

Curt Russell Topock Site Manager Environmental Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.791.5884 Fax: 760.326.5542 Email: gcr4@pge.com

July 13, 2018

Pamela S. Innis Topock Remedial Project Manager U.S. Department of the Interior Office of Environmental Policy and Compliance P.O. Box 2507 (D-108) Denver Federal Center, Building 56 Denver, CO 80225-0007

Scot Stormo California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Topock IM-3 Combined Second Quarter 2018 Monitoring, Semiannual January – June 2018 Operation and Maintenance Report PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System (Document ID: PGE20180713A)

Dear Ms. Innis and Mr. Stormo:

Enclosed is the Second Quarter 2018 Monitoring, Semiannual January – June 2018 Operation and Maintenance Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure No. 3 (IM-3) Groundwater Treatment System.

From July 2005 through September 2011 PG&E was operating the IM-3 groundwater treatment system as authorized by the Colorado River Basin Regional Water Quality Control Board (Regional Water Board) Order No. R7-2004-0103 (issued October 13, 2004); Order No. R7-2006-0060 (issued September 20, 2006); and the revised Monitoring and Reporting Program under Order No. R7-2006-0060 (issued August 28, 2008). Order No. R7-2006-0060 expired on September 20, 2011.

PG&E is currently operating the IM-3 groundwater treatment system as authorized by the U.S. Department of the Interior (DOI) Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) as documented in Attachment A to the Letter Agreement issued July 26, 2011 from the Regional Water Board to DOI, and the subsequent Letter of Concurrence issued August 18, 2011 from DOI to the Regional Water Board. Quarterly monitoring reports are required to be submitted by the fifteenth day of the month following the end of the quarter.

Sustainable remediation is a corporate commitment internally monitored by PG&E. IM-3 is operated in a manner that has resulted in sustainable reductions in electrical use, greenhouse gas (GHG) emissions, and generation of solid and liquid waste. Examples include: (1) reduced electricity use and associated GHG emissions due to use of photocells to manage outdoor lighting at IM-3 and use of solar power for the injection area wellhead data collection system; (2) process optimization initiatives (within

Pamela S. Innis Scot Stormo July 13, 2018 Page 2

constraints of the injection permit) have reduced brine production, treatment sludge production, and treatment chemical use, and (3) these efforts also reduce the fuel consumption and GHG emissions from chemical deliveries and waste disposal.

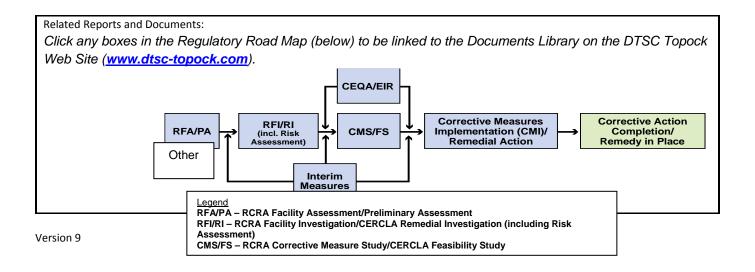
The IM-3 groundwater extraction and treatment system has extracted and treated approximately 859,646,309 gallons of water and removed approximately 7,430 pounds of total chromium from August 1, 2005 through June 30, 2018.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

uny


Curt Russell Topock Site Manager

Enclosures:

Topock IM-3 Combined Second Quarter 2018 Monitoring, Semiannual January – June 2018 Operation and Maintenance Report

cc: Aaron Yue, California Department of Toxic Substances Control

Topock Project Ex	ecutive Abstract
Document Title:	Date of Document: July 13, 2018
Topock IM-3 Second Quarter 2018 Monitoring, Semiannual	Who Created this Document?: (i.e. PG&E, DTSC, DOI,
January - June 2018 Operation and Maintenance Report	Other)
Submitting Agency/Authored by: U.S. Department of the	PG&E
Interior and Regional Water Quality Control Board	Document ID Number:
Final Document? Yes No	PGE20180713A
Priority Status: HIGH MEDX LOW	Action Required:
Is this time critical? \Box Yes \bigtriangledown No	Information Only Review & Comment
	Return to:
Type of Document:	
🗌 Draft 🛛 Report 🗌 Letter 🔄 Memo	By Date:
Other / Explain:	By Date: Other / Explain:
What does this information pertain to?	Is this a Regulatory Requirement?
Resource Conservation and Recovery Act (RCRA) Facility	Yes
Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI)	No No
(including Risk Assessment)	If no, why is the document needed?
Corrective Measures Study (CMS)/Feasibility Study (FS)	
Corrective Measures Implementation (CMI)/Remedial Action	
California Environmental Quality Act (CEQA)/Environmental	
Impact Report (EIR)	
Interim Measures	
Other / Explain:	
What is the consequence of NOT doing this item? What is the	Other Justification/s:
consequence of DOING this item?	Permit Other / Explain:
Submittal of this report is a compliance requirement of the	
Applicable or Relevant and Appropriate Requirements	
(ARARs) for waste discharge as documented in Attachment A	
to the Letter Agreement issued July 26, 2011.	
Brief Summary of attached document:	
This report covers the Interim Measures No. 3 (IM-3) groundwa	ter treatment system monitoring activities during the
Second Quarter 2018 period, and the operation and maintenan	ce activities during the January 1, 2018 to June 30, 2018
semiannual period. The groundwater monitoring results for we	
CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under se	eparate cover as part of the Compliance Monitoring
Program.	
Written by: PG&E	
Recommendations: This report is for your information only.	
How is this information related to the Final Remedy or Regulatory Req	uiromonts?
now is this information related to the rinal keniedy of kegulatory keq	unements:
The Topock IM-3 Second Quarter 2018 Monitoring, Semiannual	January - June 2018 Operation and Maintenance Report is
related to the Interim Measure. PG&E is currently operating the	
U.S. Department of the Interior (DOI) Waste Discharge ARARs a	
issued July 26, 2011 from the Colorado River Basin Regional Wa	
and the subsequent Letter of Concurrence issued August 18, 20	11 from DOI to the Regional Water Board.
Other requirements of this information?	
None.	

Combined Second Quarter 2018 Monitoring, Semiannual January – June 2018 Operation and Maintenance Report Interim Measure No. 3 Groundwater Treatment System

Document ID: PGE20180713A

PG&E Topock Compressor Station Needles, California

Prepared for Colorado River Basin Regional Water Quality Control Board and United States Department of the Interior

on behalf of Pacific Gas and Electric Company

July 13, 2018

Combined Second Quarter 2018 Monitoring, Semiannual January - June 2018 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System

> PG&E Topock Compressor Station Needles, California

> > Prepared for

United States Department of the Interior and Colorado River Basin Regional Water Quality Control Board

on behalf of

Pacific Gas and Electric Company

July 13, 2018

This report was prepared under the supervision of a California Certified Professional Engineer

ennis Fal

Dennis Fink, P.E. Project Engineer

Contents

Section			Page
Acrony	ms and	Abbreviations	vii
1	Introd	uction	1-1
2	Sampli	ng Station Locations	2-1
3	Descri	otion of Activities	3-1
	3.1	Groundwater Treatment System	3-1
	3.2	Groundwater Treatment System Flow Rates for Second Quarter 2018	3-1
	3.3	Sampling and Analytical Procedures	
4	Analyt	ical Results	4-1
5	Semia	nnual Operation and Maintenance	5-1
	5.1	Flowmeter Calibration Records	5-1
	5.2	Volumes of Groundwater Treated	5-1
	5.3	Residual Solids Generated (Sludge)	
	5.4	Reverse Osmosis Concentrate Generated	
	5.5	Summary of ARARs Compliance	5-2
	5.6	Operation and Maintenance – Required Shutdowns	5-2
	5.7	Treatment Facility Modifications	5-3
6	Conclu	sions	6-1
7	Certific	cation	7-1

Tables

- 1 Sampling Station Descriptions
- 2 Flow Monitoring Results
- 3 Sample Collection Dates
- 4 Topock IM-3 Waste Discharge ARARs Influent Monitoring Results
- 5 Topock IM-3 Waste Discharge ARARs Effluent Monitoring Results
- 6 Topock IM-3 Waste Discharge ARARs Reverse Osmosis Concentrate Monitoring Results
- 7 Topock IM-3 Waste Discharge ARARs Sludge Monitoring Results
- 8 Topock IM-3 Waste Discharge ARARs Monitoring Information

Figures

1	IM-3 Project Site Features
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
PR-10-03	Reverse Osmosis System Sampling and Metering Locations (1 of 2)
PR-10-04	Reverse Osmosis System Sampling and Metering Locations (2 of 2)
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations
TP-PR-10-10-03	Extraction Wells - Influent Metering Locations
TP-PR-10-10-11	Injection Wells - Effluent Metering Locations

Appendixes

- A Semiannual Operations and Maintenance Log, January 1, 2018 through June 30, 2018
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D Second Quarter 2018 Laboratory Analytical Reports

Acronyms and Abbreviations

ARARs	Applicable or Relevant and Appropriate Requirements
ASSET	ASSET Laboratories
DOI	United States Department of the Interior
gpm	gallons per minute
IM	Interim Measure
IM-3	Interim Measure No. 3
IW	injection well
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
PST	Pacific Standard Time
RCRA	Resource Conservations and Recovery Act
Regional Water Board	Colorado River Basin Regional Water Quality Control Board
RO	reverse osmosis
Truesdail	Truesdail Laboratories, Inc.
WDR	Waste Discharge Requirements

Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain, treatment of extracted groundwater, and treated groundwater injection into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. The groundwater extraction, treatment, and injection systems collectively are referred to as Interim Measure No. 3 (IM-3). Figure 1 provides a map of the project area. All figures are located at the end of this report.

From July 2005 through September 2011 PG&E was operating the IM-3 groundwater treatment system as authorized by the Colorado River Basin Regional Water Quality Control Board (Regional Water Board) Order No. R7-2004-0103 (issued October 13, 2004), Order No. R7-2006-0060 (issued September 20, 2006), and the revised Monitoring and Reporting Program (MRP) under Order No. R7-2006-0060 (issued August 28, 2008). Order No. R7-2006-0060 expired September 20, 2011.

PG&E is currently operating the IM-3 groundwater treatment system as authorized by the U.S. Department of the Interior (DOI) Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) as documented in Attachment A to the Letter Agreement issued July 26, 2011 from the Regional Water Board to DOI, and the subsequent Letter of Concurrence issued August 18, 2011 from DOI to the Regional Water Board. Quarterly monitoring reports are required to be submitted by the fifteenth day of the month following the end of the quarter.

This report covers monitoring activities related to operation of the IM-3 groundwater treatment system during the Second Quarter 2018 and the operation and maintenance activities during the January 1, 2018 to June 30, 2018 semiannual period. The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

Table 1 lists the locations of sampling stations. (All tables are located at the end of this report.) Sampling station locations are shown on the process and instrumentation diagrams (Figures TP-PR-10-10-04, PR-10-03, PR-10-04, and TP-PR-10-10-06) provided at the end of this report.

Description of Activities

This report describes Second Quarter 2018 monitoring activities and the January 1, 2018 through June 30, 2018 (First and Second Quarters) operation and maintenance activities related to the IM-3 groundwater treatment system. IM-3 monitoring activities from January 1, 2018 through March 31, 2018 (First Quarter) were presented in the First Quarter 2018 Monitoring Report for IM-3 submitted to the DOI and Regional Water Board April 14, 2018.

This report, therefore, serves as the Semiannual January – June 2018 Operation and Maintenance Report for IM-3.

3.1 Groundwater Treatment System

The treatment system was initially operated between July 25 and July 28, 2005 for the Waste Discharge Requirements (WDR)-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, as listed in Attachment A, Waste Discharge ARARs, to the Letter Agreement issued July 26, 2011, includes the following:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1
- Purged groundwater and water generated from rinsing field equipment during monitoring events
- Groundwater generated during well installation, well development, and aquifer testing

Operation of the groundwater treatment system results in the following three effluent streams:

- Treated Effluent: Treated water that is discharged to the injection well(s)
- **Reverse Osmosis (RO) Concentrate (brine):** Treatment byproduct that is transported and disposed of offsite at a permitted facility
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first

3.2 Groundwater Treatment System Flow Rates for Second Quarter 2018

Downtime is defined as any periods when all extraction wells are not operating so that no groundwater is being extracted and piped into IM-3 as influent. Periods of planned and unplanned extraction system downtime are summarized in the Semiannual Operations and Maintenance Log provided in Appendix A. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site. Periods of planned and unplanned extraction system downtime during the months January 2018 through March 2018 were originally reported in the First Quarter 2018 Monitoring Report for IM-3 submitted to the DOI and Regional Water Board on April 14, 2018, and are also included in Appendix A of this report.

Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM-3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

During the Second Quarter 2018, extraction wells TW-2D, TW-3D, and PE-1 operated with a target pumping rate of 135 gallons per minute (gpm), excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during Second Quarter 2018. Extraction well TW-2D was operated for sample collection only during Second Quarter 2018. The operational run time for the IM groundwater extraction system (combined or individual pumping), by month, was approximately:

- 82.4 percent during April 2018
- 95.5 percent during May 2018
- 88.1 percent during June 2018

The Second Quarter 2018 treatment system monthly average flow rates (influent, effluent, and RO concentrate) are presented in Table 2. The system influent flow rate was measured by flowmeters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-PR-10-10-03).

The IM-3 facility treated approximately 15,716,666 gallons of extracted groundwater during Second Quarter 2018.

In addition to extracted groundwater, during Second Quarter 2018 the IM-3 facility treated 2,020 gallons of water generated from the groundwater monitoring program and 1,030 gallons of injection well development water from Groundwater Partners.

3.2.2 Effluent Streams

The treatment system effluent flow rate was measured by flowmeters in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11) and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM-3 facility injected 15,757,120 gallons of treatment system effluent during Second Quarter 2018. The monthly average flow rate to injection wells is shown in Table 2.

The RO concentrate flow rate was measured by a flowmeter at the piping carrying water from RO concentrate tank T-701 to the truck load-out station (Figure PR-10-04). The IM-3 facility generated 97,510 gallons of RO concentrate during Second Quarter 2018. The monthly average RO concentrate flow rate is shown in Table 2.

The sludge flow rate is measured by the size and weight of containers shipped offsite. Three sludge containers were shipped offsite from the IM-3 facility during Second Quarter 2018. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

With the exception of pH, all samples were collected at the designated sampling locations and placed directly into containers provided by ASSET Laboratories (ASSET) and Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to ASSET or Truesdail via courier under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival.

ASSET is certified by the California Department of Health Services (Certification No. 2676) under the State of California's Environmental Laboratory Accreditation Program. Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program. California-certified laboratory analyses were performed in accordance with the latest edition of the *Guidelines Establishing Test Procedures for*

Analysis of Pollutants (40 Code of Federal Regulations Part 136), promulgated by the U.S. Environmental Protection Agency.

Analysis of pH was conducted by field method pursuant to the Regional Water Board letter dated October 16, 2007 (subject: Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, RO concentrate, and sludge sampling frequency were in accordance with the MRP. The Second Quarter 2018 sample collection schedule is shown in Table 3.

Groundwater quality is being monitored in observation and compliance wells according to Attachment A, Waste Discharge ARARs, to the Letter Agreement issued July 26, 2011, and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Regional Water Board on June 17, 2005. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

Analytical Results

The analytical results and laboratory reports for the IM-3 groundwater treatment system monitoring program were previously reported for the First Quarter of 2018 in the First Quarter 2018 Monitoring Report submitted to the DOI and Regional Water Board on April 14, 2018.

Laboratory reports for samples collected in Second Quarter 2018 were prepared by certified analytical laboratories, and are presented in Appendix D. The Second Quarter 2018 analytical results are presented in Tables 4, 5, 6, and 7:

- Influent analytical results are presented in Table 4.
- Effluent analytical results are presented in Table 5. There were no exceedances of effluent limitations during the reporting period.
- RO concentrate analytical results are presented in Table 6.
- Sludge analytical results are presented in Table 7.

The sludge is required to have an aquatic bioassay test annually. The most recent aquatic bioassay test was conducted on a Third Quarter 2017 sample. The next sludge aquatic bioassay test is scheduled for the Third Quarter 2018 sampling event.

Table 8 identifies the following information for each analysis:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

Semiannual Operation and Maintenance

This section includes the Semiannual Operation and Maintenance Report for the IM-3 groundwater treatment system for the period January 1, 2018 through June 30, 2018.

All operation and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operation and maintenance records are also archived using maintenance software. The subsections below summarize the operation and maintenance activities during this semiannual reporting period.

5.1 Flowmeter Calibration Records

The IM-3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a timely manner consistent with the use, flow, material, and manufacturer recommendations. The following flowmeters are used at the facility to measure groundwater flow:

Location	Flowmeter Location ID	Current Flowmeter Serial No.	Date of Calibration	Date of Installation
Extraction well PE-1	FIT-103	6A021F16000	9/16/2015	1/6/2016
Extraction well TW-3D	FIT-102	6C037116000	9/17/2015	1/6/2016
Extraction well TW-2D	FIT-101	6C036F16000	1/15/2016	6/1/2016
Extraction well TW-2S	FIT-100	6A022116000	9/20/2013	7/8/2015
Injection well IW-03	FIT-1203	6C037316000	1/15/2016	3/1/2016
Injection well IW-02	FIT-1202	7700F216000	5/4/2017	8/8/2017
Combined IW-02 and IW-03	FIT-700	L200EO16000	2/5/2016	10/6/2016
Reverse osmosis concentrate	FIT-701	6C037216000	5/6/2016	8/8/2017

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated between January 1, 2018 through June 30, 2018 are provided in Appendix B.

Approximately 32,708,538 gallons of groundwater were extracted and treated between January 1, 2018 and June 30, 2018. Treatment of this water at the IM-3 facility is being performed in accordance with the conditions of ARARs.

Additionally, approximately 2,395 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 19,930 gallons of injection well re-development water from Groundwater Partners were treated at the IM-3 facility during the January 1, 2018 through June 30, 2018 semiannual period.

A total of approximately 32,813,047 gallons of treated groundwater were injected back into the Alluvial Aquifer between January 1, 2018 and June 30, 2018.

5.3 Residual Solids Generated (Sludge)

During the January 1, 2018 through June 30, 2018 reporting period, eight containers of sludge were shipped offsite for disposal. The sludge was shipped to U.S. Ecology in Beatty, Nevada for disposal. A listing of each shipment during the reporting period is provided below.

	Approximate Quantity from Waste Manifests	
Date Sludge Bin Removed from Site	(cubic yards)	Type of Shipment
3/2/2018	8	Non-RCRA hazardous waste
3/2/2018	8	Non-RCRA hazardous waste
3/26/2018	8	Non-RCRA hazardous waste
3/26/2018	8	Non-RCRA hazardous waste
3/27/2018	8	Non-RCRA hazardous waste
6/27/2018	8	Non-RCRA hazardous waste
6/28/2018	8	Non-RCRA hazardous waste
6/28/2018	8	Non-RCRA hazardous waste

Note:

RCRA = Resource Conservation and Recovery Act

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of RO concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figures PR-10-03 and PR-10-04). From January 1, 2018 through June 30, 2018, approximately 236,973 gallons of RO concentrate were transported to Liquid Environmental Solutions in Phoenix, Arizona for disposal.

5.5 Summary of ARARs Compliance

No ARAR violations were identified during the January 1, 2018 through June 30, 2018 semiannual reporting period.

5.6 Operation and Maintenance – Required Shutdowns

Records of routine maintenance are kept onsite.

Appendix A contains a summary of the operation or maintenance issues that required the groundwater extraction system to be shut down during the January 1, 2018 through June 30, 2018 semiannual reporting period.

Activities during the Second Quarter 2018 included two extended shutdowns.

- The extraction well system was offline from 6:36 a.m. on April 2, 2018 to 6:50 a.m. on April 3, 2018, and from 7:00 a.m. on April 3, 2018 to 2:02 p.m. on April 6, 2018, and from 4:16 p.m. on April 6, 2018 to 5:48 p.m. on April 6, 2018 for semiannual scheduled maintenance. The extraction wells were operated intermittently during the end of the outage to confirm piping re-assembly and pump operation. Total extraction system downtime during the extended shutdown was 4 days, 8 hours, 48 minutes.
- The extraction well system was offline from 6:16 p.m. June 18, 2018 to 6:40 p.m. June 19, 2018 and from 9:50 p.m. June 19, 2018 to 10:16 a.m. June 20, 2018 due to a bad batch of ferrous chloride

chemical that resulted in poor conversion of hexavalent chromium to trivalent chromium. This required the plant to be set in recirculation mode to troubleshoot the cause. Once the cause was determined, the ferrous chloride was replaced. The bad batch also resulted in excess solids that flocculated poorly and accumulated in the piping, the tanks between the pipe reactor, the clarifier, the microfilters, and the Pre-Treated Water Tank (T-500). A power outage also occurred during this shutdown. Some of the accumulated solids were removed from the equipment. Later plant outages in June were caused by this situation. Extraction system downtime was 1 day 12 hours 50 minutes.

5.7 Treatment Facility Modifications

No modifications were made to the IM-3 treatment facility that resulted in a material change in the quality or quantity of wastewater treated or discharged, nor resulted in a material change in the location of discharge, during the January 1, 2018 through June 30, 2018 semiannual period.

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period. No events that caused an immediate or potential threat to human health or the environment, and no new releases of hazardous waste or hazardous waste constituents, or new solid waste management units, were identified during the reporting period.

Certification

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	behunn
Name:	Curt Russell
Company:	Pacific Gas and Electric Company
Title:	Topock Site Manager
Date:	July 13, 2018

Tables

Table 1. Sampling Station Descriptions

Second Quarter 2018 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-RP-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-RP-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure PR-10-03 and PR-10-04).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-RP-10-10-06).

Notes:

= Sequential sample identification number at each sample station

^a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

Table 2. Flow Monitoring Results

Second Quarter 2018 Monitorina Rep	ort for Interim Measure No	Groundwater Treatment System
	UIL JUI IIILEIIIII IVIEUSUIE IVU. J	Olounuwaler mealment System

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^b (gpm)	Reverse Osmosis Concentrate ^b (gpm)
April 2018 Average Monthly Flowrate	4,819,356	4,792,588	38,649
May 2018 Average Monthly Flowrate	5,756,326	5,801,344	35,453
June 2018 Average Monthly Flowrate	5,140,983	5,163,189	23,408

Notes:

gpm: gallons per minute

^a Extraction well TW-3D was operated during the Second Quarter 2018. Extraction wells TW-2D and PE-1 were only operated to collect a sample. Extraction well TW-2S did not operate during Second Quarter 2018.

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during the Second Quarter 2018 is approximately 0.85% percent.

Table 3. Sample Collection Dates

Parameter	Sample Collection Dates	Results
Influent	April 2, 2018	See Table 4
	May 2, 2018	
	June 5, 2018	
Effluent	April 2, 2018	See Table 5
	April 6, 2018	
	May 2, 2018	
	June 5, 2018	
Reverse Osmosis Concentrate	April 2, 2018	See Table 6
Sludge ^a	Composite collected from each bin sent off-site during the previous calendar Quarter	See Table 7

Second Quarter 2018 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Notes:

^a Sludge samples analysis is required quarterly by composite.

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Influent Monitoring Results a

Second Quarter 2018 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Sampling F	requency			М	onthly										C	Quarterly							
	Analytes Units ^b	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic μg/L	Barium μg/L	Boron mg/L	Copper μg/L	Fluoride mg/L	e Lead μg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate/Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc μg/L
Sample ID D	MDL ate	50.0	0.100	0.100		0.650	3.30	40.0	0.0780	0.160	0.0810	0.150	0.0740	0.550	0.0320	0.130	0.260	0.210	0.260	0.160	1.10	18.0	2.30
SC-100B-WDR-571	4/2/2018	4500	0.190	7300	7.1	510	510	ND (50.0)	ND (0.200)	ND (0.500)	2.90	29.0	1.10	ND (1.00)	2.70	ND (1.00)	7.00	21.0	ND (1.00)	2.80	520	ND (20.0)	ND (10.0)
RL		50.0	0.100	0.100		5.00	20.0	50.0	0.200	0.500	0.100	1.00	0.100	1.00	0.500	1.00	0.500	0.500	1.00	0.250	25.0	20.0	10.0
SC-100B-WDR-573	5/2/2018	4200	0.160	7200	7.2	480	480										7.20						
RL		50.0	0.100	0.100		5.00	20.0										0.500						
SC-100B-WDR-574	6/5/2018	4100	0.160	7100	7.3	470	470										6.90						
RL		50.0	0.100	0.100		5.00	20.0										0.500						

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

N = nitrogen

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units

RL = project reporting limit

 μ g/L = micrograms per liter μ mhos/cm = micromhos per centimeter

^a Sampling Location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

^b Units reported in this table are those units required in the ARARs.

c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)

Effluent Monitoring Results

Second Quarter 2018 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Effluent	Ave. Monthly	NA	NA	NA	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sampli	ing Frequency											Monthly	,											
	Analytes	TDS	Turbidity	Specific Conductance	Field ^e pH	Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead M	Manganese	Molybdenum	Nickel	Nitrate/ (as		Sulfate	Iron	Zinc
	Units ^c	mg/L	NTU	µmhos/cm	pH units	μg/L	μg/L	µg/L	mg/L	μg/L	μg/L	μg/L	mg/L	μg/L	mg/L	µg/L	μg/L	μg/L	μg/L	mg	ı/L	mg/L	μg/L	μg/L
		50.0	0.100	0.100		0.130	0.0330	40.0	0.0780	0.160	0.0810	0.150	0.0740	0.550	0.0130	0.130	0.260	0.210	0.260	0.1	60	1.10	18.0	2.30
Sample ID	Date																							
SC-700B-WDR-57	71 4/2/2018	4200	0.200	7200	7.1	1.30	ND (0.200)	440	ND (0.200)	ND (0.500)	0.100	16.0	1.00	ND (1.00)	2.30	ND (1.00)	24.0	20.0	2.40	2.	50	490	ND (20.0)) ND (10.0)
RL		50.0	0.100	0.100		1.00	0.200	50.0	0.200	0.500	0.100	1.00	0.100	1.00	0.500	1.00	0.500	0.500	1.00	0.2	250	25.0	20.0	10.0
SC-700B-WDR-57	2 4/6/2018	4400	0.590	7800	7.3	16.0	0.790	ND (50.0)	ND (0.200)	ND (0.500)	0.130	19.0	1.00	ND (1.00).	2.60	ND (1.00)	130	27.0	6.40	2.1	70	510	820	ND (10.0)
RL		50.0	0.100	0.100		1.00	0.200	50.0	0.200	0.500	0.100	1.00	0.100	1.00	0.500	1.00	2.50	0.500	1.00	0.2	250	25.0	20.0	10.0
SC-700B-WDR-57	3 5/2/2018	4000	0.160	7000	7.0	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.200)	ND (0.500)	ND (0.100) 19.0	1.10	ND (1.00)	2.50	ND (1.00)	9.10	22.0	ND (1.00)	2.9	90	470	ND (20.0)) ND (10.0)
RL		50.0	0.100	0.100		1.00	0.200	50.0	0.200	0.500	0.100	1.00	0.100	1.00	0.500	1.00	0.500	0.500	1.00	0.2	250	25.0	20.0	10.0
SC-700B-WDR-57	4 6/5/2018	4100	0.150	7000	7.1	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.200)	ND (0.500)	ND (0.100) 16.0	0.990	ND (1.00)	2.40	ND (1.00)	9.60	22.0	1.10	2.	70	470	ND (20.0)) ND (10.0)
								50.0	0.200	0.500	0.100						0.500	0.500	1.00	0.2		25.0	20.0	

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

N = nitrogen

NA = not applicable

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units

RL = project reporting limit

 $\mu g/L = micrograms per liter$ µmhos/cm = micromhos per centimeter

^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).

b In addition to the listed effluent limits, the ARARs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.

^c Units reported in this table are those units required in the ARARs.

d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.

^e Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Reverse Osmosis Concentrate Monitoring Results^a Second Quarter 2018 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Sampling Frequence	y										Quarter	ly										
Analytes Units ^b	TDS mg/L	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium mg/L	Hexavalent Chromium mg/L	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Cobalt mg/L	Copper mg/L	Fluoride mg/L	Lead mg/L	Molybdenur mg/L	n Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
Sample ID Date	500	0.100		0.00013	0.00083	0.00078	0.00041	0.00075	•	0.00026	0.000042	0.0027	0.130	0.00064	0.0011	0.00013	0.0013	0.0018	0.0012	0.00096	0.00028	0.0110
SC-701-WDR-571 4/2/2018 RL	46000 500	57000 0.100	7.7	0.00170 0.0010	ND (0.0050) N 0.0050	ND (0.0025) 0.0025	0.00120 0.00050	0.140 0.0050	ND (0.0120) 0.0120	ND (0.0025) 0.0025	ND (0.0005) 0.00050	0) ND (0.005 0.0050		ND (0.005 0.0050	0) 0.230 0.0025	ND (0.00020) 0.00020	0.00660 0.0050	0.0500 0.0025	ND (0.0025	5) ND (0.0025 0.0025) 0.00250 0.0010	ND (0.0500) 0.0500

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program

MDL = method detection limit

mg/L = milligrams per literND = parameter not detected at the listed value

RL = project reporting limit

 $\mu g/L = micrograms per liter$

µmhos/cm = micromhos per centimeter

^a Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID PR-10-04).

^b Units reported in this table are those units required in the ARARs.

c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Sludge Monitoring Results^a Second Quarter 2018 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Sampling Frequency									C	uarterly									
Analytes Units MD Sample ID Date	b mg/kg	Hexavalent Chromium mg/kg 0.610	Antimony mg/kg 0.690	Arsenic mg/kg 1.10	Barium mg/kg 0.650	Beryllium mg/kg 0.450	Cadmium mg/kg 0.550	Cobalt mg/kg 0.600	Copper mg/kg 1.90	Fluoride mg/kg 0.730	Lead mg/kg 0.610	Molybdenum mg/kg 0.620	Mercury mg/kg 0.0560	Nickel mg/kg 0.710	Selenium mg/kg 1.20	Silver mg/kg 1.30	Thallium mg/kg 0.740	Vanadium mg/kg 0.460	Zinc mg/kg 0.620
Phase Separator-571-Sludge 4/2/201 RL	3 2900 2.10	49.0 2.10	6.00 4.20	13.0 2.10	65.0 2.10	ND (2.10) 2.10	ND (2.10) 2.10	4.00 2.10	140 4.20	55.0 10.0	ND (2.10) 2.10	3.40 2.10	ND (0.210) 0.210	30.0 2.10	ND (2.10) 2.10	ND (2.10) 2.10	5.90 4.20	36.0 2.10	37.0 2.10

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program J = concentration or reporting limits estimated by laboratory or validation

mg/kg = milligrams per killogram mg/L = milligrams per liter MDL = method detection limit

ND = parameter not detected at the listed reporting limit

RL = project reporting limit

^a Sampling location for all sludge samples is the sludge collection bin (see attached P&ID TP-PR-10-10-06).

^b Units reported in this table are those units required in the ARARs.

^c Sludge samples analysis is required quarterly by composite; sludge samples were collected from each container prior to shipment off-site, and combined for the composite sample of the preceding quarter.

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-571	Cameron Stone	4/2/2018	9:30:00 AM	ASSET	EPA 120.1	SC	4/3/2018	Lilia Ramit
					ASSET	EPA 200.7	AL	4/12/2018	Claire Ignacio
					ASSET	EPA 200.7	В	4/12/2018	Claire Ignacio
					ASSET	EPA 200.7	FE	4/12/2018	Claire Ignacio
					ASSET	EPA 200.8	AS	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	BA	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CR	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CU	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MO	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	NI	4/15/2018	Claire Ignacio
					ASSET	EPA 200.8	PB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	SB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	ZN	4/13/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	4/3/2018	Ria Abes
					ASSET	EPA 300.0	FL	4/3/2018	Ria Abes
					ASSET	EPA 300.0	SO4	4/3/2018	Ria Abes
					Field	HACH	PH	4/2/2018	Cameron Stone
					ASSET	SM 2540C	TDS	4/3/2018	Lilia Ramit
					ASSET	SM 4500-NO3F	NO3NO2N	4/4/2018	Quennie Manimtim
					ASSET	SM2130B	TRB	4/3/2018	Lilia Ramit
					BCLabs	SM4500NH3G	NH3N	4/11/2018	Quennie Manimtim
SC-100B	SC-100B-WDR-573	Ron Phelps	5/2/2018	1:30:00 PM	ASSET	EPA 120.1	SC	5/3/2018	Lilia Ramit
					ASSET	EPA 200.8	CR	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	5/15/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	5/7/2018	Ria Abes
					Field	HACH	PH	5/2/2018	Ron Phelps
					ASSET	SM 2540C	TDS	5/7/2018	Lilia Ramit
					ASSET	SM2130B	TRB	5/3/2018	Lilia Ramit
SC-100B	SC-100B-WDR-574	George Gloria	6/5/2018	2:38:00 PM	ASSET	EPA 120.1	SC	6/6/2018	Lilia Ramit
					ASSET	EPA 200.8	CR	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	6/7/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	6/6/2018	Ria Abes
					ASSET	SM 2540C	TDS	6/7/2018	Lilia Ramit
					ASSET	SM2130B	TRB	6/6/2018	Lilia Ramit

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-574	George Gloria	6/5/2018	2:50:00 PM	Field	HACH	PH	6/5/2018	George Gloria
SC-700B	SC-700B-WDR-571	Cameron Stone	4/2/2018	9:40:00 AM	ASSET	EPA 120.1	SC	4/3/2018	Lilia Ramit
					ASSET	EPA 200.7	AL	4/12/2018	Claire Ignacio
					ASSET	EPA 200.7	В	4/12/2018	Claire Ignacio
					ASSET	EPA 200.7	FE	4/12/2018	Claire Ignacio
					ASSET	EPA 200.8	AS	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	BA	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CR	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CU	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MO	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	NI	4/15/2018	Claire Ignacio
					ASSET	EPA 200.8	PB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	SB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	ZN	4/13/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	4/3/2018	Ria Abes
					ASSET	EPA 300.0	FL	4/3/2018	Ria Abes
					ASSET	EPA 300.0	SO4	4/3/2018	Ria Abes
					Field	HACH	PH	4/2/2018	Cameron Stone
					ASSET	SM 2540C	TDS	4/3/2018	Lilia Ramit
					ASSET	SM 4500-NO3F	NO3NO2N	4/4/2018	Quennie Manimtim
					ASSET	SM2130B	TRB	4/3/2018	Lilia Ramit
					BCLabs	SM4500NH3G	NH3N	4/11/2018	Quennie Manimtim
SC-700B	SC-700B-WDR-572	Ryan Phelps	4/6/2018	6:20:00 PM	ASSET	EPA 120.1	SC	4/7/2018	Lilia Ramit
					ASSET	EPA 200.7	AL	4/13/2018	Claire Ignacio
					ASSET	EPA 200.7	В	4/13/2018	Claire Ignacio
					ASSET	EPA 200.7	FE	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	AS	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	BA	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CR	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CU	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MO	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	NI	4/15/2018	Claire Ignacio
					ASSET	EPA 200.8	PB	4/13/2018	Claire Ignacio

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-572	Ryan Phelps	4/6/2018	6:20:00 PM	ASSET	EPA 200.8	SB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	ZN	4/13/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	4/9/2018	Ria Abes
					ASSET	EPA 300.0	FL	4/9/2018	Ria Abes
					ASSET	EPA 300.0	SO4	4/10/2018	Ria Abes
					Field	HACH	PH	4/6/2018	Cameron Stone
					ASSET	SM 2540C	TDS	4/10/2018	Lilia Ramit
					ASSET	SM 4500-NO3F	NO3NO2N	4/13/2018	Quennie Manimtim
					ASSET	SM2130B	TRB	4/7/2018	Lilia Ramit
					BCLabs	SM4500NH3G	NH3N	4/17/2018	Quennie Manimtim
SC-700B	SC-700B-WDR-573	Ron Phelps	5/2/2018	1:33:00 PM	ASSET	EPA 120.1	SC	5/3/2018	Lilia Ramit
					ASSET	EPA 200.7	AL	5/16/2018	Claire Ignacio
					ASSET	EPA 200.7	В	5/16/2018	Claire Ignacio
					ASSET	EPA 200.7	FE	5/16/2018	Claire Ignacio
					ASSET	EPA 200.8	AS	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	BA	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	CR	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	CU	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	MO	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	NI	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	PB	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	SB	5/15/2018	Claire Ignacio
					ASSET	EPA 200.8	ZN	5/15/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	5/7/2018	Ria Abes
					ASSET	EPA 300.0	FL	5/7/2018	Ria Abes
					ASSET	EPA 300.0	SO4	5/7/2018	Ria Abes
					Field	HACH	PH	5/2/2018	Ron Phelps
					ASSET	SM 2540C	TDS	5/7/2018	Lilia Ramit
					ASSET	SM 4500-NO3F	NO3NO2N	5/11/2018	Quennie Manimtim
					ASSET	SM2130B	TRB	5/3/2018	Lilia Ramit
					BCLabs	SM4500NH3G	NH3N	5/7/2018	Quennie Manimtim
SC-700B	SC-700B-WDR-574	George Gloria	6/5/2018	2:52:00 PM	ASSET	EPA 120.1	SC	6/6/2018	Lilia Ramit
					ASSET	EPA 200.7	AL	6/18/2018	Claire Ignacio
					ASSET	EPA 200.7	В	6/17/2018	Claire Ignacio

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-574	George Gloria	6/5/2018	2:52:00 PM	ASSET	EPA 200.7	FE	6/17/2018	Claire Ignacio
		-			ASSET	EPA 200.8	AS	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	BA	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	CR	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	CU	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	MO	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	NI	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	PB	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	SB	6/7/2018	Claire Ignacio
					ASSET	EPA 200.8	ZN	6/7/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	6/6/2018	Ria Abes
					ASSET	EPA 300.0	FL	6/7/2018	Ria Abes
					ASSET	EPA 300.0	SO4	6/6/2018	Ria Abes
					ASSET	SM 2540C	TDS	6/7/2018	Lilia Ramit
					ASSET	SM 4500-NO3F	NO3NO2N	6/14/2018	Quennie Manimtim
					ASSET	SM2130B	TRB	6/6/2018	Lilia Ramit
					BCLabs	SM4500NH3G	NH3N	6/13/2018	Quennie Manimtim
				3:04:00 PM	Field	HACH	PH	6/5/2018	George Gloria
SC-701	SC-701-WDR-571	Cameron Stone	4/2/2018	9:40:00 AM	ASSET	EPA 120.1	SC	4/3/2018	Lilia Ramit
					ASSET	EPA 200.8	AG	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	AS	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	BA	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	BE	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CD	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CO	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CR	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	CU	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MN	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	MO	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	NI	4/15/2018	Claire Ignacio
					ASSET	EPA 200.8	PB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	SB	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	SE	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	TL	4/13/2018	Claire Ignacio
					ASSET	EPA 200.8	V	4/13/2018	Claire Ignacio

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

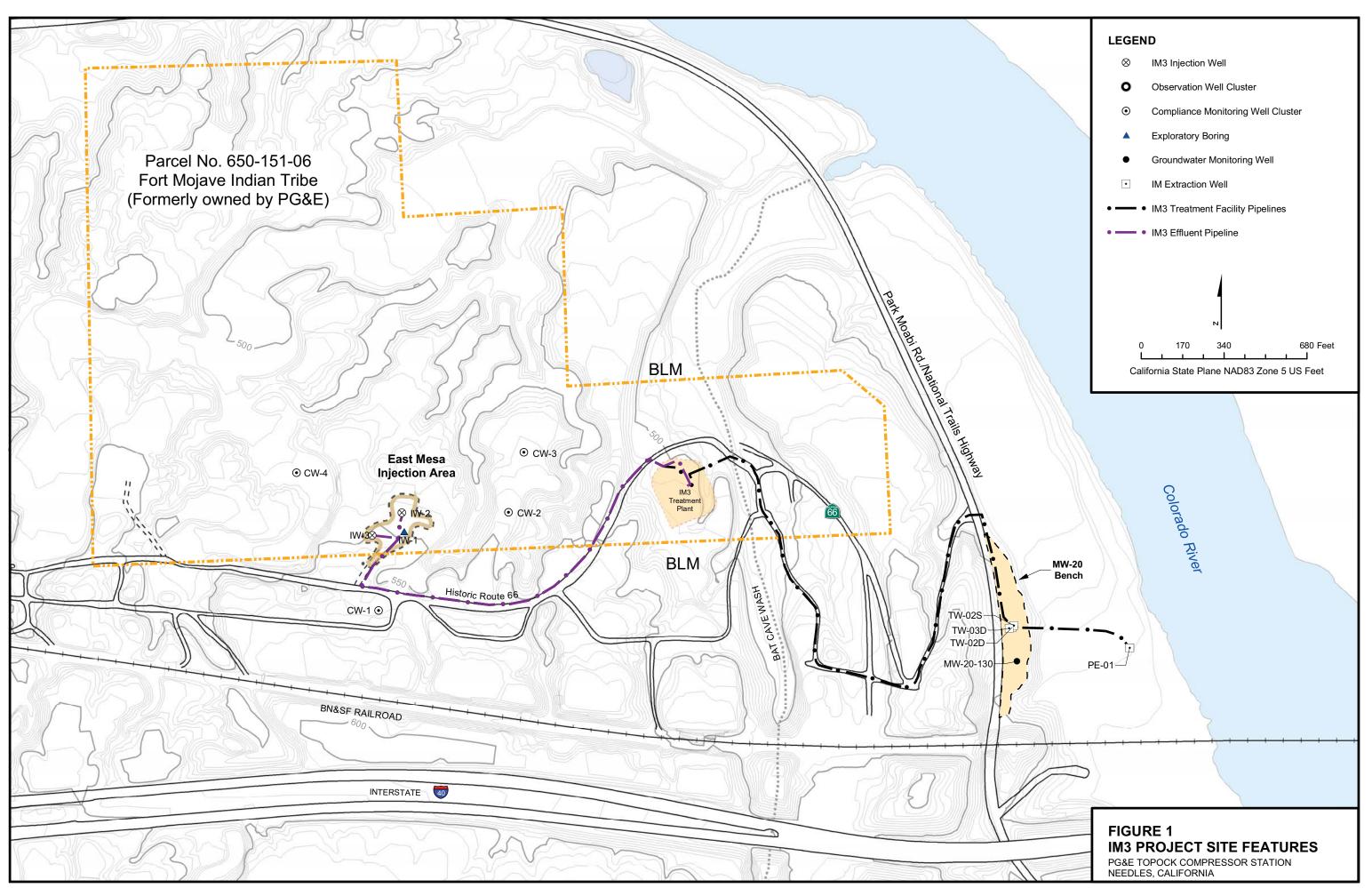
Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-571	Cameron Stone	4/2/2018	9:40:00 AM	ASSET	EPA 200.8	ZN	4/13/2018	Claire Ignacio
					ASSET	EPA 218.6	CR6	4/3/2018	Ria Abes
					ASSET	EPA 245.1	HG	4/6/2018	Claire Ignacio
					ASSET	EPA 300.0	FL	4/3/2018	Ria Abes
					Field	HACH	PH	4/2/2018	Cameron Stone
					ASSET	SM 2540C	TDS	4/3/2018	Lilia Ramit
Phase Separator	Phase Separator-571-Slud	ge George Gloria	4/2/2018	9:15:00 AM	ASSET	EPA 300.0	FL	4/10/2018	Ria Abes
					ASSET	EPA 6010B	AG	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	AS	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	BA	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	BE	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	CD	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	CO	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	CR	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	CU	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	MN	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	MO	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	NI	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	PB	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	SB	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	SE	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	TL	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	V	4/3/2018	Claire Ignacio
					ASSET	EPA 6010B	ZN	4/3/2018	Claire Ignacio
					ASSET	EPA 7471A	HG	4/3/2018	Claire Ignacio
					ASSET	SW 7199	CR6	4/5/2018	Ria Abes

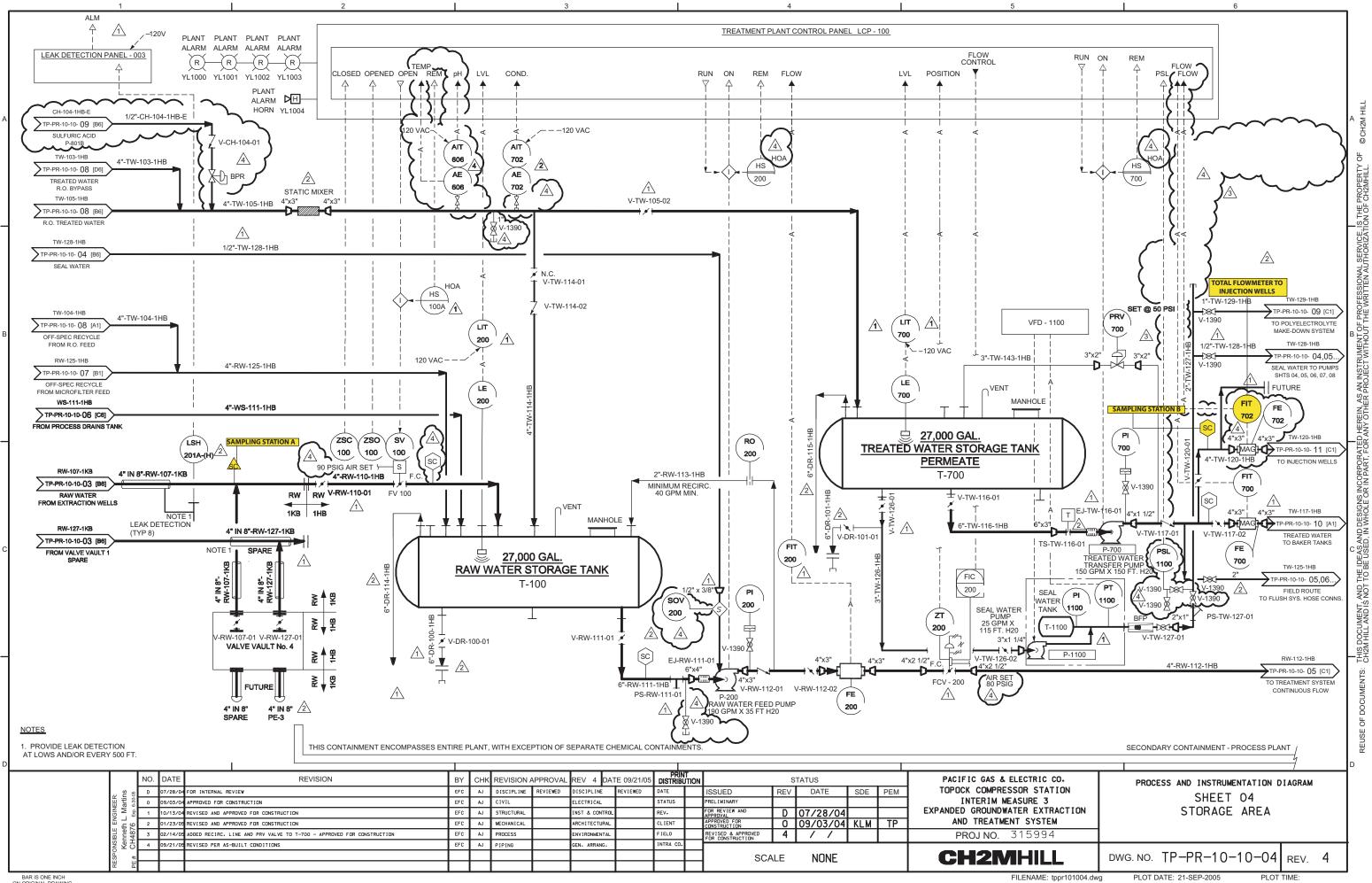
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

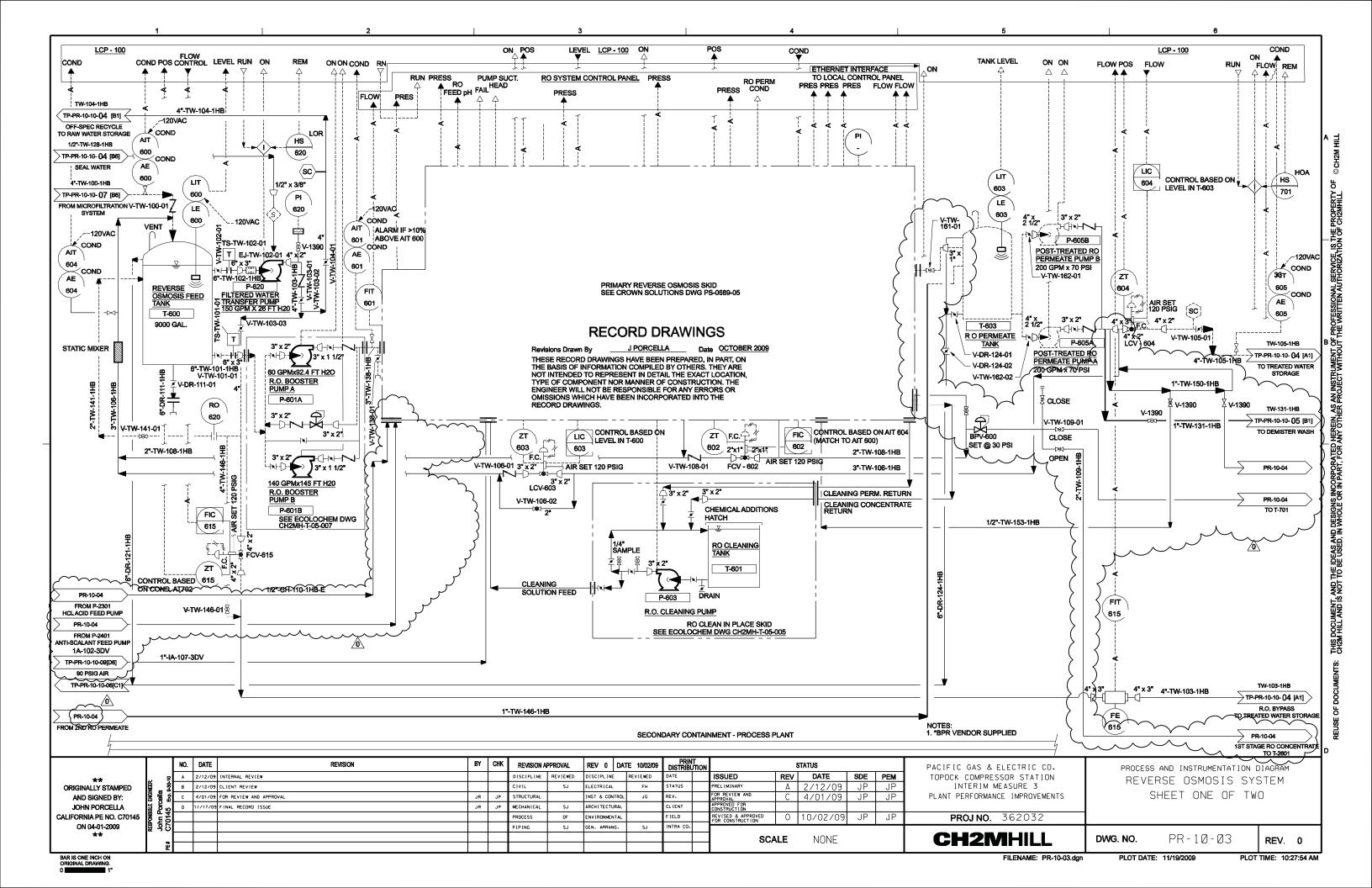
Second Quarter 2018 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

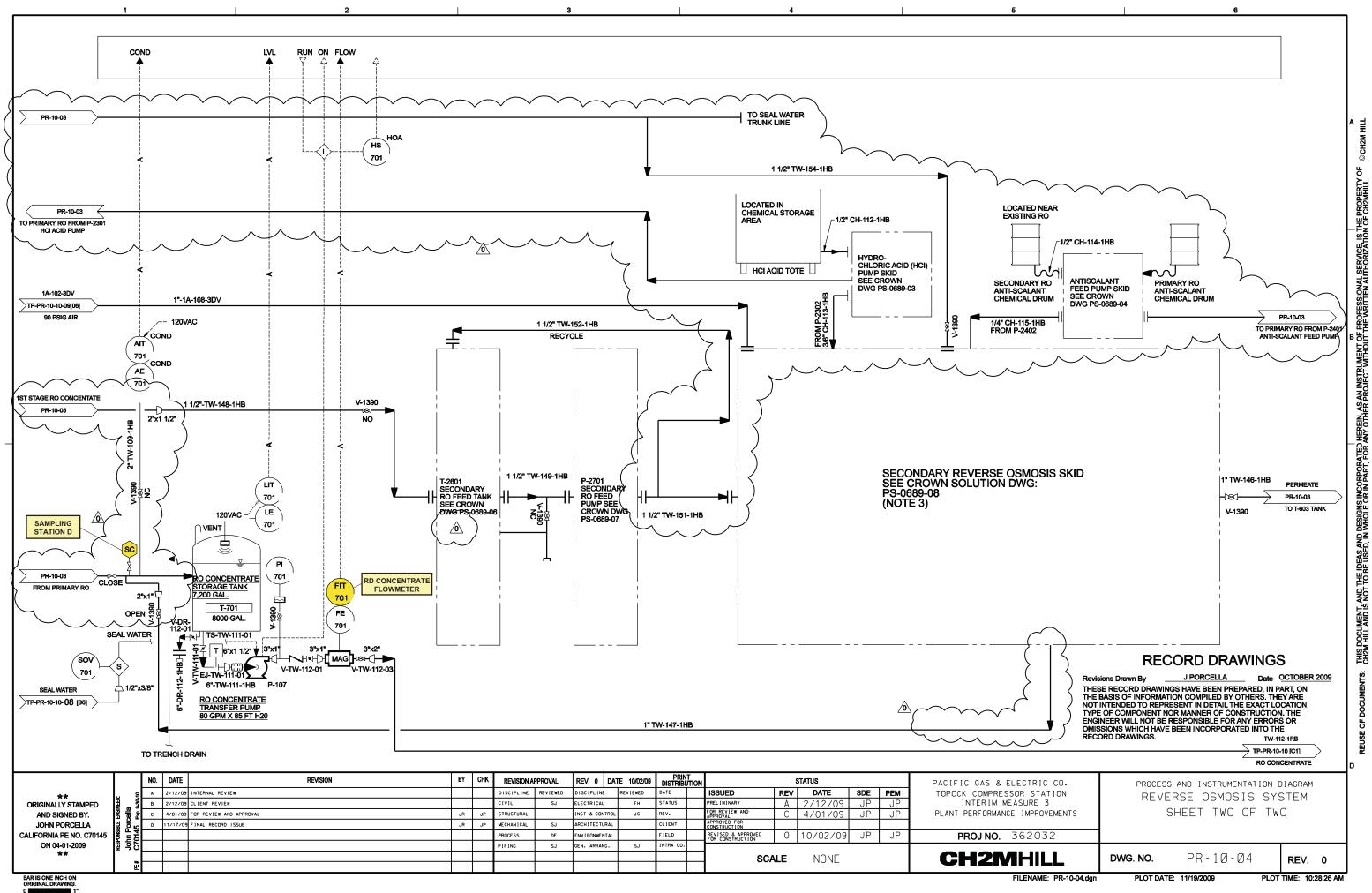
NOTES:

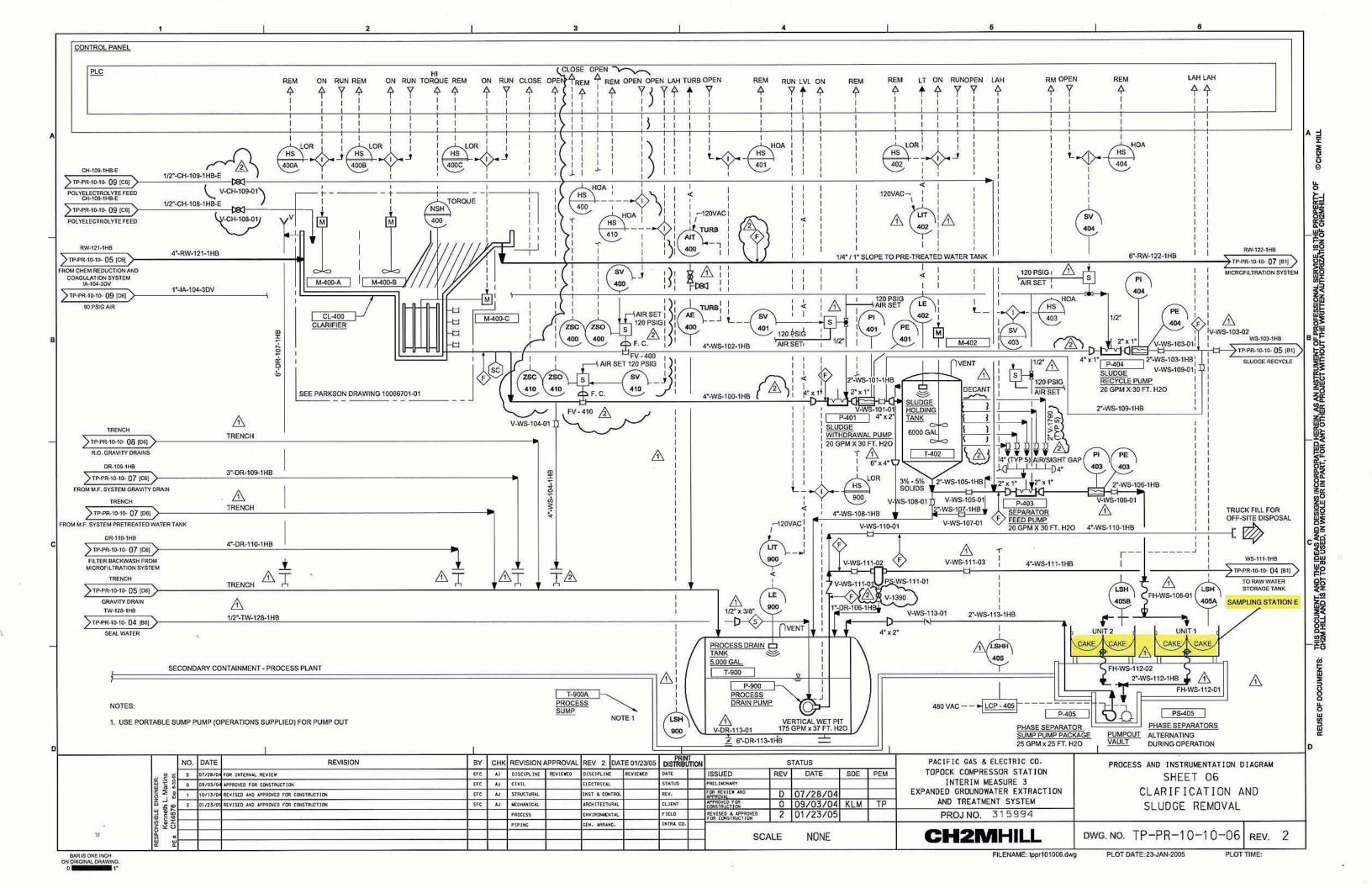
SC-700B = Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04).

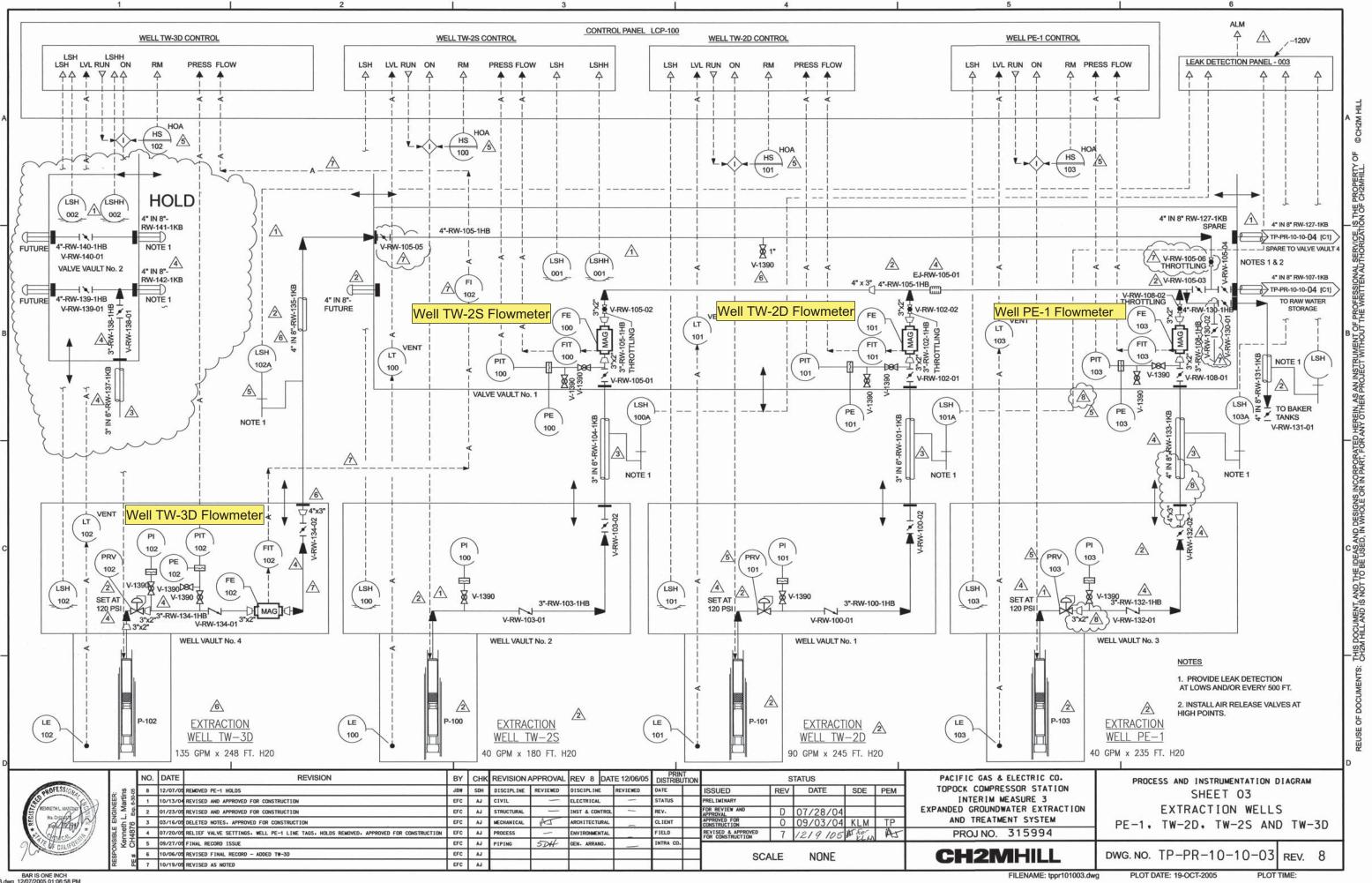

SC-100B = Sampling location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

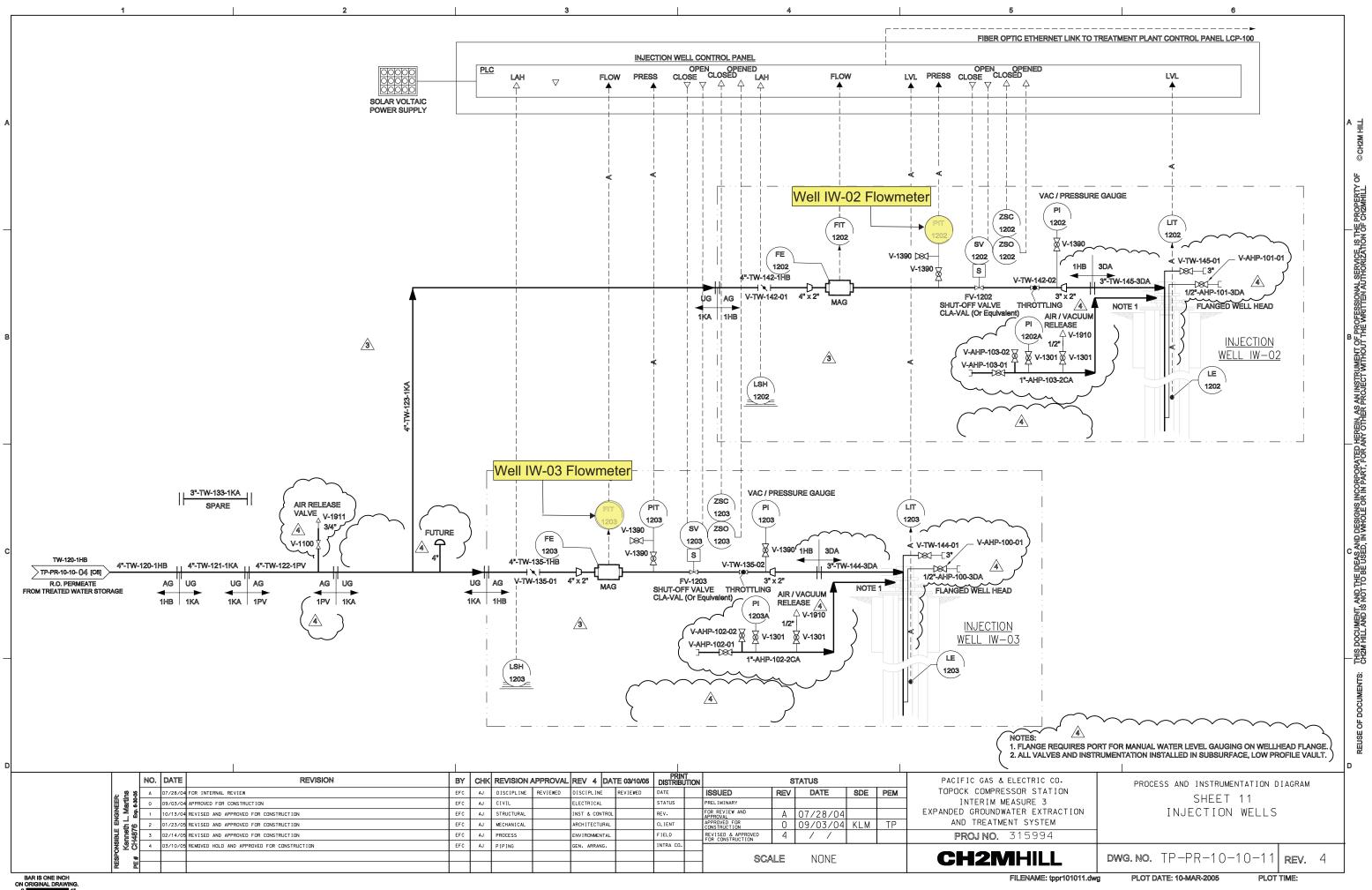

SC-701 = Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID PR-10-04).


Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.


$\begin{array}{llllllllllllllllllllllllllllllllllll$	MOIST = NH3N = NI =	molybdenum moisture ammonia (as N) nickel = nitrate/nitrite (as N) lead pH antimony specific conductance selenium sulfate total dissolved solids thallium Truesdail Laboratories, Inc. turbidity vanadium zinc
--	---------------------------	--


Figures





Appendix A Semiannual Operations and Maintenance Log, January 1, 2018 through June 30, 2018

Semiannual Operations and Maintenance Log, January 1, 2018 through June 30, 2018

Downtime is defined as any period when all extraction wells are not operating, so that no groundwater is being extracted and piped into IM-3 as influent. Periods of planned and unplanned extraction system downtime are summarized here. The times shown are in Pacific Standard Time (PST) to be consistent with other data (e.g., water level data) collected at the site.

January 2018

During January 2018, extraction well TW-3D operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during January 2018. Extraction wells TW-2D and PE-01 were only operated to collect a sample during January 2018. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 98.3 percent during the January 2018 reporting period.

The IM-3 facility treated approximately 5,950,063 gallons of extracted groundwater during January 2018.

Periods of planned and unplanned extraction system downtime (that together resulted an approximately 1.7 percent downtime during January 2018) are summarized below.

- January 3, 2018 (planned): The extraction well system was offline from 7:46 a.m. to 10:54 a.m. to change out microfilter modules due to high transmembrane pressure. Extraction system downtime was 3 hours 8 minutes.
- January 4, 2018 (unplanned): The extraction system was offline from 10:58 a.m. to 11:00 a.m. due to a programmable logic controller (PLC) and human-machine interface (HMI) connectivity issue. Extraction system downtime was 2 minutes.
- January 5, 2018 (planned): The extraction system was offline from 10:32 a.m. to 10:44 a.m. due to testing of the pipeline critical alarms and leak detection system. Extraction system downtime was 12 minutes.
- January 9, 2018 (unplanned): The extraction well system was offline from 3:34 a.m. to 4:00 a.m. due to loss of power from the City of Needles. Extraction system downtime was 26 minutes.
- January 9, 2018 (planned): The extraction well system was offline from 11:20 a.m. to 1:08 p.m. to change out microfilter modules due to high transmembrane pressure. Extraction system downtime was 1 hour 48 minutes.
- January 13, 2018 (unplanned): The extraction well system was offline from 12:12 p.m. to 1:46 p.m. due to the Clarifier Feed Pump (P-400) shutting off for unknown reasons, which caused a high level at Raw Water Storage Tank (T-100). Extraction system downtime was 1 hour 34 minutes.
- January 16, 2018 (planned): The extraction well system was offline from 4:48 p.m. to 5:08 p.m. due to a blockage in the piping between Iron Oxidation Tanks T-301A, B, and C; this situation forced the plant to operate at slower pumping rates, which caused high levels in the Chromium Reduction Reactor Tank (T-300A) and T-100. Extraction system downtime was 20 minutes.

- January 19, 2018 (planned): The extraction well system was offline from 10:12 a.m. to 11:56 a.m. to change out microfilter modules due to high transmembrane pressure. Extraction system downtime was 1 hour 44 minutes.
- January 22, 2018 (planned): The extraction well system was offline from 10:04 a.m. to 11:30 a.m. due to a blockage in the piping between Iron Oxidation Tanks T-301A, B, and C; this situation forced the plant to operate at slower rates, which caused a high level in T-100. Extraction was shut down to lower the tank level in T-100. Extraction system downtime was 1 hour 26 minutes.
- January 24, 2018 (planned): The extraction well system was offline from 9:02 a.m. to 10:04 a.m. due to a blockage in the piping between Iron Oxidation Tanks T-301A, B, and C; this situation forced the plant to operate at slower rates, which caused a high level in T-100. Extraction was shut down to lower the tank level in T-100. Extraction system downtime was 1 hour 2 minutes.
- January 30, 2018 (planned): The extraction well system was offline from 2:38 a.m. to 3:20 a.m. due a valve failure in the air line at T-100. Extraction system downtime was 42 minutes.

February 2018

During February 2018, extraction well TW-3D operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during February 2018. Extraction wells TW-2D and PE-01 were only operated to collect a sample during February 2018. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 96.7 percent during the February 2018 reporting period.

The IM-3 facility treated approximately 5,276,125 gallons of extracted groundwater during February 2018. The IM-3 facility treated 375 gallons of purge water during February 2018.

Periods of planned and unplanned extraction system downtime (that together resulted an approximately 3.3 percent downtime during February 2018) are summarized below.

- February 1, 2018 (planned): The extraction well system was offline from 10:10 a.m. to 11:16 a.m. to change out microfilter modules due to high transmembrane pressure. Extraction system downtime was 1 hour 6 minutes.
- February 2, 2018 (planned): The extraction system was offline from 11:40 a.m. to 12:04 p.m. due to testing of the pipeline critical alarms and leak detection system. Extraction system downtime was 24 minutes.
- February 6, 2018 (unplanned): The extraction system was offline from 3:22 p.m. to 4:02 p.m. due to collecting a total depth measurement at extraction well TW-3D. Extraction system downtime was 40 minutes.
- February 9, 2018 (planned): The extraction well system was offline from 10:08 a.m. to 12:40 p.m. to change out microfilter modules due to high transmembrane pressure. Extraction system downtime was 2 hours 32 minutes.
- February 14, 2018 (unplanned): The extraction well system was offline from 1:10 a.m. to 1:32 p.m. because the ferrous chloride feed pump (P800) failed and was replaced. Extraction system downtime was 12 hours 22 minutes.
- **February 21, 2018 (unplanned):** The extraction well system was offline from 7:18 a.m. to 7:26 a.m. due to loss of power from the City of Needles. Extraction system downtime was 8 minutes.

- February 22, 2018 (unplanned): The extraction well system was offline from 6:26 a.m. to 7:12 a.m. due to variable frequency drive (VFD) motor problems at the Clarifier Feed Pump (P-400). Extraction system downtime was 46 minutes.
- February 23, 2018 (planned): The extraction well system was offline from 9:50 a.m. to 9:58 a.m. due to switching between TW-3D and TW-2D to collect a sample at TW-2D. Extraction system downtime was 8 minutes.
- February 23, 2018 (unplanned): The extraction well system was offline from 11:02 a.m. to 3:24 a.m. due to the VFD giving erratic output signals that indicated that P-400 had scale buildup. The plant was shut down to remove the scaling. Also, microfilter modules were changed out due to high transmembrane pressure. Extraction system downtime was 4 hours 22 minutes.

March 2018

During March 2018, extraction well TW-3D operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during March 2018. Extraction well PE-01 was only operated to collect a sample during March 2018. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 95.7 percent during the March 2018 reporting period.

The IM-3 facility treated approximately 5,765,116 gallons of extracted groundwater during March 2018. The IM-3 facility treated 18,900 gallons of water from injection well backwashing/re-development from Groundwater Partners. Five containers of solids from the IM No. 3 facility were transported offsite during March 2018.

Periods of planned and unplanned extraction system downtime (that together resulted an approximately 4.3 percent downtime during March 2018) are summarized below.

- March 1, 2018 (unplanned): The extraction system was offline from 9:54 a.m. to 3:00 p.m. to replace a VFD at the Clarifier Feed Pump (P-400). Extraction system downtime was 5 hours 6 minutes.
- March 1, 2018 (unplanned): The extraction well system was offline from 3:58 p.m. to 4:32 p.m. due to a malfunctioning valve controller. The plant was shut down so the operator could reset the controller and the valve. Extraction system downtime was 34 minutes.
- March 2, 2018 (unplanned): The extraction system was offline from 4:18 p.m. to 5:40 p.m. to lower the water level in the Raw Water Storage Tank (T-100). Extraction system downtime was 1 hour 22 minutes.
- March 3, 2018 (unplanned): The extraction system was offline from 5:14 a.m. to 5:20 a.m. due to a malfunctioning Flow Control Valve (FCV-602), which got stuck in the closed position. The plant was shut down to purge the airline. Extraction system downtime was 6 minutes.
- March 3, 2018 (unplanned): The extraction system was offline from 10:14 a.m. to 11:32 a.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 1 hour 18 minutes.
- March 4, 2018 (unplanned): The extraction system was offline from 2:48 a.m. to 3:02 a.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 14 minutes.
- March 4, 2018 (unplanned): The extraction system was offline from 5:44 a.m. to 7:10 a.m. and from 6:50 p.m. to 7:50 p.m. to lower the water level in the Raw Water Storage Tank (T-100). Extraction system downtime was 2 hour 26 minutes.

- March 5, 2018 (planned): The extraction system was offline from 9:50 a.m. to 1:30 p.m. due to testing of the pipeline critical alarms and leak detection system, to change out microfilter modules due to high transmembrane pressure, and to clean out the chromium reduction reactor. Extraction system downtime was 3 hours 40 minutes.
- March 7, 2018 (unplanned): The extraction system was offline from 5:34 p.m. to 7:10 p.m. to lower the water level in the Raw Water Storage Tank (T-100). Extraction system downtime was 1 hour 36 minutes.
- March 8, 2018 (unplanned): The extraction system was offline from 8:08 a.m. to 12:42 p.m. and from 1:30 p.m. to 2:50 p.m. to change some hand-operated valves between tanks due to scale buildup. Extraction system downtime was 5 hours 54 minutes.
- March 9, 2018 (unplanned): The extraction system was offline from 9:38 p.m. to 9:50 p.m. and from 10:02 p.m. to 12:00 am to lower the water level in the Raw Water Storage Tank (T-100). Extraction system downtime was 2 hours 10 minutes.
- March 10, 2018 (unplanned): The extraction system was offline from 11:34 a.m. to 1:24 p.m. to clean the pipe between Iron Oxidation Reactor No. 2 (T-301B) and Iron Oxidation Reactor No. 3 (T-301C). Extraction system downtime was 1 hours 50 minutes.
- March 11, 2018 (unplanned): The extraction system was offline from 5:38 p.m. to 7:00 p.m. to lower the water level in the Raw Water Storage Tank (T-100). Extraction system downtime was 1 hour 22 minutes.
- March 16, 2018 (unplanned): The extraction system was offline from 8:20 a.m. to 9:50 a.m. to lower the water level in the Raw Water Storage Tank (T-100) due to the Raw Water Feed Pump (P-200) shutting off. Extraction system downtime was 1 hours 30 minutes.
- March 17, 2018 (planned): The extraction system was offline from 12:02 p.m. to 2:00 p.m. to lower the water level in the Raw Water Storage Tank (T-100) due to receiving injection well backwash water. Extraction system downtime was 1 hours 58 minutes.
- March 22, 2018 (planned): The extraction system was offline from 10:06 a.m. to 11:12 a.m. to change out microfilter modules due to high transmembrane pressure. Extraction system downtime was 1 hour 6 minutes.

April 2018

During April 2018, extraction well TW-3D operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during April 2018. Extraction well PE-01 was only operated to collect a sample. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 82.4 percent during the April 2018 reporting period.

The IM-3 facility treated approximately 4,819,356 gallons of extracted groundwater during April 2018. The IM-3 facility treated 1,030 gallons of purge water during April 2018. No containers of solids from the IM-3 facility were transported offsite during April 2018.

Periods of planned and unplanned extraction system down time (that together resulted an approximately 17.6 percent downtime during April 2018) are summarized below.

• April 2 - 6, 2018 (planned): The extraction well system was offline from 6:36 a.m. on April 2, 2018 to 6:50 a.m. on April 3, 2018; from 7:00 a.m. on April 3, 2018 to 2:02 p.m. on April 6, 2018; and again

from 4:16 p.m. to 5:48 p.m. on April 6, 2018 for semiannual scheduled maintenance. Extraction system downtime was 4 days, 8 hours 48 minutes.

- April 6-7, 2018 (planned): The extraction well system was offline from 8:42 p.m. on April 6, 2018 to 4:44 a.m. on April 7, 2018 because the plant was put in recirculation. Extraction system downtime was 8 hours 2 minutes.
- April 9, 2018 (unplanned): The extraction well system was offline from 6:48 a.m. to 6:50 a.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 2 minutes.
- April 9, 2018 (unplanned): The extraction well system was offline from 7:44 a.m. to 8:14 a.m. to replace a failed pneumatic valve on the microfilter. Extraction system downtime was 30 minutes.
- April 9, 2018 (unplanned): The extraction well system was offline from 8:54 a.m. to 12:22 p.m. to maintain appropriate water levels in the Raw Water Storage Tank (T-100). Extraction system downtime was 3 hour 28 minutes.
- April 11, 2018 (unplanned): The extraction well system was offline from 1:34 a.m. to 2:20 a.m. to maintain appropriate water levels in T-100. Extraction system downtime was 46 minutes.
- April 11, 2018 (planned): The extraction well system was offline from 9:50 a.m. to 10:54 a.m. due to testing of the pipeline critical alarms and leak detection system. Extraction system downtime was 1 hour 4 minutes.
- April 12, 2018 (unplanned): The extraction well system was offline from 11:08 a.m. to 12:06 p.m. to change out the microfilter modules due to high transmembrane pressure. The plant was shut down to replace the fouled modules with clean ones. Extraction system downtime was 58 minutes.
- April 14, 2018 (unplanned): The extraction well system was offline from 6:06 a.m. to 7:14 a.m. due to the microfilter basket strainer being plugged. The plant was shut down to clean the strainer. Extraction system downtime was 1 hour 8 minutes.
- April 23, 2018 (unplanned): The extraction well system was offline from 12:50 p.m. to 2:18 p.m. to change out the microfilter modules due to high transmembrane pressure. The plant was shut down to replace the fouled modules with clean ones. Extraction system downtime was 1 hour 28 minutes.
- April 24, 2018 (unplanned): The extraction well system was offline from 10:40 a.m. to 11:42 a.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour 2 minutes.
- April 30, 2018 (unplanned): The extraction well system was offline from 7:50 a.m. to 9:58 a.m. to change out the microfilter modules due to high transmembrane pressure. The plant was shut down to replace the fouled modules with clean ones. Extraction system downtime was 2 hours 8 minutes.
- April 30, 2018 (unplanned): The extraction well system was offline from 2:38 p.m. to 3:44 p.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour 6 minutes.

May 2018

During May 2018, extraction well TW-3D operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during May 2018. Extraction wells TW-2D and PE-01 were only operated to collect a sample. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 95.5 percent during the May 2018 reporting period.

The IM-3 facility treated approximately 5,756,326 gallons of extracted groundwater during May 2018. The IM-3 facility treated 1,660 gallons of purge water during May 2018. No containers of solids from the IM-3 facility were transported offsite during May 2018.

Periods of planned and unplanned extraction system down time (that together resulted an approximately 4.5 percent downtime during May 2018) are summarized below.

- May 5, 2018 (unplanned): The extraction well system was offline from 3:22 p.m. to 4:26 p.m. to maintain appropriate water levels in the Raw Water Storage Tank (T-100). Extraction system downtime was 1 hour 4 minutes.
- May 7, 2018 (unplanned): The extraction well system was offline from 1:02 a.m. to 9:14 a.m. due to replacing a failed pneumatic valve on the microfilter. Extraction system downtime was 8 hours 12 minutes.
- May 9-10, 2018 (unplanned): The extraction well system was offline from 11:36 p.m. on May 9, 2018 to 1:34 a.m. on May 10, 2018 because a check valve on the microfilter failed due to scaling. It was cleaned and placed back into service. Extraction system downtime was 1 hour 58 minutes.
- May 10, 2018 (unplanned): The extraction well system was offline from 3:24 p.m. to 4:10 p.m. due to the microfilter basket strainer being plugged. The plant was shut down to clean the strainer. Extraction system downtime was 46 minutes.
- May 13, 2018 (unplanned): The extraction well system was offline from 4:04 p.m. to 5:16 p.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour 12 minutes.
- May 14-15, 2018 (unplanned): The extraction well system was offline from 11:58 p.m. on May 14, 2018 to 12:54 a.m. on May 15, 2018 to maintain appropriate water levels in T-100. Extraction system downtime was 56 minutes.
- May 16, 2018 (unplanned): The extraction well system was offline from 4:08 a.m. to 5:26 a.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour 18 minutes.
- May 16, 2018 (unplanned): The extraction well system was offline from 10:14 a.m. to 11:02 a.m. to change out the microfilter modules on the west side due to high transmembrane pressure. Extraction system downtime was 48 minutes.
- May 17, 2018 (planned and unplanned): The extraction well system was offline from 7:14 a.m. to 2:48 p.m. due to testing of the pipeline critical alarms and leak detection system and also to clean a blockage in the pipe causing a high level at the Iron Oxidation Reactor (T-301) tank. Extraction system downtime was 7 hours 34 minutes.
- May 22, 2018 (unplanned): The extraction well system was offline from 5:28 p.m. to 5:58 p.m. due to loss of power from the City of Needles. Extraction system downtime was 30 minutes.
- May 23, 2018 (unplanned): The extraction well system was offline from 6:58 a.m. to 12:00 p.m. to clean off sludge from the Clarifier and fix a leaking seal at the Chemical Mixing Pump (P-200). Extraction system downtime was 5 hour 2 minutes.
- May 26, 2018 (unplanned): The extraction well system was offline from 4:06 p.m. to 4:20 p.m. to maintain appropriate water levels in T-100. Extraction system downtime was 14 minutes.
- May 27, 2018 (unplanned): The extraction well system was offline from 12:24 a.m. to 1:28 a.m. to maintain appropriate water levels in T-100 and to clean the microfilter strainer. Extraction system downtime was 1 hour 4 minutes.

• May 31, 2018 (unplanned): The extraction well system was offline from 8:02 a.m. to 10:58 a.m. to change out the microfilter modules due to high transmembrane pressure and to change out the reverse osmosis pre-filters. Extraction system downtime was 2 hours 56 minutes.

June 2018

During June 2018, extraction well TW-3D operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during June 2018. Extraction well PE-01 was only operated to collect a sample. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 88.1 percent during the June 2018 reporting period.

The IM-3 facility treated approximately 5,140,983 gallons of extracted groundwater during June 2018. The IM-3 facility treated 360 gallons of purge water during June 2018. Three containers of solids from the IM-3 facility were transported offsite during June 2018.

Periods of planned and unplanned extraction system down time (that together resulted an approximately 11.9 percent downtime during June 2018) are summarized below.

- June 8, 2018 (planned and unplanned): The extraction well system was offline from 12:42 p.m. to 12:58 p.m. due to testing of the pipeline critical alarms and leak detection system and due to a high level in Iron Oxidation Reactor (T-301) tank including investigating the cause. Extraction system downtime was 16 minutes.
- June 12, 2018 (unplanned): The extraction well system was offline from 6:12 a.m. to 7:46 a.m. due to loss of power from the City of Needles. Extraction system downtime was 1 hour 34 minutes.
- June 13, 2018 (unplanned): The extraction well system was offline from 10:54 a.m. to 11:56 a.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour 2 minutes.
- June 14, 2018 (planned and unplanned): The extraction well system was offline from 3:10 a.m. to 1:10 p.m. due to a high level in T-301 and investigating the cause. Operators cleaned a blockage in the piping between the oxidation tanks. Extraction system downtime was 10 hours.
- June 16, 2018 (unplanned): The extraction well system was offline from 8:28 a.m. to 9:32 a.m. to change out the microfilter modules due to high transmembrane pressure. Extraction system downtime was 1 hour 4 minutes.
- June 17, 2018 (unplanned): The extraction well system was offline from 4:46 p.m. to 6:00 p.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour 14 minutes.
- June 18 20, 2018 (unplanned): The extraction well system was offline from 6:16 p.m. on June 18, 2018 to 6:40 p.m. on June 19, 2018 and from 9:50 p.m. on June 19, 2018 to 10:16 a.m. on June 20, 2018 due to a bad batch of ferrous chloride chemical that resulted in poor conversion of hexavalent chromium to trivalent chromium. This required the plant to be set in recirculation mode to troubleshoot the cause. Once the cause was determined, the ferrous chloride was replaced. The bad batch also resulted in excess solids that flocculated poorly and accumulated in the piping, the tanks between the pipe reactor, the clarifier, the microfilters, and the Pre-Treated Water Tank (T-500). A power outage also occurred during this shutdown. Some of the accumulated solids were removed from the equipment. Later plant outages in June were caused by this situation. Extraction system downtime was 1 day 12 hours 50 minutes.
- June 21, 2018 (unplanned): The extraction well system was offline from 4:04 p.m. to 4:36 p.m. to maintain appropriate water levels in T-100. Extraction system downtime was 32 minutes.

- June 24, 2018 (unplanned): The extraction well system was offline from 1:36 p.m. to 2:30 p.m. to maintain appropriate water levels in T-100. Extraction system downtime was 54 minutes.
- June 26, 2018 (unplanned): The extraction well system was offline from 11:14 p.m. to 11:38 p.m. to change out the microfilter modules due to high transmembrane pressure. Extraction system downtime was 24 minutes.
- June 27, 2018 (unplanned): The extraction well system was offline from 12:18 a.m. to 12:36 a.m. because the seal water line failed on the Raw Water Feed Pump (P-200). Extraction system downtime was 18 minutes.
- June 27, 2018 (unplanned): The extraction well system was offline from 1:04 a.m. to 2:04 a.m. to maintain appropriate water levels in T-100. Extraction system downtime was 1 hour.
- June 28 29, 2018 (unplanned): The extraction well system was offline from 12:22 p.m. on June 28, 2018 to 2:58 a.m. on June 29, 2018 to change out the microfilter modules due to high transmembrane pressure. Extraction system downtime was 14 hours 36 minutes.
- June 29, 2018 (unplanned): The extraction well system was offline from 4:04 a.m. to 7:04 p.m. to change out the microfilter modules due to high transmembrane pressure. Extraction system downtime was 15 hours.
- June 30, 2018 (unplanned): The extraction well system was offline from 2:24 p.m. to 3:08 p.m. due to P-200 shutting off and to maintain appropriate water levels in T-100. Extraction system downtime was 44 minutes.

Appendix B Daily Volumes of Groundwater Treated

January 2018 Operational Data IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inj	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
January	1	2018			191,465	0	191,465	0	192,896	192,896	0
January	2	2018			193,936	0	193,936	0	191,002	191,002	0
January	3	2018			169,967	0	169,967	0	177,938	177,938	3,673
January	4	2018		38	193,238	530	193,806	0	192,235	192,235	0
January	5	2018			194,199	0	194,199	0	192,591	192,591	0
January	6	2018			195,979	0	195,979	0	192,529	192,529	3,743
January	7	2018			195,810	0	195,810	0	192,745	192,745	0
January	8	2018			195,853	0	195,853	0	194,695	194,695	0
January	9	2018			177,759	0	177,759	0	184,664	184,664	0
January	10	2018			196,102	0	196,102	0	196,376	196,376	4,348
January	11	2018			195,788	0	195,788	0	195,427	195,427	0
January	12	2018			195,482	0	195,482	0	195,755	195,755	3,606
January	13	2018			182,545	0	182,545	0	195,113	195,113	0
January	14	2018			195,449	0	195,449	0	187,462	187,462	0
January	15	2018			195,215	0	195,215	0	194,803	194,803	0
January	16	2018			192,382	0	192,382	0	194,912	194,912	3,776
January	17	2018			195,084	0	195,084	0	194,866	194,866	0
January	18	2018			194,929	0	194,929	0	194,561	194,561	0
January	19	2018			180,887	0	180,887	0	185,161	185,161	3,896
January	20	2018			195,072	0	195,072	0	195,180	195,180	0
January	21	2018			195,064	0	195,064	0	195,459	195,459	0
January	22	2018			183,378	0	183,378	0	194,709	194,709	3,925
January	23	2018			195,346	0	195,346	0	189,506	189,506	0
January	24	2018			186,731	0	186,731	0	192,574	192,574	3,750
January	25	2018			195,386	0	195,386	0	192,590	192,590	0
January	26	2018			195,278	0	195,278	0	192,711	192,711	3,751
January	27	2018			195,355	0	195,355	0	193,682	193,682	0
January	28	2018			195,527	0	195,527	0	197,171	197,171	0
January	29	2018			195,416	0	195,416	0	197,634	197,634	3,683
January	30	2018			189,836	0	189,836	0	197,038	197,038	0
January	31	2018			195,604	0	195,604	0	188,918	188,918	3,837
-	tal Monthly Volumes (gallons)		0	38	5,950,063	530	5,950,632	0	5,972,906	5,972,906	41,986
		on Rates (gpm	ı) 0.0	0.0	133.3	0.0	133.3	0.0	133.8	133.8	0.9

NOTES: gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW-3D and PE-1 were operated during January 2018 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during January 2018.

b. Effluent was discharged into injection well IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during January 2018 is approximately 1.08 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

February 2018 Operational Data IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extract	tion Well Sys	tem		Inj	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
February	1	2018			186,829	0	186,829	0	186,441	186,441	0
February	2	2018			192,731	0	192,731	0	195,255	195,255	3,893
February	3	2018			196,250	0	196,250	0	194,880	194,880	0
February	4	2018			196,062	0	196,062	0	194,056	194,056	3,893
February	5	2018			195,846	0	195,846	0	190,403	190,403	3,820
February	6	2018			190,160	0	190,160	0	193,257	193,257	0
February	7	2018			194,989	477	195,467	0	197,604	197,604	3,702
February	8	2018			194,753	0	194,753	0	193,500	193,500	1,387
February	9	2018			174,136	0	174,136	0	178,867	178,867	0
February	10	2018			194,976	0	194,976	0	192,942	192,942	3,848
February	11	2018			194,850	0	194,850	0	194,813	194,813	0
February	12	2018			194,716	0	194,716	0	194,554	194,554	3,753
February	13	2018			194,357	0	194,357	0	195,240	195,240	0
February	14	2018			94,215	0	94,215	0	98,367	98,367	0
February	15	2018			194,561	0	194,561	0	195,241	195,241	0
February	16	2018			194,309	0	194,309	0	194,389	194,389	0
February	17	2018			194,385	0	194,385	0	194,477	194,477	6,047
February	18	2018			194,529	0	194,529	0	194,425	194,425	0
February	19	2018			194,608	0	194,608	0	189,205	189,205	3,956
February	20	2018			194,618	0	194,618	0	196,342	196,342	0
February	21	2018			193,539	0	193,539	0	195,523	195,523	3,991
February	22	2018			188,705	0	188,705	0	187,498	187,498	0
February	23	2018		36	158,908	0	158,944	0	156,563	156,563	0
February	24	2018			195,341	0	195,341	0	197,079	197,079	3,806
February	25	2018			194,397	0	194,397	0	196,828	196,828	0
February	26	2018			194,387	0	194,387	0	195,832	195,832	3,797
February	27	2018			194,269	0	194,269	0	196,348	196,348	0
February	28	2018			194,188	0	194,188	0	196,269	196,269	3,986
otal Monthly	tal Monthly Volumes (gallons)		0	36	5,275,611	477	5,276,125	0	5,286,197	5,286,197	49,880
Average Pum	p/Injectio	n Rates (gpm) 0.0	0.0	130.8	0.0	130.9	0.0	131.1	131.1	1.2

NOTES: gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW-3D and PE-1 were operated during February 2018 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during February 2018.

b. Effluent was discharged into injection well IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during February 2018 is approximately 1.14 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

March 2018 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Injection Well System			RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
March	1	2018			148,227	0	148,227	0	145,252	145,252	0
March	2	2018			183,426	0	183,426	0	182,556	182,556	0
March	3	2018			183,137	0	183,137	0	180,796	180,796	3,941
March	4	2018			172,683	0	172,683	0	184,131	184,131	0
March	5	2018			164,727	0	164,727	0	157,132	157,132	3,989
March	6	2018			194,499	0	194,499	0	187,903	187,903	0
March	7	2018			179,672	285	179,957	0	190,925	190,925	3,977
March	8	2018			146,559	0	146,559	0	140,258	140,258	0
March	9	2018			176,981	0	176,981	0	184,980	184,980	0
March	10	2018			179,700	0	179,700	0	169,781	169,781	3,868
March	11	2018			183,631	0	183,631	0	186,968	186,968	0
March	12	2018			194,857	0	194,857	0	190,066	190,066	0
March	13	2018			194,928	0	194,928	0	196,127	196,127	4,392
March	14	2018			194,835	0	194,835	0	195,599	195,599	0
March	15	2018			194,736	0	194,736	91,028	105,296	196,325	3,827
March	16	2018			182,423	0	182,423	111,075	72,050	183,125	0
March	17	2018			178,671	0	178,671	55,244	141,593	196,836	0
March	18	2018			194,817	0	194,817	198,887	0	198,887	4,040
March	19	2018			194,716	0	194,716	198,652	0	198,652	0
March	20	2018			194,565	0	194,565	197,458	0	197,458	4,081
March	21	2018			194,262	0	194,262	197,493	0	197,493	0
March	22	2018			185,027	0	185,027	188,638	0	188,638	4,020
March	23	2018			194,110	0	194,110	195,264	0	195,264	0
March	24	2018			194,528	0	194,528	189,713	0	189,713	0
March	25	2018			194,574	0	194,574	193,243	0	193,243	4,010
March	26	2018			194,404	0	194,404	196,327	0	196,327	0
March	27	2018			194,260	0	194,260	196,316	0	196,316	0
March	28	2018			194,090	0	194,090	196,385	0	196,385	3,589
March	29	2018			194,079	0	194,079	195,358	0	195,358	0
March	30	2018			193,877	0	193,877	196,141	0	196,141	3,862
March	31	2018			193,830	0	193,830	188,188	0	188,188	0
otal Monthl	al Monthly Volumes (gallons)		0	0	5,764,831	285	5,765,116	2,985,410	2,811,414	5,796,824	47,596
		on Rates (gp	m) 0.0	0.0	129.1	0.0	129.1	66.9	63.0	129.9	1.1

NOTES: gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW-3D and PE-1 were operated during March 2018 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during March 2018.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during March 2018 is approximately 1.38 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

April 2018 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Injection Well System			RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons
April	1	2018			193,956	0	193,956	191,984	0	191,984	0
April	2	2018			53,407	0	53,407	55,065	0	55,065	0
April	3	2018			1,251	183	1,433	0	0	0	0
April	4	2018			0	0	0	0	0	0	0
April	5	2018			0	0	0	0	0	0	0
April	6	2018			41,558	0	41,558	20,998	0	20,998	3,748
April	7	2018			156,963	0	156,963	152,402	0	152,402	0
April	8	2018			195,986	0	195,986	197,140	0	197,140	3,582
April	9	2018			163,321	0	163,321	160,373	0	160,373	0
April	10	2018			196,154	0	196,154	188,128	0	188,128	3,962
April	11	2018			189,708	0	189,708	189,428	0	189,428	0
April	12	2018			178,776	0	178,776	175,889	0	175,889	3,993
April	13	2018			194,820	0	194,820	193,497	0	193,497	0
April	14	2018			185,721	0	185,721	192,169	0	192,169	0
April	15	2018			195,066	0	195,066	192,862	0	192,862	3,949
April	16	2018			195,116	0	195,116	196,356	0	196,356	0
April	17	2018			195,155	0	195,155	198,632	0	198,632	497
April	18	2018			195,158	0	195,158	198,340	0	198,340	3,316
April	19	2018			195,073	0	195,073	197,760	0	197,760	0
April	20	2018			194,780	0	194,780	190,865	0	190,865	3,937
April	21	2018			194,526	0	194,526	193,447	0	193,447	0
April	22	2018			194,513	0	194,513	194,128	0	194,128	0
April	23	2018			182,457	0	182,457	179,560	0	179,560	4,008
April	24	2018			186,081	0	186,081	188,194	0	188,194	0
April	25	2018			194,413	0	194,413	196,549	0	196,549	0
April	26	2018			194,291	0	194,291	196,054	0	196,054	3,821
April	27	2018			194,281	0	194,281	197,207	0	197,207	0
April	28	2018			194,157	0	194,157	199,533	0	199,533	0
April	29	2018			194,263	0	194,263	198,970	0	198,970	3,836
April	30	2018			168,222	0	168,222	157,057	0	157,057	0
tal Monthl	al Monthly Volumes (gallons)			0	4,819,173	183	4,819,356	4,792,588	0	4,792,588	38,649
		n Rates (gp	m) 0.0	0.0	111.6	0.0	111.6	110.9	0.0	110.9	0.9

NOTES: gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW-3D and PE-1 were operated during April 2018 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during April 2018.

b. Effluent was discharged into injection well IW-02.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during April 2018 is approximately 0.25 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

May 2018 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Injection Well System			RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
May	1	2018			194,541	0	194,541	197,618	0	197,618	0
May	2	2018			194,407	0	194,407	194,857	0	194,857	3,807
May	3	2018			194,174	0	194,174	192,436	0	192,436	0
May	4	2018		42	193,719	298	194,058	196,648	0	196,648	0
Мау	5	2018			185,012	0	185,012	196,425	66	196,491	0
May	6	2018			193,860	0	193,860	196,366	0	196,366	3,838
Мау	7	2018			127,881	0	127,881	10,916	122,729	133,644	0
Мау	8	2018			194,274	0	194,274	0	195,345	195,345	0
Мау	9	2018			190,866	0	190,866	0	184,016	184,016	0
Мау	10	2018			175,132	0	175,132	0	184,061	184,061	4,015
Мау	11	2018			194,125	0	194,125	0	193,108	193,108	0
May	12	2018			194,000	0	194,000	0	191,675	191,675	436
Мау	13	2018			184,414	0	184,414	0	189,716	189,716	3,542
May	14	2018			194,246	0	194,246	0	193,366	193,366	0
Мау	15	2018			187,358	0	187,358	0	187,453	187,453	0
May	16	2018			177,617	0	177,617	0	185,689	185,689	4,015
May	17	2018			133,617	0	133,617	0	127,960	127,960	0
May	18	2018			195,136	0	195,136	0	196,948	196,948	0
Мау	19	2018			194,842	0	194,842	0	195,184	195,184	4,028
May	20	2018			194,848	0	194,848	0	195,233	195,233	0
May	21	2018			194,859	0	194,859	0	196,800	196,800	0
Мау	22	2018			190,833	0	190,833	0	197,363	197,363	3,828
Мау	23	2018			154,161	0	154,161	0	148,118	148,118	0
Мау	24	2018			194,889	0	194,889	0	194,972	194,972	0
Мау	25	2018			194,532	0	194,532	0	194,723	194,723	4,010
May	26	2018			192,539	0	192,539	0	190,958	190,958	0
May	27	2018			185,661	0	185,661	0	192,898	192,898	0
May	28	2018			194,492	0	194,492	0	198,635	198,635	0
May	29	2018			194,515	0	194,515	0	196,371	196,371	3,934
May	30	2018			194,533	0	194,533	0	192,019	192,019	0
May	31	2018			170,905	0	170,905	0	170,673	170,673	0
otal Monthl	al Monthly Volumes (gallons)		0	42	5,755,987	298	5,756,326	1,185,266	4,616,079	5,801,344	35,453
	-	on Rates (gpn	n) 0.0	0.0	128.9	0.0	128.9	26.6	103.4	130.0	0.8

NOTES: gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW-3D and PE-1 were operated during May 2018 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction well TW-2S was not operated during May 2018.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during May 2018 is approximately 1.4 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

June 2018 Operational Data IM-3 Groundwater Extraction and Treatment System PG&E Topock Compressor Station, Needles, California

				Extract	tion Well Sys	tem		Inj	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
June	1	2018			194,529	0	194,529	0	193,997	193,997	0
June	2	2018			194,176	0	194,176	0	193,385	193,385	3,089
June	3	2018			194,230	0	194,230	0	194,285	194,285	0
June	4	2018			194,091	0	194,091	0	197,096	197,096	0
June	5	2018			193,974	0	193,974	0	197,010	197,010	2,807
June	6	2018			193,846	0	193,846	0	197,050	197,050	0
June	7	2018			193,755	367	194,122	0	196,817	196,817	0
June	8	2018			191,786	0	191,786	0	196,817	196,817	0
June	9	2018			193,936	0	193,936	0	188,346	188,346	0
June	10	2018			194,059	0	194,059	0	195,390	195,390	3,881
June	11	2018			194,039	0	194,039	0	194,962	194,962	0
June	12	2018			181,722	0	181,722	0	185,012	185,012	0
June	13	2018			186,252	0	186,252	0	189,485	189,485	0
June	14	2018			113,798	0	113,798	0	111,115	111,115	0
June	15	2018			195,085	0	195,085	0	196,005	196,005	0
June	16	2018			186,268	0	186,268	0	186,691	186,691	3,968
June	17	2018			185,030	0	185,030	0	191,597	191,597	0
June	18	2018			148,532	0	148,532	0	147,272	147,272	0
June	19	2018			25,744	0	25,744	0	27,467	27,467	0
June	20	2018			111,729	0	111,729	0	97,310	97,310	0
June	21	2018			190,805	0	190,805	0	193,787	193,787	0
June	22	2018			194,690	0	194,690	0	200,440	200,440	5,819
June	23	2018			194,484	0	194,484	0	188,612	188,612	0
June	24	2018			187,228	0	187,228	0	196,724	196,724	0
June	25	2018			194,548	0	194,548	0	193,533	193,533	0
June	26	2018			191,023	0	191,023	0	191,852	191,852	0
June	27	2018			183,474	0	183,474	0	189,410	189,410	3,844
June	28	2018			100,075	0	100,075	0	101,347	101,347	0
June	29	2018			48,919	0	48,919	0	41,069	41,069	0
June	30	2018			188,791	0	188,791	0	189,306	189,306	0
otal Monthl	al Monthly Volumes (gallons)		0	0	5,140,616	367	5,140,983	0	5,163,189	5,163,189	23,408
	•	n Rates (gp	om) 0.0	0.0	119.0	0.0	119.0	0.0	119.5	119.5	0.5

NOTES: gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW-3D and PE-1 were operated during June 2018 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during June 2018.

b. Effluent was discharged into injection well IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during June 2018 is approximately 0.89 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

Appendix C Flowmeter Calibration Records

С	H2MHIL	L Top	ock				760-326-3329 p.2					
Flow 320410404-J		oratio	n withc	out Adju	ıstme	nt	Endress + Hauser					
Purchase	A01711 order numb	er				·,	FCP-8.2 US Calibration rig					
			/ Endres	s+Hauser	Inc.	.	$155 \text{ us.gal/min} \qquad (\triangleq 100\%)$					
	Manufactur						Calibrated full scale					
- Z3P5U Order cod)-AL1A1	RAUZZ	AW				Current 4 – 20 mA					
	-	ה מ וו					Calibrated output					
	IAG 23 er/Sensor	r 2		· · · · - · · ·		· · · · · · · · · · · · · · · · · · ·	0.9159 Calibration factor					
	F16000						· · · · · · · · · · · · · · · · · · ·					
Serial N°		··•				·	-17 Zero point					
FIT-10	0						-					
Tag N°							76.5 °F Water temperature					
0							water temperature					
Flo w [%]	Flow [us.gal/min]	Duration [sec]	V target [us.ga]]	V meas. [us.gal]	∆ e.r.* [%]	Outp.** [mA]	Measured error % o.r.					
10.0	15.496	60.0	15.507	15.616	0.70	5.61	1.5					
40.1	62.217 62.237	60.1 60.0	62.277 62.285	62.664 62.643	0.62 0.58	10.46	1 (Tolerance limit : ±0.5% o.c.* ± 7.5.*					
100.4	155.557	60.0	155.665	156.522	0.55	20.15	0.5 + + + + + + + + + + + + + + + + + + +					
-	-	-	-	-	-	-						
		-	-	-	-	-						
-		-	-	! [_		-0.5-					
-	-	-	-	-	-	-						
-	-	-	-	-	-	-	-1.5-					
*o.r.: of rate **Calculated v	value (4 – 20 m	AJ					0 10 20 30 40 50 60 70 80 90 How [%] *z.s.: Zero stability					
For detailed Traceability	d data conce y to the natio	rning outpu mal standar	ut specification: rd for all test in	s of the unit an struments used	ider test, sei I for the cal	e Technical Inf ibration is gua:	ofmation [T1], chapter Performance characteristics					

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

09-16-2015 Date of calibration

Endress+Hauser Inc. 10057 Porter Road La Porte, Texas 77571

(di Will:

Calvin Williams Operator

Page 171

1321320	101711	זר								
	AO17112 order numbe						FCP-8.2 US Calibration rig			
US-36	015327:	57-200	/ Endres	s+Hauser	Inc.		156 us.gal/min	(≙ 100%)		
Order N°)	/Manufactur	er				,	Calibrated full scale			
	-ALIA1	AA022.	AW				Current 4 - 20 mA			
Order cod DDAM		ויטי					Calibrated output			
	IAG 23 F er/Sensor	Δ	· _				0.9164 Calibration factor			
	7116000						5			
Seríal Nº					,		Zero point	-• ·····		
							77 °F			
ſag №							Water temperature	······		
Flow (%) 10.0 40.0	Flow (us.gat/min) 15.575 62.448	Duration [sec: 60.1 60.1	V tanget us.gaJ 15.590 62.513	V meas. (us.gat) 15.620 62.585	∆ o.t.* [%] 0.19 0.11	Outp.** [mA] 5.60 10.41	Measured error % o.r.	,*; , ;		
40.0 100.4	62.468 156.636	60.0 60.1	62.512 156.798	62.583 156.474	0.1 1 -0. 21	10.41 20.03	0.5-			
-		-	-		-	-	0			
-	-	-	-		-		-c.s_			
_		-	-	-	-	-				
-	-	-	-	-	-		-1.5-			
of.: of rate Calculated r	va.ue 4-20 mi	4				. 4	0 10 20 30 40 50 *z.s.: Zero stability	ευ 70 80 90 Flas		
raceabilit; 1dress+H	y to the natio	nal standar c operates i	rë for all test in iSO/IEC 1702	struments used	d for the cal	ibration is gua	ormation (TI), chapter Performance characteri	stics.		

Endress+Hauser Inc. 10057 Porter Road La Porte, Texas 77571

~ -

Page 171

Operator

Endress+Hauser

People for Process Automation

Flow Calibration without Adjustment

92010359-1304705

	-01789: der number						FCP-7.1.6 US Calibration rig				
				••			•				
		-	/ Endress	+Hauser	Inc.		155.6102 us.gal/min (\triangleq 100%)				
Order Nº/N	/ianufacture	ſ					Calibrated full scale				
23P50	AL1A1A	A022A	W				Current 4 – 20 mA				
Order code							Calibrated output				
PROMA	AG 23 P	2"					0.9101				
Fransmitter/Sensor							Calibration factor				
6C036F16000							-34				
Serial Nº							Zero point				
FIT-1201							70.4 °F				
°ag №				5			Water temperature				
Flow	Flow	Duration	V target	V meas.	∆ 0.r.*	Outp.**	Measured error % o.r.				
[%]	[us.gal/min]	[sec]	[us.gal]	[us.gal]	(%)	[mA]					
9.9	15.450	60.2	15.502	15.635	0.85	5.60	1.5-				
39.9 39.9	62.130 62.139	60.2 60.2	62.334 62.352	62.134 62.214	-0.32 -0.22	10.37	Tolerance limit : $\pm 0.5\%$ o.r.* $\pm z.s.*$				
	156,155	60.2	156.670	156.016	-0.22	19.99	0.5-				
-	-	-	-		-	-					
-	-	-	-	-	1	-					
-	-	-	-	-		-	-0.5-				
-	-	-	-	-	-	-					
-	-	-	-	-	-	-					
-	- 1	-	-	-	+		-1.5 / / / / / / / / / / / / / / / / / / /				

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Traceability to the national standard for all test instruments used for the calibration is guaranteed.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Relnach (CH), Cernay (FR), Greenwood (USA), Aurangábad (IN) and Suzhou (CN).

01-15-2016 Date of calibration

Endress+Hauser Inc. 2350 Endress Place Greenwood, IN 46143

the Davis

John Davis Operator

Page 1/1

(≙ 100%)

दी Endress+Hauser

People for Process Automation

Flow Calibration without Adjustment

4017515743	FCP-8.2 US
Purchase order number	Calibration rig
US-3601525789-100 / Endress+Hauser Inc.	156 us.gal/min
Order Nº/Manufacturer	Calibrated full scale
23P50-AL1A1RA022AW	Current 4 - 20 mA
Order code	Calibrated output
PROMAG 23 P 2"	0.9082
Transmitter/Sensor	Calibration factor
6A022116000	0
Serial N*	Zero point
FIT-102	72.3 °F
Tag N°	Water temperature
Flow Flow Duration Varget Varget Outp.*	* Measured error % o.r.

Flow [%]	Flow [us.gal/min]	Duration [sec]	V carget [us.gal]	V meas. [us.gai]	∆ o.≓.* %]	Outp.** [mA]
10.0	15.643	60.0	15.654	15.582	-0.46	5.60
40.1	62.618	60.0	62.665	62.440	-0.36	10.40
40.2	62.628	60.0	62.673	62.607	-0.11	10.42
100.3	156.535	60.0	156.646	155.804	-0.54	19.97
-	-	-	-	-	-	-
-	-		-	-	-	-
322	-	-	-	-	-	-
-	-	i -		-	-	-
-	-	I _	-		÷ 1	-
<u> 19</u>	-	-	-	-	-	-
*o.t.: of rate	e .					

** Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Tracezbility to the national standard for all test instruments used for the calibration is guaranteed.

Encress+Hauser Flowtec operates ISO//EC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA). Aurangabad (DN) and Suzhou (CN).

09-20-2013 Date of calibration

Endress-Hauser Inc. 10057 Porter Road La Porte, Texas 77571

sly with

W. Watkins Operator

₿age 1/1

Water temperature

1.5-Tolerance limit : +0.5% o.t.* ± 2.5 ï 0.5 0. ٥ -0.5 -1 -1.5 -0 10 20 30 40 50 ć0 70 80 90 Flow [%] "z.s.: Zero stab.J:y

Endress+Hauser

People for Process Automation

Flow Calibration with Adjustment

92010358-1304709

STOCK STOCK	A-01789	5-F					FCP-7.1.6 US					
urchase	order numbe	r					Calibration rig					
US-36	0153380	58-200	/ Endress	+Hauser I	nc.		155.6102 us.gal/min (≙ 100%					
Order Nº/	/Manufacture	er					Calibrated full scale					
23P50	-ALIA1	AA022A	W				Current 4 – 20 mA					
Order code							Calibrated output					
PROMAG 23 P 2"							0.9189					
Transmitter/Sensor							Calibration factor					
6C037	7316000						0					
Serial Nº							Zero point					
FIT-12	205						70.5 °F					
Tag Nº							Water temperature					
	Flow	Duration	V target	V meas.	Δ ο.г.*	Outp.**						
Flow [%]	fiow (us.gal/min)	[sec]	(us.gal)	[us.gal]	[%]	[mA]	Measured error % o.r.					
ا%) 10.1	(us.gal/min)	[sec] 60.2	[us.gal] 15.764	15.770	0.04		Measured error % o.r.					
ا%) 10.1 39.9	[us.gal/min] 15.712 62.125	[sec] 60.2 60.2	[us.gal] 15.764 62.338	15.770 62.323	0.04 -0.02	[mA] 5.62 10.39	1.5-					
[%] 10.1 39.9 39.9	[us.gal/min] 15.712 62.125 62.118	[sec] 60.2 60.2 60.2	[us.gal] 15.764 62.338 62.330	15.770 62.323 62.347	0.04 -0.02 0.03	[mA] 5.62 10.39 10.39	1.5 - 1 - 1 -					
ا%) 10.1 39.9	[us.gal/min] 15.712 62.125	[sec] 60.2 60.2	[us.gal] 15.764 62.338	15.770 62.323	0.04 -0.02	[mA] 5.62 10.39	1.5-					
[%] 10.1 39.9 39.9	[us.gal/min] 15.712 62.125 62.118	[sec] 60.2 60.2 60.2	[us.gal] 15.764 62.338 62.330	15.770 62.323 62.347	0.04 -0.02 0.03	[mA] 5.62 10.39 10.39	1.5 - 1 - 1 -					
[%] 10.1 39.9 39.9	[us.gal/min] 15.712 62.125 62.118	[sec] 60.2 60.2 60.2 60.2 -	[us.gal] 15.764 62.338 62.330	15.770 62.323 62.347	0.04 -0.02 0.03	[mA] 5.62 10.39 10.39	1.5- 1- 0.5-					
(%) 10.1 39.9 39.9	[us.gal/min] 15.712 62.125 62.118	[sec] 60.2 60.2 60.2 60.2 -	[us.gal] 15.764 62.338 62.330	15.770 62.323 62.347	0.04 -0.02 0.03	[mA] 5.62 10.39 10.39	1.5- 1- 0.5- 0- 0- 0.5- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0					
ا%) 10.1 39.9 39.9	[us.gal/min] 15.712 62.125 62.118	[sec] 60.2 60.2 60.2 60.2 -	[us.gal] 15.764 62.338 62.330	15.770 62.323 62.347	0.04 -0.02 0.03	[mA] 5.62 10.39 10.39	1.5- 1- 0.5- 0					

10

*z.s.: Zero stability

30

50 60 70 80 90 Flow [%]

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Traceability to the national standard for all test instruments used for the calibration is guaranteed.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

01-15-2016 Date of calibration

Endress+Hauser Inc. 2350 Endress Place Greenwood, IN 46143

yawis

John Davis Operator

Page 1/1

Endress+Hauser

People for Process Automation

Flow Calibration without Adjustment

92013941-1385272

Calibration rig						
156 us.gal/min $(\triangleq 100\%)$						
Calibrated full scale						
Current 4 – 20 mA						
Calibrated output						
0.9270						
Calibration factor						
0						
Zero point						
71.3 °F						
Water temperature						
Measured error % o.r.						
1.5-						
1 - Tolerance limit : ±0.5% o.r.* ± z.s.*						
0.5-						
-0.5 -						
-1-						
-1.5-						

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Traceability to the national standard for all test instruments used for the calibration is guaranteed.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN), Suzhou (CN) and Itatiba (BR).

05-04-2017 Date of calibration

Endress+Hauser Inc. 2350 Endress Place Greenwood, IN 46143

ohu Baris

John Davis Operator

Page 1/1

People for Process Automation

Flow Calibration with Adjustment $_{30301270\cdot3757980}$

	96517 order numbe	er			····		FCP-8.B Calibration rig						
US-30	0549703	39-10 /	Endress-	-Hauser F	lowtec		398.3621 us.gal/min (≙ 100%)						
Order Nº/	'Manufactur	er -	~				Calibrated full scale						
5P2B8	0-1CX9.	/0					Service interface						
Order cod	e						Calibrated output						
Promā	g P 200	3"					1.1823						
Sensor/Tr	ansmitter						Calibration factor						
L200E	016000						-5						
Serial Nº							Zero point						
-							80.3 °F						
∏ag №		4 9 faar 1 1			2		Water temperature						
Flow	Flow	Duration	17	V meas.	A .								
FIOW [%]	[us.gal/min]		V target [us.gal]	V meas. [us.gal]	∆ 0.r.* [%]	Outp.** [mA]	Measured error % o.r. Tolerance limit: ±0.5% o.r.* ± Zero stability						
40.2	160.154	65.1	173.658	173.655	0.00	10.43	1.5-						
40.2	160.198	65.1	173.705	173.717	0.01	10.43							
99.6	396.900	65.1	430.394	430.000	-0.09	19.93							
-	_	_	-	_	-	-	0.5-						
_	- ,	-	-	-	_	_							
-	~	-	-		-	-	-0.5 -						
-	-	-	-	-		-							
		-		-	-								

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

02-05-2016 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

Joan Bundette

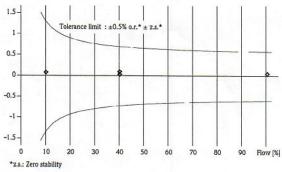
Flow

Travis Burdette Operator

Certified acc. to ISO 9001, Reg.-Nº 030502.2 ISO 14001, Reg.-Nº EMS561046

Page 1 /.1

Endress+Hauser


People for Process Automation

Flow Calibration without Adjustment

92011344-1304708

WWR/	4-01849	8-F					FCP-7	.1.6 US
Purchase of	order numbe	r					Calibratio	n rig
US-360	0153504	18-200	/ Endress	+Hauser I	nc.		155.6	102 us.gal/mir
Order Nº/	Manufacture	er					Print In the lot of the lot of the	i full scale
23P50-	-ALIA1	AA022A	W				Curren	4 - 20 m/
Order code	e						Calibrated	i output
PROM	AG 23 F	2"					0.922	
Transmitte	er/Sensor						Calibratio	n factor
6C037	216000						20	
Serial N°		1					Zero point	t
FIT-12	04						72.6 °	F
Tag Nº				and and			Water ten	nperature
Flow [%]	Flow [us.gal/min]	Duration [sec]	V target [us.gal]	V meas. [us.gal]	Δ o.r.* [%]	Outp.** [mA]	Measured	error % o.r.
9.9	15.455	60.2	15.507	15.520	0.09	5.59	1.5-	
40.0	62.288	60.2	62.491	62.557	0.11	10.41	1-	Tolerance limit : ±0.5%
40.1	62.343	60.2	62.550	62.578	0.04	10.41		
100.3	156.108	60.2	156.637	156.728	0.06	20.06	0.5-	
-	-	-	-	-		-	0	*
-	-	-	-	-	25	-		
-	-	-	-	-	-	-	-0.5 -	
-	-	-	-	-	-	-	-1 -	
-								

FCP-7.1.6 USCalibration rig155.6102 us.gal/min ($\triangleq 100\%$)Calibrated full scaleCurrent 4 - 20 mACalibrated output0.9227Calibration factor20Zero point72.6 °F

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Traceability to the national standard for all test instruments used for the calibration is guaranteed.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

John Baris

John Davis Operator

05-06-2016 Date of calibration

Endress+Hauser Inc. 2350 Endress Place Greenwood, IN 46143

Page 1/1

Appendix D Second Quarter 2018 Laboratory Analytical Reports

1

- {4

WDR pH Results

If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

J

Notes: 2 <u>90-70</u> Notes: 3 <u>50-70</u> Notes:	103-WOR-569		1	analysis	analysis	See cover Sheet for Serial Number	pH meter Calibrated	pH meter Calibrated	of the Curve	Analyst Name (for the pH result)	pH Result
2 <u>50-70</u> Notes: 3 <u>5C-/0</u> Notes:		02-06-19	15:20	02-06-13	1523	HQ4400	02-06-19	00:30	-56,5b	G.GLORIA	7.20
Notes: 3 <i>SC-1</i> 0 Notes:											1 1,20
3 <i>SC-//</i> 0 Notes:	10G = W 012569	02-06-13	15:20	02-0b-13	1524	HOUHOW	02-06-13	00:30	-56.56	G. GLORIA	7.04
Notes:	. ·				8	100 A				1	
	10B-WOR5T	73-6-18	1300	3-6-18	1304	HQ4400	3-6-13	0030	-56,32	here	7.27
	00-0				q		-	e da		11	
	103-401-570	13-6-13	1300	36-18	1306	Ha4400	3-6-13	0030 -	5433	Marit	7.10
Notes:				1			1			\bigcirc	
and the second se	OB-WDR-51	3-7-18	1335	3-7-18	1338	HQ440D	3-7-18	0030	-56.62		7.23
Notes:							X		```		
6 SC-70	COC-WDR-570	3-7-18	1325	3-7-18	1342	HQ440D	3-7-18	0030	-56.62	The	7.17
Notes:	a -								Ċ	202	1
756-100	0B-WDR-571	1-2-18	09:30	4-2-18	09:45	HQ440D	4-2-18	0430	-56.,21	(9-000	7.17
Notes:											

WDR pH Results

If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

Sample Name	Date of sampling	Time of sampling	Date of analysis	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Time pH meter Calibrated	Slope of the Curve	Analyst Name (for the pH result)	pH Result
1 5(-700 B-WDR-571	4-2-18	09:40	4-2-18	09:46	at Ha 4400	4-2-18	0430	-56,21	CStanp	7.16
Notes:										
2 56-701-WDR-57	4-2-18	09:40	4-2-18	09:47	HQ 440D	4-2-18	0430	-56,21	19tonp	17,79
Notes:							• 			
3 SC-700B-WOR-57	12 4-6-18	1820	4-6-18	1825	HQ440D	4-6-18	1808	. 56.33	hyan Phalps	7.3
Notes:							3		10	
4 SE-100B-402-573	5-1-18	1040	5-1-18	1045	HQ 440D	5-1-18	0030 .	-54.18	KON THELPS	7.2
Notes: Samples No	ot Picke	dup by	Contow	- resc	heduled for t	5-2-18 4	Fesamp	led	Southereell	1
5 5C-700C-WOLS	3 51-18	1049	5-1-18	1048	HQ4400	5-1-13	0030 -	54.13	FRAN VHELPS	7.0
Notes: Samples Not	Marrie and a second		wr res	hideolee	l for 5-2-16	1 4 Fe Sany	obed		SubhDell	
6 5C-100 Bulle 57	35-2-18	1330	5-2-18	1335	HQ440D	5-2-18	0030 -	54.02	how THELPS	1.2
Notes:									1 1	
7 S. 100 B WDK5 B	5-2-18	1393	5-2-18	1337	1424400	5-2-18	0030 -	54.02	how theles	2.0
Notes:		2								
		Remi	nder: WDR	Required	d pH Range for the	Effluent (SC.	700B) is: 6 5	5-84		

Reminder: WDR Required pH Range for the Effluent (SC-700B) is: 6.5 - 8.4

16

P

1

WDR pH Results

If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

.

Sample Name	Date of sampling	Time of sampling	Date of analysis	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Time pH meter Calibrated	Slope of the Curve	Analyst Name (for the pH result)	pH Result
1 SC- 100 B WOR	06-05-19	1444	06-05-13	1450	HQ4400	01-05-13	11:30	\$6.37	G. GLORIA	7.36
Notes: 514										
2 SC-700B-WOR-574	06-05-13	1500	ob-05-18	1504	H24400	06-05-19	11:30	-56.37	G.GUDRIA	7.17
Notes:										
3										
Notes:										
4										
Notes:										
5										
Notes:										
6										
Notes:										
7										
Notes:										

Reminder: WDR Required pH Range for the Effluent (SC-700B) is: 6.5 - 8.4

WDR pH Results

If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

Sample Name	Date of sampling	Time of sampling	Date of analysis	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Time pH meter Calibrated	Slope of the Curve	Analyst Name (for the pH result)	pH Result
1 5(-700 B- WDR-57	14-2-18	09:40	4-2-18	09:46	at Ha 4400	4-2-18	0430	-56,21	CStane	7,16
lotes:										
2 56-701-WDR-57	14-2-18	09:40	4-2-18	09:47	HQ 440D	4-2-18	0430	-56,21	1 gtane	7,79
Notes:						2	×			
3 SC-700B-WDR-5	72 4-6-18	1820	4-6-18	18 25	HQ440D	4-6-18	1868	. 56.33	hyan Phalps	7.3
lotes:							i.			
4 SC-1008-402-573	5-1-18	1040	5-1-18	1045	HQ440D	5-1-18	0030	-54.18	Kons PHELPS	7.2
Notes: Samples N					heduled for	5-2-18 4	Fesamp	led	Southersell	
5 SC-200C-WORS	33 5-1-18	1049	5-1-18	1048	HQ4407	5-1-18	0030	54.13	How Mades	7.0
Notes: Samples No				1	d for 5-2-11	8 4 Fe Sam	phed		SutoBell	
	12 F.A.B	1930	5-2-18	1335	H24400	5-2-18	0030	54.02	how MELPS	1.2
6 SC-100 BUDE 5	25210	1000								
6 50-100 Bulle 57	25270	1010		2	6				0	
			5-2-18	1337	Ha 440D	5-2-18	0030	-54.02	how Preses	7.0

Reminder: WDR Required pH Range for the Effluent (SC-700B) is: 6.5 - 8.4

Date of Report: 04/13/2018

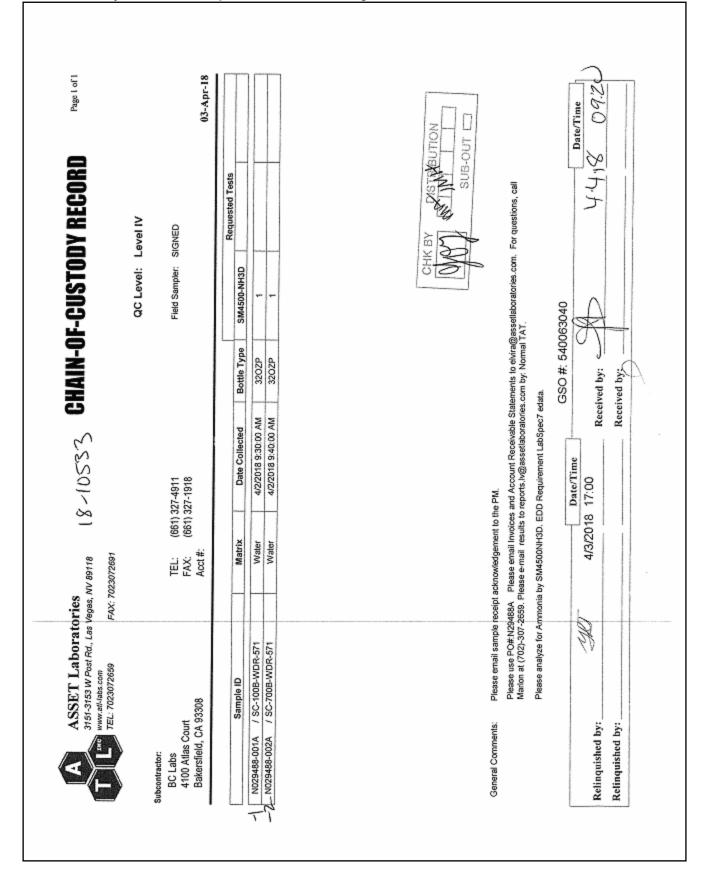
Marlon Cartin

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Client Project: N029488 Level IV **BCL Project:** BCL Work Order: 1810533 B300279 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 4/4/2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Contact Person: Vanessa Sandoval **Client Service Rep**

Stuart Buttram **Technical Director**

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Chain of Custody and Cooler Receipt Form for 1810533 Page 1 of 2

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1810533 Page 2 of 2

BC LABORATORIES INC.		C	DOLER F	RECEIPT	ORM			Page		of/
Submission #: 18-10533										
SHIPPING INFORM		Delivery	8	Ice Che		Vone 🗆	Box 🖸		FREE LIQ	0 0
Refrigerant: Ice 🖓 Blue Ice 🗆	None	<u> </u>	ther 🗆	Comm	ents:					
Custody Seals	Containe act: res (is)⊡ No ⊟	None	Comr	nents:					
				No I			ion(s) match		11:1	
	sivity:			sik Sik	Thermom	eter ID:	•°C	Date/Tin Analyst	W .	D9:20
SAMPLE CONTAINERS					10.00	NUMBERS				1
	1	2	3	4	5	6	7	8	9	10
OT PE UNPRES 402/802/1602 PE UNPRES										
loz Cr4										
OT INORGANIC CHEMICAL METALS										
INORGANIC CHEMICAL METALS 402/802/1602										
PT CYANIDE	A	A								
PT NITROGEN FORMS CX (-11-	- 4								
PT TOTAL SOLFIDE										
PT TOTAL ORGANIC CARBON	-									
T CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
0mi VOA VIAL TRAVEL BLANK										
Omi VOA VIAL										
7T EPA 1664									1	
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL										
10 mt YOA VIAL- 504										
OT EPA 508/608/8080										
OT EPA 515.1/8150										
DT EPA 525										
DT EPA 525 TRAVEL BLANK					3					
10ml EPA 547										
10ml EPA 531.1										
ioz EPA 548						-			-	
DT EPA 549										
2T EPA 8015M										
DT EPA 8270										
02 / 1602 / 3202 AMBER										
loz / 1602 / 3202 JAR										
OIL SLEEVE										
CB VIAL										
LASTIC BAG										
TEDLAR BAG										
FERROUS IRON										
INCORE										
R										
MART KIT									1	
UMMA CANISTER			L	1	1	1	1		1	

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 All results listed in this report are for the exclusive use of the submitting party.
 BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

 1000731372
 4100 Atlas Court
 Bakersfield, CA 93308 (661) 327-4911
 FAX (661) 327-1918
 www.bclabs.com
 P

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Reported:04/13/201811:56Project:Level IVProject Number:N029488Project Manager:Marlon Cartin

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1810533-01	COC Number:		Receive Date:	04/04/2018 09:20
	Project Number:		Sampling Date:	04/02/2018 09:30
	Sampling Location:		Sample Depth:	
	Sampling Point:	N029488-001A / SC-100B-WDR-571	Lab Matrix:	Water
	Sampled By:		Sample Type:	Water
1810533-02	COC Number:		Receive Date:	04/04/2018 09:20
	Project Number:		Sampling Date:	04/02/2018 09:40
	Sampling Location:		Sample Depth:	
	Sampling Point:	N029488-002A / SC-700B-WDR-571	Lab Matrix:	Water
	Sampled By:		Sample Type:	Water

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/13/201811:56Project:Level IVProject Number:N029488Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

BCL Sample ID: 1810533-01 Client Sample Name: N02					N029488-001A / SC-100B-WDR-571, 4/2/2018 9:30:00AM					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Ammonia as N (Distille	d)	ND	mg/L	0.20		SM-4500-NH3G	ND		1	

		Run					QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	SM-4500-NH3G	04/11/18 09:34	04/11/18 15:34	JMH	SC-1	1	B010428

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/13/201811:56Project:Level IVProject Number:N029488Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

BCL Sample ID: 1810533-02 Client Sample Name: N029488-002A / SC-7					-700B-WDR-571,	4/2/2018 9:	40:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ammonia as N (Distille	d)	ND	mg/L	0.20		SM-4500-NH3G	ND		1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	SM-4500-NH3G	04/11/18 09:34	04/11/18 15:36	JMH	SC-1	1	B010428

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/13/201811:56Project:Level IVProject Number:N029488Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B010428						
Ammonia as N (Distilled)	B010428-BLK1	ND	mg/L	0.20		

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/13/201811:56Project:Level IVProject Number:N029488Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

								Control L			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: B010428											
Ammonia as N (Distilled)	B010428-BS1	LCS	0.87300	1.0000	mg/L	87.3		85 - 115			

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/13/201811:56Project:Level IVProject Number:N029488Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

									Control Limits			
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: B010428	Use	d client samp	le: N									
Ammonia as N (Distilled)	 DUP	1810497-03	0.18580	ND		mg/L			20		A02	
	MS	1810497-03	0.18580	1.0049	1.0000	mg/L		81.9		80 - 120		
	MSD	1810497-03	0.18580	1.0488	1.0000	mg/L	4.3	86.3	20	80 - 120		

April 16, 2018

Doug Scott CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (970) 731-0636 FAX: (510) 622-9129

Workorder No.: N029488

RE: PG&E Topock, 680375.03.IM.OP.00

Attention: Doug Scott

Enclosed are the results for sample(s) received on April 02, 2018 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Nancy Situcano Tor

Quennie Manimtim Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

 CLIENT:
 CH2M HILL

 Project:
 PG&E Topock, 680375.03.IM.OP.00

 Lab Order:
 N029488

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Subcontracted Analyses:

Ammonia was subcontracted to BC Labs- Bakersfield,CA.

Analytical Comments for EPA 200.8:

Dilution was necessary on some analytes for sample N029488-003 due to associated internal standard not meeting method criteria possibly due to matrix interference. Sample was analyzed with dilution and internal standard met method criteria. Affected analytes for this failed internal standard were reported at dilution that meet internal standard recovery limit.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for Copper in QC samples N029640-001E-MS and N029640-001E-MSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Analytical Comments for EPA 218.6:

Dilution was necessary for sample N029488-003 due to matrix interference. Sample was analyzed at lower dilution however matrix spike recovery and retention time criteria were not met indicating possible matrix interference. Sample was reported at dilution that meet matrix spike recovery limit and the detected peak within retention time window.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

N029488-003B SC-701-WDR-571

N029488-003C SC-701-WDR-571

4/2/2018

4/2/2018

4/16/2018

4/16/2018

CLIENT: CH2M HILL Project: PG&E Topock, 680375.03.IM.OP.00 Lab Order: N029488 Contract No: IM3PLANT-AR		5.03.IM.OP.00	Work (Work Order Sample Summary						
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported					
N029488-001A	SC-100B-WDR-571	Water	4/2/2018 9:30:00 AM	4/2/2018	4/16/2018					
N029488-001B	SC-100B-WDR-571	Water	4/2/2018 9:30:00 AM	4/2/2018	4/16/2018					
N029488-001C	SC-100B-WDR-571	Water	4/2/2018 9:30:00 AM	4/2/2018	4/16/2018					
N029488-001D	SC-100B-WDR-571	Water	4/2/2018 9:30:00 AM	4/2/2018	4/16/2018					
N029488-001E	SC-100B-WDR-571	Water	4/2/2018 9:30:00 AM	4/2/2018	4/16/2018					
N029488-002A	SC-700B-WDR-571	Water	4/2/2018 9:40:00 AM	4/2/2018	4/16/2018					
N029488-002B	SC-700B-WDR-571	Water	4/2/2018 9:40:00 AM	4/2/2018	4/16/2018					
N029488-002C	SC-700B-WDR-571	Water	4/2/2018 9:40:00 AM	4/2/2018	4/16/2018					
N029488-002D	SC-700B-WDR-571	Water	4/2/2018 9:40:00 AM	4/2/2018	4/16/2018					
N029488-002E	SC-700B-WDR-571	Water	4/2/2018 9:40:00 AM	4/2/2018	4/16/2018					
N029488-003A	SC-701-WDR-571	Water	4/2/2018 9:40:00 AM	4/2/2018	4/16/2018					

Water

Water

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID CA01638

4/2/2018 9:40:00 AM

4/2/2018 9:40:00 AM

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL		(Client Sample ID: SC-100B-WDR-571						
Lab Order:	N029488			Collection Date: 4/2/2018 9:30:00 AM						
Project:	PG&E Topock,	680375.03.IM.OP.00		Matrix: WATER						
Lab ID:	N029488-001									
Analyses		Result MI	DL PQL	Qual	Units	DF	Date Analyzed			
SPECIFIC CC	NDUCTANCE									
			E	PA 120.1						
RunID: NV00	922-WC_180403C	QC Batch: R12307	5	PrepDat	e		Analyst: LR			
Specific Con	ductance	7300 0.	10 0.10	L	umhos/cm	1	4/3/2018 09:15 AM			

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-571						
Lab Order:	N029488			Collection Date: 4/2/2018 9:40:00 AM						
Project:	PG&E Topock,	680375.03.IM.OP.00		Matrix: WATER						
Lab ID:	N029488-002									
Analyses		Result M	DL	PQL	Qual	Units	DF	Date Analyzed		
SPECIFIC CO	NDUCTANCE									
				EP	A 120.1					
RunID: NV00	922-WC_180403C	QC Batch: R1230	75		PrepD	ate		Analyst: LR		
Specific Cond	ductance	7200	0.10	0.10		umhos/cm	1	4/3/2018 09:15 AN		

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET La	boratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-701-WDR-571						
Lab Order:	N029488	N029488 Collection Date: 4/2/2018 9:40:00 AM								
Project:	PG&E Topock,	680375.03.IM.OP.00 Matrix: WATER								
Lab ID:	N029488-003									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
SPECIFIC CC	ONDUCTANCE									
				EP	A 120.1					
RunID: NV00	00922-WC_180403C QC Batch: R123075 PrepDate Analyst: LF						Analyst: LR			
Specific Con	ductance	57000	0.10 0.10 umhos/cm 1 4/3/2018 09:15 AM							

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 16-Apr-18

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID N029488-003ADUP	SampType: DUP	TestCo	de: 120.1_WF	GE Units: um I	ios/cm	Prep Da	te:		RunNo: 123	3075	
Client ID: ZZZZZZ	Batch ID: R123075	TestN	lo: EPA 120.	1		Analysis Da	te: 4/3/201	18	SeqNo: 297	76445	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Specific Conductance	57200.000	0.10						56900	0.526	2	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-571						
Lab Order:	N029488				Collection	Date: 4/	2/2018 9:30:0	00 AM		
Project:	PG&E Topock,	680375.03.IM.OI	P.00		Ma	atrix: W	ATER			
Lab ID:	N029488-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
TOTAL FILTE	RABLE RESIDUE									
				S	M2540C					
RunID: NV00	922-WC_180403E	QC Batch: 67	448		PrepD	ate	4/3/2018	Analyst: LR		
Total Dissolve Filterable)	ed Solids (Residue,	50		mg/L	1	4/3/2018 01:11 PM				

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-571						
Lab Order:	N029488				Collection	Date: 4/	2/2018 9:40:0	00 AM		
Project:	PG&E Topock,	680375.03.IM.OI	P.00		Ma	atrix: W	ATER			
Lab ID:	N029488-002									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
TOTAL FILTE	RABLE RESIDUE									
				SI	M2540C					
RunID: NV00	922-WC_180403E	QC Batch: 67	448		PrepD	ate	4/3/2018	Analyst: LR		
Total Dissolve Filterable)	ed Solids (Residue,	50		mg/L	1	4/3/2018 01:11 PM				

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

"Serving Clients with Passion and Professionalism"

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	oratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-701-WDR-571						
Lab Order:	N029488				Collection	Date: 4/	2/2018 9:40:0	00 AM		
Project:	PG&E Topock,	680375.03.IM.OI	P.00		Ma	atrix: W	ATER			
Lab ID:	N029488-003									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
TOTAL FILTE	RABLE RESIDUE									
				SI	M2540C					
RunID: NV00	922-WC_180403E	QC Batch: 67	448		PrepD	ate	4/3/2018	Analyst: LR		
Total Dissolve Filterable)	ed Solids (Residue,	500		mg/L	1	4/3/2018 01:11 PM				

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

"Serving Clients with Passion and Professionalism"

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 680375.03.IM.OP.00

TestCode: 160.1_2540C_W

Sample ID LCS-67448 Client ID: LCSW	SampType: LCS Batch ID: 67448	TestCode: 160.1_2540C Units: mg/L TestNo: SM2540C	Prep Date: 4/3/2018 Analysis Date: 4/3/2018	RunNo: 123115 SeqNo: 2978271
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Reside	ue, Filtera 961.000	10 1000 0	96.1 80 120	
Sample ID MB-674448 Client ID: PBW	SampType: MBLK Batch ID: 67448	TestCode: 160.1_2540C Units: mg/L TestNo: SM2540C	Prep Date: 4/3/2018 Analysis Date: 4/3/2018	RunNo: 123115 SeqNo: 2978272
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Reside	ue, Filtera ND	10		
Sample ID N029488-003ADU Client ID: ZZZZZZ	JP SampType: DUP Batch ID: 67448	TestCode: 160.1_2540C Units: mg/L TestNo: SM2540C	Prep Date: 4/3/2018 Analysis Date: 4/3/2018	RunNo: 123115 SeqNo: 2978276
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Reside	ue, Filtera 48550.000	500	46400	4.53 5

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CCA1638
- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT:	CH2M HILL			Cl	ient Sample ID:	SC-100B-WDR	2-571	
Lab Order:	N029488			(Collection Date:	4/2/2018 9:30:0	00 AM	
Project:	PG&E Topock,	680375.03.IM.OF	P .00		Matrix:	WATER		
Lab ID:	N029488-001							
Analyses		Result	MDL	PQL	Qual Unit	s DF	Date Analyzed	
TOTAL META	LS BY ICP							
				EP	A 200.7			
RunID: NV00	922-ICP2_180412E	QC Batch: 67	564		PrepDate	4/11/2018	Analyst: CEI	
Aluminum		ND	ND 40 50 µg/L 1 4/12/2018 10:58 PM					
Boron		1100 74 100 µg/L 1 4/12/2018 10:58 PM						
Iron		ND	ND 18 20 µg/L 1 4/12/2018 10:58 PM					

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 FONALism"
 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT:	CH2M HILL			Cli	ient Sample ID	: SC-700B-WDF	R-571		
Lab Order:	N029488			Collection Date: 4/2/2018 9:40:00 AM					
Project:	PG&E Topock,	680375.03.IM.OF	P. 00		Matrix	: WATER			
Lab ID:	N029488-002								
Analyses		Result	MDL	PQL	Qual U	nits DF	Date Analyzed		
TOTAL META	LS BY ICP								
				EP/	A 200.7				
RunID: NV00	922-ICP2_180412E	QC Batch: 67	564		PrepDate	4/11/2018	Analyst: CEI		
Aluminum		440 40 50 μg/L 1 4/12/2018 11:08 PM							
Boron		1000 74 100 µg/L 1 4/12/2018 11:08 PM							
Iron		ND	ND 18 20 µg/L 1 4/12/2018 11:08 PM						

Qualifiers:

В

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WPGEPPB

Sample ID MB-67564	SampType: MBLK	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 4/11/2018	RunNo: 123348
Client ID: PBW	Batch ID: 67564	TestNo: EPA 200.7	Analysis Date: 4/12/2018	SeqNo: 2991695
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	50		
Boron	ND	100		
Iron	ND	20		
Sample ID LCS1-67564	SampType: LCS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 4/11/2018	RunNo: 123348
Client ID: LCSW	Batch ID: 67564	TestNo: EPA 200.7	Analysis Date: 4/12/2018	SeqNo: 2991696
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	9719.789	50 10000 0	97.2 85 115	
Boron	4733.065	100 5000 0	94.7 85 115	
Iron	104.009	20 100.0 0	104 85 115	
Sample ID N029506-001D-MS	S1 SampType: MS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 4/11/2018	RunNo: 123348
Client ID: ZZZZZZ	Batch ID: 67564	TestNo: EPA 200.7	Analysis Date: 4/12/2018	SeqNo: 2991702
	Batch ID: 67564 Result	TestNo: EPA 200.7 PQL SPK value SPK Ref Val	Analysis Date: 4/12/2018 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 2991702 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Aluminum			-	
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	
Analyte Aluminum Boron	Result 9994.355	PQL SPK value SPK Ref Val 50 10000 0	%REC LowLimit HighLimit RPD Ref Val 99.9 75 125	
Analyte	Result 9994.355 5265.943 141.499	PQL SPK value SPK Ref Val 50 10000 0 100 5000 371.0	%REC LowLimit HighLimit RPD Ref Val 99.9 75 125 97.9 75 125	
Analyte Aluminum Boron Iron	Result 9994.355 5265.943 141.499	PQL SPK value SPK Ref Val 50 10000 0 100 5000 371.0 20 100.0 35.53	%REC LowLimit HighLimit RPD Ref Val 99.9 75 125 97.9 75 125 106 75 125	%RPD RPDLimit Qual
Analyte Aluminum Boron Iron Sample ID N029506-001D-M \$	Result 9994.355 5265.943 141.499 SD SampType: MSD	PQL SPK value SPK Ref Val 50 10000 0 100 5000 371.0 20 100.0 35.53	%REC LowLimit HighLimit RPD Ref Val 99.9 75 125 97.9 75 125 106 75 125	%RPD RPDLimit Qual
Analyte Aluminum Boron Iron Sample ID N029506-001D-MS Client ID: ZZZZZZ	Result 9994.355 5265.943 141.499 SD SampType: MSD Batch ID: 67564	PQL SPK value SPK Ref Val 50 10000 0 100 5000 371.0 20 100.0 35.53 TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7	%REC LowLimit HighLimit RPD Ref Val 99.9 75 125 97.9 75 125 106 75 125 Prep Date: 4/11/2018 Analysis Date: 4/12/2018	%RPD RPDLimit Qua RunNo: 123348 SeqNo: 2991703
Analyte Aluminum Boron Iron Sample ID N029506-001D-MS Client ID: ZZZZZZ Analyte	Result 9994.355 5265.943 141.499 SD SampType: MSD Batch ID: 67564 Result	PQL SPK value SPK Ref Val 50 10000 0 100 5000 371.0 20 100.0 35.53 TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7 PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val 99.9 75 125 97.9 75 125 106 75 125 Prep Date: 4/11/2018 Analysis Date: 4/12/2018 %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua RunNo: 123348 SeqNo: 2991703 %RPD RPDLimit Qua

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 N 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT:	CH2M HILL			Cl	ient Sample	ID: SO	C-100B-WDR	-571		
Lab Order:	N029488			Collection Date: 4/2/2018 9:30:00 AM						
Project:	PG&E Topock,	680375.03.IM.OF	P .00	Matrix: WATER						
Lab ID:	N029488-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
TOTAL META	LS BY ICPMS									
				EP.	A 200.8					
RunID: NV009	922-ICP7_180413B	QC Batch: 67	642		PrepDa	ite	4/13/2018	Analyst: CEI		
Antimony		ND	0.16	0.50		µg/L	1	4/13/2018 01:05 PM		
Arsenic		2.9	0.081	0.10		µg/L	1	4/13/2018 01:05 PM		
Barium		29	0.15	1.0		µg/L	1	4/13/2018 01:05 PM		
Copper		ND	0.55	1.0		µg/L	1	4/13/2018 01:05 PM		
Lead		ND	0.13	1.0		µg/L	1	4/13/2018 01:05 PM		
Manganese		7.0	0.26	0.50		µg/L	1	4/13/2018 01:05 PM		
Molybdenum		21	0.21	0.50		µg/L	1	4/13/2018 01:05 PM		
Nickel		ND	0.26	1.0		µg/L	1	4/15/2018 06:36 PM		
Zinc		ND	2.3	10		µg/L	1	4/13/2018 01:05 PM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CI IENT.	CH2M HILL			CI		D. CC 700D WDI	0.571			
CLIENT:					_	D: SC-700B-WDI				
Lab Order:	N029488			Collection Date: 4/2/2018 9:40:00 AM						
Project:	PG&E Topock,	680375.03.IM.OF	P.00		Matri	x: WATER				
Lab ID:	N029488-002									
Analyses		Result	MDL	PQL	Qual T	Jnits DF	Date Analyzed			
TOTAL META	LS BY ICPMS									
				EP	A 200.8					
RunID: NV00	922-ICP7_180413B	QC Batch: 67	642		PrepDate	4/13/2018	Analyst: CEI			
Antimony		ND	0.16	0.50	μg	/L 1	4/13/2018 01:16 PM			
Arsenic		0.10	0.081	0.10	μg	/L 1	4/13/2018 01:16 PM			
Barium		16	0.15	1.0	μg	/L 1	4/13/2018 01:16 PM			
Copper		ND	0.55	1.0	μg	/L 1	4/13/2018 01:16 PM			
Lead		ND	0.13	1.0	μg	/L 1	4/13/2018 01:16 PM			
Manganese		24	0.26	0.50	μg	/L 1	4/13/2018 01:16 PM			
Molybdenum		20	0.21	0.50	μg	/L 1	4/13/2018 01:16 PM			
Nickel		2.4	0.26	1.0	μg	/L 1	4/15/2018 06:41 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

								1	
CLIENT: Lab Order:	CH2M HILL N029488		Client Sample ID: SC-701-WDR-571 Collection Date: 4/2/2018 9:40:00 AM						
Project:	PG&E Topock,	680375.03.IM.OI	P. 00		M	atrix: W	VATER		
Lab ID:	N029488-003								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TOTAL META	LS BY ICPMS								
				EP	A 200.8				
RunID: NV009	022-ICP7_180413B	QC Batch: 67	642		PrepD	ate	4/13/2018	Analyst: CEI	
Antimony		ND	0.78	2.5		µg/L	5	4/13/2018 01:32 PM	
Arsenic		1.2	0.41	0.50		µg/L	5	4/13/2018 01:32 PM	
Barium		140	0.75	5.0		µg/L	5	4/13/2018 01:32 PM	
Beryllium		ND	1.1	12		µg/L	25	4/13/2018 03:25 PM	
Cadmium		ND	0.26	2.5		µg/L	5	4/13/2018 01:32 PM	
Cobalt		ND	0.042	0.50		µg/L	1	4/13/2018 01:26 PM	
Copper		ND	2.7	5.0		µg/L	5	4/13/2018 01:32 PM	
Lead		ND	0.64	5.0		µg/L	5	4/13/2018 01:32 PM	
Manganese		69	0.26	0.50		µg/L	1	4/13/2018 01:26 PM	
Molybdenum		230	1.1	2.5		µg/L	5	4/13/2018 01:32 PM	
Nickel		6.6	1.3	5.0		µg/L	5	4/15/2018 06:58 PM	
Selenium		50	1.8	2.5		µg/L	5	4/13/2018 01:32 PM	
Silver		ND	1.2	2.5		µg/L	5	4/13/2018 01:32 PM	
Thallium		ND	0.96	2.5		µg/L	5	4/13/2018 01:32 PM	
Vanadium		2.5	0.28	1.0		µg/L	1	4/13/2018 01:26 PM	
Zinc		ND	11	50		µg/L	5	4/13/2018 01:32 PM	

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO

Е Value above quantitation range

Not Detected at the Reporting Limit ND Results are wet unless otherwise specified

Surrogate Diluted Out

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

Date: 16-Apr-18

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID MB-67642	SampType: MBLK	TestCode	e: 200.8_W	Units: µg/L		Prep Date	e: 4/13/2018		RunNo: 123	377	
Client ID: PBW	Batch ID: 67642	TestN	o: EPA 200.8	3		Analysis Date	e: 4/13/2018		SeqNo: 299	3815	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	Ref Val	%RPD	RPDLimit	Qual
Antimony	ND	0.50									
Arsenic	ND	0.10									
Barium	ND	1.0									
Beryllium	ND	0.50									
Cadmium	ND	0.50									
Cobalt	ND	0.50									
Copper	ND	1.0									
Lead	ND	1.0									
Manganese	ND	0.50									
Molybdenum	ND	0.50									
Selenium	ND	0.50									
Silver	ND	0.50									
Thallium	ND	0.50									
Vanadium	ND	1.0									
Zinc	ND	10									
Sample ID LCS-67642	SampType: LCS	TestCod	e: 200.8_W	Units: µg/L		Prep Date	e: 4/13/2018		RunNo: 123	377	
Client ID: LCSW	Batch ID: 67642	TestN	o: EPA 200.8	3		Analysis Date	e: 4/13/2018		SeqNo: 299	3816	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	Ref Val	%RPD	RPDLimit	Qual
Antimony	10.423	0.50	10.00	0	104	85	115				
		0.40	10.00	0	102	85	115				
Arsenic	10.166	0.10	10.00								
	10.166 10.381	1.0	10.00	0	104	85	115				
Arsenic Barium Beryllium				0 0	104 100	85 85	115 115				
Barium	10.381	1.0	10.00								
Barium Beryllium	10.381 10.033	1.0 0.50	10.00 10.00	0	100	85	115				
Barium Beryllium Cadmium	10.381 10.033 10.544	1.0 0.50 0.50	10.00 10.00 10.00	0 0	100 105	85 85	115 115				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID LCS-67642	SampType: LCS	TestCo	de: 200.8_W	Units: µg/L		Prep Date	e: 4/13/2018	RunNo: 123377	
Client ID: LCSW	Batch ID: 67642	Test	lo: EPA 200.8	3		Analysis Date	e: 4/13/2018	SeqNo: 2993816	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Manganese	102.656	0.50	100.0	0	103	85	115		
Molybdenum	10.001	0.50	10.00	0	100	85	115		
Selenium	9.742	0.50	10.00	0	97.4	85	115		
Silver	10.440	0.50	10.00	0	104	85	115		
Thallium	10.465	0.50	10.00	0	105	85	115		
Vanadium	10.515	1.0	10.00	0	105	85	115		
Zinc	102.624	10	100.0	0	103	85	115		
Sample ID N029640-001E-MS	SampType: MS	TestCo	de: 200.8_W	Units: µg/L		Prep Date	e: 4/13/2018	RunNo: 123377	
Client ID: ZZZZZZ	Batch ID: 67642	Test	lo: EPA 200.8	3		Analysis Date	e: 4/13/2018	SeqNo: 2993834	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Antimony	10.829	0.50	10.00	0	108	75	125		
Arsenic	10.572	0.10	10.00	0.1346	104	75	125		
Barium	28.536	1.0	10.00	19.47	90.7	75	125		
Beryllium	11.169	0.50	10.00	0	112	75	125		
Cadmium	9.814	0.50	10.00	0	98.1	75	125		
Cobalt	9.215	0.50	10.00	0.3676	88.5	75	125		
Copper	7.057	1.0	10.00	0	70.6	75	125		S
Lead	10.469	1.0	10.00	0	105	75	125		
Molybdenum	36.676	0.50	10.00	26.69	99.9	75	125		
Selenium	13.472	0.50	10.00	4.128	93.4	75	125		
Silver	9.677	0.50	10.00	0	96.8	75	125		
Thallium	9.371	0.50	10.00	0	93.7	75	125		
Vanadium	10.386	1.0	10.00	0.2939	101	75	125		
Vallaululli	10.000	1.0	10.00	0.2000					

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interference S
- NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046
- CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

"Serving Clients with Passion and Professionalism"

21

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID N029640-001E-MS	SampType: MS	TestCod	le: 200.8_W	Units: µg/L		Prep Date	4/13/201	18	RunNo: 12	3377	
Client ID: ZZZZZZ	Batch ID: 67642	TestN	o: EPA 200.8	3		Analysis Date	4/13/201	18	SeqNo: 29	93835	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	212.682	2.5	100.0	129.2	83.5	75	125				
Sample ID N029640-001E-MSD	SampType: MSD	TestCod	le: 200.8_W	Units: µg/L		Prep Date	4/13/201	18	RunNo: 12	3377	
Client ID: ZZZZZZ	Batch ID: 67642	TestN	o: EPA 200.8	}		Analysis Date	4/13/201	18	SeqNo: 29	93836	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	10.757	0.50	10.00	0	108	75	125	10.83	0.670	20	
Arsenic	10.659	0.10	10.00	0.1346	105	75	125	10.57	0.813	20	
Barium	28.722	1.0	10.00	19.47	92.5	75	125	28.54	0.647	20	
Beryllium	11.331	0.50	10.00	0	113	75	125	11.17	1.44	20	
Cadmium	9.824	0.50	10.00	0	98.2	75	125	9.814	0.106	20	
Cobalt	9.201	0.50	10.00	0.3676	88.3	75	125	9.215	0.148	20	
Copper	7.133	1.0	10.00	0	71.3	75	125	7.057	1.06	20	S
Lead	10.440	1.0	10.00	0	104	75	125	10.47	0.269	20	
Molybdenum	37.053	0.50	10.00	26.69	104	75	125	36.68	1.02	20	
Selenium	14.571	0.50	10.00	4.128	104	75	125	13.47	7.84	20	
Silver	9.786	0.50	10.00	0	97.9	75	125	9.677	1.12	20	
Thallium	9.488	0.50	10.00	0	94.9	75	125	9.371	1.24	20	
Vanadium	10.353	1.0	10.00	0.2939	101	75	125	10.39	0.323	20	
Zinc	106.052	10	100.0	0	106	75	125	105.5	0.564	20	
Sample ID N029640-001E-MSD	SampType: MSD	TestCod	le: 200.8_W	Units: µg/L		Prep Date	4/13/201	18	RunNo: 12	3377	
Client ID: ZZZZZZ	Batch ID: 67642	TestN	o: EPA 200.8	3		Analysis Date	4/13/201	18	SeqNo: 29	93839	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	218.144	2.5	100.0	129.2	89.0	75	125	212.7	2.54	20	

Qualifiers:

ND

- B Analyte detected in the associated Method Blank
 - Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
 - R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436
 NEVADA
 P:702.307.2659
 F:702.307.2691

 11110
 Artesia Blvd., Ste B, Cerritos, CA 90703
 3151
 W. Post Rd., Las Vegas, NV 89118
 ELAP Cert 2921
 ELAP Cert 2016
 NU Cert NV00922
 ORELAP/NELAP Cert 4046

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID MB-67642	SampType:	MBLK	TestCod	le: 200.8_W	Units: µg/L		Prep Date:	4/13/2018	3	RunNo: 12:	3379	
Client ID: PBW	Batch ID:	67642	TestN	lo: EPA 200.8	В		Analysis Date:	4/15/2018	3	SeqNo: 299	94231	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Nickel		ND	1.0									
Sample ID LCS-67642	SampType:	LCS	TestCod	le: 200.8_W	Units: µg/L		Prep Date:	4/13/2018	3	RunNo: 12	3379	
Client ID: LCSW	Batch ID:	67642	TestN	lo: EPA 200.8	В		Analysis Date:	4/15/2018	3	SeqNo: 299	94232	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Nickel		0.000	1.0	10.00	٥	99.8	85	115				
Nickel		9.983	1.0	10.00	0	99.0	85	115				
Sample ID N029640-001E-MS	SampType:			10.00 le: 200.8_W	Units: µg/L	99.0		4/13/2018	3	RunNo: 12:	3379	
	SampType: Batch ID:	MS	TestCod		Units: µg/L			4/13/2018		RunNo: 12 SeqNo: 29		
Sample ID N029640-001E-MS		MS	TestCod	le: 200.8_W lo: EPA 200.1	Units: µg/L		Prep Date: Analysis Date:	4/13/2018	3			Qual
Sample ID N029640-001E-MS Client ID: ZZZZZ		MS 67642	TestCod TestN	le: 200.8_W lo: EPA 200.1	Units: µg/L B		Prep Date: Analysis Date:	4/13/2018 4/15/2018	3	SeqNo: 29	94237	Qual
Sample ID N029640-001E-MS Client ID: ZZZZZZ Analyte	Batch ID:	MS 67642 Result 16.225	TestCod TestN PQL 1.0	le: 200.8_W lo: EPA 200. 8 SPK value	Units: µg/L 8 SPK Ref Val	%REC	Prep Date: Analysis Date: LowLimit H 75	: 4/13/2018 : 4/15/2018 HighLimit R	3 RPD Ref Val	SeqNo: 29	94237 RPDLimit	Qual
Sample ID N029640-001E-MS Client ID: ZZZZZZ Analyte Nickel	Batch ID:	MS 67642 Result 16.225 MSD	TestCod TestN PQL 1.0 TestCod	le: 200.8_W lo: EPA 200.8 SPK value 10.00	Units: µg/L B SPK Ref Val 6.364 Units: µg/L	%REC 98.6	Prep Date: Analysis Date: LowLimit H 75	: 4/13/2018 : 4/15/2018 HighLimit R 125 : 4/13/2018	RPD Ref Val	SeqNo: 29 9 %RPD	94237 RPDLimit	Qual
Sample ID N029640-001E-MS Client ID: ZZZZZ Analyte Nickel Sample ID N029640-001E-MSD	Batch ID:	MS 67642 Result 16.225 MSD	TestCod TestN PQL 1.0 TestCod	le: 200.8_W lo: EPA 200.8 SPK value 10.00 le: 200.8_W lo: EPA 200.8	Units: µg/L B SPK Ref Val 6.364 Units: µg/L	%REC 98.6	Prep Date: Analysis Date: LowLimit H 75 Prep Date:	 4/13/2018 4/15/2018 HighLimit R 125 4/13/2018 4/15/2018 	RPD Ref Val	SeqNo: 299 %RPD RunNo: 123	94237 RPDLimit	Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
 - CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT: Lab Order:	CH2M HILL N029488			Client Sample ID: SC-100B-WDR-571 Collection Date: 4/2/2018 9:30:00 AM						
Project:	PG&E Topock,	680375.03.IM.OP	.00	Matrix: WATER						
Lab ID:	N029488-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
HEXAVALEN	T CHROMIUM BY I	C								
				EP	A 218.6					
RunID: NV00	922-IC7_180403B	QC Batch: R1:	23089		PrepD	ate		Analyst: RAB		
Hexavalent C	Chromium	510	3.3	20		µg/L	100	4/3/2018 03:56 PM		
TOTAL META	ALS BY ICPMS									
				EP	A 200.8					
RunID: NV00	922-ICP7_180413A	QC Batch: 676	642		PrepD	ate	4/13/2018	Analyst: CEI		
Chromium		510	0.65	5.0		µg/L	5	4/13/2018 01:10 PM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT: Lab Order:	CH2M HILL N029488			Client Sample ID: SC-700B-WDR-571 Collection Date: 4/2/2018 9:40:00 AM						
Project:	PG&E Topock,	680375.03.IM.OP	.00	Matrix: WATER						
Lab ID:	N029488-002									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
HEXAVALEN	IT CHROMIUM BY IC)								
				EP.	A 218.6					
RunID: NV00)922-IC7_180403B	QC Batch: R12	23089		PrepD	ate		Analyst: RAB		
Hexavalent C	Chromium	ND	0.033	0.20		µg/L	1	4/3/2018 04:24 PM		
TOTAL META	ALS BY ICPMS									
				EP	A 200.8					
RunID: NV00)922-ICP7_180413A	QC Batch: 676	642		PrepD	ate	4/13/2018	Analyst: CEI		
Chromium		1.3	0.13	1.0		µg/L	1	4/13/2018 01:16 PM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT: Lab Order:	CH2M HILL N029488			Client Sample ID: SC-701-WDR-571 Collection Date: 4/2/2018 9:40:00 AM							
Project:		680375.03.IM.OF						trix: WATER			
Lab ID:	N029488-003										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
HEXAVALEN	T CHROMIUM BY IC	0									
				EP	A 218.6						
RunID: NV00	922-IC7_180403B	QC Batch: R1	23089		PrepD	ate		Analyst: RAB			
Hexavalent C	Chromium	ND	0.83	5.0		µg/L	25	4/3/2018 03:37 PM			
TOTAL META	LS BY ICPMS										
				EP	A 200.8						
RunID: NV00	922-ICP7_180413A	QC Batch: 67	642		PrepD	ate	4/13/2018	Analyst: CEI			
Chromium		1.7	0.13	1.0		µg/L	1	4/13/2018 01:26 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out
- Е Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W_CRPGE

Sample ID MB-67642 Client ID: PBW	SampType: MBLK Batch ID: 67642	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 4/13/2018 Analysis Date: 4/13/2018	RunNo: 123376 SeqNo: 2993644
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	ND	1.0		
Sample ID LCS-67642 Client ID: LCSW Analyte	SampType: LCS Batch ID: 67642 Result	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8 PQL SPK value SPK Ref Val	Prep Date: 4/13/2018 Analysis Date: 4/13/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 123376 SeqNo: 2993645 %RPD RPDLimit Qual
Chromium	10.364	1.0 10.00 0	104 85 115	
Sample ID N029640-001E-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 67642	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 4/13/2018 Analysis Date: 4/13/2018	RunNo: 123376 SeqNo: 2993663
		= =		
Client ID: ZZZZZZ	Batch ID: 67642	TestNo: EPA 200.8	Analysis Date: 4/13/2018	SeqNo: 2993663
Client ID: ZZZZZZ	Batch ID: 67642 Result 24.701	TestNo: EPA 200.8	Analysis Date: 4/13/2018 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 2993663
Client ID: ZZZZZZ Analyte Chromium Sample ID N029640-001E-MSD	Batch ID: 67642 Result 24.701 SampType: MSD	PQL SPK value SPK Ref Val 1.0 10.00 16.35 TestCode: 200.8_W_CR Units: µg/L	Analysis Date: 4/13/2018 %REC LowLimit HighLimit RPD Ref Val 83.5 75 125 Prep Date: 4/13/2018	SeqNo: 2993663 %RPD RPDLimit Qual RunNo: 123376

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID LCS-R123089	SampType: LCS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: LCSW	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977179
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.085	0.20 5.000 0	102 90 110	
Sample ID MB-R123089	SampType: MBLK	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: PBW	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977180
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID N029488-003BMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: ZZZZZZ	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977182
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	25.848	5.0 25.00 0	103 90 110	
Sample ID N029488-001CMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: ZZZZZZ	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977184
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1014.210	20 500.0 509.4	101 90 110	
Sample ID N029488-001CMSD	SampType: MSD	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: ZZZZZZ	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977185
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1013.270	20 500.0 509.4	101 90 110 1014	0.0927 20

Qualifiers:

ND

- B Analyte detected in the associated Method Blank
 - Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

 Calculations are based on raw values

 CALIFORNIA | P:562.219.7435
 F:562.219.7436

 11110 Artesia Blvd., Ste B, Cerritos, CA 90703
 NEVADA | P:702.307.2659

 511 W. Post Rd., Las Vegas,

- <u>NEVADA</u> | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID N029488-002CMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: ZZZZZZ	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977187
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1.063	0.20 1.000 0	106 90 110	
Sample ID N029488-001CDUP	SampType: DUP	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123089
Client ID: ZZZZZZ	Batch ID: R123089	TestNo: EPA 218.6	Analysis Date: 4/3/2018	SeqNo: 2977188
Analyte	Batch ID: R123089 Result	TestNo: EPA 218.6 PQL SPK value SPK Ref Val	Analysis Date: 4/3/2018 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 2977188 %RPD RPDLimit Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

 Calculations are based on raw values

 CALIFORNIA | P:562.219.7435
 F:562.219.7436

 11110 Artesia Blvd., Ste B, Cerritos, CA 90703
 NEVADA | P:702.307.2659

 511 W. Post Rd., Las Vegas,

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	oratories			Print Date: 16-Apr-18					
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-571					
Lab Order:	N029488			Collection Date: 4/2/2018 9:30:00 AM					
Project:	PG&E Topock,	bock, 680375.03.IM.OP.00 Matrix: WATER							
Lab ID:	N029488-001								
Analyses		Result	MDL	PQL Qual Units DF Date					
TURBIDITY				SN	1 2130B				
RunID: NV00	922-WC_180403D		PrepD	ate		Analyst: LR			
Turbidity		0.19	0.10 0.10 NTU 1 4/3/2018 03:30 PM						

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	oratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-571						
Lab Order:	N029488			Collection Date: 4/2/2018 9:40:00 AM						
Project:	PG&E Topock,	&E Topock, 680375.03.IM.OP.00 Matrix: WATER								
Lab ID:	N029488-002									
Analyses	Analyses Result MDL				PQL Qual Units DF					
TURBIDITY				SN	1 2130B					
RunID: NV00		PrepD	ate		Analyst: LR					
Turbidity		0.20	0.10 0.10 NTU 1 4/3/2018 03:30 PM							

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Work Order:

Project:

CLIENT: CH2M HILL

N029488

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 2130_W

Sample ID MB-R123076	SampType: MBLK	TestCode: 2130_W Units: NTU	Prep Date:	RunNo: 123076
Client ID: PBW	Batch ID: R123076	TestNo: SM 2130B	Analysis Date: 4/3/2018	SeqNo: 2976446
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	ND	0.10		
Sample ID N029488-001BDUP	SampType: DUP	TestCode: 2130_W Units: NTU	Prep Date:	RunNo: 123076
Client ID: ZZZZZZ	Batch ID: R123076	TestNo: SM 2130B	Analysis Date: 4/3/2018	SeqNo: 2976448
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	0.180	0.10	0.1900	5.41 30
Sample ID N029488-002BDUP	SampType: DUP	TestCode: 2130_W Units: NTU	Prep Date:	RunNo: 123076
Client ID: ZZZZZZ	Batch ID: R123076	TestNo: SM 2130B	Analysis Date: 4/3/2018	SeqNo: 2976450
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	0.220	0.10	0.2000	9.52 30

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET I	Laboratories			Print Date: 16-Apr-18					
CLIENT:	CH2M HILL			Client Sample ID: SC-701-WDR-571					
Lab Order	: N029488				Collection	Date: 4/	2/2018 9:40:0	00 AM	
Project:	PG&E Topock,	680375.03.IM.OI	P.00		M	atrix: W	ATER		
Lab ID:	N029488-003								
Analyses		Result	MDL	PQL	Date Analyzed				
TOTAL ME	ERCURY BY COLD VAI	POR TECHNIQUE							
				EP	A 245.1				
RunID: N	V00922-AA1_180406A		PrepD	ate	4/5/2018	Analyst: CEI			
Mercury		ND	0.13	13 0.20 μg/L 1 4/6/2018 10:33 A					

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 245.1_W

Sample ID	MB-67475	SampType: MBL	K TestCo	de: 245.1_W	Units: µg/L		Prep Date:	4/5/2018	RunNo: 123197	
Client ID:	PBW	Batch ID: 6747	5 Test	No: EPA 245.	1		Analysis Date:	4/6/2018	SeqNo: 2983178	
Analyte		Res	ult PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		١	ID 0.20							
Sample ID	LCS-67475	SampType: LCS	TestCo	de: 245.1_W	Units: µg/L		Prep Date:	4/5/2018	RunNo: 123197	
Client ID:	LCSW	Batch ID: 6747	5 Test	No: EPA 245.	1		Analysis Date:	4/6/2018	SeqNo: 2983179	
Analyte		Res	ult PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		4.7	39 0.20	5.000	0	94.8	85	115		
Sample ID	N029488-003C-MS	SampType: MS	TestCo	de: 245.1_W	Units: µg/L		Prep Date:	4/5/2018	RunNo: 123197	
Sample ID Client ID:		SampType: MS Batch ID: 6747		de: 245.1_W No: EPA 245.			Prep Date: Analysis Date:		RunNo: 123197 SeqNo: 2983180	
			5 Test	– No: EPA 245.		%REC	Analysis Date:			Qual
Client ID:		Batch ID: 6747	5 Testi ult PQL	– No: EPA 245.	1		Analysis Date:	4/6/2018	SeqNo: 2983180	Qual
Client ID: Analyte Mercury		Batch ID: 6747 Res 4.4	5 Testi ult PQL 92 0.20	No: EPA 245. SPK value	1 SPK Ref Val	%REC	Analysis Date: LowLimit F 75	4/6/2018 lighLimit RPD Ref Val	SeqNo: 2983180	Qual
Client ID: Analyte Mercury	222222	Batch ID: 6747 Res 4.4	5 Testl ult PQL 92 0.20 TestCo	– No: EPA 245. SPK value 5.000	1 SPK Ref Val 0 Units: μg/L	%REC 89.8	Analysis Date: LowLimit F 75	4/6/2018 HighLimit RPD Ref Val 125 4/5/2018	SeqNo: 2983180 %RPD RPDLimit	Qual
Client ID: Analyte Mercury Sample ID	ZZZZZZ 0 N029488-003C-MSD	Batch ID: 6747 Res 4.4 SampType: MSC	5 Test ult PQL 92 0.20 0 TestCo 5 Test	No: EPA 245. SPK value 5.000 de: 245.1_W No: EPA 245.	1 SPK Ref Val 0 Units: μg/L	%REC 89.8	Analysis Date: LowLimit H 75 Prep Date: Analysis Date:	4/6/2018 HighLimit RPD Ref Val 125 4/5/2018	SeqNo: 2983180 %RPD RPDLimit RunNo: 123197	Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Calculations are based on raw values CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

E Value above quantitation range

RPD outside accepted recovery limits

NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT: Lab Orde Project:	er: N029488	680375.03.IM.OP	.00	Client Sample ID: SC-100B-WDR-571 Collection Date: 4/2/2018 9:30:00 AM Matrix: WATER				
Lab ID:	N029488-001							
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed
ANIONS	BY ION CHROMATOGR	АРНҮ						
				EP	A 300.0			
RunID: I	NV00922-IC8_180403A	QC Batch: R12	23087		PrepD	ate		Analyst: RAB
Fluoride		2.7	0.032	0.50		mg/L	5	4/3/2018 09:40 AM
ANIONS	BY ION CHROMATOGR	APHY						
				EP	A 300.0			
RunID: I	NV00922-IC8_180403A	QC Batch: R12	23087		PrepD	ate		Analyst: RAB
Sulfate		520	1.1	25		mg/L	50	4/3/2018 11:16 AM

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT: Lab Order: Project:	1	N029488 PG&E Topock, 680375.03.IM.OP.00				Client Sample ID: SC-700B-WDR-571 Collection Date: 4/2/2018 9:40:00 AM Matrix: WATER				
Lab ID: Analyses	N029488-002	Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
ANIONS BY I	ON CHROMATOGE	APHY		EP	A 300.0					
RunID: NV00	922-IC8_180403A	QC Batch: R12	23087		PrepD	ate		Analyst: RAB		
Fluoride		2.3	0.032	0.50		mg/L	5	4/3/2018 10:00 AM		
ANIONS BY I	ON CHROMATOGR	APHY								
				EP	A 300.0					
RunID: NV00	922-IC8_180403A	QC Batch: R12	23087		PrepD	ate		Analyst: RAB		
Sulfate		490	1.1	25		mg/L	50	4/3/2018 11:31 AM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 16-Apr-18					
CLIENT:	CH2M HILL			Client Sample ID: SC-701-WDR-571					
Lab Order:	N029488				Collection	Date: 4/2/2	018 9:40:0	0 AM	
Project:	PG&E Topock,	680375.03.IM.OF	375.03.IM.OP.00 Matrix: WATER						
Lab ID:	N029488-003								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
ANIONS BY I	ON CHROMATOGE	RAPHY							
				EP	A 300.0				
RunID: NV00922-IC8_180403A QC Batch: R123087 PrepDate							Analyst: RAB		
Fluoride		27	0.13	2.0 mg/L 20 4/3/2018 10:15 AN					

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N029488

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_FPGE

Sample ID MB-R123087_F	SampType: MBLK	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123087
Client ID: PBW	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SegNo: 2977090
	Balch ID. R123007	Testino. EFA 300.0	Analysis Date. 4/3/2010	Sequo. 2977090
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	ND	0.10		
Sample ID LCS-R123087_F	SampType: LCS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123087
Client ID: LCSW	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977091
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	1.238	0.10 1.250 0	99.0 90 110	
Sample ID N029488-001BDUP	SampType: DUP	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123087
Client ID: ZZZZZZ	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977095
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	2.749	0.50	2.701	1.74 20
Sample ID N029488-001BMS	SampType: MS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123087
Client ID: ZZZZZZ	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977096
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	8.794	0.50 6.250 2.701	97.5 80 120	
Sample ID N029488-001BMSD	SampType: MSD	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123087
Client ID: ZZZZZZ	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977097
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	8.845	0.50 6.250 2.701	98.3 80 120 8.794	0.578 20

Qualifiers:

ND

- B Analyte detected in the associated Method Blank
 - Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits

ORELAP/NELAP Cert 4046

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
 - Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

- "Serving Clients with Passion and Professionalism"
- CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2921 ELAP Cert 2676 | NV Cert NV00922 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029488

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_SO4PGE

Sample ID MB-R123087_SO4	SampType: MBLK	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123087
Client ID: PBW	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977106
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	ND	0.50		
Sample ID LCS-R123087_SO4	SampType: LCS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123087
Client ID: LCSW	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977107
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	4.005	0.50 4.000 0	100 90 110	
Sample ID N029488-001BDUP	SampType: DUP	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123087
Client ID: ZZZZZZ	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977112
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	516.845	25	517.0	0.0310 20
Sample ID N029488-001BMS	SampType: MS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123087
Client ID: ZZZZZZ	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977113
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	721.140	25 200.0 517.0	102 80 120	
Sample ID N029488-001BMSD	SampType: MSD	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123087
Client ID: ZZZZZZ	Batch ID: R123087	TestNo: EPA 300.0	Analysis Date: 4/3/2018	SeqNo: 2977114
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	721.270	25 200.0 517.0	102 80 120 721.1	0.0180 20

Qualifiers:

ND

B Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

- E Value above quantitation range R
 - RPD outside accepted recovery limits

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Calculations are based on raw values NEVADA | P:702.307.2659 F:702.307.2691

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

"Serving Clients with Passion and Professionalism"

DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 16-Apr-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-571						
Lab Order:	N029488			Collection Date: 4/2/2018 9:30:00 AM						
Project:	PG&E Topock,	680375.03.IM.OP	80375.03.IM.OP.00 Matrix: WATER							
Lab ID:	N029488-001									
Analyses		Result	MDL	PQL	Date Analyzed					
NITRATE/NIT	RITE-N BY CADMI	UM REDUCTION								
				SM4	500-NO3F					
RunID: NV00		PrepD	ate		Analyst: QBM					
Nitrate/Nitrite	as N	2.8	0.16	6 0.25 mg/L 5 4/4/2018						

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET La	boratories			Print Date: 16-Apr-18					
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-571					
Lab Order:	N029488				Collection	Date: 4/2/20	018 9:40:0	0 AM	
Project:	PG&E Topock,	pock, 680375.03.IM.OP.00 Matrix: WATER							
Lab ID:	N029488-002								
Analyses		Result	MDL	PQL	Date Analyzed				
NITRATE/NIT	RITE-N BY CADMI	UM REDUCTION							
				SM4	500-NO3F				
RunID: NV00		PrepD	ate		Analyst: QBN				
Nitrate/Nitrite	as N	2.5	0.16	6 0.25 mg/L 5 4/4/2018					

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N029488

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 4500N03F_W

										,		
Sample ID MB-R123102	SampType:	MBLK	TestCod	le: 4500N03F	-W Units: mg/L		Prep Da	te:		RunNo: 123	3102	
Client ID: PBW	Batch ID:	R123102	TestN	lo: SM4500-N	103		Analysis Da	te: 4/4/201	8	SeqNo: 297	77462	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		ND	0.050									
Sample ID LCS-R123102	SampType:	LCS	TestCod	le: 4500N03F	W Units: mg/L		Prep Da	te:		RunNo: 123	3102	
Client ID: LCSW	Batch ID:	R123102	TestN	lo: SM4500-M	103		Analysis Da	te: 4/4/201	8	SeqNo: 297	77463	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		0.471	0.050	0.5000	0	94.2	85	115				
Sample ID N029477-001CDUP	SampType:	DUP	TestCod	le: 4500N03F	_W Units: mg/L		Prep Da	te:		RunNo: 123	3102	
Client ID: ZZZZZZ	Batch ID:	R123102	TestN	lo: SM4500-N	103		Analysis Da	te: 4/4/201	18	SeqNo: 297	77467	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		9.703	0.50						9.738	0.360	20	
Sample ID N029496-001CMS	SampType:	MS	TestCod	le: 4500N03F	-W Units: mg/L		Prep Da	te:		RunNo: 123	3102	
Client ID: ZZZZZZ	Batch ID:	R123102	TestN	lo: SM4500-N	103		Analysis Da	te: 4/4/201	8	SeqNo: 297	77469	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		13.094	0.50	5.000	8.136	99.2	75	125				
Sample ID N029496-001CMSD	SampType:	MSD	TestCod	le: 4500N03F	W Units: mg/L		Prep Da	te:		RunNo: 12:	3102	
Client ID: ZZZZZZ	Batch ID:	R123102	TestN	lo: SM4500-N	103		Analysis Da	te: 4/4/201	18	SeqNo: 297	77470	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		12.613	0.50	5.000	8.136	89.5	75	125	13.09	3.74	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- E Value above quantitation range
- R RPD outside accepted recovery limits

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2921 EPA ID CA01638

CH2MHILL

5

CHAIN OF CUSTODY RECORD

Page 1 OF 1

Project Name PG&E Topock Location PG&E Topock Project Number 680375.03.IN Project Manager Scott O'Dom	Prese	ontainer: rvatives: Filtered:	Poly 4°C Lab H2SO4	1 Liter Poly 4°C NA	1 Liter Poly 4°C NA	1 Liter Poly 4°C NA	250 ml Poly 4°C NA	1 Liter Poly 4°C Lab H2SO4 NA	1 Liter Poly 4°C NA	500 ml Poly 4°C NA	500 ml Poly 4°C NA	500 ml Poly 4°C NA	1 Liter Poly 4°C NA			
Sample Manager Shawn Duffy	Holdi	ng Time:	28	7	7	7	1	28	7	180	180	180	7			
Task Order Project IM3PLANT-ARAR-WDF Turnaround Time 10 Days Shipping Date: COC Number: 571	DATE TIME	Matrix	AMMONIA (SM4500NH3D)	Anions (E300.0) FI & SO4	Anions (E300.0) Flouride	CONDUCTIVITY (E120.1)	E218.6 Lab Filtered	Nitrate/Nitrite (SM4500NO3-E)	TDS (SM2540C)	Total Metals (E200.8 Mn)	Total Metals(E200.7 and E200.8)	Total Title22Metals	Turbidity (SM2130)		Number of Containers	COMMENTS
SC-100B-WDR-571	4-2-18 9:30	Water	x	x		x	x	x	x		x		x	N029488-01	4	
SC-700B-WDR-571	4-2-18 9:40	Water	x	x	1000	x	x	x	x		x		x	-02	4	
SC-701-WDR-571	4-2-18 9:40	Water			x	x	x		x	x		x		-03	3	
													тс	TAL NUMBER OF CONTAINERS	11	

Date/Time 9:00 4-2-18 Signatures **Shipping Details Special Instructions:** Approved by ATTN: The SC-100B & SC-700B Total metals List: & Method of Shipment: FedEx Sampled by Cr,Al,Sb,As,Ba,B,Cu,Pb,Mn,Mo,Ni,Fe,Zn On Ice: yes / no RHU Relinquished by 1300 On Ice: (r 13 (r) Airbill No: Sample Custody Received by and Report Copy to 's Relinquished by Lab Name: ASSET Laboratories **Marlon Cartin** Doug Scott Received by Lab Phone: (702) 307-2659 (970) 731-0636

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Receiv	ved/Opened On:	4/2/2018				Workorder:	N029488	
Rep sample T	emp (Deg C):	2.9				IR Gun ID:	2	
Temp Blank:		✔ Yes	🗌 No					
Carrier name:		ASSET						
Last 4 digits o	of Tracking No.:	NA			Packing	Material Used:	None	
Cooling proce	ess:	✓ Ice	Ice Pack	Dry Ice	Other	None None		
			S	ample Receip	ot Checklis	t		
1. Shipping co	ontainer/cooler in g	ood conditic				Yes 🗹	No 🗌	Not Present
2. Custody se	als intact, signed, o	dated on shi	ippping container,	cooler?		Yes	No 🗌	Not Present
3. Custody se	als intact on sampl	e bottles?				Yes	No 🗌	Not Present
4. Chain of cu	istody present?					Yes 🗹	No 🗌	
5. Sampler's r	name present in CC	C?				Yes 🗹	No 🗌	
6. Chain of cu	istody signed when	relinquishe	d and received?			Yes 🗹	No 🗌	
7. Chain of cu	istody agrees with	sample labe	ls?			Yes 🗹	No 🗌	
8. Samples in	proper container/b	ottle?				Yes 🗹	No 🗌	
9. Sample cor	ntainers intact?					Yes 🗹	No 🗌	
10. Sufficient	sample volume for	indicated te	est?			Yes 🗹	No 🗌	
11. All sample	es received within h	olding time	?			Yes 🗹	No 🗌	
12. Temperat	ure of rep sample o	or Temp Bla	nk within accepta	ble limit?		Yes 🗹	No 🗌	NA 🗌
13. Water - V	OA vials have zero	headspace	?			Yes	No 🗌	NA 🗹
•	H acceptable upon le: pH > 12 for (CN	•	or Metals			Yes 🗌	No 🗹	NA 🗌
15. Did the bo	ottle labels indicate	correct pres	servatives used?			Yes	No 🗌	NA 🗹
16. Were ther	e Non-Conformanc Wa	ce issues at as Client not	•			Yes ☑ Yes □	No 🗌 No 🗌	NA 🗌 NA 🗹
Comments:	Samples for Hex (Samples for Metal					D4, pH adjusted t	to <2.	

Checklist Completed By:

YR 4/12/2018

Reviewed By: MBC 4/16/2018

ASSET Laboratories 3151-3153 W Post Rd., Las Vegas, NV 89118 www.atl-labs.com TEL: 7023072659 FAX: 7023072691

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

QC Level: Level IV

Subcontractor:			
BC Labs	TEL: (661	1) 327-4911Field Sampler:	SIGNED
4100 Atlas Court	FAX: (661	1) 327-1918	
Bakersfield, CA 93308	Acct #:		03-Apr-18

					Requested Tests	
Sample ID	Matrix	Date Collected	Bottle Type	SM4500-NH3D		
N029488-001A / SC-100B-WDR-571	Water	4/2/2018 9:30:00 AM	32OZP	1		
N029488-002A / SC-700B-WDR-571	Water	4/2/2018 9:40:00 AM	32OZP	1		

General Comments: Please email sample receipt acknowledgement to the PM.

Please use PO#:N29488A Please email Invoices and Account Receivable Statements to elvira@assetlaboratories.com. For questions, call Marlon at (702)-307-2659. Please e-mail results to reports.lv@assetlaboratories.com by: Normal TAT.

.. _ . _ _ _ _ _ . _

Please analyze for Ammonia by SM4500NH3D. EDD Requirement LabSpec7 edata.

		Date/Time	GSO #: 540063040	Date/Time
	YET	4/3/2018 17:00		Date/Time
Relinquished by:			_ Received by:	
Relinquished by:			Received by:	

List of Analysts

ASSET Laboratories Work Order: N029488

NAME	TEST METHOD
Quennie Manimtim	SM 4500-NO3F
Claire Ignacio	EPA 200.7, EPA 200.8, EPA 245.1
Ria Abes	EPA 218.6, EPA 300.0
Lilia Ramit	EPA 120.1, SM 2540C, SM 2130B

CALIFORNIA 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

April 16, 2018

Doug Scott CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (970) 731-0636 FAX: (510) 622-9129

Workorder No.: N029489

RE: PG&E Topock, 680375.03.IM.OP.00

Attention: Doug Scott

Enclosed are the results for sample(s) received on April 02, 2018 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Nancy Situcan For

Quennie Manimtim Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

 CLIENT:
 CH2M HILL

 Project:
 PG&E Topock, 680375.03.IM.OP.00

 Lab Order:
 N029489

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Analytical Comments for EPA 300.0:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria in QC samples N029489-001AMS and N029489-001AMSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Analytical Comments for EPA 7471A:

Matrix Spike (MS) is outside recovery criteria in QC sample N029485-015B-MS possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: Project: Lab Order:	CH2M HILL PG&E Topock, 680375.03.IM.OP.00 N029489	Work Order Sample Summary
Contract No:	IM3PLANT-AR	
Lab Sample ID	Client Sample ID Matrix	Collection Date Date Received Date Reported

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported	
N029489-001A Phase Separator-571-Sludge	Soil	4/2/2018 9:15:00 AM	4/2/2018	4/16/2018	
N029489-001B Phase Separator-571-Sludge	Soil	4/2/2018 9:15:00 AM	4/2/2018	4/16/2018	

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

ANALYTICAL RESULTS

ASSELLA	Doratories	Print Date: 16-Apr-18								
CLIENT:	CH2M HILL			С	lient Sampl	e ID: Phase	Separator	r-571-Sludge		
Lab Order:	N029489				Collection	Date: 4/2/20	18 9:15:0	0 AM		
Project:	PG&E Topock,	680375.03.IM.OP	.00		M	atrix: SOIL				
Lab ID:	N029489-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
ANIONS BY	ION CHROMATOGE	RAPHY		ED	A 300.0					
				EF	A 300.0					
RunID: NV0	0922-IC8_180410B	QC Batch: R12	23271		PrepD	ate		Analyst: RAB		
Fluoride		55	0.73	10		mg/Kg-dry	5	4/10/2018 02:56 PN		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

"Serving Clients with Passion and Professionalism"

Work Order:

Project:

CLIENT: CH2M HILL

N029489

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_S

Sample ID	MB-R123271	SampType:	MBLK	TestCod	e: 300_S	Units: mg/Kg		Prep Dat	e:		RunNo: 12	3271	
Client ID:	PBS	Batch ID:	R123271	TestN	o: EPA 300.0)		Analysis Dat	e: 4/10/20	018	SeqNo: 298	87670	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride			ND	1.0									
Sample ID	LCS-R123271	SampType:	LCS	TestCod	e: 300_S	Units: mg/Kg		Prep Dat	e:		RunNo: 12:	3271	
Client ID:	LCSS	Batch ID:	R123271	TestN	o: EPA 300.0)		Analysis Date	e: 4/10/20	018	SeqNo: 29	87671	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride			13.282	1.0	12.50	0	106	90	110				
Sample ID	N029489-001ADUP	SampType:	DUP	TestCod	e: 300_S	Units: mg/Kg-	dry	Prep Dat	e:		RunNo: 12:	3271	
Client ID:	ZZZZZZ	Batch ID:	R123271	TestN	o: EPA 300.0)		Analysis Date	e: 4/10/20	018	SeqNo: 29	87673	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride			53.581	10						55.47	3.46	20	
Sample ID	N029489-001AMS	SampType:	MS	TestCod	e: 300_S	Units: mg/Kg-	dry	Prep Date	e:		RunNo: 12	3271	
Client ID:	ZZZZZZ	Batch ID:	R123271	TestN	o: EPA 300.0)		Analysis Dat	e: 4/10/20	018	SeqNo: 298	87674	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride			73.235	10	26.07	55.47	68.2	80	120				S
Sample ID	N029489-001AMSD	SampType:	MSD	TestCod	e: 300_S	Units: mg/Kg-	dry	Prep Dat	e:		RunNo: 12	3271	
Client ID:	ZZZZZZ	Batch ID:	R123271	TestN	o: EPA 300.0)		Analysis Dat	e: 4/10/20	018	SeqNo: 29	87675	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride			72.307	10	26.07	55.47	64.6	80	120	73.24	1.28	20	S

Qualifiers:

ND

- B Analyte detected in the associated Method Blank
 - Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits

NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

CLIENT: CH2M HILL Work Order: N029489 Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_S

Sample ID N029489-001APS	SampType: MS	TestCode: 300_S		Units: mg/Kg-	dry	Prep Date:			RunNo: 123271		
Client ID: ZZZZZZ	Batch ID: R123271	TestN	lo: EPA 300.0)		Analysis Dat	te: 4/10/20	18	SeqNo: 298	37678	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride	183.328	10	130.3	55.47	98.1	80	120				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- NEVADA |P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

Project:

Lab Order:

CH2M HILL

PG&E Topock, 680375.03.IM.OP.00

N029489

ANALYTICAL RESULTS

Print Date: 16-Apr-18

Client Sample ID: Phase Separator-571-Sludge Collection Date: 4/2/2018 9:15:00 AM Matrix: SOIL

Lab ID:	N029489-001							
Analyse	S	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
TOTAL	METALS BY ICP							
		EPA 3050B		EP	A 6010B			
RunID:	NV00922-ICP2_180403A	QC Batch: 67	431		PrepD	ate	4/3/2018	Analyst: CEI
Antim	ony	6.0	0.69	4.2		mg/Kg-dry	1	4/3/2018 07:57 PM
Arsen	ic	13	1.1	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Bariur	n	65	0.65	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Berylli	ium	ND	0.45	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Cadm	ium	ND	0.55	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Chron	nium	2900	0.67	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Cobal	t	4.0	0.60	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Coppe	er	140	1.9	4.2		mg/Kg-dry	1	4/3/2018 07:57 PM
Lead		ND	0.61	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Manga	anese	380	1.1	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Molyb	denum	3.4	0.62	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Nicke	I	30	0.71	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Selen	ium	ND	1.2	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Silver		ND	1.3	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Thalliu	um	5.9	0.74	4.2		mg/Kg-dry	1	4/3/2018 07:57 PM
Vanad	dium	36	0.46	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM
Zinc		37	0.62	2.1		mg/Kg-dry	1	4/3/2018 07:57 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

DO

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

"Serving Clients with Passion and Professionalism"

9

Date: 16-Apr-18

CLIENT: CH2M HILL

Work Order: N029489

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_SPGE

Sample ID MB-67431	SampType: MBLK	TestCode: 6010_SPGE	Units: mg/Kg	Prep Da	ate: 4/3/2018	RunNo: 123	107
Client ID: PBS	Batch ID: 67431	TestNo: EPA 6010B	EPA 3050B	Analysis Da	ate: 4/3/2018	SeqNo: 297	7943
Analyte	Result	PQL SPK value S	PK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qu
Antimony	ND	2.0					
Arsenic	ND	1.0					
Barium	ND	1.0					
Beryllium	ND	1.0					
Cadmium	ND	1.0					
Chromium	ND	1.0					
Cobalt	ND	1.0					
Copper	ND	2.0					
Lead	ND	1.0					
Manganese	ND	1.0					
Molybdenum	ND	1.0					
Nickel	ND	1.0					
Selenium	ND	1.0					
Silver	ND	1.0					
Thallium	ND	2.0					
Vanadium	ND	1.0					
Zinc	ND	1.0					
Zinc Sample ID LCS-67431		1.0 TestCode: 6010_SPGE	Units: mg/Kg	Prep Da	ate: 4/3/2018	RunNo: 123 ′	107
	ND		Units: mg/Kg EPA 3050B		ate: 4/3/2018 ate: 4/3/2018	RunNo: 123 SeqNo: 297	
Sample ID LCS-67431	ND SampType: LCS	TestCode: 6010_SPGE	EPA 3050B	Analysis Da		SeqNo: 297	
Sample ID LCS-67431 Client ID: LCSS	ND SampType: LCS Batch ID: 67431	TestCode: 6010_SPGE TestNo: EPA 6010B	EPA 3050B	Analysis Da	ate: 4/3/2018	SeqNo: 297	7946
Sample ID LCS-67431 Client ID: LCSS Analyte	ND SampType: LCS Batch ID: 67431 Result	TestCode: 6010_SPGE TestNo: EPA 6010B PQL SPK value S	EPA 3050B PK Ref Val	Analysis Da %REC LowLimit	ate: 4/3/2018 HighLimit RPD Ref Val	SeqNo: 297	7946
Sample ID LCS-67431 Client ID: LCSS Analyte Antimony	ND SampType: LCS Batch ID: 67431 Result 25.496	TestCode: 6010_SPGE TestNo: EPA 6010B PQL SPK value S 2.0 25.00	EPA 3050B PK Ref Val	Analysis Da %REC LowLimit 102 85	tte: 4/3/2018 HighLimit RPD Ref Val 115	SeqNo: 297	7946
Sample ID LCS-67431 Client ID: LCSS Analyte Antimony Arsenic	ND SampType: LCS Batch ID: 67431 Result 25.496 24.911	TestCode: 6010_SPGE TestNo: EPA 6010B PQL SPK value S 2.0 25.00 1.0 25.00	EPA 3050B PK Ref Val 0 0	Analysis Da %REC LowLimit 102 85 99.6 85	tte: 4/3/2018 HighLimit RPD Ref Val 115 115	SeqNo: 297	7946
Sample ID LCS-67431 Client ID: LCSS Analyte Antimony Arsenic Barium	ND SampType: LCS Batch ID: 67431 Result 25.496 24.911 25.537	TestCode: 6010_SPGE TestNo: EPA 6010B PQL SPK value S 2.0 25.00 1.0 25.00 1.0 25.00	EPA 3050B PK Ref Val 0 0 0	Analysis Da %REC LowLimit 102 85 99.6 85 102 85	tte: 4/3/2018 HighLimit RPD Ref Val 115 115 115	SeqNo: 297	7946

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

ELAP Cert 2921

EPA ID CA01638

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

CLIENT: CH2M HILL

Work Order: N029489

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_SPGE

Sample ID LCS-67431	SampType: L	.cs	TestCoo	de: 6010_SPGE	Units: mg/Kg		Prep Date	4/3/2018	RunNo: 123107	
Client ID: LCSS	Batch ID: 6	7431	TestN	lo: EPA 6010B	EPA 3050B		Analysis Date	4/3/2018	SeqNo: 2977946	
Analyte	F	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cobalt	2	5.246	1.0	25.00	0	101	85	115		
Copper	2	5.458	2.0	25.00	0	102	85	115		
Lead	2	5.479	1.0	25.00	0	102	85	115		
Manganese	4	9.880	1.0	50.00	0	99.8	85	115		
Molybdenum	2	5.172	1.0	25.00	0	101	85	115		
Nickel	2	5.133	1.0	25.00	0	101	85	115		
Selenium	2	4.805	1.0	25.00	0	99.2	85	115		
Silver	2	5.291	1.0	25.00	0	101	85	115		
Thallium	2	5.323	2.0	25.00	0	101	85	115		
Vanadium	2	5.242	1.0	25.00	0	101	85	115		
Zinc	2	5.007	1.0	25.00	0	100	85	115		
Sample ID N029485-005B-MS	SampType: N	IS	TestCo	de: 6010_SPGE	Units: mg/Kg	dry	Prep Date:	4/3/2018	RunNo: 123107	
Client ID: ZZZZZZ	Batch ID: 6	7431	TestN	lo: EPA 6010B	EPA 3050B		Analysis Date	4/3/2018	SeqNo: 2977950	
Analyte	F	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Antimony	3	8.750	3.0	37.57	0	103	75	125		
Arsenic	3	9.553	1.5	37.57	5.595	90.4	75	125		
Barium	18	0.573	1.5	37.57	148.4	85.7	75	125		
Beryllium	3	1.028	1.5	37.57	0	82.6	75	125		
Cadmium	3	1.027	1.5	37.57	0.6075	81.0	75	125		
.										

76.68

14.52

42.98

6.740

288.1

80.03

0

0

0

86.7

88.7

92.5

81.8

91.7

87.2

80.7

87.3

96.1

75

75

75

75

75

75

75

75

75

125

125

125

125

125

125

125

125

125

Qualifiers:

Chromium

Manganese

Molybdenum

Cobalt

Copper

Lead

Nickel

Silver

Selenium

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

E Value above quantitation range

37.57

37.57

37.57

37.57

75.14

37.57

37.57

37.57

37.57

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET LABORATORIES CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

109.258

47.857

77.726

37.476

356.950

32.763

110.343

32.807

36.103

1.5

1.5

3.0

1.5

1.5

1.5

1.5

1.5

1.5

ELAP Cert 2921

EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

"Serving Clients with Passion and Professionalism"

11

CLIENT: CH2M HILL

Work Order: N029489

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_SPGE

Sample ID N029485-005B-MS	SampType: MS	TestCo	de: 6010_SPG	E Units: mg/K	g-dry	Prep Da	te: 4/3/201	8	RunNo: 12	3107	
Client ID: ZZZZZZ	Batch ID: 67431	Test	No: EPA 6010E	B EPA 3050B		Analysis Da	te: 4/3/201	8	SeqNo: 29	77950	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Thallium	31.222	3.0	37.57	1.449	79.3	75	125				
Vanadium	114.381	1.5	37.57	82.45	85.0	75	125				
Zinc	123.922	1.5	37.57	93.30	81.5	75	125				
Sample ID N029485-005B-MSI	D SampType: MSD	TestCo	de: 6010_SPG	E Units: mg/K	g-dry	Prep Da	te: 4/3/201	8	RunNo: 12	3107	
Client ID: ZZZZZZ	Batch ID: 67431	TestN	No: EPA 6010E	B EPA 3050B		Analysis Da	te: 4/3/201	8	SeqNo: 29	77951	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	38.136	3.0	37.51	0	102	75	125	38.75	1.60	20	
Arsenic	38.665	1.5	37.51	5.595	88.2	75	125	39.55	2.27	20	
Barium	180.419	1.5	37.51	148.4	85.4	75	125	180.6	0.0853	20	
Beryllium	30.462	1.5	37.51	0	81.2	75	125	31.03	1.84	20	
Cadmium	31.075	1.5	37.51	0.6075	81.2	75	125	31.03	0.154	20	
Chromium	109.167	1.5	37.51	76.68	86.6	75	125	109.3	0.0831	20	
Cobalt	47.424	1.5	37.51	14.52	87.7	75	125	47.86	0.911	20	
Copper	77.629	3.0	37.51	42.98	92.4	75	125	77.73	0.125	20	
Lead	37.105	1.5	37.51	6.740	80.9	75	125	37.48	0.994	20	
Manganese	345.345	1.5	75.02	288.1	76.3	75	125	357.0	3.30	20	
Molybdenum	32.547	1.5	37.51	0	86.8	75	125	32.76	0.662	20	
Nickel	110.154	1.5	37.51	80.03	80.3	75	125	110.3	0.172	20	
Selenium	32.271	1.5	37.51	0	86.0	75	125	32.81	1.65	20	
Silver	36.151	1.5	37.51	0	96.4	75	125	36.10	0.132	20	
Thallium	30.740	3.0	37.51	1.449	78.1	75	125	31.22	1.56	20	
Vanadium	114.449	1.5	37.51	82.45	85.3	75	125	114.4	0.0597	20	
Zinc	123.570	1.5	37.51	93.30	80.7	75	125	123.9	0.284	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

 Calculations are based on raw values

 CALIFORNIA | P:562.219.7435
 F:562.219.7436

 11110 Artesia Blvd., Ste B, Cerritos, CA 90703
 NEVADA | P:702.307.2659

 511 W. Post Rd., Las Vegas,

<u>NEVADA</u> |P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046 H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT:	CH2M HILL			Client Sample ID: Phase Separator-571-Sludge						
Lab Order:	N029489				Collection	2/2018 9:15:0	2018 9:15:00 AM			
Project:	PG&E Topock,	680375.03.IM.OP.	00		Ma	atrix: S(SOIL			
Lab ID:	N029489-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
HEXAVALEN	T CHROMIUM BY I	с								
		EPA 3060A		EF	A 7199					
RunID: NV00	922-IC6_180405A	QC Batch: 674	88		PrepD	ate	4/5/2018	Analyst: RAB		
Hexavalent C	hromium	49	0.61	2.1		mg/Kg-d	ry 5	4/5/2018 03:50 PM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029489

ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 680375.03.IM.OP.00

TestCode: 7199_S_PGE

Client ID: PBS Batch ID: 67488 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018 SeqN Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val % Hexavalent Chromium ND 0.20 0.20 0.20 0.20	nNo: 123155 ₁ No: 2980438 %RPD RPDLimit Qual
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val % Hexavalent Chromium ND 0.20	
Hexavalent Chromium ND 0.20	%RPD RPDLimit Qual
Sample ID J CS-67488 SampType: J CS TestCode: 7199 S PGE Units: ma/Ka Prep Date: 4/5/2018 Punk	
Comprene Loc-or-to Comprese Loo rescoue. 1782_0_rol Onits. ingrag rice Date. 4/5/2010 Ruin	No: 123155
Client ID: LCSS Batch ID: 67488 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018 SeqN	No: 2980439
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %	%RPD RPDLimit Qual
Hexavalent Chromium 3.892 0.20 4.000 0 97.3 80 120	
Sample ID N029489-001A-REP SampType: DUP TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018 RunN	No: 123155
Client ID: ZZZZZZ Batch ID: 67488 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018 Seq	No: 2980441
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %	%RPD RPDLimit Qual
Hexavalent Chromium 47.211 2.1 48.67	3.04 20
Sample ID N029554-003A-REP SampType: DUP TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018 RunN	No: 123155
Client ID: ZZZZZZ Batch ID: 67488 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018 Seq	No: 2980443
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %	%RPD RPDLimit Qual
Hexavalent Chromium 0.359 0.26 0.3564	0.628 20
Sample ID N029554-003A-DUP SampType: DUP TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018 Runh	nNo: 123155
Client ID: ZZZZZZ Batch ID: 67488 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018 SeqN	No: 2980444
	no: 2980444 %RPD RPDLimit Qual

Qualifiers:

ND

- B Analyte detected in the associated Method Blank
 - Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

"Serving Clients with Passion and Professionalism"

ELAP Cert 2921 EPA ID CA01638

14

CLIENT: CH2M HILL

Work Order: N029489

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 7199_S_PGE

Sample ID N029554-003A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 67488	TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018	RunNo: 123155 SeqNo: 2980445
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.429	0.26 5.116 0.3564 99.1 75 125	
Sample ID N029554-003A-MSD	SampType: MSD	TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018	RunNo: 123155
Client ID: ZZZZZZ	Batch ID: 67488	TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018	SeqNo: 2980446
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.295	0.25 5.100 0.3564 96.8 75 125 5.429	2.50 20
Sample ID N029554-003A-MS I Client ID: ZZZZZZ	SampType: MS Batch ID: 67488	TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018	RunNo: 123155 SeqNo: 2980447
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	850.372	13 831.0 0.3564 102 75 125	
Sample ID N029554-002A-REP Client ID: ZZZZZZ	SampType: DUP Batch ID: 67488	TestCode: 7199_S_PGE Units: mg/Kg-dry Prep Date: 4/5/2018 TestNo: EPA 7199 EPA 3060A Analysis Date: 4/5/2018	RunNo: 123155 SeqNo: 2980451
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1.275	0.27 1.302	2.11 20
Sample ID N029554-003A-PS Client ID: ZZZZZZ	SampType: MS Batch ID: 67488	TestCode:7199_S_PGEUnits:mg/Kg-dryPrep Date:TestNo:EPA 7199EPA 3060AAnalysis Date:4/5/2018	RunNo: 123155 SeqNo: 2980452
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.719	0.26 5.106 0.3564 105 75 125	

Qualifiers:

ND

- B Analyte detected in the associated Method Blank
 - Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

 Calculations are based on raw values

 CALIFORNIA | P:562.219.7435
 F:562.219.7436

 11110 Artesia Blvd., Ste B, Cerritos, CA 90703
 NEVADA | P:702.307.2659

 511 W. Post Rd., Las Vegas,

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 16-Apr-18

CLIENT:	CH2M HILL			Client Sample ID: Phase Separator-571-Sludge							
Lab Order:	N029489			Collection Date: 4/2/2018 9:15:00 AM							
Project:	PG&E Topock,	680375.03.IM.OP.	00		M	atrix: SO	DIL				
Lab ID:	N029489-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
TOTAL MERC	URY BY COLD VA	POR TECHNIQUE									
				EP	A 7471A						
RunID: NV00	NV00922-AA1_180403B QC Batch: 67433		33	PrepDate		4/3/2018	Analyst: CEI				
Mercury			0.056	0.21		mg/Kg-di	ry 1	4/3/2018 12:41 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N029489

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 7471_S_PGE

Sample ID MB-67433 Client ID: PBS	SampType: MBLK Batch ID: 67433	TestCode: 7471_S_PGE Units: mg/Kg TestNo: EPA 7471A	Prep Date: 4/3/2018 Analysis Date: 4/3/2018	RunNo: 123084 SeqNo: 2976708
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.10		
Sample ID LCS-67433 Client ID: LCSS Analyte	SampType: LCS Batch ID: 67433 Result	TestCode: 7471_S_PGE Units: mg/Kg TestNo: EPA 7471A PQL SPK value SPK Ref Val	Prep Date: 4/3/2018 Analysis Date: 4/3/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 123084 SeqNo: 2976709 %RPD RPDLimit Qual
Mercury	0.395	0.10 0.4167 0	94.7 75 125	
Sample ID N029485-015B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 67433	TestCode: 7471_S_PGE Units: mg/Kg-c TestNo: EPA 7471A	Iry Prep Date: 4/3/2018 Analysis Date: 4/3/2018	RunNo: 123084 SeqNo: 2976710
			•	
Client ID: ZZZZZZ	Batch ID: 67433	TestNo: EPA 7471A	Analysis Date: 4/3/2018	SeqNo: 2976710
Client ID: ZZZZZZ	Batch ID: 67433 Result 0.718	TestNo: EPA 7471A PQL SPK value SPK Ref Val	Analysis Date: 4/3/2018 %REC LowLimit HighLimit RPD Ref Val 72.1 75 125	SeqNo: 2976710 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Mercury Sample ID N029485-015B-MSD	Batch ID: 67433 Result 0.718 SampType: MSD	TestNo: EPA 7471A PQL SPK value SPK Ref Val 0.15 0.6200 0.2705 TestCode: 7471_S_PGE Units: mg/Kg-c	Analysis Date: 4/3/2018 %REC LowLimit HighLimit RPD Ref Val 72.1 75 125 Ary Prep Date: 4/3/2018	SeqNo: 2976710 %RPD RPDLimit Qual S RunNo: 123084

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638
- E Value above quantitation range
- R RPD outside accepted recovery limits

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Calculations are based on raw values NEVADA | P:702.307.2659 F:702.307.2691

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

17

ANALYTICAL RESULTS

ASSET Lab	oratories		Print Date: 16-Apr-18							
CLIENT:	CH2M HILL			Client Sample ID: Phase Separator-571-Sludge						
Lab Order:	N029489			Collection Date: 4/2/2018 9:15:00 AM						
Project:	Project: PG&E Topock, 680375.03		P.00		atrix: SOIL	: SOIL				
Lab ID: N029489-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
PERCENT MC	DISTURE									
				D	2216					
RunID: NV00	922-WC_180403A	QC Batch: R1	23071		PrepD	ate		Analyst: LR		
Percent Moist	ture	52.04	0.1000	0.1000		wt%	1	4/3/2018 09:00 AN		

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Work Order:

Project:

CLIENT: CH2M HILL

N029489

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: PMOIST

Sample ID MB-R123071	SampType: MBLK	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 123071		
Client ID: PBS	Batch ID: R123071	TestNo: D2216		Analysis Date: 4/3/2018	SeqNo: 2976402		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Percent Moisture	ND	0.1000					
Sample ID N029484-001ADUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 123071		
Client ID: ZZZZZZ	Batch ID: R123071	TestNo: D2216		Analysis Date: 4/3/2018	SeqNo: 2976404		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Percent Moisture	6.138	0.1000		5.747	6.57 30		
Sample ID N029485-020BDUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 123071		
Client ID: ZZZZZZ	Batch ID: R123071	TestNo: D2216		Analysis Date: 4/3/2018	SeqNo: 2976421		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Percent Moisture	38.906	0.1000		39.68	1.96 30		

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2MHILL					CHAIN OF CUSTODY RECORD	Page	1	OF	1
Project Name PG&E Topock	Container	Glass Jar(8 oz)	Glass Jar(8 oz)	4 oz jar					
Location PG&E Topock Project Number 680375.03.IM.OP.00	Preservatives:		none	4°C					
Project Manager Scott O'Donnell	Filtered:		NA	NA					
Sample Manager Shawn Duffy	Holding Time:	NA	NA	180					
Task Order Project IM3PLANT-ARAR-WDR-571-SLUDGE Turnaround Time 10 Days Shipping Date: COC Number: 571-s DATE	E TIME Matrix	Anions (E300_Soil) FI	Metals (6010B_Soil) Title 22, Mercury, Mn	Metals (7199)		Number of Containers	cc	MMEN	TS
Phase Separator-571-Sludge 4-2-18 4	PIS Soil	x	x	x	N029489-01	5			
					TOTAL NUMBER OF CONTAINERS	5			201 - 1

Approved by South for all Signatures	Date/Time Shipping Details	ATTN:	Special Instructions:
Sampled by LP, GG	4-2-19 1,15 method of on philent. 1 od 2	ALUX.	
Relinquished by Bon 1000	4-2-18 1300 On Ice: Pes 1 no 2 Telez	Sample Custody	
Received by pung along	C/2/14 13 VU Airbill No:	and	Report Copy to
Relinquished by play and	Child A Lab Name: ASSET Laboratories	Marlon Cartin	Doug Scott
Received by pay in any	谷戸は し セイ Lab Phone: (702) 307-2659		(970) 731-0636

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Received/Opened On:	4/2/2018				Workorder:	N029489					
Rep sample Temp (Deg C):	2.9				IR Gun ID:	2					
Temp Blank:	✓ Yes	🗌 No									
Carrier name:	ASSET										
Last 4 digits of Tracking No .:	NA			Packing	Material Used:	None					
Cooling process:	✓ Ice	Ice Pack	Dry Ice	Other	None None						
Sample Receipt Checklist											
1. Shipping container/cooler in good condition? Yes V							Not Present				
 Custody seals intact, signed, dated on shippping container/cooler? 					Yes	No 🗌	Not Present	\checkmark			
3. Custody seals intact on sample bottles?					Yes		Not Present				
 Chain of custody present? 					Yes 🗹						
5. Sampler's name present in COC?					Yes 🗸						
6. Chain of custody signed when relinquished and received?					Yes 🗹						
 Chain of custody agrees with sample labels? 					Yes 🗹						
8. Samples in proper container/bottle?					Yes 🗹						
					Yes 🗹						
 9. Sample containers intact? 10. Sufficient complexity for indicated test? 					Yes 🗹						
10. Sufficient sample volume for indicated test?11. All complex received within helding time?											
 All samples received within holding time? Temperature of ten completer Temp Plank within cocontable limit? 					Yes ⊻ Yes ⊻		NA				
12. Temperature of rep sample or Temp Blank within acceptable limit?							NA				
13. Water - VOA vials have zero headspace?					Yes						
14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH<2 for Metals					Yes	No 🗔	NA				
15. Did the bottle labels indicate correct preservatives used?					Yes	No 🗌	NA	\checkmark			
16. Were there Non-Conformance issues at login?					Yes 🗌	No 🗌	NA				
	as Client not	•			Yes 🗌	No 🗌	NA	\checkmark			
Comments:											

YFT 4/12/2018 YR

Checklist Completed By:

MBC 4/16/2018

List of Analysts

ASSET Laboratories Work Order: N029489

NAME	TEST METHOD
Claire Ignacio	EPA 6010B, EPA 7471A
Ria Abes	EPA 300.0, EPA 7199
Lilia Ramit	ASTM D2216

CALIFORNIA 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

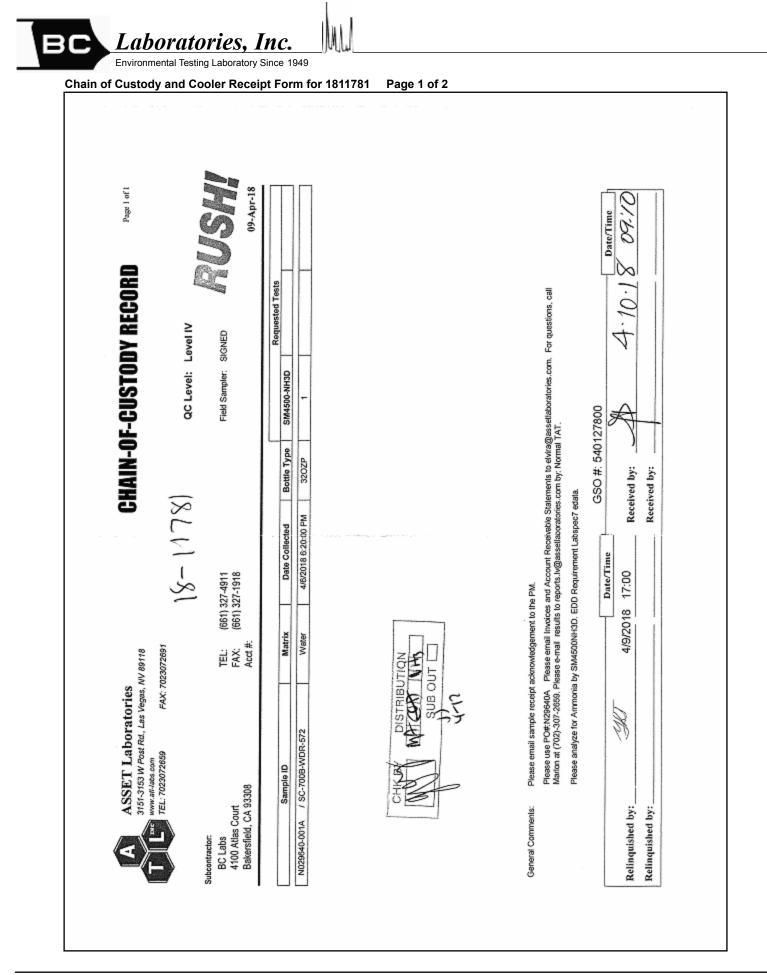
"Serving Clients with Passion and Professionalism"

Date of Report: 04/18/2018

Marlon Cartin

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Client Project:N029640BCL Project:Level IVBCL Work Order:1811781Invoice ID:B300806


Enclosed are the results of analyses for samples received by the laboratory on 4/10/2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Sandoval Client Service Rep

Stuart Buttram Technical Director

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1811781 Page 2 of 2

BC LABORATORIES INC.		с	OOLER	RECEIPT	FORM			Page		of
Submission #: X - 17X	TT				,				. /	1
SHIPPING INFOR	ATION				UDDING	CONTAR	IED		REE LIQ	
Fed Ex UPS Ontrac		Deliver		Ice Chr		None 🗆	Box 🗆		ES D N	
BC Lab Field Service D Other	Aspecify	Deliver	220		or 🖞 (Spe			- .	W /	
Refrigerant: Ice Blue Ice D	None	0 0	Other 🗆	Comn	ents:					
Custody Seals lice Chest I	Containe Intaic: Yes	rs (.) No 11	None	Com	ments:					ŀ
	All samples			<u></u>	and the second se		tion(s) mate	h COC? Y	08 Ø No	
COC Received	issivity:	17	Container:	UND	Thermon	neter ID:	274	Date/Tim	910	18
	mperature:	1 1	0.0	°C /	(0) ().8	°C	. Analyst I	JUDO	なめ
	imperatore:		<u></u>	0 /		<i>.</i>	<u>ь</u>	- Analyst I		1.10
SAMPLE CONTAINERS					SAMPLE	NUMBERS	1			
	1	2.	3	4		6	7	8		10
OT PE UNPRES										
4oz/8oz/16oz PE UNPRES			·							-
2ox Cr ⁴⁴										
OT INORGANIC CHEMICAL METALS										
INORGANIC CHEMICAL METALS 40x / 80x / 160x										
PT CYANIDE	1									
PT NITROGEN FORMS	<u>-</u> /⊁	<u> </u>								
PT TOTAL SULFIDE										
201. NITRATE / NITRITE	· ·									
PT TOTAL ORGANIC CARBON										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
0ml VOA VIAL TRAVEL BLANK				~~~~						
Omi VOA VIAL	1.1.1									
OT EPA 1664										
PT ODOR										
RADIOLOGICAL BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
QT RPA 508/608/9080 QT RPA 515.1/8150										
21 RPA 515,08130 27 RPA 525										
YT EPA 525 TRAVEL BLANK										
0ml EPA 547 0ml EPA 533.1										
oz EPA 548)T EPA 549										
				-						
0T BPA 8015M										
YT EPA 8270 az / 16az / 32az AMBER										
02/1602/3202 JAR									····	
OIL SLREVE										
CB VIAL										-
LASTIC BAG										
EDLAR BAG										
ERROUS IRON										
NCORE /										
MART KIT										
UMMA CANISTER										
1	6					11 1	2-18		1010	Contraction of the local division of the loc

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1000733339 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Reported: 04/18/2018 15:21 Project: Level IV Project Number: N029640 Project Manager: Marlon Cartin

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1811781-01	COC Number:		Receive Date:	04/10/2018 09:10
	Project Number:		Sampling Date:	04/06/2018 18:20
	Sampling Location:		Sample Depth:	
	Sampling Point: Sampled By:	N029640-001A / SC-700B-WDR-572 	Lab Matrix: Sample Type:	Water Water

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1000733339 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/18/201815:21Project:Level IVProject Number:N029640Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

BCL Sample ID:	1811781-01	Client Sample	e Name:	N029640-	001A/SC	-700B-WDR-572,	4/6/2018 6:	8 6:20:00PM			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Ammonia as N (Distille	d)	ND	mg/L	0.20		SM-4500-NH3G	ND		1		

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	SM-4500-NH3G	04/17/18 08:57	04/17/18 16:47	JMH	SC-1	1	B010982

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:04/18/201815:21Project:Level IVProject Number:N029640Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B010982						
Ammonia as N (Distilled)	B010982-BLK1	ND	mg/L	0.20		

ASSET Laboratories 3151-3153 W. Post Rd

Las Vegas, NV 89118

Reported:04/18/201815:21Project:Level IVProject Number:N029640Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

								Control Limits				
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals		
QC Batch ID: B010982												
Ammonia as N (Distilled)	B010982-BS1	LCS	1.0239	1.0000	mg/L	102		85 - 115				

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Reported: 04/18/2018 15:21 Project: Level IV Project Number: N029640 Project Manager: Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

									<u>Cont</u>	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: B010982	Use	d client same	ole: N								
Ammonia as N (Distilled)	DUP	1811492-01	0.10370	ND		mg/L			20		
	MS	1811492-01	0.10370	1.0760	1.0000	mg/L		97.2		80 - 120	
	MSD	1811492-01	0.10370	1.2123	1.0000	mg/L	11.9	111	20	80 - 120	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

April 20, 2018

Doug Scott CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (970) 731-0636 FAX: (510) 622-9129

Workorder No.: N029640

RE: PG&E Topock, 680375.02.IM.OP.00

Attention: Doug Scott

Enclosed are the results for sample(s) received on April 06, 2018 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Manay Situcaro For

Quennie Manimtim Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

 CLIENT:
 CH2M HILL

 Project:
 PG&E Topock, 680375.02.IM.OP.00

 Lab Order:
 N029640

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Subcontracted Analyses:

Ammonia was subcontracted to BC Labs- Bakersfield,CA.

Analytical Comments for EPA 200.8:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for Copper in QC samples N029640-001E-MS and N029640-001E-MSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Analytical Comments for EPA 300.0:

Sample required dilution for Fluoride due to precipitation upon the addition of eluent.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

CLIENT: Project: Lab Order: Contract No:	CH2M HILL PG&E Topock, 68037 N029640 IM3PLANT-AR	5.02.IM.OP.00	Work (Work Order Sample Sum		
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported	
N029640-001A	SC-700B-WDR-572	Water	4/6/2018 6:20:00 PM	4/6/2018	4/20/2018	
N029640-001B	SC-700B-WDR-572	Water	4/6/2018 6:20:00 PM	4/6/2018	4/20/2018	
N029640-001C	SC-700B-WDR-572	Water	4/6/2018 6:20:00 PM	4/6/2018	4/20/2018	
N029640-001D	SC-700B-WDR-572	Water	4/6/2018 6:20:00 PM	4/6/2018	4/20/2018	
N029640-001E	SC-700B-WDR-572	Water	4/6/2018 6:20:00 PM	4/6/2018	4/20/2018	

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

ANALYTICAL RESULTS Print Date: 20-Apr-18

						T TIME D	atc. 20-1	Ip7-10		
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-572						
Lab Order	N029640			Collection Date: 4/6/2018 6:20:00 PM						
Project:	PG&E Topock,	680375.02.IM.OP.	00	Matrix: WATER						
Lab ID:	N029640-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
SPECIFIC	CONDUCTANCE									
				EP	A 120.1					
RunID: N	/00922-WC_180407A	QC Batch: R12	3200		PrepD	ate		Analyst: QBN		
Specific C	conductance	7800	0.10	0.10		umhos/cm	1	4/7/2018 10:15 Al		

Qualifiers:

В

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 20-Apr-18

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID N029640-001BDUP	SampType: DUP	TestCoo	de: 120.1_WF	GE Units: um	hos/cm	Prep Da	te:		RunNo: 12:	3200	
Client ID: ZZZZZZ	Batch ID: R123200	TestN	lo: EPA 120.4	1		Analysis Da	te: 4/7/201	8	SeqNo: 298	83262	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Specific Conductance	7780.000	0.10						7760	0.257	2	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	oratories					Pri	int Date: 20-2	Apr-18			
CLIENT:	CH2M HILL			С	lient Samp	le ID: S	C-700B-WDF	R-572			
Lab Order:	N029640			Collection Date: 4/6/2018 6:20:00 PM							
Project:	PG&E Topock,	680375.02.IM.OI	P.00	Matrix: WATER							
Lab ID:	N029640-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
TOTAL FILTE	RABLE RESIDUE										
				SI	M2540C						
RunID: NV00	922-WC_180410D	QC Batch: 67	580		PrepD	ate	4/10/2018	Analyst: LR			
Total Dissolve Filterable)	ed Solids (Residue,	4400	50	50		mg/L	1	4/10/2018 01:14 PM			

Qualifiers:

В

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N029640

PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 160.1_2540C_W

Sample ID LCS-67580	SampType: LCS	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/10/2018	RunNo: 123280
Client ID: LCSW	Batch ID: 67580	TestNo: SM2540C	Analysis Date: 4/10/2018	SeqNo: 2987802
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera 979.000	10 1000 0	97.9 80 120	
Sample ID MB-67580	SampType: MBLK	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/10/2018	RunNo: 123280
Client ID: PBW	Batch ID: 67580	TestNo: SM2540C	Analysis Date: 4/10/2018	SeqNo: 2987803
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera ND	10		
Sample ID N029640-001BDU	JP SampType: DUP	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/10/2018	RunNo: 123280
Client ID: ZZZZZZ	Batch ID: 67580	TestNo: SM2540C	Analysis Date: 4/10/2018	SeqNo: 2987811
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera 4470.000	50	4400	1.58 5

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 20-Apr-18

CLIENT:	CH2M HILL			Cl	ient Sample ID: S	SC-700B-WDR	2-572		
Lab Order:	N029640			Collection Date: 4/6/2018 6:20:00 PM					
Project:	PG&E Topock,	680375.02.IM.OF	P. 00	Matrix: WATER					
Lab ID:	N029640-001								
Analyses		Result	MDL	PQL	Qual Units	s DF	Date Analyzed		
TOTAL META	ALS BY ICP								
				EP	A 200.7				
RunID: NV00	922-ICP2_180412E	QC Batch: 67	564		PrepDate	4/11/2018	Analyst: CEI		
Aluminum		ND	40	50	µg/L	1	4/13/2018 12:46 AM		
Boron		1000	74	100	µg/L	1	4/13/2018 12:46 AM		
		820	18	20	µg/L		4/13/2018 12:46 AM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WPGEPPB

Sample ID MB-6	67564	SampType: MBLK	TestCoo	le: 200.7_WF	GE Units: µg/L		Prep Date	e: 4/11/20	18	RunNo: 123	3348	
Client ID: PBW	1	Batch ID: 67564	TestN	lo: EPA 200.	7		Analysis Date	e: 4/12/20	18	SeqNo: 299	91695	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum		ND	50									
Boron		ND	100									
Iron		ND	20									
Sample ID LCS1	1-67564	SampType: LCS	TestCoo	le: 200.7_WF	GE Units: µg/L		Prep Date	e: 4/11/20	18	RunNo: 123	3348	
Client ID: LCSV	W	Batch ID: 67564	TestN	lo: EPA 200.	7		Analysis Date	e: 4/12/20	18	SeqNo: 299	91696	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum		9719.789	50	10000	0	97.2	85	115				
Boron		4733.065	100	5000	0	94.7	85	115				
Iron		104.009	20	100.0	0	104	85	115				
Sample ID N029	506-001D-MS1	SampType: MS	TestCoo	le: 200.7_WF	GE Units: µg/L		Prep Date	e: 4/11/20	18	RunNo: 123	3348	
			Tooth	lo: EPA 200.	7		Analysis Date	. 4/42/20	18	SeqNo: 299	1702	
Client ID: ZZZZ	ZZZ	Batch ID: 67564	16500	10. EI A 200.			Analysis Date	5. 4/12/20		3eq110. 293	51702	
	222	Batch ID: 67564 Result	PQL		SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
	222						-					Qual
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit				Qual
Analyte Aluminum	222	Result 9994.355	PQL 50	SPK value 10000	SPK Ref Val	%REC 99.9	LowLimit 75	HighLimit 125				Qual
Analyte Aluminum Boron		Result 9994.355 5265.943	PQL 50 100 20	SPK value 10000 5000 100.0	SPK Ref Val 0 371.0	%REC 99.9 97.9	LowLimit 75 75 75	HighLimit 125 125	RPD Ref Val		RPDLimit	Qual
Analyte Aluminum Boron Iron	1506-001D-MSD	Result 9994.355 5265.943 141.499	PQL 50 100 20 TestCoo	SPK value 10000 5000 100.0	SPK Ref Val 0 371.0 35.53 PGE Units: μg/L	%REC 99.9 97.9 106	LowLimit 75 75 75	HighLimit 125 125 125 e: 4/11/20	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Aluminum Boron Iron Sample ID N029	1506-001D-MSD	Result 9994.355 5265.943 141.499 SampType: MSD	PQL 50 100 20 TestCoo	SPK value 10000 5000 100.0 de: 200.7_WF lo: EPA 200.7	SPK Ref Val 0 371.0 35.53 PGE Units: μg/L	%REC 99.9 97.9 106	LowLimit 75 75 75 Prep Date Analysis Date	HighLimit 125 125 125 2: 4/11/20 2: 4/12/20	RPD Ref Val	%RPD RunNo: 12 3	RPDLimit	Qual
Analyte Aluminum Boron Iron Sample ID N029 Client ID: ZZZZ	1506-001D-MSD	Result 9994.355 5265.943 141.499 SampType: MSD Batch ID: 67564	PQL 50 100 20 TestCoo TestN	SPK value 10000 5000 100.0 de: 200.7_WF lo: EPA 200.7	SPK Ref Val 0 371.0 35.53 PGE Units: μg/L	%REC 99.9 97.9 106	LowLimit 75 75 75 Prep Date Analysis Date	HighLimit 125 125 125 2: 4/11/20 2: 4/12/20	RPD Ref Val	%RPD RunNo: 123 SeqNo: 299	RPDLimit 3348 91703	
Analyte Aluminum Boron Iron Sample ID N029 Client ID: ZZZZ Analyte	1506-001D-MSD	Result 9994.355 5265.943 141.499 SampType: MSD Batch ID: 67564 Result	PQL 50 100 20 TestCoo TestN PQL	SPK value 10000 5000 100.0 le: 200.7_WF lo: EPA 200.7 SPK value	SPK Ref Val 0 371.0 35.53 PGE Units: μg/L 7 SPK Ref Val	%REC 99.9 97.9 106 %REC	LowLimit 75 75 Prep Date Analysis Date LowLimit	HighLimit 125 125 225 22 4/11/20 24 4/12/20 HighLimit	RPD Ref Val 18 RPD Ref Val	%RPD RunNo: 12 3 SeqNo: 299 %RPD	RPDLimit 3348 91703 RPDLimit	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

- CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638
- NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

ANALYTICAL RESULTS

Print Date: 20-Apr-18

CLIENT:	CH2M HILL			C	lient Sample	ID: SC-	700B-WDR	-572	
Lab Order:	N029640			Collection Date: 4/6/2018 6:20:00 PM					
Project:	PG&E Topock,	680375.02.IM.OF	P.00		Mati	ix: WA	TER		
Lab ID:	N029640-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TOTAL META	LS BY ICPMS								
				EP.	A 200.8				
RunID: NV00	922-ICP7_180413B	QC Batch: 67	642		PrepDate	e 4.	/13/2018	Analyst: CEI	
Antimony		ND	0.16	0.50	μ	g/L	1	4/13/2018 02:11 PM	
Arsenic		0.13	0.081	0.10	μ	g/L	1	4/13/2018 02:11 PM	
Barium		19	0.15	1.0	μ	g/L	1	4/13/2018 02:11 PM	
Copper		ND	0.55	1.0	μ	g/L	1	4/13/2018 02:11 PM	
Lead		ND	0.13	1.0	μ	g/L	1	4/13/2018 02:11 PN	
Manganese		130	1.3	2.5	μ	g/L	5	4/13/2018 02:16 PM	
Molybdenum		27	0.21	0.50	μ	g/L	1	4/13/2018 02:11 PM	
Nickel		6.4	0.26	1.0	μ	g/L	1	4/15/2018 07:04 PM	
Zinc		ND	2.3	10		g/L	1	4/13/2018 02:11 PN	

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID MB-67642	SampType: MBLK	TestCode: 200.8_W	Units: µg/L	Prep Date	4/13/2018	RunNo: 123377
Client ID: PBW	Batch ID: 67642	TestNo: EPA 200.	В	Analysis Date	± 4/13/2018	SeqNo: 2993815
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	ND	0.50				
Arsenic	ND	0.10				
Barium	ND	1.0				
Copper	ND	1.0				
Lead	ND	1.0				
Manganese	ND	0.50				
Molybdenum	ND	0.50				
Zinc	ND	10				
Sample ID LCS-67642	SampType: LCS	TestCode: 200.8_W	Units: µg/L	Prep Date	4/13/2018	RunNo: 123377
Client ID: LCSW	Batch ID: 67642	TestNo: EPA 200.	В	Analysis Date	4/13/2018	SeqNo: 2993816
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	10.423	0.50 10.00	0	104 85	115	
Arsenic	10.166	0.10 10.00	0	102 85	115	
Barium	10.381	1.0 10.00	0	104 85	115	
Copper	10.364	1.0 10.00	0	104 85	115	
Lead	10.675	1.0 10.00	0	107 85	115	
Manganese	102.656	0.50 100.0	0	103 85	115	
Molybdenum	10.001	0.50 10.00	0	100 85	115	
Zinc	102.624	10 100.0	0	103 85	115	
Sample ID N029640-001E-MS	SampType: MS	TestCode: 200.8_W	Units: µg/L	Prep Date	4/13/2018	RunNo: 123377
Client ID: ZZZZZZ	Batch ID: 67642	TestNo: EPA 200.	В	Analysis Date	± 4/13/2018	SeqNo: 2993834
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
	10.829	0.50 10.00	0	108 75	125	
Antimony	10.629	0.50 10.00	0	100 75	120	

Qualifiers:

ND

B Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921

"Serving Clients with Passion and Professionalism"

- EPA ID CA01638
- NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID N029640-001E-MS	SampType: MS	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	e: 4/13/20	018	RunNo: 12:	3377	
Client ID: ZZZZZZ	Batch ID: 67642	Test	No: EPA 200.8	3		Analysis Dat	e: 4/13/20)18	SeqNo: 299	93834	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	28.536	1.0	10.00	19.47	90.7	75	125				
Copper	7.057	1.0	10.00	0	70.6	75	125				S
Lead	10.469	1.0	10.00	0	105	75	125				
Molybdenum	36.676	0.50	10.00	26.69	99.9	75	125				
Zinc	105.456	10	100.0	0	105	75	125				
Sample ID N029640-001E-MS	SampType: MS	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	e: 4/13/20)18	RunNo: 12	3377	
Client ID: ZZZZZZ	Batch ID: 67642	Test	No: EPA 200.8	3		Analysis Dat	e: 4/13/20)18	SeqNo: 299	93835	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	212.682	2.5	100.0	129.2	83.5	75	125				
Sample ID N029640-001E-MSD	SampType: MSD	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	e: 4/13/20)18	RunNo: 12	3377	
Client ID: ZZZZZZ	Batch ID: 67642	Test	No: EPA 200.8	3		Analysis Dat	e: 4/13/20)18	SeqNo: 299	93836	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	10.757	0.50	10.00	0	108	75	125	10.83	0.670	20	
Arsenic	10.659	0.10	10.00	0.1346	105	75	125	10.57	0.813	20	
Barium	28.722	1.0	10.00	19.47	92.5	75	125	28.54	0.647	20	
Copper	7.133	1.0	10.00	0	71.3	75	125	7.057	1.06	20	S
Lead	10.440	1.0	10.00	0	104	75	125	10.47	0.269	20	
Molybdenum	37.053	0.50	10.00	26.69	104	75	125	36.68	1.02	20	
Zinc	106.052	10	100.0	0	106	75	125	105.5	0.564	20	
Sample ID N029640-001E-MSD	SampType: MSD	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	e: 4/13/20	018	RunNo: 12	3377	
Sample ID N029640-001E-MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 67642		de: 200.8_W No: EPA 200.8			Prep Dat Analysis Dat			RunNo: 12 SeqNo: 29		
•			lo: EPA 200.8		%REC	Analysis Dat	e: 4/13/20				Qual

Qualifiers:

ND

B Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits

ORELAP/NELAP Cert 4046

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

NEVADA | P:702.307.2659 F:702.307.2691 CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2921 ELAP Cert 2676 | NV Cert NV00922 EPA ID CA01638

14

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID MB-67642	SampType:	MBLK	TestCod	e: 200.8_W	Units: µg/L		Prep Date:	4/13/2018		RunNo: 12	3379	
Client ID: PBW	Batch ID:	67642	TestN	o: EPA 200.8	3		Analysis Date:	4/15/2018		SeqNo: 29	94231	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RP	PD Ref Val	%RPD	RPDLimit	Qual
Nickel		ND	1.0									
Sample ID LCS-67642	SampType:	LCS	TestCod	e: 200.8_W	Units: µg/L		Prep Date:	4/13/2018		RunNo: 12	3379	
Client ID: LCSW	Batch ID:	67642	TestN	o: EPA 200.8	3		Analysis Date:	4/15/2018		SeqNo: 299	94232	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RP	PD Ref Val	%RPD	RPDLimit	Qual
Nickel		9,983	1.0	10.00	0	99.8	85	115				
		0.000	1.0	10.00	0	55.0	00	110				
Sample ID N029640-001E-MS	SampType:			e: 200.8_W	Units: µg/L	33.0		4/13/2018		RunNo: 12:	3379	
Sample ID N029640-001E-MS Client ID: ZZZZZZ	SampType: Batch ID:	MS	TestCod		Units: µg/L			4/13/2018		RunNo: 12 SeqNo: 29		
	Batch ID:	MS	TestCod	e: 200.8_W o: EPA 200.8	Units: µg/L		Prep Date: Analysis Date:	4/13/2018	2D Ref Val			Qual
Client ID: ZZZZZZ	Batch ID:	MS 67642	TestCod TestN	e: 200.8_W o: EPA 200.8	Units: µg/L 3		Prep Date: Analysis Date:	4/13/2018 4/15/2018	PD Ref Val	SeqNo: 299	94237	Qual
Client ID: ZZZZZZ	Batch ID:	MS 67642 Result 16.225	TestCod TestN PQL 1.0	e: 200.8_W o: EPA 200.8 SPK value	Units: µg/L 3 SPK Ref Val	%REC	Prep Date: Analysis Date: LowLimit H 75	: 4/13/2018 : 4/15/2018 HighLimit RP	PD Ref Val	SeqNo: 299	94237 RPDLimit	Qual
Client ID: ZZZZZZ Analyte Nickel	Batch ID:	MS 67642 Result 16.225 MSD	TestCod TestN PQL 1.0 TestCod	e: 200.8_W o: EPA 200.8 SPK value 10.00	Units: µg/L 3 SPK Ref Val 6.364 Units: µg/L	%REC 98.6	Prep Date: Analysis Date: LowLimit H 75	 4/13/2018 4/15/2018 HighLimit RP 125 4/13/2018 	PD Ref Val	SeqNo: 299	94237 RPDLimit	Qual
Client ID: ZZZZZZ Analyte Nickel Sample ID N029640-001E-MSD	Batch ID: SampType: Batch ID:	MS 67642 Result 16.225 MSD	TestCod TestN PQL 1.0 TestCod	e: 200.8_W o: EPA 200.8 SPK value 10.00 e: 200.8_W o: EPA 200.8	Units: µg/L 3 SPK Ref Val 6.364 Units: µg/L	%REC 98.6	Prep Date: Analysis Date: LowLimit H 75 Prep Date: Analysis Date:	 4/13/2018 4/15/2018 HighLimit RP 125 4/13/2018 		SeqNo: 299 %RPD RunNo: 123	94237 RPDLimit	Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110 Artesia Blvd., Ste B, Cerritos, CA 90703
 ELAP Cert 2921

 Professionalism"
 EPA ID CA01638
- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 20-Apr-18

CLIENT: Lab Order				Client Sample ID: SC-700B-WDR-572 Collection Date: 4/6/2018 6:20:00 PM					
Project:	PG&E Topock,	680375.02.IM.OP	0375.02.IM.OP.00 Matrix: WATER						
Lab ID:	N029640-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
HEXAVAL	ENT CHROMIUM BY IC	;							
				EP.	A 218.6				
RunID: N	V00922-IC7_180409B	QC Batch: R1	23236		PrepDa	ite		Analyst: RAB	
Hexavaler	nt Chromium	0.79	0.033	0.20		µg/L	1	4/9/2018 03:58 PM	
TOTAL ME	ETALS BY ICPMS								
				EP	A 200.8				
RunID: N	V00922-ICP7_180413A	QC Batch: 67	642		PrepDa	ite	4/13/2018	Analyst: CEI	
Chromiun	n	16	0.13	1.0		µg/L	1	4/13/2018 02:11 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order:

N029640

PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W_CRPGE

Sample ID MB-67642 Client ID: PBW	SampType: MBLK Batch ID: 67642	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 4/13/2018 Analysis Date: 4/13/2018	RunNo: 123376 SeqNo: 2993644
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	ND	1.0		
Sample ID LCS-67642 Client ID: LCSW	SampType: LCS Batch ID: 67642	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 4/13/2018 Analysis Date: 4/13/2018	RunNo: 123376 SeqNo: 2993645
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	10.364	1.0 10.00 0	104 85 115	
Sample ID N029640-001E-MS	SampType: MS	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 4/13/2018	RunNo: 123376
Sample ID N029640-001E-MS Client ID: ZZZZZZ				RunNo: 123376 SeqNo: 2993663
	SampType: MS	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 4/13/2018	
Client ID: ZZZZZZ	SampType: MS Batch ID: 67642	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 4/13/2018 Analysis Date: 4/13/2018	SeqNo: 2993663
Client ID: ZZZZZZ	SampType: MS Batch ID: 67642 Result 24.701	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8 PQL SPK value SPK Ref Val	Prep Date: 4/13/2018 Analysis Date: 4/13/2018 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 2993663
Client ID: ZZZZZZ Analyte Chromium	SampType: MS Batch ID: 67642 Result 24.701	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8 PQL SPK value SPK Ref Val 1.0 10.00 16.35 16.35	Prep Date: 4/13/2018 Analysis Date: 4/13/2018 %REC LowLimit HighLimit RPD Ref Val 83.5 75 125	SeqNo: 2993663 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Chromium Sample ID N029640-001E-MSD	SampType: MS Batch ID: 67642 Result 24.701 SampType: MSD	TestCode: 200.8_W_CR Units: μg/L TestNo: EPA 200.8	Prep Date: 4/13/2018 Analysis Date: 4/13/2018 %REC LowLimit HighLimit RPD Ref Val 83.5 75 125 Prep Date: 4/13/2018	SeqNo: 2993663 %RPD RPDLimit Qual RunNo: 123376

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Calculations are based on raw values CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

E Value above quantitation range

RPD outside accepted recovery limits

NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
 - Spike/Surrogate outside of limits due to matrix interference S

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID LCS-R123236	SampType: LCS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123236
Client ID: LCSW	Batch ID: R123236	TestNo: EPA 218.6	Analysis Date: 4/9/2018	SeqNo: 2985456
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.082	0.20 5.000 0	102 90 110	
Sample ID MB-R123236	SampType: MBLK	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123236
Client ID: PBW	Batch ID: R123236	TestNo: EPA 218.6	Analysis Date: 4/9/2018	SeqNo: 2985457
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID N029634-003AMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123236
Client ID: ZZZZZZ	Batch ID: R123236	TestNo: EPA 218.6	Analysis Date: 4/9/2018	SeqNo: 2985459
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	3.988	0.20 1.000 3.019	96.9 90 110	
Sample ID N029634-003AMSD	SampType: MSD	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123236
Client ID: ZZZZZZ	Batch ID: R123236	TestNo: EPA 218.6	Analysis Date: 4/9/2018	SeqNo: 2985460
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	4.044	0.20 1.000 3.019	102 90 110 3.988	1.38 20
Sample ID N029640-001CMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123236
Client ID: ZZZZZZ	Batch ID: R123236	TestNo: EPA 218.6	Analysis Date: 4/9/2018	SeqNo: 2985464
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1.869	0.20 1.000 0.7861	108 90 110	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

 Calculations are based on raw values

 CALIFORNIA | P:562.219.7435
 F:562.219.7436

 11110 Artesia Blvd., Ste B, Cerritos, CA 90703
 NEVADA | P:702.307.2659

 511 W. Post Rd., Las Vegas,

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N029640 **Project:** PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID N029634-001ADUP	SampType: DUP	TestCode: 218.6_W	U_P Units: µg/L		Prep Da	te:		RunNo: 123	3236	
Client ID: ZZZZZZ	Batch ID: R123236	TestNo: EPA 218	.6		Analysis Da	te: 4/9/201	8	SeqNo: 298	5466	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexavalent Chromium	1.616	0.20					1.608	0.496	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

ASSET La	boratories			Print Date: 20-Apr-18					
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-572					
Lab Order:	N029640			Collection Date: 4/6/2018 6:20:00 PM					
Project:	PG&E Topock,	680375.02.IM.OP	.00		M	atrix: WAT	ER		
Lab ID:	N029640-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TURBIDITY									
				SIV	1 2130B				
RunID: NV00)922-WC_180407B	QC Batch: R1	23202		PrepD	ate		Analyst: QBM	
Turbidity		0.59	0.10	0.10		NTU	1	4/7/2018 10:00 AM	

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO

Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029640

640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 2130_W

Sample ID MB-R123202 Client ID: PBW	SampType: MBLK Batch ID: R123202	TestCode: 2130_W Units: NTU TestNo: SM 2130B <th>Prep Date: Analysis Date: 4/7/2018</th> <th>RunNo: 123202 SeqNo: 2983325</th>	Prep Date: Analysis Date: 4/7/2018	RunNo: 123202 SeqNo: 2983325
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	ND	0.10		
Sample ID N029640-001BDUP Client ID: ZZZZZZ	SampType: DUP Batch ID: R123202	TestCode: 2130_W Units: NTU TestNo: SM 2130B	Prep Date: Analysis Date: 4/7/2018	RunNo: 123202 SeqNo: 2983327
•	1 31	-	•	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 20-Apr-18

CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-572					
Lab Order:	N029640		Collection Date: 4/6/2018 6:20:00 PM						
Project:	PG&E Topock,	680375.02.IM.OP	P. 00		Ma	atrix: WAT	ER		
Lab ID:	N029640-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
ANIONS BY I	ON CHROMATOGE	RAPHY							
				EP	A 300.0				
RunID: NV00	922-IC8_180409A	QC Batch: R1:	23261		PrepD	ate		Analyst: RAB	
Fluoride		2.6	0.032	0.50		mg/L	5	4/9/2018 05:06 PM	
ANIONS BY I	ON CHROMATOGE	RAPHY							
				EP	A 300.0				
RunID: NV00	922-IC8_180409A	QC Batch: R1:	23261		PrepD	ate		Analyst: RAB	
Sulfate		510	1.1	25		mg/L	50	4/10/2018 12:14 AM	

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N029640

PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_FPGE

Sample ID MB-R123261_F	SampType: MBLK	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123261
Client ID: PBW	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987394
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	ND	0.10		
Sample ID LCS-R123261_F	SampType: LCS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123261
Client ID: LCSW	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987395
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	1.269	0.10 1.250 0	102 90 110	
Sample ID N029510-007BMS	SampType: MS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123261
Client ID: ZZZZZZ	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987408
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	8.074	0.50 6.250 2.515	88.9 80 120	
Sample ID N029510-007BMSD	SampType: MSD	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123261
Client ID: ZZZZZZ	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987409
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	8.153	0.50 6.250 2.515	90.2 80 120 8.074	0.974 20
Sample ID N029510-011BDUP	SampType: DUP	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 123261
Client ID: ZZZZZZ	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987410
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	2.490	0.50	2.727	9.09 20

Qualifiers:

ND

B Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Calculations are based on raw values NEVADA | P:702.307.2659 F:702.307.2691

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N029640

Project: PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_SO4PGE

Sample ID MB-R123261_SO4	SampType: MBLK	TestCode: 300_W_SO4P Units: mg/L	W_SO4P Units: mg/L Prep Date:			
Client ID: PBW	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987458		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Sulfate	ND	0.50				
Sample ID LCS-R123261_SO4	SampType: LCS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123261		
Client ID: LCSW	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987459		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Sulfate	3.987	0.50 4.000 0	99.7 90 110			
Sample ID N029510-008BMS	SampType: MS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123261		
Client ID: ZZZZZZ	Batch ID: R123261	TestNo: EPA 300.0	A 300.0 Analysis Date: 4/9/2018			
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Sulfate	2235.240	100 800.0 1424	101 80 120			
Sample ID N029510-008BMSD	SampType: MSD	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123261		
Client ID: ZZZZZZ	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987470		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Sulfate	2220.240	100 800.0 1424	99.6 80 120 2235	0.673 20		
Sample ID N029510-011BDUP	SampType: DUP	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123261		
Client ID: ZZZZZZ	Batch ID: R123261	TestNo: EPA 300.0	Analysis Date: 4/9/2018	SeqNo: 2987476		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Sulfate	2424.020	100	2430	0.244 20		

Qualifiers:

ND

B Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

- E Value above quantitation range
 - R RPD outside accepted recovery limits

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

 Calculations are based on raw values

 435
 F:562.219.7436

 NEVADA | P:702.307.2659
 F:702.307.2651

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 20-Apr-18					
CLIENT:	CH2M HILL			С	lient Samp	le ID: SC-7	00B-WDR	-572	
Lab Order:	N029640				Collection	Date: 4/6/2	018 6:20:0	0 PM	
Project:	PG&E Topock,	680375.02.IM.OF	P.00		Μ	atrix: WAT	ER		
Lab ID:	N029640-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
NITRATE/NIT	RITE-N BY CADMI	UM REDUCTION							
				SM4	500-NO3F				
RunID: NV00	922-WC_180413B	QC Batch: R1	23352		PrepD	ate		Analyst: QBM	
Nitrate/Nitrite	as N	2.7	0.16	0.25		mg/L	5	4/13/2018	

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order:

N029640

PG&E Topock, 680375.02.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 4500N03F_W

			Drag Data:	Durbles (202020		
Sample ID MB-R123352	SampType: MBLK	TestCode: 4500N03F_W Units: mg/L	Prep Date:	RunNo: 123352		
Client ID: PBW	Batch ID: R123352	TestNo: SM4500-NO3	Analysis Date: 4/13/2018	SeqNo: 2991904		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate/Nitrite as N	ND	0.050				
Sample ID LCS-R123352	SampType: LCS	TestCode: 4500N03F_W Units: mg/L	Prep Date:	RunNo: 123352		
Client ID: LCSW	Batch ID: R123352	TestNo: SM4500-NO3	Analysis Date: 4/13/2018	SeqNo: 2991905		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate/Nitrite as N	0.508	0.050 0.5000 0	102 85 115			
Sample ID N029640-001DDUP	SampType: DUP	TestCode: 4500N03F_W Units: mg/L	Prep Date:	RunNo: 123352		
Client ID: ZZZZZZ	Batch ID: R123352	TestNo: SM4500-NO3	Analysis Date: 4/13/2018	SeqNo: 2991907		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate/Nitrite as N	2.986	0.25	2.730	8.98 20		
Sample ID N029632-003CMS	SampType: MS	TestCode: 4500N03F_W Units: mg/L	Prep Date:	RunNo: 123352		
Client ID: ZZZZZZ	Batch ID: R123352	TestNo: SM4500-NO3	Analysis Date: 4/13/2018	SeqNo: 2991911		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate/Nitrite as N	5.864	0.25 2.500 3.317	102 75 125			
Sample ID N029632-003CMSD	SampType: MSD	TestCode: 4500N03F_W Units: mg/L	Prep Date:	RunNo: 123352		
Client ID: ZZZZZZ	Batch ID: R123352	TestNo: SM4500-NO3	Analysis Date: 4/13/2018	SeqNo: 2991912		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate/Nitrite as N	5.715	0.25 2.500 3.317	95.9 75 125 5.864	2.57 20		

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- E Value above quantitation range
- R RPD outside accepted recovery limits

3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Calculations are based on raw values NEVADA | P:702.307.2659 F:702.307.2691

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CH2MHILL

CHAIN OF CUSTODY RECORD

Page 1 OF 1

Project Name PG&E Topock		Co	ontainer:	1 Liter Poly	1 Liter Poly	1 Liter Poly	250 ml Poly	1 Liter Poly	1 Liter Poly	500 ml Poly	1 Liter Poly			
Location PG&E Topock Project Number 680375.02.IM.O	P.00	Preser	vatives:	4°C Lab H2SO4	4°C	4°C	4°C	4°C Lab H2SO4	4°C	4°C	4°C			
Project Manager Scott O'Donnel	11	j	Filtered:	NA	NA	NA	NA	NA	NA	NA	NA			
Sample Manager Shawn Duffy		Holdin	ng Time:	28	7	7	1	28	7	180	7			
Task Order Project IM3PLANT-ARAR-WDR-5 Turnaround Time 10 Days Shipping Date: COC Number: 572		TIME	Matrix	AMMONIA (SM4500NH3D)	Anions (E300.0) Fl. SO4	CONDUCTIVITY (E120.1)	E218.6 Lab Filtered	Nitrate/Nitrite (SM4500NO3-E)	TDS (SM2540C)	Total Metals(E200.7 and E200.8) See list below	Turbidity (SM2130)	-	Number of Containers	COMMENTS
SC-700B-WDR-572	4-6-18	1820	Water	x	X	X	X	X	X	X	X	N029640 - 01	4	
												TOTAL NUMBER OF CONTAINERS	4	

-	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by	Formell	4-6-18 1820		ATTN:	SC-700B Total metals List:
Sampled by	()	4-6-18 1820	Method of Shipment: FedEx		Cr,Al,Sb,As,Ba,B,Cu,Pb,Mn,Mo,Ni,Fe,Zn
Relinquished by	The second secon		On Ice: Ves / no 2-9 42	Sample Custody	
Received by	galg	46/14 1428	Airbill No:	and	
Relinguished by	By veg	41615 2050	Lab Name: ASSET Laboratories		Report Copy to
		1/6/14 2050		Marlon Cartin	Doug Scott
Received by	sapaty	416/17 2050	Lab Phone: (702) 307-2659		(970) 731-0636
10	\bigcirc	•			

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Received/Opened On:	4/6/2018				Workorder:	N029640		
Rep sample Temp (Deg C):	2.9				IR Gun ID:	2		
Temp Blank:	✓ Yes	🗌 No						
Carrier name:	ASSET							
Last 4 digits of Tracking No.:	NA			Packing	g Material Used:	None		
Cooling process:	✓ Ice	Ice Pack	Dry Ice	Other	None None			
		<u>S</u> ;	ample Receip	t Checklis	<u>st</u>			
1. Shipping container/cooler in g	good conditio	on?			Yes 🗹	No 🗌	Not Present	
2. Custody seals intact, signed,	dated on sh	ippping container/	cooler?		Yes	No 🗌	Not Present	✓
3. Custody seals intact on samp	ble bottles?				Yes	No 🗌	Not Present	✓
4. Chain of custody present?				Yes 🗹	No 🗌			
5. Sampler's name present in C	OC?			Yes 🗹	No 🗌			
6. Chain of custody signed whe	ed and received?		Yes 🗹	No 🗌				
7. Chain of custody agrees with	sample labe	els?			Yes 🗹	No 🗌		
8. Samples in proper container/l	bottle?				Yes 🗹	No 🗌		
9. Sample containers intact?					Yes 🗹	No 🗌		
10. Sufficient sample volume fo	r indicated te	est?			Yes 🗹	No 🗌		
11. All samples received within	holding time	?			Yes 🗹	No 🗌		
12. Temperature of rep sample	or Temp Bla	nk within accepta	ble limit?		Yes 🗹	No 🗌	NA	
13. Water - VOA vials have zero	o headspace	?			Yes	No 🗌	NA	✓
14. Water - pH acceptable upor	n receipt?				Yes	No 🗹	NA	
Example: pH > 12 for (CN	N,S); pH<2 f	or Metals						
15. Did the bottle labels indicate	e correct pres	servatives used?			Yes	No 🗌	NA	✓
16. Were there Non-Conforman		•			Yes 🗹	No 🗌	NA	
W	as Client no	tified?			Yes 🗌	No 🗌	NA	✓
			rved with Ammoni 103 and for NH3/N		O4. pH adjusted t	to <2.		
					- ,			

JK 4/19/2018 YR

₩ 04/20/2018

ASSET Laboratories 3151-3153 W Post Rd., Las Vegas, NV 89118 www.atl-labs.com TEL: 7023072659 FAX: 7023072691

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

QC Level: Level IV

Subcontractor:			
BC Labs	TEL: (661) 327-4911	Field Sampler: SIGNED	
4100 Atlas Court	FAX: (661) 327-1918		
Bakersfield, CA 93308	Acct #:		09-Apr-18

					Requested Tests
Sample ID	Matrix	Date Collected	Bottle Type	SM4500-NH3D	
N029640-001A / SC-700B-WDR-572	Water	4/6/2018 6:20:00 PM	32OZP	1	

General Comments: Please email sample receipt acknowledgement to the PM.

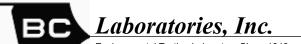
Please use PO#:N29640A Please email Invoices and Account Receivable Statements to elvira@assetlaboratories.com. For questions, call Marlon at (702)-307-2659. Please e-mail results to reports.lv@assetlaboratories.com by: Normal TAT.

Please analyze for Ammonia by SM4500NH3D. EDD Requirement Labspec7 edata.

				GSO #: 540127800	
	4.4.2		Date/Time		Date/Time
Relinquished by:	Y	4/9/2018	17:00	Received by:	
Relinquished by:				Received by:	

List of Analysts

ASSET Laboratories Work Order: N029640


NAME	TEST METHOD
Quennie Manimtim	SM 4500-NO3F
Claire Ignacio	EPA 200.7, EPA 200.8
Ria Abes	EPA 218.6, EPA 300.0
Lilia Ramit	EPA 120.1, SM 2540C, SM 2130B

CALIFORNIA 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

Environmental Testing Laboratory Since 1949

Date of Report: 05/09/2018

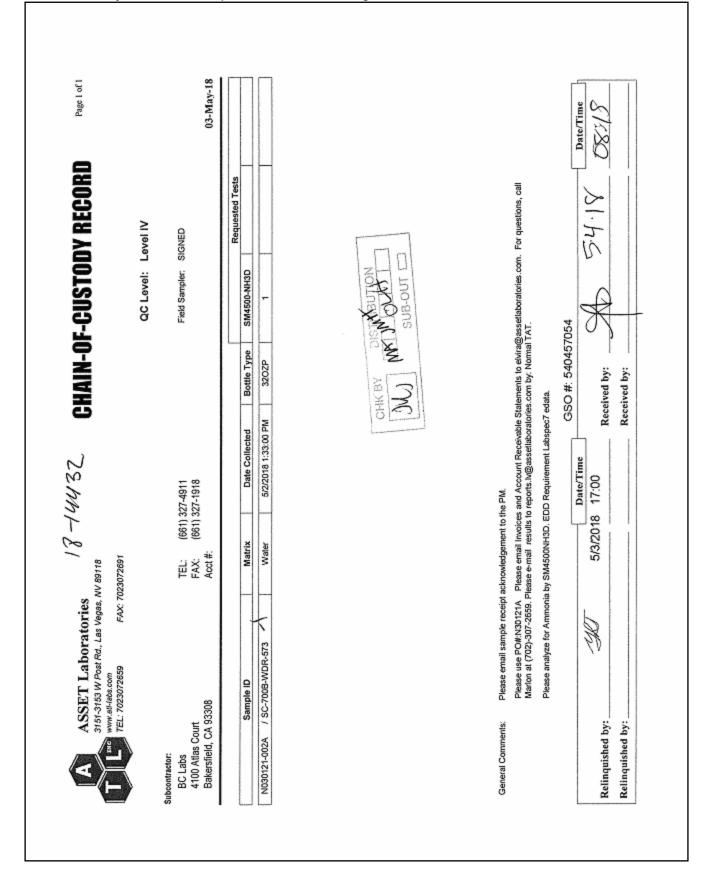
Marlon Cartin

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Client Project:N030121BCL Project:Level IVBCL Work Order:1814432Invoice ID:B303233

Enclosed are the results of analyses for samples received by the laboratory on 5/4/2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Contact Person: Vanessa Sandoval Client Service Rep

Stuart Buttram Technical Director

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Chain of Custody and Cooler Receipt Form for 1814432 Page 1 of 2

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1814432 Page 2 of 2

Submission #: 3-14432				RECEIPT	-					
SHIPPING INFOR Fed Ex	MATION Hand Specify		<u>56</u>	Ice Che		None 🗆		, I	REELIC ESDI W/	NOD
Refrigerant: Ica Blue Ice I] None		Other 🗆	Comm						
Custody Seals Ice Chest []	Containt Intect? Yes		None	Com	nents:					
All samples received? Yes No 🗆	All samples	containers	intact? Y	No No		Descript	ion(s) matc	h COC? Y	es D No	
	nissivity: emperature:			pe,		eter ID: 	274	Date/Tim Analyst I		14-18 208:1
					SAMPLE	NUMBERS		~		
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
OT PE UNPRES										
40z/80z/160z PE UNPRES										
2oz Cr**										
OT INORGANIC CHEMICAL METALS										
INORGANIC CHEMICAL METALS 402 / 802 / 160	2									
PT CYANIDE	A									
PT NITROGEN FORMS	IN_									
PT TOTAL SULFIDE										
202. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
40ml VOA VIAL TRAVEL BLANK										+
40ml VOA VIAL					·*···					
QT EPA 1664										
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
QT EPA 508/608/8080										
QT EPA 515.1/8150										
QT EPA 525										
OT EPA 525 TRAVEL BLANK										
40ml EPA 547										
0ml EPA 531.1										
Baz EPA 548										
QT EPA 549										
QT EPA 8015M										
QT EPA 8270										
Soz / 16oz / 32oz AMBER										
30z / 160z / 320z JAR										
SOIL SLEEVE										
PCB VIAL						· · · · · · · · · · · · · · · · · · ·				
PLASTIC BAG										
IEDLAR BAG										
ZERROUS IRON										
INCORE								-		_
MART KIT										
SUMMA CANISTER										
	and the second second second second	and the second se	and the second sec						a second part of the second part	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report apply to the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 41000742710 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Laboratories, Inc. Environmental Testing Laboratory Since 1949

ASSET Laboratories 3151-3153 W. Post Rd

Las Vegas, NV 89118

Reported:05/09/201813:33Project:Level IVProject Number:N030121Project Manager:Marlon Cartin

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1814432-01	COC Number:		Receive Date:	05/04/2018 08:15
	Project Number:		Sampling Date:	05/02/2018 13:33
	Sampling Location:		Sample Depth:	
	Sampling Point:	N030121-002A / SC-700B-WDR-573	Lab Matrix:	Water Water
	Sampled By:		Sample Type:	vvaler

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

05/09/2018 13:33 Reported: Project: Level IV Project Number: N030121 Project Manager: Marlon Cartin

Water Analysis (General Chemistry)

BCL Sample ID:	1814432-01	Client Sampl	e Name:	N030121-	-002A / SC-	-700B-WDR-573,	5/2/2018 1	:33:00PM	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Ammonia as N (Distille	d)	ND	mg/L	0.20		SM-4500-NH3G	ND		1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	SM-4500-NH3G	05/07/18 08:56	05/07/18 16:15	JMH	SC-1	1	B012922

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report apply to the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 41000742710 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Report ID: 1000742710

Page 6 of 10

Environmental Testing Laboratory Since 1949

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:05/09/201813:33Project:Level IVProject Number:N030121Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B012922						
Ammonia as N (Distilled)	B012922-BLK1	ND	mg/L	0.20		

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

05/09/2018 13:33 Reported: Project: Level IV Project Number: N030121 Project Manager: Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

								Control L	<u>imits</u>		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: B012922											
Ammonia as N (Distilled)	B012922-BS1	LCS	1.0014	1.0000	mg/L	100		85 - 115			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Environmental Testing Laboratory Since 1949

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:05/09/201813:33Project:Level IVProject Number:N030121Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

									<u>Cont</u>	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
1	—								10010	10.00	
QC Batch ID: B012922	Use	ed client samp	ole: Y - Des	cription: NU	30121-002A	/ SC-700E	B-WDR	-573, 05/02	/2018	13:33	
Ammonia as N (Distilled)	DUP	1814432-01	0.14580	ND		mg/L			20		
	MS	1814432-01	0.14580	1.1318	1.0000	mg/L		98.6		80 - 120	
	MSD	1814432-01	0.14580	1.3108	1.0000	mg/L	14.7	116	20	80 - 120	

May 17, 2018

Doug Scott CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (970) 731-0636 FAX: (510) 622-9129

Workorder No.: N030121

RE: PG&E Topock, 680375.03.IM.OP.00

Attention: Doug Scott

Enclosed are the results for sample(s) received on May 02, 2018 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Nancy Situcar For

Quennie Manimtim Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

 CLIENT:
 CH2M HILL

 Project:
 PG&E Topock, 680375.03.IM.OP.00

 Lab Order:
 N030121

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Subcontracted Analyses:

Ammonia was subcontracted to BC Labs- Bakersfield,CA.

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

4

N030121-002E SC-700B-WDR-573

5/2/2018

CLIENT: Project: Lab Order: Contract No:	CH2M HILL PG&E Topock, 680375 N030121 IM3PLANT-AR	5.03.IM.OP.00	Work ()rder Sampl	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N030121-001A	SC-100B-WDR-573	Water	5/2/2018 1:30:00 PM	5/2/2018	5/17/2018
N030121-001B	SC-100B-WDR-573	Water	5/2/2018 1:30:00 PM	5/2/2018	5/17/2018
N030121-001C	SC-100B-WDR-573	Water	5/2/2018 1:30:00 PM	5/2/2018	5/17/2018
N030121-002A	SC-700B-WDR-573	Water	5/2/2018 1:33:00 PM	5/2/2018	5/17/2018
N030121-002B	SC-700B-WDR-573	Water	5/2/2018 1:33:00 PM	5/2/2018	5/17/2018
N030121-002C	SC-700B-WDR-573	Water	5/2/2018 1:33:00 PM	5/2/2018	5/17/2018
N030121-002D	SC-700B-WDR-573	Water	5/2/2018 1:33:00 PM	5/2/2018	5/17/2018

Water

5/2/2018 1:33:00 PM

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 Y
 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

5/17/2018

ANALYTICAL RESULTS

ASSET Lab	ooratories				Print D	ate: 17-N	May-18
CLIENT:	CH2M HILL			Client Samp	le ID: SC-10	0B-WDR	2-573
Lab Order:	N030121			Collection	Date: 5/2/20	18 1:30:0	00 PM
Project:	PG&E Topock,	680375.03.IM.OP.00		Μ	atrix: WATE	ER	
Lab ID:	N030121-001						
Analyses		Result MI	DL PQL	. Qual	Units	DF	Date Analyzed
SPECIFIC CO	NDUCTANCE						
				EPA 120.1			
RunID: NV00	922-WC_180503E	QC Batch: R12382	9	Prepl	Date		Analyst: LR
Specific Cond	ductance	7200 0	.10 0.10	0	umhos/cm	1	5/3/2018 02:00 PN

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lat	ooratories			Prii	nt Date: 17-	May-18
CLIENT:	CH2M HILL		C	Client Sample ID: SO	C-700B-WDI	R-573
Lab Order:	N030121			Collection Date: 5/	2/2018 1:33:	00 PM
Project:	PG&E Topock,	680375.03.IM.OP.00		Matrix: W	ATER	
Lab ID:	N030121-002					
Analyses		Result MD	L PQL	Qual Units	DF	Date Analyzed
SPECIFIC CO	NDUCTANCE					
			EF	PA 120.1		
RunID: NV00	922-WC_180503E	QC Batch: R123829		PrepDate		Analyst: LR
Specific Con	ductance	7000 0.1	0 0.10	umhos/ci	m 1	5/3/2018 02:00 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

7

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID N030123-003BDUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 123829
Client ID: ZZZZZZ	Batch ID: R123829	TestNo: EPA 120.1	Analysis Date: 5/3/2018	SeqNo: 3015754
Analyte	Result	PQL SPK value SPK Ref Val %F	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	16470.000	0.10	16420	0.304 2
Sample ID N030123-010BDUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 123829
Sample ID N030123-010BDUP Client ID: ZZZZZZ	SampType: DUP Batch ID: R123829	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Prep Date: Analysis Date: 5/3/2018	RunNo: 123829 SeqNo: 3015762
	1 31	TestNo: EPA 120.1		

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

E Value above quantitation range

RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

ASSET Lab		Print Date: 17-May-18							
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-573					
Lab Order:	N030121			Collection Date: 5/2/2018 1:30:00 PM					
Project:	PG&E Topock,	680375.03.IM.OI	P.00		Ma	atrix: W	ATER		
Lab ID:	N030121-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TOTAL FILTE	RABLE RESIDUE								
				S	M2540C				
RunID: NV00	922-WC_180507J	983		PrepDate 5/7		5/7/2018	Analyst: LR		
Total Dissolve Filterable)	ed Solids (Residue,	50		mg/L	1	5/7/2018 01:18 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab		Print Date: 17-May-18							
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-573					
Lab Order:	N030121			Collection Date: 5/2/2018 1:33:00 PM					
Project:	PG&E Topock,	580375.03.IM.OP.00 Matrix: WATER							
Lab ID:	N030121-002								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TOTAL FILTE	RABLE RESIDUE								
				SI	M2540C				
RunID: NV00	922-WC_180507J		PrepDate 5/		5/7/2018	Analyst: LR			
Total Dissolve Filterable)	ed Solids (Residue,	50		mg/L	1	5/7/2018 01:18 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030121

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 160.1_2540C_W

Sample ID LCS-67983	SampType: LCS	TestCode: 160.1_2540C Units: mg/L	Prep Date: 5/7/2018	RunNo: 123934
Client ID: LCSW	Batch ID: 67983	TestNo: SM2540C	Analysis Date: 5/7/2018	SeqNo: 3021096
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera 991.000	10 1000 0	99.1 80 120	
Sample ID MB-67983	SampType: MBLK	TestCode: 160.1_2540C Units: mg/L	Prep Date: 5/7/2018	RunNo: 123934
Client ID: PBW	Batch ID: 67983	TestNo: SM2540C	Analysis Date: 5/7/2018	SeqNo: 3021097
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera ND	10		
Sample ID N030186-002BDL	JP SampType: DUP	TestCode: 160.1_2540C Units: mg/L	Prep Date: 5/7/2018	RunNo: 123934
Client ID: ZZZZZZ	Batch ID: 67983	TestNo: SM2540C	Analysis Date: 5/7/2018	SeqNo: 3021108
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera 4275.000	50	4125	3.57 5

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values
 - ASSET LABORATORIES
 - CALIFORNIA P:562.219.7435 F:562.219.7436 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

E Value above quantitation range

RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 17-May-18

CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-573					
Lab Order:	N030121			Collection Date: 5/2/2018 1:33:00 PM					
Project:	PG&E Topock,	680375.03.IM.OP	.00		Matrix: V	VATER			
Lab ID:	N030121-002								
Analyses		Result	MDL	PQL	Qual Units	DF	Date Analyzed		
TOTAL META	ALS BY ICP								
				EP/	A 200.7				
RunID: NV00	922-ICP2_180515D	QC Batch: 680)38		PrepDate	5/10/2018	Analyst: CEI		
Aluminum		ND	40	50	µg/L	1	5/16/2018 01:45 AM		
Boron		1100	74	100	µg/L	1	5/16/2018 01:45 AM		
Iron		ND 18 20 µg/L 1 5/16/2018 01:45 AM							

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WPGEPPB

Sample ID MB-68038	SampType: MBLK	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 5/10/2018	RunNo: 124085
Client ID: PBW	Batch ID: 68038	TestNo: EPA 200.7	Analysis Date: 5/16/2018	SeqNo: 3028410
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	50		
Boron	ND	100		
Iron	ND	20		
Sample ID LCS1-68038	SampType: LCS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 5/10/2018	RunNo: 124085
Client ID: LCSW	Batch ID: 68038	TestNo: EPA 200.7	Analysis Date: 5/16/2018	SeqNo: 3028411
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	10032.340	50 10000 0	100 85 115	
Boron	4612.856	100 5000 0	92.3 85 115	
Iron	107.088	20 100.0 0	107 85 115	
Sample ID N030121-002E-MS	1 SampType: MS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 5/10/2018	RunNo: 124085
Client ID: ZZZZZZ	Batch ID: 68038	TestNo: EPA 200.7	Analysis Date: 5/16/2018	SeqNo: 3028415
	Batch ID: 68038 Result	TestNo: EPA 200.7 PQL SPK value SPK Ref Val	Analysis Date: 5/16/2018 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 3028415 %RPD RPDLimit Qual
Analyte				
Analyte Aluminum	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	
Analyte Aluminum Boron	Result 10406.765	PQL SPK value SPK Ref Val 50 10000 0	%REC LowLimit HighLimit RPD Ref Val	
Client ID: ZZZZZ Analyte Aluminum Boron Iron Sample ID N030121-002E-MS	Result 10406.765 5731.148 118.613	PQL SPK value SPK Ref Val 50 10000 0 100 5000 1063	%REC LowLimit HighLimit RPD Ref Val 104 75 125 93.4 75 125	
Analyte Aluminum Boron Iron Sample ID N030121-002E-MS	Result 10406.765 5731.148 118.613	PQL SPK value SPK Ref Val 50 10000 0 100 5000 1063 20 100.0 0	%REC LowLimit HighLimit RPD Ref Val 104 75 125 93.4 75 125 119 75 125	%RPD RPDLimit Qual
Analyte Aluminum Boron Iron	Result 10406.765 5731.148 118.613 D SampType: MSD	PQL SPK value SPK Ref Val 50 10000 0 100 5000 1063 20 100.0 0	%REC LowLimit HighLimit RPD Ref Val 104 75 125 93.4 75 125 119 75 125	%RPD RPDLimit Qual
Analyte Aluminum Boron Iron Sample ID N030121-002E-MS Client ID: ZZZZZZ	Result 10406.765 5731.148 118.613 D SampType: MSD Batch ID: 68038	PQL SPK value SPK Ref Val 50 10000 0 100 5000 1063 20 100.0 0 TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7	%REC LowLimit HighLimit RPD Ref Val 104 75 125 93.4 75 125 119 75 125 Prep Date: 5/10/2018 Analysis Date: 5/16/2018	%RPD RPDLimit Qual RunNo: 124085 SeqNo: 3028416
Analyte Aluminum Boron Iron Sample ID N030121-002E-MS Client ID: ZZZZZZ Analyte	Result 10406.765 5731.148 118.613 D SampType: MSD Batch ID: 68038 Result	PQL SPK value SPK Ref Val 50 10000 0 100 5000 1063 20 100.0 0 TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7 PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val 104 75 125 93.4 75 125 119 75 125 Prep Date: 5/10/2018 Analysis Date: 5/16/2018 %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual RunNo: 124085 SeqNo: 3028416 %RPD RPDLimit Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit R
- E Value above quantitation range
 - R RPD outside accepted recovery limits

- Calculations are based on raw values
- ASSET LABORATORIES CALIFORNIA |1 11110 Artesia
 - CALIFORNIA P:562.219.7435 F:562.219.7436 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	oratories			Print Date: 17-May-18					
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-573					
Lab Order:	N030121			Collection Date: 5/2/2018 1:30:00 PM					
Project:	PG&E Topock,	680375.03.IM.OP.	P.00 Matrix: WATER						
Lab ID:	N030121-001								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TOTAL META	LS BY ICPMS								
				EP	A 200.8				
RunID: NV00	922-ICP7_180515E	QC Batch: 680	83		PrepD	ate	5/15/2018	Analyst: CEI	
Manganese		7.2	7.2 0.26 0.50 μg/L 1 5/15/2018 09:44 PM						

Qualifiers:

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 17-May-18

								•	
CLIENT:	CH2M HILL			Cl	ient Sample	ID: SC	-700B-WDR	-573	
Lab Order:	N030121			Collection Date: 5/2/2018 1:33:00 PM					
Project:	PG&E Topock,	680375.03.IM.OF	P .00		Mat	rix: WA	ATER		
Lab ID:	N030121-002								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TOTAL META	LS BY ICPMS								
				EP	A 200.8				
RunID: NV00	922-ICP7_180515E	QC Batch: 68	083		PrepDa	te	5/15/2018	Analyst: CEI	
Antimony		ND	0.16	0.50		µg/L	1	5/15/2018 09:55 PM	
Arsenic		ND	0.081	0.10		µg/L	1	5/15/2018 09:55 PM	
Barium		19	0.15	1.0		µg/L	1	5/15/2018 09:55 PM	
Copper		ND	0.55	1.0		µg/L	1	5/15/2018 09:55 PM	
Lead		ND	0.13	1.0		µg/L	1	5/15/2018 09:55 PM	
Manganese		9.1	0.26	0.50		µg/L	1	5/15/2018 09:55 PM	
Molybdenum		22	0.21	0.50		µg/L	1	5/15/2018 09:55 PM	
Nickel		ND	0.26	1.0		µg/L	1	5/15/2018 09:55 PM	
Zinc		ND	2.3	10		µg/L	1	5/15/2018 09:55 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID MB-68083	SampType: MBLK	TestCode:	200.8_W	Units: µg/L		Prep Date:	5/15/2018	RunNo: 124	4087	
Client ID: PBW	Batch ID: 68083	TestNo:	EPA 200.8			Analysis Date:	5/15/2018	SeqNo: 302	27853	
Analyte	Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	ND	0.50								
Arsenic	ND	0.10								
Barium	ND	1.0								
Copper	ND	1.0								
Lead	ND	1.0								
Manganese	ND	0.50								
Molybdenum	ND	0.50								
Nickel	ND	1.0								
Zinc	ND	10								
Sample ID LCS-68083	SampType: LCS	TestCode:	200.8_W	Units: µg/L		Prep Date:	5/15/2018	RunNo: 124	4087	
Client ID: LCSW	Batch ID: 68083	TestNo:	EPA 200.8			Analysis Date:	5/15/2018	SeqNo: 302	27854	
Analyte	Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	9.368	0.50	10.00	0	93.7	85	115			
Arsenic	10.243	0.10	10.00	0	102	85	115			
Barium	10.075	1.0	10.00	0	101	85	115			
Copper	10.538	1.0	10.00	0	105	85	115			
Lead	9.560	1.0	10.00	0	95.6	85	115			
	9.560 103.502	1.0 0.50	10.00 100.0	0 0	95.6 104	85 85	115 115			
Manganese										
Manganese Molybdenum	103.502	0.50	100.0	0	104	85	115			
Lead Manganese Molybdenum Nickel Zinc	103.502 9.838	0.50 0.50	100.0 10.00	0 0	104 98.4	85 85	115 115			
Manganese Molybdenum Nickel	103.502 9.838 10.906	0.50 0.50 1.0	100.0 10.00 10.00 100.0	0 0 0	104 98.4 109	85 85 85	115 115 115 115 115	RunNo: 12 4	4087	
Manganese Molybdenum Nickel Zinc	103.502 9.838 10.906 91.572	0.50 0.50 1.0 10 TestCode:	100.0 10.00 10.00 100.0	0 0 0 0	104 98.4 109 91.6	85 85 85 85	115 115 115 115 5/15/2018	RunNo: 124 SeqNo: 30 2		

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit Calculations are based on raw values

> CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 n" EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET LABORATORIES

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID N030186-001D-MS	SampType: MS	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	te: 5/15/20	18	RunNo: 124	1087	
Client ID: ZZZZZZ	Batch ID: 68083	Test	lo: EPA 200.8	3		Analysis Dat	te: 5/15/20	18	SeqNo: 302	27868	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	10.094	0.50	10.00	0	101	75	125				
Arsenic	12.108	0.10	10.00	1.467	106	75	125				
Barium	37.164	1.0	10.00	27.94	92.3	75	125				
Copper	22.278	1.0	10.00	13.65	86.3	75	125				
Lead	9.868	1.0	10.00	0	98.7	75	125				
Molybdenum	19.297	0.50	10.00	7.633	117	75	125				
Nickel	21.089	1.0	10.00	12.48	86.0	75	125				
Zinc	121.038	10	100.0	11.54	109	75	125				
Sample ID N030186-001D-MS	SampType: MS	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	te: 5/15/20	18	RunNo: 124	4087	
Client ID: ZZZZZZ	Batch ID: 68083	Test	lo: EPA 200.8	3		Analysis Dat	te: 5/15/20	18	SeqNo: 302	27869	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Manganese	Result 402.366	PQL 2.5	SPK value 100.0	SPK Ref Val 306.9	%REC 95.5	LowLimit 75	HighLimit 125	RPD Ref Val	%RPD	RPDLimit	Qual
•	402.366	2.5				75	-		%RPD RunNo: 12 4		Qual
Manganese	402.366	2.5 TestCoo	100.0	306.9 Units: µg/L	95.5	75	125 te: 5/15/20	118		4087	Qual
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ	402.366 SampType: MSD	2.5 TestCoo	100.0 de: 200.8_W lo: EPA 200.8	306.9 Units: µg/L	95.5	75 Prep Dat Analysis Dat	125 te: 5/15/20 te: 5/15/20	118	RunNo: 12 4	4087	Qual
Manganese Sample ID N030186-001D-MSD	402.366 SampType: MSD Batch ID: 68083	2.5 TestCoo TestN	100.0 de: 200.8_W lo: EPA 200.8	306.9 Units: µg/L 3	95.5	75 Prep Dat Analysis Dat	125 te: 5/15/20 te: 5/15/20	118 118	RunNo: 124 SeqNo: 302	4087 27870	
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ Analyte	402.366 SampType: MSD Batch ID: 68083 Result	2.5 TestCoo TestN PQL	100.0 de: 200.8_W No: EPA 200.8 SPK value	306.9 Units: µg/L 3 SPK Ref Val	95.5 %REC	75 Prep Dat Analysis Dat LowLimit	125 ite: 5/15/20 ite: 5/15/20 HighLimit	118 118 RPD Ref Val	RunNo: 12 4 SeqNo: 302 %RPD	4087 27870 RPDLimit	
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ Analyte Antimony Arsenic	402.366 SampType: MSD Batch ID: 68083 Result 10.114	2.5 TestCoo TestN PQL 0.50	100.0 de: 200.8_W No: EPA 200.8 SPK value 10.00	306.9 Units: µg/L 3 SPK Ref Val 0	95.5 %REC 101	75 Prep Dat Analysis Dat LowLimit 75	125 te: 5/15/20 te: 5/15/20 HighLimit 125	918 918 RPD Ref Val 10.09	RunNo: 124 SeqNo: 302 %RPD 0.193	4087 27870 RPDLimit 20	
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ Analyte Antimony	402.366 SampType: MSD Batch ID: 68083 Result 10.114 12.151	2.5 TestCoo TestN PQL 0.50 0.10	100.0 de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00	306.9 Units: μg/L 3 SPK Ref Val 0 1.467	95.5 %REC 101 107	75 Prep Dat Analysis Dat LowLimit 75 75	125 te: 5/15/20 te: 5/15/20 HighLimit 125 125	918 918 RPD Ref Val 10.09 12.11	RunNo: 124 SeqNo: 302 %RPD 0.193 0.357	4087 27870 RPDLimit 20 20	
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ Analyte Antimony Arsenic Barium Copper	402.366 SampType: MSD Batch ID: 68083 Result 10.114 12.151 37.054	2.5 TestCoo TestN PQL 0.50 0.10 1.0	100.0 de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00 10.00	306.9 Units: μg/L 3 SPK Ref Val 0 1.467 27.94	95.5 %REC 101 107 91.2	75 Prep Dat Analysis Dat LowLimit 75 75 75	125 te: 5/15/20 te: 5/15/20 HighLimit 125 125 125	218 218 RPD Ref Val 10.09 12.11 37.16	RunNo: 124 SeqNo: 302 %RPD 0.193 0.357 0.295	4087 27870 RPDLimit 20 20 20	
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ Analyte Antimony Arsenic Barium Copper Lead	402.366 SampType: MSD Batch ID: 68083 Result 10.114 12.151 37.054 22.717	2.5 TestCoo TestN PQL 0.50 0.10 1.0 1.0	100.0 de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00 10.00 10.00	306.9 Units: μg/L 3 SPK Ref Val 0 1.467 27.94 13.65	95.5 %REC 101 107 91.2 90.7	75 Prep Dat Analysis Dat LowLimit 75 75 75 75 75	125 te: 5/15/20 te: 5/15/20 HighLimit 125 125 125 125	118 RPD Ref Val 10.09 12.11 37.16 22.28	RunNo: 124 SeqNo: 302 %RPD 0.193 0.357 0.295 1.95	4087 27870 RPDLimit 20 20 20 20 20	
Manganese Sample ID N030186-001D-MSD Client ID: ZZZZZZ Analyte Antimony Arsenic Barium	402.366 SampType: MSD Batch ID: 68083 Result 10.114 12.151 37.054 22.717 9.939	2.5 TestCoo PQL 0.50 0.10 1.0 1.0 1.0	100.0 de: 200.8_W lo: EPA 200.8 SPK value 10.00 10.00 10.00 10.00 10.00	306.9 Units: μg/L 3 SPK Ref Val 0 1.467 27.94 13.65 0	95.5 %REC 101 107 91.2 90.7 99.4	75 Prep Dat Analysis Dat LowLimit 75 75 75 75 75 75	125 te: 5/15/20 HighLimit 125 125 125 125 125 125	118 RPD Ref Val 10.09 12.11 37.16 22.28 9.868	RunNo: 124 SeqNo: 302 %RPD 0.193 0.357 0.295 1.95 0.721	4087 27870 RPDLimit 20 20 20 20 20 20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

- E Value above quantitation range
- R RPD outside accepted recovery limits

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

CLIENT: CH2M HILL Work Order: N030121 Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID N030186-001D-MSD	SampType: MSD	TestCoo	le: 200.8_W	Units: µg/L		Prep Da	te: 5/15/20	18	RunNo: 124	1087	
Client ID: ZZZZZZ	Batch ID: 68083	TestN	lo: EPA 200.8	5		Analysis Da	te: 5/15/20	18	SeqNo: 302	27871	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	400.866	2.5	100.0	306.9	94.0	75	125	402.4	0.373	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

- E Value above quantitation range
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 17-May-18

CLIENT Lab Ord Project:	ler: N030121	580375.03.IM.OP	Client Sample ID: SC-100B-WDR- Collection Date: 5/2/2018 1:30:00 Matrix: WATER						
Lab ID:	N030121-001								
Analyses	3	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
HEXAV	ALENT CHROMIUM BY IC								
				EP.	A 218.6				
RunID:	NV00922-IC7_180507A	QC Batch: R12	23917		PrepD	ate		Analyst: RAB	
Hexava	alent Chromium	480	3.3	20		µg/L	100	5/7/2018 10:36 AM	
TOTAL	METALS BY ICPMS								
				EP.	A 200.8				
RunID:	NV00922-ICP7_180515E	QC Batch: 680	83		PrepD	ate	5/15/2018	Analyst: CEI	
Chrom	ium	480	0.65	5.0		µg/L	5	5/15/2018 09:50 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd.,
 Ste B,
 Cerritos,
 CA 90703

 ELAP
 Cert
 2921
 EPA ID
 CA01638

ANALYTICAL RESULTS

Print Date: 17-May-18

CLIENT: Lab Order: Project:									
Lab ID:	N030121-002	580575.05.1WI.OF	.00	Matrix: WATER					
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
HEXAVALE	ENT CHROMIUM BY IC	:		EP.	A 218.6				
RunID: NV	00922-IC7_180507A	QC Batch: R1:	23917		PrepD	ate		Analyst: RAB	
Hexavalent	t Chromium	ND	0.033	0.20		µg/L	1	5/7/2018 10:57 AM	
TOTAL ME	TALS BY ICPMS								
				EP.	A 200.8				
RunID: NV	00922-ICP7_180515E	QC Batch: 680	83		PrepD	ate	5/15/2018	Analyst: CEI	
Chromium		ND	0.13	1.0		µg/L	1	5/15/2018 09:55 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030121

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W_CRPGE

Sample ID MB-68083 Client ID: PBW	SampType: MBLK Batch ID: 68083	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 5/15/2018 Analysis Date: 5/15/2018	RunNo: 124087 SeqNo: 3027571
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	ND	1.0		
Sample ID LCS-68083 Client ID: LCSW Analyte	SampType: LCS Batch ID: 68083 Result	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8 PQL SPK value SPK Ref Val	Prep Date: 5/15/2018 Analysis Date: 5/15/2018 %REC LowLimit HighLimit RPD Ref Val	RunNo: 124087 SeqNo: 3027572 %RPD RPDLimit Qual
Chromium	10.098	1.0 10.00 0	101 85 115	
Sample ID N030186-001D-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 68083	TestCode: 200.8_W_CR Units: µg/L TestNo: EPA 200.8	Prep Date: 5/15/2018 Analysis Date: 5/15/2018	RunNo: 124087 SeqNo: 3027586
			Prep Date: 5/15/2018	
Client ID: ZZZZZZ	Batch ID: 68083	TestNo: EPA 200.8	Prep Date: 5/15/2018 Analysis Date: 5/15/2018	SeqNo: 3027586
Client ID: ZZZZZZ Analyte	Batch ID: 68083 Result 11.894	TestNo: EPA 200.8 PQL SPK value SPK Ref Val	Prep Date: 5/15/2018 Analysis Date: 5/15/2018 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 3027586
Client ID: ZZZZZZ Analyte Chromium Sample ID N030186-001D-MSD	Batch ID: 68083 Result 11.894 SampType: MSD	TestNo: EPA 200.8 PQL SPK value SPK Ref Val 1.0 10.00 1.818 TestCode: 200.8_W_CR Units: µg/L	Prep Date: 5/15/2018 Analysis Date: 5/15/2018 %REC LowLimit HighLimit RPD Ref Val 101 75 125	SeqNo: 3027586 %RPD RPDLimit Qual RunNo: 124087

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values
 - ASSET LABORATORIES
- CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

E Value above quantitation range

RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID MB-R123917	SampType: MBLK	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Client ID: PBW	Batch ID: R123917	TestNo: EPA 218.6	Analysis Date: 5/7/2018	SeqNo: 3020294
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID LCS-R123917	SampType: LCS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Client ID: LCSW	Batch ID: R123917	TestNo: EPA 218.6	Analysis Date: 5/7/2018	SeqNo: 3020295
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.144	0.20 5.000 0	103 90 110	
Sample ID N030121-001BMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Client ID: ZZZZZZ	Batch ID: R123917	TestNo: EPA 218.6	Analysis Date: 5/7/2018	SeqNo: 3020300
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1001.170	20 500.0 476.1	105 90 110	
Sample ID N030121-002CMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Client ID: ZZZZZZ	Batch ID: R123917	TestNo: EPA 218.6	Analysis Date: 5/7/2018	SeqNo: 3020304
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	0.912	0.20 1.000 0	91.2 90 110	
Sample ID N030123-004AMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Client ID: ZZZZZZ	Batch ID: R123917	TestNo: EPA 218.6	Analysis Date: 5/7/2018	SeqNo: 3020312
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	122.985	2.0 50.00 72.82	100 90 110	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit Calculations are based on raw values

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

ge H Holding times for preparation or analysis exceeded

- S Spike/Surrogate outside of limits due to matrix interference
- 35 F:562.219.7436 NEVADA | P:702.307.2659 F:702.307.2691

3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID N030121-001BDUP	SampType: DUP	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Client ID: ZZZZZZ	Batch ID: R123917	TestNo: EPA 218.6	Analysis Date: 5/7/2018	SeqNo: 3020319
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	467.550	20	476.1	1.81 20
Sample ID N030123-004AMSD	SampType: MSD	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 123917
Sample ID N030123-004AMSD Client ID: ZZZZZZ	SampType: MSD Batch ID: R123917	TestCode: 218.6_WU_P Units: μg/L TestNo: EPA 218.6	Prep Date: Analysis Date: 5/7/2018	RunNo: 123917 SeqNo: 3020320
			·	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

- E Value above quantitation range
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	ooratories	Print Date: 17-May-18						
CLIENT:	CH2M HILL	Client Sample ID: SC-100B-WDR-573				-573		
Lab Order:	N030121	Collection Date: 5/2/2018 1:30:00 PM				0 PM		
Project:	PG&E Topock,	680375.03.IM.OP	.00		M	atrix: WAT	ER	
Lab ID:	N030121-001							
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed
TURBIDITY				SM	I 2130B			
RunID: NV00	922-WC_180503H	QC Batch: R12	23832		PrepD	ate		Analyst: LR
Turbidity		0.16	0.10	0.10		NTU	1	5/3/2018 04:20 PM

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	oratories	Print Date: 17-May-18							
CLIENT:	CH2M HILL	Client Sample ID: SC-700B-WDR-573				-573			
Lab Order:	N030121	N030121				Collection Date: 5/2/2018 1:33:00 PM			
Project:	PG&E Topock,	680375.03.IM.OP.0	00		M	atrix: WAT	ER		
Lab ID:	N030121-002								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	
TURBIDITY									
				SN	I 2130B				
RunID: NV00	922-WC_180503H	QC Batch: R123	3832		PrepD	ate		Analyst: LR	
Turbidity		0.16	0.10	0.10		NTU	1	5/3/2018 04:20 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030121

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 2130_W

Sample ID MB-R123832	SampType: MBLK	TestCode: 2130_W Units: NTU	Prep Date:	RunNo: 123832
Client ID: PBW	Batch ID: R123832	TestNo: SM 2130B	Analysis Date: 5/3/2018	SeqNo: 3015779
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	ND	0.10		
Sample ID N030121-001ADUP	SampType: DUP	TestCode: 2130_W Units: NTU	Prep Date:	RunNo: 123832
Client ID: ZZZZZZ	Batch ID: R123832	TestNo: SM 2130B	Analysis Date: 5/3/2018	SeqNo: 3015781
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	0.150	0.10	0.1600	6.45 30
Sample ID N030121-002BDUP	SampType: DUP	TestCode: 2130_W Units: NTU	Prep Date:	RunNo: 123832
Client ID: ZZZZZZ	Batch ID: R123832	TestNo: SM 2130B	Analysis Date: 5/3/2018	SeqNo: 3015783
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	0.170	0.10	0.1600	6.06 30

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values
 - ASSET LABORATORIES
 - CALIFORNIA P:562.219.7435 F:562.219.7436 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

 NEVADA
 P:702.307.2659
 F:702.307.2691

 3151
 W. Post Rd., Las Vegas, NV 89118
 ELAP Cert 2676
 NV Cert NV00922

 ORELAP/NELAP
 Cert 4046
 Cert 4046
 Cert 4046

RPD outside accepted recovery limits

E Value above quantitation range

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 17-May-18

CLIENT:	CH2M HILL		Cl	Client Sample ID: SC-700B-WDR-573 Collection Date: 5/2/2018 1:33:00 PM			
Lab Order:	N030121						
Project:	PG&E Topock,	&E Topock, 680375.03.IM.OP.00 Matrix: WATER					
Lab ID:	N030121-002						
Analyses		Result MDL	PQL	Qual Units	DF	Date Analyzed	
ANIONS BY I	ON CHROMATOGE	RAPHY					
			EP	A 300.0			
RunID: NV00	922-IC8_180507A	QC Batch: R123903		PrepDate		Analyst: RAB	
Fluoride		2.5 0.032	0.50	mg/L	5	5/7/2018 10:07 AN	
ANIONS BY I	ON CHROMATOGE	RAPHY					
			EP	A 300.0			
RunID: NV00	922-IC8_180507A	QC Batch: R123903		PrepDate		Analyst: RAB	
Sulfate		470 1.1	25	mg/L	50	5/7/2018 07:01 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030121

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT TestCode: 300 W FPGE

Sample ID MB-R123903 F SampType: MBLK TestCode: 300 W FPG Units: mg/L Prep Date: RunNo: 123903 Client ID: PBW Batch ID: R123903 TestNo: EPA 300.0 Analysis Date: 5/7/2018 SeqNo: 3019448 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Result Qual Analyte Fluoride ND 0.10 Sample ID LCS-R123903_F SampType: LCS TestCode: 300_W_FPG Units: mg/L Prep Date: RunNo: 123903 Client ID: LCSW Batch ID: R123903 TestNo: EPA 300.0 Analysis Date: 5/7/2018 SeqNo: 3019449 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Fluoride 1.249 0.10 1.250 0 99.9 90 110 Sample ID N030121-002BDUP SampType: DUP TestCode: 300_W_FPG Units: mg/L Prep Date: RunNo: 123903 Client ID: ZZZZZZ Batch ID: R123903 TestNo: EPA 300.0 Analysis Date: 5/7/2018 SeqNo: 3019457 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Fluoride 2.431 0.50 2.462 1.29 20 Sample ID N030097-011AMS SampType: MS TestCode: 300_W_FPG Units: mg/L Prep Date: RunNo: 123903 Client ID: ZZZZZZ Batch ID: R123903 TestNo: EPA 300.0 Analysis Date: 5/7/2018 SeqNo: 3019461 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Fluoride 80.015 5.0 62.50 21.56 93.5 80 120 Sample ID N030097-011AMSD Prep Date: SampType: MSD TestCode: 300_W_FPG Units: mg/L RunNo: 123903 Client ID: ZZZZZZ Batch ID: R123903 TestNo: EPA 300.0 Analysis Date: 5/7/2018 SeqNo: 3019462 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte 80.880 5.0 62.50 80 120 80.02 1.08 20 Fluoride 21.56 94.9

Qualifiers:

- B Analyte detected in the associated Method Blank
 - nit R R
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values
 - CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 FPA ID CA01638

E Value above quantitation range

RPD outside accepted recovery limits

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET LABORATORIES

CLIENT: CH2M HILL

Work Order: N030121

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_SO4PGE

Sample ID MB-R123903_SO4 Client ID: PBW	SampType: MBLK Batch ID: R123903	TestCode: 300_W_SO4P Units: mg/L TestNo: EPA 300.0	Prep Date: Analysis Date: 5/7/2018	RunNo: 123903 SeqNo: 3019525
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	ND	0.50		
Sample ID LCS-R123903_SO4	SampType: LCS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123903
Client ID: LCSW	Batch ID: R123903	TestNo: EPA 300.0	Analysis Date: 5/7/2018	SeqNo: 3019526
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	3.887	0.50 4.000 0	97.2 90 110	
Sample ID N030186-001BMS	SampType: MS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123903
Client ID: ZZZZZZ	Batch ID: R123903	TestNo: EPA 300.0	Analysis Date: 5/7/2018	SeqNo: 3019533
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	455.140	25 200.0 261.3	96.9 80 120	
Sample ID N030186-001BMSD	SampType: MSD	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123903
Client ID: ZZZZZZ	Batch ID: R123903	TestNo: EPA 300.0	Analysis Date: 5/7/2018	SeqNo: 3019534
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	455.950	25 200.0 261.3	97.3 80 120 455.1	0.178 20
Sample ID N030186-001BDUP	SampType: DUP	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 123903
Client ID: ZZZZZZ	Batch ID: R123903	TestNo: EPA 300.0	Analysis Date: 5/7/2018	SeqNo: 3019538
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	262.460	25	261.3	0.431 20

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

- R RPD outside accepted recovery limits
- Calculations are based on raw values

ND Not Detected at the Reporting Limit

- (
 - CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

ge H Holding

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET LABORATORIES

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 17-May-18							
CLIENT:	CH2M HILL			С	lient Sampl	e ID: SC-7	00B-WDR	-573			
Lab Order:	N030121			Collection Date: 5/2/2018 1:33:00 PM							
Project:	PG&E Topock,	680375.03.IM.OP	P.00		M	atrix: WAT	ER				
Lab ID:	N030121-002										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
NITRATE/NIT	RITE-N BY CADMI	UM REDUCTION									
				SM4	500-NO3F						
RunID: NV00	922-WC_180511E	QC Batch: R1	24008		PrepD	ate		Analyst: QBM			
Nitrate/Nitrite	as N	2.9	0.16	0.25		mg/L	5	5/11/2018			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030121

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 4500N03F_W

Sample ID MB-R124008	SampType:	MBLK	TestCode: 4500	N03F_W Units: mg/L		Prep Date	e:		RunNo: 12	4008	
Client ID: PBW	Batch ID:	R124008	TestNo: SM4	500-NO3		Analysis Date	e: 5/11/20	18	SeqNo: 30	23825	
Analyte		Result	PQL SPK v	alue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		ND	0.050								
Sample ID LCS-R124008	SampType:	LCS	TestCode: 4500	N03F_W Units: mg/L		Prep Date	e:		RunNo: 12	4008	
Client ID: LCSW	Batch ID:	R124008	TestNo: SM4	500-NO3		Analysis Date	e: 5/11/20	18	SeqNo: 30	23826	
Analyte		Result	PQL SPK v	alue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		0.555	0.050 0.5	000 0	111	85	115				
Sample ID N030096-001CDUP	SampType:	DUP	TestCode: 4500	N03F_W Units: mg/L		Prep Date	e:		RunNo: 12	4008	
Client ID: ZZZZZZ	Batch ID:	R124008	TestNo: SM4	500-NO3		Analysis Date	e: 5/11/20	18	SeqNo: 30	23828	
Analyte		Result	PQL SPK v	alue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		3.520	0.25					3.684	4.55	20	
Sample ID N030096-002CMS	SampType:	MS	TestCode: 4500	N03F_W Units: mg/L		Prep Date	e:		RunNo: 12	4008	
Client ID: ZZZZZZ	Batch ID:	R124008	TestNo: SM4	500-NO3		Analysis Date	e: 5/11/20	18	SeqNo: 30	23830	
Analyte		Result	PQL SPK v	alue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		22.446	1.0 10	0.00 10.62	118	75	125				
Sample ID N030096-002CMSD	SampType:	MSD	TestCode: 4500	N03F_W Units: mg/L		Prep Date	e:		RunNo: 12	4008	
Client ID: ZZZZZZ	Batch ID:	R124008	TestNo: SM4	500-NO3		Analysis Date	e: 5/11/20	18	SeqNo: 30	23831	
Analyte		Result	PQL SPK v	alue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		20.726	1.0 10	0.00 10.62	101	75	125	22.45	7.97	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

- ND Not Detected at the Reporting Limit Calculations are based on raw values
 - - CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

SAMPLE RECEIVING ITEMS

CALIFORNIA 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CH2MHILL

CHAIN OF CUSTODY RECORD

Page <u>1</u> OF <u>1</u>

Project Name PG&E Topock Location PG&E Topock Project Number 680375.03.IM.OP.00		Container: ervatives:	Poly 4°C Lab	1 Liter Poly 4°C	1 Liter Poly 4°C	250 ml Poly 4°C	1 Liter Poly 4°C Lab H2SO4	1 Liter Poly 4°C	500 ml Poly 4°C	500 ml Poly 4°C	1 Liter Poly 4°C			
Project Manager Scott O'Donnell		Filtered:	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Sample Manager Shawn Duffy	Hold	ling Time:	28	7	7	1	28	7	180	180	7			
Task Order Project IM3PLANT-ARAR-WDR-573 Turnaround Time 10 Days Shipping Date: COC Number: 573 DATE	TIME	Matrix	AMMONIA (SM4500NH3D)	Anions (E300.0) Fl. SO4	CONDUCTIVITY (E120.1)	E218.6 Lab Filtered	Nitrate/Nitrite (SM4500NO3-E)	TDS (SM2540C)	Total Metals(E200.7 and E200.8)	Total Metals(E200.8) Cr & Mn	Turbidity (SM2130)		Number of Containers	COMMENTS
SC-100B-WDR-573 5-2-1	3 1330	Water			x	x		x		x	x	N030121-01	3	
SC-700B-WDR-573 5-2-1	8 1333	Water	x	x	x	x	x	x	x		x	-02	4	
												TOTAL NUMBER OF CONTAINERS	7	

Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by	5-2-18 1330 M	ethod of Shipment: FedEx	ATTN:	SC-700B Total metals List:
Sampled by	5-270 1333			Cr,Al,Sb,As,Ba,B,Cu,Pb,Mn,Mo,Ni,Fe,Zn
Relinquished by and the star	5-7-14 15-5	n Ice: yes / no	Sample Custody	
Received by And A		irbill No:	and	
Relinquished by		ab Name: ASSET Laboratories	Marlan Cartin	Report Copy to
Received by		ab Phone: (702) 307-2659	Marlon Cartin	Doug Scott (970) 731-0636
100 00.				(370) 731-0030

Z.G.C (RAZ

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Receive	d/Opened On:	5/2/2018				Workorder:	N030121		
Rep sample Te	emp (Deg C):	2.6				IR Gun ID:	2		
Temp Blank:		✓ Yes	🗌 No						
Carrier name:		ASSET							
Last 4 digits of	Tracking No.:	NA			Packing	g Material Used:	None		
Cooling proces	s:	✓ Ice	Ice Pack	Dry Ice	Other	None None			
			Sa	ample Receip	t Checklis	<u>st</u>			
1. Shipping cor	ntainer/cooler in go	ood conditic	n?			Yes 🗹	No 🗌	Not Present	
2. Custody sea	ls intact, signed, o	dated on shi	ppping container/o	cooler?		Yes	No 🗌	Not Present	
3. Custody sea	ls intact on sample	e bottles?				Yes	No 🗌	Not Present	
4. Chain of cus	tody present?					Yes 🗸	No 🗌		
5. Sampler's na	ame present in CC	DC?				Yes 🗹	No 🗌		
6. Chain of cus	tody signed when	relinquishe	d and received?			Yes 🗹	No 🗌		
7. Chain of cus	tody agrees with s	sample labe	ls?			Yes 🗹	No 🗌		
8. Samples in p	proper container/b	ottle?				Yes 🗹	No 🗌		
9. Sample cont	ainers intact?					Yes 🗹	No 🗌		
10. Sufficient s	ample volume for	indicated te	est?			Yes 🗹	No 🗌		
11. All samples	received within h	olding time	?			Yes 🗹	No 🗌		
12. Temperatu	re of rep sample o	or Temp Bla	nk within acceptab	le limit?		Yes 🗹	No 🗌	NA	
13. Water - VO	A vials have zero	headspace	?			Yes	No 🗌	NA	\checkmark
14. Water - pH	acceptable upon	receipt?				Yes	No 🗹	NA	
Example	: pH > 12 for (CN	,S); pH<2 fo	or Metals						
15. Did the bott	tle labels indicate	correct pres	servatives used?			Yes	No 🗌	NA	\checkmark
16. Were there	Non-Conformanc		•			Yes 🗹	No 🗌	NA	
	vva	as Client not	lified ?			Yes 🗌	No 🗌	NA	V
			filtered and preser preserved with HN			O4, pH adjusted	to <2.		

Checklist Completed By:

For: DA 3/12018

Reviewed By:

ASSET Laboratories 3151-3153 W Post Rd., Las Vegas, NV 89118 www.atl-labs.com TEL: 7023072659 FAX: 7023072691

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

QC Level: Level IV

Subcontractor:					
BC Labs	TEL: (661)) 327-4911	Field Sampler:	SIGNED	
4100 Atlas Court	FAX: (661)) 327-1918			
Bakersfield, CA 93308	Acct #:				03-May-18

					Requested Tests
Sample ID	Matrix	Date Collected	Bottle Type	SM4500-NH3D	
N030121-002A / SC-700B-WDR-573	Water	5/2/2018 1:33:00 PM	32OZP	1	

General Comments: Please email sample receipt acknowledgement to the PM.

Please use PO#:N30121A Please email Invoices and Account Receivable Statements to elvira@assetlaboratories.com. For questions, call Marlon at (702)-307-2659. Please e-mail results to reports.lv@assetlaboratories.com by: Normal TAT.

Please analyze for Ammonia by SM4500NH3D. EDD Requirement Labspec7 edata.

			GSO #: 540457054	
	MOT	Date/Time		Date/Time
Relinquished by:	A	5/3/2018 17:00	Received by:	
Relinquished by:			Received by:	

List of Analysts

ASSET Laboratories Work Order: N030121

NAME	TEST METHOD
Quennie Manimtim	SM 4500-NO3F
Claire Ignacio	EPA 200.7, EPA 200.8
Ria Abes	EPA 218.6, EPA 300.0
Lilia Ramit	EPA 120.1, SM 2540C, SM 2130B

CALIFORNIA 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

May 03, 2018

Doug Scott CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (970) 731-0636 FAX: (510) 622-9129

Workorder No.: N030122

RE: PG&E Topock, 680375.03.IM.OP.00

Attention: Doug Scott

Enclosed are the results for sample(s) received on May 02, 2018 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Manay Situcan Tor

Quennie Manimtim Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

 CLIENT:
 CH2M HILL

 Project:
 PG&E Topock, 680375.03.IM.OP.00

 Lab Order:
 N030122

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed past holding time. pH testing is specified to be performed in the field within 15 minutes of sampling;sample was received and analyzed past the regulatory holding time.

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: Project: Lab Order: Contract No:	CH2M HILL PG&E Topock, 68037 N030122 IM3PLANT-AR	5.03.IM.OP.00	Work ()rder Sampl	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N030122-001A	SC-100B-WDR-573	Water	5/2/2018 1:30:00 PM	5/2/2018	5/3/2018
N030122-002A	SC-700B-WDR-573	Water	5/2/2018 1:33:00 PM	5/2/2018	5/3/2018

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 Y
 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories			Print Date: 03-May-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-573						
Lab Order:	N030122			Collection Date: 5/2/2018 1:30:00 PM						
Project:	PG&E Topock,	680375.03.IM.OP	P.00		Μ	latrix: WAT	ER			
Lab ID:	N030122-001									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
PH				SM4	500-H+B					
RunID: NV00	922-WC_180503B	QC Batch: R1	23804		Prep	Date		Analyst: LR		
pН		7.2	0.10	0.10	н	pH Units	1	5/3/2018 11:05 AM		
Temp. at time	e of pH Analysis	25	0.10	0.10	Н	°C	1	5/3/2018 11:05 AN		

В

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	oratories			Print Date: 03-May-18						
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-573						
Lab Order:	N030122			Collection Date: 5/2/2018 1:33:00 PM						
Project:	PG&E Topock,	680375.03.IM.OP.	00	Matrix: WATER						
Lab ID:	N030122-002									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
PH										
				SM2	1500-H+B					
RunID: NV009	922-WC_180503B	QC Batch: R12	3804		Prepl	Date		Analyst: LR		
pН		7.0	0.10	0.10	Н	pH Units	1	5/3/2018 11:05 AI		
Temp. at time	of pH Analysis	25	0.10	0.10	Н	°C	1	5/3/2018 11:05 AM		

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N030122

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 150.1_4500H+B_W

Sample ID N030122-001ADUP	SampType: DUP	TestCoo	le: 150.1_450	OOH Units: pH Units	5	Prep Da	te:		RunNo: 123	3804	
Client ID: ZZZZZZ	Batch ID: R123804	TestN	TestNo: SM4500-H+B			Analysis Date: 5/3/2018			SeqNo: 3014511		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
pH Temp. at time of pH Analysis	7.220 25.000	0.10 0.10						7.200 25.00	0.277 0	10 10	H H

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2MHILL					CHAIN OF CUSTODY RECORD	Page	1 OF 1
Project Name PG&E Topock		с	ontainer	250 ml Poly			
Location PG&E Topock		Prese	rvatives:	4°C			
Project Number 680375.03.IM.OI							
Project Manager Scott O'Donnell	1		Filtered:				
Sample Manager Shawn Duffy		Holdi	ng Time:	5 minute:			
Task Order							
Project IM3PLANT-ARAR-WDR-5	73					Z	
Turnaround Time 1 Days						Numbe	
Shipping Date:				PH		er of	
COC Number: 573-IM3						0	
						ontainers	
						ners	
	DATE	TIME	Matrix				COMMENTS
SC-100B-WDR-573 5	-2-18	1330	Water	x	N030122-01	1	
SC-700B-WDR-573 3	5-2-18	1333	Water	x	-02	1	
					TOTAL NUMBER OF CONTAINERS	2	

Signature	s Date/Time	Shipping Details		Special Instructions:
Approved by Sett Resourcel	5-2-18-1330	Method of Shipment: FedEx	ATTN:	SC-700B Total metals List:
Sampled by	5-2-18 1332			Cr,Al,Sb,As,Ba,B,Cu,Pb,Mn,Mo,Ni,Fe,Zn
Relinquished by AMOM XIND	5-7-18 1605	On Ice: yes / no	Sample Custody	
Received by Name and	Flater S.J.E	– Airbill No:		
Relinquished by	- chill mit	Lab Name: IM3-Plant		Report Copy to
Received by	51118 19:15	Lab Phone:		Doug Scott (970) 731-0636
	1910 1117			(510) 101-0000
V				•

2.1	9	$\left(\right)$	(R#2
<u> </u>		C	11-4C

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Received/Opened On:	5/2/2018				Workorder:	N030122	
Rep sample Temp (Deg C):	2.6				IR Gun ID:	2	
Temp Blank:	✓ Yes	🗌 No					
Carrier name:	ASSET						
Last 4 digits of Tracking No.:	NA			Packing	Material Used:	None	
Cooling process:	✓ Ice	Ice Pack	Dry Ice	Other	None None		
		¢.	ample Receip	t Chacklis	+		
1. Shipping container/cooler in c	nood conditio				Yes 🗹	No 🗌	Not Present
2. Custody seals intact, signed,			cooler?		Yes	No 🗌	Not Present
3. Custody seals intact on samp					Yes	No 🗌	Not Present
4. Chain of custody present?					Yes 🗹	No 🗌	
5. Sampler's name present in C	OC?				Yes 🗹	No 🗌	
6. Chain of custody signed when	n relinquishe	ed and received?			Yes 🗹	No 🗌	
7. Chain of custody agrees with	sample labe	els?			Yes 🗹	No 🗌	
8. Samples in proper container/l	bottle?				Yes 🗹	No 🗌	
9. Sample containers intact?					Yes 🗹	No 🗌	
10. Sufficient sample volume for	r indicated te	est?			Yes 🗹	No 🗌	
11. All samples received within I	holding time	?			Yes	No 🗹	
12. Temperature of rep sample	or Temp Bla	nk within accepta	ble limit?		Yes 🗹	No 🗌	NA 🗌
13. Water - VOA vials have zero	o headspace	?			Yes	No 🗌	NA 🗹
14. Water - pH acceptable upor	•				Yes	No 🗌	NA 🗹
Example: pH > 12 for (CN							
15. Did the bottle labels indicate	correct pres	servatives used?			Yes 🗌	No 🗌	NA 🗹
16. Were there Non-Conforman	ce issues at as Client not				Yes ⊻ Yes □	No 🗌 No 🗌	NA 🗌 NA 🗹
		Iding time upon re	ceipt.				

₩ 05/03/2018

List of Analysts

ASSET Laboratories Work Order: N030122

NAME	TEST METHOD
Lilia Ramit	SM 4500-H+B

Date of Report: 06/14/2018

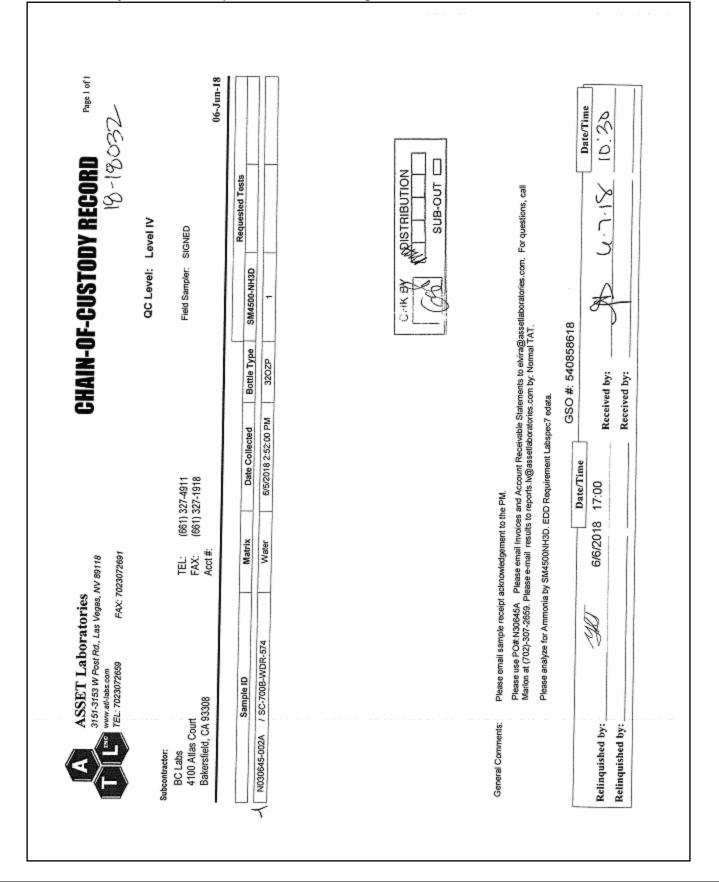
Marlon Cartin

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Client Project:[none]BCL Project:Level IVBCL Work Order:1818032Invoice ID:B306893

Enclosed are the results of analyses for samples received by the laboratory on 6/7/2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Contact Person: Vanessa Sandoval Client Service Rep

Stuart Buttram Technical Director

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Chain of Custody and Cooler Receipt Form for 1818032 Page 1 of 2

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000757760

Chain of Custody and Cooler Receipt Form for 1818032 Page 2 of 2

BC LABORATORIES INC. Submission #: 18-18000			COOLER					Pag	le _/_	Of
بية ا	rD Har rD≪C\$pecif	nd Deliver	350	Ice Ch	HIPPING est 20 er 🗆 (Spe	None 🗆	Box 🗆	-	FREE LI YES D W /	NO 🗆
Refrigerant: Ice Blue Ice	P-0-0		Other 🛛	Com	nents:				the based	
Custody Seals Toe/Chest []	Contain Intact? Yes	ers 💭 : H-No H	None	P Com	ments:					1
All samples received? Yes 🗹 No 🗆	All samples	container	s intact? Y	es 🖗 No	. o	Descrip		ch COC?	Yes 🗹 No	
COC Received Er	nissivity: <u>(</u>	17	Container:	phpe	Thermon	neter ID:	274	Date/Tin	ne (/	1.18
NUMER CINC I	Comperature			• •		2.8	*C			10:30
	1							Transity.		10.90
SAMPLE CONTAINERS	1	2	3		1	NUMBERS		1	-	1
QT PE UNPRES		1	1 3	4	5	6	7	8	9	10
az/8oz/16oz PE UNPRES										
loz Cr ⁴⁶										1
OT INORGANIC CHEMICAL METALS			1							
NORGANIC CHEMICAL METALS 402 / 802 / 160	z									
T CYANIDE										
T NETROGEN FORMS	A									
T TOTAL SULFIDE										
02. NITRATE / NITRITE										
T TOTAL ORGANIC CARBON										
T CHEMICAL OXYGEN DEMAND										
A PHENOLICS										
OmI VOA VIAL TRAVEL BLANK										
Oml VOA VIAL										
T EPA 1664										
TODOR										
ADIOLOGICAL										
ACTERIOLOGICAL										
ml VOA VIAL- 504										
T EPA 508/608/80/80		<i>.</i>								
T EPA 515.1/8150										
Γ EPA 525										
FEPA 525 TRAVEL BLANK					1					
ml EPA 547										
ni EPA 531.1										
z EPA 548										
EPA 549										
'EPA 8015M										
'EPA 8270										
/1602/320g AMBER										
/1602/3202 JAR										
IL SLEEVE										
B VIAL										
ASTIC BAG										
DLARBAG										
ROUSIRON									-	
CORE										
ART KIT										
IMA CANISTER										
	Contraction of the local division of the loc	and the second sec		/ Date/Time	the second second					

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

 1000757760
 4100 Atlas Court
 Bakersfield, CA 93308 (661) 327-4911
 FAX (661) 327-1918
 www.bclabs.com
 P.

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Reported:06/14/201812:08Project:Level IVProject Number:[none]Project Manager:Marlon Cartin

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	Client Sample Information										
1818032-01	COC Number:		Receive Date:	06/07/2018 10:30								
	Project Number:		Sampling Date:	06/05/2018 14:52								
	Sampling Location:		Sample Depth:									
	Sampling Point: Sampled By:	N030645-002A / SC-700B-WDR-574 Client	Lab Matrix: Sample Type:	Water Water								

Laboratories, Inc.

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118

Reported: 06/14/2018 12:08 Project: Level IV Project Number: [none] Project Manager: Marlon Cartin

Water Analysis (General Chemistry)

BCL Sample ID:	1818032-01	Client Sample	e Name:	N030645-	002A / SC-	700B-WDR-574,	6/5/2018 2	2:52:00PM, Client		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Ammonia as N (Distilled)	ND	mg/L	0.20		SM-4500-NH3G	ND		1	

						QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	SM-4500-NH3G	06/13/18 08:05	06/13/18 16:52	JMH	SC-1	1	B016462

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report apply to the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 41000757760 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:06/14/201812:08Project:Level IVProject Number:[none]Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B016462						
Ammonia as N (Distilled)	B016462-BLK1	ND	mg/L	0.20		

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:06/14/201812:08Project:Level IVProject Number:[none]Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

							Control Limits					
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals		
QC Batch ID: B016462												
Ammonia as N (Distilled)	B016462-BS1	LCS	0.97180	1.0000	mg/L	97.2		85 - 115				

ASSET Laboratories 3151-3153 W. Post Rd Las Vegas, NV 89118 Reported:06/14/201812:08Project:Level IVProject Number:[none]Project Manager:Marlon Cartin

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: B016462	Use	d client samp	ole: N								
Ammonia as N (Distilled)	DUP	1817953-03	0.61480	0.53820		mg/L	13.3		20		
	MS	1817953-03	0.61480	1.6359	1.0000	mg/L		102		80 - 120	
	MSD	1817953-03	0.61480	1.5295	1.0000	mg/L	6.7	91.5	20	80 - 120	

June 19, 2018

Doug Scott CH2M HILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612 TEL: (970) 731-0636 FAX: (510) 622-9129

Workorder No.: N030645

RE: PG&E Topock, 680375.03.IM.OP.00

Attention: Doug Scott

Enclosed are the results for sample(s) received on June 05, 2018 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Nancy Silucar For

Quennie Manimtim Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

 CLIENT:
 CH2M HILL

 Project:
 PG&E Topock, 680375.03.IM.OP.00

 Lab Order:
 N030645

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Subcontracted Analyses:

Ammonia was subcontracted to BC Labs- Bakersfield,CA.

Analytical Comments for EPA 200.7:

Matrix Spike (MS) is outside recovery criteria for Iron in QC sample N030627-001C-MS1 possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Analytical Comments for EPA 200.8:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for some analytes in QC samples N030627-001C-MS, N030627-001C-MSD and N030646-006C-MS possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT:CH2M HILLProject:PG&E Topock, 680375.03.IM.OP.00Lab Order:N030645Contract No:IM3PLANT-AR			Work Order Sample Summary					
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported			
N030645-001A	SC-100B-WDR-574	Water	6/5/2018 2:38:00 PM	6/5/2018	6/19/2018			
N030645-001B	SC-100B-WDR-574	Water	6/5/2018 2:38:00 PM	6/5/2018	6/19/2018			
N030645-001C	SC-100B-WDR-574	Water	6/5/2018 2:38:00 PM	6/5/2018	6/19/2018			
N030645-002A	SC-700B-WDR-574	Water	6/5/2018 2:52:00 PM	6/5/2018	6/19/2018			
N030645-002B	SC-700B-WDR-574	Water	6/5/2018 2:52:00 PM	6/5/2018	6/19/2018			
N030645-002C	SC-700B-WDR-574	Water	6/5/2018 2:52:00 PM	6/5/2018	6/19/2018			
N030645-002D	SC-700B-WDR-574	Water	6/5/2018 2:52:00 PM	6/5/2018	6/19/2018			
N030645-002E	SC-700B-WDR-574	Water	6/5/2018 2:52:00 PM	6/5/2018	6/19/2018			

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

ANALYTICAL RESULTS

ASSET Lab	ooratories		Print Date: 19-Jun-18					
CLIENT:	CH2M HILL		Client Sample ID: SC-100B-WDR-574				-574	
Lab Order:	N030645				Collection	Date: 6/5/202	18 2:38:0	00 PM
Project:	PG&E Topock,	680375.03.IM.OP.0	Matrix: WATER					
Lab ID:	N030645-001							
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed
SPECIFIC CO	NDUCTANCE							
				EP	A 120.1			
RunID: NV00	922-WC_180606A	QC Batch: R124	491		PrepD	ate		Analyst: LR
Specific Cond	ductance	7100	0.10	0.10		umhos/cm	1	6/6/2018 10:45 AM

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

"Serving Clients with Passion and Professionalism"

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS Print Date: 19-Jun-18

						Time D	ate: 175	un 10
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-574				
Lab Order:	N030645	N030645 PG&E Topock, 680375.03.IM.OP.00			Collection Date: 6/5/2018 2:52:00 PM			
Project:	PG&E Topock,				Matrix: WATER			
Lab ID:	N030645-002							
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed
SPECIFIC CO	NDUCTANCE							
				EP	A 120.1			
RunID: NV00	922-WC_180606A	QC Batch: R12	24491		PrepD	ate		Analyst: LR
Specific Cond	ductance	7000	0.10	0.10		umhos/cm	1	6/6/2018 10:45 Al

Qualifiers:

В

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N030645

ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 680375.03.IM.OP.00

TestCode: 120.1_WPGE

Sample ID N030646-004DDUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	n Prep Date:	RunNo: 124491
Client ID: ZZZZZZ	Batch ID: R124491	TestNo: EPA 120.1	Analysis Date: 6/6/2018	SeqNo: 3046003
Analyte	Result	PQL SPK value SPK Ref Val 9	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	7590.000	0.10	7600	0.132 2
Sample ID N030646-009DDUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	n Prep Date:	RunNo: 124491
Sample ID N030646-009DDUP Client ID: ZZZZZZ	SampType: DUP Batch ID: R124491	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	n Prep Date: Analysis Date: 6/6/2018	RunNo: 124491 SeqNo: 3046009
	1 31	TestNo: EPA 120.1	- P	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

"Serving Clients with Passion and Professionalism"

E Value above quantitation range

ELAP Cert 2921

EPA ID CA01638

R RPD outside accepted recovery limits

CALIFORNIA | P:562.219.7435 F:562.219.7436 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS Print Date: 19-Jun-18

CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-574				
Lab Order:	N030645				Collection	Date: 6/	5/2018 2:38:0	00 PM
Project:	PG&E Topock, 680375.03.IM.OP.00				Ma	atrix: W	ATER	
Lab ID:	N030645-001							
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed
TOTAL FILTE	RABLE RESIDUE							
				SN	12540C			
RunID: NV00	922-WC_180607D	QC Batch: 683	65		PrepD	ate	6/7/2018	Analyst: LR
Total Dissolve Filterable)	ed Solids (Residue,	4100	50	50		mg/L	1	6/7/2018 01:14 PM

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS Print Date: 19-Jun-18

CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-574				
Lab Order:	N030645	N030645			Collection	Date: 6/	5/2018 2:52:0	00 PM
Project:	PG&E Topock, 680375.03.IM.OP.00				M	atrix: W	ATER	
Lab ID:	N030645-002							
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed
TOTAL FILTE	RABLE RESIDUE							
				SN	12540C			
RunID: NV00	922-WC_180607D	QC Batch: 683	365		PrepD	ate	6/7/2018	Analyst: LR
Total Dissolve Filterable)	ed Solids (Residue,	4100	50	50		mg/L	1	6/7/2018 01:14 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030645

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 160.1_2540C_W

Sample ID LCS-68365 Client ID: LCSW	SampType: LCS Batch ID: 68365	TestCode: 160.1_2540C Units: mg/L TestNo: SM2540C	Prep Date: 6/7/2018 Analysis Date: 6/7/2018	RunNo: 124532 SeqNo: 3048169
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Resid	ue, Filtera 984.000	10 1000 0	98.4 80 120	
Sample ID MB-68365 Client ID: PBW	SampType: MBLK Batch ID: 68365	TestCode: 160.1_2540C Units: mg/L TestNo: SM2540C	Prep Date: 6/7/2018 Analysis Date: 6/7/2018	RunNo: 124532 SeqNo: 3048170
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Resid	ue, Filtera ND	10		
Sample ID N030645-001ADU Client ID: ZZZZZZ	JP SampType: DUP Batch ID: 68365	TestCode: 160.1_2540C Units: mg/L TestNo: SM2540C	Prep Date: 6/7/2018 Analysis Date: 6/7/2018	RunNo: 124532 SeqNo: 3048172
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Resid	ue, Filtera 4240.000	50	4075	3.97 5

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

E Value above quantitation range

RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

Print Date: 19-Jun-18

CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-574				
Lab Order:	N030645			Collection Date: 6/5/2018 2:52:00 PM				
Project:	PG&E Topock, 680375.03.IM.OP.00			Matrix: WATER				
Lab ID:	N030645-002							
Analyses		Result	MDL	PQL	Qual Units	DF	Date Analyzed	
TOTAL META	LS BY ICP							
				EP	A 200.7			
RunID: NV00	922-ICP2_180618A	QC Batch: 68	333		PrepDate	6/6/2018	Analyst: CEI	
Aluminum		ND	40	50	µg/L	1	6/18/2018 10:11 AM	
Boron		990	74	100	μg/L	1	6/17/2018 08:08 PM	
Iron		ND	18	20	µg/L	1	6/17/2018 08:08 PM	

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WPGEPPB

	MB-68333	SampType: MBLK	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 6/6/2018	RunNo: 124692
Client ID:	PBW	Batch ID: 68333	TestNo: EPA 200.7	Analysis Date: 6/17/2018	SeqNo: 3056587
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Boron		ND	100		
Iron		ND	20		
Sample ID	LCS1-68333	SampType: LCS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 6/6/2018	RunNo: 124692
Client ID:	LCSW	Batch ID: 68333	TestNo: EPA 200.7	Analysis Date: 6/17/2018	SeqNo: 3056588
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Boron		5023.581	100 5000 0	100 85 115	
Iron		113.252	20 100.0 0	113 85 115	
Sample ID	N030627-001C-MS1	SampType: MS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 6/6/2018	RunNo: 124692
Client ID:	ZZZZZZ	Batch ID: 68333	TestNo: EPA 200.7	Analysis Date: 6/17/2018	SeqNo: 3056590
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Boron		5909.932	100 5000 1008	98.0 75 125	
Iron		115.650	20 100.0 76.58	39.1 75 125	S
Sample ID	N030646-001C-MS1	SampType: MS	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 6/6/2018	RunNo: 124692
Client ID:	ZZZZZZ	Batch ID: 68333	TestNo: EPA 200.7	Analysis Date: 6/17/2018	SeqNo: 3056600
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Boron		5812.583	100 5000 1024	95.8 75 125	
Iron		100.909	20 100.0 0	101 75 125	
Sample ID	N030646-001C-MSD	SampType: MSD	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 6/6/2018	RunNo: 124692
Client ID:	ZZZZZZ	Batch ID: 68333	TestNo: EPA 200.7	Analysis Date: 6/17/2018	SeqNo: 3056601
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers:

B Analyte detected in the associated Method Blank

- E Value above quantitation range
- R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit Calculations are based on raw values

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 sm" EPA ID CA01638 <u>NEVADA</u> | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046 H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WPGEPPB

Sample ID N03064	G-001C-MSD SampType: MSD	TestCode: 200.7_WPGE Units: µg/L	Prep Date: 6/6/2018	RunNo: 124692
Client ID: ZZZZZZ	Batch ID: 68333	TestNo: EPA 200.7	Analysis Date: 6/17/2018	SeqNo: 3056601
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Boron Iron	5671.545 98.304	1005000102420100.00	92.975125581398.375125100.9	2.46 20 2.62 20
Sample ID MB-683 Client ID: PBW	33 SampType: MBLK Batch ID: 68333	TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7	Prep Date: 6/6/2018 Analysis Date: 6/18/2018	RunNo: 124694 SeqNo: 3056719
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	50		
Sample ID LCS1-6	3333 SampType: LCS Batch ID: 68333	TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7	Prep Date: 6/6/2018 Analysis Date: 6/18/2018	RunNo: 124694 SeqNo: 3056720
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	10468.855	50 10000 0	105 85 115	
Sample ID N03062 Client ID: ZZZZZZ	1 51	TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7	Prep Date: 6/6/2018 Analysis Date: 6/18/2018	RunNo: 124694 SeqNo: 3056722
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	10399.752	50 10000 0	104 75 125	
Sample ID N03064 Client ID: ZZZZZZ		TestCode: 200.7_WPGE Units: µg/L TestNo: EPA 200.7	Prep Date: 6/6/2018 Analysis Date: 6/18/2018	RunNo: 124694 SeqNo: 3056732
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	10566.540	50 10000 0	106 75 125	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
 - R RPD outside accepted recovery limits

Calculations are based on raw values

ND Not Detected at the Reporting Limit

- ASSET LABORATORIES
 - CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N030645 Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WPGEPPB

Sample ID N030646-001C-MSD	SampType: MSD	TestCoo	le: 200.7_WP	GE Units: µg/L		Prep Da	te: 6/6/201	8	RunNo: 124	1694	
Client ID: ZZZZZZ	Batch ID: 68333	TestN	lo: EPA 200.7	7		Analysis Da	te: 6/18/20	18	SeqNo: 308	56733	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	10275.184	50	10000	0	103	75	125	10570	2.80	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

R

RPD outside accepted recovery limits

E Value above quantitation range

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	oratories			Print Date: 19-Jun-18							
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-574							
Lab Order:	N030645			Collection Date: 6/5/2018 2:38:00 PM							
Project:	PG&E Topock,	680375.03.IM.OP.	.00		Ma	atrix: W	ATER				
Lab ID:	N030645-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
TOTAL META	LS BY ICPMS										
				EP	A 200.8						
RunID: NV00	922-ICP7_180607C	QC Batch: 683	42		PrepD	ate	6/6/2018	Analyst: CEI			
Manganese	e 6.9 0.26 0.50 μg/L 1 6/7/2018 07:23							6/7/2018 07:23 PM			

Qualifiers:

В

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 19-Jun-18

CLIENT: Lab Order:	CH2M HILL N030645			Client Sample ID: SC-700B-WDR-574 Collection Date: 6/5/2018 2:52:00 PM						
Project:	PG&E Topock,	680375.03.IM.OF	P.00		Ma	atrix: W	ATER			
Lab ID:	N030645-002									
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed		
TOTAL META	LS BY ICPMS			50						
				EP.	A 200.8					
RunID: NV009	922-ICP7_180607C	QC Batch: 68	342		PrepD	ate	6/6/2018	Analyst: CEI		
Antimony		ND	0.16	0.50		µg/L	1	6/7/2018 07:45 PM		
Arsenic		ND	0.081	0.10		µg/L	1	6/7/2018 07:45 PM		
Barium		16	0.15	1.0		µg/L	1	6/7/2018 07:45 PM		
Copper		ND	0.55	1.0		µg/L	1	6/7/2018 07:45 PM		
Lead		ND	0.13	1.0		µg/L	1	6/7/2018 07:45 PM		
Manganese		9.6	0.26	0.50		µg/L	1	6/7/2018 07:45 PM		
Molybdenum		22	0.21	0.50		µg/L	1	6/7/2018 07:45 PM		
Nickel		1.1	0.26	1.0		µg/L	1	6/7/2018 07:45 PM		
			2.3					6/7/2018 07:45 PM		

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 19-Jun-18

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID MB-68342	SampType: MBLK	TestCod	e: 200.8_W	Units: µg/L		Prep Date:	6/6/2018	RunNo: 124	4541	
Client ID: PBW	Batch ID: 68342	TestN	o: EPA 200.8	3		Analysis Date:	6/7/2018	SeqNo: 304	48781	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	ND	0.50								
Arsenic	ND	0.10								
Barium	0.226	1.0								
Copper	ND	1.0								
Lead	ND	1.0								
Manganese	ND	0.50								
Molybdenum	ND	0.50								
Nickel	ND	1.0								
Zinc	ND	10								
Sample ID N030627-001C-MS	SampType: MS	TestCod	e: 200.8_W	Units: µg/L		Prep Date:	6/6/2018	RunNo: 124	4541	
Client ID: ZZZZZZ	Batch ID: 68342	TestN	o: EPA 200.8	3		Analysis Date:	6/7/2018	SeqNo: 304	48788	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	10.267	0.50	10.00	0	103	75	125			
Arsenic	12.075	0.10	10.00	1.080	110	75	125			
Barium	33.615	1.0	10.00	22.83	108	75	125			
Copper	5.744	1.0	10.00	0	57.4	75	125			S
Manganese	99.792	0.50	100.0	0.7378	99.1	75	125			
		0.50	10.00	20.38	118	75	125			
Molybdenum	32.172	0.50	10.00	20.00	110	75	125			
Molybdenum Nickel	32.172 9.838	1.0	10.00	0	98.4	75	125			
Nickel										
•	9.838	1.0 10	10.00	0	98.4	75 75	125	RunNo: 124	4541	
Nickel Zinc	9.838 109.470	1.0 10 TestCod	10.00 100.0	0 0 Units: µg/L	98.4 109	75 75	125 125 6/6/2018	RunNo: 12 4 SeqNo: 30 4		
Nickel Zinc Sample ID N030627-001C-MS	9.838 109.470 SampType: MS	1.0 10 TestCod	10.00 100.0 e: 200.8_W o: EPA 200.8	0 0 Units: µg/L	98.4 109	75 75 Prep Date: Analysis Date:	125 125 6/6/2018			Qua

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

epted recovery limits

- ND Not Detected at the Reporting Limit Calculations are based on raw values
 - CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 n"
 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046 H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

ASSET LABORATORIES

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

1											
Sample ID N030627-001C-MSE	D SampType: MSD	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	e: 6/6/201	8	RunNo: 124	1541	
Client ID: ZZZZZZ	Batch ID: 68342	Test	No: EPA 200.8	3		Analysis Dat	e: 6/7/201	8	SeqNo: 304	48790	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	10.252	0.50	10.00	0	103	75	125	10.27	0.143	20	
Arsenic	12.148	0.10	10.00	1.080	111	75	125	12.08	0.604	20	
Barium	33.781	1.0	10.00	22.83	109	75	125	33.62	0.493	20	
Copper	5.642	1.0	10.00	0	56.4	75	125	5.744	1.78	20	S
Manganese	98.699	0.50	100.0	0.7378	98.0	75	125	99.79	1.10	20	
Molybdenum	32.059	0.50	10.00	20.38	117	75	125	32.17	0.351	20	
Nickel	9.752	1.0	10.00	0	97.5	75	125	9.838	0.880	20	
Zinc	109.393	10	100.0	0	109	75	125	109.5	0.0703	20	
Sample ID N030627-001C-MSE	D SampType: MSD	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	e: 6/6/201	8	RunNo: 124	1541	
Client ID: ZZZZZZ	Batch ID: 68342	Test	No: EPA 200.8	3		Analysis Dat	e: 6/7/201	8	SeqNo: 304	48793	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	10.070	5.0	10.00	0		75		11.10	0.05	20	
	10.878	5.0	10.00	0	109	75	125	11.10	2.05	20	
Sample ID N030646-006C-MS	10.878 SampType: MS		de: 200.8_W	Units: µg/L	109	-	125 e: 6/6/201		2.05 RunNo: 12 4		
		TestCo		Units: µg/L		-	e: 6/6/201	8		1541	
Sample ID N030646-006C-MS	SampType: MS	TestCo	de: 200.8_W No: EPA 200.8	Units: µg/L		Prep Dat Analysis Dat	e: 6/6/201 e: 6/7/201	8	RunNo: 124	1541	Qual
Sample ID N030646-006C-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 68342	TestCo TestN	de: 200.8_W No: EPA 200.8	Units: µg/L 3		Prep Dat Analysis Dat	e: 6/6/201 e: 6/7/201	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	Qual
Sample ID N030646-006C-MS Client ID: ZZZZZZ Analyte	SampType: MS Batch ID: 68342 Result	TestCoo TestM PQL	de: 200.8_W No: EPA 200.8 SPK value	Units: µg/L 3 SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 6/6/201 e: 6/7/201 HighLimit	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	Qual
Sample ID N030646-006C-MS Client ID: ZZZZZZ Analyte Antimony	SampType: MS Batch ID: 68342 Result 10.212	TestCon TestM PQL 0.50	de: 200.8_W No: EPA 200.8 SPK value 10.00	Units: µg/L 3 SPK Ref Val 0	%REC 102	Prep Dat Analysis Dat LowLimit 75	e: 6/6/201 e: 6/7/201 HighLimit 125	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	Qual
Sample ID N030646-006C-MS Client ID: ZZZZZZ Analyte Antimony Arsenic	SampType: MS Batch ID: 68342 Result 10.212 13.895	TestCoo TestN PQL 0.50 0.10	de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00	Units: µg/L 3 SPK Ref Val 0 2.752	%REC 102 111	Prep Dat Analysis Dat LowLimit 75 75	e: 6/6/201 e: 6/7/201 HighLimit 125 125	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	Qual
Sample ID N030646-006C-MS Client ID: ZZZZZZ Analyte Antimony Arsenic Barium	SampType: MS Batch ID: 68342 Result 10.212 13.895 30.314	TestCod TestN PQL 0.50 0.10 1.0	de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00 10.00	Units: µg/L 3 SPK Ref Val 0 2.752 18.61	%REC 102 111 117	Prep Dat Analysis Dat LowLimit 75 75 75	e: 6/6/201 e: 6/7/201 HighLimit 125 125 125	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	
Sample ID N030646-006C-MS Client ID: ZZZZZ Analyte Antimony Arsenic Barium Copper	SampType: MS Batch ID: 68342 Result 10.212 13.895 30.314 5.541	TestCod TestN PQL 0.50 0.10 1.0 1.0	de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00 10.00 10.00	Units: µg/L 3 SPK Ref Val 0 2.752 18.61 0	%REC 102 111 117 55.4	Prep Dat Analysis Dat LowLimit 75 75 75 75	e: 6/6/201 e: 6/7/201 HighLimit 125 125 125 125	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	
Sample ID N030646-006C-MS Client ID: ZZZZZZ Analyte Antimony Arsenic Barium Copper Lead	SampType: MS Batch ID: 68342 Result 10.212 13.895 30.314 5.541 10.618	TestCor TestN PQL 0.50 0.10 1.0 1.0 1.0	de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00 10.00 10.00 10.00	Units: µg/L 3 SPK Ref Val 0 2.752 18.61 0 0	%REC 102 111 117 55.4 106	Prep Dat Analysis Dat LowLimit 75 75 75 75 75	e: 6/6/201 e: 6/7/201 HighLimit 125 125 125 125 125	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	
Sample ID N030646-006C-MS Client ID: ZZZZZZ Analyte Antimony Arsenic Barium Copper Lead Manganese	SampType: MS Batch ID: 68342 Result 10.212 13.895 30.314 5.541 10.618 98.418	TestCor TestN PQL 0.50 0.10 1.0 1.0 1.0 0.50	de: 200.8_W No: EPA 200.8 SPK value 10.00 10.00 10.00 10.00 10.00 10.00	Units: µg/L 3 SPK Ref Val 0 2.752 18.61 0 0 0 1.160	%REC 102 111 117 55.4 106 97.3	Prep Dat Analysis Dat LowLimit 75 75 75 75 75 75 75	e: 6/6/201 e: 6/7/201 HighLimit 125 125 125 125 125 125	8	RunNo: 12 4 SeqNo: 30 4	4541 48822	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

- ND Not Detected at the Reporting Limit Calculations are based on raw values
 - CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 ism" EPA ID CA01638

<u>NEVADA</u> | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046 H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

ASSET LABORATORIES

19

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W

Sample ID LCS-68342	SampType: LCS	TestCo	de: 200.8_W	Units: µg/L		Prep Dat	te: 6/6/201	8	RunNo: 124	1541	
Client ID: LCSW	Batch ID: 68342	TestN	lo: EPA 200.8	3		Analysis Dat	te: 6/7/201	8	SeqNo: 304	48829	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	9.539	0.50	10.00	0	95.4	85	115				
Arsenic	10.046	0.10	10.00	0	100	85	115				
Barium	10.252	1.0	10.00	0	103	85	115				
Copper	10.436	1.0	10.00	0	104	85	115				
Lead	9.811	1.0	10.00	0	98.1	85	115				
Manganese	98.972	0.50	100.0	0	99.0	85	115				
Molybdenum	9.784	0.50	10.00	0	97.8	85	115				
Nickel	10.639	1.0	10.00	0	106	85	115				
Zinc	91.690	10	100.0	0	91.7	85	115				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

- E Value above quantitation range
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

Print Date: 19-Jun-18

CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-574 Collection Date: 6/5/2018 2:38:00 PM							
Lab Order:	N030645				Collection	Date: 6/5	5/2018 2:38:0	0 PM			
Project:	PG&E Topock,	680375.03.IM.OP	.00	Matrix: WATER							
Lab ID:	N030645-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
HEXAVALEN	T CHROMIUM BY I										
				EP	A 218.6						
RunID: NV00	922-IC7_180606A	QC Batch: R12	24465		PrepD	ate		Analyst: RAB			
	-				•			Analyst. RAD			
Hexavalent C	-	470	3.3	20		µg/L	100				
Hexavalent C	-	470	3.3	20		µg/L	100	2			
Hexavalent C	Chromium	470	3.3		A 200.8	µg/L	100	6/6/2018 10:24 AM			
Hexavalent C	Chromium	470 QC Batch: 683			A 200.8 PrepD		100 6/6/2018				

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 19-Jun-18

CLIENT: Lab Order:	CH2M HILL N030645			Client Sample ID: SC-700B-WDR-574 Collection Date: 6/5/2018 2:52:00 PM							
Project:		680375.03.IM.OF	2 00	Matrix: WATER							
Lab ID:	N030645-002										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
HEXAVALEN	NT CHROMIUM BY IC	C									
				EP	A 218.6						
RunID: NV0	0922-IC7_180606A	QC Batch: R1	24465		PrepDa	ate		Analyst: RAB			
Hexavalent (Chromium	ND	0.033	0.20		µg/L	1	6/6/2018 10:52 AM			
TOTAL MET	ALS BY ICPMS										
				EP	A 200.8						
RunID: NV0	0922-ICP7_180607C	QC Batch: 68	342		PrepDa	ate	6/6/2018	Analyst: CEI			
Chromium		ND	0.13	1.0		µg/L	1	6/7/2018 07:45 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "Serving Clients with Passion and Professionalism" EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030645

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_W_CRPGE

Sample ID	MB-68342	SampType:	MBLK	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 6/6/2018	RunNo: 124541
Client ID:	PBW	Batch ID:	68342	TestNo: EPA 200.8	Analysis Date: 6/7/2018	SeqNo: 3048901
Analyte			Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium			ND	1.0		
Sample ID	N030627-001C-MS	SampType:	MS	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 6/6/2018	RunNo: 124541
Client ID:	ZZZZZZ	Batch ID:	68342	TestNo: EPA 200.8	Analysis Date: 6/7/2018	SeqNo: 3048908
Analyte			Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium			10.734	1.0 10.00 0.9096	98.2 75 125	
Sample ID	N030627-001C-MSD	SampType:	MSD	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 6/6/2018	RunNo: 124541
Client ID:	ZZZZZZ	Batch ID:	68342	TestNo: EPA 200.8	Analysis Date: 6/7/2018	SeqNo: 3048910
Analyte			Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium			10.629	1.0 10.00 0.9096	97.2 75 125 10.73	0.984 20
Sample ID	N030646-006C-MS	SampType:	MS	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 6/6/2018	RunNo: 124541
Client ID:	ZZZZZZ	Batch ID:	68342	TestNo: EPA 200.8	Analysis Date: 6/7/2018	SeqNo: 3048942
Analyte			Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium			10.203	1.0 10.00 0.4053	98.0 75 125	
Sample ID	LCS-68342	SampType:	LCS	TestCode: 200.8_W_CR Units: µg/L	Prep Date: 6/6/2018	RunNo: 124541
Client ID:	LCSW	Batch ID:	68342	TestNo: EPA 200.8	Analysis Date: 6/7/2018	SeqNo: 3048949
Analyte			Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium			10.084	1.0 10.00 0	101 85 115	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit Calculations are based on raw values

ASSET LABORATORIES

- CAL
 - CALIFORNIA P:562.219.7435 F:562.219.7436 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WU_PGE

Sample ID MB-R124465	SampType: MBLK	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 124465
Client ID: PBW	Batch ID: R124465	TestNo: EPA 218.6	Analysis Date: 6/6/2018	SeqNo: 3046533
	Batch ID. R124405	Testivo. EFA 210.0	Analysis Date. 0/0/2010	3eq110. 3048333
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID LCS-R124465	SampType: LCS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 124465
Client ID: LCSW	Batch ID: R124465	TestNo: EPA 218.6	Analysis Date: 6/6/2018	SeqNo: 3046534
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.187	0.20 5.000 0	104 90 110	
Sample ID N030645-001BMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 124465
Client ID: ZZZZZZ	Batch ID: R124465	TestNo: EPA 218.6	Analysis Date: 6/6/2018	SeqNo: 3046538
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	992.780	20 500.0 466.5	105 90 110	
Sample ID N030645-001BMSD	SampType: MSD	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 124465
Client ID: ZZZZZZ	Batch ID: R124465	TestNo: EPA 218.6	Analysis Date: 6/6/2018	SeqNo: 3046539
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	997.170	20 500.0 466.5	106 90 110 992.8	0.441 20
Sample ID N030645-002CMS	SampType: MS	TestCode: 218.6_WU_P Units: µg/L	Prep Date:	RunNo: 124465
Client ID: ZZZZZZ	Batch ID: R124465	TestNo: EPA 218.6	Analysis Date: 6/6/2018	SeqNo: 3046543
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	0.905	0.20 1.000 0	90.5 90 110	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

NEVADA | P:702.307.2659 F:702.307.2691

ORELAP/NELAP Cert 4046

Calculations are based on raw values

ND Not Detected at the Reporting Limit

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference S

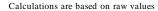
"Serving Clients with Passion and Professionalism"

ASSET LABORATORIES

3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 EPA ID CA01638

CLIENT: CH2M HILL Work Order: N030645 Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT


TestCode: 218.6_WU_PGE

Sample ID N030637-002ADUP	SampType: DUP	TestCode: 218.	6_WU_P Units: µg/L		Prep Da	te:		RunNo: 124	1465	
Client ID: ZZZZZZ	Batch ID: R124465	TestNo: EPA	218.6		Analysis Da	te: 6/6/201	8	SeqNo: 304	16544	
Analyte	Result	PQL SPK	value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexavalent Chromium	2.820	0.20					2.810	0.355	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

"Serving Clients with Passion and Professionalism"

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

- E Value above quantitation range
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lat	ooratories			Print Date: 19-Jun-18							
CLIENT:	CH2M HILL			Client Sample ID: SC-100B-WDR-574							
Lab Order:	N030645			Collection Date: 6/5/2018 2:38:00 PM							
Project:	PG&E Topock,	680375.03.IM.OF	P. 00		M	atrix: WAT	ER				
Lab ID:	N030645-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
TURBIDITY				SM	1 2130B						
				31	121300						
RunID: NV00	922-WC_180606F	QC Batch: R1	24493		PrepD	ate		Analyst: LR			
Turbidity		0.16	0.10	0.10		NTU	1	6/6/2018 01:50 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

ASSET Lab	oratories					Print I	Date: 19-J	lun-18			
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-574							
Lab Order:	N030645				Collection	Date: 6/5/20	018 2:52:0	0 PM			
Project:	PG&E Topock,	680375.03.IM.OP	.00		M	atrix: WAT	ER				
Lab ID:	N030645-002										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
TURBIDITY											
				SN	1 2130B						
RunID: NV00	922-WC_180606F	QC Batch: R12	24493		PrepD	ate		Analyst: LR			
Turbidity		0.15	0.10	0.10		NTU	1	6/6/2018 01:50 PM			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO
- Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

"Serving Clients with Passion and Professionalism"

В

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

CLIENT: CH2M HILL

Work Order: N030645

ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 680375.03.IM.OP.00

TestCode: 2130_W

Sample ID MB-R124493 Client ID: PBW	SampType: MBLK Batch ID: R124493	TestCode: 2130_W Units: NTU TestNo: SM 2130B	Prep Date: Analysis Date: 6/6/2018	RunNo: 124493 SeqNo: 3046056
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	ND	0.10		
Sample IDN030645-002BDUPClient ID:ZZZZZZ	SampType: DUP Batch ID: R124493	TestCode: 2130_W Units: NTU TestNo: SM 2130B	Prep Date: Analysis Date: 6/6/2018	RunNo: 124493 SeqNo: 3046059
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	0.130	0.10	0.1500	14.3 30
Sample ID N030646-004DDUP Client ID: ZZZZZZ	SampType: DUP Batch ID: R124493	TestCode: 2130_W Units: NTU TestNo: SM 2130B	Prep Date: Analysis Date: 6/6/2018	RunNo: 124493 SeqNo: 3046065
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Turbidity	2.410	0.10	2.390	0.833 30

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

E Value above quantitation range

RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ANALYTICAL RESULTS

Print Date: 19-Jun-18

CLIENT: Lab Orde Project:	er: N030645	680375.03.IM.OP.	00	Client Sample ID: SC-700B-WDR-574 Collection Date: 6/5/2018 2:52:00 PM Matrix: WATER								
Lab ID:	N030645-002											
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed				
ANIONS	BY ION CHROMATOGR	APHY										
			EPA 300.0									
RunID:	NV00922-IC8_180607A	QC Batch: R12	4522		PrepD	ate		Analyst: RAB				
Fluoride	9	2.4	0.013	0.20		mg/L	2	6/7/2018 12:52 PM				
ANIONS	BY ION CHROMATOGR	APHY										
		EPA 300.0										
RunID:	NV00922-IC8_180606A	QC Batch: R12	4518		PrepD	ate		Analyst: RAB				
Sulfate		470	1.1	25		mg/L	50	6/6/2018 07:50 PM				

Qualifiers:

Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

<u>CALIFORNIA</u> | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030645

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_FPGE

Sample ID MB-R124522_F	SampType: MBLK	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 124522
Client ID: PBW	Batch ID: R124522	TestNo: EPA 300.0	Analysis Date: 6/7/2018	SeqNo: 3047468
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	ND	0.10		
Sample ID LCS-R124522_F	SampType: LCS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 124522
Client ID: LCSW	Batch ID: R124522	TestNo: EPA 300.0	Analysis Date: 6/7/2018	SeqNo: 3047469
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	1.259	0.10 1.250 0	101 90 110	
Sample ID N030627-001DMS	SampType: MS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 124522
Client ID: ZZZZZZ	Batch ID: R124522	TestNo: EPA 300.0	Analysis Date: 6/7/2018	SeqNo: 3047478
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	8.640	0.50 6.250 2.386	100 80 120	
Sample ID N030627-001DMSD	SampType: MSD	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 124522
Client ID: ZZZZZZ	Batch ID: R124522	TestNo: EPA 300.0	Analysis Date: 6/7/2018	SeqNo: 3047479
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	8.674	0.50 6.250 2.386	101 80 120 8.640	0.399 20
Sample ID N030646-005DMS	SampType: MS	TestCode: 300_W_FPG Units: mg/L	Prep Date:	RunNo: 124522
Client ID: ZZZZZZ	Batch ID: R124522	TestNo: EPA 300.0	Analysis Date: 6/7/2018	SeqNo: 3047483
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Fluoride	9.487	0.50 6.250 3.412	97.2 80 120	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- R RPD outside accepted recovery limits

NEVADA P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

- ND Not Detected at the Reporting Limit Calculations are based on raw values
 - ASSET LABORATORIES CALIFORNIA | P:56 11110 Artesia Blv

CALIFORNIA P:562.219.7435 F:562.219.7436 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

- H Holding times for preparation or analysis exceeded
 - S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N030645 Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_FPGE

Sample ID N030646-003DDUP	SampType: DUP	TestCode: 300_W_FPG Units: mg/L				Prep Da	te:	RunNo: 124			
Client ID: ZZZZZZ	Batch ID: R124522	TestNo: EPA 300.0				Analysis Da	te: 6/7/201	SeqNo: 3047485			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride	2.306	0.20						2.311	0.208	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

- E Value above quantitation range
- R RPD outside accepted recovery limits

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

31

CLIENT: CH2M HILL

Work Order: N030645

Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_SO4PGE

Sample ID MB-R124518_SO4	SampType: MBLK	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 124518
Client ID: PBW	Batch ID: R124518	TestNo: EPA 300.0	Analysis Date: 6/6/2018	SeqNo: 3047311
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	ND	0.50		
Sample ID LCS-R124518_SO4	SampType: LCS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 124518
Client ID: LCSW	Batch ID: R124518	TestNo: EPA 300.0	Analysis Date: 6/6/2018	SeqNo: 3047312
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	3.921	0.50 4.000 0	98.0 90 110	
Sample ID N030638-005CMS	SampType: MS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 124518
Client ID: ZZZZZZ	Batch ID: R124518	TestNo: EPA 300.0	Analysis Date: 6/6/2018	SeqNo: 3047325
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	108.575	5.0 40.00 69.38	98.0 80 120	
Sample ID N030638-005CMSD	SampType: MSD	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 124518
Client ID: ZZZZZZ	Batch ID: R124518	TestNo: EPA 300.0	Analysis Date: 6/6/2018	SeqNo: 3047326
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	108.252	5.0 40.00 69.38	97.2 80 120 108.6	0.298 20
Sample ID N030651-003DMS	SampType: MS	TestCode: 300_W_SO4P Units: mg/L	Prep Date:	RunNo: 124518
Client ID: ZZZZZZ	Batch ID: R124518	TestNo: EPA 300.0	Analysis Date: 6/6/2018	SeqNo: 3047329
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	32.528	1.0 8.000 24.41	102 80 120	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Calculations are based on raw values

ND Not Detected at the Reporting Limit

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

R RPD outside accepted recovery limits

> NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

CLIENT: CH2M HILL Work Order: N030645 Project: PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_SO4PGE

Sample ID N030638-003CDUP	SampType: DUP	TestCode: 300_W_SO4P Units: mg/L				Prep Da	te:	RunNo: 124518			
Client ID: ZZZZZZ	Batch ID: R124518	TestNo: EPA 300.0				Analysis Da	te: 6/6/201	SeqNo: 3047331			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	19.038	1.0						19.11	0.357	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
 - Calculations are based on raw values

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 1110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP Cert 2921
 ELAP Locat0438

- E Value above quantitation range
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

ASSET Lab	ooratories					Print I	Date: 19-J	lun-18			
CLIENT:	CH2M HILL			Client Sample ID: SC-700B-WDR-574							
Lab Order:	N030645			Collection Date: 6/5/2018 2:52:00 PM							
Project:	PG&E Topock,	680375.03.IM.OF	P.00		M	atrix: WAT	ER				
Lab ID:	N030645-002										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
NITRATE/NIT	RITE-N BY CADMI	UM REDUCTION									
				SM4	500-NO3F						
RunID: NV00	922-WC_180614C	QC Batch: R1	24644		PrepD	ate		Analyst: QBM			
Nitrate/Nitrite	as N	2.7	0.16	0.25		mg/L	5	6/14/2018			

Qualifiers:

Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out DO

Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

В

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Project:

CLIENT: CH2M HILL

Work Order: N030645

PG&E Topock, 680375.03.IM.OP.00

ANALYTICAL QC SUMMARY REPORT

TestCode: 4500N03F_W

Sample ID MB-R124644	SampType: I	MBLK	TestCode: 4500N03F_W Units: mg/L				Prep Da	te:		RunNo: 12	4644	
Client ID: PBW	Batch ID: I	R124644	TestN	o: SM4500-N	103		Analysis Da	te: 6/14/20	018	SeqNo: 30	54460	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		ND	0.050									
Sample ID LCS-R124644	SampType: I	LCS	TestCod	e: 4500N03F	_W Units: mg/L		Prep Da	te:		RunNo: 12	4644	
Client ID: LCSW	Batch ID:	R124644	TestN	o: SM4500-N	103		Analysis Da	te: 6/14/20	018	SeqNo: 30	54461	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		0.466	0.050	0.5000	0	93.3	85	115				
Sample ID N030627-003EDUP	SampType:	DUP	TestCod	e: 4500N03F	_W Units: mg/L		Prep Da	te:		RunNo: 12	4644	
Client ID: ZZZZZZ	Batch ID: I	R124644	TestN	o: SM4500-N	103		Analysis Da	te: 6/14/20	018	SeqNo: 30	54465	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		2.506	0.25						2.791	10.8	20	
Sample ID N030627-004EMS	SampType: I	MS	TestCod	e: 4500N03F	_W Units: mg/L		Prep Da	te:		RunNo: 12	4644	
Client ID: ZZZZZZ	Batch ID: I	R124644	TestN	o: SM4500-N	103		Analysis Da	te: 6/14/20	018	SeqNo: 30	54467	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		4.369	0.25	2.500	1.687	107	75	125				
Sample ID N030627-004EMSD	SampType:	MSD	TestCod	e: 4500N03F	_W Units: mg/L		Prep Da	te:		RunNo: 12	4644	
Client ID: ZZZZZZ	Batch ID: I	R124644	TestN	o: SM4500-N	103		Analysis Da	te: 6/14/20	018	SeqNo: 30	54468	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate/Nitrite as N		4.365	0.25	2.500	1.687	107	75	125	4,368	0.0802	20	

NEVADA P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118

ELAP Cert 2676 | NV Cert NV00922

ORELAP/NELAP Cert 4046

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- E Value above quantitation rangeR RPD outside accepted recovery limits
- Detected at the Reporting Emit
- Calculations are based on raw values
 - CALIFORNIA P:562.219.7435 F:562.219.7436 1110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

"Serving Clients with Passion and Professionalism"

ASSET LABORATORIES

35

CH2MHILL

CHAIN OF CUSTODY RECORD

Project Name PG&E Topock Location PG&E Topock Project Number 680375.03.IM.OP.00 Project Manager Scott O'Donnell	Container Preservatives: Filtered:	Poly 4°C Lab H2SO4	1 Liter Poly 4°C	1 Liter Poly 4°C NA	250 ml Poly 4°C	1 Liter Poly 4°C Lab H2SO4	1 Liter Poly 4°C	500 ml Poly 4°C	500 ml Poly 4°C NA	1 Liter Poly 4°C			
Sample Manager Shawn Duffy	Holding Time:		7	7	1	28	7	180	180	7			
Task Order Project IM3PLANT-ARAR-WDR-574 Turnaround Time 10 Days Shipping Date: COC Number: 574 DATE	TIME Matrix	AMMONIA (SM4500NH3D)	Anions (E300.0) Fl, SO4	CONDUCTIVITY (E120.1)	E218.6 Lab Filtered	Nitrate/Nitrite (SM4500NO3-E)	TDS (SM2540C)	Total Metals(E200.7 and E200.8)	Total Metals(E200.8) Cr & Mn	Turbidity (SM2130)		Number of Containers	COMMENTS
SC-100B-WDR-574 06-05-19				x	X		x		x	x	N030645-01	3	
SC-700B-WDR-574 06-05-18	1452 Water	x	x	x	x	X	X	x		x	-02	4	
							-11				TOTAL NUMBER OF CONTAINERS	7	

Approved by	Signatures	Date/Time	Shipping	g Details			Special Instructions:
Sampled by	Om an		Method of Shipment:	FedEx		ATTN:	SC-700B Total metals List:
Relinquished by	all - Clark		On Ice: (ves) no	A 1.14	1010-	Sample Custody	Cr,Al,Sb,As,Ba,B,Cu,Pb,Mn,Mo,Ni,Fe,Zn
Received by	KIL LAN	6 5 18 15:45	Airbill No:	2.100	IR#Z	and	
Relinquished by	m qu		Lab Name: ASSET Lab	oratories		Marlon Cartin	Report Copy to
Received by	sign an a	15/18 17:45	Lab Phone: (702) 307-	2659		Warton Cartin	Doug Scott (970) 731-0636

Page 1 OF 1

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Receive	ed/Opened On:	6/5/2018				Workorder:	N030645		
Rep sample Te	emp (Deg C):	2.1				IR Gun ID:	2		
Temp Blank:		✓ Yes	🗌 No						
Carrier name:		ASSET							
Last 4 digits of	Tracking No.:	NA			Packing	Material Used:	None		
Cooling proces	S:	✓ Ice	Ice Pack	Dry Ice	Other	None			
			S	ample Receip	t Checklist				
1. Shipping cor	ntainer/cooler in go	ood conditio				Yes 🗹	No 🗌	Not Present	
2. Custody sea	Ils intact, signed, c	dated on ship	ppping container/	cooler?		Yes	No 🗌	Not Present	\checkmark
3. Custody sea	Is intact on sample	e bottles?				Yes	No 🗌	Not Present	\checkmark
4. Chain of cus	stody present?					Yes 🗹	No 🗌		
5. Sampler's na	ame present in CC	C?				Yes 🗹	No 🗌		
6. Chain of cus	stody signed when	relinquishe	d and received?			Yes 🗹	No 🗌		
7. Chain of cus	stody agrees with s	sample label	s?			Yes 🗹	No 🗌		
8. Samples in p	proper container/b	ottle?				Yes 🗹	No 🗌		
9. Sample cont	tainers intact?					Yes 🗹	No 🗌		
10. Sufficient s	ample volume for	indicated te	st?			Yes 🗹	No 🗌		
11. All samples	s received within h	olding time?)			Yes 🗹	No 🗌		
12. Temperatu	re of rep sample o	r Temp Blar	nk within acceptal	ole limit?		Yes 🗹	No 🗌	NA	
13. Water - VC	A vials have zero	headspace?	?			Yes	No 🗌	NA	\checkmark
	acceptable upon prime pH > 12 for (CN	-	or Metals			Yes	No 🗹	NA	
15. Did the bot	tle labels indicate	correct pres	ervatives used?			Yes	No 🗌	NA	\checkmark
16. Were there	Non-Conformanc Wa	e issues at l as Client noti	0			Yes ☑ Yes □	No 🗌 No 🗌	NA NA	
	Samples for Hex C Samples for Metal					te with H2SO4.			

Checklist Completed By:

For: JAT 6/7/2018 DA

Reviewed By:

LR 6/8/2018

ASSET Laboratories 3151-3153 W Post Rd., Las Vegas, NV 89118 www.atl-labs.com TEL: 7023072659 FAX: 7023072691

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

QC Level: Level IV

Subcontractor:					
BC Labs	TEL:	(661) 327-4911	Field Sampler:	SIGNED	
4100 Atlas Court	FAX:	(661) 327-1918			
Bakersfield, CA 93308	Acct #:				06-Jun-18

					Requested Tests	
Sample ID	Matrix	Date Collected	Bottle Type	SM4500-NH3D		
N030645-002A / SC-700B-WDR-574	Water	6/5/2018 2:52:00 PM	32OZP	1		

General Comments: Please email sample receipt acknowledgement to the PM.

Please use PO#:N30645A Please email Invoices and Account Receivable Statements to elvira@assetlaboratories.com. For questions, call Marlon at (702)-307-2659. Please e-mail results to reports.lv@assetlaboratories.com by: Normal TAT.

Please analyze for Ammonia by SM4500NH3D. EDD Requirement Labspec7 edata.

				GSO #: 540858618	
			Date/Time		 Date/Time
Relinquished by:	YD	6/6/2018	17:00	Received by:	
Relinquished by:				_ Received by:	

List of Analysts

ASSET Laboratories Work Order: N030645

NAME	TEST METHOD		
Quennie Manimtim	SM 4500-NO3F		
Claire Ignacio	EPA 200.7, EPA 200.8		
Ria Abes	EPA 218.6, EPA 300.0		
Lilia Ramit	EPA 120.1, SM 2540C, SM 2130B		

