,862	195,318	0	183,642	183,642	12,326
August	18	2007		0	149,760	46,250	196,010	4	190,690	190,694	11,246
August	19	2007		0	149,760	45,916	195,676	4	191,544	191,548	10,252
August	20	2007		0	147,800	46,066	193,866	4	183,944	183,948	10,230
August	21	2007		0	149,760	46,544	196,304	0	183,974	183,974	9,248
August	22	2007		0	149,760	46,586	196,346	8	177,570	177,578	10,173
August	23	2007		0	149,656	45,886	195,542	4	191,546	191,550	10,267
August	24	2007		0	146,712	46,392	193,104	0	180,764	180,764	9,209
August	25	2007		0	149,658	45,688	195,346	4	187,152	187,156	10,311
August	26	2007		0	149,862	46,018	195,880	8	187,220	187,228	10,139
August	27	2007		0	149,656	45,874	195,530	0	180,236	180,236	10,276
August	28	2007		678	147,504	45,990	194,172	0	179,286	179,286	9,222
August	29	2007		0	149,656	46,062	195,718	0	182,538	182,538	10,231
August	30	2007		0	149,864	45,648	195,512	99,232	88,882	188,114	9,217
August	31	2007		0	149,656	44,802	194,458	55,380	127,452	182,832	10,285
Total Month	ly Volumes	(gal)		2,164	4,469,536	1,419,770	5,891,470	154,692	5,459,726	5,614,418	311,046
Average Pui	mp/Injection	Rates (gpm)		0.05	100.1	31.8	132.0	3.5	122.3	125.8	7.0

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from Human-Machine Interface (HMI) computer at the IM-3 Facility.

bSmall readings from IW-02 are associated with small amounts of treated water entering the injection well via the 'closed' valve, or associated with acceptable instrument inaccuracy.

September 2007 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extr	action Well Syste	m ^a		Inje	ction Well Syst	em ^{a,b}	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
September	1	2007		0.0	149,760	45,014	194,774	8	181,130	181,138	9,233
September	2	2007		0.0	149,760	44,378	194,138	0	185,642	185,642	10,344
September	3	2007		0.0	149,656	45,046	194,702	0	176,002	176,002	10,328
September	4	2007		0.0	149,752	45,820	195,572	0	186,432	186,432	10,245
September	5	2007		1740.0	146,592	45,988	194,320	0	185,304	185,304	9,172
September	6	2007		0.0	149,760	46,160	195,920	0	182,688	182,688	10,220
September	7	2007		0.0	149,760	46,144	195,904	0	182,624	182,624	10,213
September	8	2007		0.0	149,760	45,714	195,474	0	182,746	182,746	9,228
September	9	2007		70.0	149,760	45,590	195,420	0	185,844	185,844	10,061
September	10	2007		0.0	149,760	45,930	195,690	1,996	180,384	182,380	10,270
September	11	2007		0.0	149,760	45,964	195,724	628	179,278	179,906	9,196
September	12	2007		0.0	151,320	43,596	194,916	0	186,170	186,170	10,280
September	13	2007		0.0	156,520	37,116	193,636	0	174,448	174,448	7,148
September	14	2007		0.0	149,760	46,100	195,860	4	188,586	188,590	9,175
September	15	2007		0.0	149,760	45,576	195,336	0	185,082	185,082	6,190
September	16	2007		0.0	142,440	45,956	188,396	4	189,356	189,360	10,253
September	17	2007		0.0	138,240	46,650	184,890	0	177,774	177,774	6,161
September	18	2007		0.0	138,240	46,784	185,024	0	186,560	186,560	10,267
September	19	2007		0.0	138,920	46,324	185,244	0	179,756	179,756	6,139
September	20	2007		0.0	149,608	47,104	196,712	0	190,614	190,614	9,216
September	21	2007		0.0	149,632	46,928	196,560	0	187,802	187,802	7,191
September	22	2007		0.0	149,128	46,644	195,772	4	187,622	187,626	9,275
September	23	2007		0.0	148,760	47,244	196,004	0	185,714	185,714	6,215
September	24	2007		0.0	133,824	41,222	175,046	0	154,984	154,984	9,315
September	25	2007		0.0	149,648	46,974	196,622	129,728	65,688	195,416	7,143
September	26	2007		0.0	152,120	41,898	194,018	193,000	0	193,000	10,218
September	27	2007		0.0	141,544	45,052	186,596	175,208	2	175,210	6,151
September	28	2007		0.0	149,760	47,044	196,804	196,124	0	196,124	11,406
September	29	2007		0.0	149,760	46,696	196,456	193,460	0	193,460	7,134
September	30	2007		0.0	149,760	46,770	196,530	193,384	4	193,388	10,302
Total Monthly	y Volumes (g	gal)		1,810	4,432,824	1,363,426	5,798,060	1,083,548	4,448,236	5,531,784	267,689
Average Pum	np/Injection	Rates (gpm)		0.0	102.6	31.6	134.2	25.1	103.0	128.1	6.2

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from Human-Machine Interface (HMI) computer at the IM-3 Facility.

^bSmall readings from IW-02 and IW-03 are associated with small amounts of treated water entering the injection well via the 'closed' valve, or associated with acceptable instrument inaccuracy.

October 2007 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				E	ktraction Well Sy	/stem ^a		Ir	njection Well Syste	em ^{a,b}	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
October	1	2007	0	0.0	149,760	46,864	196,624	189,696	2	189,698	10,239
October	2	2007	4	0.0	150,416	40,738	191,158	188,660	0	188,660	6,100
October	3	2007	4	1,494.0	147,376	46,054	194,928	181,864	0	181,864	10,359
October	4	2007	523	1,448.0	149,080	45,472	196,523	185,988	0	185,988	9,220
October	5	2007	0	0.0	149,760	46,702	196,462	187,220	0	187,220	7,241
October	6	2007	0	0.0	149,656	46,318	195,974	193,296	2	193,298	9,251
October	7	2007	0	0.0	149,760	46,686	196,446	188,068	0	188,068	10,339
October	8	2007	0	0.0	149,760	46,134	195,894	188,664	0	188,664	9,253
October	9	2007	0	0.0	149,760	46,874	196,634	78,640	109,046	187,686	10,214
October	10	2007	0	0.0	150,376	43,792	194,168	0	172,536	172,536	10,328
October	11	2007	0	0.0	145,912	46,766	192,678	0	189,430	189,430	10,270
October	12	2007	0	0.0	149,760	46,680	196,440	0	184,858	184,858	9,212
October	13	2007	0	0.0	149,880	46,046	195,926	0	185,630	185,630	10,308
October	14	2007	0	0.0	149,760	46,782	196,542	0	184,928	184,928	10,309
October	15	2007	0	0.0	149,760	46,330	196,090	4	186,150	186,154	9,235
October	16	2007	0	0.0	149,760	46,202	195,962	8	183,498	183,506	9,282
October	17	2007	0	0.0	149,760	46,534	196,294	0	179,340	179,340	7,176
October	18	2007	0	0.0	149,760	46,200	195,960	0	190,060	190,060	10,449
October	19	2007	0	0.0	149,760	46,164	195,924	0	187,248	187,248	9,245
October	20	2007	0	0.0	149,752	46,066	195,818	0	184,858	184,858	10,281
October	21	2007	0	0.0	149,608	46,124	195,732	0	183,276	183,276	10,253
October	22	2007	0	0.0	149,760	45,954	195,714	0	180,872	180,872	13,288
October	23	2007	0	0.0	149,760	45,680	195,440	0	185,796	185,796	9,490
October	24	2007	0	0.0	149,760	45,972	195,732	4	179,886	179,890	10,650
October	25	2007	0	0.0	149,760	45,592	195,352	0	184,306	184,306	13,443
October	26	2007	0	0.0	149,760	45,664	195,424	0	180,820	180,820	10,321
October	27	2007	0	0.0	149,760	45,346	195,106	0	184,718	184,718	13,295
October	28	2007	0	0.0	149,760	45,494	195,254	0	182,508	182,508	10,296
October	29	2007	0	0.0	149,760	45,554	195,314	0	181,096	181,096	13,434
October	30	2007	0	0.0	149,760	45,124	194,884	0	178,968	178,968	10,332
October	31	2007	0	0.0	149,760	45,748	195,508	0	175,832	175,832	13,192
Total Monthly	y Volumes (gal)	531	2,942	4,636,776	1,421,656	6,061,905	1,582,112	4,135,664	5,717,776	316,305
Average Pun	np/Injection	Rates (gpm)	0.0	0.1	103.9	31.8	135.8	35.4	92.6	128.1	7.1

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

^aFlow Readings tabulated from Human-Machine Interface (HMI) computer at the IM-3 Facility.

bSmall readings from IW-02 and IW-03 are associated with small amounts of treated water entering the extraction well via the 'closed' valve, or associated with acceptable instrument inaccuracy.

November 2007 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extract	tion Well Syster	m ^{a,b,c}		Injed	tion Well Sys	tem ^{a,c}	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
November	1	2007		19	147,917	45,074	193,010		189,583	189,583	10,117
November	2	2007		17	147,821	45,174	193,012		180,705	180,705	10,178
November	3	2007		17	147,868	44,967	192,852		183,168	183,168	13,436
November	4	2007		23	147,858	44,756	192,638		183,504	183,504	10,409
November	5	2007		19,883	141,522	35,818	197,223		182,606	182,606	10,960
November	6	2007		1,045	146,809	46,398	194,251		186,149	186,149	14,008
November	7	2007		16	149,340	46,922	196,277		179,026	179,026	10,527
November	8	2007		20	149,223	46,779	196,022		184,616	184,616	10,496
November	9	2007		19	149,167	46,700	195,885		185,753	185,753	10,797
November	10	2007		19	148,653	46,379	195,052		181,360	181,360	13,555
November	11	2007		16	149,270	46,292	195,578		187,478	187,478	10,910
November	12	2007		19	154,709	35,180	189,908		179,453	179,453	10,545
November	13	2007		21	148,995	46,511	195,526		179,501	179,501	10,669
November	14	2007		19	76,113	24,878	101,011		68,914	68,914	11,217
November	15	2007		23	133,783	42,717	176,523		181,927	181,927	15,364
November	16	2007		19	148,621	46,619	195,259		186,271	186,271	12,704
November	17	2007		24	148,621	46,397	195,042		184,178	184,178	12,445
November	18	2007		16	148,364	46,528	194,908		181,875	181,875	10,701
November	19	2007		18	144,398	46,010	190,426		183,053	183,053	10,329
November	20	2007		15	148,556	46,300	194,872		177,211	177,211	14,000
November	21	2007		18	147,231	46,131	193,381		177,210	177,210	10,576
November	22	2007		18	148,516	45,970	194,503		183,981	183,981	11,079
November	23	2007		18	148,665	45,752	194,435		185,772	185,772	12,929
November	24	2007		20	148,938	45,685	194,644		186,013	186,013	10,609
November	25	2007		16	148,893	45,629	194,538		179,256	179,256	11,026
November	26	2007		15	144,572	45,739	190,326		181,933	181,933	14,085
November	27	2007		14	144,859	46,489	191,362		172,210	172,210	10,570
November	28	2007		17	146,482	46,905	193,404		185,815	185,815	10,584
November	29	2007		18	147,081	47,113	194,212		183,559	183,559	14,082
November	30	2007		14	142,526	46,227	188,766		179,237	179,237	8,596
Total Monthly	Volumes (gal)	0	21,438	4,345,369	1,338,040	5,704,847	0	5,361,317	5,361,317	347,503
Average Pum	p/Injection	Rates (gpm)	0.0	0.5	100.6	31.0	132.1	0.0	124.1	124.1	8.0

NOTES:

---: Not in operation during reporting period.

gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

^aFlow Readings tabulated from data historian computer at the IM-3 Facility.

^bSmall readings from TW-2D are associated with small computational errors. However, the data is included in the monthly record to be consistent with the data historian.

^cExtraction well TW-2S and injection well IW-02 were not operated.

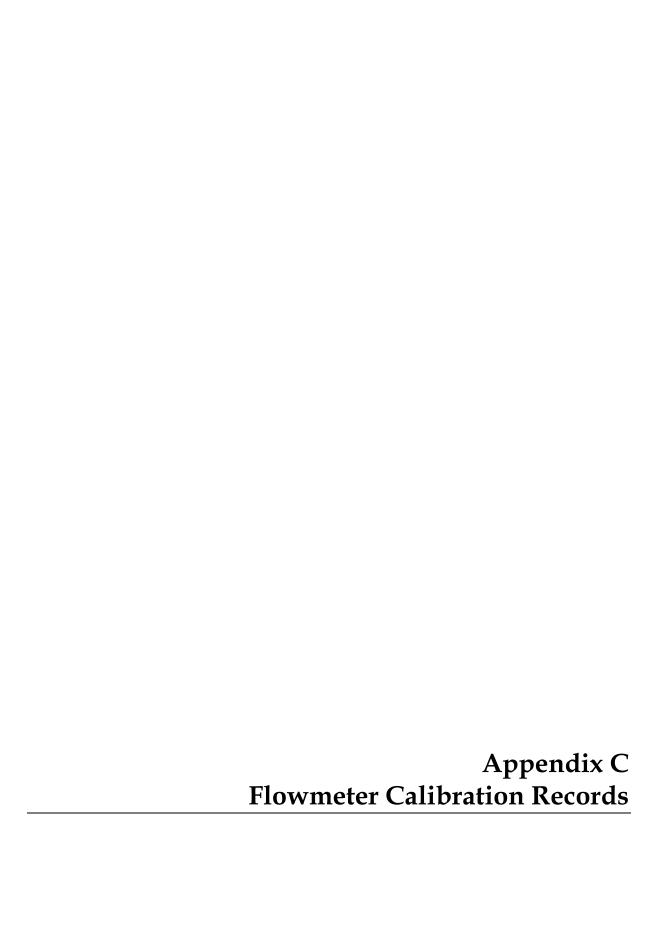
December 2007 Operational Data

IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles California

				Extra	ction Well Syste	em ^a		Inje	ction Well Sys	tem ^{a,b}	RO Brine ^a
Month	Day	Year	TW-2S	TW-2D	TW-3D	PE-1	Total	IW-02	IW-03	Total	
			(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
December	1	2007	34	8	141,142	46,211	187,395		174,104	174,104	10,487
December	2	2007	39	13	146,001	46,858	192,912		175,231	175,231	13,796
December	3	2007	40	17	145,860	46,126	192,043		171,864	171,864	10,066
December	4	2007	40	17	144,486	46,088	190,632		187,916	187,916	10,120
December	5	2007	43	3,944	142,983	45,057	192,027		183,443	183,443	10,163
December	6	2007	40	21	134,552	43,580	178,192		167,445	167,445	10,268
December	7	2007	38	14	137,588	43,678	181,319		173,047	173,047	12,381
December	8	2007	43	19	146,763	46,131	192,957		182,444	182,444	10,109
December	9	2007	41	17	147,030	45,806	192,894		177,944	177,944	10,190
December	10	2007	39	19	147,096	45,800	192,954		178,357	178,357	10,841
December	11	2007	40	23	135,268	44,232	179,562		171,613	171,613	12,768
December	12	2007	36	21	141,206	35,265	176,529		172,390	172,390	10,114
December	13	2007	34	19	145,067	46,493	191,613		173,794	173,794	10,242
December	14	2007	33	24	146,632	45,658	192,346		182,230	182,230	11,615
December	15	2007	37	21	146,839	45,367	192,263		183,076	183,076	10,349
December	16	2007	32	20	146,721	45,484	192,257		172,611	172,611	12,450
December	17	2007	4,702	7,622	134,536	42,939	189,799		179,793	179,793	11,549
December	18	2007	36	14	145,982	46,201	192,233		183,853	183,853	10,177
December	19	2007	43	20	147,784	46,142	193,989		181,836	181,836	10,155
December	20	2007	40	20	147,350	45,554	192,965		180,109	180,109	13,495
December	21	2007	34	21	149,705	45,733	195,494		183,816	183,816	10,201
December	22	2007	34	19	149,992	45,517	195,563		182,992	182,992	10,207
December	23	2007	35	16	150,511	44,789	195,350		181,618	181,618	13,672
December	24	2007	42	21	150,559	44,779	195,400		179,520	179,520	10,268
December	25	2007	34	22	150,604	44,674	195,333		182,615	182,615	12,411
December	26	2007	34	17	150,547	44,854	195,452		188,514	188,514	9,705
December	27	2007	31	20	140,717	39,359	180,127		156,630	156,630	12,312
December	28	2007	31	17	148,729	46,142	194,919		190,063	190,063	13,741
December	29	2007	37	17	148,996	46,041	195,091		188,396	188,396	10,389
December	30	2007	34	19	149,309	45,801	195,163		188,095	188,095	13,594
December	31	2007	34	17	149,536	45,630	195,218		185,330	185,330	8,294
Total Monthly	Volumes (gal)	5,810	12,102	4,510,090	1,391,988	5,919,990	0	5,560,689	5,560,689	346,127
Average Pum	p/Injection	Rates (gpm)	0.1	0.3	101.0	31.2	132.6	0.0	124.6	124.6	7.8

NOTES:

---: Not in operation during reporting period.


gal: gallons

gpm: gallons per minute

RO: Reverse Osmosis

^aFlow Readings tabulated from the date historian at the IM-3 Facility.

^bSmall readings from TW-2S and TW-2D are associated with small computational errors. However, the data is included in the monthly record to be consistent with the data historian.

People for Process Automation

30092302-1304705

Flow Calibration without Adjustment

WWRA	-00092	23-F					FCP-6.F
Purchase o	rder numb	er					Calibration rig
US-190	50353	-30 / Er	dress+Ha	user Flow	rtec		155.6102 GPM (
Order Nº/	Manufactu	rer					Calibrated full scale
23P50-	AL1A1	AA022A	W				Current 4 - 20 mA
Order code			7/3/07				Calibrated output
PROM	AG 23	P 2"					0.9148
Transmitte	sudance etc.	• =					Calibration factor
6C036	F16000)					0
C 1 3 10	X_2002_000_000		1	,			Zero point
FIT-12	01 F.	IT-103	/PE-I	linetall	ed 1/1	1/07	72.3 °F
Tag Nº	-	/	0	1	,		Water temperature
			4150	1927		358 10 WW	
Flow [%]	Flow [GPM]	Duration [sec]	V target (US GAL)	V meas. JUS GALJ	∆ o.r.* [%]	Outp.**	Measured error % o.r.
39.5	61.5	30.1	30.816	30.002	-2.64	10.15	2-
39.5	61.5	30.1	30.807	30.875	0.22	10.34	Tolerance limit
39.5	61.5	30.1	30.813	30.772	-0.13	10.31	(±0.5% o.r.* ± z.s.*)
39.5	61.5	30.1	30.812	30.561	-0.81	10.27	
=	=	-		1-	1965	-	0
-	-		(#K)	-	187	5 4 .0	
(#)	~			-	3 = 0		-1-
(-	#		-	-	-	-	
	-	-	-	*	-	-	-2-
-	-	100	-	-	. 	(=)	0 10 20 30 40 50 60 70 80 90 Fig

^{*}o.r.: of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

12-04-2006 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

Tim Swick Operator

TimSwint

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

^{**}Galculated value |4 - 20 mA|

People for Process Automation

FCP-6.F

30092173-1304708

 $WWRA_-000023_F$

W W KA-000925-1	
Purchase order number	
US-19050353-10 / Endress+Hauser Flowtec	
Order N°/Manufacturer	
23P50-AL1A1AA022AW	
Order code	
PROMAG 23 P 2"	
Transmitter/Sensor	
6C037216000	
Serial N°	
FIT-1204 FIT-102/TW-3D/installed 1/	4/07
Tag N°	

Flow Calibration without Adjustment

Flow	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas, [US GAL]	∆ o.r.* %	Outp.**
10.0	15.5	30.1	7.7678	7.6854	-1.06	5.58
40.4	62.8	30.1	31.473	31.226	-0.79	10.41
40.4	62.8	30.1	31.475	31.867	1.25	10.54
99.8	155.3	30.1	77.806	77.217	-0.76	19.85
-	5=1	-	#1	-	-50	-
*	800	4 - 1	.e.s	12 12	150	- 1
-	88	-	200	251	77.0	-
(58)	5 5 .	-	25.3	2.5	12.0	- S
	6 8 .	- 1	753	1 20	150	5 5
:#:	7.55	=	. 	1 15	1-0	7

2-	χ.	Tolerano	o limit					ĺ	1
1-	1	(±0.5%		s.• p					į
0					-	-			
-1	•			•					۰
-2	1		İ						1

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-30-2006 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 M. Z. Telly
Morris E. Trueblood Jr.

Operator

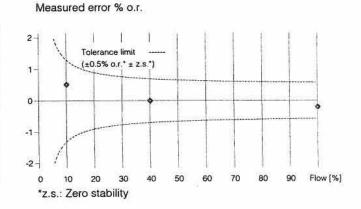
Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

^{*}o.r.; of rate

**Calculated value (4 - 20 mA)

Flow Calibration with Adjustment

People for Process Automation


30057870-1275191

Tag Nº

41724888
Purchase Order Number
JSA-49310090-40 / Endress+Hauser Flowte
Order Nº/Manufacturer
23P50-AL1A1RA022AW
Order Code
PROMAG 23 P 2"
Fransmitter/Sensor
6A022016000
Serial №
FIT-101 / TW-2D

FCP-6.C	
Calibration rig	
155.6102 GPM	(
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	
Water temperature	

Flow	Flow	Duration	V target	V meas.	Δ o.r.*	Outp.**
[%]	[GPM]	[sec]	[US GAL]	[US GAL]	[%]	[mA]
10.0	15.6	30.0	7.7910	7.8318	0.52	5.61
40.0	62.3	30.0	31.157	31.160	0.01	10.40
40.1	62.4	30.0	31.229	31.229	0.00	10.42
100.2	155.9	30.0	78.017	77.856	-0.21	20.00
	177		18		35-0-13 37- 1 6	-
-	2.50	- 1	8		- ·	-
-		- 1	70	-		
	-	-	5.	-	3.77	
-	. .	-		-	75	1576
-	/#	- 1	-	- 1	=	- 1

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

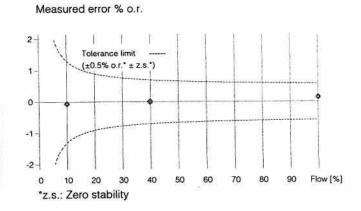
Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143 Tim Swick

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2

Flow Calibration with Adjustment


People for Process Automation

30057866-1275190

41/24888
Purchase Order Number
USA-49310090-40 / Endress+Hauser Flowted
Order №/Manufacturer
23P50-AL1A1RA022AW
Order Code
PROMAG 23 P 2"
Transmitter/Sensor
6A021F16000
Serial № ,
FIT-100 / TW2S
Tag №

Calibration rig	
155.6102 GPM	(
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9178	
Calibration factor	
0	
Zero point	
72.9 °F	
Water temperature	

Flow	Flow (GPM)	Duration [sec]	V target (US GAL)	V meas. [US GAL]	Δ o.r.* [%]	Outp.** [mA]
10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59
39.9	62.1	30.0	31.071	31.070	0.00	10.38
39.9	62.1	30.0	31.073	31.078	0.02	10.38
100.2	156.0	30.0	78.041	78.156	0.15	20.06
-	=		(a)	-	-	
-	2	-	-	-	-	- 1
1 - 1	=	-	-	- 1	-	- 1
- 1	2	120	-	-	-	-
	Ë	100	44		-	-
	- 5	-	-	12	20	-

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143 Tim Swick

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2

People for Process Automation

Flow Calibration without Adjustment

30094933-1275192

WWRA-001176-F

Purchase order number

US-19051105-10 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

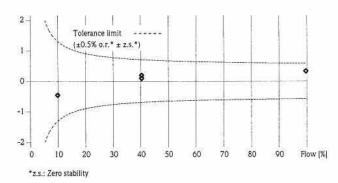
Order code

PROMAG 23 P 2"

Transmitter/Sensor

6A022116000

Serial Nº FIT-1203 IW-02/installed 02/02/07 FIT-102


Tag N°

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4-20 m	A
Calibrated output	
0.9214	
Calibration factor	
0	
Zero point	
72.3 °F	
Water temperature	

Flow [%]	Flow [GPM]	Duration sec	V target	V meas. [US GAL]	Δ o.r.*	Outp.**
9.9	15.5	30.1	7.7413	7.7054	-0.46	5.58
40.5	63.0	30.1	31.575	31.604	0.09	10.48
40.5	63.0	30.1	31.562	31.621	0.19	10.49
99.8	155.3	30.1	77.847	78.099	0.32	20.02
541	=	-	126	1=	=	-
121	-	=	4	(se	:=:	-
123	-	2	-	:=	(=)	=
120	12	=	_	22	<u>~</u>	20
-	14	-	2	:=:	(4)	(4)
1	144	=	-	-	143	— °

Measured error % o.r.

FCP-6.F

*o.r.: of rate **Calculated value [4 - 20 mA]

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-23-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

fin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

People for Process Automation

Flow Calibration without Adjustment

30092169-1385272

WWRA-000923-F

Purchase order number

US-19050353-20 / Endress+Hauser Flowtec

Order N°/Manufacturer

23P50-AL1A1AA022AW

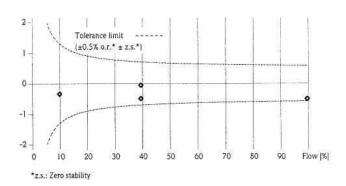
Order code

PROMAG 23 P 2"

Transmitter/Sensor

7700F216000

- FIT-1203/IW-03/installed 12/19/06


	Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	Δ o,r.* %	Outp.**
	10.0	15.5	30.1	7.7755	7.7489	-0.34	5.59
1	39.6	61.5	30.1	30.846	30.693	-0.49	10.30
	39.6	61.6	30.1	30.852	30.834	-0.06	10.33
ľ	99.8	155.3	30.1	77.842	77.452	-0.50	19.89
	-	***	12	2	=	=	7 -
	4	*	-	22	-	2	
	-	121	-	2	-	2	-
	-		12	2	323	-	1/2
	-		12	2	121	=	122
	+	2	12			=	

^{*}o.r.: of rate

FCP-6.F Calibration rig 155.6102 GPM $(\triangleq 100\%)$ Calibrated full scale 4 - 20 mA Current Calibrated output 0.9248 Calibration factor Zero point 74.9 °F

Measured error % o.r.

Water temperature

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-30-2006 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

M. E. Till

Morris E. Trueblood Jr.

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

^{**}Calculated value (4 - 20 mA)

Flow Calibration with Adjustment

30092564-1385273

WWRA-000923-F						FCP-20 MEDIUM			
Purchase of	order numb	er					Calibration rig		
US-19050353-40 / Endress+Hauser Flowtec						398.3621 GPM (
Order N°/Manufacturer							Calibrated full scale		
23P80	-AL1A1	AA022A	W				Current 4 - 20 mA		
Order cod	e						Calibrated output		
PROM	AG 23 1	P 3"					1.1873		
Transmitt	SELECTION OF PROPERTY	9 550		10100-0-0-0			Calibration factor		
7700F	316000	Na.					0		
55.100 8970-8509	SHOWLE BOUND THE PASSING		L 1 T	i Helli	1		Zero point		
- F7	7-70	12/51	ow to TU	1 4 T W-2	linstall	ed 12/19/06	76.7 °F		
Tag N°			-11 10 20	0 3 /			Water temperature		
Flow	Flow	Duration sec	V target	V meas.	Δ o.r.*	Outp.**	Measured error % o.r.		
9.9				IOS OWE	[70]	[mA]			
7.7	39.6	60.8	40.120	40.199	0.20	5.59	2		
38.5	153.2	60.8	40.120 155.374	40.199 155.417	0.20	5.59 10.16	Tolerance limit		
38.5 38.5	153.2 153.3	60.8 60.8 60.9	40.120 155.374 155.578	40.199 155.417 155.582	0.20 0.03 0.00	5.59 10.16 10.16			
38.5	153.2	60.8	40.120 155.374	40.199 155.417	0.20	5.59 10.16	Tolerance limit (±0.5% o.r.* ± z.s.*)		
38.5 38.5	153.2 153.3	60.8 60.8 60.9	40.120 155.374 155.578	40.199 155.417 155.582	0.20 0.03 0.00	5.59 10.16 10.16	Tolerance limit		
38.5 38.5	153.2 153.3	60.8 60.8 60.9	40.120 155.374 155.578	40.199 155.417 155.582	0.20 0.03 0.00	5.59 10.16 10.16	Tolerance limit (±0.5% o.r.* ± z.s.*)		
38.5 38.5	153.2 153.3	60.8 60.8 60.9	40.120 155.374 155.578	40.199 155.417 155.582	0.20 0.03 0.00	5.59 10.16 10.16	Tolerance limit (±0.5% o.r.* ± z.s.*)		
38.5 38.5	153.2 153.3	60.8 60.8 60.9	40.120 155.374 155.578	40.199 155.417 155.582	0.20 0.03 0.00	5.59 10.16 10.16	Tolerance limit (±0.5% o.r.* ± z.s.*)		

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

12-07-2006 Date of calibration

*o.r.: of rate

**Calculated value (4 - 20 mA)

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Tim Swick Operator

TimSwint

*z.s.: Zero stability

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

People for Process Automation

Flow Calibration with Adjustment

30094931-1275193

WWRA-001178-F
Purchase order number

US-19051105-30 / Endress+Hauser Flowtec

Order N°/Manufacturer

23P50-AL1A1RA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor

6A022216000

Serial N°
FIT-701 / RO Concentrate/installed 03/03/07

	Flow [%]	Flow [GPM]	Duration sec	V target (US GAL)	V meas, [US GAL]	∆ o.r.* [%]	Outp.**
1	10.0	15.5	30.1	7.7833	7.7628	-0.26	5.59
١.	40.5	63.1	30.1	31.600	31.613	0.04	10.49
	40.6	63.1	30.1	31.650	31.674	0.07	10.50
	99.7	155.1	30.1	77.720	77.919	0.26	19.98
	-	=	-		-		3-F
	-	-	-	(+)	-	-	#3
	-	-	(40))	-	- 1	-	. # .5
1	-	-	-:	-	- 1	100	-
	(m)	-	₩0	-	-	-	(** .)
	-	-	-	: = :	-	: - :	-

FCP-6.F	
Calibration rig	
155.6102 GPM	$(\triangleq 100\%)$
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9235	
Calibration factor	
0	
Zero point	
72.2 °F	

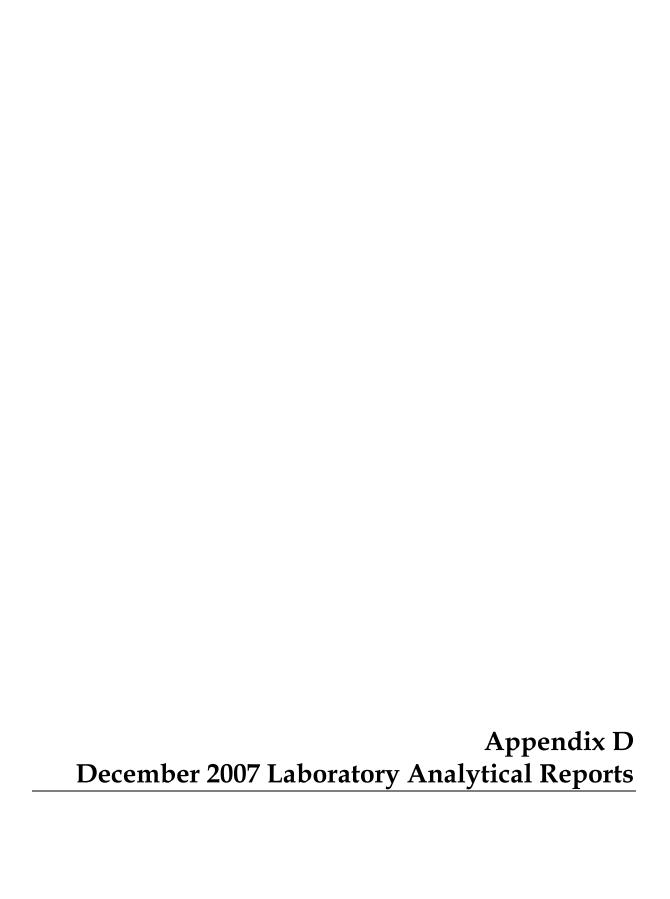
2-		Foleranc	e limit		 Ĭ		
1-			D.F.* ± Z	.s.*}			
0			537 1337				 •
0	٠			l Comme			
1-	,						
2 /			1	8			

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-23-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 fin Basse

Water temperature


Measured error % o.r.

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

^{*}o.r.: of rate

^{**}Calculated value (4 - 20 mA)

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

January 4, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-128 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 971670

Truesdail Laboratorics, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-128 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 5, 2007, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium by EPA 200.8, for sample SC-100B-WDR-128, was re-analyzed due to the discrepancy between the Total Chromium and Flexavalent Chromium results. The result from the re-analysis is reported.

The matrix spike for Total Barium by EPA 200.8 failed due to the amount of Barium detected in the sample, which was below the contract, required detection limit.

Total Dissolved Manganese was analyzed for sample SC-100B-WDR-128 as requested on the chain of custody. The internal standard recovery was outside the acceptance limits for this sample. As the Total Manganese was below the reporting limit, the Total Dissolved Manganese was not re-analyzed, and was therefor not reported, with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

For K.R.P. Iyer

Quality Assurance/Quality Control Officer

Ali- Kharraf

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

Laboratory No.: 971670

Date: January 4, 2008

Collected: December 5, 2007

Received: December 5, 2007

ANALYST LIST

Colonia de la companya del companya de la companya del companya de la companya de		
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	pH	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 B	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Tina Acquiat
EPA 200.7	Metals by ICP	Mark Kotani
EPA 200.8	Metals by ICP/MS	Michel Mendoza / Linda Saetern
EPA 245.1	Mercury	Michel Mendoza
EPA 218.6	Hexavalent Chromium	Jean Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007

Received: December 5, 2007 Prep/ Analyzed: December 6, 2007

Analytical Batch: 12PH07H

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D.	Field I.D.	Run Time	<u>Units</u>	MDL.	<u>RL</u>	<u>Results</u>
971670-1	SC-100B-WDR-128	10:03	рН	0.0700	2.00	7.35
971670-2	SC-700B-WDR-128	10:06	рН	0.0700	2.00	8.08
971670-3	SC-701-WDR-128	10:10	рН	0.0700	2.00	7.86

QA/QC Summary

QC STD I.D,	Laboratory Number Concentration		Duplicate Concentration	Difference (Units)	Acceptance limits	· · · · • · · · · · · · · · · · · · · ·	
Duplicate	971670-3	7.86	7.86	0.00	± 0.100 Units	Yes	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control	
LCS	7.04	7.00	0.04	<u>+</u> 0.100 Units	Yes	
LCS #1	7.03	7.00	0.03	<u>+</u> 0.100 Units	Yes	
LCS #2	7.02	7.00	0.02	<u>+</u> 0.100 Units	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971670

Date: January 4, 2008
Collected: December 5, 2007
Received: December 5, 2007
Prep/ Analyzed: December 10, 2007

Analytical Batch: 12EC071

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	<u>Method</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
971670-1	SC-100B-WDR-128	μ mhos/c m	EPA 120.1	1.00	2.00	7890
971670-2	SC-700B-WDR-128	μ mhos/cm	EPA 120.1	1.00	2.00	6690
971670-3	SC-701-WDR-128	μmhos/cm	EPA 120.1	1.00	2.00	26100

QA/QC Summary

QC STD I.D.	Laboratory Number Concentration		Duplicate Concentration	Relative Percent Difference	Acceptance Ilmits	QC Within Control
Duplicate	971669-16	1860	1860	0.00%	<u>≺</u> 10%	Yes

QC Std I.D. Measured Concentration		Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control	
ccs	CCS 696		98.6%	90% - 110%	Yes	
CVS#1	988	996	99.2%	90% - 110%	Yes	
CVS#2	987	996	99.1%	90% - 110%	Yes	
LCS	697	706	98.7%	90% - 110%	Yes	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007 Received: December 5, 2007

Prep/ Analyzed: December 11, 2007

Analytical Batch: 12TDS07E

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
971670-1	SC-100B-WDR-128	mg/L	SM 2540C	250	4810
971670-2	SC-700B-WDR-128	mg/L	SM 2540C	250	3830
971670-3	SC-701-WDR-128	mg/L	SM 2540C	250	19100

QA/QC Summary

QC STD I,O.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	971670-2	3830	3830	0.00%	≤ 5%	Yes

QC Std I.D.	Measured Concentration			Acceptance Limits	QC Within Control	
LCS 1	500	500	100%	90% - 110%	Yes	
LCS 2	498	500	99.6%	90% - 110%	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007 Received: December 5, 2007 Prep/ Analyzed: December 6, 2007

Analytical Batch: 12TUC07F

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Fleid I.D.	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
971670-1	SC-100B-WDR-128	12:50	NTU	1.00	0.100	0.295
971670-2	SC-700B-WDR-128	13:15	NTU	1.00	0.100	ND

QA/QC Summary

uzzao odininary										
QC STD I	.D. Laborato	" CARCARTE	Concentration		cate tration	Relative Percent Difference		Acceptance ilmits		QC Within Control
Duplicate 971661-1		1 ND	ND N			0.00%		≤ 20%		Yes
	QC Std I.D.	Measured Concentration		entration	Perce		Accepta		QC Withi	

	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
L	LCŞ	7.96	8.00	99.5%	90% - 110%	Yes
L	LCS	8.05	8.00	101%	90% - 110%	Yes
L	LCS	8.10	8.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF- Dilution Eactor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 358342.TM,02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 12CrH07G

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007 Received: December 5, 2007

Prep/ Analyzed: December 5 - 6, 2007

Analytical Batch: 12CrH07G

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>D</u> F	<u>RL</u>	Results
971670-1	SC-100B-WDR-128	12:50	12/5/07; 23:52	mg/L	100	0.0200	1.50
971670-2	SC-700B-WDR-128	13:15	12/6/07; 00:02	mg/L	1.05	0.00020	NĎ
971670-3	SC-701-WDR-128	13:10	12/6/07; 01:47	mg/L	5.00	0.0010	ND

QA/QC Summarv

	QC STD I.D.	Laboratory Number	Sample Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
l	Duplicate	971670-1	1.50	1.52	1.32%	≤ 20%	Yes

QC \$ta I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	M\$ Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	971670-1	1.53	100	0.0200	2.00	3.54	3.53	101%	90-110%	Yes
MS	971670-2	0.00	1.06	0.00100	0.00106	0.00112	0.00106	106%	90-110%	Yés
MS	971670-3	0.00	5.00	0.00100	0.00500	0.00532	0.00500	106%	90.110%	Vec

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC WithIn Control
MRCCS	0.00501	0.00500	100%	90% - 110%	Yeş
MRCVS#1	0.0102	0.0100	102%	95% - 105%	Yes
MRCVS#2	0.0102	0.0100	102%	95% - 105%	Yes
MRCV\$#3	0.0103	0.0100	103%	95% - 105%	Yes
MRCVS#4	0.0104	0.0100	104%	95% - 105%	Yes
LCS	0.00496	0.00500	99.2%	90% - 110%	Yes
LCSD	0.00498	0.00500	99.6%	90% - 110%	Yes

NO: Below the reporting limit (Not Datacted).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

سمل Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project

Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 971670

Date: January 4, 2008

Collected: December 5, 2007 Received: December 5, 2007

Prep/ Analyzed: December 11, 2007

Analytical Batch: 12NH3-E07B

Investigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Method</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
971670-1	SC-100B-WDR-128	12:50	SM 4500-NH3 D	mg/L	1.00	0.500	ND
971670-2	SC-700B-WDR-128	13:15	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summarv

					47	4	J QU			1				
	QC STE) I.D.	aborate Numbe		Concentra	ation	Du _l Conce	plic: entr	ation	Relative Percent Difference		eptance limits	QC Within Control	
	Duplic	ate	971742	-1	5.55			5.60		0.90%		20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample		ition ctor	Added Spike Conc.	ι	MS nount	C	easured onc. of spiked sample	Theoretica Conc. of spiked sample		MS% ecovery	Acceptance limits	QC WithIn Control
MS	971742-1	5.55	1.	.00	6.00	Ĭ	3.00		11.1	11.6	,	92.5%	75-125%	Yes
		QC S	d I.D.		easured centration		eoretica centrati	-	Percer Recove			QC Within		
		ĻÇ	s		10.0		10.0		100%	90% - 1	10%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 971670

Date: January 4, 2008

Collected: December 5, 2007

Received: December 5, 2007

Prep/ Analyzed: December 7, 2007

Analytical Batch: 12AN07F

Acceptance

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Unitş</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
971670-1 971670-2	SC-100B-WDR-128 SC-700B-WDR-128	12:50 13:15	08:13 08:25	mg/L mg/L	5.00 5.00	0.500 0.500	2.66 2.01
971670-3	SC-701-WDR-128	13:10	08:36	mg/L	5.00	0.500	6.81

QA/QC Summary

	QC 310	, I.D.	Number	Concentra	ation	Conc	entration	Difference	limits	Control	
	Duplic	ate	971671	0.999		0	.873	13.5%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	971671	0.999	1.00	2.00	2	2.00	3,21	3.00	111%	75-125%	Yes
				-							

Duplicate

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4.16	4.00	104%	90% - 110%	Yes
MRCVS#1	3.03	3.00	101%	90% - 110%	Yes
MRCVS#2	3,17	3.00	106%	90% - 110%	Yes
MRCVS#3	3.10	3,00	103%	90% - 110%	Yes
MRCVS#4	3.12	3.00	104%	90% - 110%	Yes
LÇ\$	4.15	4.00	104%	90% - 110%	Yes
LCSD	4.07	4.00	102%	009/ - 1109/	Von

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007

Received: December 5, 2007 Prep/ Analyzed: December 7, 2007

Analytical Batch: 12AN07F

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>D</u> F	<u>RL</u>	Results
971670-1 971670-2	SC-100B-WDR-128 SC-700B-WDR-128	12:50	14:53	mg/L	25.0	12.5	601
37 1070-2	3C-700B-WUR-120	13:15	15:04	mg/L	25.0	12.5	484

QA/QC Summary

Relative

	QCSTD		Numb	er	Concentra	ation		entration	Percent Difference		limits	Control	
	Duplica	ate 9	71669	-15	256		<u> </u>	256	0.00%		≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample		ution	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample		MS% ecovery	Acceptance limits	QC Within Control
MS	971669 -1 5	256	5	0.0	10.0	[500	753	756	9	99.4%	85-115%	Yes
		QC Sto	I I.D.		easured centration		neoretica ncentratio	1			QC Withi	· I	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	19.9	20.0	99.5%	90% - 110%	Yes
MRCVS#1	15.0	15.0	100%	90% - 110%	Yes
MRCVS#2	15,0	15.0	100%	90% - 110%	Yes
MRCVS#3	14.9	15.0	99.3%	90% - 110%	Yes
MRCVS#4	15.0	15.0	100%	90% - 110%	Yes
LCS	19.9	20.0	99.5%	90% - 110%	Yes
LCSD	20.0	20.0	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

hu-

Mona Nassimi, Manager Analytical Services

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Relative

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007 Received: December 5, 2007

Prep/ Analyzed: December 7, 2007

Analytical Batch: 12AN07F

Acceptance

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

OC STD I.D.

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
971670-1	SC-100B-WDR-128	12:50	08:13	mg/L	5.00	1.00	3.20
971670-2	SC-700B-WDR-128	13:15	08:25	mg/L	5.00	1.00	2. 84

QA/QC Summary

			Number	- Concential	Conc	entration	Difference	limits	Control	
	Duplica	te	971689-4	16.2		16.1	0.62%	<u>≺</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	i Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	971689-4	16.2	5.00	4.00	20.0	36.2	36.2	100%	75-125%	Yes

Duplicate

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4.01	4.00	100%	90% - 110%	Yes
MRCV\$#1	2.97	3.00	99.0%	90% - 110%	Yes
MRCVS#2	2.99	3.00	99.7%	90% - 110%	Yes
MRCVS#3	2.97	3.00	99.0%	90% - 110%	Yes
MRCVS#4	2.97	3.00	99.0%	90% - 110%	Yes
MRCVS#5	2.97	3.00	99.0%	90% - 110%	Yes
LCS	4.01	4.00	100%	90% - 110%	Yes
LCSD	3.98	4.00	99.5%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

Laboratory No.: 971670

Date: January 4, 2008 Collected: December 5, 2007

Received: December 5, 2007

Prep/ Analyzed: December 7, 2007

Analytical Batch: 12NO207C

Investigation:

Nitrite as N by Method SM 4500-NO2-B

Analytical Results for Nitrite as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	RL.	Results
971670-1	SC-100B-WDR-128	12:50	09:47	mg/L	1.00	0.0050	ND
971670-2	SC-700B-WDR-128	13:15	09:48	mg/L	1.00	0.0050	ND

QA/QC Summarv

	QC STC		Num 9716	iber	Concentra	tion	Conce	licate ntration	Percent Difference		eptance imits : 20%	QC Within Control Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	: ;	ilution actor	Added Spike Conc.	_	M\$ nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MS	971670-2	0.00		1.00	0.0200	0.	0200	0.0205	0.0200		103%	75-125%	Yes
		00.84	MID	Mea	asured	Th	eoretical	Percen	t Acceptar	nce	QC With	in	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0229	0.0230	99.6%	90% - 110%	Yes
MRCVS#1	0.0192	0.0200	96.0%	90% - 110%	Yes
LCS	0.0293	0.0290	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

L

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Samples: Three (3) Groundwaters
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

Investigation: Total Metal Analyses as Requested

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971670

Reported: January 4, 2008 Collected: December 5, 2007 Received: December 5, 2007

Analyzed: See Below

Analytical Results

REPORT

SAMPLE ID: SC-	100B-WDR-128	Time Co	llected:	12:50		LAB ID:	971670-1	
<u>Parameter</u>	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Aluminum	EPA 200.8	ND	1.00	mg/L	0.0500	010308B	01/03/08	16:00
Antimony	EPA 200.8	ND_	1.00	mg/L	0.0030	121907A	12/19/07	08:01
Arsenic	EPA 200.8	ND	1.00	mg/L	0.0050	121907A	12/19/07	08:01
Barium	<u>E</u> PA 200,8	ND	1.00	mg/L	0.300	121907A	12/19/07	08:01
Chromium	EPA 200.8	1. <u>71</u>	5.00	mg/L	0.0010	010408A	01/04/08	
Copper	EPA 200.8	ND	1.00	mg/L	0.0100	121907A	12/19/07	08:01
Lead	EPA 200.8	ND	1.00	mg/L	0.0020	121907A	12/19/07	08:01
Manganese	EPA 200.8	ND	1.00	mg/L	0.0200	121907A	12/19/07	08:01 08:01
Molybdenum	EPA 200.8	0.0208	1.00	mg/L	0.0050	121907A	12/19/07	
Nickel	EPA 200.8	ND	1.00	mg/L	0.0200	121907A	12/19/07	08:01
Zinç	EPA 200.8	ND	1.00	mg/L	0.0200	121907A		08:01
Boron	EPA 200,7	1.05	1.00	·	0.200		12/19/07	08:01
Iron	EPA 200.7	ND	1.00	mg/L		121207A	12/12/07	12:07
		140		<u>mg/L</u>	0.0200	121207A	12/12/07	12:07

SAMPLE ID: SC-7	00B-WDR-128	Time Coli	ected:	13:15	<u> </u>	LAB ID:	971670-2	
Parameter	Method	Reported Value	DF	Units	RL	Batch	Date Analyzed	Time Analyzed
Aluminum	<u>EPA 2</u> 00.8	ND	1.00	mg/L	0.0500	010308B	01/03/08	16:06
Antimony	EPA 200.8	ND	1,00	mg/L	0.0030	121907A	12/19/07	08:25
Arsenic	EPA 200.8	ND	1.00	mg/L	0.0050	121907A	12/19/07	08:25
Barium	EPA 200.8	ND	1.00	mg/L	0.300	121907A	12/19/07	08: <u>25</u> 08:25
<u>Chromium</u>	EPA 200.8	ND	1,00	mg/L	0.0010	121907A	12/19/07	11:43
Copper	EPA 200.8	ND	1.00	mg/L	0.0100	121907A	12/19/07	
Lead	EPA 200.8	ND ND	1.00	mg/L	0.0020	121907A	12/19/07	08:25
<u>Manganese</u>	EPA 200.8	0.0812	1.00	mg/L	0.0200	121907A	12/19/07	08:25
Molybdenum	EPA 200.8	0.0153	1.00	 mg/L	0.0050	121907A	12/19/07	
Nickel	EPA 200.8	ND	1.00	mg/L	0.0200	121907A	12/19/07	<u> 08:25</u> _
Zinc	EPA 200.8	ND	1,00	mg/L	0.0200	121907A		08:25
Boron	EPA 200.7	1.01	1.00	mg/L	0.200	121207A	12/19/07	08:25
Iron	EPA 200.7	0.0971	1.00	mg/L	0.0200	121207A 121207A	<u>12/12/0</u> 7 12/12/07	13:11 13:11

Report Continued

SAMPLE ID: SC-70)1-WDR-128	Time Col	ected:	13:10		LAB ID:	971670-3	
		Reported				•	Date	Time
<u>Parameter</u>	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Antimony	EPA 200.8	ND	5.00	mg/L	0.0030	121907A	12/19/07	08:55
Arsenic	EPA 200.8	ND	5.00	mg/L	0.0050	121907A	12/19/07	08:55
Barium	EPA 200.8	ND	5.00	mg/L	0.300	121907A	12/19/07	08:55
Beryllium	EPA 200.8	ND	5.00	mg/L	0.0010	010408A	01/04/08	10:25
Cadmium	EPA 200.8	ND	5.00	mg/L	0.0020	121907A	12/19/07	08:55
Chromium	EPA 200.8	0.0017	5.00	mg/L	0.0010	121907A	12/19/07	08:55
Cobalt	EPA 200.8	ND	5.00	mg/L	0.0050	121907A	12/19/07	08:55
Copper	EPA 200.8	ND	5.00	mg/L	0.0100	121907A	12/19/07	08:55
Lead	EPA 200.8	NĐ	5.00	mg/L	0.0020	121907A	12/19/07	08:55
Mercury	EPA 245.1	ND	1.00	mg/L	0.00020	12HG07Aa	12/15/07	N/A
Molybdenum	EPA 200.8	0.0712	5.00	mg/L	0.0050	121907A	12/19/07	08:55
Nickel	EPA 200.8	ND .	5.00	mg/L	0.0200	121907A	12/19/07	08:55
Selenium	EPA 200.8	0.0089	5.00	mg/L	0.0050	010408A	01/04/08	10:25
Silver	EPA 200.8	0.0062	5.00	mg/L	0.0050	121907A	12/19/07	08:55
Thallium	EPA 200.8	ND	5.00	mg/L	0.0010	121907A	12/19/07	08:55
Vanadium	EPA 200.8	ND	5.00	mg/L	0.0050	121907A	12/19/07	08:55
Zinc	EPA 200.8	ND	5.00	mg/L	0.0200	121907A	12/19/07	08:55

ND: Not detected,or below limit of detection,

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

971670

TRUESDAL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-8239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD [IM3Plant-WDR-128]

ģ 10 Days PAGE / TURNAROUND TIME DATE 12-507

COC Number

P H= 2 COMMENTS PH VSP NUMBER OF CONTAINERS 7HZ و × Rec'd 12/05/07 Lab.#971670 FI. SOA. NOZ. NO3 × × × × × × × × × × × × DESCRIPTION Water Water Water FAX (530) 339-3303 1E A.K. 3 Ħ 015116-5-41 12-5-07 1315 155 Grand Ave Ste 1000 12-50) DATE Oakland, CA 94612 358342 TM.02.0p (530) 229-3303 PG&E Topock SC-100B-WDR-128 2 SC-700B-WDR-128 SAMPLERS (SIGNATURE E2 -3 SC-701-WDR-128 PROJECT NAME P.O. NUMBER SAMPLE LD. COMPANY ADDRESS 器器

Level III QC ALERT

or Sample Condillions See Form Attached

TOTAL NUMBER OF CONTAINERS

H2//CH	CHAIN OF CUSTODY SIGNAT	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed July 1 July	ALE Gompany CHAMHILLONG Time 353	Date 5-50 Time	RECEIVED COOL WARM *F
Signature (Peceived) Kalan (Received) Kalane	Printed Rafed	T. 1.I	Date/ / S - 6 / Date	CUSTODY SEALED YES \(\Boxed{\omega}\) NO \(\Boxed{\omega}\)
Signature () (Relinquished)	Printed ' \	Company/ Agency	Date / / Ime	SPECIAL REQUIREMENTS:
Signature (Received)	Printed Devid	オフトル	Date' 12/5/07 Time 2145	
Signature (Relinquished)	Printed Name	/Åt	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 26, 2007

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-129 PROJECT, GROUNDWATER

MONITORING, TLI No.: 971878

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-129 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 12, 2007, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi سر س

Manager, Analytical Services

K.R.P. Syc

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 Laboratory No.: 971878

Date: December 26, 2007 Collected: December 12, 2007

Received: December 12, 2007

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	рН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 121807A

Laboratory No.: 971878

Date: December 26, 2007 Collected: December 12, 2007 Received: December 12, 2007

Prep/ Analyzed: December 18, 2007

Analytical Batch: 121807A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

TLI I.D. Field I.D. <u>Units</u> Method Run Time DF RL. Results 971878 SC-700B-WDR-129 mg/L EPA 200.8 15:25 1.00 0.0010 0.0033

QA/QC Summary

	QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
	Duplicate	971746-1	0.00275	0.00276	0.36%	<u><</u> 20%	Yes
т							

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	971746-1	0.00275	1.00	0.0500	0.0500	0.0500	0.0528	94.5%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0518	0.0500	104%	90% - 110%	Yes
MRCVS#1	0.0525	0.0500	105%	90% - 110%	Yés
ICS	0.0560	0.0500	112%	80% - 120%	Yes
LCS	0.0525	0.0500	105%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 971878

Date: December 26, 2007

Collected: December 12, 2007 Received: December 12, 2007

Prep/ Analyzed: December 12, 2007

Analytical Batch: 12CrH07Q

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time Run Time Units DF RL Results 971878 SC-700B-WDR-129 13:30 22:17 mg/L 1.05 0.00020 ND

QA/QC Summary

	QC ST) I.D.		oratory umber	Concentrati	οn		licate ntration	Percent Difference		eptance limits	QC Within Control	
	Duplic	ate	97	71878	ND		Ņ	ΙD	0.00%		€ 20%	Yes	
QC Std I.D.	Lab Number	Conc unspli samp	keđ	Dilution Factor	Added Spike Conc.	_	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	1.	MS% covery	Acceptance limit	QC Within Control
MS	971878	0.00	0	1.06	0.00100	0.0	00106	0.00117	0.00106		110%	90-110%	No
		-			Measured	Τh	eoretical	Percer	t Accepta	nce	QC With	vin .	11

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00503	0.00500	101%	90% - 110%	Yes
MRCVS#1	0.0104	0.0100	104%	95% - 105%	Yes
MRCVS#2	0.0104	0.0100	104%	95% - 105%	Yes
LCS	0.00503	0.00500	101%	90% - 110%	Yes
LCSD	0.00503	0.00500	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 971878

Date: December 26, 2007

Collected: December 12, 2007 Received: December 12, 2007

Prep/ Analyzed: December 13, 2007

Analytical Batch: 12TUC07I

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D. Field I.D.

Sample Time

<u>Units</u>

<u>DF</u>

<u>RL</u>

<u>Results</u>

971878

SC-700B-WDR-129

13:30

NTU

1.00

0.100

ND

QA/QC Summary

QC STD I,D,	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	971842-4	ND	ND	0.00%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.53	8.00	94.1%	90% - 110%	Yes
LCS	7.55	8.00	94.4%	90% - 110%	Yes
LCS	7.58	8.00	94.8%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

← Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 971878

Date: December 26, 2007

Collected: December 12, 2007

Received: December 12, 2007 Prep/ Analyzed: December 13, 2007

Analytical Batch: 12PH07Q

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D. Fleid I.D. Sample Time Run Time Units MDL RL Results 971878 SC-700B-WDR-129 13:30 08:53 0.0700 pΗ 2.00 8.28

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Ouplicate	971879-2	7,44	7.44	0.00	+ 0,100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.07	7.00	0.07	<u>+</u> 0.100 Units	Yes
LCS #1	7.05	7.00	0.05	± 0.100 Units	Yes
LCS #2	7.04	7.00	0.04	± 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

010

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 971878

Date: December 26, 2007 Collected: December 12, 2007

www.truesdail.com

Received: December 12, 2007

Prep/ Analyzed: December 14, 2007

Analytical Batch: 12EC07L

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI I.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 971878
 SC-700B-WDR-129
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 7100

QA/QC Summary

QC S		Number	* 1	Concentrati	ion	Duplica Concentra		1	ative Percent Difference		eptance imits	QC Within Control
Duplic	ate	971878		7100		7100			0.00%	5	10%	Yes
	Ğ	C Std I.D.		Measured Incentration		heoretical incentration	Perce Recov		Acceptano Limits	e	QC Withi Control	
		ccs		697		706	98.7	%	90% - 110	%	Yes	
		CVS#1		988		996	99.2	%	90% - 110	%	Yes	_
		CVS#2		937		996	94.19	%	90% - 110	%	Yes	
		LCS		698		706	98.99	%	90% - 110	%	Yes	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily Indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O 1 1

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE

Laboratory No.: 971878

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: December 26, 2007

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Collected: December 12, 2007 Received: December 12, 2007 Prep/ Analyzed: December 14, 2007 Analytical Batch: 12TDS07H

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 971878 Field I.D.

SC-700B-WDR-129

Units

Method

RL 250 <u>Results</u> 4340

mg/L SM 2540C

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	971879-1	4530	4620	0.98%	<u><</u> 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS 1	498	500	99.6%	90% - 110%	Yes
LCS 2	497	500	99.4%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

ter Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-129] **97/87**

COC Number

10 Days

PAGE 1 TURNAROUND TIME DATE /A-A-D

ЭĿ

	COMMENTS								MT= 1	V
		3							Hd,	TOTAL NUMBER OF CONTAINERS
		_							1.8	T NUN
	1	-		NINER	7N	02	_			TOTA
	-		•	_		303	O Y∃	SWOW		1
		-	-	***	****	-	_	- "	5	[3
		*****	*****	•	***	•		_		
		*****	****		•	****	-	_		
		-	-	-	•	•	*****			
		-	_	*****	•	•	-			
	/	****	•	-	•	•	-			
	1	*****		*******	•	-	****			
	-		-	-	_					
	_	•	********	****		loc.	-	,		
1		_	******		***	, UC 10	WS) A	Turbidit	×	
			*****	_	****	-	1005p	West.	×	
			-	(10	~_ ?().	-	0,75,71	4		
		-	LUI).	H CHIONE	~_`? ?/o/	C(GOV	Cond	(S) SQ1	×	
			*****		, D.	(100) SIEK	W. T	×	
				-		ONIA GE	77 (9%	Cre (27,	×	
								090	×	
			FAX (530) 339-3303					DESCRIPTION	Water	
			93			₹'			<u> </u>	
			FAX (53	1	1	TEAN		THE	13:38	
				Ste 1000	717	8	(Mg	DATE	(3:81 Ora-c)	
	£2	E PG&E Topock	(530) 229-3303	155 Grand Ave Ste 1000	Carialla, CA	358342.TM.02.00	GNATURE (L)		/DR-129	
	COMPANY	PROJECT NAME	PHONE	ADDRESS		P.O. NUMBER	SAMPLERS (SIGNATURE	SAMPLE 1.D.	SC-700B-WDR-129	

SAMPLE CONDITIONS	RECEIVED COOL WARM *F	CUSTODY SEALED YES NO	SPECIAL REGÜRENENTS:	The state of the s		1
CHAIN OF CUSTODY SIGNATURE RECORD	Printed Paris Company CHAN Hill Date 17-18-07 Name Davis Cong Time 15:35	BANIFACIO DAYAE Agency TCA	Signature Company Company Dayley Name 300015A-012 04746 Agency TC/	Signature Printed Company! Date 12-12-07 [Received] Surface Date 12-12-07	Printed Company! Date! Name Agency Time	Signature / Maleuring Name Maleurure Agency 77 Time 14/1/107
	Signature (Relinquished)	Signature (Received)	Signature (Relinquished) 2	Signature (Received)	Signature A (Relinquished)	Signature (Received)

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 www.truesdail.com

January 8, 2008

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

REVISED CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-130 PROJECT, GROUNDWATER MONITORING, TLI NO.: 972114

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-130 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 19, 2007, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

Results for Hexavalent Chromium by EPA 218.6 are reported in the matrix spike calculations although they are below the reporting limit due to the small amount of Hexavalent Chromium present in the sample.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

6- Mona Nassimi

Manager, Analytical Services

K.R.P. Ine

Sean Conda

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

Laboratory No.: 972114

Date: December 26, 2007 Collected: December 19, 2007 Received: December 19, 2007

ANALYST LIST

		Tina Acquiet
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	pН	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE REPORT TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972114

Date: January 8, 2008

Collected: December 19, 2007 Received: December 19, 2007

Prep/ Analyzed: December 20, 2007

Analytical Batch: 12CrH07V

Revision 1

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time **Run Time** Units DF ŖL Results 972114 SC-700B-WDR-130 10:15 07:34 mg/L 1.05 0.00020 ND

TAIME Summa

					Q/	4/6	IC SI	<u>ımma</u>	I	/					
	QC STI		N	ooratory umber	Concentrati	on		licate ntration	F	Relative Percent ifference		eptance limits	T	QC Within Control	
	Duplic	cate	97	2114 5x	ND		N	ID		0.00%		≤ 20%	1	Yes	
QC Std I.D.	Lab Number	uns	nc.of olked nple	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample		Conc. of spiked sample	0.000	M\$% ecovery	Ac	ceptance limits	QC Within
MS	972114	0.00	0011	1.06	0.00100	0.0	00106	0.00119	土	0.00117		102%		90-110%	Yes
		۵	C Std	I.D.	Measured Concentration	100000000000000000000000000000000000000	eoretical centration	Percer Recove		Acceptan Limits	ce	QC With			
			MRC	os .	0.00517	(0.00500	103%		90% - 110	%	Yes	\dashv		
	20.	N	/RCV	S#1	0.00990		0.0100	99.0%	6	95% - 105	_	Yes			
		N	ARCV	S#2	0.00987		0.0100	98.7%	6	95% - 105		Yes	\neg		
			LCS	;	0.00518	. (0.00500	104%		90% - 110		Yes	\neg		
			V-10mm Charles		Control of the Contro				$\overline{}$	- 10					

0.00500

103%

ND: Below the reporting limit (Not Detected).

LCSD

0.00516

DF: Dilution Factor.

Respectfully submitted,

90% - 110%

TRUESDAIL LABORATORIES, INC.

€ - Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Relative

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 122007A

Laboratory No.: 972114

Date: December 26, 2007 Collected: December 19, 2007

Received: December 19, 2007

Prep/ Analyzed: December 20, 2007

Analytical Batch: 122007A

Acceptance OC Within

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Chromium

TLI I.D. Field I.D. Units Method Run Time DF RL Results 972114 SC-700B-WDR-130 mg/L **EPA 200.8** 12:28 1.00 0.0010 ND

QA/QC Summary

Duplicate

	Duplic	'	Number 171669-		ND	ition	Concent	ration	Difference 0,00%	limits	Control	
QC Std 1.D.	Lab Number	Conc.of unspiked sample	Dilut		Added Spike Conc.	M Amo	S count	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	971669-7	0.00	1.0	00	0.0500	0.05	500	0.0470	0.0500	94.0%	70-130%	Yes
		QC Sto	1.D.	200	leasured icentration		oretical entration	Percen Recover			22.00	• • • • • • • • • • • • • • • • • • • •
					remark to common to	150/0	of the country of the	2 2 2 2 1 1 2 2 2 2 2				

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0506	0.0500	101%	90% - 110%	Yes
MRCVS#1	0.0522	0.0500	104%	90% - 110%	Yes
MRCVS#2	0.0518	0.0500	104%	90% - 110%	Yes
ics	0.0547	0.0500	109%	80% - 120%	Yes
LCS	0.0527	0.0500	1059/	00% 110%	V

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

SC-700B-WDR-130

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

Laboratory No.: 972114

Date: December 26, 2007

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdall.com

Collected: December 19, 2007

Received: December 19, 2007 Prep/ Analyzed: December 20, 2007

Analytical Batch: 12TUC07O

Investigation:

972114

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D. Field I.D.

Sample Time 10:15

Units NTU

DF 1.00

RL 0.100

Results ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within
Duplicate	972103-32	0.108	0.109	0.92%	< 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.30	8.00	91.3%	90% - 110%	Yes
LCS	7.35	8.00	91.9%	90% - 110%	Yes
LĊS	7.40	8.00	92.5%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972114

Date: December 26, 2007 Collected: December 19, 2007

Received: December 19, 2007

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Prep/ Analyzed: December 20, 2007 Analytical Batch: 12PH07W

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D. Field I.D. S 972114 SC-700B-WDR-130

Sample Time

10:15

Run Time 09:08 <u>Units</u>

pH

<u>RL</u> 2.00

MDL

0.0700

Results 8.06

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance Ilmits	QC Within Control
Duplicate	972114	8.06	8.08	0.02	+ 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Withir Control
LCS	7.06	7.00	0.06	± 0.100 Units	Yes
LCS #1	7.05	7.00	0.05	± 0.100 Units	Yes
LCS #2	7.09	7.00	0.09	+ 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O10

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972114

Date: December 26, 2007 Collected: December 19, 2007 Received: December 19, 2007

Prep/ Analyzed: December 20, 2007

Analytical Batch: 12EC07Q

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

 TLI I.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 972114
 SC-700B-WDR-130
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6790

QA/QC Summary

QC STD I.D.		Laborator Number	Concentrati	on	Duplica Concentra			itive Percent Difference		ceptance limits	QC Within
Duplic	ate	972114	6790	6790		6800 0.15%		0.15%	≤ 10%		Yes
	Q	Std I.D.	Measured Concentration		heoretical encentration	Perce Recov		Acceptano Limits	Control		1
	ccs		688	•	706	97.59	%	90% - 1109	%	Yes	7
	CVS#1	945		996	94.99	%	90% - 110	%	Yes	7	
		LCS	688		706	97.55	%	90% - 1109	%	Yes	7

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

L.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Laboratory No.: 972114

Date: December 26, 2007

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Collected: December 19, 2007 Received: December 19, 2007

Prep/ Analyzed: December 20, 2007

Analytical Batch: 12TDS07J

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

TLI I.D. 972114

Field I.D. SC-700B-WDR-130

Units mg/L

Method SM 2540C

RL 250 Results 4260

QA/QC Summary

QC STD I.D.	Laborator Number		tlon	Dupli			Percent Difference		ceptance Ilmits	QC Within
Duplicate	972114	4260	4260		4240		0.24%		≤ 5%	Yes
L	DC Std I,D.	Measured Concentration		oretical entration	Percen Recove	S	Accepta Limits		QC Withir	7
	LCS 1	494		500	98.8%	\forall	90% - 11	10% Yes		-{

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

4 -- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

COC Number CHAIN OF CUSTODY RECORD

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: {714} 730-6462 www.fruesdail.com

10 Day's

TURNAROUND TIME DATE /2/1/2,

PAGE 1

0

DEPOIND (0; 29 HIS TOTAL NUMBER OF CONTAINERS COMMENTS 3 8.0 NUMBER OF CONTAINERS M Turbidity (SM2730) (8HOOSHUS) Hd TOS (SM2S4OC) Specific Conductance (120.1) Total Metals (2007) Total Chromium DESCRIPTION FAX (530) 339-3303 Water TEAM TIME 155 Grand Ave Ste 1000 DATE Oakland, CA 94612 358342.TM.02.00 (530) 229-3303 PG&E Topock SAMPLERS (SIGNATURE SC-700B-WDR-130 £2 PROJECT NAME P.O. NUMBER SAMPLE I.D. COMPANY ADDRESS PHONE

		i.						4.		
	SNOILIONS	WARM								
	SAMPLE CONDITIONS	0000	2000		NTS:					
		RECEIVED C	"CUSTONY SEALED		PECIAL REQUIREMENTS	6	, b	A company of the contract of t	biogra.	****
		Company CAZ A HILL Date 12/18/07 Agency OAL ZAS 7000 Time 1856	Date/ 2-19-07	Date 12-19-07	For Same C	1 1 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2	Date		Date/	Time
CHAIN OF CUSTODY SIGNATURE RECORD	SIGNAL SINE NECOND	_ `	Company 7C/	Company/	DAMCAgency T.C.	Company! T. C.	Company/	Agency	Company/	Agency
CHAIN OF CUSTOR		Printed Name GAZY SUBBLE	Bondage Oryong Name Bonnsage of Arms	Printed	Udy ON Name BON/ FACIO DANG Agency TC/	广西西山水山	Printed	, 18me		Name
		W 816	Pondae o C	- 50	٦	3			していたい	
		(Relinquished)	Signature (Received)	Signature	Circuit (dished) & Cracket C.C.	(Received)	Signature (Beliggiagh of the Control	(reiii idolsii en)	(Received)	100000000

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 2, 2007

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-131 PROJECT, GROUNDWATER

Monitoring, TLI No.: 972292

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-131 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 27, 2007, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the sample for Total Chromium analysis was analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Al. Shangs

for Mona Nassimi

Manager, Analytical Services

K. R. P. gyer

K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 Date: January 2, 2008
Collected: December 27, 2007
Received: December 27, 2007

ANALYST LIST

EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	На	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Chromium	Linda Saetern
EPA 218.6	Hexavalent Chromium	Jean-Paul Gleeson

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972292

Date: January 2, 2008

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Collected: December 27, 2007 Received: December 27, 2007

Prep/ Analyzed: December 28, 2007

Analytical Batch: 12CrH07X

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI</u> I.D. Field J.D. Sample Time Run Time <u>Units</u> DF RL Results 972292 SC-700B-WDR-131 11:30 08:19 mg/L 1.05 0.00020 ND

QA/QC Summary

							-		ч.	mma	y												
	QC ST		N	orator umber	-	Concentration			plic: entr	ration	Pe	ercent ercence		ceptance limits	T	QC Within Control							
	Duplic	ate	97	2292 5	ζ.	ND			ND			.00%		≤ 20%	+	Yes							
QC Std I.D.	Lab Number	unst	c.of piked aple	Diluti Facto		Added Spike Conc.	ke MS Amount		MS of Amount		MS C Amount s		MS Co Amount s		nount spiked		١	eoretical Conc. of spiked		MS% Covery	Ac	ceptance limits	QC Within Control
MS	972292	0.00	0186	1.06		0.00100	0.0	0106		0.00125	_	9ample 0.00125	\vdash	100%	_	90-110%							
		Q	C Std	I.D.	C	Measured oncentration		eoretical centratio		Percent Recover	T	Acceptan Limits	Ce	QC With			<u>j</u> Yes						
			MRÇC	s		0.00520	0	.00500		104%	+	90% - 110	19%	Yes									
		<u> N</u>	IRCVS	3#1		0.00981		0.0100	寸	98.1%	$\overline{}$	95% - 105		Yes	-								
			LCS	\rightarrow		0.00520	0	.00500		104%		90% - 110		Yes	\dashv								
			LCSE	<u> </u>		0.00518	0	.00500		104%		90% - 110		Yes									

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

For Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without properties authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Prep. Batch: 122807A

Laboratory No.: 972292

Date: January 2, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: December 27, 2007 Received: December 27, 2007

Prep/ Analyzed: December 28, 2007

Analytical Batch: 122807A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using EPA 200.8

Analytical Results Total Chromium

TLI I.D. Field I.D. <u>Units</u> Method Run Time DF RL Results 972292 SC-700B-WDR-131 mg/L **EPA 200.8** 10:02 1.00 0.0010 NĎ

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	972292	ND	ND	0.00%	≤20%	Yes

QC Sta	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	972292	0.00	1.00	0.0500	0.0500	0.0525	0.0500	105%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0482	0.0500	96.4%	90% - 110%	Yeş
MRCVS#1	0.0528	0.0500	106%	90% - 110%	Yes
ics	0.0497	0.0500	99.4%	80% - 120%	Yes
LCS	0.0484	0.0500	96.8%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Fo/ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior witten authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972292

Date: January 2, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Collected: December 27, 2007 Received: December 27, 2007

Prep/ Analyzed: December 28, 2007

Analytical Batch: 12TUC07S

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

TLI I.D. Field I.D.

<u>Sample Time</u>

<u>Unițs</u>

<u>DF</u>

RL Res

<u>Results</u>

972292

SC-700B-WDR-131

11:30

NTU

1.00

0.100

ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	972285-1	3.95	3.98	0.76%	< 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.52	8.00	94,0%	90% - 110%	Yes
LCS	7.60	8.00	95.0%	90% - 110%	Yes
LCS	7,65	8.00	95.6%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Fo Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without price written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972292

Date: January 2, 2008

Collected: December 27, 2007 Received: December 27, 2007

Prep/ Analyzed: December 28, 2007

Analytical Batch: 12TDS07N

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 972292 Field I.D. SC-700B-WDR-131

Units mg/L Method SM 2540C <u>RL</u>

Results

125

4280

QA/QC Summary

QC STD I.D. Laboratory Number		Concentrat	ilon	Dupil Concen		Percent Difference	Ac	ceptance limits	QC Within Control
Duplicate	Duplicate 972292			4340		0.70%	<u>≤</u> 5%		Yes
	00 8441 B	Measured	The	oretical	Perce	nt Accent	2000	OC WIELE	

 QC Std I.D.
 Measured Concentration
 Theoretical Concentration
 Percent Recovery
 Acceptance Limits
 QC Within Control

 LCS 1
 499
 500
 99.8%
 90% - 110%
 Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

. Mo

Mona Nassimi, Manager Analytical Services

l. Klanz

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 972292

Date: January 2, 2008 Collected: December 27, 2007

Received: December 27, 2007 Prep/ Analyzed: December 28, 2007

Analytical Batch: 12EC07T

Oakland, CA 94612 Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

TLI I.D. Field I.D. Units <u>Method</u> DF RL Results 972292 SC-700B-WDR-131 umhos/cm EPA 120.1 1.00 2.00 6180

QA/QC Summary

QC Witi	eptance limits		ative Percent Ofference			Duplica Concentra	ion	Concentrati	•	STD Laboratory .D. Number	
Yes	≤ 10%		0.32%			6200		6180	92	972292	Ouplicate
thin	QC With	Ce C	Acceptance Limits		Perce Recov	Theoretical Concentration		Measured oncentration		QC Std I.D.	
	Yes	%	90% - 1109	%	706 97.3%		687 706 97.3%		687		<u> </u>
_			90% - 1109	%	94.89	996		944		CVS#1	<u> </u>
_	Yes	%	90% - 1109	%	97.39	706		687		LCS	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00 Laboratory No.: 972292

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Date: January 2, 2008 Collected: December 27, 2007

Received: December 27, 2007

Prep/ Analyzed: December 28, 2007 Analytical Batch: 12PH07BB

Investigation:

pH by SM 4500-H B

Analytical Results pH

TLI I.D. 972292

<u>Field I.D.</u>

SC-700B-WDR-131

Sample Time 11:30 Run Time 08:37

<u>Units</u> pH MDL 0.0700

<u>RL</u> 2.00 Results 8.23

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	972292	8.23	8.24	0.01	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.08	7.00	0.08	± 0.100 Units	Yeş
LCS #1	7.06	7.00	0.06	± 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

COMMENTS Rec'd 12/27/07 PAGE 1 NUMBER OF CONTAINERS TURNAROUND TIME €/ COC Number DATE RUSSI. CHAIN OF CUSTODY RECORD (OE ISMR) (Vibidiu) [IM3Plant-WDR-131] (8HOOSPWS) Hd × Specific Conductance (120.1) Total Medals (200.7) Total Chromium × × × DESCRIPTION Water FAX (530) 339-3303 TEAM TRUESDAL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-646 THE 155 Grand Ave Ste 1000 13207 DATE Oakland, CA 94612 358342.TM.02.00 (530) 229-3303 PG&E Topock SC-700B-WDR-131 SAMPLERS (SIGNATURE E2 PROJECT NAME P.O. NUMBER SAMPLE I.D. COMPANY ADDRESS PHONE

AL EDTII	ALENI	Level III QC	
		And the second s	

TOTAL NUMBER OF CONTAINERS

Ŝ

~ ~	CHAIN OF CUSTODY SIGNATURE	GNATURE RECORD	0	SAMPLE CONDITIONS
Signature (Relinquished)	Printed PL # DE	Company! Om±	Date! /2-2/~/ Time //30	RECEIVED COOL WARM F
Signature (Received)	an Native Ka for	Company/ T. L. T.	Dale/ /2-27-67 Time 3:36	CUSTODY SEALED YES 🔲 NO 📋
Signature (Relinquished)	Printed 'P'	Company 7.1.7	7	SPECIAL REQUIREMENTS:
Signature (Received)	Printed Name	Company/ Agency	Date/ C. Time	
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 26, 2007

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-128 PROJECT, SLUDGE

MONITORING,

TLI No.: 971671

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-128 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 5, 2007, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

🚣 Mona Nassimi

Manager, Analytical Services

60 K.R.P. Iyer

Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 Laboratory No.: 971671

Date: December 26, 2007 Collected: December 5, 2007 Received: December 5, 2007

ANALYST LIST

	villa en essa e e e e e e e e e e e e e e e e e	
EPA 300.0	Fluoride	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Mark Kotani
SW 7471A	Mercury	Michel Mendoza
SW 7199	Hexavalent Chromium	David Blackburn

EXCELLENCE IN INDÉPENDENT TESTING

Established 1931

PORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project
Project No.: 358342.TM.02.00
P.O. No.: 358342.TM.02.00

Prep. Batch: 12CrH07P

Laboratory No.: 971671

Date: December 26, 2007 Collected: December 5, 2007 Received: December 5, 2007

Prep/ Analyzed: December 12, 2007

Analytical Batch: 12CrH07P

Investigation:

Hexavalent Chromium by IC Using Method SW 7199

Analytical Results Hexavalent Chromium

TLI_I.D.	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>_RL</u>	<u>Results</u>
971671	SC-Sludge-WDR-128	3 13:00	8:43	mg/kg	10.0	10.3	293

QA/QC Summary

QC STD I.D.	Laboratory Number	Sample Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	971671	293	342	15.4%	<u><</u> 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
М\$	971671	293	10.0	41.0	410	745	703	110%	75-125%	Yes
IMS	971671	293	40.0	102	4080	4140	4373	94.3%	75-125%	Yes
PDMS	971671	293	25.0	32.8	820	1140	1113	103%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0528	0.0500	106%	90% - 110%	Yes
MRCVS#1	0.0532	0.0500	106%	90% - 110%	Yes
LCS	0.0449	0.0500	89.8%	80% - 120%	Yes

NU: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971671

Date: December 26, 2007 Collected: December 5, 2007 Received: December 5, 2007 Prep/ Analyzed: December 10, 2007

Analytical Batch: 12SOLID07A

Investigation:

Total Solids by SM 2540 B

Analytical Results % Moisture

TLI I.D. Field I.D. Sample Time <u>Units</u> Results 971671 SC-Sludge-WDR-128 13:00 % 80.5

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	971671	80.5	80.5	0.00%	≤ 20%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

- Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 FAX (714) 730-6462

www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 358342.TM.02.00

P.O. No.: 358342.TM.02.00

OC STD LD.

Laboratory No.: 971671

Date: December 26, 2007 Collected: December 5, 2007

QC Within

Received: December 5, 2007 Prep/ Analyzed: December 7, 2007

Analytical Batch: 12AN07F

Acceptance

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

TLI I.D. Field I.D. Sample Time Run Time <u>Units</u> DF RL Results 971671 SC-Sludge-WDR-128 13:00 13:33 mg/kg 20.0 10.3 102

QA/QC Summarv

Relative

	QC ST	D I.D.		Number	Concentr	ation	l - ' '	entration	Percent Difference	ı	eptance imits	Control	
	Duplio	ate		971671	102			39.5	13.1%		20%	Yes	
QC Std I.D.	Lab Number	Con- unsp sam	c.of iked	Dilution Factor	Added Spike Conc.	Ι.	MS nount	Measured Conc. of spiked sample			MS% covery	Acceptance limits	QC Within Control
MS	971671	1 102 20.0 10.2			204	329	306	1	111%	85-115%	Yes		
					Managerad	71		Paran	t Accepte		OC WISH	I	

Duplicate

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4.16	4.00	104%	90% - 110%	Yes
MRCVS#1	3.03	3.00	101%	90% - 110%	Yes
MRCVS#2	3.17	3.00	106%	90% - 110%	Yes
MRCVS#3	3.10	3.00	103%	90% - 110%	Yes
MRCVS#4	3.12	3.00	104%	90% - 110%	Yes
LCS	4.15	4.00	104%	90% - 110%	Yes
LCSD	4.07	4.00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 971671

Reported: December 26, 2007 Collected: December 5, 2007 Received: December 5, 2007 Analyzed: November 9 - 21, 2007

Attention: Shawn Duffy

Samples: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 358342.TM.02.00 P.O. No.: 358342.TM.02.00

Investigation: Total Metal Analyses as Requested

Client: E2 Consulting Engineers, Inc.

Oakland, CA 94612

155 Grand Ave. Suite 1000

Analytical Results

SAMPLE ID:	SC-Sludge-WDR-128	Time Coll	ected:	13:00		LAB ID:	971671	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzęd
Antimony	SW 6010B	370	43.0	mg/kg	4.41	121207A	12/12/07	12:47
Arsenic	SW 6010B	68.2	43.0	mg/kg	4.41	121207A	12/12/07	12:47
Barium	SW 6010B	108	43.0	mg/kg	2.50	121207A	12/12/07	12:47
Beryllium	\$W 6010B	127	43.0	mġ/kg	2.50	121207A	12/12/07	12:47
Cadmium	SW 6010B	57.9	43.0	mg/kg	4.41	121207A	12/12/07	12:47
Chromium	SW 6010B	21600	2150	mg/kg	110	121207A	12/12/07	12:43
Cobalt	SW 6010B	17.7	43.0	mg/kg	2.50	121207A	12/12/07	12:47
Copper	SW 6010B	906	43.0	mg/kg	2.50	121207A	12/12/07	12:47
Lead	SW 6010B	111	43.0	mg/kg	4.41	121207A	12/12/07	12:47
Mercury	SW 7471A	ND	97.7	mg/kg	0.100	12HG07Ac	12/17/07	N/A
Molybdenum	SW 6010B	ND	43.0	mg/kg	2.50	121207A	12/12/07	12:47
Nickel	SW 6010B	77.4	43.0	mg/kg	2.50	121207A	12/12/07	12:47
Selenium	SW 6010B	233	43.0	mg/kg	11.0	121207A	12/12/07	12;47
Silver	SW 6010B	ND	43.0	mg/kg	4.41	121207A	12/12/07	12:47
Thallium	SW 6010B	ND	43.0	mg/kg	4,41	121207A	12/12/07	12:47
Vanadium	SW 6010B	124	43.0	mg/kg	2.50	121207A	12/12/07	12:47
Zinç	SW 6010B	1390	43.0	mg/kg	11.0	122607A	12/26/07	15:23

NOTES:

Sample results and reporting limits reported on a dry weight basis.

ND: Not detected or below limit of detection.

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

∳⊷- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

149146

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD [IM3Plant-WDR-128]

ង

10 Days PAGE

TURNAROUND TIME DATE 12-5-67

E2						_		-		Z.	2C' d	12	1/05/	02	_	_	-			a a sa	
PG&E Topock					•	***	****		****	77	Tap:#81	71	167	-	****	•			<u> </u>		
(530) 229-3303		(230)	FAX (530) 339-3303		*****	*****	LEB ZO.	Uin	Л:-	•	***	***	 _ a	-	-	******	•	S	_		
155 Grand Ave Ste 1000	3 Ste 1000				-	4	Pale VE'ST	New .	(4	•	****	2.4	OAL I			***	-	ΛEΡ			
Oakland, CA 94612	14612			_	Pe.	005) " 1005) "	II JA	ر براہ ک	(150	****	-	ON 'yo	•	9W '25	•	(E)		IVIA			
358342.TM.02.00	80	TEAM	~ -	4	TAGITE LEIGH	ئىرىڭ ئىرالى م	460	11		-	A	08 14	-	6/1	(oc	Mon	(O)	(C-			
URE //AL.	Clift-		,	98	BQ.	ר ד ו (כנו האריבונו	(S) S/8/6	~~~	~ PC >	~~00s	(0'0nc	(0'm	-00009	CNS) A	ME) e	-	EG O				
		黑	DESCRIPTION	Cre (21)	ALAS P.	Nepriem	ALAS B. Nangan Total M. Specific	Oyyo add		We L	STOPA STOPA	Anons Cr6 (7)	Ev-	Turbidit	NOMINA		BWON				
R-128	W5-67 1300	3	Sludge				\vdash	\vdash	\vdash	×		X	×			<u>}</u>	1				,
																_	Ľ	TOTAL	NUMBE	FOTAL NUMBER OF CONTAINERS	

P.O. NUMBER

SAMPLERS (SIGNATURE

SC-Sludge-WDR-128

SAMPLE 1D.

PHONE

ADDRESS

PROJECT NAME

E2

COMPANY

Level III QC

ar Sample Conditions 39e Form Attached

3	CHAIN OF CUSTODY SIGNATU	RE RECORD		SAMPLE CONDITIONS
Signature (Relinquished) // //w	Printed LUILLA	Companyl HAM/HT/CAM Time	My Time 1256	RECEIVED COOL WARM *F
Signature De Le 1	A WATER ROLL	Company/ Date Agency Time	Date / 2 - 5 - 0 7 Time / 5 : 2 0	CUSTODY SEALED YES 🗍 NO 🗍
Signature (Relinquished)	Printed Name	Company/ Date/ Agency Time		SPECIAL REQUIREMENTS:
Signature (Received)	Printed Daviol 5	サーナ	Dated 12/5/07 Time 2(イミ	
Signature (Reinquished)	Printed Name	Company/ Date/ Agency Time	e 6.	
Signature (Received)	Printed Name	Company! Date/ Agency Time	u v	