

Curt Russell

Topock Project Manager Environmental Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.791.5884 Fax: 760.326.5542 E-Mail: gcr4@pge.com

August 13, 2021

Mr. Aaron Yue Project Manager California Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Subject: Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater

and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

(PGE20180115A)

Dear Mr. Yue:

Enclosed is the Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Needles, California, for Pacific Gas and Electric Company's Interim Measures (IMs) Performance Monitoring Program, the Groundwater Monitoring Program, and the Surface Water Monitoring Program for the Topock Project. This report presents the Second Quarter (April through June 2021) performance monitoring results for the IM-3 hydraulic containment system. This report also presents groundwater and surface water monitoring activities performed, analyses conducted, and results obtained related to the Groundwater and Surface Water Monitoring Programs during the Second Quarter 2021.

The IM quarterly performance monitoring report is submitted in conformance with the reporting requirements in the California Environmental Protection Agency, Department of Toxic Substances Control's (DTSC) IM directive, dated February 14, 2005, and updates and modifications approved by DTSC in letters or emails dated October 12, 2007; July 14, 2008; July 17, 2008; March 3, 2010; April 28, 2010; July 23, 2010; June 27, 2014; July 20, 2015; and August 18, 2017.

Please contact me at 760.791.5884 if you have any questions on the combined monitoring report.

Sincerely,

Curt Russell

Topock Remediation Project Manager

Cc: Chris Guerre/DTSC
Pam Innis/DOI
Ken Foster/CA-SLC
Bruce Campbell/AZ-SLD

Topock Project Executive Abstract

Document Title:	Second Quarter 2021 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles CA						
Submitting Agency:	DTSC						
Final Document?	⊠ Yes □ No						
Date of Document:	August 13, 2021						
Who created this document?: (i.e. PG&E, DTSC, DOI, Other)	PG&E						
Priority Status:	□ HIGH □ MED □ LOW						
Is this time critical?	☐ Yes ☐ No						
Type of Document:	☐ Draft ☐ Report ☐ Letter ☐ Memo ☐ Other / Explain:						
Action Required:	☐ Information Only ☐ Review & Comment Return to:						
What does this information pertain to?	Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:						
Is this a regulatory requirement?							
What is the consequence of NOT doing this item? What is the consequence of DOING this item?	Submittal of this report is a compliance requirement under DTSC requirements.						
Other Justification/s:	Permit Other / Explain:						
Brief Summary of Attached Document:	This quarterly report documents the monitoring activities and performance evaluation of the interim measure (IM) hydraulic containment system under the IM Performance Monitoring Program, the Groundwater Monitoring Program, and Surface Water Monitoring Program for the Topock Project. Hydraulic and chemical monitoring data were collected and used to evaluate the IM hydraulic containment system performance based on a set of standards approved by the California Department of Substances Control (DTSC). Key items included in this report are: (1) measured groundwater elevations and hydraulic gradient data at compliance well pairs, which indicate that the direction of groundwater flow is away from the Colorado River and toward the pumping centers on site; (2) hexavalent chromium data for monitoring wells; (3) pumping rates and volumes from the IM extraction system; and (4) Groundwater Monitoring Program and Surface Water Monitoring Program activities and results. Based on the data and evaluation presented in this report, the IM performance standard has been met for the Second Quarter 2021 Reporting Period. On July 23, 2010, DTSC approved a revised reporting schedule for this report that included a revised IM-3 sample collection period from April 1, 2021 through June 30, 2021.						

Recommendations:	None.					
How is this information related to the Final Remedy or Regulatory Requirements?:	This report is required by DTSC as part of the Interim Measures Performance Monitoring Program.					
Other requirements of this information?:	None.					
Related Reports and Documents:	Click any boxes in the Regulatory Road Map (below) to be linked to the Documents Library on the DTSC Topock Web Site (www.dtsc-topock.com). CEQA/EIR Corrective Measures Completion/ Remedial Action Completion/ Remedy in Place Legend RFA/PA – RCRA Facility Assessment/Preliminary Assessment RFI/RI – RCRA Facility Investigation/CERCLA Remedial Investigation (including Risk Assessment) CMS/FS – RCRA Corrective Measure Study/CERCLA Feasibility Study CEQA/EIR – California Environmental Quality Act/Environmental Impact Report					

Version 9


Pacific Gas and Electric Company

SECOND QUARTER 2021 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT

Topock Compressor Station, Needles, California

August 13, 2021

This report was prepared under the supervision of a California Professional Geologist

Frederick T. Stanin, P.G., C. Hg Principal Hydrogeologist

Alison Schaffer Arcadis Report Lead

Daniel Bush, P.E. Arcadis Project Manager

SECOND QUARTER 2021 INTERIM MEASURES PERFORMANCE MONITORING AND SITEWIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT

Topock Compressor Station, Needles, California

Prepared for:

California Department of Toxic Substances Control

Prepared by:

Arcadis U.S., Inc.

101 Creekside Ridge Court

Suite 200

Roseville

California 95678

Tel 916 786 0320

Fax 916 786 0366

Our Ref.:

30035275

Date: August 13, 2021

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyn	ns and	Abbreviations	V
Ex	ecutiv	/e Sum	mary	1
1	Intro	oductio	n	1
	1.1	Secor	nd Quarter 2021 Regulatory Communication	1
	1.2	Histor	y of Groundwater Impact at the Site	2
		1.2.1	Chromium-6 Impacts to Groundwater	2
		1.2.2	Background Concentrations of Chromium-6	2
	1.3	Site-w	vide Groundwater and Surface Water Monitoring Programs	2
		1.3.1	Basis for GMP and RMP Programs	2
		1.3.2	GMP and RMP Monitoring Networks	3
	1.4	Interir	m Measure Performance Monitoring Program	3
		1.4.1	Basis for PMP Program	3
		1.4.2	PMP Monitoring Network	4
	1.5	Susta	inability	7
2	Sec	ond Qu	uarter 2021 Monitoring Activities	9
	2.1	Grour	ndwater Monitoring Program	9
		2.1.1	Monthly Groundwater Monitoring	9
		2.1.2	Quarterly Groundwater Monitoring	9
	2.2	Surfac	ce Water Monitoring Program	10
	2.3	IM Pe	rformance Monitoring Program	10
		2.3.1	Chromium Monitoring	10
		2.3.2	IM Extraction System Operation	10
		2.3.3	IM Hydraulic Monitoring	11
		2.3.4	IM Contingency Plan Monitoring	11
3	Site	-Wide (Groundwater and Surface Water Monitoring Results	12
	3.1	Grour	ndwater Monitoring Results	12
		3.1.1	Chromium-6 and Dissolved Chromium	12
		3.1.2	Contaminants of Potential Concern and In-Situ Byproducts	12
		313	Well Maintenance	12

	3.2	Surfac	ce Water Monitoring Results	13
		3.2.1	Chromium-6 and Dissolved Chromium	13
		3.2.2	Contaminants of Potential Concern and In-Situ Byproducts	13
	3.3	Data \	/alidation and Completeness	13
4	Sec	ond Qu	arter 2021 IM Performance Monitoring Program Evaluation	15
	4.1	Distrib	ution of Hexavalent Chromium in the Floodplain	15
	4.2	IM Ex	traction System Operation	15
		4.2.1	Chromium Concentrations in Wells Monitored for Conditional Shutdown of PE-01	16
	4.3	IM Hy	draulic Monitoring Results	16
		4.3.1	Hydraulic Gradient Evaluation: California Floodplain	16
		4.3.2	Hydraulic Gradient Evaluation: Arizona Side of the Colorado River	17
	4.4	IM Co	ntingency Plan Monitoring Results	17
	4.5	Projec	ted River Levels During Next Quarter	17
	4.6	Secor	d Quarter 2021 Performance Monitoring Program Evaluation Summary	18
5	Upc	oming	Operation and Monitoring Events	19
	5.1	Groun	dwater Monitoring Program	19
		5.1.1	Monthly Groundwater Monitoring	19
		5.1.2	Quarterly Groundwater Sampling	19
		5.1.3	TW-01 Aquifer Test Monitoring	19
	5.2	Surfac	e Water Monitoring Program	19
	5.3	IM Pe	rformance Monitoring Program	20
		5.3.1	Chromium Monitoring	20
		5.3.2	IM Extraction System Operation	20
		5.3.3	IM Hydraulic Monitoring	20
		5.3.4	IM Contingency Plan Monitoring	20
	5.4	Quart	erly Notifications	20
	5.5	Antici	pated Upcoming Changes	20
6	Refe	erences		22

TABLES

1-1	Topock Monitoring Reporting Schedule
1-2	GMP, RMP, and PMP Monitoring Summary
3-1	Groundwater Sampling Results, Second Quarter 2021
3-2	Surface Water Sampling Results, Second Quarter 2021
1-1	Pumping Rate and Extracted Volume for IM-3 System, Second Quarter 2021
1-2	Wells Monitored for Conditional Shutdown of PE-01, Second Quarter 2021
1- 3	Groundwater Elevation Results, Second Quarter 2021
1-4	Average Hydraulic Gradients Measured at Well Pairs, Second Quarter 2021
1- 5	Interim Measure Contingency Plan Trigger Levels and Results, Second Quarter 2021
1- 6	Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

FIGURES

1-1	Locations of IM-3 Facilities and Monitoring Locations
1-2	Monitoring Locations and Sampling Frequency for GMP
1-3	Monitoring Locations and Sampling Frequency for RMP
1-4	Locations of Wells and Cross-Sections Used for IM Performance Monitoring
3-1a	Chromium-6 Sampling Results, Shallow Wells in Alluvial Aquifer and Bedrock, Second Quarter 2021
3-1b	Chromium-6 Sampling Results, Mid-Depth Wells in Alluvial Aquifer and Bedrock, Second Quarte 2021
3-1c	Chromium-6 Sampling Results, Deep Wells in Alluvial Aquifer and Bedrock, Second Quarter 2021
4-1	Chromium-6 Concentrations in Alluvial Aquifer and Bedrock, Second Quarter 2021
4-2	Chromium-6 Concentrations Floodplain Cross-Section B, Second Quarter 2021
4-3a	Average Groundwater Elevations in Shallow Wells and River Elevations, Second Quarter 2021
4-3b	Average Groundwater Elevations in Mid-depth Wells, Second Quarter 2021
4-3c	Average Groundwater Elevations in Deep Wells, Second Quarter 2021
4-4	Average Groundwater Elevations for Wells in Floodplain Cross-Section A, Second Quarter 2021
4-5	Measured Hydraulic Gradients, River Flevation, and Pumping Rate, Second Quarter 2021

4-6 Past and Predicted Future River Levels at Topock Compressor Station

APPENDICES

Appendix A	Lab Reports, Second Quarter 2021
Appendix B	Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021
Appendix C	Well Inspection and Maintenance Log, Second Quarter 2021
Appendix D	Concentration Time Series Charts, Second Quarter 2021
Appendix E	Interim Measures Extraction System Operations Log, Second Quarter 2021
Appendix F	Hydrographs, Second Quarter 2021

ACRONYMS AND ABBREVIATIONS

δ2H deuterium

δ18O oxygen-18

μg/L microgram per liter

chromium-6 hexavalent chromium

COPC constituent of potential concern

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

ft/ft foot per foot

GMP Groundwater Monitoring Program

gpm gallon per minute

ID identification

IM interim measure

IM-3 Interim Measures number 3

IMCP Interim Measures Contingency Plan

mg/L milligram per liter

MS matrix spike

MSD matrix spike duplicate

ORP oxidation-reduction potential

PARCC precision, accuracy, representativeness, comparability, and completeness

PG&E Pacific Gas and Electric Company

PMP Performance Monitoring Program

RCRA Resource Conservation and Recovery Act

RMP Surface Water Monitoring Program

RRB Red Rock Bridge

TDS total dissolved solids

TSS total suspended solids

USBR United States Bureau of Reclamation

UTL upper tolerance limit

EXECUTIVE SUMMARY

This quarterly report documents the monitoring activities and performance evaluation of the interim measure (IM) hydraulic containment system under the Groundwater Monitoring Program (GMP), Surface Water Monitoring Program (RMP), and IM Performance Monitoring Program (PMP) for Pacific Gas and Electric Company's (PG&E's) Topock Compressor Station (the site), located near Needles, California. The reporting period for this report is April 1 through June 30, 2021 (Second Quarter 2021). Chemical and hydraulic monitoring data collected during this reporting period were used to determine if site conditions have changed and evaluate the IM hydraulic containment system performance based on a set of standards approved by the California Department of Toxic Substances Control (DTSC).

Key items included in this report are: (1) GMP and RMP activities conducted and analytical results from this reporting period; (2) hexavalent chromium analytical data for monitoring wells in the floodplain area; (3) measured groundwater elevations and hydraulic gradient data at compliance well pairs; and (4) pumping rates and volumes from the IM extraction system.

During Second Quarter 2021, IM extraction wells TW-02D and TW-03D were operated to support hydraulic control. Well TW-01 was also operated as part of an aquifer test at the Topock Compressor Station; extracted water was routed to the IM extraction system for treatment. Hydraulic gradient data indicate that the minimum landward gradient target of 0.001 foot per foot was exceeded each month, providing evidence of hydraulic containment of the hexavalent chromium plume. Hexavalent chromium concentrations greater than 20 micrograms per liter in the floodplain area were contained for removal and treatment. Based on the data and evaluation presented in this report, the IM performance standard has been met for the Second Quarter 2021.

1 INTRODUCTION

Pacific Gas and Electric Company (PG&E) is implementing interim measures (IMs) to address chromium concentrations in groundwater at the Topock Compressor Station (the site). The Topock Compressor Station is in eastern San Bernardino County, 15 miles southeast of the City of Needles, California, as shown on Figure 1-1.

This report presents the monitoring data from three PG&E monitoring programs:

- Site-wide Groundwater Monitoring Program (GMP);
- Site-wide Surface Water Monitoring Program (RMP); and
- Interim Measures (currently Interim Measure Number 3 [IM-3]) Performance Monitoring Program (PMP).

This report presents the monitoring data collected from PG&E's GMP, RMP, and PMP programs between April 1 through June 30, 2021 (hereafter referred to as "Second Quarter 2021"). Table 1-1 shows the current reporting schedule for these programs.

This report is divided into eight sections:

Section 1 introduces the site; the GMP, RMP, and PMP programs; and the regulatory framework.

Section 2 describes the Second Quarter 2021 monitoring and site operations conducted in support of these programs.

Section 3 presents GMP and RMP monitoring results for the Second Quarter 2021.

Section 4 presents PMP monitoring results and the IM evaluation for the Second Quarter 2021.

Section 5 describes upcoming monitoring events for the Third Quarter 2021.

Section 8 lists the references cited throughout this report.

This combined GMP, RMP, and PMP reporting format was approved by the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) in May 2009 (DTSC 2009).

1.1 Second Quarter 2021 Regulatory Communication

PG&E communications with the DTSC in Second Quarter 2021 associated with the GMP, RMP, and/or PMP programs are identified below:

- The First Quarter 2021 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report (PMP-GMP Report) was submitted to the DTSC on April 30, 2021 (Arcadis 2021a).
- Required GMP, RMP, and PMP notifications submitted for Second Quarter 2021 included:
 - On June 21, 2021, Arcadis sent a quarterly email notification to PG&E providing hexavalent chromium (chromium-6) and dissolved chromium results from the May 2021 shoreline and in-

- channel surface water sampling event. During the sampling, chromium-6 and dissolved chromium concentrations were lower than the respective reporting limits.
- On August 2, 2021, Arcadis, on behalf of PG&E, sent a quarterly email notification to the DTSC providing chromium-6 and dissolved chromium analytical results from four subject floodplain wells (MW-34-100, MW-44-115, MW-46-175, and MW-44-125).
- As part of the conditional approval for the shutoff of extraction well PE-01, GMP monitoring results for monitoring wells listed in the July 20, 2015 DTSC approval letter (DTSC 2015) are compared to the maximum chromium-6 and dissolved chromium concentrations measured in 2014 (or for biennial sampling frequency, the 2013 maximum concentrations). Results that exceed the previous maximum are required to be reported to the DTSC within 40 days after the end of the quarterly GMP sampling event. In Second Quarter 2021, chromium-6 and/or dissolved chromium concentrations were detected at concentrations above the notification levels at four monitoring wells: MW-32-035, MW-39-100, MW-47-115, and TW-04. A notification email was submitted to the DTSC on July 12, 2021.

1.2 History of Groundwater Impact at the Site

1.2.1 Chromium-6 Impacts to Groundwater

The Topock Compressor Station began operations in 1951. Remediation efforts are ongoing to address chromium-6 in soil and groundwater resulting from the historical water discharge practices. A comprehensive library documenting the history of remediation at the Topock Compressor Station is available on the DTSC website at http://dtsc-topock.com/ (DTSC 2021).

1.2.2 Background Concentrations of Chromium-6

Based on a regional study of naturally occurring metals in groundwater and a statistical evaluation of these data, naturally occurring chromium-6 in groundwater was calculated to exhibit an upper tolerance limit (UTL) concentration of 32 micrograms per liter (µg/L; CH2M Hill 2009). This concentration is used as the background concentration for remedial activities. At the site, the chromium-6 plume is mostly present within unconsolidated alluvial fan and fluvial deposits within the Alluvial Aquifer and, to a lesser extent, in fractured bedrock. Natural groundwater gradients are generally west-to-east at most of the site. The depth to groundwater and the thickness of the saturated sediments vary significantly across the site based on surface topography and the paleo-topography of the top of bedrock surface underneath the site.

1.3 Site-wide Groundwater and Surface Water Monitoring Programs

1.3.1 Basis for GMP and RMP Programs

Routine groundwater and surface water monitoring at the site began in 1998 following a Resource Conservation and Recovery Act (RCRA) facility investigation and are ongoing (CH2M Hill 2005). The main objective of the GMP and RMP programs is to monitor concentrations of chromium-6 and other site constituents in groundwater and surface water to determine if site conditions have changed and to make

decisions about remedial options and future monitoring (CH2M Hill 2005). In accordance with the 2005 Monitoring Plan for Groundwater and Surface Water Monitoring (CH2M Hill 2005), quarterly monitoring reports document groundwater and surface water monitoring performed at the site during each reporting period. Monitoring reports submitted to date are available on the DTSC website. This report documents the GMP and RMP monitoring conducted in Second Quarter 2021.

1.3.2 GMP and RMP Monitoring Networks

The GMP monitoring well network and RMP surface water monitoring network are shown on Figures 1-2 and 1-3, respectively, and are summarized in the table here. The complete GMP network includes 145 wells that monitor groundwater in the Alluvial Aquifer and bedrock. Well construction details for wells in the GMP monitoring well network are summarized in Table 1-2. The RMP network consists of 16 surface water monitoring locations, nine of which are sampled at multiple depths.

Groundwater and Surface Water Monitoring Wells

Groundwater Monitoring Wells	Surface Water Monitoring Wells				
133 monitoring wells in California, including two normally dry wells	10 river channel locations (9 of which are sampled at two different depths)				
8 monitoring wells in Arizona	4 shoreline locations				
4 IM-3 extraction wells	2 other surface water sampling locations (adjacent to the shoreline)				

GMP and RMP monitoring consists of collecting groundwater and surface water samples, inspecting the monitoring wells, and taking corrective actions as needed. GMP and RMP monitoring is performed quarterly, although the monitoring wells included in each GMP event vary by quarter. In addition, GMP monitoring is performed monthly at two extraction wells (TW-03D and PE-01). Table 1-2 provides a list of the monitoring wells and surface water monitoring locations included in the GMP and RMP and the monitoring frequency at each location. Monitoring frequency at GMP wells is also shown on Figure 1-2.

Another component of GMP monitoring is the Bat Cave Wash, an incised ephemeral stream adjacent to the Topock Compressor Station that flows following rainfall events and drains into the Colorado River (Figures 1-1 and 1-2). If a storm causes surface water flow in Bat Cave Wash, additional groundwater samples are collected from monitoring wells MW-09, MW-10, and MW-11.

1.4 Interim Measure Performance Monitoring Program

1.4.1 Basis for PMP Program

Operation of the current IM-3 system began in July 2005. The IM-3 system is intended to maintain hydraulic control of the groundwater chromium-6 plume until the final corrective action is in place at the site (CH2M Hill 2007). The IM-3 system consists of a groundwater extraction system (four extraction wells: TW-02D, TW-03D, TW-02S, and PE-01), conveyance piping, a groundwater treatment plant, and

an injection well field (for the discharge of the treated groundwater). Figure 1-1 shows the locations of the IM-3 extraction, conveyance, treatment, and injection facilities.

In a letter dated February 14, 2005, the DTSC issued an IM performance directive that established the operational requirements for the IM and methods for evaluating the performance of the IM (DTSC 2005). As defined by the DTSC, the performance standard for the IM is to, "establish and maintain a net landward hydraulic gradient, both horizontally and vertically, that ensures that Cr(VI) concentrations at or greater than 20 micrograms per liter [µg/L] in the floodplain are contained for removal and treatment" (DTSC 2005). The IM is required to maintain a landward hydraulic gradient of at least 0.001 foot per foot (ft/ft) within the lower portion of the Alluvial Aquifer (DTSC 2005).

In accordance with the February 2005 DTSC directive, the following conditions must be met to demonstrate achievement of the IM performance standard (DTSC 2005):

- Demonstrate that a landward hydraulic gradient is maintained within the lower portion of the Alluvial Aquifer in the floodplain by:
 - Providing potentiometric surface contour maps of the Alluvial Aquifer within the floodplain area;
 - o Providing calculated hydraulic gradients using established gradient well pairs.
- Demonstrate that chromium-6 concentrations greater than 20 μg/L in the floodplain area are contained for removal and treatment by:
 - Depicting the 20 and 50 μg/L isoconcentration contours for chromium-6 within the floodplain on potentiometric surface maps and hydrogeologic cross-sections;
 - Providing maps and cross-sections of the chromium-6 concentration for the upper, middle, and lower portions of the Alluvial Aquifer in the floodplain area;
 - o Providing time-versus-concentration graphs for chromium-6 measured in floodplain wells.

The February 2005 DTSC directive also defined the reporting requirements for the IM (DTSC 2005). In October 2007, the DTSC approved modifications to the reporting requirements, discontinuing monthly performance monitoring reports, and continuing with quarterly and annual reports (DTSC 2007). The DTSC approved additional updates and modifications to the PMP in letters dated October 12, 2007; July 14, 2008; July 16, 2008; March 3, 2010; April 28, 2010; and June 27, 2014 (DTSC 2007, 2008a, 2008b, 2010a, 2010b, 2014).

1.4.2 PMP Monitoring Network

The PMP consists of a network of monitoring wells used to demonstrate achievement of the IM performance standard. Subsets of wells within the PMP network (including chromium monitoring network, IM extraction wells, IM hydraulic monitoring network, IM Contingency Plan [IMCP] monitoring wells, and IM chemical performance monitoring network) focus on different methods for evaluating performance of the IM. The PMP monitoring network is presented in the table in this section and shown on Figure 1-4.

PMP Monitoring Network (145 monitoring wells included in the GMP)

Type of Well	Wells Included in Network
IM Extraction Wells	• TW-02D;
(4 wells)	• TW-03D;
	• TW-02S;
	• PE-01.
IM Hydraulic Monitoring Network	16 shallow monitoring wells;
(57 monitoring wells and	15 mid-depth monitoring wells;
2 river monitoring locations)	26 deep monitoring wells;
	2 river monitoring locations: I-3 and Red Rock Bridge (RRB).
IMCP	6 shallow monitoring wells;
Monitoring Network	5 mid-depth monitoring wells;
(24 wells)	13 deep monitoring wells.
IM Chemical Performance	5 shallow monitoring wells;
Monitoring Network (10 monitoring	2 mid-depth monitoring wells;
wells and 1 river monitoring location)	3 deep monitoring wells;
location)	1 river monitoring location: R-28.

The subsets of monitoring well networks within the PMP are described in the following subsections.

1.4.2.1 Chromium Monitoring Network

Chromium-6 data, collected as part of the GMP, are used to generate maps, cross-sections, and concentration time series charts that demonstrate containment of chromium-6 concentrations greater than $20~\mu g/L$ in the floodplain area for removal and treatment. As described in Section 1.3.2, groundwater is sampled quarterly; however, the monitoring wells included in each sampling event vary by quarter. In addition, groundwater is sampled monthly at extraction wells TW-03D and PE-01. Table 1-2 provides a list of monitoring wells included in the chromium monitoring network (i.e., the GMP monitoring network) and the monitoring frequency of each location.

1.4.2.2 IM Extraction Wells

The PMP includes four IM extraction wells used to ensure a landward hydraulic gradient via groundwater extraction (Figure 1-4). The operation of the IM extraction system, including pumping rates, planned/unplanned downtime, and volume of groundwater extracted from each extraction well, is documented to demonstrate proper operation of the extraction system. In addition, the wells are sampled as part of the GMP: extraction wells TW-03D and PE-01 are sampled monthly, TW-02D is sampled quarterly, and TW-02S is sampled annually.

Wells Monitored for Conditional Shutdown of PE-01

On July 20, 2015, the DTSC conditionally approved a proposal to modify the IM-3 pumping regime by allowing PE-01 to be shut off and pumping to be shifted to TW-03D and TW-02D or TW-02S, so long as gradient targets are maintained and contingency is not triggered based on chromium concentrations in select floodplain wells (DTSC 2015). Because PE-01 pumps water with low concentrations of chromium

(typically less than 5 μ g/L), shifting more pumping to a higher concentration extraction well can increase the rate of chromium removal from the floodplain.

As part of the conditional approval for PE-01 shutoff, GMP monitoring results from 47 monitoring wells listed in the July 20, 2015 DTSC approval letter (i.e., wells within approximately 800 feet of TW-03D; Table 1-2) are compared to the maximum detected chromium-6 and dissolved chromium concentrations from 2014 (or 2013 for wells sampled biennially). If results from any of the wells exceed the 2014 maximum concentration, then the DTSC must be notified within 40 days after completion of the field sampling event to determine if PE-01 pumping should be reinitiated (DTSC 2015).

1.4.2.3 IM Hydraulic Monitoring Network

The IM hydraulic monitoring network consists of 52 monitoring wells located on the California side of the Colorado River and two river monitoring locations (I-3 and RRB) used to evaluate the performance of the IM-3 system by demonstrating compliance of the required hydraulic gradient of 0.001 ft/ft (Figure 1-4, Table 1-2). In addition, five groundwater monitoring wells located on the Arizona side of the Colorado River (MW-54-085, MW-54-140, MW-54-195, MW-55-045, and MW-55-120; not formally part of the PMP) also provide groundwater elevation data that demonstrate hydraulic gradients on the Arizona side of the river (Figure 1-4). Groundwater and surface water elevation data from these locations are collected monthly using pressure transducers installed at each location.

Groundwater elevation data collected from the IM hydraulic monitoring network are used to develop potentiometric maps of shallow, mid-depth, and deep groundwater and measure hydraulic gradients of three well pairs (northern, central, and southern) to demonstrate compliance with the required 0.001 ft/ft landward hydraulic gradient. On August 18, 2017, the DTSC approved use of monitoring well MW-20-130 in place of well MW-45-095 in the central and southern gradient well pairs during months when extraction well PE-01 is not pumped for hydraulic control at the site (DTSC 2017). The current gradient well pairs are:

- Northern Gradient Pair: MW-31-135 and MW-33-150.
- When PE-01 is operated for hydraulic control:
 - Central Gradient Pair: MW-45-095 and MW-34-100;
 - Southern Gradient Pair: MW-45-095 and MW-27-085.
- When PE-01 is not operated for hydraulic control:
 - Central Gradient Pair: MW-20-130 and MW-34-100;
 - Southern Gradient Pair: MW-20-130 and MW-27-085.

1.4.2.4 IM Contingency Plan Monitoring Wells

The IMCP was developed to detect and control possible migration of the chromium-6 plume toward the Colorado River (DTSC 2005). Twenty-four IMCP wells were selected as part of an early detection system to detect any increases in chromium concentrations at areas of interest across the site (Figure 1-4, Table 1-2). The IMCP wells are sampled quarterly as part of the GMP monitoring program (note that not all 24 wells are

sampled each quarter) to determine if any increasing trends in chromium-6 concentrations are observed. If chromium-6 concentrations exceed the established trigger levels (based on historical chromium-6 concentrations), then a contingency plan must be implemented in accordance with the Revised Contingency Plan Flow Chart (DTSC 2005; PG&E 2008).

1.4.2.5 IM Chemical Performance Monitoring Network

Eleven IM chemical performance monitoring wells are sampled annually or biennially to help evaluate performance of the future remedy (Figure 1-4, Table 1-2). Wells are sampled for an expanded chemistry suite (dissolved boron, bromide, dissolved calcium, chloride, dissolved magnesium, nitrate/nitrite as nitrogen, dissolved potassium, dissolved sodium, sulfate, total alkalinity [as calcium carbonate], total dissolved solids [TDS], and stable isotopes [oxygen-18 $\{\delta180\}$ and deuterium $\{\delta2H\}$]), which was last amended in 2008 (DTSC 2008b; PG&E 2008). Currently, nine monitoring wells and one river monitoring location (R-28) are sampled annually, and one well is sampled biennially (MW-26). Results of IM chemical performance monitoring were last reported in the Fourth Quarter 2020 and Annual PMP-GMP Report (Arcadis 2021a).

1.5 Sustainability

The GMP, RMP, and PMP programs strive to use sustainable sampling and data collection practices. This section briefly describes some of the sustainability practices now in use, which aim to reduce emissions from travel, reduce waste, conserve resources, and reduce potential impacts to nesting habitat and culturally sensitive areas.

- Groundwater sampling purge water is disposed on site via the IM-3 treatment plant and injection process.
- The RMP boat contractor is employed locally.
- Laboratory services are provided by a California-certified, Las Vegas-based lab.
- Chromium-6 and nitrate analytical methods were revised to methods with longer holding times.
- Reports are submitted via the DTSC website and electronically, and the number of hard copy quarterly report submittals has been reduced over time.
- Solar-powered data telemetry systems were installed at six key gradient compliance wells located in floodplain areas with nesting habitat for sensitive avian species.
- Low-flow sampling methods are used at most wells screened in the Alluvial Aquifer, reducing the volume of purge water generated.
- For wells still using the three-volume purge sampling methods, the pumps and tubing are sized for the optimum purge technique at each well.
- Utility vehicles (e.g., Polaris Ranger or Kawasaki Mule) and a quiet electric four-wheel-drive utility
 vehicle are used to access wells on the floodplain and in some culturally sensitive areas rather than
 the full-size pickup truck.

• The IM-3 pumping regime was modified to allow PE-01 to be periodically shut off with pumping shifted to TW-03D and TW-02D or TW-02S. When applied, this modification allows for an increase in the rate of chromium removal from the floodplain.

2 SECOND QUARTER 2021 MONITORING ACTIVITIES

This section summarizes the monitoring completed during Second Quarter 2021 for the GMP, RMP, and PMP programs.

2.1 Groundwater Monitoring Program

The Second Quarter 2021 GMP consisted of monthly and quarterly groundwater monitoring.

2.1.1 Monthly Groundwater Monitoring

Monthly GMP monitoring events were performed at IM extraction well TW-03D in April, May, and June 2021 and consisted of groundwater sampling. IM extraction well PE-01 was not sampled in Second Quarter 2021 due to construction associated with the final groundwater remedy at the site. The well locations are shown on Figure 1-2 and listed in Table 1-2. Samples at TW-03D were collected from the tap of the extraction well (see Table 1-2). During collection of each groundwater sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, oxidation-reduction potential [ORP], turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada and analyzed for the following constituents:

- Chromium-6 and dissolved chromium;
- General chemistry parameters: specific conductivity, pH, alkalinity, chloride, sulfate, and TDS;
- Constituent of potential concern (COPC): nitrate/nitrite as nitrogen;
- In-situ byproducts: dissolved iron and dissolved manganese;
- Cations: dissolved calcium, dissolved magnesium, and dissolved sodium.

2.1.2 Quarterly Groundwater Monitoring

The quarterly GMP monitoring event, performed in April, May, and June 2021, consisted of groundwater sampling and inspection of 100 monitoring wells. Monitoring wells MW-57-050 and MW-58-065 were dry during the monitoring event, and well TW-02D was not sampled due to construction associated with the final groundwater remedy at the site. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Samples were collected using the low-flow or three-volume purge method (see Table 1-2). During collection of each groundwater sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, ORP, turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada. Samples collected from monitoring locations in Arizona were sent to EMAX Laboratories, Inc. in Torrance, California.

Samples were analyzed for the following constituents (note that not all samples were analyzed for the complete analytical suite listed here):

- · Chromium-6 and dissolved chromium;
- General chemistry parameters: Specific conductivity;
- COPCs: dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen;
- In-situ byproducts: dissolved arsenic and dissolved manganese.

2.2 Surface Water Monitoring Program

Second Quarter 2021 RMP monitoring was performed on May 19 and 20, 2021. The RMP monitoring event consisted of collecting 25 surface water samples from 16 locations. At nine of the 16 locations, samples were collected from two depth intervals: shallow (1 foot below water surface) and deep (1 foot above the river bottom). The surface water monitoring locations are shown on Figure 1-3 and listed in Table 1-2. During collection of each surface water sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, ORP, turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada for analysis of the following constituents:

- Chromium-6 and dissolved chromium;
- General chemistry parameters: Specific conductivity and pH;
- COPCs: dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen;
- In-situ byproducts: dissolved arsenic, total and dissolved iron, and dissolved manganese;
- Geochemical Parameters: dissolved barium and total suspended solids (TSS).

2.3 IM Performance Monitoring Program

IM performance monitoring in Second Quarter 2021 consisted of groundwater chromium monitoring within the floodplain area, a review of IM extraction system operation, and IM hydraulic monitoring. In addition, chromium-6 and dissolved chromium data collected during chromium monitoring were used to monitor shutdown of extraction well PE-01 and evaluate the need to implement the IMCP.

2.3.1 Chromium Monitoring

Chromium monitoring was performed as part of the monthly and quarterly GMP monitoring. One hundred monitoring wells were sampled for chromium-6 in April through June 2021. Extraction well TW-03D was sampled monthly in April, May, and June 2021. The monitoring well locations are shown on Figure 1-4 and listed in Table 1-2. Chromium-6 analytical results were used to evaluate chromium-6 distribution in the floodplain area.

2.3.2 IM Extraction System Operation

The IM extraction system was operated in April, May, and June 2021. Pumping rates, planned or unplanned downtime, and the volume of groundwater extracted from each IM extraction well were documented. Daily IM-3 inspections were performed including general facility inspections, flow measurements, and site security monitoring. Daily logs with documentation of inspections are maintained on site.

2.3.2.1 Wells Monitored for Conditional Shutdown of PE-01

Twenty-nine GMP monitoring wells were sampled for chromium-6 and dissolved chromium in Second Quarter 2021 as part of the conditional approval for PE-01 shutdown. IM extraction well PE-01 was not

sampled due to construction associated with the final groundwater remedy at the site. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Results were evaluated against the maximum detected chromium-6 and dissolved chromium concentrations from 2014 (or 2013 for wells sampled biennially).

2.3.3 IM Hydraulic Monitoring

Groundwater elevation data from monitoring wells and river monitoring locations within the IM hydraulic monitoring network are measured using pressure transducers, which record continuous water levels at 30-minute intervals. Pressure transducer data were downloaded in Second Quarter 2021 during the first two weeks of each month (April, May, and June) from the 52 monitoring wells in the IM hydraulic monitoring network, two river monitoring locations (I-3 and RRB), and five wells located on the Arizona side of the Colorado River. The monitoring well and river monitoring locations are shown on Figure 1-4 and listed in Table 1-2. Pressure transducers at the six gradient control monitoring wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, MW-45-095, and MW-20-130) were downloaded via a cellular telemetry system.

2.3.4 IM Contingency Plan Monitoring

Nineteen IMCP monitoring wells were sampled for chromium-6 as part of the Second Quarter 2021 GMP program. The monitoring well locations are shown on Figure 1-4 and listed in Table 1-2. Results were evaluated against established trigger levels (based on historical chromium-6 concentrations).

3 SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING RESULTS

This section summarizes results from the groundwater and surface water monitoring performed during Second Quarter 2021 for the GMP and RMP programs.

3.1 Groundwater Monitoring Results

3.1.1 Chromium-6 and Dissolved Chromium

Table 3-1 presents the Second Quarter 2021 groundwater sample results for chromium-6 and dissolved chromium, as well as general chemistry parameters (specific conductivity, ORP, pH, and turbidity). The laboratory reports for samples analyzed during Second Quarter 2021 are provided in Appendix A. Historical chromium-6 and dissolved chromium concentration data are presented in Appendix B.

Figures 3-1a, 3-1b, and 3-1c show the distribution of chromium-6 concentrations across the site in wells monitoring the upper-depth (shallow), mid-depth, and lower-depth (deep) intervals of the Alluvial Aquifer and bedrock. These figures also show the interpreted extent of groundwater chromium-6 concentrations higher than 32 μ g/L for each depth interval. The value of 32 μ g/L is based on the calculated natural background UTL for chromium-6 in groundwater from the background study (CH2M Hill 2009).

During Second Quarter 2021, the maximum detected chromium-6 and dissolved chromium concentrations were 37,000 μg/L and 37,000 μg/L (both at MW-68-180), respectively.

3.1.2 Contaminants of Potential Concern and In-Situ Byproducts

Table 3-1 presents the Second Quarter 2021 groundwater sample results for COPCs (dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen) and in-situ byproducts (dissolved arsenic and dissolved manganese). Maximum concentrations for each constituent are:

- Dissolved molybdenum: 210 μg/L (MW-46-175);
- Dissolved selenium: 430 µg/L (MW-67-185);
- Nitrate/nitrite as nitrogen: 100 milligrams per liter (mg/L; MW-67-185);
- Dissolved arsenic: 24 µg/L (MW-32-035);
- Dissolved manganese: 1,800 μg/L (MW-22).

3.1.3 Well Maintenance

Monitoring wells were inspected during groundwater sampling in Second Quarter 2021. No corrective or maintenance actions were needed. Appendix C provides a summary of the inspection results.

3.2 Surface Water Monitoring Results

3.2.1 Chromium-6 and Dissolved Chromium

Table 3-2 presents the Second Quarter 2021 surface water sample results for chromium-6 and dissolved chromium, as well as general chemistry parameters (pH and specific conductivity). Chromium-6 and dissolved chromium from the May 2021 sampling event were not detected at concentrations higher than reporting limits at any surface water monitoring location. The laboratory reports for samples analyzed during Second Quarter 2021 are provided in Appendix A.

3.2.2 Contaminants of Potential Concern and In-Situ Byproducts

Table 3-2 presents the Second Quarter 2021 surface water results for COPCs (dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen), in-situ byproducts (dissolved arsenic, total iron, dissolved iron, and dissolved manganese), and other geochemical indicator parameters (dissolved barium and TSS). Maximum concentrations for each constituent are (with associated locations):

- Dissolved molybdenum: 4.7 μg/L (C-R22A-D and R63);
- Dissolved selenium: 1.5 μg/L (C-TAZ-S, C-I-3-S, C-R22A-S, and C-R22A-D);
- Nitrate/nitrite as nitrogen: 0.57 mg/L (C-NR3-D);
- Dissolved arsenic: 2.3 μg/L (C-I-3-D);
- Total iron: 130 J μg/L (R63);
- Dissolved iron: All results were non-detect
- Dissolved manganese: 16 μg/L (RRB);
- Dissolved barium: All results were 100 μg/L or 110 μg/L;
- TSS:12 mg/L (R63).

3.3 Data Validation and Completeness

Project chemists reviewed laboratory analytical data from the Second Quarter 2021 sampling events to assess data quality and to identify deviations from analytical requirements. Data validation flags were assigned according to the quality assurance project plans (CH2M Hill 2014; Critigen 2020). Data validation qualifiers for groundwater and surface water analytical results are shown in Tables 3-1 and 3-2, respectively.

The Second Quarter 2021 analytical results were evaluated using the criteria of precision, accuracy, representativeness, comparability, and completeness (PARCC) to demonstrate that a sufficient number of representative samples were collected, and the resulting analytical data can be used to support the decision-making process as measured by the PARCC findings. The following summary highlights the PARCC findings:

 Precision of the data was verified through the review of the laboratory data quality indicators that include matrix spike/matrix spike duplicate (MS/MSD) and field duplicate relative percent differences.

Precision was generally acceptable for all analytes with some exceptions; data validation qualifiers were applied for results that did not meet quality control criteria.

- Accuracy of the data was verified through the review of the calibration, laboratory control samples, MS/MSDs, as well as the evaluation of method/field blank data. Accuracy was acceptable for all analyses with some exceptions; data validation qualifiers were applied for results that did not meet quality control criteria. A large quantity of the iron and dissolved iron data were considered estimated results due to matrix interference.
- Representativeness of the data was verified through the samples' collection, storage, and
 preservation procedures and the verification of holding-time compliance. The laboratory did not note
 any problems with the samples' collection, holding time, and storage. Chain-of-custody issues were
 minor and resolved and documented in the data packages.
- Comparability of the data was ensured using standard analytical procedures and standard units for reporting. Results obtained are comparable to industry standards, in that the collection and analytical techniques followed approved, documented procedures.
- Completeness is a measure of the number of valid measurements obtained in relation to the total number of measurements planned. Completeness is expressed as the percentage of valid or usable measurements compared to planned measurements. Valid data are defined as all data that are not rejected for project use and flagged "R" for rejected during validation. All data are considered valid, except for one dissolved manganese result (MW-55-120). The completeness goal of 90 percent was met for all method/analyte combinations.

4 SECOND QUARTER 2021 IM PERFORMANCE MONITORING PROGRAM EVALUATION

This section summarizes the results of the Second Quarter 2021 PMP evaluation.

4.1 Distribution of Hexavalent Chromium in the Floodplain

Chromium-6 data collected as part of the Second Quarter 2021 GMP monitoring were used to generate maps, cross-sections, and concentration time series charts to demonstrate that chromium-6 concentrations greater than 20 µg/L in the floodplain area are contained for removal and treatment.

Distribution of chromium-6 concentrations in the upper-depth (shallow wells), mid-depth, and lower-depth (deep wells) intervals of the Alluvial Aquifer is shown in plan view and cross-section view (cross-section A) on Figure 4-1. Figure 4-2 presents chromium-6 concentrations for cross-section B, oriented parallel to the Colorado River. The locations of cross-sections A and B are shown on Figure 4-1. The figures demonstrate that chromium-6 concentrations decrease from west to east along the floodplain (cross-section A), and that concentrations greater than 20 µg/L are contained in the floodplain area.

Appendix D provides chromium-6 concentration time series charts for wells sampled in Second Quarter 2021 including for six deep monitoring wells in the floodplain area (MW-34-100, MW-36-090, MW-36-100, MW-44-115, MW-44-125, and MW-46-175) historically monitored for chromium encroachment. These six wells are located between the IM extraction wells and the Colorado River; therefore, they show the distribution of chromium-6 concentrations at the toe of the chromium-6 plume. As shown by the concentration time series charts, chromium-6 concentrations have decreased since initiation of the IM extraction system in 2005 and have remained relatively steady over the past few years. In Second Quarter 2021, chromium-6 concentrations at the six wells were below 20 µg/L (Appendices B and D). In general, wells showing marked decreases in chromium-6 concentrations are located in the floodplain area where IM pumping is removing chromium in groundwater.

4.2 IM Extraction System Operation

During Second Quarter 2021, IM extraction wells TW-03D and TW-02D were operated to support hydraulic control, and well TW-01 was operated for aquifer testing. In April and May 2021, TW-03D was solely operated at an average pumping rate of 116.7 and 114.9 gallons per minute (gpm), respectively. In June 2021, the TW-01 aquifer test was initiated. Consequently, extraction from TW-03D was ceased and reduced flow from TW-02D was initiated to allow water extracted from TW-01 to be introduced into the pipeline and routed to the IM-3 system for treatment. During that time, TW-03D, TW-02D, and TW-01 were operated at an average pumping rate of 117.5 gpm. Extraction wells PE-01 and TW-02S were not operated during Second Quarter 2021.

The IM-3 system extracted and treated 15,246,027 gallons of groundwater during Second Quarter 2021, and an estimated 52.7 pounds (23.9 kilograms) of chromium were removed from the aquifer between March 1 and May 31, 2021 (Table 4-1). Note that groundwater extraction is reported on a different schedule than chromium removal reporting (i.e., April through June and March through May, respectively; Table 4-1). The operational runtime percentage for the IM-3 system during Second Quarter 2021 was

89%. Appendix E provides the operations log for the IM-3 system including planned and unplanned downtime.

4.2.1 Chromium Concentrations in Wells Monitored for Conditional Shutdown of PE-01

During Second Quarter 2021, 29 of the 47 wells monitored to support the conditional shutdown of PE-01 were sampled for chromium-6 and dissolved chromium. Chromium-6 and/or dissolved chromium were detected at concentrations exceeding the 2014 and/or 2013 maximum concentrations (i.e., notification levels) at four monitoring wells: MW-32-035, MW-39-100, MW-47-115, and TW-04. Chromium concentrations at these four wells appear to be within the historical range at each location. Chromium concentrations at these wells will continue to be monitored to verify that Second Quarter 2021 results are not indicative of increasing trends. Shutdown of extraction well PE-01 continued through the end of the reporting period. Table 4-2 presents the chromium-6 and dissolved chromium concentrations and their associated notification levels.

4.3 IM Hydraulic Monitoring Results

Table 4-3 presents the Second Quarter 2021 average monthly and quarterly groundwater and river elevations, calculated from the pressure transducer data. Average daily groundwater and river elevations are provided as hydrographs in Appendix F. Groundwater elevations were adjusted for temperature and salinity differences among wells (i.e., adjusted to a common freshwater equivalent).

4.3.1 Hydraulic Gradient Evaluation: California Floodplain

Figures 4-3a, 4-3b, and 4-3c present the average Second Quarter 2021 groundwater elevations and associated groundwater contours for the shallow, mid-depth, and deep wells, respectively. Figure 4-4 presents the average groundwater elevations and associated groundwater contours for wells located in the floodplain along cross-section A. Due to complex vertical gradients present at portions of the Topock site, water levels for some wells are not considered in the contouring on Figures 4-3a, 4-3b, 4-3c, or 4-4.

During Second Quarter 2021, hydraulic gradients were measured for three gradient well pairs selected for performance monitoring of the IM-3 system (shown on Figure 1-4; note that PE-01 was not operated for hydraulic control):

- Northern Gradient Pair: MW-31-135 and MW-33-150;
- Central Gradient Pair: MW-20-130 and MW-34-100;
- Southern Gradient Pair: MW-20-130 and MW-27-085.

As discussed in Section 1.4.2.3, a landward hydraulic gradient of 0.001 ft/ft must be maintained to demonstrate compliance with the performance standard. Table 4-4 presents the monthly average hydraulic gradients measured for each of the gradient well pairs in Second Quarter 2021 as well as the overall average of all well pairs. The overall monthly average gradients for all well pairs were 0.0041, 0.0038, and 0.0023 ft/ft for April, May, and June 2021, respectively. Landward gradients measured each month exceeded the 0.001 ft/ft requirement, as shown in Table 4-4. Figure 4-5 illustrates the measured

hydraulic gradients during Second Quarter 2021 with the concurrent Colorado River elevations and IM-3 pumping rates.

4.3.2 Hydraulic Gradient Evaluation: Arizona Side of the Colorado River

During Second Quarter 2021, pressure transducer data were recorded in five wells located on the Arizona side of the Colorado River. The average quarterly groundwater elevations for monitoring wells MW-54-085, MW-54-140, MW-54-195, MW-55-045, and MW-55-120 are presented on Figures 4-3b and 4-3c and are used for contouring where appropriate. Except for well MW-55-045, all wells in the MW-54 and MW-55 clusters are screened in the deep interval of the Alluvial Aquifer. Well MW-55-045 is screened across portions of the shallow and middle intervals (Figure 4-3b). Average quarterly water levels at the MW-54 and MW-55 well clusters indicate that water elevations in monitoring wells in Arizona are higher than those in wells across the river on the California floodplain. This indicates that the apparent hydraulic gradient on the Arizona side of the river is westward and, as a result, groundwater flow would also be toward the west in that area. This is consistent with the site conceptual model and with the current numerical groundwater flow model.

4.4 IM Contingency Plan Monitoring Results

During Second Quarter 2021, chromium-6 concentrations in the 19 IMCP monitoring wells sampled were lower than the established trigger levels; therefore, implementation of the contingency plan was not needed. Chromium-6 concentrations for the IMCP wells and their associated trigger levels are presented in Table 4-5.

4.5 Projected River Levels During Next Quarter

Colorado River water level projections provide river level information useful for anticipating IM-3 extraction requirements for the upcoming quarter. The Colorado River stage near the site is measured at river monitoring location I-3. Water levels are directly influenced by releases from Davis Dam, and, to a lesser degree, from Lake Havasu elevations, both of which are controlled by the United States Bureau of Reclamation (USBR). Total releases from Davis Dam follow a predictable annual cycle, with the largest monthly releases typically in spring and early summer and the smallest monthly releases in late fall/winter (November and December). Superimposed on this annual cycle is a diurnal cycle determined primarily by daily fluctuations in electric power demand. Releases within a given 24-hour period often fluctuate over a wider range of flows than that of monthly average flows over an entire year. Figure 4-6 shows the river stage measured at location I-3 superimposed on the projected I-3 river levels.

Projected river levels for future months are based on the USBR projections of Davis Dam discharge and Lake Havasu levels from the preceding month. For example, the projected river level for July 2021 is based on the June 2021 USBR projections of Davis Dam release and Lake Havasu level. Future projections of Colorado River stage, shown on Figure 4-6, are based on USBR long-range projections of Davis Dam releases and Lake Havasu levels from June 2021. There is more uncertainty in these projections at longer times in the future because water demand is based on various factors including climate.

Current USBR projections, presented in Table 4-6, show that the projected Davis Dam release for July 2021 is 13,600 cubic feet per second, and the predicted Colorado River elevation at the I-3 gauge is 455.73 feet above mean sea level.

4.6 Second Quarter 2021 Performance Monitoring Program Evaluation Summary

The Second Quarter 2021 PMP evaluation is summarized below.

- Chromium-6 isoconcentration maps indicate that chromium-6 concentrations greater than 20 µg/L in the floodplain area are hydraulically controlled.
- IM extraction well TW-03D was solely operated to support hydraulic control in April and May 2021. In June 2021, the TW-01 aquifer test was initiated, and extraction from TW-03D was ceased and pumping from TW-02D was initiated to allow water extracted from TW-01 to be routed to the IM-3 system for treatment (combined with water from TW-02D). During the Second Quarter, TW-03D, TW-02D, and TW-01 were operated. A total of 15,246,027 gallons of groundwater were extracted by the IM-3 system, and an estimated 52.7 pounds (23.9 kilograms) of chromium were removed from groundwater.
- Chromium-6 and dissolved chromium concentrations in monitoring wells located within 800 feet of
 extraction well TW-03D were lower than their established notification levels at all but four monitoring
 wells. Chromium concentrations will continue to be monitored at these four locations to verify that
 Second Quarter 2021 concentrations do not indicate increasing trends. The shutdown of extraction
 well PE-01 was continued through the end of the reporting period.
- Groundwater potentiometric surface maps and the gradient analysis from designated well pairs
 provide evidence of hydraulic containment of the chromium-6 plume. The overall monthly average
 landward gradients in April, May, and June 2021 were approximately 4.1, 3.8, and 2.3 times the
 required minimum magnitude of 0.001 ft/ft.
- Chromium-6 concentrations in the IMCP monitoring wells were lower than their established trigger levels, indicating that chromium concentrations did not increase at areas of interest across the site.

5 UPCOMING OPERATION AND MONITORING EVENTS

GMP, RMP, and PMP monitoring will continue under direction from the DTSC in Third Quarter 2021. Monitoring and results will be reported in the Third Quarter 2021 PMP-GMP Report (planned for submittal by December 15, 2021).

5.1 Groundwater Monitoring Program

5.1.1 Monthly Groundwater Monitoring

Monthly GMP monitoring events are planned for July, August, September, and October 2021 at extraction wells TW-03D and PE-01; however, PE-01 may be inaccessible in Third Quarter 2021. PG&E intends to continue the operation of extraction well TW-02D to maintain hydraulic control in Third Quarter 2021; therefore, monthly GMP monitoring is planned at this location.

5.1.2 Quarterly Groundwater Sampling

The quarterly GMP monitoring event is planned for September and October 2021. This event will consist of groundwater sampling and inspection of 20 monitoring wells. Any necessary corrective actions to monitoring wells were performed in a timely manner.

If rainfall in Third Quarter 2021 causes surface water flow in Bat Cave Wash, monitoring wells MW-09, MW-10, and MW-11 will be sampled.

5.1.3 TW-01 Aquifer Test Monitoring

An aquifer test was initiated in June 2021 in accordance with the approved TW-01 Aquifer Test Plan (Arcadis 2021b). The test is anticipated to last for 3 to 6 months based on the effectiveness at meeting the work plan objectives and the availability of the IM-3 system to treat the extracted water. There is also a portion of the approved work plan that will require dye injection into MW-68-180, but at a later date (i.e., 2022). Overall, approximately 37 monitoring wells are being sampled as part of the aquifer test, and approximately 50 additional wells are being monitored for water levels manually and/or via dataloggers installed in the wells. The results of the TW-01 aquifer test will be provided under separate cover including via monthly data transfers during the pumping portion of the test and via a summary technical memorandum after the completion of the test as approved in the work plan.

5.2 Surface Water Monitoring Program

The surface water monitoring event is planned for August 2021. The monitoring event will consist of surface water sampling at 16 locations.

5.3 IM Performance Monitoring Program

5.3.1 Chromium Monitoring

Chromium concentrations will be monitored as part of the Third Quarter 2021 GMP monthly and quarterly monitoring events. Chromium-6 data will be collected from a total of 22 monitoring wells.

5.3.2 IM Extraction System Operation

During Third Quarter 2021, the IM-3 system will continue operating, and operations will be documented. IM extraction wells TW-03D or TW-02D and monitoring well TW-01 will be pumped a target rate of 135 gpm, except during periods of planned and unplanned downtime

Third Quarter 2021 GMP monitoring results from wells listed in the July 20, 2015 DTSC approval letter for conditional PE-01 shutdown (DTSC 2015) will be compared to the 2014 (or 2013 for wells sampled biennially) maximum chromium-6 and dissolved chromium concentrations. Results that exceed the notification levels will be reported to the DTSC within 40 days after the end of the quarterly GMP sampling event.

5.3.3 IM Hydraulic Monitoring

The IM hydraulic monitoring network will continue to be used to demonstrate compliance of the required 0.001 ft/ft landward hydraulic gradient. During the first 2 weeks of each month, pressure transducer data will be downloaded from the 52 monitoring wells in the IM hydraulic monitoring network, five wells located on the Arizona side of the Colorado River, and two river monitoring locations. Pressure transducer data at the six gradient control wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, MW-45-095, and MW-20-130) will continue to be downloaded via cellular telemetry at monthly or more frequent intervals, as needed, to verify that 0.001 ft/ft landward gradients are maintained.

5.3.4 IM Contingency Plan Monitoring

Third Quarter 2021 GMP monitoring results from IMCP wells will be compared to their respective trigger levels. If any exceedances are observed, the DTSC will be notified in accordance with the Revised Contingency Plan Flow Chart (PG&E 2008).

5.4 Quarterly Notifications

Email notifications will be sent in Third Quarter 2021 providing chromium-6 and dissolved chromium results for shoreline and in-channel surface water monitoring locations and monitoring wells MW-34-100, MW-44-115, MW-46-175, and MW-44-125.

5.5 Anticipated Upcoming Changes

In accordance with the Basis of Design Report (CH2M Hill 2015), new monitoring wells, extraction wells, and injection wells have been installed as part of the final groundwater remedy at the site. A summary of field activities and monitoring results associated with the new wells is reported under separate cover as

part of the monthly reporting process associated with construction of the final groundwater remedy and in the final project record documentation.

The final groundwater remedy is expected to start operation in the fall of 2021. A Sampling and Analysis Plan is being prepared under separate cover and will be submitted to the DTSC for review. Upon initiation of the final groundwater remedy, it is anticipated that the new Sampling and Analysis Plan will be implemented and will fully replace the quarterly PMP-GMP reports.

6 REFERENCES

- Arcadis. 2021a. Fourth Quarter 2020 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.
- Arcadis. 2021b. TW-01 Aquifer Test Plan, Topock Compressor Station, Needles, California. April 2.
- CH2M Hill. 2005. Monitoring Plan for Groundwater and Surface Water Monitoring Program. PG&E Topock Compressor Station, Needles, California. April 11.
- CH2M Hill. 2007. RCRA Facility Investigation/Remedial Investigation Report, Volume 1 Site Background and History. PG&E Topock Compressor Station, Needles, California. August.
- CH2M Hill. 2009. Groundwater Background Study, Steps 3 and 4: Revised Final Report of Results, PG&E Topock Compressor Station, Needles, California. November 6.
- CH2M Hill. 2014. Final PG&E Program Quality Assurance Project Plan. November.
- CH2M Hill. 2015. Basis of Design Report/Final [100%] Design Submittal for the Final Groundwater Remedy. November.
- California Department of Toxic Substances Control (DTSC). 2005. Letter to PG&E. Criteria for Evaluating Interim Measures Performance Requirements to Hydraulically Contain Chromium Plume in Floodplain Area, PG&E Topock Compressor Station, Needles, California (EPA ID No. CAT080011729). February 14.
- DTSC. 2007. Letter to PG&E. Approval of Updates and Modifications to the Interim Measures Performance Monitoring Program. PG&E Topock Compressor Station. October 12.
- DTSC. 2008a. Letter to PG&E. Modifications to Hydraulic Data Collection for the Interim Measures

 Performance Monitoring Program at PG&E Topock Compressor Station, Needles, California. July 14.
- DTSC. 2008b. Letter to Geology and Remediation Engineering. Updates to the Interim Measures Chemical Performance Monitoring Program. PG&E Topock Compressor Station, Needles, California. July 16.
- DTSC. 2009. Email. Re: Request for Combined Reporting of Topock GMP and PMP. May 26.
- DTSC. 2010a. Email. Re: Topock GMP Monitoring Frequency Modification. March 3.
- DTSC. 2010b. Letter to PG&E. Arizona Monitoring Well Sampling Frequency Modification. PG&E Topock Compressor Station, Needles, California. April 28.
- DTSC. 2014. Email from Chris Guerre/DTSC to Yvonne Meeks/PG&E. PG&E Topock: DTSC response to Section 7 2013 Annual Report Recommendations. June 27.
- DTSC. 2015. Letter from Aaron Yue/DTSC to Yvonne Meeks/PG&E. Conditional Approval of Proposal to Modify Interim Measures 3 (IM3) Extraction Well Pumping at PG&E Topock Compressor Station, Needles, California (USEPA ID No. CAT080011729). July 20.

- DTSC. 2017. Email from Chris Guerre/DTSC to Jay Piper/CH2M and Curt Russell/PG&E. Re: PG&E Topock Letter Requesting Modified Key Gradient Well Pairs When PE-01 Is Not Pumping. August 18.
- DTSC. 2021. PG&E Topock Compressor Station: Environmental Investigation and Cleanup Activities. Web page. Located at: http://dtsc-topock.com/.
- Critigen. 2020. Addendum to the PG&E Program Quality Assurance Project Plan for Groundwater and Surface Water Sampling at the Topock Chromium Site. April.
- PG&E. 2008. Approved Modifications to the Topock IM Performance Monitoring Program PG&E Topock Compressor Station, Needles, California. August 4.

TABLES

Table 1-1

Topock Monitoring Reporting Schedule

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Period	Reporting Period	Report Submittal Date	Anticipated Number of Monitoring Locations: Groundwater Monitoring Program (GMP)	Anticipated Number of Monitoring Locations: Surface Water Monitoring Program (RMP)	Anticipated Number of Monitoring Locations: Chromium Monitoring*	Anticipated Number of Monitoring Locations: Monitoring for Conditional Shutdown of PE-01*	Anticipated Number of Monitoring Locations: IM Hydraulic Monitoring	Anticipated Number of Monitoring Locations: IM Contingency Plan Monitoring*	Anticipated Number of Monitoring Locations: IM Chemical Performance Monitoring
First Quarter	January - March	April 30	22	16	22	4	59	3	0
Second Quarter	April - June	August 15	105	16	105	30	59	19	0
Third Quarter	July - October	December 15	22	16	22	4	59	3	0
Fourth Quarter	November - December	March 15	143 annual + 2 biennial	16	143 annual + 2 biennial	47	59	24	10 annual + 1 biennial

Notes:

1. On July 23, 2010, DTSC approved a revised reporting schedule that included a revised IM-3 monitoring period (i.e., chromium removed), as follows:

First Quarter: January - February Second Quarter: March - May Third Quarter: June - September Fourth Quarter: October - December

* = Monitoring consists of collecting hexavalent chromium and/or dissolved chromium data from groundwater monitoring wells; these data are collected during the GMP monitoring event.

 $\label{eq:GMP} \textit{GMP} = \textit{Groundwater Monitoring Program}.$

DTSC = Department of Toxic Substance Control.

IM = interim measure.

RMP = Surface Water Monitoring Program.

Page 1 of 1 Printed: 6/21/2021

Table 1-2
GMP, RMP, and PMP Monitoring Summary
Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Location ID	Site Area	Measuring Point Elevation	Well Screen Interval	Well Screen	Well Casing Diameter	Well Depth	Aquifer Zone	Sampling	GMP Monitoring	RMP Monitoring	PMP Monitoring: Chromium	PMP Monitoring: Monitoring Frequency	PMP Monitoring: IM Hydraulic	Contingency Plan	PMP Monitoring: IM Chemical Performance	Notes
ECCENTONIE	Site Area	(ft amsl)	(ft bgs)	Lithology	(inches)	(ft bgs)	Aquilei Zoile	Method	Frequency	Frequency	Monitoring Frequency	for Conditional Shutdown of PE-01	Monitoring Frequency	Monitoring Frequency	Monitoring Frequency	Notes
MW-09	Bat Cave Wash	536.56	77 - 87	Alluvial	4 in PVC	89.4	Shallow	LF	Semiannual	-	Semiannual	-				Bat Cave Wash flow
MW-10	Bat Cave Wash	530.65	74 - 94	Alluvial	4 in PVC	96.9	Shallow	LF	Semiannual		Semiannual					Bat Cave Wash flow
MW-11	Bat Cave Wash	522.54	62.5 - 82.5	Alluvial	4 in PVC	86.1	Shallow	LF	Semiannual		Semiannual			-		Bat Cave Wash flow
MW-12	East of Station	484.01 486.67	27.5 - 47.5	Alluvial	4 in PVC	50.4	Shallow	LF LF	Semiannual		Semiannual			-		
MW-13 MW-14	Bat Cave Wash East Mesa	486.67 570.99	28.5 - 48.5 111 - 131	Alluvial	4 in PVC 4 in PVC	52.0 133.8	Shallow Shallow	LF IF	Annual Semiannual		Annual Semiannual	-		-		
MW-15	East of New Ponds	641.52	180.5 - 200.5	Alluvial	4 in PVC	203.0	Shallow	LF	Annual		Annual	-				
MW-16	Near New Ponds	657.31	198 - 218	Alluvial	4 in PVC	218.1	Shallow	LF	Biennial		Biennial					
MW-17	West of Mesa Area	589.96	130 - 150	Alluvial	4 in PVC	153.6	Shallow	LF	Biennial	-	Biennial	-				
MW-18	West Mesa	543.19	85 - 105	Alluvial	4 in PVC	106.7	Shallow	LF	Annual		Annual	-				
MW-19	Route 66	499.92	46 - 66	Alluvial	4 in PVC	65.8	Shallow	LF	Semiannual		Semiannual					
MW-20-070	MW-20 bench	500.07	50 - 70	Alluvial	4 in PVC	69.6	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	
MW-20-100	MW-20 bench	500.58	89.5 - 99.5	Alluvial	4 in PVC	101.4	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	
MW-20-130	MW-20 bench	500.66	121 - 131	Alluvial	4 in PVC	132.3	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	Hydraulic Gradient Well
MW-21	Route 66	505.55	39 - 59	Alluvial	4 in PVC	58.5	Shallow	LF	Semiannual		Semiannual			Semiannual		Low recharge well; typically purges dry at 1 casing volume
MW-22	Floodplain	460.72	5.5 - 10.5	Fluvial	2 in PVC	12.4	Shallow	LF	Semiannual		Semiannual		Monthly			
MW-23-060	East Ravine	504.08	50 - 60	Bedrock	2 in Sch 40 PVC	60.2	Bedrock	LF	Semiannual		Semiannual					
MW-23-080	East Ravine	504.13	75 - 80	Bedrock	2 in Sch 40 PVC	80.8	Bedrock Shallow	LF	Semiannual		Semiannual				-	
MW-24A MW-24B	MW-24 Bench MW-24 Bench	567.16 564.76	104 - 124 193 - 213	Alluvial Alluvial	4 in PVC 4 in PVC	127.5 214.8	Shallow Deep	LF LF	Semiannual Semiannual		Semiannual Semiannual	-			-	
MW-24BR	MW-24 Bench	563.95	378 - 437	Bedrock	4 in PVC	441.0	Bedrock	3V	Annual		Annual	-	-			Low recharge well; typically purges dry at 1 casing volume
MW-25	Near Bat Cave Wash	542.90	84.5 - 104.5	Alluvial	4 in PVC	106.5	Shallow	LF	Semiannual	-	Semiannual		Monthly		Annual	dry at 1 casing volume
MW-26	Route 66	502.22	51.5 - 71.5	Alluvial	2 in PVC	70.1	Shallow	LF LF	Semiannual		Semiannual	Semiannual	Monthly		Biennial	
MW-27-020	Floodplain	460.56	7 - 17	Fluvial	2 in PVC	14.4	Shallow	LF	Annual		Annual	Annual	Monthly			
MW-27-060	Floodplain	461.49	47.3 - 57.3	Fluvial	2 in PVC	59.0	Middle	LF	Annual		Annual	Annual	Monthly		-	
MW-27-085	Floodplain	460.99	77.5 - 87.5	Fluvial	2 in PVC	80.0	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		Hydraulic Gradient Well
MW-28-025	Floodplain	466.77	13 - 23	Fluvial	2 in PVC	21.1	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-28-090	Floodplain	467.53	70 - 90	Fluvial	2 in PVC	98.4	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	-	
MW-29	Floodplain	485.21	29.5 - 39.5	Fluvial	2 in PVC	41.5	Shallow	LF	Semiannual		Semiannual					
MW-30-030 MW-30-050	Floodplain	468.12 468.81	12 - 32 40 - 50	Fluvial	2 in PVC 4 in PVC	26.9 52.6	Shallow	LF	Annual		Annual	Annual		-		
MW-30-050 MW-31-060	Floodplain MW-20 Bench	468.81 496.81	40 - 50 41.5 - 61.5	Fluvial	4 in PVC	52.6 64.0	Middle Shallow	LF IF	Annual		Annual Semiannual	Annual Semiannual	Monthly Monthly		Annual	
MW-31-060	MW-20 Bench	496.81	113 - 133	Alluvial	2 in PVC	135.4	Deep	LF	Annual	-	Annual	Annual	Monthly		Annuai 	Hydraulic Gradient Well
MW-32-020	Floodplain	461.51	10 - 20	Fluvial	2 in PVC	19.6	Shallow	LF	Annual		Annual	Annual		Annual		nyuraunc Graulent Wen
MW-32-035	Floodplain	461.63	27.5 - 35	Fluvial	4 in PVC	37.2	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	Annual	
MW-33-040	Floodplain	487.38	29 - 39	Fluvial	2 in PVC	41.8	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	-	
MW-33-090	Floodplain	487.55	69 - 89	Alluvial	4 in PVC	88.3	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	-	
MW-33-150	Floodplain	487.77	132 - 152	Alluvial	2 in PVC	155.4	Deep	LF	Semiannual	-	Semiannual	Semiannual	Monthly	Semiannual	-	Hydraulic Gradient Well
MW-33-210	Floodplain	487.25	190 - 210	Alluvial	2 in PVC	223.0	Deep	LF	Semiannual		Semiannual	Semiannual		Semiannual		
MW-34-055	Floodplain	460.95	45 - 55	Fluvial	4 in PVC	56.6	Middle	LF	Annual		Annual	Annual	Monthly		Annual	
MW-34-080	Floodplain	461.20	73 - 83	Fluvial	4 in PVC	84.3	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	Annual	
MW-34-100 MW-35-060	Floodplain Route 66	460.97 484.33	89.5 - 99.5 41 - 61	Fluvial	2 in PVC 2 in PVC	117.0 56.8	Deep Shallow	LF LF	Quarterly Semiannual		Quarterly Semiannual	Quarterly	Monthly Monthly	Quarterly	Annual	Hydraulic Gradient Well
MW-35-135	Route 66	484.24	116 - 136	Alluvial	2 in PVC	158.7	Deep	LF	Semiannual		Semiannual		Monthly		-	
MW-36-020	Floodplain	469.33	10 - 20	Fluvial	1 in PVC	20.3	Shallow	LF	Annual		Annual	Annual	Monthly	-	-	
MW-36-040	Floodplain	469.59	30 - 40	Fluvial	1 in PVC	40.3	Shallow	LF	Annual	-	Annual	Annual	Monthly			
MW-36-050	Floodplain	469.62	46 - 51	Fluvial	1 in PVC	108.0	Middle	LF	Annual	-	Annual	Annual	Monthly			
MW-36-070	Floodplain	469.27	60 - 70	Fluvial	1 in PVC	70.3	Middle	LF	Annual	-	Annual	Annual	Monthly	Annual	-	
MW-36-090	Floodplain	469.64	80 - 90	Fluvial	1 in PVC	90.3	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly		-	
MW-36-100	Floodplain	469.65	88 - 98	Fluvial	2 in PVC	108.0	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-37D MW-37S	Bat Cave Wash	486.19 485.97	180 - 200 64 - 84	Alluvial	2 in PVC	226.7	Deep Middle	LF LF	Semiannual		Semiannual Annual			-	-	
MW-37S MW-38D	Bat Cave Wash Bat Cave Wash	485.97 525.31	64 - 84 163 - 183	Alluvial Alluvial	2 in PVC 2 in PVC	85.0 190.9	Middle Deep	LF LF	Annual Semiannual		Annual Semiannual			-	-	
MW-38D MW-38S	Bat Cave Wash Bat Cave Wash	525.31 526.59	75 - 95	Alluvial	2 in PVC 2 in PVC	98.1	Shallow	LF LF	Quarterly	-	Quarterly	-				
MW-39-040	Floodplain	468.02	30 - 40	Fluvial	1 in PVC	42.1	Shallow	LF	Annual		Annual	Annual	Monthly	Annual		
MW-39-050	Floodplain	467.93	47 - 52	Fluvial	1 in PVC	54.6	Middle	LF	Annual		Annual	Annual	Monthly		-	
MW-39-060	Floodplain	468.00	49 - 59	Alluvial	1 in PVC	15.2	Middle	LF	Annual		Annual	Annual	Monthly		-	
MW-39-070	Floodplain	468.02	60 - 70	Alluvial	1 in PVC	71.7	Middle	LF	Annual		Annual	Annual	Monthly			
MW-39-080	Floodplain	467.92	70 - 80	Alluvial	1 in PVC	82.6	Deep	LF	Annual	-	Annual	Annual	Monthly	-	-	
MW-39-100	Floodplain	468.12	80 - 100	Alluvial	2 in PVC	117.7	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-40D	I-40 Median	566.08	240 - 260	Alluvial	2 in PVC	266.0	Deep	LF	Semiannual		Semiannual					
MW-40S	I-40 Median	566.04	115 - 135	Alluvial	2 in PVC	134.0	Shallow	H LF	Semiannual		Semiannual Semiannual	-				
MW-41D MW-41M	Bat Cave Wash Bat Cave Wash	479.42 479.84	271 - 291 170 - 190	Alluvial	2 in PVC 2 in PVC	311.5 190.0	Deep	LF LF	Semiannual Annual		Semiannual				-	
MW-41VI	Bat Cave Wash	480.07	40 - 60	Alluvial	2 in PVC	60.0	Deep Shallow	LF	Annual	-	Annual				-	
MW-42-030	Floodplain	463.74	9.8 - 29.8	Fluvial	2 in Sch 40 PVC	30.1	Shallow	LF	Annual		Annual	Annual	Monthly			

Page 1 of 3 Printed: 6/21/2021

Table 1-2 Table 1-2
GMP, RMP, and PMP Monitoring Summary
Second Quorter 2021 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Location ID	Site Area	Measuring Point Elevation (ft amsl)	Well Screen Interval (ft bgs)	Well Screen Lithology	Well Casing Diameter (inches)	Well Depth (ft bgs)	Aquifer Zone	Sampling Method	GMP Monitoring Frequency	RMP Monitoring Frequency	PMP Monitoring: Chromium Monitoring Frequency	PMP Monitoring: Monitoring Frequency for Conditional Shutdown of PE-01	PMP Monitoring: IM Hydraulic Monitoring Frequency	PMP Monitoring: IM Contingency Plan Monitoring Frequency	PMP Monitoring: IM Chemical Performance Monitoring Frequency	Notes
MW-42-055	Floodplain	463.85	42.5 - 52.5	Fluvial	2 in PVC	52.8	Middle	LF	Semiannual		Semiannual	Semiannual		Semiannual		
MW-42-065	Floodplain	463.37	56.2 - 66.2	Fluvial	2 in PVC	80.0	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-43-025 MW-43-075	Floodplain Floodplain	462.54 462.71	15 - 25 65 - 75	Fluvial	2 in PVC	25.0 75.0	Shallow	LF LF	Annual		Annual Annual		Monthly	 Annual		
MW-43-075 MW-43-090	Floodplain	462.71	80 - 90	Fluvial	2 in PVC 2 in PVC	75.0 97.0	Deep Deep	LF LF	Annual		Annual		Monthly	Annual	-	
MW-44-070	Floodplain	471.84	61 - 71	Fluvial	2 in PVC	70.0	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	-	
MW-44-115	Floodplain	471.94	105 - 115	Alluvial	2 in PVC	113.5	Deep	LF	Quarterly		Quarterly	Quarterly	Monthly	Quarterly		
MW-44-125	Floodplain	472.11	116 - 125	Alluvial	2 in PVC	128.8	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-45-095a	Floodplain	468.27	83 - 93	Fluvial	2 in PVC	97.0	Deep					X (see Note 1)	Monthly			Pressure transducer location; Hydraulic Gradient Well
MW-46-175	Floodplain	482.16	165 - 175	Alluvial	2 in PVC	175.5	Deep	LF	Quarterly		Quarterly	Quarterly	Monthly	Quarterly		
MW-46-205	Floodplain	482.23 484.04	196.5 - 206.5	Alluvial	2 in PVC	206.5	Deep	LF	Semiannual Semiannual		Semiannual Semiannual	Semiannual Semiannual	 Monthly	Semiannual Semiannual	-	
MW-47-055 MW-47-115	Floodplain Floodplain	484.04 484.17	45 - 55 105 - 115	Alluvial	2 in PVC 2 in PVC	55.0 115.0	Shallow Deep	LF LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	-	
MW-47-115	East of Station	484.17	124 - 134	Bedrock	2 in PVC	138.0	Bedrock	LF	Semiannual	-	Semiannual	Semiannuai 		Semiannuai 		Low recharge well; typically purges dry at 1 casing volume
MW-49-135	Floodplain	483.97	125 - 135	Alluvial	1.5 in PVC	135.0	Deep	LF	Annual	-	Annual		Monthly			dry at 1 casing volume
MW-49-275	Floodplain	483.95	255 - 275	Alluvial	2 in PVC	274.7	Deep	LF	Annual	-	Annual	-				
MW-49-365	Floodplain	484.01	346 - 366	Alluvial	2 in PVC	367.4	Deep	LF	Annual		Annual		-			
MW-50-095	Route 66	496.49	85 - 95	Alluvial	2 in PVC	95.0	Middle	LF	Semiannual	-	Semiannual		Monthly			
MW-50-200	Route 66	496.35	190 - 200	Alluvial	2 in PVC	204.5	Deep	LF	Semiannual		Semiannual					
MW-51	Route 66	501.56	97 - 112	Alluvial	4 in PVC	113.3	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-52D	Floodplain	462.16	85 - 87	Fluvial	0.75 in MLABS	89.5	Deep	LF	Semiannual		Semiannual	-	-			
MW-52M MW-52S	Floodplain Floodplain	462.16 462.16	66 - 68 47 - 49	Fluvial Fluvial	0.75 in MLABS 0.75 in MLABS	70.5 51.5	Deep Middle	LF LF	Semiannual Semiannual		Semiannual Semiannual					
MW-53D	Floodplain	462.16	123.5 - 125	Fluvial	0.75 in MLABS	51.5	Deep	LF	Semiannual	-	Semiannual	-	-			
MW-53M	Floodplain	461.32	98.5 - 100	Fluvial	0.75 in MLABS		Deep	LF	Semiannual		Semiannual					
MW-54-085	Arizona	466.10	77 - 87	Fluvial	2 in PVC	93.2	Deep	LF	Semiannual		Semiannual		Monthly			
MW-54-140	Arizona	465.98	128 - 138	Fluvial	2 in PVC	138.0	Deep	LF	Semiannual		Semiannual		Monthly			
MW-54-195	Arizona	466.32	185 - 195	Fluvial	2 in PVC	195.0	Deep	LF	Semiannual		Semiannual		Monthly			
MW-55-045	Arizona	465.84	37 - 47	Fluvial	2 in PVC	54.0	Middle	LF	Semiannual		Semiannual		Monthly			
MW-55-120	Arizona	465.82	108 - 118	Fluvial	2 in PVC	120.3	Deep	LF	Semiannual		Semiannual		Monthly			
MW-56D	Arizona	461.36	103.5 - 105.5	Fluvial	0.75 in MLABS		Deep	LF	Semiannual		Semiannual		-			
MW-56M MW-56S	Arizona Arizona	461.36 461.36	73.5 - 75.5 33.5 - 35.5	Fluvial	0.75 in MLABS 0.75 in MLABS		Deep Shallow	LF IF	Semiannual Semiannual		Semiannual Semiannual		-			
MW-57-050	East Ravine	508.76	40 - 50	Bedrock	2 in Sch 40 PVC	50.0	Bedrock	IF.	Quarterly		Quarterly		-	-		
MW-57-070	East Ravine	509.37	55 - 70	Bedrock	2 in Sch 40 PVC	70.0	Bedrock	LF	Semiannual		Semiannual		-			
MW-57-185	East Ravine	508.97	70 - 184	Bedrock	4 in Sch 40 PVC	184.7	Bedrock	LF	Semiannual		Semiannual					
MW-58-065	East Ravine	523.26	54 - 64	Bedrock	2 in Sch 40 PVC	66.0	Bedrock	LF	Quarterly		Quarterly		-			
MW-58BR	East Ravine			Bedrock			Bedrock	LF	Quarterly		Quarterly		-			
MW-59-100	East Ravine	541.61	86 - 101	Alluvial	2 in Sch 40 PVC	101.0	Shallow	LF	Semiannual		Semiannual		-			
MW-60-125	East Ravine	555.47	103 - 123	Bedrock	2 in Sch 40 PVC	122.5	Bedrock	LF	Semiannual		Semiannual		-			
MW-60BR-245 MW-61-110	East Ravine East Ravine	554.95 544.03	136 - 245 92 - 112	Bedrock Bedrock	5 in 2 in Sch 40 PVC	244.1 112.5	Bedrock Bedrock	LF LF	Quarterly Semiannual		Quarterly Semiannual		-			
MW-61-110 MW-62-065	East Ravine East Ravine	503.56	44.5 - 64.5	Bedrock	2 in Sch 40 PVC	67.4	Bedrock	LF	Quarterly		Quarterly		-	-		
MW-62-110	East Ravine	504.05	85 - 110	Bedrock	2 111 3011 40 1 40	110.0	Bedrock	G	Quarterly		Quarterly		-			
MW-62-190	East Ravine	504.05	155 - 192	Bedrock		190.0	Bedrock	3V	Semiannual	-	Semiannual		-			
MW-63-065	East Ravine	504.47	46 - 66	Bedrock	2 in Sch 40 PVC	65.6	Bedrock	LF	Quarterly		Quarterly	-	-	-		
MW-64BR	East Ravine	575.60	2 - 258	Bedrock	3 in	260.0	Bedrock	LF	Quarterly		Quarterly		-			
MW-65-160	Topock Compressor Station	596.59	150 - 160	Alluvial	2 in PVC	160.1	Shallow	LF	Quarterly	-	Quarterly	-				
MW-65-225	Topock Compressor Station	596.58	215 - 225	Alluvial	2 in PVC	225.1	Deep	LF	Quarterly	-	Quarterly		-			
MW-66-165 MW-66-230	Topock Compressor Station Topock Compressor Station	586.16 586.22	142 - 162 218 - 228	Alluvial	2 in PVC	162.1 228.1	Shallow	LF LF	Semiannual Semiannual	-	Semiannual Semiannual		-			
MW-66-230 MW-66BR-270	Topock Compressor Station Topock Compressor Station	586.22 586.15	218 - 228 248 - 271	Alluvial Bedrock	2 in PVC 5 in	270.6	Deep Bedrock	LF 3V	Semiannual		Semiannual Semiannual	-				
MW-67-185	Topock Compressor Station	625.91	248 - 271 177 - 187	Alluvial	2 in	186.7	Shallow	JF	Semiannual		Semiannual	-	-			
MW-67-225	Topock Compressor Station	625.83	210 - 225	Alluvial	2 in PVC	225.0	Middle	LF	Semiannual	-	Semiannual	-	_			
MW-67-260	Topock Compressor Station	625.81	250 - 260	Alluvial	2 in PVC	260.0	Deep	LF	Semiannual	-	Semiannual		-			
MW-68-180	Topock Compressor Station	621.17	165 - 180	Alluvial	2 in PVC	180.1	Shallow	LF	Quarterly		Quarterly		-			
MW-68-240	Topock Compressor Station	621.17	220 - 240	Alluvial	2 in PVC	240.1	Deep	LF	Semiannual	-	Semiannual					
MW-68BR-280	Topock Compressor Station	620.64	257 - 279	Bedrock	5 in	278.2	Bedrock	LF	Semiannual		Semiannual					
MW-69-195	Topock Compressor Station	631.36	176 - 196	Bedrock	2 in	195.5	Bedrock	LF	Quarterly		Quarterly	-	-		-	
MW-70-105	East Ravine	541.47	85 - 105	Bedrock	2 in PVC	107.8	Bedrock	LF	Semiannual		Semiannual	-				
MW-70BR-225 MW-71-035	East Ravine East Ravine	539.84 483.69	120 - 227 26 - 36	Bedrock Alluvial	5 in 2 in	229.3 36.2	Bedrock Shallow	LF LF	Semiannual Semiannual	-	Semiannual Semiannual					
MW-71-035 MW-72-080	East Ravine	513.32	60 - 80	Bedrock	2 in	80.1	Bedrock	LF LF	Quarterly		Quarterly	-	-			
MW-72BR-200	East Ravine	513.79	107 - 200	Bedrock	2 111	200.0	Bedrock	LF	Quarterly	-	Quarterly	-	-	-		
MW-73-080	East Ravine	505.84	60.2 - 80.2	Bedrock	2 in	79.9	Bedrock	LF	Quarterly		Quarterly	-	-			
MW-74-240	East Ravine	672.34	220 - 240	Bedrock	2 in	239.7	Bedrock	LF	Semiannual	-	Semiannual					
IVIVV-74-24U						272.5	Deep	LF	Annual		Annual	l	+		+	1

Page 2 of 3 Printed: 6/21/2021

Table 1-2

GMP, RMP, and PMP Monitoring Summary

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Location ID	Site Area	Measuring Point Elevation (ft amsl)	Well Screen Interval (ft bgs)	Well Screen Lithology	Well Casing Diameter (inches)	Well Depth (ft bgs)	Aquifer Zone	Sampling Method	GMP Monitoring Frequency	RMP Monitoring Frequency	PMP Monitoring: Chromium Monitoring Frequency	PMP Monitoring: Monitoring Frequency for Conditional Shutdown of PE-01	PMP Monitoring: IM Hydraulic Monitoring Frequency	PMP Monitoring: IM Contingency Plan Monitoring Frequency	PMP Monitoring: IM Chemical Performance Monitoring Frequency	Notes
OW-03M	West Mesa	558.9	180 - 200	Alluvial	2 in Sch 40 PVC	200.3	Middle	LF	Annual		Annual					
OW-03S	West Mesa	558.58	86 - 116	Alluvial	2 in Sch 40 PVC	116.3	Shallow	LF	Annual		Annual					
PGE-07BR	MW-24 Bench		249 - 300	Bedrock	7 in	300.0	Bedrock	3V	Annual		Annual					Inactive supply well
PGE-8	Station	596.01	405-554	Bedrock	6.75 in Steel	564.0	Bedrock	3V	Annual		Annual					Inactive injection well
PT-2D	Floodplain		95 - 105	Alluvial	2 in in PVC	105	Deep						Monthly			
PT-5D	Floodplain		95 - 105	Alluvial	2 in in PVC	105	Deep						Monthly			
PT-6D	Floodplain		95 - 105	Alluvial	2 in in PVC	105	Deep						Monthly			
PE-01	Floodplain	457.52	79 - 89	Fluvial	6 in Sch 40	99.0	Deep	tap	Monthly		Monthly	Monthly	-			IM extraction well
TW-01	Plan B Test	620.55	169 - 269	Alluvial	5 in PVC	271.0	Shallow	LF	Semiannual		Semiannual	-				Inactive pilot test well
TW-02D	MW-20 bench	493.29	113 - 148	Alluvial	6 in Sch 80 PVC	150.0	Deep	tap	Quarterly		Quarterly	-	-			IM extraction well
TW-02S	MW-20 bench	499.05	42.5 - 92.5	Alluvial	6 in Sch 80 PVC	97.5	Shallow	tap	Annual		Annual	-	-			IM extraction well
TW-03D	MW-20 bench	498.09	111 - 156	Alluvial	8 in PVC	156.0	Deep	tap	Monthly		Monthly					IM extraction well
TW-04	Floodplain	484.11	210 - 250	Alluvial	4 in PVC	255.0	Deep	LF	Semiannual		Semiannual	Semiannual	-			
TW-05	Route 66	496.30	110 - 150	Alluvial	4 in PVC	155.0	Deep	LF	Semiannual		Semiannual	-	-			
Park Moabi-3	Park Moabi	518.55	80 - 200	Alluvial	8 in Steel	252.0	Middle	tap	Annual		Annual					Active supply well
Park Moabi-4	Park Moabi		93 - 140	Alluvial	Steel		Middle	tap	Annual		Annual					Active supply well
C-BNS	In-Channel									Quarterly						
C-CON	In-Channel									Quarterly						Deep and shallow depth intervals
C-I-3 (I-3)	In-Channel		-							Quarterly			Monthly		-	Deep and shallow depth intervals
C-MAR	In-Channel									Quarterly						Deep and shallow depth intervals
C-NR1	In-Channel									Quarterly						Deep and shallow depth intervals
C-NR3	In-Channel			-		-				Quarterly						Deep and shallow depth intervals
C-NR4	In-Channel									Quarterly						Deep and shallow depth intervals
C-R22A	In-Channel		-							Quarterly					-	Deep and shallow depth intervals
C-R27	In-Channel									Quarterly						Deep and shallow depth intervals
C-TAZ	In-Channel									Quarterly						Deep and shallow depth intervals
R-28	Shoreline		-							Quarterly		-	-		Annual	
R-19	Shoreline		-							Quarterly			-			
R-63	Shoreline		-							Quarterly		-	-			
RRB	Shoreline									Quarterly			Monthly			
SW-1	Other Surface Water Monitoring Location			-		-				Quarterly					-	
SW-2	Other Surface Water Monitoring Location	-	-	-						Quarterly		-	-			·

- Notes:
 1. On June 27, 2014, DTSC approved discontinuation of groundwater sampling at monitoring well MW-45-095a. This location was originally included in the list of wells monitored for conditional shutdown of PE-01.
- 2. Monitoring wells MW-09, MW-10, and MW-11 are sampled if rainfall causes surface water flow in Bat Cave Wash.
- -- = not applicable.
- 3V = three volume.
- amsl = above mean sea level. bgs = below ground surface.
- Deep = deep interval of Alluvial Aquifer.
- DTSC = Department of Toxic Substance Control.
- ft = feet. G = grab sample.
- GMP = Groundwater Monitoring Program.
- H = HydraSleeve ID = identification.
- IM = interim measure.
- LF = low flow (minimal drawdown).
- Middle = mid-depth interval of Alluvial Aquifer.
- PMP = Performance Monitoring Program.
- PVC = polyvinyl chloride (pipe)
- RMP = Surface Water Monitoring Program. Shallow = shallow interval of Alluvial Aquifer.
- Tap = sampled from tap of extraction well.

Page 3 of 3 Printed: 6/21/2021

Table 3-1
Groundwater Sampling Results, Second Quarter 2021
Second Quarter 2021 Interim Measures Performance Monitorin

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)	Specific Conductance (µS/cm)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Arsenic (µg/L)	Dissolved Manganese (µg/L)	Dissolved Iron (μg/L)	ORP (mV)	Field pH (SU)	Turbidity (NTU)
MW-09	SA	5/19/2021		LF	120	110	2,900	3.9	5.2	11	0.86	ND (0.5)		53	7.7	6.0
MW-10	SA	5/5/2021		LF	130	130 J	2,800	17	6.3	8.8	1.5	0.57		-37	7.5	4.0
MW-11	SA	5/19/2021		LF	38	37	2,400	5.7	4.1	5.0	0.42	ND (0.5)		93	7.5	7.0
MW-12	SA	5/26/2021		LF	1,300	1,200	6,600	11	34	16				47	7.9	6.0
MW-14	SA	5/28/2021		LF	17	16	2,700	12	2.0	3.7	0.82	2.2		100	7.7	5.0
MW-19	SA	5/28/2021		LF	500	500	2,200							98	7.6	4.0
MW-20-070	SA	5/28/2021		LF	1,700	1,700	2,900	22	21	25				-25	7.8	5.0
MW-20-100	MA	5/28/2021		LF	680	690	2,100	3.8	5.0	6.6				-55	7.7	3.0
MW-20-130	DA	5/28/2021		LF	4,100	4,000	10,000	24	39	12	3.1	1.5		-140	7.6	6.0
MW-21	SA	6/8/2021		3V	ND (1.0)	1.7	12,000	43	4.2	0.81				-39	7.3	8.0
MW-22	SA	4/27/2021		LF	ND (1.0)	ND (1.0)	12,000				8.2	1,800		-160	6.8	46
MW-23-060	BR	4/30/2021		LF	41	38	16,000				ND (0.1)	0.73		-110	9.2	1.0
MW-23-080	BR	4/30/2021		LF	ND (1.0)	1.3	17,000				ND (0.1)	1.5		-190	10	3.0
MW-24A	SA	5/5/2021		LF	ND (0.2)	ND (1.0 J)	1,700	96	ND (0.5)	ND (0.05)	ND (0.1)	15		-89	8.4	7.0
MW-24B	DA	5/5/2021		LF	48	45 J	19,000	59	1.4	0.48	ND (0.1)	110		-110	7.8	8.0
MW-25	SA	5/25/2021		LF	55	56	2,100	4.6	7.3	11	1.5 J	0.62		26	7.9	1.0
MW-25	SA	5/25/2021	FD		55	56	2,100	4.7	8.0	12	1.2 J	0.51				
MW-26	SA	5/20/2021		LF	2,200	2,300	3,700	31	33	19	0.48	ND (0.5)		58	7.6	3.0
MW-27-085	DA	4/27/2021		LF	ND (0.2)	ND (1.0)	10,000	16 J	ND (0.5)	0.061	ND (0.1)	100		-32	7.0	1.0
MW-28-025	SA	4/29/2021		LF	ND (0.2)	ND (1.0)	940	5.5	ND (0.5)	ND (0.05)	0.7	240		26	7.1	2.0
MW-28-090	DA	4/29/2021		LF	ND (0.2)	ND (1.0)	5,000	25	ND (0.5)	ND (0.05)	0.43	290		-84	6.9	32
MW-29	SA	4/29/2021		LF	ND (0.2)	ND (1.0)	2,400	13	1.7	0.15	8.0	390		-190	7.4	3.0
MW-31-060	SA	4/30/2021		LF	150	150	4,200				ND (0.1)	1.9		57	7.3	3.0
MW-32-035	SA	4/27/2021		LF	ND (0.2)	1.1	8,500				24	660		-150	6.9	18
MW-33-040	SA	4/29/2021		LF	ND (0.2)	ND (1.0)	9,300	140	0.52	ND (0.05)	4.7	36		43	7.7	5.0
MW-33-090	MA	4/29/2021		LF	3.4	3.9	9,100	8.4	ND (0.5)	1.1	ND (0.1)	4.1		49	7.1	11
MW-33-150	DA	4/29/2021		LF	7.0	8.2	15,000	45	0.82	1.6	ND (0.1)	15		-84	7.7	8.0
MW-33-210	DA	4/29/2021		LF	7.5	8.9	19,000	24	ND (0.5)	1.6	ND (0.1)	7.8		-73	7.6	5.0
MW-34-080	DA	4/28/2021		LF	ND (0.2)	ND (1.0)	8,300			ND (0.05)	ND (0.1)	64		-36	7.4	2.0
MW-34-100	DA	4/28/2021		LF	ND (0.2)	ND (1.0)	10,000	63	ND (0.5)	ND (0.05)	ND (0.1)	110		-61	7.6	5.0
MW-35-060	SA	4/30/2021		LF	20	22	5,400	12	1.2	2.3	ND (0.1)	1.0		12	7.2	15
MW-35-135	DA	4/30/2021		LF	24	24	11,000	20	1.1	2.4	ND (0.1)	2.5		17	7.4	33
MW-36-090	DA	4/28/2021		LF	ND (0.2)	ND (1.0)	4,900				1.2	38		-71	8.6	4.0
MW-36-100	DA	4/28/2021		LF	5.5	7.1	6,300	21	ND (0.5)	ND (0.05)	ND (0.1)	160		-79	7.5	8.0
MW-37D	DA	6/7/2021		LF	4.8	5.0	11,000	65	0.82	1.4				17	7.9	4.0
MW-38D	DA	5/5/2021		LF	23	22 J	21,000	87	ND (0.5)	0.075	ND (0.1)	20		-120	7.9	6.0
MW-38S	SA	5/5/2021		LF	11	11 J	1,700	15	4.0	5.9	5.5	53		-78	7.9	3.0
MW-39-100	DA	4/28/2021		LF	92	91	12,000	7.5	ND (0.5)	0.13	ND (0.1)	5.1		-26	6.7	7.0
MW-40D	DA	5/19/2021		LF	110	98	15,000	49	1.8	2.1	ND (0.1)	ND (0.5)		-48	7.5	2.0
MW-40S	SA	5/19/2021		G	13	13	2,600	15	3.9	5.9	1.4	0.83		53	7.9	6.0
MW-41D	DA	6/7/2021		LF	ND (1.0)	ND (1.0)	18,000	90	ND (0.5)	0.44	ND (0.1 J)	81 J		-95	7.2	3.0
MW-41D	DA	6/7/2021	FD		ND (1.0)	ND (1.0)	18,000	88	ND (0.5)	0.5	ND (0.1 J)	78 J				
MW-42-055	MA	4/27/2021		LF	ND (0.2)	ND (1.0)	950				11	220		-130	7.3	3.0
MW-42-065	MA	4/27/2021		LF	ND (0.2)	ND (1.0)	2,900				3.5	920		-3.3	7.1	8.0
MW-44-070	MA	4/28/2021		LF	ND (0.2)	ND (1.0)	2,300				1.3	280		-80	7.0	6.0
MW-44-115	DA	4/28/2021		LF	2.3	2.2	10,000	75	ND (0.5)	0.05	ND (0.1)	5.2		27	7.4	9.0
MW-44-125	DA	4/28/2021		LF	ND (0.2)	ND (1.0)	2,300	10	ND (0.5)	ND (0.05)	1.7	310		-92	6.9	4.0
MW-46-175	DA	4/29/2021		LF	6.6	7.0	18,000	210	0.56	1.0				-64	8.3	9.0
MW-46-205	DA	4/29/2021		LF	1.6	1.8	20,000		0.50					-60	8.1	6.0

Page 1 of 3 Printed: 8/3/2021

Table 3-1 Groundwater Sampling Results, Second Quarter 2021 Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)	Specific Conductance (µS/cm)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Arsenic (µg/L)	Dissolved Manganese (µg/L)	Dissolved Iron (μg/L)	ORP (mV)	Field pH (SU)	Turbidity (NTU)
MW-47-055	SA	4/28/2021		LF	14	15	4,600				ND (0.1)	1.4		10	7.1	18
MW-47-115	DA	4/28/2021		LF	24	23	12,000		ı					22	7.2	4.0
MW-48	BR	5/28/2021		3V	ND (1.0)	ND (1.0)	18,000							79	7.6	5.0
MW-50-095	MA	5/26/2021		LF	13	13	6,000		1					-76	8.5	7.0
MW-50-200	DA	5/26/2021		LF	3,300	3,400	20,000		1					-83	8.4	3.0
MW-51	MA	5/20/2021		LF	2,600	2,600	13,000	46	12	6.4	ND (0.1)	ND (0.5)		30	7.6	1.0
MW-52D	DA	4/27/2021		LF	ND (1.0)	ND (1.0)	20,000				ND (0.1)	240		-81	7.9	1.0
MW-52M	DA	4/27/2021		LF	ND (1.0)	ND (1.0)	16,000				ND (0.1)	220		-120	7.5	1.0
MW-52S	MA	4/27/2021		LF	ND (0.2)	ND (1.0)	10,000				ND (0.1)	1,300		-170	7.0	1.0
MW-53D	DA	4/27/2021		LF	ND (1.0)	ND (1.0)	24,000				ND (0.1)	890		-160	8.2	1.0
MW-53M	DA	4/27/2021		LF	ND (1.0)	ND (1.0)	16,000				ND (0.1)	630		-170	8.1	1.0
MW-54-085	DA	6/8/2021	(a)	LF	ND (0.25)	ND (3.0)	7,640	47.8	ND (3.0)	ND (0.1)	ND (2.5)	537		-93	7.8	6.0
MW-54-140	DA	6/8/2021	(a)	LF	ND (0.25)	ND (3.0)	12,800	44.3	ND (3.0)	0.646	ND (2.5)	ND (5.0)		-93	7.5	12
MW-54-195	DA	6/8/2021	(a)	LF	ND (0.25)	ND (3.0)	21,200	109	ND (3.0)	ND (0.25)	ND (2.5)	282		-170	8.2	3.0
MW-55-045	MA	6/9/2021	(a)	LF	ND (0.05)	ND (0.3)	1,350	40.4	ND (0.3)	ND (0.05)	8.17 J	1,000 J		-140	7.5	18
MW-55-120	DA	6/9/2021	(a)	LF	7.47	ND (3.0)	7,240	36.4	ND (3.0)	1.28	ND (2.5)			-26	7.3	12
MW-56D	DA	6/9/2021	(a)	LF	ND (0.25)	ND (3.0)	20,300	37.1	ND (3.0)	ND (0.25)	ND (2.5)	809 J		-58	7.0	3.0
MW-56M	DA	6/9/2021	(a)	LF	ND (0.25)	ND (3.0)	13,400	ND (5.0)	ND (3.0)	ND (0.1)	ND (2.5)	657 J		-93	7.3	3.0
MW-56M	DA	6/9/2021	FD(a)		ND (0.25)	ND (3.0)	13,300	ND (5.0)	ND (3.0)	0.475	ND (2.5)	689 J				
MW-56S	SA	6/9/2021	(a)	LF	ND (0.05)	ND (3.0)	5,860	28.6	ND (3.0)	ND (0.1)	ND (2.5)	823 J		-99	7.3	3.0
MW-57-070	BR	4/30/2021		LF	490	540	2,300	3.5	3.6	9.3	1.1	3.4		-33	7.0	9.0
MW-57-185	BR	4/30/2021		LF	4.2	4.3	17,000	83	ND (0.5)	0.25	ND (0.1)	1.1		-120	9.4	5.0
MW-58BR	BR	5/17/2021		LF	2.7	2.8	7,400	28	1.7	0.46 J	ND (0.1)	310		42	7.5	4.0
MW-58BR	BR	5/17/2021	FD		2.3	2.2	7,400	27	1.7	0.95 J	ND (0.1)	280				
MW-59-100	SA	6/7/2021		LF	1,800	1,900	13,000	11	2.0	1.8	ND (0.1 J)	2.0 J		-22	7.0	20
MW-60-125	BR	5/27/2021		LF	390	390	8,400	16	6.5	3.9	ND (0.1 J)	3.0		84	7.4	5.0
MW-60BR-245	BR	5/27/2021		LF	9.4	8.9	18,000	64	2.5	0.21	ND (0.1 J)	ND (0.5)		66	8.0	3.0
MW-61-110	BR	5/27/2021		LF	160	150	16,000	23	0.83	0.38	ND (0.1 J)	300		-31	7.4	8.0
MW-62-065	BR	5/27/2021		LF	670	640	6,500	12	4.1	4.6	ND (0.1 J)	1.1		-27	7.4	1.0
MW-62-110	BR	6/8/2021		3V	ND (1.0)	ND (1.0)	13,000	64	ND (0.5)	0.1	ND (0.1 J)	160 J		-160	7.6	4.0
MW-62-190	BR	6/8/2021		3V	ND (1.0)	ND (1.0)	18,000	46	ND (0.5)	0.11	ND (0.1 J)	710 J		-170	7.6	4.0
MW-63-065	BR	5/27/2021		LF	1.2	3.3	7,100	17	0.99	1.3	ND (0.1 J)	28		-50	6.9	20
MW-64BR	BR	5/27/2021		LF	ND (1.0)	ND (1.0)	14,000	61	ND (0.5)	ND (0.05)	ND (0.1 J)	960		-280	7.4	1.0
MW-65-160	SA	5/27/2021		LF	270	260	4,500	26	10	15	ND (0.1 J)	ND (0.5)		89	7.3	19
MW-65-225	DA	5/27/2021		LF	460	430	7,600	22	6.7	8.3	ND (0.1 J)	0.7		110	7.4	5.0
MW-66-165	SA	5/5/2021		LF	520	500 J	3,900	5.8	24	24	ND (0.1)	2.2		-38	7.5	40
MW-66-230	DA	5/5/2021		LF	6,000	6,200 J	19,000	74	7.6	11	ND (0.1)	12		-76	8.0	32
MW-66BR-270	BR	4/28/2021		3V										-96	8.0	5.0
MW-66BR-270	BR	5/5/2021			ND (1.0)	ND (1.0 J)	17,000	1.9	ND (0.5)	ND (0.05)	ND (0.1)	1,000				
MW-67-185	SA	5/4/2021		LF	2,000	2,000	7,700	5.6	430	100	ND (0.1)	ND (0.5)		95	7.2	9.0
MW-67-185	SA	5/4/2021	FD		2,000	1,900	7,700	5.6	430	95	ND (0.1)	ND (0.5)				
MW-67-225	MA	5/4/2021		LF	3,400	3,400	6,700	54	89	26	0.81	5.3		69	7.7	20
MW-67-260	DA	5/4/2021		LF	920	940	17,000	63	1.4	0.65	ND (0.1)	0.72		-42	12	7.0
MW-68-180	SA	5/4/2021		LF	37,000	37,000	4,100	46	14	15	2.0	ND (0.5)		110	7.4	8.0
MW-68-240	DA	5/4/2021		LF	2,000	2,000	16,000	24	4.1	4.2	ND (0.1)	23		28	7.4	5.0
MW-68BR-280	BR	5/4/2021		3V	ND (1.0)	1.3	20,000	24	ND (0.5)	ND (0.05)	ND (0.1)	55		-190	8.9	2.0
MW-69-195	BR	5/27/2021		LF	610	650	3,200	66	12	16	0.61 J	1.4		89	7.4	8.0
MW-69-195	BR	5/27/2021	FD		610	630	3,200	64	12	18	0.73 J	1.3				
MW-70-105	BR	5/17/2021		LF	150	140	3,200	86	3.3	3.3	2.7	35		51	7.8	8.0

Page 2 of 3 Printed: 8/3/2021

Table 3-1
Groundwater Sampling Results, Second Quarter 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)	Specific Conductance (µS/cm)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Arsenic (μg/L)	Dissolved Manganese (µg/L)	Dissolved Iron (μg/L)	ORP (mV)	Field pH (SU)	Turbidity (NTU)
MW-70BR-225	BR	5/17/2021		LF	1,200	1,200	12,000	21	2.3	3.2	ND (0.1)	14		45	7.8	4.0
MW-71-035	SA	5/26/2021		LF	ND (1.0)	ND (1.0)	17,000	15	ND (0.5)	ND (0.05)	ND (0.1 J)	200		78	6.9	4.0
MW-72-080	BR	5/27/2021		LF	66	62	16,000	81	1.3	0.85	ND (0.1 J)	50		-110	7.4	3.0
MW-72BR-200	BR	5/27/2021		LF	ND (1.0)	ND (1.0)	16,000	75	ND (0.5)	ND (0.05)	1.3 J	130		-360	8.7	1.0
MW-72BR-200	BR	5/27/2021	FD		ND (1.0)	ND (1.0)	16,000	77	ND (0.5)	ND (0.05)	3.8 J	130		-	-	
MW-73-080	BR	5/27/2021		LF	24	23	10,000	35	3.8	3.0	ND (0.1 J)	9.1		-60	6.7	2.0
MW-73-080	BR	5/27/2021	FD		25	23	10,000	35	3.8	3.5	ND (0.1 J)	10				
MW-74-240	BR	6/7/2021		LF	ND (0.2)	ND (1.0)	710	44	ND (0.5)	0.064	6.6 J	5.5 J		-24	8.3	25
MW-74-240	BR	6/7/2021	FD		ND (0.2)	ND (1.0)	710	43	ND (0.5)	0.085	6.8 J	5.5 J		-		
TW-01	SA	6/10/2021			1,400	1,500	5,600	25	10	14	ND (0.1)	ND (0.5)	ND (20)	59	7.4	3.0
TW-01	SA	6/10/2021	FD		1,400	1,500	5,600	24	10	15	ND (0.1)	ND (0.5)	ND (20)			
TW-03D	DA	4/7/2021		EP	410	400	7,200		1	2.8		19	27	220	7.0	1.0
TW-03D	DA	5/5/2021		EP	390	360	7,100		1	2.6		19	180 J	210	6.4	4.0
TW-03D	DA	6/2/2021		EP	390	370	74,000			2.7		19	ND (20)	75	7.5	20
TW-04	DA	6/7/2021		LF	7.9	7.4	18,000	28	ND (0.5)	-		6.3 J		-58	6.6	5.0
TW-05	DA	5/28/2021		LF	12	12	12,000	32	0.77					66	7.7	6.0

Notes:

- 1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6.
- 2. The following analytical methods were used:

Hexavalent chromium = USEPA Method 218.6

Dissolved chromium, dissolved arsenic, dissolved iron, dissolved manganese, dissolved molybdenum, dissolved selenium = Method SW6020

Specific conductance = USEPA Method 120.1

Nitrate/Nitrate as Nitrogen = SM 4500-NO3 F

- -- = not applicable or not reportable.
- μg/L = micrograms per liter.

 $\mu S/cm$ = microSiemens per centimeter.

BR = bedrock.

DA = deep interval of Alluvial Aquifer.

DTSC = Department of Toxic Substance Control.

EP = extraction port.

FD = field duplicate.

G = grab sample.

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

LF = Low Flow (minimal drawdown).

mV = millivolts.

ND = not detected at listed reporting limit.

Page 3 of 3 Printed: 8/3/2021

Table 3-2 Surface Water Sampling Results, Second Quarter 2021

Location ID	Sample Date	Sample Type	Hexavalent Chromium (μg/L)	Dissolved Chromium (µg/L)	Field pH (SU)	Specific Conductance (μS/cm)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Arsenic (µg/L)	Dissolved Iron (μg/L)	Iron (μg/L)	Dissolved Manganese (μg/L)	Dissolved Barium (μg/L)	Total Suspended Solids (mg/L)
C-BNS	5/19/2021		ND (0.2)	ND (1.0)	8.1	860	4.4	1.4	0.36	2.2	ND (20 J)	ND (20)	ND (0.5)	110	ND (5.0)
C-CON-D	5/20/2021		ND (0.2)	ND (1.0)	8.1	880	4.3	1.3	0.46	1.9	ND (20)	ND (20)	ND (0.5)	110	5.0
C-CON-S	5/20/2021		ND (0.2)	ND (1.0)	8.1	880	4.4	1.3	0.39	2.1	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-I-3-D	5/19/2021		ND (0.2)	ND (1.0)	8.1	860	4.5	1.4	0.37	2.3	ND (20 J)	ND (20)	ND (0.5)	110	5.0
C-I-3-S	5/19/2021		ND (0.2)	ND (1.0)	8.1	860	4.4	1.5	0.41	2.0	ND (20 J)	ND (20)	ND (0.5)	110	ND (5.0)
C-MAR-D	5/20/2021		ND (0.2)	ND (1.0)	8.1	880	4.4	1.3	0.42	1.9	ND (20)	42 J	1.4	100	7.0
C-MAR-S	5/20/2021		ND (0.2)	ND (1.0)	8.1	880	4.4	1.4	0.38	1.9	ND (20)	29 J	3.4	100	8.0
C-NR1-D	5/20/2021		ND (0.2)	ND (1.0)	8.1	890	4.3	1.1	0.39	2.0	ND (20)	ND (20)	ND (0.5)	100	ND (5.0)
C-NR1-S	5/20/2021		ND (0.2)	ND (1.0)	8.1	890	4.4	1.4	0.41	1.9	ND (20)	20 J	ND (0.5)	110	ND (5.0)
C-NR3-D	5/20/2021		ND (0.2)	ND (1.0)	8.1	890	4.4	1.4	0.57	2.1	ND (20)	ND (20)	ND (0.5)	100	ND (5.0)
C-NR3-S	5/20/2021		ND (0.2)	ND (1.0)	8.1	880	4.5	1.3	0.42	2.1	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-NR4-D	5/20/2021		ND (0.2)	ND (1.0)	8.1	880	4.4	1.3	0.42	1.9	ND (20)	27 J	ND (0.5)	100	ND (5.0)
C-NR4-D	5/20/2021	FD	ND (0.2)	ND (1.0)	8.1	880	4.3	1.2	0.38	2.1	ND (20)	ND (20)	ND (0.5)	100	ND (5.0)
C-NR4-S	5/20/2021		ND (0.2)	ND (1.0)	8.1	870	4.5	1.3	0.39	2.1	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-R22A-D	5/19/2021		ND (0.2)	ND (1.0)	8.1	850	4.7	1.5	0.39	2.0	ND (20 J)	ND (20)	0.88	110	ND (5.0)
C-R22A-S	5/19/2021		ND (0.2)	ND (1.0)	8.1	850	4.5	1.5	0.4	2.0	ND (20 J)	ND (20)	1.7	100	ND (5.0)
C-R27-D	5/19/2021		ND (0.2)	ND (1.0)	8.1	850	4.4	1.3	0.38	2.1	ND (20 J)	ND (20)	ND (0.5)	110	ND (5.0)
C-R27-S	5/19/2021		ND (0.2)	ND (1.0)	8.1	850	4.4	1.4	0.43	2.1	ND (20 J)	ND (20)	ND (0.5)	100	5.5
C-TAZ-D	5/19/2021		ND (0.2)	ND (1.0)	8.1	840	4.4	1.4	0.54	2.0	ND (20 J)	ND (20)	ND (0.5)	100	ND (5.0)
C-TAZ-S	5/19/2021		ND (0.2)	ND (1.0)	8.2	850	4.3	1.5	0.38	2.0	ND (20 J)	ND (20)	ND (0.5)	110	ND (5.0)
R-19	5/20/2021		ND (0.2)	ND (1.0)	8.2	880	4.3	1.3	0.42	2.0	ND (20)	ND (20)	ND (0.5)	100	ND (5.0)
R-28	5/19/2021		ND (0.2)	ND (1.0)	8.1	850	4.3	1.4	0.36	1.9	ND (20 J)	ND (20)	0.85	100	ND (5.0)
R63	5/19/2021	FD	ND (0.2)	ND (1.0)	8.0	850	4.7	1.4	0.35	2.2	ND (20 J)	97 J	3.6	110	12
R63	5/19/2021		ND (0.2)	ND (1.0)	8.1	860	4.4	1.3	0.37	2.1	ND (20 J)	130 J	3.6	100	7.5
RRB	5/20/2021		ND (0.2)	ND (1.0)	7.5	890	4.4	1.2	0.32	2.2	ND (20)	ND (20)	16	110	5.0
SW1	5/19/2021		ND (0.2)	ND (1.0)	7.2	940								-	
SW2	5/19/2021		ND (0.2)	ND (1.0)	7.2	910								-	

Notes:

- 1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6.
- 2. The following analytical methods were used:

Hexavalent chromium = USEPA 218.6

Dissolved chromium, dissolved arsenic, dissolved barium, dissolved selenium = SW6020

Dissolved iron, total iron, dissolved manganese, dissolved molybdenum = SW6010B

Specific conductance = USEPA 120.1

Nitrate/Nitrate as Nitrogen = SM 4500-NO3 F

Total suspended solids = SM 2540D

-- = not applicable.

 μ g/L = micrograms per liter.

 μ S/cm = microSiemens per centimeter.

DTSC = Department of Toxic Substance Control.

FD = field duplicate.

ID = identification.

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

mg/L = milligrams per liter.

ND = not detected at listed reporting limit.

SU = standard units.

USEPA = United States Environmental Protection Agency.

Page 1 of 1 Printed: 7/22/2021

Table 4-1 Pumping Rate and Extracted Volume for IM-3 System, Second Quarter 2021

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Extraction Well ID	April 2021 Average Pumping Rate ^a (gpm)	April 2021 Volume Pumped (gal)	May 2021 Average Pumping Rate ^a (gpm)	May 2021 Volume Pumped (gal)	June 2021 Average Pumping Rate ^a (gpm)	June 2021 Volume Pumped (gal)	Second Quarter 2021 Average Pumping Rate ^a (gpm)	Second Quarter 2021 Volume Pumped (gal)
TW-01	0.00	0	0.00	0	46.57	2,011,620	15.52	2,011,620
TW-02S	0.00	0	0.00	0	0.00	0	0.00	0
TW-02D	0.00	0	0.00	0	16.94	731,656	5.65	731,656
TW-03D	116.68	5,040,680	114.93	5,130,346	53.98	2,331,724	95.19	12,502,751
PE-01	0.00	0	0.00	0	0.00	0	0.00	0
TOTAL	116.7	5,040,680	114.9	5,130,346	117.5	5,075,000	116.4	15,246,027

Chromium Removed This Quarter (kg)	23.9
Chromium Removed Project to Date (kg)	4,520
Chromium Removed This Quarter (lb)	52.7
Chromium Removed Project to Date (lb)	9.970

Notes:

1. Chromium removed includes the period of March 1, 2021 through May 31, 2021.

gal = gallons.

gpm = gallons per minute.

ID = identification.

IM = Interim Measure.

kg = kilograms.

lb = pounds.

Page 1 of 1 Printed: 7/29/2021

^a The "Average Pumping Rate" is the overall average during the reporting period, including system downtime, based on flow meter readings.

Table 4-2
Wells Monitored for Conditional Shutdown of PE-01, Second Quarter 2021

Location ID	Aquifer Zone	Q2 2021 Sample Date	Q2 2021 Sample Method	Hexavalent Chromium 2014 Maximum Concentration (µg/L)	Hexavalent Chromium Q2 2021 Result (µg/L)	Dissolved Chromium 2014 Maximum Concentration (µg/L)	Dissolved Chromium Q2 2021 Result (μg/L)	Q2 2021 Result Exceeded 2014 Maximum Concentration?
MW-20-070	Shallow	05/28/2021	LF	2,200	1,700	2,400	1,700	No
MW-20-100	Middle	05/28/2021	LF	2,900	680	2,900	690	No
MW-20-130	Deep	05/28/2021	LF	9,100	4,100	9,000	4,000	No
MW-26	Shallow	05/20/2021	LF	2,400	2,200	2,300	2,300	No
MW-27-020	Shallow			ND (0.20)		ND (1.0)		
MW-27-060	Middle			ND (0.20)		ND (1.0)		
MW-27-085	Deep	04/27/2021	LF	ND (1.0)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-28-025	Shallow	04/29/2021	LF	ND (0.20)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-28-090	Deep	04/29/2021	LF	ND (0.20)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-30-030	Shallow			0.21		ND (1.0)		
MW-30-050	Middle			ND (0.20)		ND (1.0)		
MW-31-060	Shallow	04/30/2021	LF	600	150	660	150	No
MW-31-135	Deep			12		12		
MW-32-020	Shallow			ND (1.0)		ND (5.0)		
MW-32-035	Shallow	04/27/2021	LF	ND (1.0)	ND (0.2)	ND (1.0)	1.1	Yes
MW-33-040	Shallow	04/29/2021	LF	0.28	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-33-090	Middle	04/29/2021	LF	13.3	3.4	15.5	3.9	No
MW-33-150	Deep	04/29/2021	LF	12	7	10.8	8.2	No
MW-33-210	Deep	04/29/2021	LF	13	7.5	13.5	8.9	No
MW-34-055	Middle			ND (0.20)		ND (1.0)		
MW-34-080	Deep	04/28/2021	LF	ND (0.20)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-34-100	Deep	04/28/2021	LF	263	ND (0.2)	270	ND (1.0)	No
MW-36-020	Shallow	==		ND (0.20)		ND (1.0)		==
MW-36-040	Shallow	==		0.34		ND (1.0)		==
MW-36-050	Middle			ND (0.20)		ND (1.0)		
MW-36-070	Middle			ND (0.20)		ND (1.0)		
MW-36-090	Deep	04/28/2021	LF	ND (0.20)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-36-100	Deep	04/28/2021	LF	65	5.5	62	7.1	No
MW-39-040	Shallow			ND (0.20)		ND (1.0)		
MW-39-050	Middle			ND (0.20)		ND (1.0)		
MW-39-060	Middle			ND (0.20)		ND (1.0)		
MW-39-070	Middle			ND (0.20)		ND (1.0)		
MW-39-080	Deep			ND (0.20)		ND (1.0)		
MW-39-100	Deep	04/28/2021	LF	57	92	49	91	Yes
MW-42-030	Shallow			0.54		ND (1.0)		

Page 1 of 2 Printed: 7/19/2021

Table 4-2
Wells Monitored for Conditional Shutdown of PE-01, Second Quarter 2021

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Q2 2021 Sample Date	Q2 2021 Sample Method	Hexavalent Chromium 2014 Maximum Concentration (µg/L)	Hexavalent Chromium Q2 2021 Result (µg/L)	Dissolved Chromium 2014 Maximum Concentration (µg/L)	Dissolved Chromium Q2 2021 Result (μg/L)	Q2 2021 Result Exceeded 2014 Maximum Concentration?
MW-42-055	Middle	04/27/2021	LF	0.35	ND (0.2)	2.8	ND (1.0)	No
MW-42-065	Middle	04/27/2021	LF	ND (0.20)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-44-070	Middle	04/28/2021	LF	ND (0.20)	ND (0.2)	ND (1.0)	ND (1.0)	No
MW-44-115	Deep	04/28/2021	LF	41.6	2.3	42.9	2.2	No
MW-44-125	Deep	04/28/2021	LF	4.0 J	ND (0.2)	5.9	ND (1.0)	No
MW-45-095a	Deep			13.7*		14.2*		
MW-46-175	Deep	04/29/2021	LF	46.3	6.6	46.1	7	No
MW-46-205	Deep	04/29/2021	LF	5.5	1.6	4.8	1.8	No
MW-47-055	Shallow	04/28/2021	LF	16	14	16	15	No
MW-47-115	Deep	04/28/2021	LF	24	24	20	23	Yes
MW-51	Middle	05/20/2021	LF	4,800	2,600	4,800	2,600	No
PE-01	Deep			5.6		6		
TW-04	Deep	06/07/2021	LF	7.4*	7.9	6.5*	7.4	Yes

Notes:

- 1. Monitoring wells presented in the table are located within approximately 800 feet of TW-03D, as stated in DTSC 2015.
- 2. * = Result is the maximum concentration from 2013.
- 3. Values shown in parentheses are the reporting limit.
- 4. If a field duplicate sample was collected, the maximum concentration between the primary and field duplicate sample is presented.
- 5. On June 27, 2014, DTSC approved discontinuation of groundwater sampling at monitoring well MW-45-095a.
- 6. Bold values exceeded the 2013 and/or 2014 maximum concentration for hexavalent chromium and/or dissolved chromium.
- -- = not applicable.

 μ g/L = micrograms per liter.

DTSC = Department of Toxic Substance Control.

ID = identification.

LF = low flow (minimal drawdown).

ND = not detected at listed reporting limit.

Q1 = first quarter.

Reference:

DTSC. 2015. Letter from Aaron Yue/DTSC to Yvonne Meeks/PG&E. "Conditional Approval of Proposal to Modify Interim Measures 3 (IM3) Extraction Well Pumping at Pacific Gas and Electric Company, Topock Compressor Station (PG&E), Needles, California (USEPA ID No. CAT080011729)." July 20.

Page 2 of 2 Printed: 7/19/2021

Table 4-3
Groundwater Elevation Results, Second Quarter 2021

Location ID	Aquifer Zone	April Average Groundwater Elevation (ft amsl)	May Average Groundwater Elevation (ft amsl)	June Average Groundwater Elevation (ft amsl)	Quarterly Average Groundwater Elevation (ft amsl)	Days in Quarterly Average
MW-20-070	Shallow	INC	453.48	454.02	453.88	74
MW-22	Shallow	INC	INC	INC	INC	0
MW-25	Shallow	455.79	456.34	456.56	456.23	91
MW-26	Shallow	455.47	456.02	456.18	455.89	91
MW-27-020	Shallow	456.88	457.11	456.71	456.91	91
MW-28-025	Shallow	456.77	457.03	456.59	456.80	91
MW-31-060	Shallow	455.56	455.99	456.15	455.90	91
MW-32-035	Shallow	456.33	456.62	456.31	456.42	91
MW-33-040	Shallow	456.07	456.53	456.41	456.34	91
MW-35-060	Shallow	456.71	457.02	456.68	456.81	91
MW-36-020	Shallow	456.31	456.62	456.28	456.40	91
MW-36-040	Shallow	456.49	456.58	456.31	456.47	85
MW-39-040	Shallow	456.09	456.40	456.25	456.25	91
MW-42-030	Shallow	456.18	456.44	456.20	456.27	91
MW-43-025	Shallow	456.82	457.04	456.53	456.80	91
MW-47-055	Shallow	456.57	456.96	INC	INC	62
MW-20-100	Middle	454.12	454.59	455.23	454.64	91
MW-27-060	Middle	456.82	457.03	456.55	456.80	91
MW-30-050	Middle	456.23	456.45	456.30	456.33	91
MW-33-090	Middle	456.38	456.74	456.57	456.56	91
MW-34-055	Middle	456.84	457.03	456.65	456.84	91
MW-36-050	Middle	456.36	456.63	INC	INC	65
MW-36-070	Middle	456.45	456.71	456.38	456.52	91
MW-39-050	Middle	455.99	456.29	INC	INC	65
MW-39-060	Middle	455.87	456.27	456.04	456.06	91
MW-39-070	Middle	455.08	455.45	455.69	455.41	91
MW-42-065	Middle	456.27	456.53	456.26	456.35	91
MW-44-070	Middle	456.43	456.66	456.22	456.44	91
MW-50-095	Middle	455.85	INC	INC	INC	34
MW-51	Middle	455.14	455.71	455.73	455.53	91
MW-55-045	Middle	457.17	457.36	INC	INC	64
MW-20-130	Deep	453.71	454.14	455.00	454.28	91
MW-27-085	Deep	456.72	456.93	456.49	456.71	91
MW-28-090	Deep	456.60	456.86	456.50	456.65	91
MW-31-135	Deep	455.06	455.40	455.76	455.42	87
MW-33-150	Deep	456.39	INC	456.68	456.54	76
MW-34-080	Deep	457.04	457.26	456.82	457.04	91
MW-34-100	Deep	456.67	457.00	456.62	456.76	91
MW-35-135	Deep	456.37	INC	INC	INC	33

Page 1 of 2 Printed: 7/19/2021

Table 4-3
Groundwater Elevation Results, Second Quarter 2021

Location ID	Aquifer Zone	April Average Groundwater Elevation (ft amsl)	May Average Groundwater Elevation (ft amsl)	June Average Groundwater Elevation (ft amsl)	Quarterly Average Groundwater Elevation (ft amsl)	Days in Quarterly Average
MW-36-090	Deep	455.70	456.06	INC	INC	65
MW-36-100	Deep	455.88	456.19	456.19	456.09	91
MW-39-080	Deep	455.03	455.42	455.66	455.37	91
MW-39-100	Deep	455.63	455.98	INC	INC	65
MW-43-090	Deep	456.84	INC	INC	INC	34
MW-44-115	Deep	455.87	456.19	456.05	456.04	91
MW-44-125	Deep	456.35	456.65	456.47	456.49	91
MW-45-095a	Deep	456.25	456.47	456.11	456.28	91
MW-46-175	Deep	456.47	456.77	INC	INC	64
MW-47-115	Deep	456.32	INC	INC	INC	33
MW-49-135	Deep	456.62	456.96	456.67	456.75	91
MW-54-085	Deep	INC	INC	INC	INC	7
MW-54-140	Deep	456.36	456.55	456.13	456.35	91
MW-54-195	Deep	456.65	456.96	456.63	456.75	91
MW-55-120	Deep	457.17	457.36	457.11	457.21	91
PT-2D	Deep	454.74	INC	INC	INC	34
PT-5D	Deep	455.67	456.01	456.16	455.95	91
PT-6D	Deep	455.55	455.90	456.12	455.86	91
I-3	Surface water	457.38	457.51	456.98	457.29	91
RRB	Surface water	INC	INC	INC	INC	0

Notes:

ft amsl = feet above mean sea level.

INC = data are incomplete; less than 75 percent of data were available during the reporting period due to rejection, field equipment malfunction, or inaccessibility.

ID = identification.

Page 2 of 2 Printed: 7/19/2021

Table 4-4
Average Hydraulic Gradients Measured at Well Pairs, Second Quarter 2021

Gradient Pair	Well Pair	Reporting Period	Mean Landward Hydraulic Gradient (feet/foot)	Days in Monthly Average	PE-01 Run for Gradient Control?
Overall Average		April	0.0041	26 - 30	No
Overall Average		May	0.0038	16 - 31	No
Overall Average		June	0.0023	30	No
Northern Gradient Pair	MW-31-135 / MW-33-150	April	0.0028	26 / 30	No
Northern Gradient Pair	MW-31-135 / MW-33-150	May	0.0024	31 / 16	No
Northern Gradient Pair	MW-31-135 / MW-33-150	June	0.0019	30 / 30	No
Central Gradient Pair (used when PE-01 is <u>not</u> run for gradient control)	MW-20-130 / MW-34-100	April	0.0052	30 / 30	No
Central Gradient Pair (used when PE-01 is <u>not</u> run for gradient control)	MW-20-130 / MW-34-100	May	0.0050	31 / 31	No
Central Gradient Pair (used when PE-01 is <u>not</u> run for gradient control)	MW-20-130 / MW-34-100	June	0.0028	30 / 30	No
Southern Gradient Pair (used when PE-01 is <u>not</u> run for gradient control)	MW-20-130 / MW-27-085	April	0.0044	30 / 30	No
Southern Gradient Pair (used when PE-01 is <u>not</u> run for gradient control)	MW-20-130 / MW-27-085	May	0.0040	31 / 31	No
Southern Gradient Pair (used when PE-01 is <u>not</u> run for gradient control)	MW-20-130 / MW-27-085	June	0.0022	30 / 30	No

Notes:

- 1. The target mean landward hydraulic gradient for the selected well pairs is 0.001 feet/foot.
- 2. "Days in Monthly Average" refers to the number of days the pressure transducers in both wells were operating correctly.
- 3. Beginning in August 2017, MW-20-130 was approved for gradient compliance (instead of MW-45-95) at the central and southern well pairs during months when PE-01 is not run for gradient control.
- 4. MW-45-095 is also known as MW-45-095a.
- -- = not applicable

Page 1 of 1 Printed: 7/19/2021

Table 4-5 Interim Measure Contingency Plan Trigger Levels and Results, Second Quarter 2021

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Q2 2021 Sample Date	Q2 2021 Sample Method	Hexavalent Chromium Trigger Level (μg/L)	Q2 2021 Hexavalent Chromium Result (μg/L)	Q2 2021 Result Exceeded Trigger Level?
MW-21	Shallow	6/8/2021	LF	20	ND (1.0)	No
MW-27-085	Deep	4/27/2021	LF	20	ND (0.2)	No
MW-28-090	Deep	4/29/2021	LF	20	ND (0.2)	No
MW-32-020	Shallow			20		
MW-32-035	Shallow	4/27/2021	LF	20	ND (0.2)	No
MW-33-040	Shallow	4/29/2021	LF	20	ND (0.2)	No
MW-33-090	Middle	4/29/2021	LF	25	3.4	No
MW-33-150	Deep	4/29/2021	LF	20	7	No
MW-33-210	Deep	4/29/2021	LF	20	7.5	No
MW-34-080	Deep	4/28/2021	LF	20	ND (0.2)	No
MW-34-100	Deep	4/28/2021	LF	750	ND (0.2)	No
MW-36-070	Middle			20		
MW-39-040	Shallow			20		
MW-42-055	Middle	4/27/2021	LF	20	ND (0.2)	No
MW-42-065	Middle	4/27/2021	LF	20	ND (0.2)	No
MW-43-075	Deep			20		
MW-43-090	Deep			20		+
MW-44-070	Middle	4/28/2021	LF	20	ND (0.2)	No
MW-44-115	Deep	4/28/2021	LF	1,200	2.3	No
MW-44-125	Deep	4/28/2021	LF	475	ND (0.2)	No
MW-46-175	Deep	4/29/2021	LF	225	6.6	No
MW-46-205	Deep	4/29/2021	LF	20	1.6	No
MW-47-055	Shallow	4/28/2021	LF	150	14	No
MW-47-115	Deep	4/28/2021	LF	31	24	No

Notes:

- 1. If a field duplicate sample was collected, the maximum concentration between the primary and field duplicate sample is presented.
- 2. None of the results from the Second Quarter 2021 exceeded their respective trigger level.

-- = not applicable.

 μ g/L = micrograms per liter.

ID = identification.

LF = Low Flow (minimal drawdown).

ND = not detected at listed reporting limit.

Q1 = first quarter.

Page 1 of 1 Printed: 7/9/2021

Table 4-6
Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

Month, Year	Davis Dam Release Projected (cfs)	Davis Dam Release Actual (cfs)	Davis Dam Release Difference (cfs)	Colorado River Elevation at I-3 Predicted (ft amsl)	Colorado River Elevation at I-3 Actual (ft amsl)	Colorado River Elevation at I-3 Difference (feet)	
January 2013	8,300	8,299	1	453.20	453.28	0.04	
February 2013	10,600	10,972	-372	454.30	454.63	0.40	
March 2013	15,200	15,545	-345	456.00	456.29	0.30	
April 2013	17,600	17,090	510	456.90	456.74	0.10	
May 2013	15,800	15,592	208	456.40	456.44	0.00	
June 2013	15,700	15,588	112	456.50	456.47	0.00	
July 2013	14,400	13,165	1,235	456.00	455.79	0.20	
August 2013	13,100	12,185	915	455.40	455.43	0.00	
September 2013	11,700	11,446	254	454.80	455.02	0.20	
October 2013	12,300	12,497	-197	454.90	455.09	0.20	
November 2013	9,700	8,918	782	454.00	453.98	0.00	
December 2013	6,400	7,636	-1,236	452.40	452.81	0.40	
January 2014	8,300	8,970	-670	452.80	453.27	0.50	
February 2014	11,600	11,850	-250	454.30	454.67	0.30	
March 2014	16,600	17,473	-873	456.40	456.70	0.30	
April 2014	18,200	17,718	482	457.10	457.08	0.00	
May 2014	16,700	16,622	78	456.80	456.68	0.10	
June 2014	15,900	15,917	-17	456.60	456.64	0.10	
July 2014	15,100	14,640	460	456.30	456.24	0.00	
August 2014	12,300	11,336	964	455.20	455.26	0.10	
September 2014	13,100	12,211	889	455.30	455.30	0.00	
October 2014	10,700	10,434	266	454.30	454.81	0.50	
November 2014	10,700	10,575	125	454.30	454.22	0.10	
December 2014	6,400	7,235	-835	452.40	452.93	0.50	
January 2015	10,600	10,740	-140	454.30	454.39	0.09	
February 2015	10,500	11,252	-752	454.20	454.52	0.32	
March 2015	14,900	15,658	-758	455.90	456.29	0.39	
April 2015	18,000	17,170	830	457.10	456.82	0.28	
May 2015	16,000	13,890	2110	456.50	456.06	0.50	
June 2015	14,500	13,616	884	456.10	455.94	0.16	
July 2015	13,400	12,411	989	455.60	455.50	0.10	
August 2015	12,100	12,627	-527	455.10	455.45	0.40	
September 2015	13,300	12,734	566	455.40	INC	NA NA	
October 2015	11,300	10,653	647	454.70	454.80	0.1	
November 2015	10,000	10,066	-66	454.16	453.87	0.29	
December 2015	6,200	8,556	-2,356	453.30	453.48	-0.18	
January 2016	9,400	9,000	400	453.44	454.05	-0.60	
February 2016	11,300	11,700	-400	454.37	454.95	-0.57	
March 2016	15,800	15,000	800	455.86	456.51	-0.65	
April 2016	15,400	16,400	-1,000	456.77	457.17	-0.40	
May 2016	15,800	14,700	1,100	455.98	456.76	-0.78	
June 2016 July 2016	14,400 13,300	14,100 13,100	300 200	456.01 455.73	456.64 456.38	-0.62 -0.65	
August 2016	11,500	13,100	-100	455.73 455.02	455.70	-0.65 -0.69	
September 2016	12,200	11,900	300	455.19	455.83	-0.63	
October 2016	10,400	10,400	0	454.25	455.23	-0.98	
November 2016	9,900	9,600	300	453.70	454.40	-0.70	
December 2016	8,300	7,800	500	453.37	453.55	-0.18	
January 2017	8,000	6,600	1,400	453.22	453.36	-0.14	
February 2017	9,500	8,700	800	453.91	454.15	-0.24	
March 2017	13,900	13,700	200	455.53	456.10	-0.57	
April 2017	15,900	16,100	-200	456.40	456.97	-0.57	
May 2017	14,000	13,800	200	455.74	456.39	-0.66	
June 2017	13,600	14,300	-700	455.95	456.46	-0.51	
July 2017 August 2017	13,300 11,500	13,300 11,500	0	455.62 454.91	456.22 455.59	-0.59 -0.68	
September 2017	12,700	11,500	1,600	454.91 454.39	455.32	-0.68	
					455.15		
	The state of the s		•				
October 2017 November 2017	12,000 10,400	10,900 10,000	1,100 400	454.01 454.25	455.15 454.70	-1.14 -0.45	

Page 1 of 2 Printed: 7/23/2021

Table 4-6 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Month, Year	Davis Dam Release Projected (cfs)	Davis Dam Release Actual (cfs)	Davis Dam Release Difference (cfs)	Colorado River Elevation at I-3 Predicted (ft amsl)	Colorado River Elevation at I-3 Actual (ft amsl)	Colorado River Elevation at I-3 Difference (feet)	
December 2017	8,800	9,000	-200	453.51	454.09	-0.58	
January 2018	8,100	7,100	1,000	452.50	453.05	-0.55	
February 2018	11,100	11,000	100	454.40	454.82	-0.42	
March 2018	14,400	13,600	800	455.38	455.94	-0.56	
April 2018	16,000	16,800	-800	456.25	457.09	-0.84	
May 2018	15,900	16,300	-400	456.80	457.06	-0.26	
June 2018	15,600	15,300	300	456.40	456.88	-0.48	
July 2018	13,700	13,400	300	455.60	456.33	-0.73	
August 2018	12,000	11,900	100	454.91	455.58	-0.67	
September 2018	13,400	13,700	-300	464.03	456.29	7.74	
October 2018	11,200	10,300	900	454.54	455.16	-0.62	
November 2018	10,500	10,300	200	454.40	455.02	-0.62	
December 2018	7,300	6,300	1000	452.94	453.33	-0.39	
January 2019	7,300	6,800	500	452.96	453.32	-0.36	
February 2019	11,800	10,200	1600	454.71	454.85	-0.14	
March 2019	12,400	12,200	200	455.09	455.47	-0.38	
April 2019	15,100	14,900	200	456.20	456.55	-0.35	
May 2019	15,200	15,200	0	456.40	456.87	-0.47	
June 2019	15,100	14,900	200	456.38	456.80	-0.42	
July 2019	14,200	14,500	-300	455.90	456.53	-0.63	
August 2019	12,700	13,000	-300	455.31	455.84	-0.53	
September 2019	13,600	12,900	700	455.52	456.06	-0.54	
October 2019	9,800	9,600	200	454.19	454.88	-0.69	
November 2019	8,400	7,700	700	453.71	453.89	-0.18	
December 2019	4,300	4,000	300	451.93 452.39	452.61 452.62	-0.68 -0.23	
January 2020 February 2020	5,600 8,300	6,200 9,100	-600 -800	452.39	452.62	-0.23 -0.46	
March 2020	· · · · · · · · · · · · · · · · · · ·	· ·	4400	455.42	453.80	0.81	
	13,300	8,900					
April 2020	14,600	14,500	100	456.04	456.08	-0.04	
May 2020	16,200	16,700	-500	456.60	457.13	-0.53	
June 2020	15,900	15,700	200	456.67	457.08	-0.41	
July 2020	14,200	14,400	-200	455.92	456.50	-0.58	
August 2020	13,000	13,400	-400	455.50	456.15	-0.65	
September 2020	13,700	13,300	400	455.59	456.13	-0.54	
October 2020	12,200	11,800	400	455.06	455.64	-0.58	
November 2020	9,900	9,400	500	454.26	454.64	-0.38	
December 2020	7,600	8,300	-700	453.13	453.75	-0.62	
January 2021	7,100	7,700	-600	452.97	453.53	-0.56	
February 2021	9,700	9,900	-200	454.03	454.38	-0.35	
March 2021	15,100	15,000	100	456.09	456.56	-0.47	
April 2021	16,600	17,300	-700	456.69	457.38	-0.69	
May 2021	16,700	17,200	-500	457.04	457.51	-0.47	
June 2021	15,900	15,100	800	456.70	456.98	-0.28	
July 2021	13,600			455.73	-		

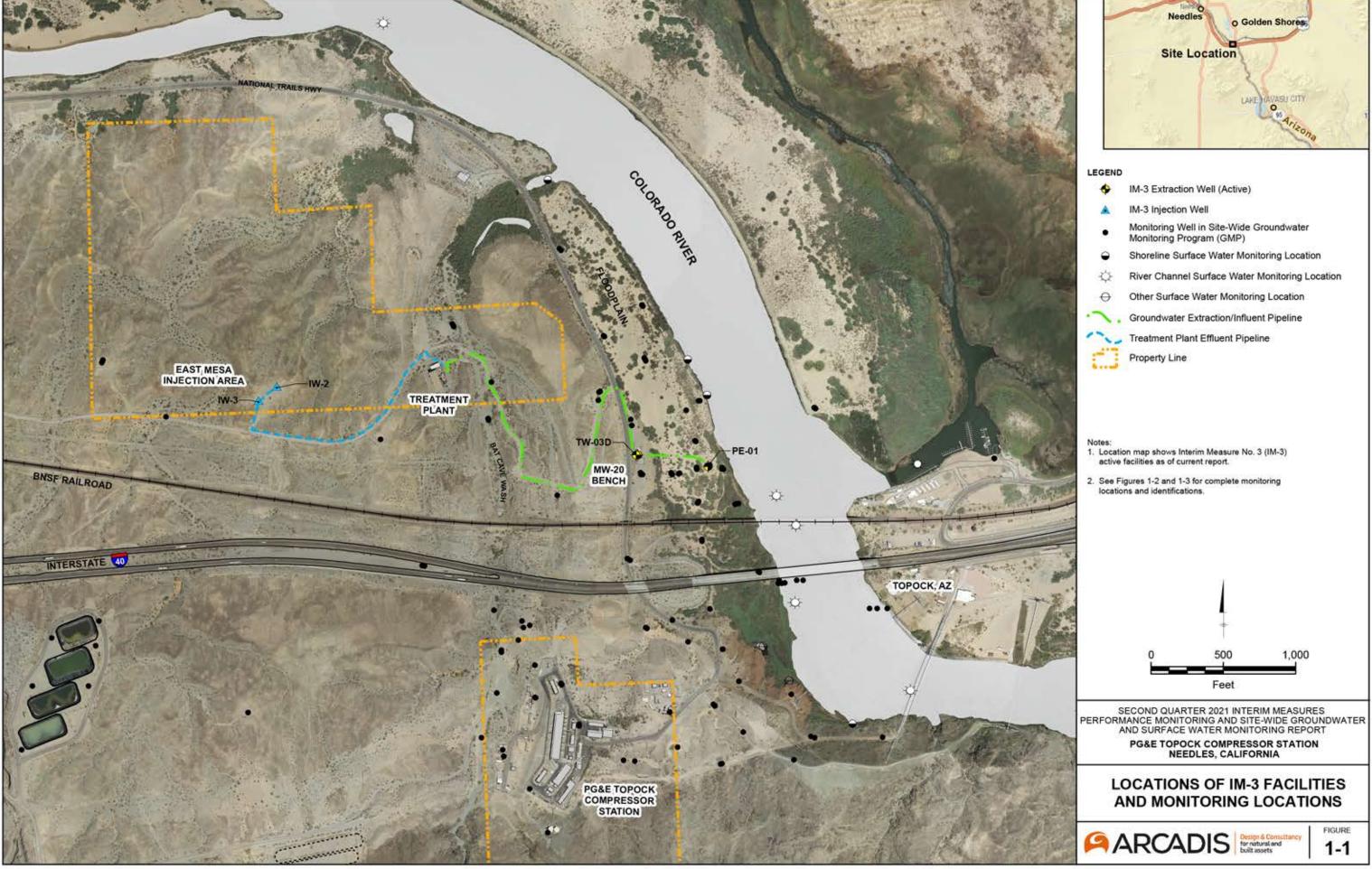
Notes

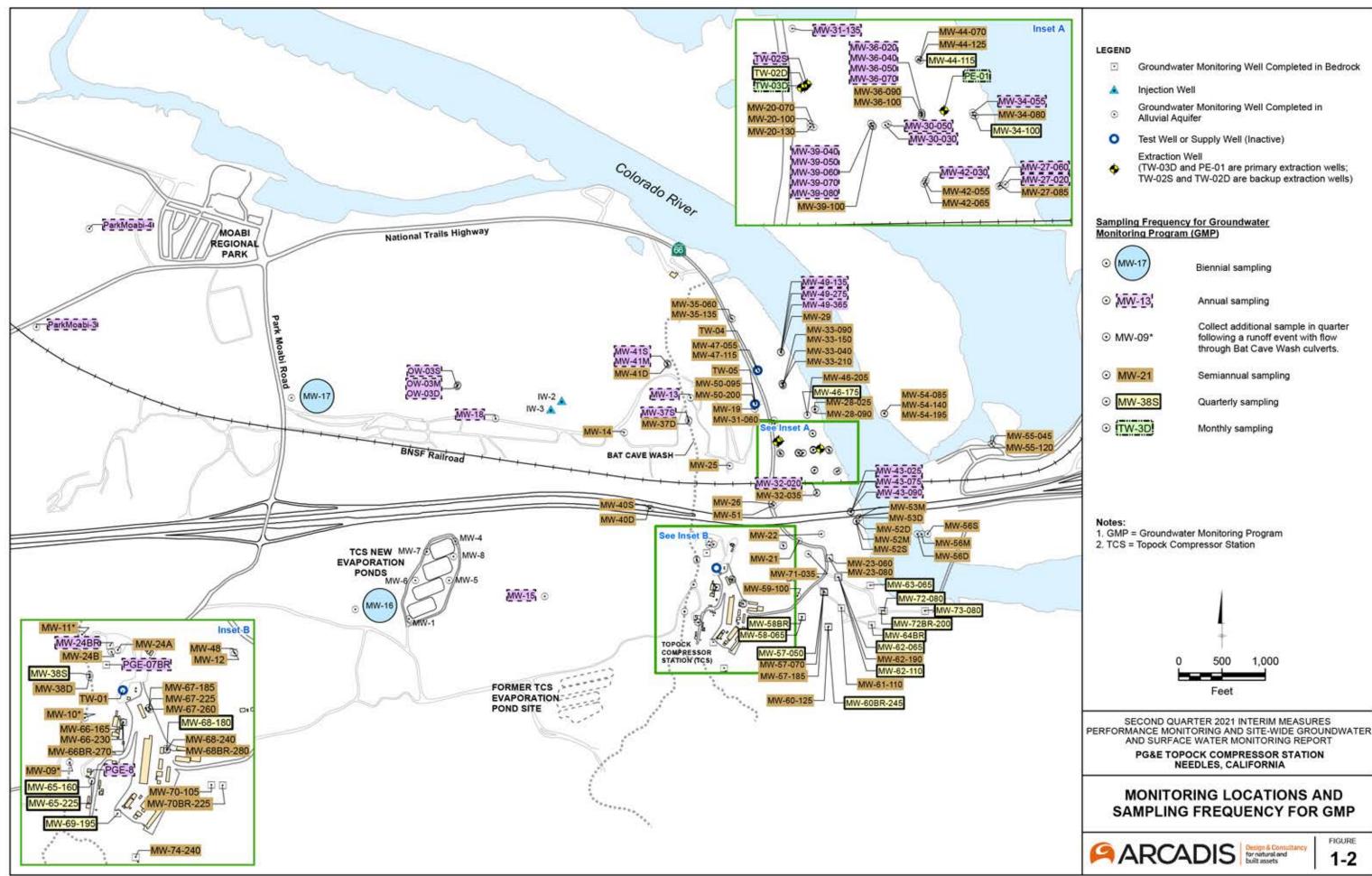
2. Projected and actual Davis Dam releases are reported monthly by the USBR, available online at https://www.usbr.gov/uc/water/crsp/studies/24Month_06.pdf.

-- = not applicable.

cfs = cubic feet per second.

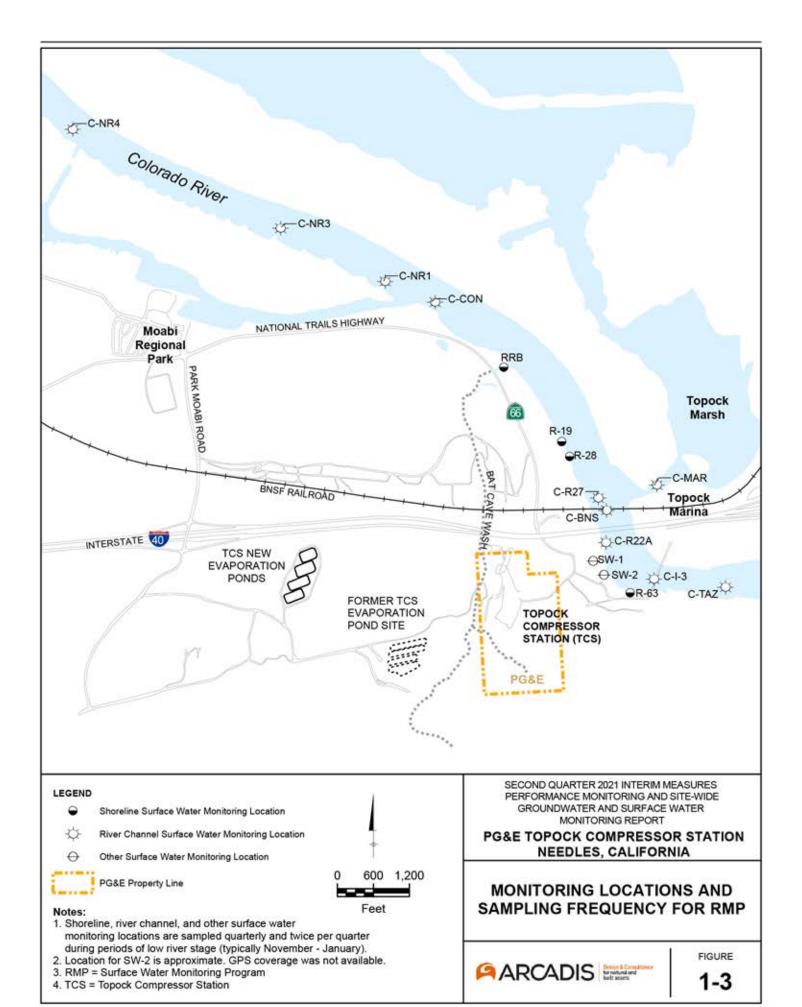
ft amsl = feet above mean sea level.

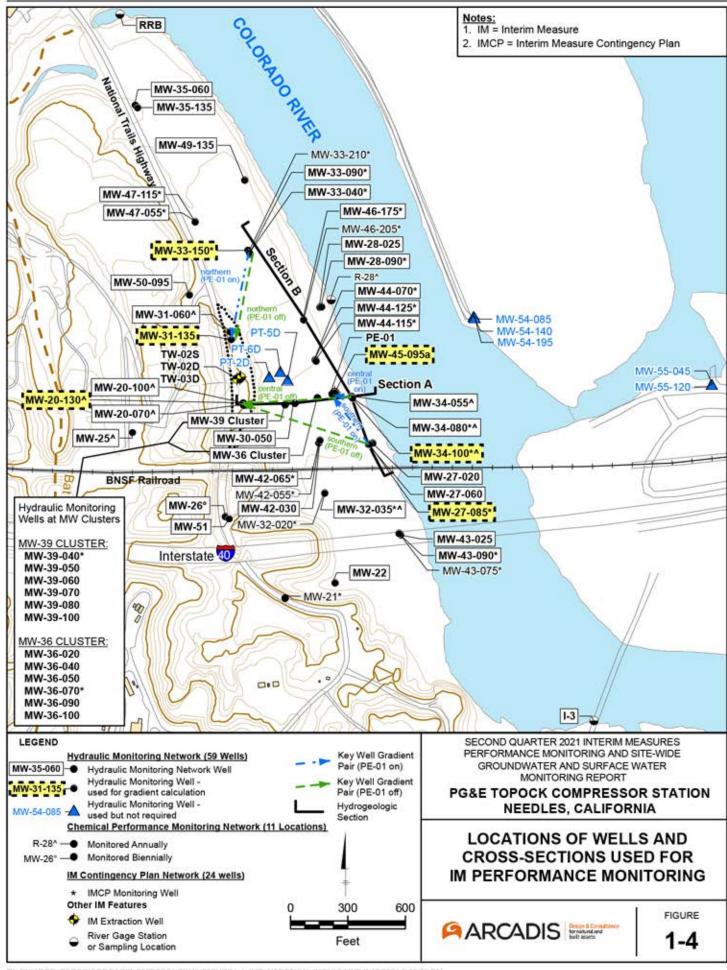

INC = incomplete data set for Colorado River elevation at I-3.

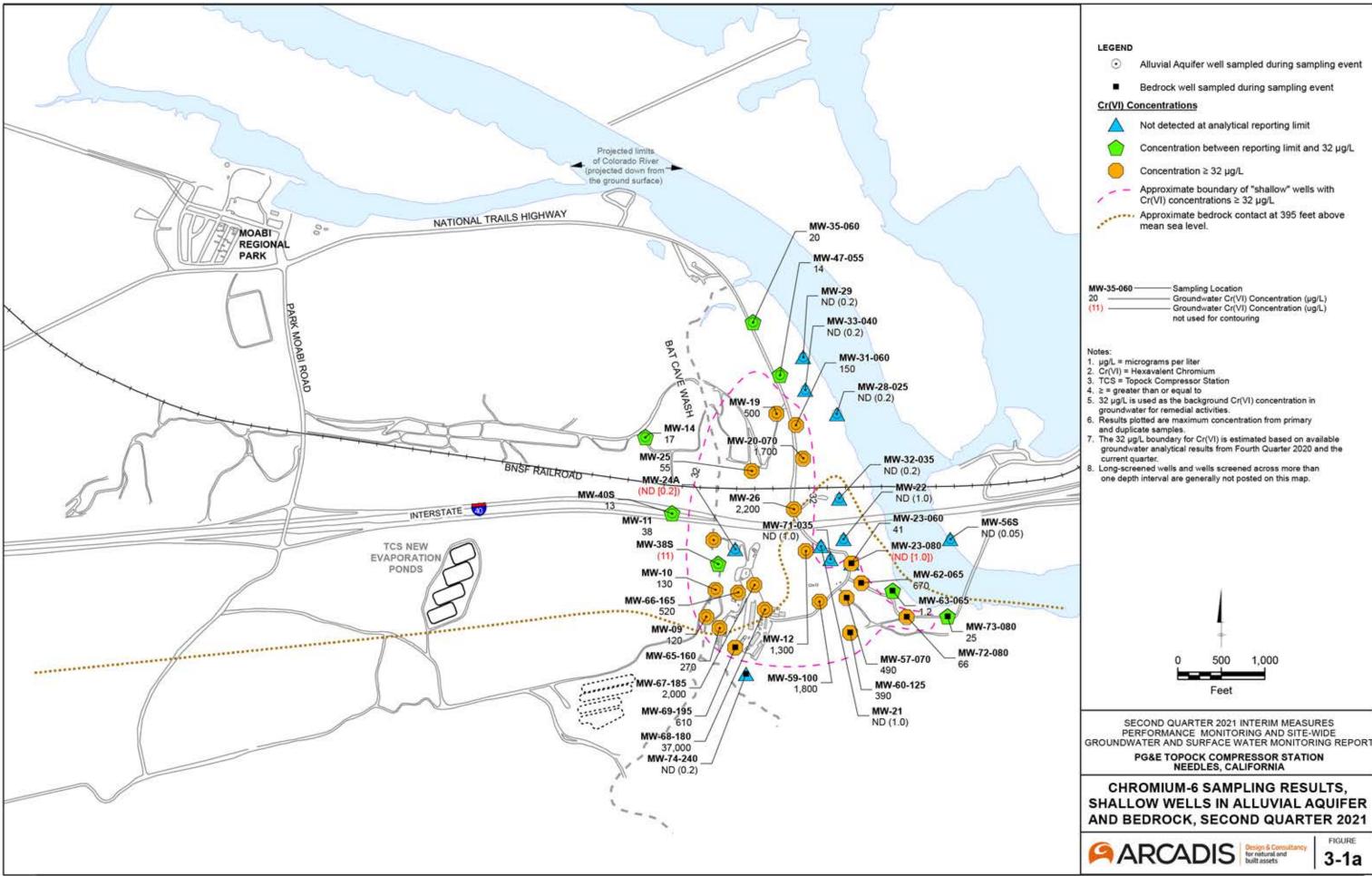

NA = difference in predicted and actual river elevation not available due to incomplete dataset.

Page 2 of 2 Printed: 7/23/2021

^{1.} Projected river level for each month is calculated based on the preceding month's U.S. Bureau of Reclamation (USBR) projections of Davis Dam release and stage in Lake Havasu.

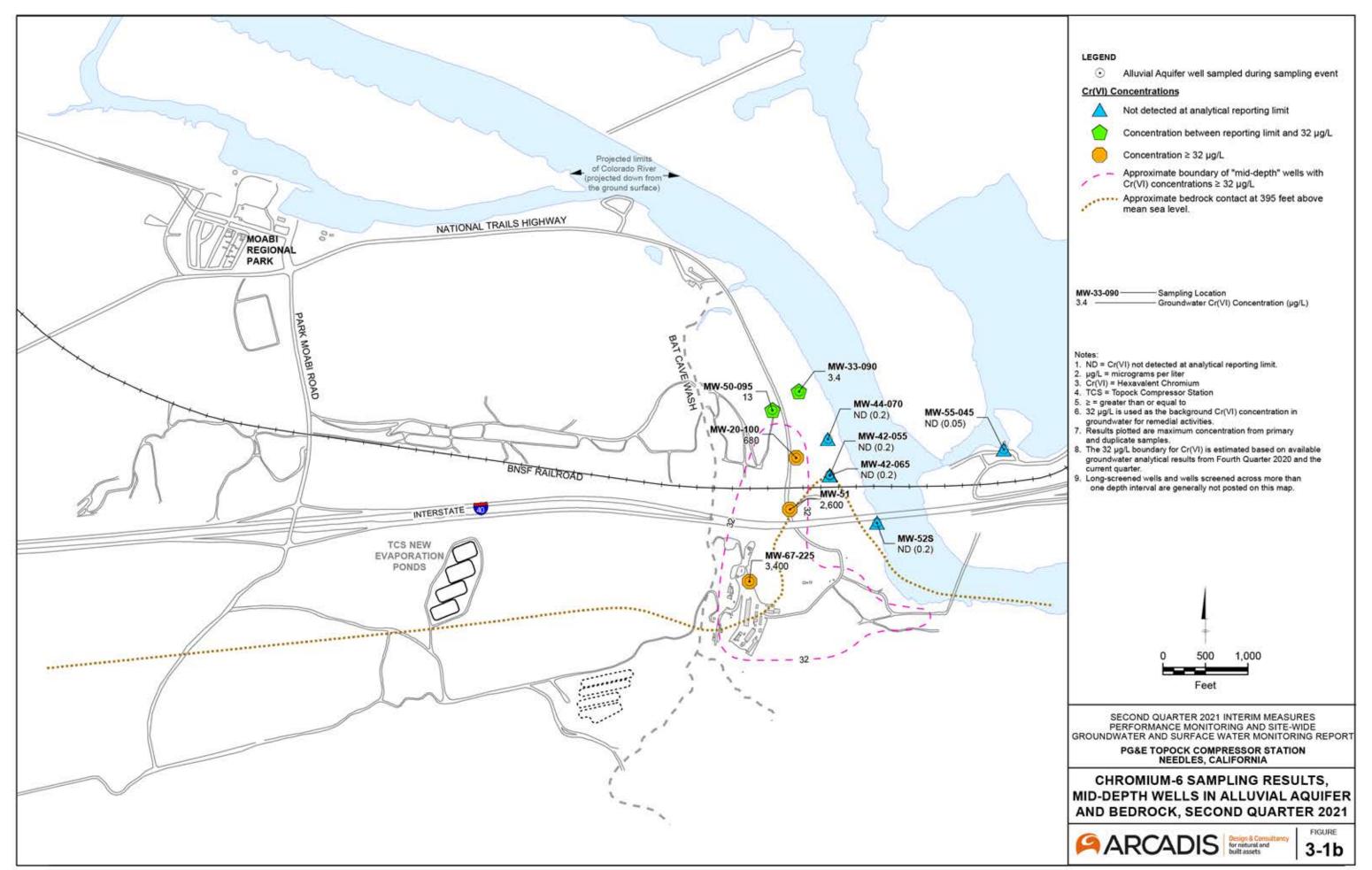

FIGURES

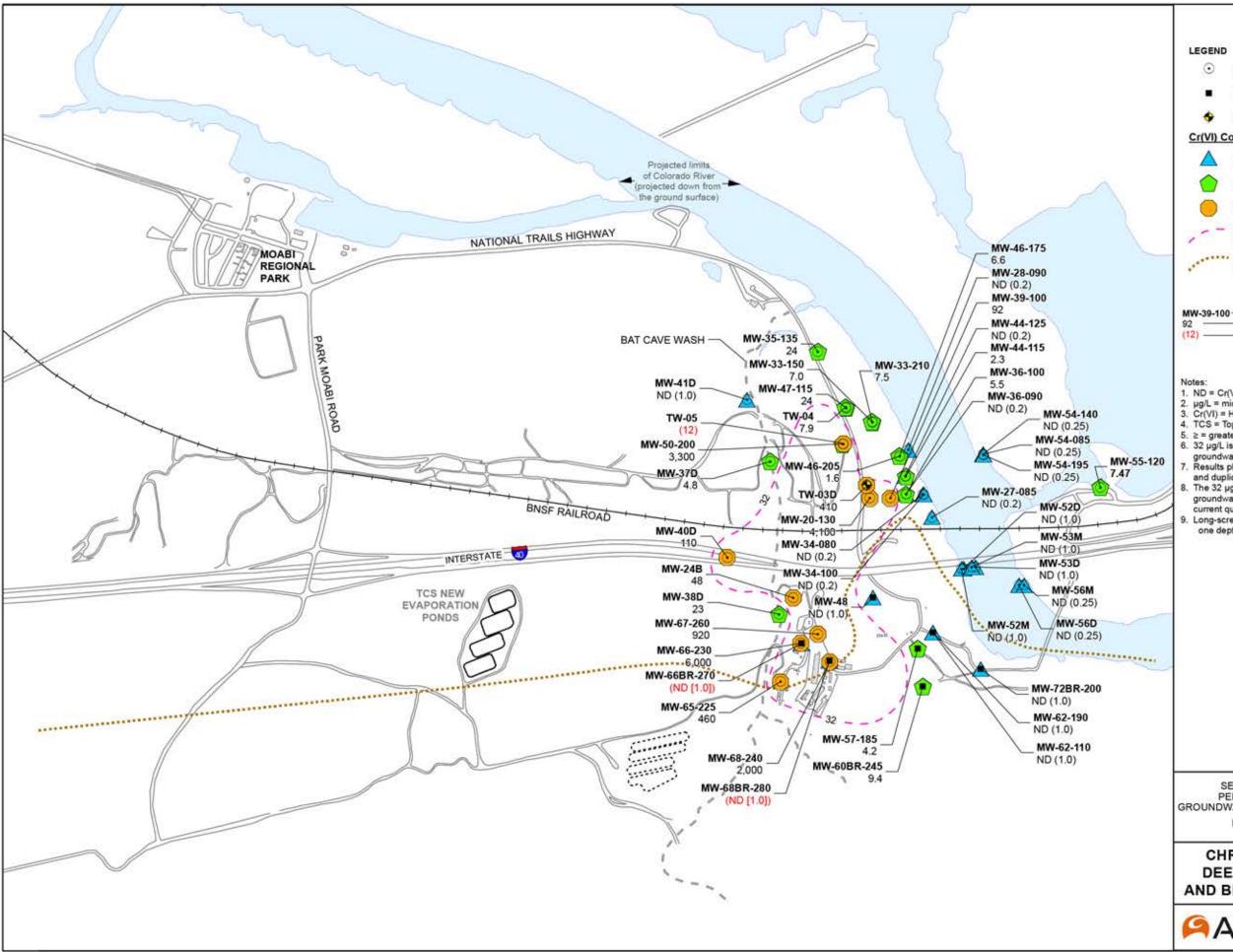




FIGURE

1-2



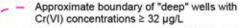


FIGURE

3-1a

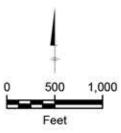
- Alluvial Aquifer well sampled during sampling event
- Alluvial Aquifer well sampled during sampling event
- Extraction well sampled during sampling event

Cr(VI) Concentrations


Not detected at analytical reporting limit

Concentration between reporting limit and 32 µg/L

Concentration ≥ 32 µg/L

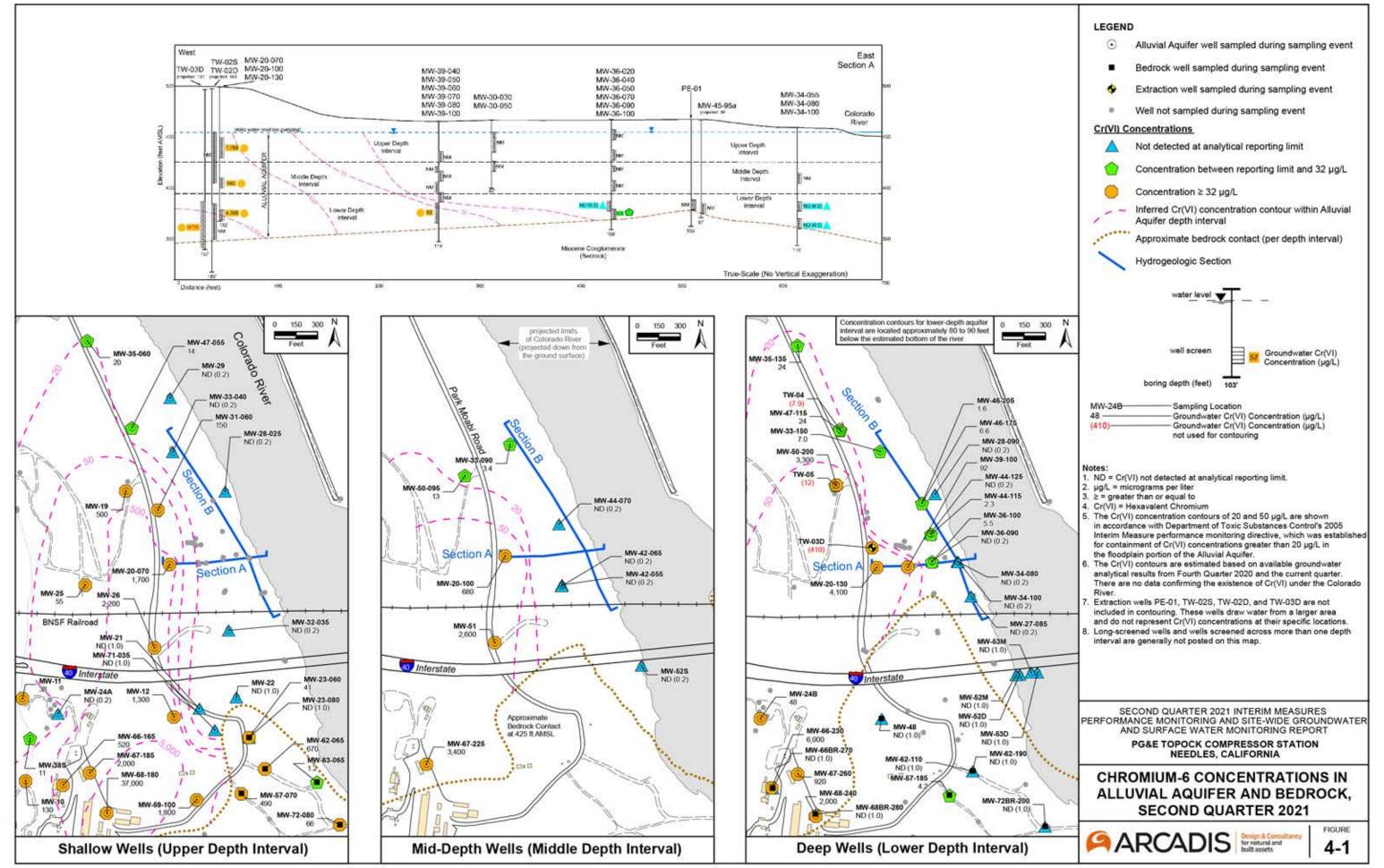


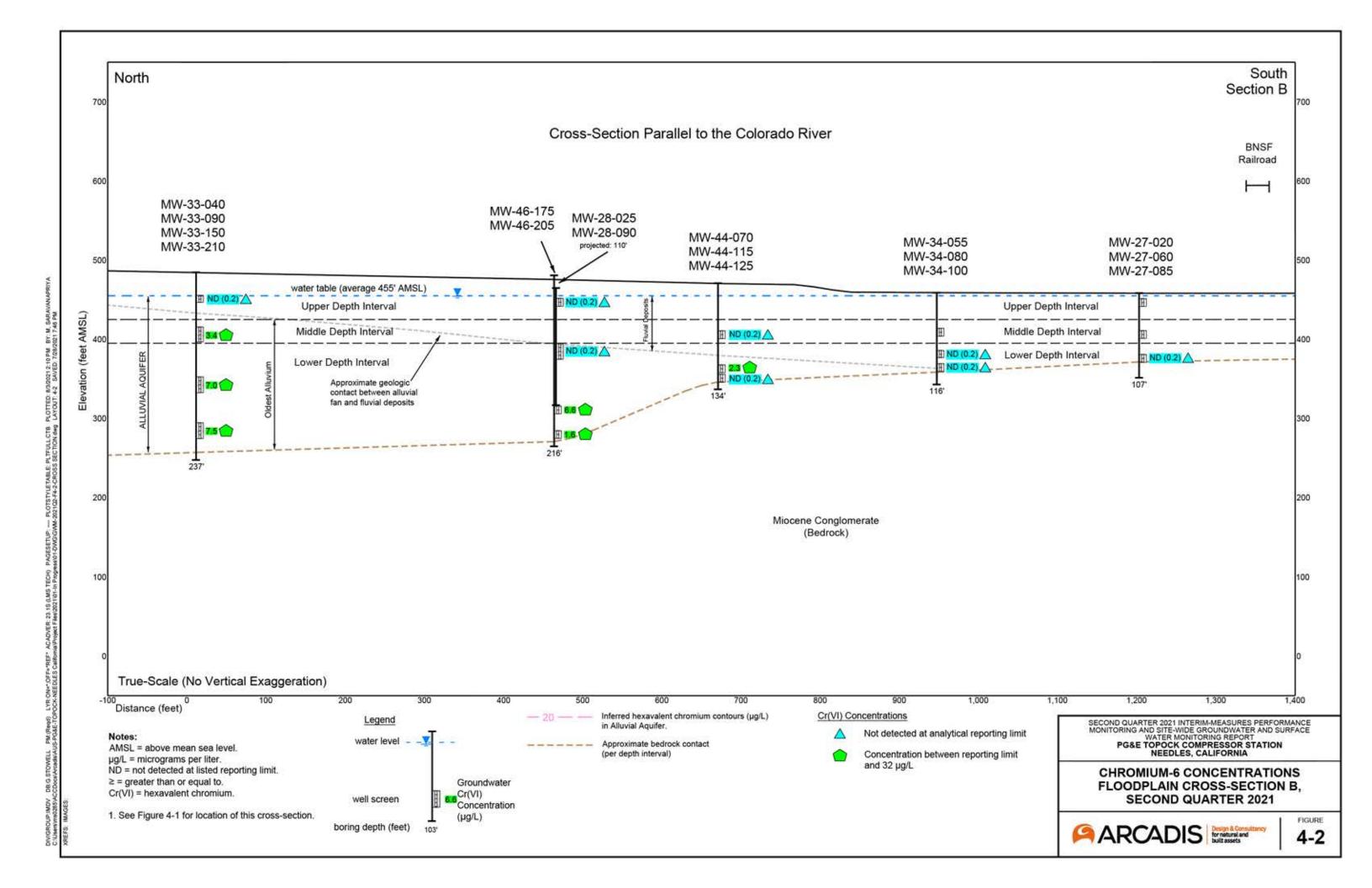
..... Approximate bedrock contact at 395 feet above mean sea level.

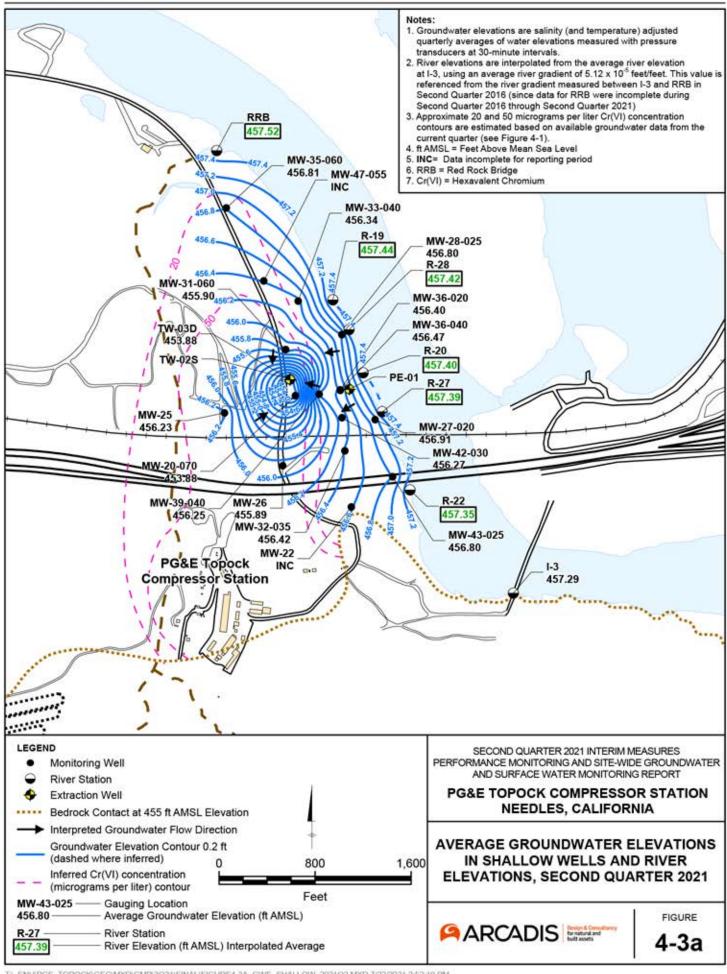
Sampling Location

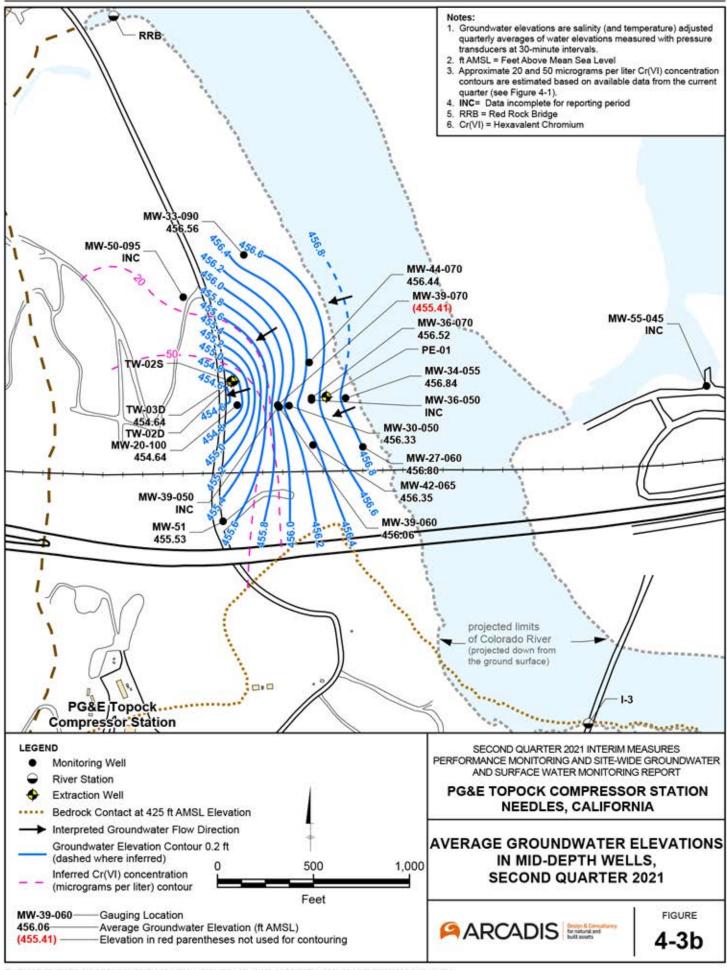
Groundwater Cr(VI) Concentration (µg/L) Groundwater Cr(VI) Concentration (ug/L) not used for contouring

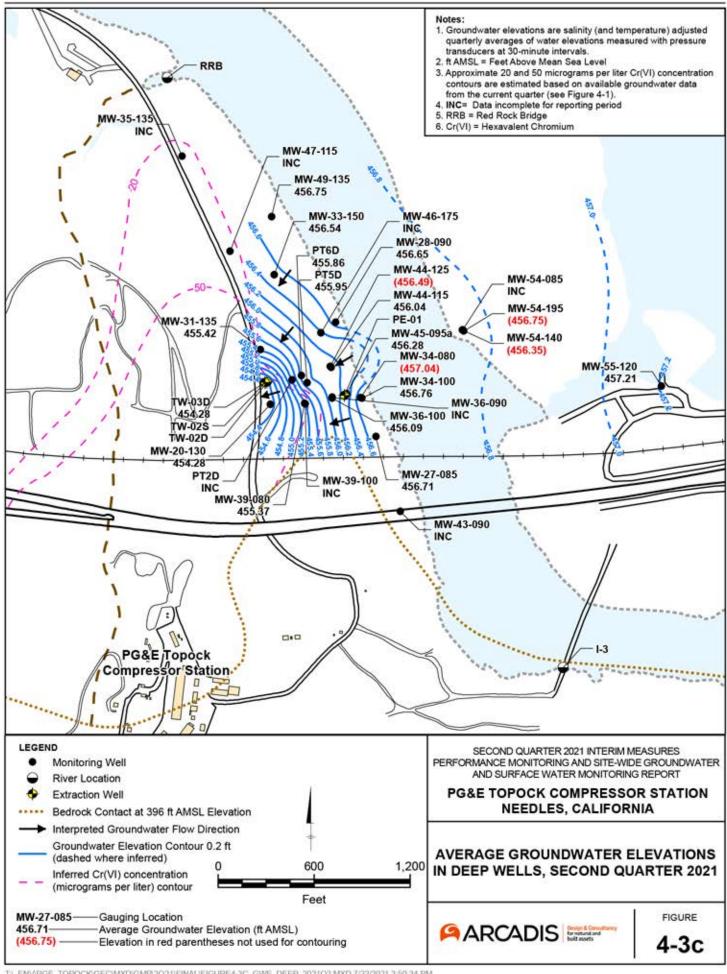
- 1. ND = Cr(VI) not detected at analytical reporting limit.
- 2. µg/L = micrograms per liter
- 3. Cr(VI) = Hexavalent Chromium
- 4. TCS = Topock Compressor Station
- ≥ = greater than or equal to
- 32 μg/L is used as the background Cr(VI) concentration in groundwater for remedial activities.
- Results plotted are maximum concentration from primary
- and duplicate samples. The 32 µg/L boundary for Cr(VI) is estimated based on available groundwater analytical results from Fourth Quarter 2020 and the
- 9. Long-screened wells and wells screened across more than one depth interval are generally not posted on this map.

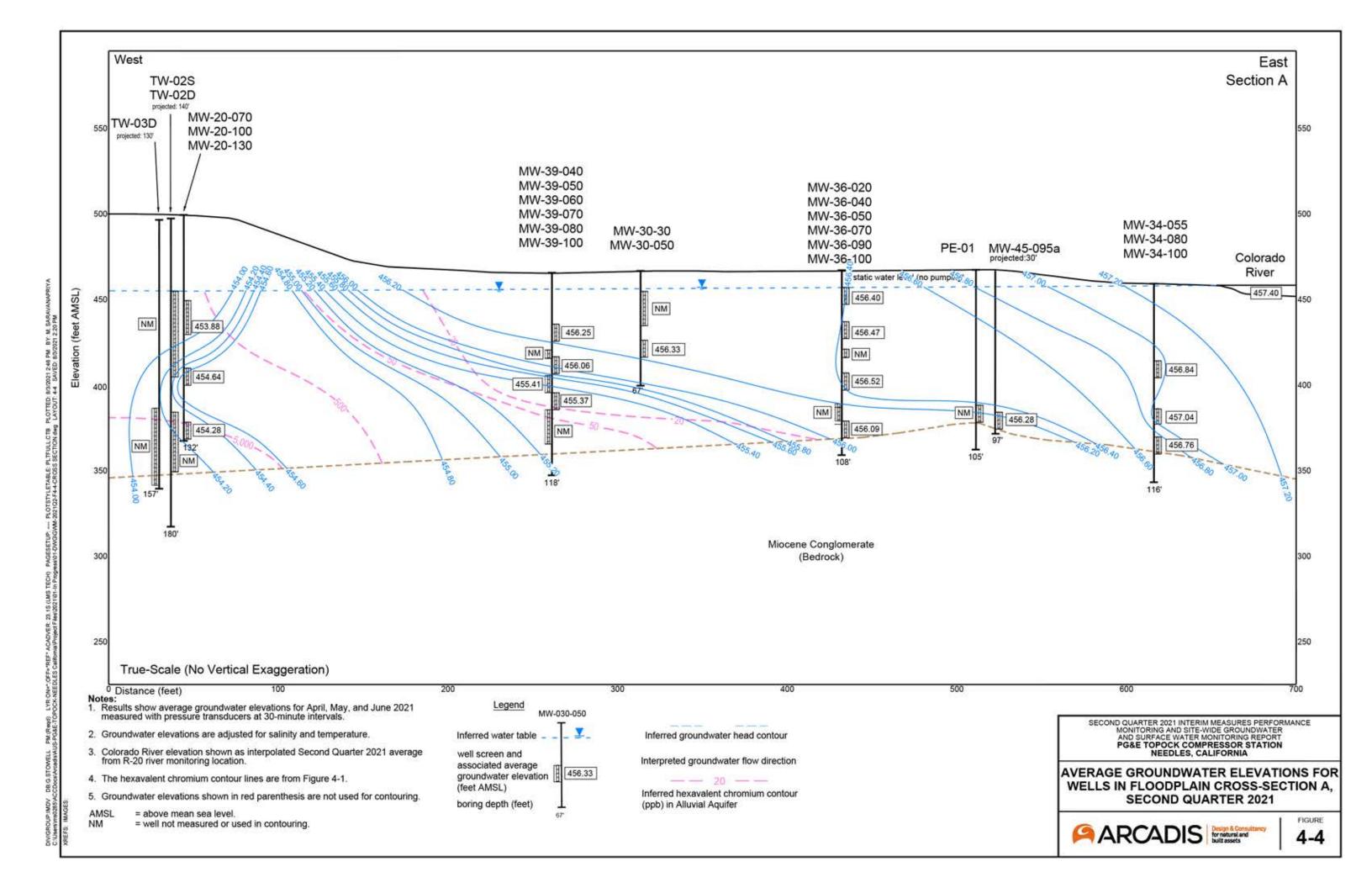

SECOND QUARTER 2021 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT

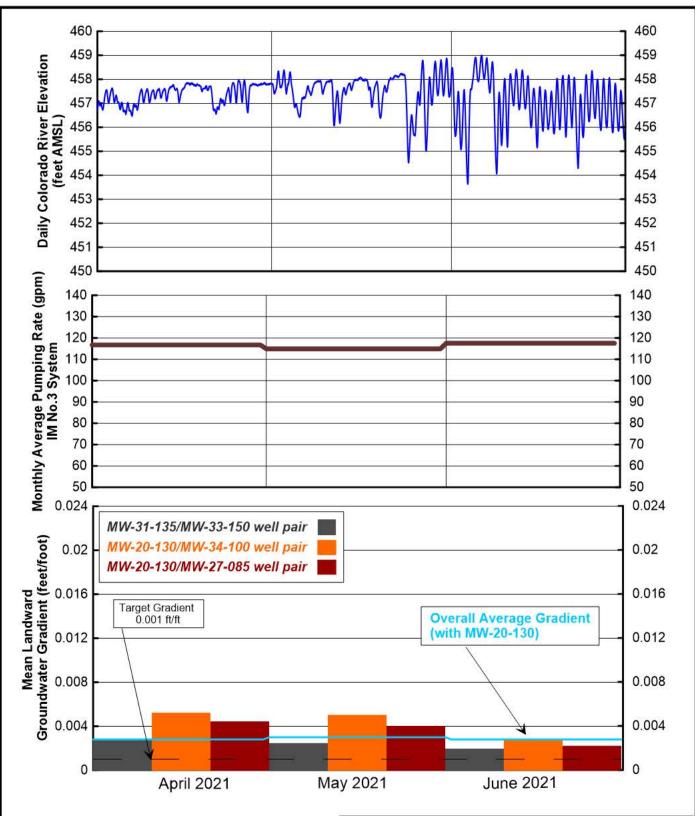

PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA


CHROMIUM-6 SAMPLING RESULTS. DEEP WELLS IN ALLUVIAL AQUIFER AND BEDROCK, SECOND QUARTER 2021




FIGURE 3-1c





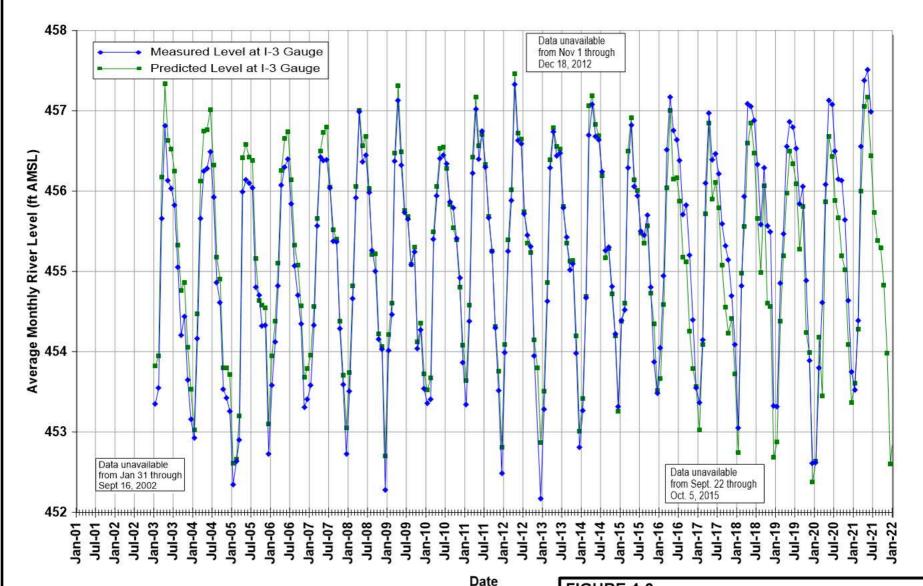

- 1. For Interim Measure (IM) pumping, the target landward gradient for well pairs is 0.001 feet/foot
- 2. Pumping rate plotted is the combined rate of extraction wells TW-3D, TW-02D and monitoring well TW-01 in operation each month.
- 3. Beginning August 2017, MW-20-130 approved for gradient compliance (instead of MW-45-095) at central and southern well pairs during months when PE-01 is not run for gradient control.
- AMSL = above mean sea level.
- gpm = gallons per minute

FIGURE 4-5 MEASURED HYDRAULIC GRADIENTS, RIVER ELEVATION, AND PUMPING RATE, SECOND QUARTER 2021

SECOND QUARTER 2021 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT.

PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

Note:

Projected river level for each month in the past is calculated based on the preceding months United States Bureau of Reclamation (USBR) projections of Davis Dam release and stage in Lake Havasu. Future projections of river level at I-3 are based upon USBR projections presented in the July 24-Month Study (Report dated July 2021). These data are reported monthly by the US Department of Interior, at https://www.usbr.gov/uc/water/crsp/studies/24Month 07.pdf

FIGURE 4-6 PAST AND PREDICTED FUTURE RIVER LEVELS AT TOPOCK COMPRESSOR STATION

SECOND QUARTER 2021 INTERIM MEASURES
PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND
SURFACE WATER MONITORING REPORT,
PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

ft AMSL = feet above mean sea level

APPENDIX A

Lab Reports, Second Quarter 2021 (Provided on CD with Hard Copy Submittal)

For additional help with the information provided in the lab reports, please contact Alison Schaffer, Arcadis Report Lead, at 303.471.3575.

APPENDIX B

Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through March 2021

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (µg/L)	Dissolved Chromium (μg/L)
MW-09	SA	04/24/2020	N	LF	130	130
MW-09	SA	12/01/2020	N	LF	120	120
MW-09	SA	02/24/2021	N	LF	120	120
MW-09	SA	05/19/2021	N	LF	120	110
MW-10	SA	04/23/2020	N	LF	150	150
MW-10	SA	11/30/2020	N	LF	120	120
MW-10	SA	11/30/2020	FD		120	120
MW-10	SA	02/24/2021	N	LF	110	120
MW-10	SA	05/05/2021	N	LF	130	130 J
MW-11	SA	04/23/2020	N	LF	43	43
MW-11	SA	12/10/2020	N	LF	33	33
MW-11	SA	05/19/2021	N	LF	38	37
MW-12	SA	04/28/2020	N	LF	2,700	2,800
MW-12	SA	12/14/2020	N	LF	1,600	1,900
MW-12	SA	12/14/2020	FD		1,600	1,900
MW-12	SA	02/17/2021	N	LF	1,400	1,600
MW-12	SA	05/26/2021	N	LF	1,300	1,200
MW-13	SA	12/14/2020	N	LF	23	24
MW-14	SA	06/24/2020	N	LF	12	12
MW-14	SA	06/24/2020	FD		12	12
MW-14	SA	12/10/2020	N	LF	13	13
MW-14	SA	05/28/2021	N	LF	17	16
MW-15	SA	12/10/2020	N	LF	15	14
MW-16	SA	12/10/2020	N	LF	10	10
MW-17	SA	12/10/2020	N	LF	10	12
MW-18	SA	12/10/2020	N	LF	19	20
MW-19	SA	04/27/2020	N	LF	32	40
MW-19	SA	12/07/2020	N	LF	94	92 J
MW-19	SA	05/28/2021	N	LF	500	500
MW-20-070	SA	04/24/2020	N	LF	2,500	2,500
MW-20-070	SA	12/04/2020	N	LF	1,600 J	1,700
MW-20-070	SA	05/28/2021	N	LF	1,700	1,700
MW-20-100	MA	04/24/2020	N	LF	750	760
MW-20-100	MA	12/04/2020	N	LF	610 J	660
MW-20-100	MA	05/28/2021	N	LF	680	690
MW-20-130	DA	04/24/2020	N	LF	5,900	6,100
MW-20-130	DA	12/04/2020	N	LF	4,000 J	4,400
MW-20-130	DA	12/04/2020	FD		4,100 J	4,500
MW-20-130	DA	05/28/2021	N	LF	4,100	4,000
MW-21	SA	04/30/2020	N	LF	5	5
MW-21	SA	12/15/2020	N	LF	ND (1.0)	ND (1.0)
MW-21	SA	06/08/2021	N	3V	ND (1.0)	2
MW-22	SA	06/16/2020	N	LF	ND (0.2)	ND (1.0)
MW-22	SA	12/08/2020	N	LF	ND (0.2)	ND (1.0)
MW-22	SA	12/08/2020	FD	Lr	ND (1.0)	ND (1.0)
MW-22	SA	04/27/2021	N N	LF	ND (1.0)	ND (1.0)
MW-23-060	BR	06/18/2020	N	LF	40	37
MW-23-060	BR	12/08/2020	N	LF	42	40

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (µg/L)	Dissolved Chromium (μg/L)
MW-23-060	BR	04/30/2021	N	LF	41	38
MW-23-080	BR	06/18/2020	N	LF	ND (1.0)	ND (1.0)
MW-23-080	BR	12/08/2020	N	LF	ND (1.0)	ND (1.0)
MW-23-080	BR	04/30/2021	N	LF	ND (1.0)	1
MW-24A	SA	05/01/2020	N	LF	ND (0.2)	3
MW-24A	SA	10/05/2020	N	LF	ND (0.2)	3
MW-24A	SA	12/01/2020	N	LF	ND (0.2)	ND (1.0)
MW-24A	SA	12/01/2020	FD		ND (0.2)	ND (1.0)
MW-24A	SA	05/05/2021	N	LF	ND (0.2)	ND (1.0 J)
MW-24B	DA	05/01/2020	N	LF	120	140
MW-24B	DA	10/05/2020	N	LF	ND (1.0)	57
MW-24B	DA	12/01/2020	N	LF	64	65
MW-24B	DA	05/05/2021	N	LF	48	45 J
MW-24BR	BR	12/02/2020	N	3V	ND (1.0)	ND (1.0)
MW-25	SA	06/24/2020	N	LF	56	55
MW-25	SA	06/24/2020	FD		57	56
MW-25	SA	12/07/2020	N	LF	68	65 J
MW-25	SA	05/25/2021	N	LF	55	56
MW-25	SA	05/25/2021	FD		55	56
MW-26	SA	04/27/2020	N	LF	2,300	2,300
MW-26	SA	12/03/2020	N	LF	2,200	2,200
MW-26	SA	12/03/2020	FD		2,200	2,500
MW-26	SA	05/20/2021	N	LF	2,200	2,300
MW-27-020	SA	12/03/2020	N	LF	ND (0.2)	ND (1.0)
MW-27-060	MA	12/03/2020	N	LF	ND (0.2)	ND (1.0)
MW-27-085	DA	06/18/2020	N	LF	ND (0.2)	ND (1.0)
MW-27-085	DA	12/03/2020	N	LF	ND (1.0)	ND (1.0)
MW-27-085	DA	04/27/2021	N	LF	ND (0.2)	ND (1.0)
MW-28-025	SA	06/23/2020	N	LF	ND (0.2)	ND (1.0)
MW-28-025	SA	12/15/2020	N	LF	ND (0.2)	ND (1.0)
MW-28-025	SA	04/29/2021	N	LF	ND (0.2)	ND (1.0)
MW-28-090	DA	06/23/2020	N	LF	ND (0.2)	ND (1.0)
MW-28-090	DA	12/15/2020	N	LF	ND (0.2)	ND (1.0)
MW-28-090	DA	04/29/2021	N	LF	ND (0.2)	ND (1.0)
MW-29	SA	06/23/2020	N	LF	ND (0.2)	ND (1.0)
MW-29	SA	12/04/2020	N	LF	ND (0.2)	ND (1.0)
MW-29	SA	04/29/2021	N	LF	ND (0.2)	ND (1.0)
MW-30-030	SA	12/07/2020	N	LF	ND (1.0)	ND (1.0 J)
MW-30-050	MA	12/07/2020	N	LF	ND (0.2)	ND (1.0 J)
MW-31-060	SA	06/24/2020	N	LF	320	280
MW-31-060	SA	12/07/2020	N	LF	410	400 J
MW-31-060	SA	04/30/2021	N	LF	150	150
MW-31-135	DA	12/07/2020	N	LF	150	13 J
MW-32-020	SA	12/07/2020	N	LF	ND (1.0)	ND (1.0 J)
MW-32-035	SA	06/18/2020	N	LF	ND (1.0)	ND (1.0)
MW-32-035	SA	12/07/2020	N	LF	ND (0.2)	ND (1.0 J)
MW-32-035	SA	12/07/2020	FD		ND (1.0)	ND (1.0 J)
MW-32-035	SA	04/27/2021	N N	LF	ND (1.0)	1

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-33-040	SA	06/17/2020	N	LF	ND (0.2)	ND (1.0)
MW-33-040	SA	12/02/2020	N	LF	ND (1.0)	2
MW-33-040	SA	04/29/2021	N	LF	ND (0.2)	ND (1.0)
MW-33-090	MA	06/17/2020	N	LF	3	6
MW-33-090	MA	12/02/2020	N	LF	3	11
MW-33-090	MA	04/29/2021	N	LF	3	4
MW-33-150	DA	06/17/2020	N	LF	5	11
MW-33-150	DA	12/02/2020	N	LF	5	9
MW-33-150	DA	04/29/2021	N	LF	7	8
MW-33-210	DA	06/17/2020	N	LF	7	15
MW-33-210	DA	12/02/2020	N	LF	12	15
MW-33-210	DA	04/29/2021	N	LF	8	9
MW-34-055	MA	12/03/2020	N	LF	ND (0.2)	ND (1.0)
MW-34-055	MA	12/03/2020	FD	Lr	ND (0.2)	ND (1.0)
MW-34-055	MA	06/30/2021	N N	LF	ND (0.2)	ND (1.0)
MW-34-080	DA	06/18/2020	N	LF	ND (0.2)	ND (1.0)
MW-34-080	DA	12/03/2020	N	LF	ND (0.2)	ND (1.0)
MW-34-080	DA		N	LF LF	ND (0.2)	ND (1.0)
		04/28/2021	N	LF		ND (1.0)
MW-34-100	DA	02/20/2020	-		ND (0.2)	
MW-34-100	DA	06/18/2020	N	LF	ND (0.2)	ND (1.0)
MW-34-100	DA	10/01/2020	N	LF	ND (0.2)	ND (1.0)
MW-34-100	DA	12/03/2020	N	LF	ND (1.0)	ND (1.0)
MW-34-100	DA	12/03/2020	FD		ND (1.0)	ND (1.0)
MW-34-100	DA	02/25/2021	N	LF	ND (1.0)	2
MW-34-100	DA	04/28/2021	N	LF 	ND (0.2)	ND (1.0)
MW-35-060	SA	04/27/2020	N	LF 	32	32
MW-35-060	SA	12/08/2020	N	LF	21	21
MW-35-060	SA	12/08/2020	FD		20	21
MW-35-060	SA	04/30/2021	N	LF	20	22
MW-35-135	DA	04/27/2020	N	LF	25	24
MW-35-135	DA	12/08/2020	N	LF	27	27
MW-35-135	DA	12/08/2020	FD		28	27
MW-35-135	DA	04/30/2021	N	LF	24	24
MW-36-020	SA	12/15/2020	N	LF	ND (0.2)	ND (1.0)
MW-36-020	SA	06/29/2021	N	LF	ND (0.2)	
MW-36-040	SA	12/15/2020	N	LF	ND (0.2)	ND (1.0)
MW-36-040	SA	06/29/2021	N	LF	ND (0.2)	
MW-36-050	MA	12/15/2020	N	LF	ND (0.2)	ND (1.0)
MW-36-050	MA	06/29/2021	N	LF	ND (0.2)	
MW-36-070	MA	12/15/2020	N	LF	0	ND (1.0)
MW-36-070	MA	06/29/2021	N	LF	ND (0.2)	
MW-36-090	DA	06/16/2020	N	LF	ND (0.2)	ND (1.0)
MW-36-090	DA	12/15/2020	N	LF	ND (0.2)	2
MW-36-090	DA	04/28/2021	N	LF	ND (0.2)	ND (1.0)
MW-36-100	DA	06/16/2020	N	LF	12	11
MW-36-100	DA	12/15/2020	N	LF	5	6
MW-36-100	DA	04/28/2021	N	LF	6	7
MW-37D	DA	06/24/2020	N	LF	5	7

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-37D	DA	12/10/2020	N	LF	5	6
MW-37D	DA	06/07/2021	N	LF	5	5
MW-37S	MA	12/10/2020	N	LF	12	13
MW-38D	DA	04/23/2020	N	LF	19	16
MW-38D	DA	10/05/2020	N	LF	20	21
MW-38D	DA	12/14/2020	N	LF	17	19
MW-38D	DA	12/15/2020	N		19	18
MW-38D	DA	02/25/2021	N	LF	25	22
MW-38D	DA	05/05/2021	N	LF	23	22 J
MW-38S	SA	02/25/2020	N	LF	4	3
MW-38S	SA	02/25/2020	FD		4	3
MW-38S	SA	04/23/2020	N	LF	4	4
MW-38S	SA	04/23/2020	FD		4	5
MW-38S	SA	11/30/2020	N	LF	7	8
MW-38S	SA	02/25/2021	N	LF	8	9
MW-38S	SA	05/05/2021	N	LF	11	11 J
MW-38S-SMT	SA	09/30/2020	N	LF	5	5
MW-39-040	SA	12/11/2020	N	LF	ND (0.2)	ND (1.0)
MW-39-050	MA	12/11/2020	N	LF	ND (0.2)	ND (1.0)
MW-39-060	MA	12/11/2020	N	LF	ND (0.2)	ND (1.0)
MW-39-070	MA	12/11/2020	N	LF	ND (0.2)	ND (1.0)
MW-39-080	DA	12/11/2020	N	LF	0	1
MW-39-100	DA	06/18/2020	N	LF	93	91
MW-39-100	DA	12/15/2020	N	LF	120	110
MW-39-100	DA	04/28/2021	N	LF	92	91
MW-40D	DA	06/17/2020	N	LF	12	11
MW-40D	DA	12/10/2020	N	LF	31	29
MW-40D	DA	05/19/2021	N	LF	110	98
MW-40S	SA	06/17/2020	N	H	18	28
MW-40S	SA	12/10/2020	N	H	6	29
MW-40S	SA	05/19/2021	N	G	13	13
MW-41D	DA	06/24/2020	N	LF	ND (1.0)	ND (1.0)
MW-41D	DA	06/24/2020	FD		ND (1.0)	ND (1.0)
MW-41D	DA	12/17/2020	N	LF	1	1
MW-41D	DA	06/07/2021	N	LF	ND (1.0)	ND (1.0)
MW-41D	DA	06/07/2021	FD		ND (1.0)	ND (1.0)
MW-41M	DA	12/17/2020	N	LF	10	8
MW-41S	SA	12/17/2020	N	LF	6	5
MW-42-030	SA	12/16/2020	N	LF	ND (0.2)	ND (1.0)
MW-42-055	MA	06/18/2020	N	LF	ND (0.2)	ND (1.0)
MW-42-055	MA	12/16/2020	N	LF	ND (0.2)	ND (1.0)
MW-42-055	MA	04/27/2021	N	LF	ND (0.2)	ND (1.0)
MW-42-065	MA	06/18/2020	N	LF	ND (0.2)	ND (1.0)
MW-42-065	MA	12/16/2020	N	LF	ND (0.2)	ND (1.0)
MW-42-065	MA	04/27/2021	N	LF	ND (0.2)	ND (1.0)
MW-43-025	SA	12/08/2020	N	LF	ND (0.2)	ND (1.0)
MW-43-075	DA	12/08/2020	N	LF	ND (0.2)	ND (1.0)
	5,1	, 00, 2020	+ ''	LF	ND (1.0)	115 (2.0)

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-44-070	MA	06/23/2020	N	LF	ND (0.2)	ND (1.0)
MW-44-070	MA	12/11/2020	N	LF	ND (0.2)	ND (1.0)
MW-44-070	MA	04/28/2021	N	LF	ND (0.2)	ND (1.0)
MW-44-115	DA	02/21/2020	N	LF	5	6
MW-44-115	DA	06/23/2020	N	LF	4	4
MW-44-115	DA	10/01/2020	N	LF	3	4
MW-44-115	DA	10/01/2020	FD		3	4
MW-44-115	DA	12/11/2020	N	LF	3	4
MW-44-115	DA	02/26/2021	N	LF	3	5
MW-44-115	DA	04/28/2021	N	LF	2	2
MW-44-125	DA	06/23/2020	N	LF	ND (0.2)	1
MW-44-125	DA	12/11/2020	N	LF	ND (0.2)	ND (1.0)
MW-44-125	DA	04/28/2021	N	LF	ND (0.2)	ND (1.0)
	DA		N	LF	9	17
MW-46-175 MW-46-175	DA	02/21/2020 06/23/2020	N	LF LF	5	23
MW-46-175			N	LF	5	6
	DA	10/01/2020	+	LF LF		
MW-46-175	DA	12/15/2020	N		8	9
MW-46-175	DA	02/25/2021	N	LF	5	8
MW-46-175	DA	04/29/2021	N	LF	7	7
MW-46-205	DA	06/23/2020	N	LF	1	2
MW-46-205	DA	12/15/2020	N	LF	ND (1.0)	4
MW-46-205	DA	04/29/2021	N	LF 	2	2
MW-47-055	SA	06/25/2020	N	LF 	16	16
MW-47-055	SA	11/30/2020	N	LF 	17	17
MW-47-055	SA	04/28/2021	N	LF 	14	15
MW-47-115	DA	06/25/2020	N	LF 	24	24
MW-47-115	DA	11/30/2020	N	LF	18	18
MW-47-115	DA	04/28/2021	N	LF	24	23
MW-48	BR	05/01/2020	N	3V	ND (1.0)	ND (1.0)
MW-48	BR	12/16/2020	N	G	ND (1.0)	ND (1.0)
MW-48	BR	05/28/2021	N	3V	ND (1.0)	ND (1.0)
MW-49-135	DA	12/04/2020	N	LF	8.6 J	11
MW-49-275	DA	12/04/2020	N	LF	ND (1.0)	ND (1.0)
MW-49-365	DA	12/04/2020	N	LF	ND (1.0)	ND (1.0)
MW-50-095	MA	06/24/2020	N	LF	13	14
MW-50-095	MA	12/07/2020	N	LF	13	14 J
MW-50-095	MA	05/26/2021	N	LF	13	13
MW-50-200	DA	06/24/2020	N	LF	3,600	3,500
MW-50-200	DA	12/07/2020	N	LF	2,300	2,100 J
MW-50-200	DA	12/07/2020	FD		2,300	2,100 J
MW-50-200	DA	05/26/2021	N	LF	3,300	3,400
MW-51	MA	04/27/2020	N	LF	3,200	3,200
MW-51	MA	04/27/2020	FD		3,300	3,200
MW-51	MA	12/03/2020	N	LF	3,300	3,500
MW-51	MA	12/03/2020	FD		3,300	3,700
MW-51	MA	05/20/2021	N	LF	2,600	2,600
MW-52D	DA	06/16/2020	N	LF	ND (1.0)	ND (1.0)
MW-52D	DA	12/08/2020	N	LF	ND (1.0)	ND (1.0)

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-52D	DA	04/27/2021	N	LF	ND (1.0)	ND (1.0)
MW-52M	DA	06/16/2020	N	LF	ND (1.0)	ND (1.0)
MW-52M	DA	12/08/2020	N	LF	ND (1.0)	ND (1.0)
MW-52M	DA	04/27/2021	N	LF	ND (1.0)	ND (1.0)
MW-52S	MA	06/16/2020	N	LF	ND (0.2)	ND (1.0)
MW-52S	MA	12/08/2020	N	LF	ND (1.0)	ND (1.0)
MW-52S	MA	04/27/2021	N	LF	ND (0.2)	ND (1.0)
MW-53D	DA	06/16/2020	N	LF	ND (1.0)	ND (1.0)
MW-53D	DA	12/08/2020	N	LF	ND (1.0)	ND (1.0)
MW-53D	DA	04/27/2021	N	LF	ND (1.0)	ND (1.0)
MW-53M	DA	06/16/2020	N	LF	ND (1.0)	ND (1.0)
MW-53M	DA	12/08/2020	N	LF	ND (1.0)	ND (1.0)
MW-53M	DA	04/27/2021	N	LF	ND (1.0)	ND (1.0)
MW-54-085	DA	06/19/2020	N	LF	ND (0.1)	ND (1.0)
MW-54-085	DA	12/09/2020	N	LF	ND (0.05)	ND (0.2)
MW-54-085	DA	06/08/2021	N	LF	ND (0.25)	ND (3.0)
MW-54-140	DA	06/19/2020	N	LF	ND (0.5)	ND (0.2)
MW-54-140	DA	12/09/2020	N	LF	ND (0.25)	ND (0.2)
MW-54-140	DA	06/08/2021	N	LF	ND (0.25)	ND (3.0)
MW-54-195	DA	06/19/2020	N	LF	ND (0.5)	ND (0.2)
MW-54-195	DA		N	LF LF	ND (0.25)	ND (0.2)
MW-54-195	DA	12/09/2020	N	LF	` '	
		06/08/2021	+	LF LF	ND (0.25)	ND (3.0)
MW-55-045	MA MA	06/19/2020	N N	LF LF	ND (0.1)	ND (0.2)
MW-55-045		12/09/2020	+		ND (0.05)	ND (2.5)
MW-55-045	MA	06/09/2021	N	LF	ND (0.05)	ND (0.3)
MW-55-120	DA	06/19/2020	N	LF	8	9
MW-55-120	DA	06/19/2020	FD		8	_
MW-55-120	DA	12/09/2020	N	LF	8	ND (2.5)
MW-55-120	DA	06/09/2021	N	LF	7	ND (3.0)
MW-56D	DA	06/19/2020	N	<u>LF</u>	ND (0.5)	ND (0.2)
MW-56D	DA	12/09/2020	N	LF 	ND (0.25)	ND (2.5)
MW-56D	DA	06/09/2021	N	LF	ND (0.25)	ND (3.0)
MW-56M	DA	06/19/2020	N	LF 	ND (0.5)	ND (0.2)
MW-56M	DA	12/09/2020	N	LF	ND (0.25)	ND (2.5)
MW-56M	DA	12/09/2020	FD		ND (0.25)	ND (2.5)
MW-56M	DA	06/09/2021	N	LF	ND (0.25)	ND (3.0)
MW-56M	DA	06/09/2021	FD		ND (0.25)	ND (3.0)
MW-56S	SA	06/19/2020	N	LF	ND (0.1)	ND (0.2)
MW-56S	SA	12/09/2020	N	LF ·-	ND (0.05)	ND (2.5)
MW-56S	SA	06/09/2021	N	LF 	ND (0.05)	ND (3.0)
MW-57-070	BR	06/22/2020	N	LF 	610	530
MW-57-070	BR	12/04/2020	N	LF	630 J	660
MW-57-070	BR	04/30/2021	N	LF	490	540
MW-57-185	BR	06/22/2020	N	LF	1	2
MW-57-185	BR	06/22/2020	FD		1	2
MW-57-185	BR	12/04/2020	N	LF	4.4 J	5
MW-57-185	BR	04/30/2021	N	LF	4	4
MW-58BR	BR	02/17/2020	N	LF	120	120

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-58BR	BR	05/01/2020	N	LF	43	41
MW-58BR	BR	09/29/2020	N	LF	4	5
MW-58BR	BR	11/30/2020	N	LF	5	6
MW-58BR	BR	02/15/2021	N	LF	4	5
MW-58BR	BR	05/17/2021	N	LF	3	3
MW-58BR	BR	05/17/2021	FD		2	2
MW-59-100	SA	06/22/2020	N	LF	2,100	2,200
MW-59-100	SA	12/08/2020	N	LF	2,700	2,900
MW-59-100	SA	12/08/2020	FD		2,700	2,800
MW-59-100	SA	02/17/2021	N	LF	2,500	2,800
MW-59-100	SA	06/07/2021	N	LF	1,800	1,900
MW-60-125	BR	06/24/2020	N	LF	660	630
MW-60-125	BR	10/01/2020	N	LF	580	570
MW-60-125	BR	05/27/2021	N	LF	390	390
MW-60BR-245	BR	02/20/2020	N	3V	52	44
MW-60BR-245	BR	09/30/2020	N	LF	21	22
MW-60BR-245	BR	12/17/2020	N	LF	16	15
MW-60BR-245	BR	02/18/2021	N	LF	22	23 J
MW-60BR-245	BR	05/27/2021	N	LF	9	9
MW-60BR-245 D	BR	02/21/2020	N	LF	72	62
MW-60BR-245_S	BR	02/21/2020	N	LF	96	85
MW-61-110	BR	12/04/2020	N	LF	430 J	440
MW-61-110	BR	05/27/2021	N	LF	160	150
MW-62-065	BR	02/19/2020	N	LF	480	460
MW-62-065	BR	04/28/2020	N	LF	580	550
MW-62-065	BR	09/30/2020	N	LF	590	610
MW-62-065	BR	12/04/2020	N	LF	620	570
MW-62-065	BR	02/18/2021	N	LF	530	580 J
MW-62-065	BR	05/27/2021	N	LF	670	640
MW-62-110	BR	02/18/2020	N	LF	ND (0.2)	ND (1.0)
MW-62-110	BR	04/29/2020	N	Тар	ND (1.0)	ND (1.0)
MW-62-110	BR	09/30/2020	N	LF	ND (1.0)	ND (1.0)
MW-62-110	BR	12/02/2020	N		ND (0.2)	ND (1.0)
MW-62-110	BR	02/16/2021	N	3V	ND (0.2)	ND (1.0)
MW-62-110	BR	06/08/2021	N	3V	ND (1.0)	ND (1.0)
MW-62-190	BR	04/29/2020	N	Тар	ND (1.0)	ND (1.0)
MW-62-190	BR	04/29/2020	FD		ND (1.0)	ND (1.0)
MW-62-190	BR	12/02/2020	N		ND (1.0)	ND (1.0)
MW-62-190	BR	06/08/2021	N	3V	ND (1.0)	ND (1.0)
MW-63-065	BR	02/19/2020	N	LF	1	3
MW-63-065	BR	02/19/2020	FD		1	3
MW-63-065	BR	06/24/2020	N	LF	1	3
MW-63-065	BR	09/30/2020	N	LF	1	2
MW-63-065	BR	12/07/2020	N	LF	2	2.7 J
MW-63-065	BR	02/18/2021	N	LF	1	3.1 J
MW-63-065	BR	05/27/2021	N	LF	1	3.13
MW-64BR	BR	02/21/2020	N	LF	ND (1.0)	ND (1.0)
MW-64BR	BR	05/01/2020	N	LF	ND (0.2)	2
		,,			1 10/	

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-64BR	BR	09/30/2020	N	LF	ND (1.0)	ND (1.0)
MW-64BR	BR	11/30/2020	N	LF	ND (1.0)	ND (1.0)
MW-64BR	BR	02/18/2021	N	LF	ND (1.0)	ND (1.0 J)
MW-64BR	BR	05/27/2021	N	LF	ND (1.0)	ND (1.0)
MW-65-160	SA	02/20/2020	N	LF	250	250
MW-65-160	SA	04/29/2020	N	LF	190	210
MW-65-160	SA	09/29/2020	N	LF	240	240
MW-65-160	SA	12/03/2020	N	LF	210	240
MW-65-160	SA	02/16/2021	N	LF	240	250 J
MW-65-160	SA	05/27/2021	N	LF	270	260
MW-65-225	DA	02/20/2020	N	LF	460	470
MW-65-225	DA	04/29/2020	N	LF	280	260
MW-65-225	DA	09/29/2020	N	LF	260	250
MW-65-225	DA	12/03/2020	N	LF	360	350
MW-65-225	DA	02/16/2021	N	LF	330	340 J
MW-65-225	DA	05/27/2021	N	LF	460	430
MW-66-165	SA	04/29/2020	N	LF	530	520
MW-66-165	SA	12/03/2020	N	LF	400	390
MW-66-165	SA	12/03/2020	FD		410	420
MW-66-165	SA	02/16/2021	N	LF	400	400 J
MW-66-165	SA	05/05/2021	N	LF	520	500 J
MW-66-230	DA	04/29/2020	N	LF	6700	6300
MW-66-230	DA	04/29/2020	FD		6,600	6,600
MW-66-230	DA	12/03/2020	N	LF	6,500	6,400
MW-66-230	DA	12/03/2020	FD		6,300	6,500
MW-66-230	DA	02/16/2021	N	LF	6,000	6,500 J
MW-66-230	DA	05/05/2021	N	LF	6,000	6,200 J
MW-66BR-270	BR	06/24/2020	N	3V	ND (1.0)	ND (1.0)
MW-66BR-270	BR	12/16/2020	N	3V	ND (1.0)	1
MW-66BR-270	BR	12/16/2020	FD		ND (1.0)	ND (1.0)
MW-66BR-270	BR	02/26/2021	N	3V	ND (1.0)	ND (1.0)
MW-66BR-270	BR	05/05/2021	N		ND (1.0)	ND (1.0 J)
MW-67-185	SA	04/30/2020	N	LF	2,000	2,000
MW-67-185	SA	10/06/2020	N	LF	2,000	2,000
MW-67-185	SA	12/02/2020	N	LF	2,900	3,000
MW-67-185	SA	02/16/2021	N	LF	640	690 J
MW-67-185	SA	05/04/2021	N	LF	2,000	2,000
MW-67-185	SA	05/04/2021	FD		2,000	1,900
MW-67-225	1 1		+	LF	·	
MW-67-225	MA MA	04/30/2020	N N	LF LF	3,000 3,800	3,200 4,000
MW-67-225	MA	12/02/2020 02/16/2021	N	LF LF	4,100	3,500 J
MW-67-225	MA	05/04/2021	N	LF LF	3,400	3,400
MW-67-260	DA		N N	LF LF	1,100	1,100
	1 1	04/30/2020	1 1		,	
MW-67-260	DA	12/02/2020	N	LF	250	250
MW-67-260	DA	02/19/2021	N	 1E	350	380
MW-67-260	DA	05/04/2021	N	LF	920	940
MW-68-180	SA	02/20/2020	N	LF	25,000	27,000
MW-68-180	SA	04/30/2020	N	LF	41,000	43,000

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)
MW-68-180	SA	09/29/2020	N	LF	54,000	51,000
MW-68-180	SA	12/16/2020	N	LF	61,000	66,000
MW-68-180	SA	12/16/2020	FD		61,000	63,000
MW-68-180	SA	02/19/2021	N	LF	63,000	66,000
MW-68-180	SA	05/04/2021	N	LF	37,000	37,000
MW-68-240	DA	04/30/2020	N	LF	2,000	2,000
MW-68-240	DA	12/16/2020	N	LF	2,000	2,000
MW-68-240	DA	12/16/2020	FD		2,000	1,900
MW-68-240	DA	02/19/2021	N	LF	1,900	2,000
MW-68-240	DA	02/19/2021	FD		1,900	2,000
MW-68-240	DA	05/04/2021	N	LF	2,000	2,000
MW-68BR-280	BR	04/30/2020	N	3V	ND (1.0)	ND (1.0)
MW-68BR-280	BR	12/16/2020	N	LF	ND (1.0)	ND (1.0)
MW-68BR-280	BR	12/16/2020	FD		ND (1.0)	1
MW-68BR-280	BR	02/19/2021	N	LF	ND (1.0)	ND (1.0)
MW-68BR-280	BR	05/04/2021	N	3V	ND (1.0)	1
MW-69-195	BR	02/25/2020	N	LF	150	140
MW-69-195	BR	05/01/2020	N	LF	170	170
MW-69-195	BR	05/01/2020	FD		180	170
MW-69-195	BR	09/29/2020	N	LF	350	380
MW-69-195	BR	12/03/2020	N	LF	6	9
MW-69-195	BR	02/15/2021	N	LF	29	59
MW-69-195	BR	02/15/2021	FD		27	59
MW-69-195	BR	05/27/2021	N	LF	610	650
MW-69-195	BR	05/27/2021	FD		610	630
MW-70-105	BR	11/30/2020	N	LF	150	150
MW-70-105	BR	02/15/2021	N	LF	140	150
MW-70-105	BR	05/17/2021	N	LF	150	140
MW-70BR-225	BR	11/30/2020	N	LF	1,300	1,300
MW-70BR-225	BR	05/17/2021	N	LF	1,200	1,200
MW-71-035	SA	05/01/2020	N	LF	ND (1.0)	ND (1.0)
MW-71-035	SA	12/15/2020	N	G	ND (1.0)	ND (1.0)
MW-71-035	SA	05/26/2021	N	LF	ND (1.0)	ND (1.0)
MW-72-080	BR	02/20/2020	N	LF	96	85
MW-72-080	BR	04/28/2020	N	LF	100	95
MW-72-080	BR	09/29/2020	N	LF	79	75
MW-72-080	BR	12/03/2020	N	LF	86	78
MW-72-080	BR	02/18/2021	N	LF	70	72 J
MW-72-080	BR	05/27/2021	N	LF	66	62
MW-72BR-200	BR	02/20/2020	N	LF	1	3
MW-72BR-200	BR	04/28/2020	N	LF	ND (1.0)	2
MW-72BR-200	BR	09/29/2020	N	LF	ND (1.0)	2
MW-72BR-200	BR	12/03/2020	N	LF	ND (1.0)	ND (1.0)
MW-72BR-200	BR	02/18/2021	N	LF	ND (1.0)	ND (1.0 J)
MW-72BR-200	BR	05/27/2021	N	LF	ND (1.0)	ND (1.0)
MW-72BR-200	BR	05/27/2021	FD		ND (1.0)	ND (1.0)
MW-73-080	BR	02/20/2020	N	LF	21	19
MW-73-080	BR	04/28/2020	N	LF	26	24
/3 000	וופ	0-1/20/2020	IN			

Appendix B
Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (µg/L)	Dissolved Chromium (μg/L)
MW-73-080	BR	09/30/2020	N	LF	18	21
MW-73-080	BR	12/03/2020	N	LF	11	11
MW-73-080	BR	02/18/2021	N	LF	11	12 J
MW-73-080	BR	05/27/2021	N	LF	24	23
MW-73-080	BR	05/27/2021	FD		25	23
MW-74-240	BR	04/30/2020	N	3V	ND (0.2)	2
MW-74-240	BR	12/03/2020	N	3V	ND (0.2)	ND (1.0)
MW-74-240	BR	06/07/2021	N	LF	ND (0.2)	ND (1.0)
MW-74-240	BR	06/07/2021	FD		ND (0.2)	ND (1.0)
OW-03D	DA	12/11/2020	N	LF	12	13
OW-03M	MA	12/11/2020	N	LF	17	17
OW-03S	SA	12/11/2020	N	LF	19	20
PGE-07BR	BR	12/03/2020	N	3V	ND (1.0)	ND (1.0)
PGE-08	BR	12/09/2020	N	3V	ND (1.0)	ND (1.0)
PM-03	MA	12/14/2020	N	G	10	10
PM-04	MA	12/14/2020	N	G	16	16
R-28	0	01/29/2020	N	R	ND (0.2)	ND (1.0)
R-28	0	02/19/2020	N	R	ND (0.2)	ND (1.0)
R-28	0	04/29/2020	N		ND (0.2)	ND (1.0)
R-28	0	08/19/2020	N	LF	ND (0.2)	ND (1.0)
R-28	0	11/18/2020	N	LF	ND (0.2)	ND (1.0)
R-28	0	11/18/2020	FD		ND (0.2)	ND (1.0)
R-28	0	01/27/2021	N	LF	ND (0.2)	ND (1.0)
R-28	0	02/17/2021	N	R	ND (0.2)	ND (1.0)
R-28	0	05/19/2021	N	R	ND (0.2)	ND (1.0)
TW-01	SA	11/04/2020	N	PD	1,400	1,400
TW-01	SA	06/10/2021	N	EP	1,400	1,500
TW-01	SA	06/10/2021	FD		1,400	1,500
TW-02D	DA	02/19/2020	N	Тар	740	670
TW-03D	DA	01/08/2020	N	G	470	460
TW-03D	DA	02/05/2020	N	G	460	480
TW-03D	DA	03/04/2020	N	G	450	390
TW-03D	DA	04/07/2020	N	Tap	440	420
TW-03D	DA	05/05/2020	N	Тар	450	410
TW-03D	DA	07/23/2020	N	Тар	390	410
TW-03D	DA	08/04/2020	N	Тар	440	430
TW-03D	DA	09/01/2020	N	Тар	430	420
TW-03D	DA	10/07/2020	N	Тар	420	400
TW-03D	DA	11/03/2020	N	LF	440	420
TW-03D	DA	12/03/2020	N	G	440	430
TW-03D	DA	01/06/2021	N	G	440	410
TW-03D	DA	02/03/2021	N		420	430
TW-03D	DA	03/03/2021	N	EP	400	420
TW-03D	DA	04/07/2021	N	EP	410	400
TW-03D	DA	05/05/2021	N	EP	390	360
TW-03D	DA	06/02/2021	N	EP	390	370
TW-04	DA	06/25/2020	N	LF	4	4
TW-04	DA	11/30/2020	N	LF	6	7

Appendix B

Historical Chromium-6 and Dissolved Chromium Concentrations, January 2020 through June 2021

Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (µg/L)	Dissolved Chromium (μg/L)
TW-04	DA	06/07/2021	N	LF	8	7
TW-05	DA	06/25/2020	N	LF	12	12
TW-05	DA	12/07/2020	N	LF	18	16 J
TW-05	DA	05/28/2021	N	LF	12	12

Notes:

(a) = data were analyzed by an Arizona certified laboratory.

1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6.

-- = not applicable.

 μ g/L = micrograms per liter.

3V = three volume.

BR = bedrock.

DA = deep interval of Alluvial Aquifer.

DTSC = Department of Toxic Substance Control.

EP = extraction port.

FD = field duplicate.

G = Grab sample.

H = HydraSleeve.

ID = identification.

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

LF = Low Flow (minimal drawdown).

MA = mid-depth interval of Alluvial Aquifer.

ND = not detected at listed reporting limit.

PD = purges dry, low recharge

SA = shallow interval of Alluvial Aquifer.

Tap = sampled from tap of extraction well.

APPENDIX C

Well Inspection and Maintenance Log, Second Quarter 2021

Appendix C Well Inspection and Maintenance Log, Second Quarter 2021 Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

Well ID	Date	Well Labeled On Casing Or Pad? (Yes/No)	Traffic Poles Intact? (Yes/No)	Concrete Pad Intact? (Yes/No)	Erosion Around Wellhead? (Yes/No)	Steel Casing or Well Box Intact? (Yes/No)	Any Tabs Stripped or Missing? (Yes/No)	Water In Well Box? (Yes/No)	J Plug Replaced Properly? (Yes/No)	Well Locked At Arrival? (Yes/No)	All Bolts Present? (Yes/No)	Photo Taken? (Yes/No)	Comments
MW-09	5/19/2021	Yes		Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-10	5/5/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-11 MW-12	5/19/2021 5/26/2021	Yes Yes	Yes Yes	Yes Yes	No No	Yes Yes	No No	No No	Yes Yes	Yes Yes	Yes Yes	No No	None None
MW-14	5/28/2021	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-19	5/28/2021	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-20-070	5/28/2021	Yes	**	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-20-100	5/28/2021	Yes	**	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-20-130	5/28/2021	Yes		Yes	No No	Yes	No	No No	Yes	Yes	Yes	No	None
MW-21 MW-22	6/7/2021 4/27/2021	Yes Yes		Yes Yes	No No	Yes Yes	No No	No No	Yes Yes	Yes Yes	Yes Yes	No No	None None
MW-23-060	4/30/2021	Yes	-	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-23-060	6/30/2021	Yes		Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-23-080	4/30/2021	Yes		Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-23-080	6/30/2021	Yes	**	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-24A	5/5/2021	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-24B MW-25	5/5/2021 5/25/2021	Yes Yes	Yes Yes	Yes Yes	No No	Yes Yes	No 	No No	Yes Yes	Yes Yes	Yes 	No No	None None
MW-26	5/20/2021	Yes	res	Yes	No	Yes	No.	No	Yes	Yes	Yes	No	None
MW-27-085	4/27/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-27-085	4/27/2021	Yes	-	Yes	No	Yes		No	Yes	Yes		No	None
MW-28-025	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-28-025	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-28-090	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-28-090 MW-29	4/29/2021 4/29/2021	Yes Yes		Yes Yes	No No	Yes Yes		No No	Yes Yes	Yes Yes		No No	None None
MW-31-060	4/30/2021	Yes	Yes	Yes	No	Yes	No	No	Yes	No No	Yes	No	None
MW-31-060	4/30/2021	Yes	Yes	Yes	No	Yes	No	No	Yes	No	Yes	No	None
MW-32-035	4/27/2021	Yes	-	Yes	No	Yes		No	Yes	Yes		No	None
MW-32-035	4/27/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-33-040	4/29/2021	Yes	**	Yes	No	Yes		No	Yes	Yes		No	None
MW-33-040	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-33-090 MW-33-090	4/29/2021 4/29/2021	Yes Yes	-	Yes Yes	No No	Yes Yes		No No	Yes Yes	Yes Yes		No No	None None
MW-33-150	4/29/2021	Yes		Yes	No No	Yes		No No	Yes	Yes		No	None
MW-33-210	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-34-080	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-34-080	6/30/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-34-100	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-34-100	6/30/2021	Yes	**	Yes	No	Yes		No	Yes	Yes		No	None
MW-35-060 MW-35-060	4/30/2021 4/30/2021	Yes		Yes Yes	No No	Yes Yes	Yes Yes	Yes Yes	Yes Yes	No No	No No	No No	None None
MW-35-135	4/30/2021	Yes Yes		Yes	No	Yes	Yes	Yes	Yes	No	No No	No	None
MW-35-135	4/30/2021	Yes		Yes	No	Yes	Yes	Yes	Yes	No	No	No	None
MW-36-090	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-36-090	6/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-36-100	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-36-100	6/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-37D MW-38D	6/7/2021 5/5/2021	Yes Yes	Yes	Yes Yes	No No	Yes Yes		No No	Yes Yes	Yes Yes		No No	None None
MW-38S	5/5/2021	Yes		Yes	No No	Yes		No No	Yes	Yes		No No	None
MW-39-100	4/28/2021	Yes		Yes	No	Yes	-	No	Yes	Yes		No	None
MW-40D	5/19/2021	Yes		Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-40S	5/19/2021	Yes	-	Yes	No	Yes	No	No	Yes	Yes	Yes	No	None
MW-41D	6/7/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-42-055	4/27/2021	Yes	-	Yes	No No	Yes		No No	Yes	Yes	-	No No	None
MW-42-055 MW-42-065	4/27/2021 4/27/2021	Yes Yes	-	Yes Yes	No No	Yes Yes		No No	Yes Yes	Yes Yes		No No	None None
MW-42-065	4/27/2021	Yes	-	Yes	No	Yes		No	Yes	Yes		No	None
MW-44-070	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-44-070	4/28/2021	Yes	_	Yes	No	Yes		No	Yes	Yes	-	No	None
MW-44-070	6/29/2021	Yes	**	Yes	No	Yes		No	Yes	Yes		No	None
MW-44-115	4/28/2021	Yes	-	Yes	No	Yes		No	Yes	Yes		No	None
MW-44-115	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-44-115	6/29/2021	Yes		Yes	No.	Yes		No No	Yes	Yes		No	None
MW-44-125 MW-44-125	4/28/2021 4/28/2021	Yes Yes	-	Yes Yes	No No	Yes Yes		No No	Yes Yes	Yes Yes		No No	None None
MW-44-125	6/29/2021	Yes	-	Yes	No	Yes		No	Yes	Yes	-	No	None
MW-46-175	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-46-175	6/30/2021	Yes	-	Yes	No	Yes	-	No	Yes	Yes	-	No	None
MW-46-205	4/29/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-47-055	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-47-055	4/28/2021	Yes		Yes	No	Yes		No	Yes	Yes		No	None
MW-47-115	4/28/2021	Yes		Yes	No.	Yes		No No	Yes	Yes		No	None
MW-47-115 MW-48	4/28/2021	Yes	 Vor	Yes Yes	No No	Yes Yes	 No	No No	Yes	Yes	 Vos	No No	None None
MW-48 MW-50-095	5/26/2021 5/26/2021	Yes Yes	Yes	Yes Yes	No No	Yes Yes	No 	No No	Yes Yes	Yes Yes	Yes	No No	None None
MW-50-200	5/26/2021	Yes	-	Yes	No No	Yes		No	Yes	Yes		No	None
MW-51	5/20/2021	Yes		Yes	No	Yes	No	No	Yes	Yes	Yes	No	None

Page 1 of 2 8/12/2021

Appendix C Well Inspection and Maintenance Log, Second Quarter 2021 Second Quarter 2021 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, FG&E Topock Compressor Station, Meedles, California

Well Labeled On Casing Traffic Poles Intact? Concrete Pad Intact? Erosion Around Wellhead? Steel Casing or Well Box Intact? Any Tabs Stripped or Missing? Water In Well Box? J Plug Replaced Properly? Well Locked At Arrival? All Bolts Present? Photo Taken? Well ID Date Comments Or Pad? (Yes/No) MW-52D 4/27/2021 No None MW-52M 4/27/2021 Yes Yes Nο Yes Nο Yes Yes Nο None MW-52S 4/27/2021 Yes Yes No Yes Nο Yes Yes No None MW-53D 4/27/2021 Yes Yes No Yes No Yes Yes No None MW-53M 4/27/2021 Yes Yes No Yes No Yes No None Yes MW-54-085 6/8/2021 Yes Yes No Yes No No Yes Yes No None Yes MW-54-140 6/8/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-54-195 6/8/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-55-045 6/9/2021 Yes Yes Nο Yes Nο Nο Yes Yes Yes Nο None MW-55-120 6/9/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-56D 6/9/2021 Yes No Yes Yes No Yes No Yes None Yes MW-56M 6/9/2021 Yes Yes Yes Yes Yes Yes None MW-56S 6/9/2021 Yes Yes Yes No Yes No Yes Yes No None MW-57-070 4/30/2021 Yes Yes No Yes No No Yes Yes Yes No None Nο MW-57-070 6/30/2021 Yes Yes Nο Yes Nο Nο Yes Yes Yes No None MW-57-185 4/30/2021 No No No Yes No Yes Yes Yes Yes Yes None MW-57-185 6/30/2021 Yes No Yes No No No Yes Yes Yes Yes None MW-58BR 5/17/2021 Yes Yes Yes No No Yes Yes Yes None MW-59-100 6/7/2021 Yes Yes No Yes No Yes No None MW-60-125 5/27/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-60-125 6/30/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-60BR-245 5/27/2021 No Yes Yes No Yes No Yes Yes Yes No None MW-60BR-245 6/30/2021 Yes No Yes Yes No Yes No Yes Yes Yes None MW-61-110 5/27/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-61-110 6/30/2021 Yes Yes No Yes Nο Nο Yes Yes Yes No None MW-62-065 5/27/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-62-110 6/7/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-62-190 6/7/2021 No Yes Yes No Yes No Yes Yes Yes No None MW-63-065 5/27/2021 Yes Yes Yes No No Yes Yes Yes No None MW-64BR 5/27/2021 Yes Yes No Yes No No Yes Yes No None MW-65-160 5/27/2021 Yes Yes Nο Yes Nο Nο Yes Yes Yes Nο None MW-65-225 5/27/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-66-165 5/5/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-66-230 5/5/2021 Yes No No No No Yes Yes Yes Yes None Yes MW-66BR-270 4/28/2021 Yes No No Yes No MW-67-185 5/4/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-67-185 5/19/2021 Yes Yes Nο Yes Nο Nο Yes Yes Yes No None MW-67-225 5/4/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-67-260 5/4/2021 Yes No No No Yes Yes No Yes Yes Yes None MW-68-180 5/4/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-68-180 5/19/2021 No Yes Yes No Yes No Yes Yes Yes No None MW-68-180 6/28/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-68-240 5/4/2021 Yes Yes Nο Yes Nο Nο Yes Yes Yes No None MW-68BR-280 5/4/2021 Yes Yes Nο Yes Nο Nο Yes Yes Yes No None 5/27/2021 MW-69-195 No No Yes No Yes Yes No Yes Yes Yes None MW-70-105 5/17/2021 Yes Yes Yes No Yes Yes Yes None MW-70BR-225 5/17/2021 Yes Yes Yes No No Yes No None Yes Yes MW-71-035 5/26/2021 Yes Yes Nο Yes No Nο Yes Yes Yes No None MW-72-080 5/27/2021 Yes Yes No Yes No No Yes Yes Yes No None MW-72BR-200 5/27/2021 Yes Yes No Yes Yes No Yes Yes No No None MW-73-080 5/27/2021 No No No Yes Yes Yes No Yes Yes Yes None MW-74-240 6/7/2021 Yes Yes No Yes No No Yes Yes No None Yes TW-01 6/10/2021 No Yes Nο Yes No Yes No None TW-03D 4/7/2021 Yes Yes No Yes Yes Yes No None TW-03D 5/5/2021 Yes Yes Yes No Yes Yes Yes No None TW-03D 6/2/2021 Yes Yes No Yes Yes Yes No None TW-04 6/7/2021 Yes Yes No Yes Yes Yes No None

Yes

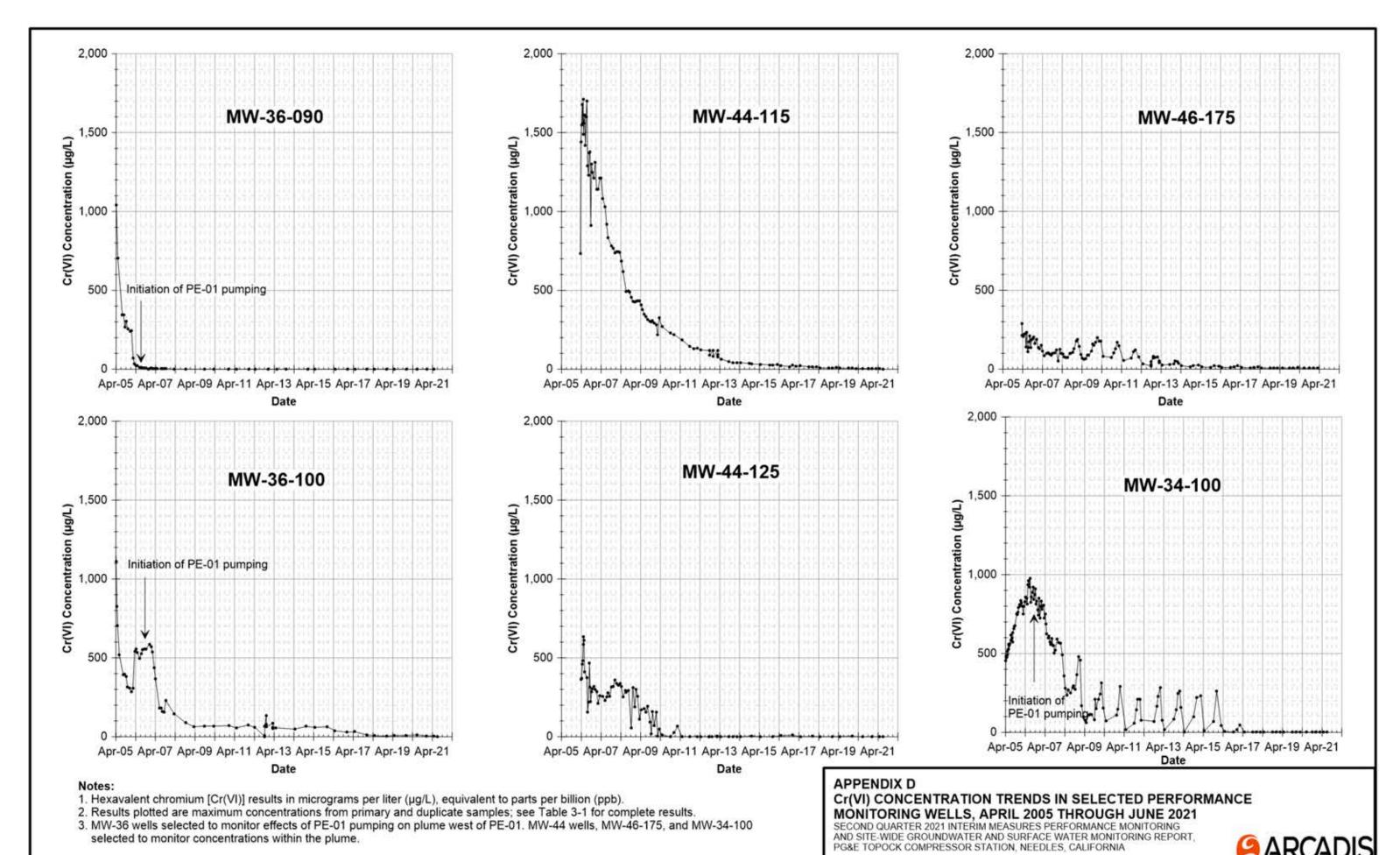
No

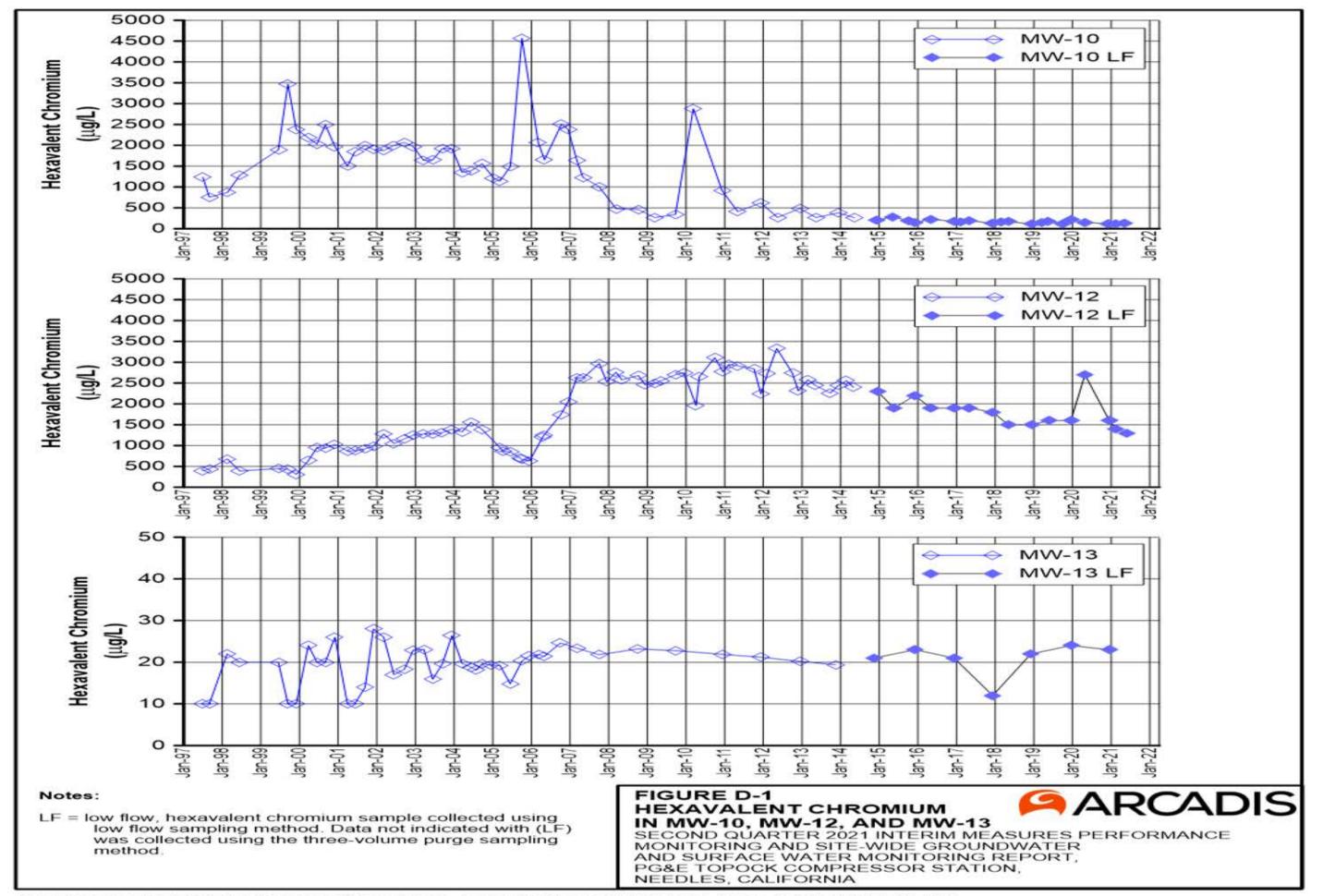
Note:

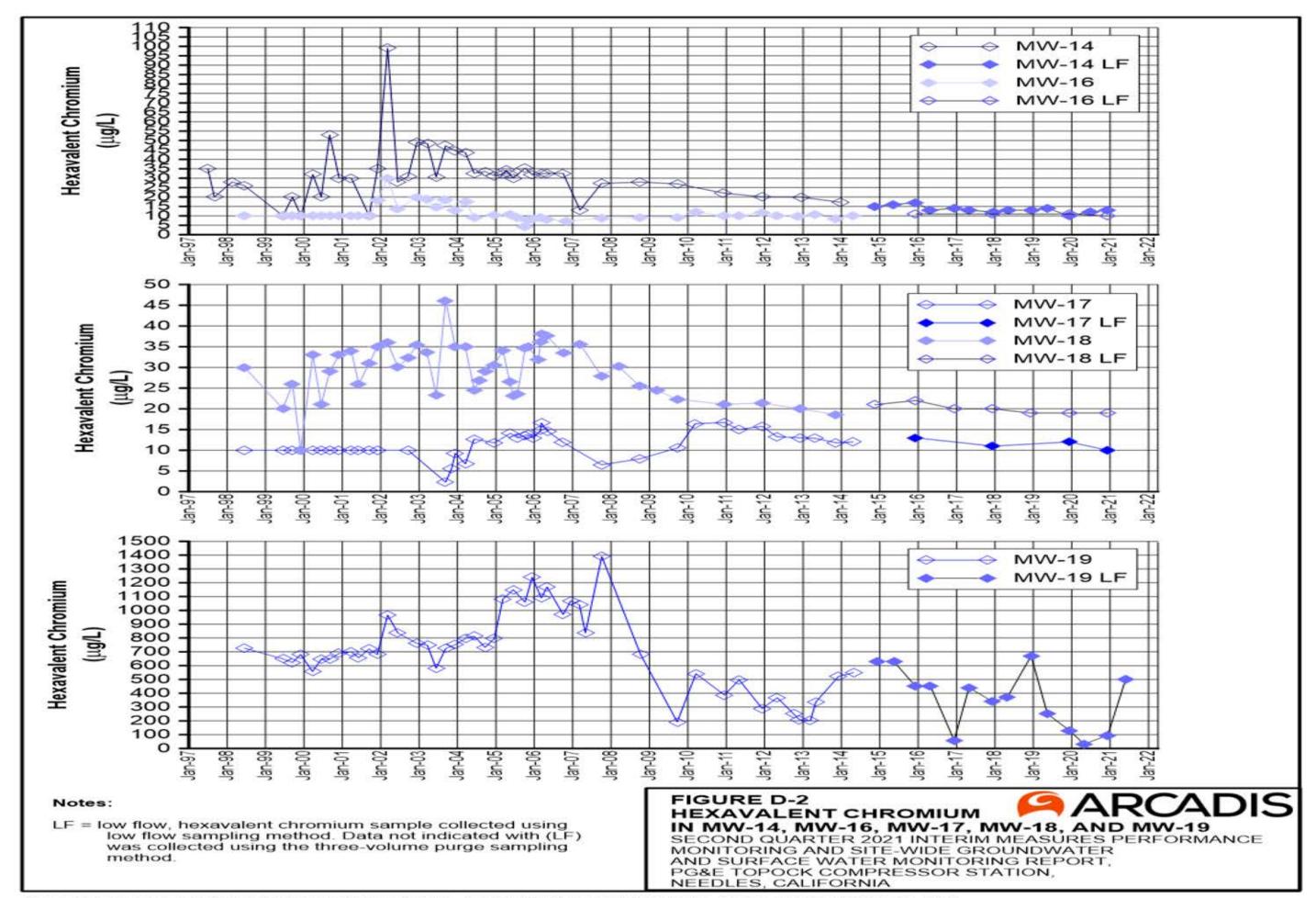
- = not applicable

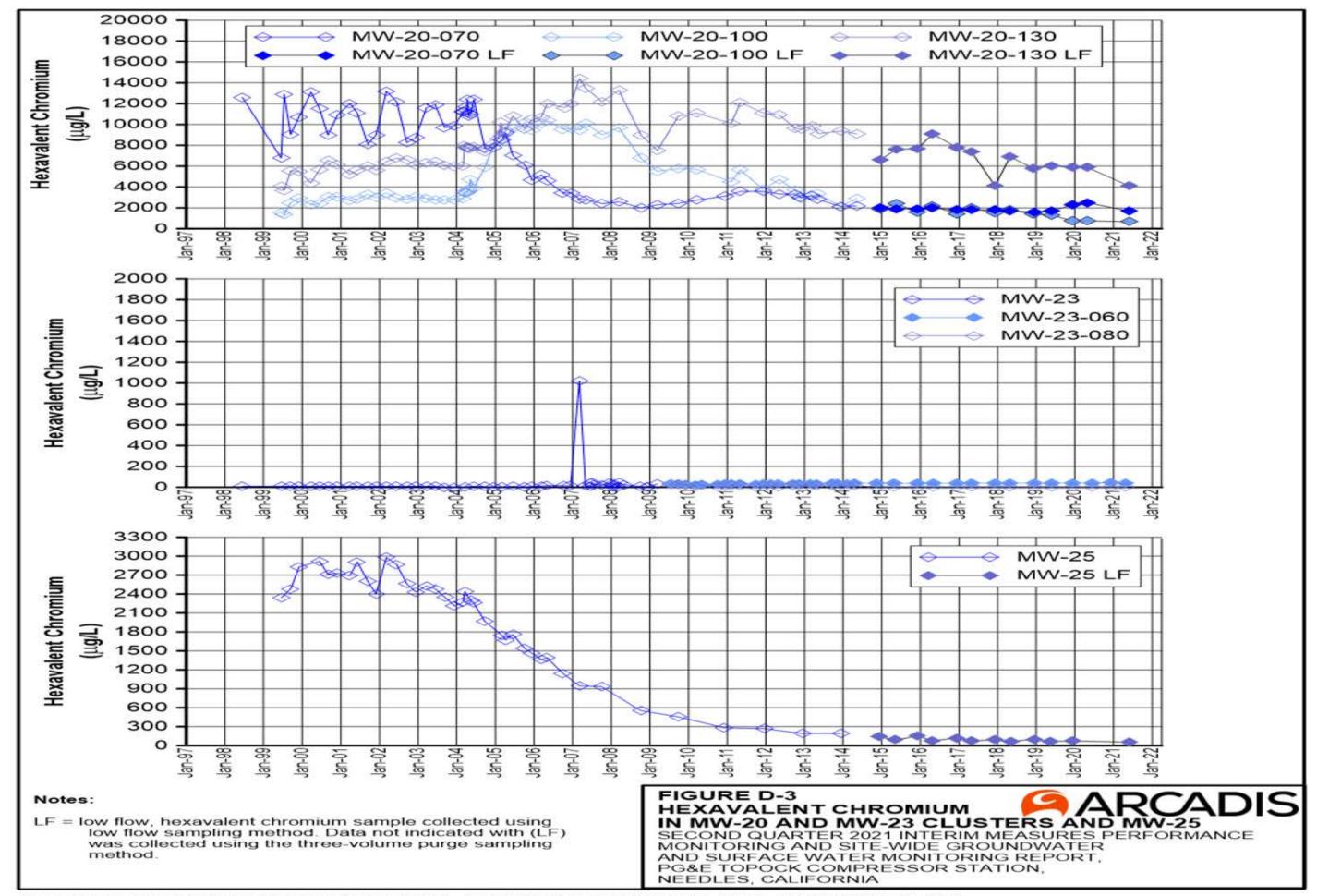
TW-05

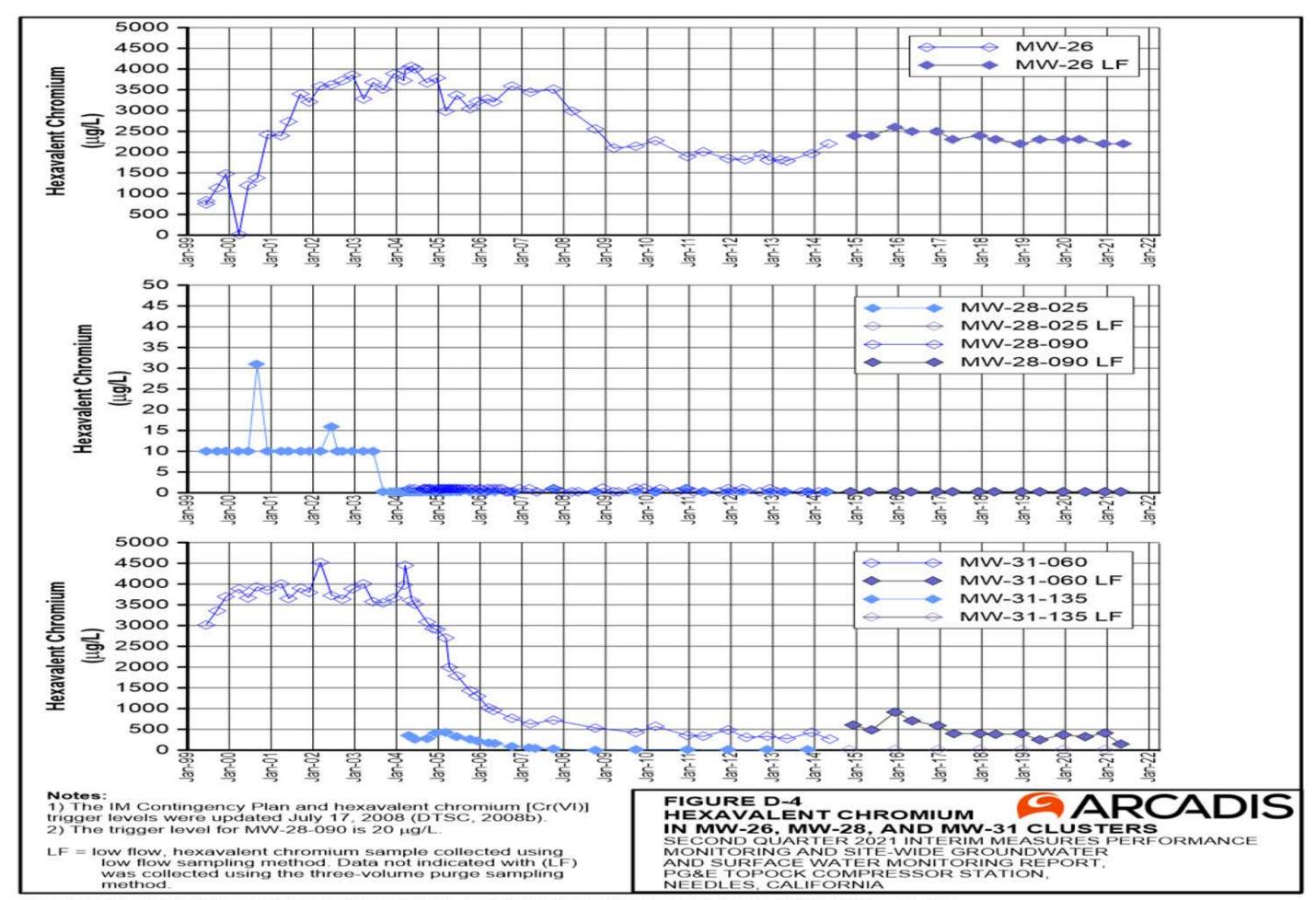
5/28/2021

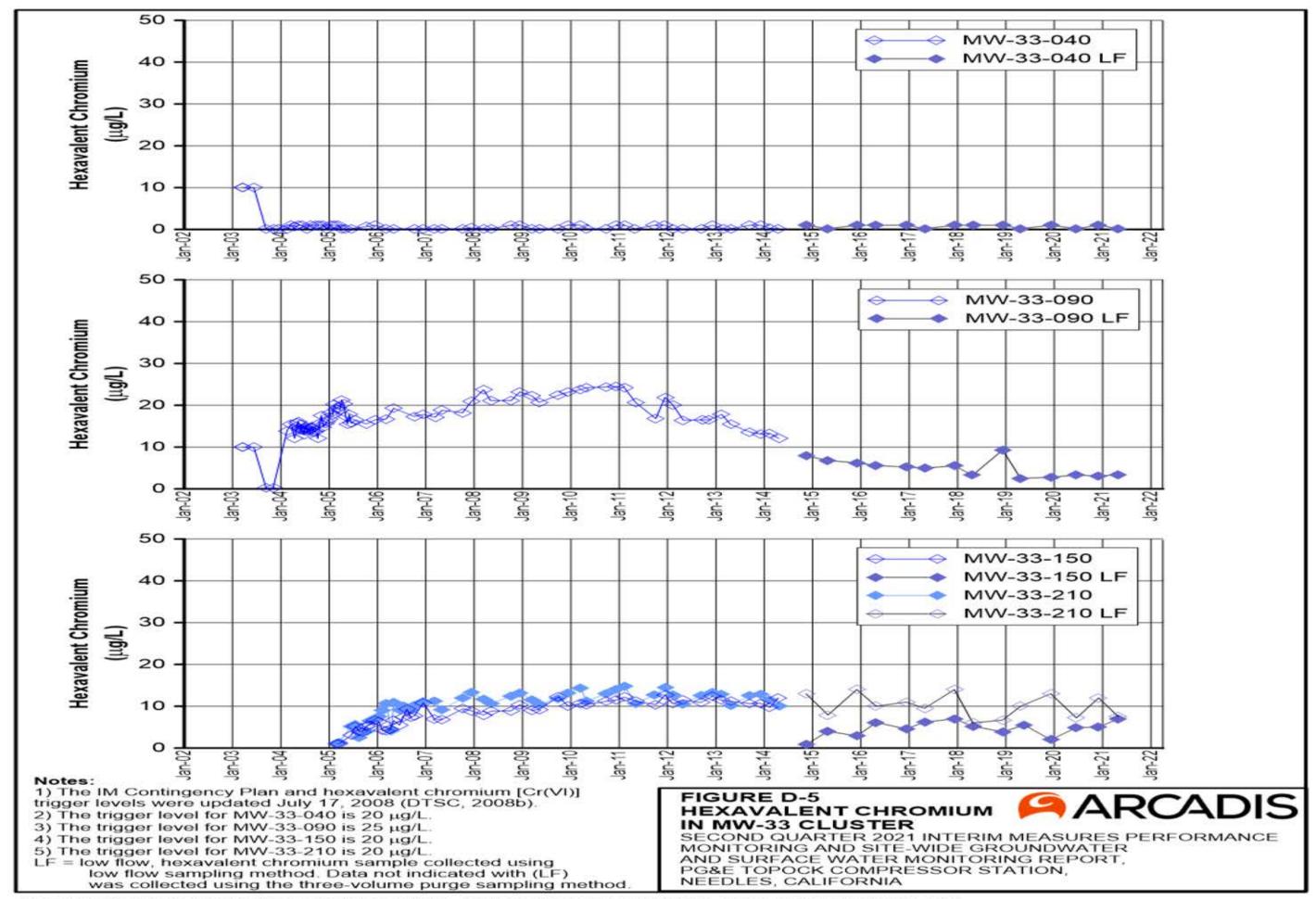

Yes

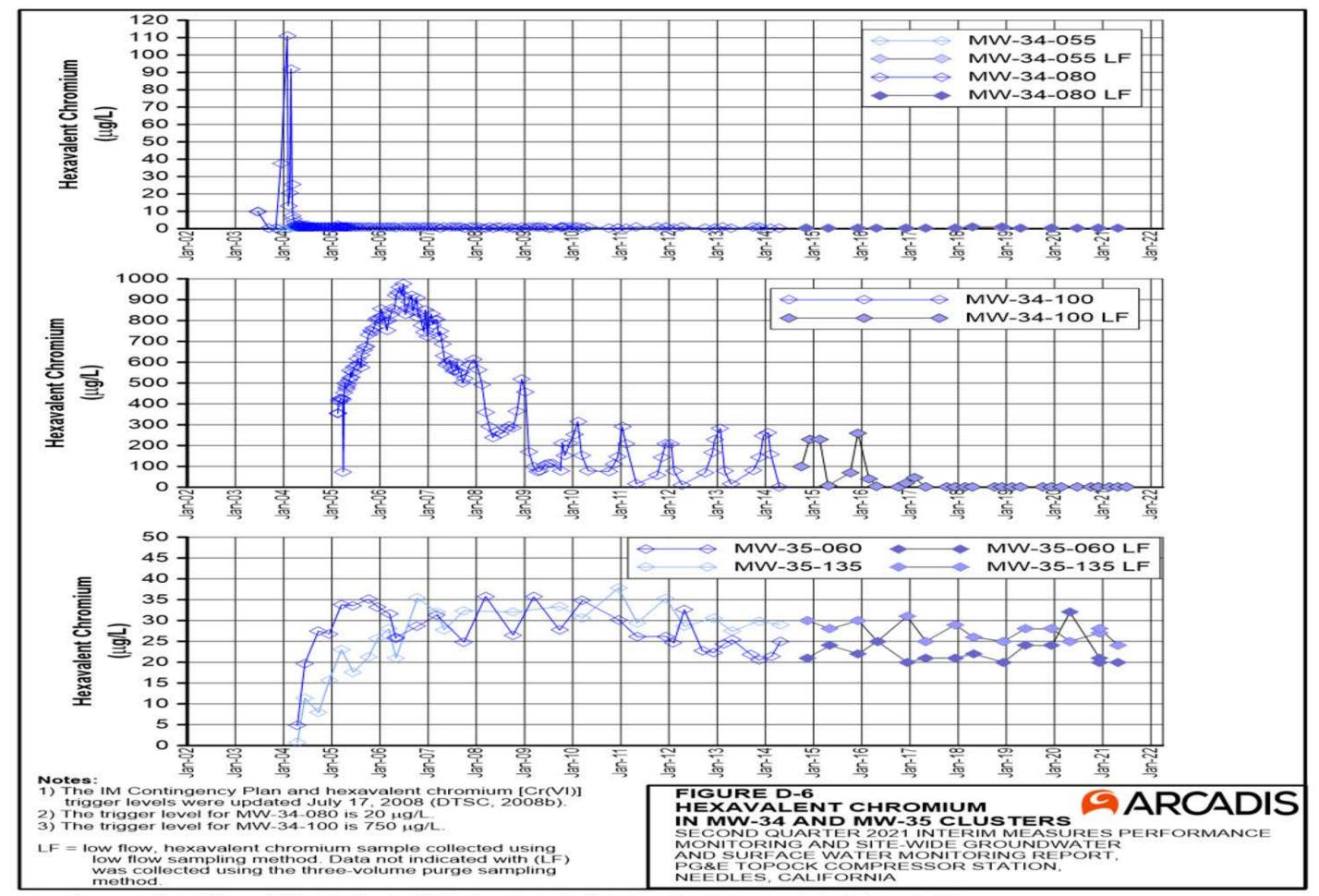

Page 2 of 2 8/12/2021

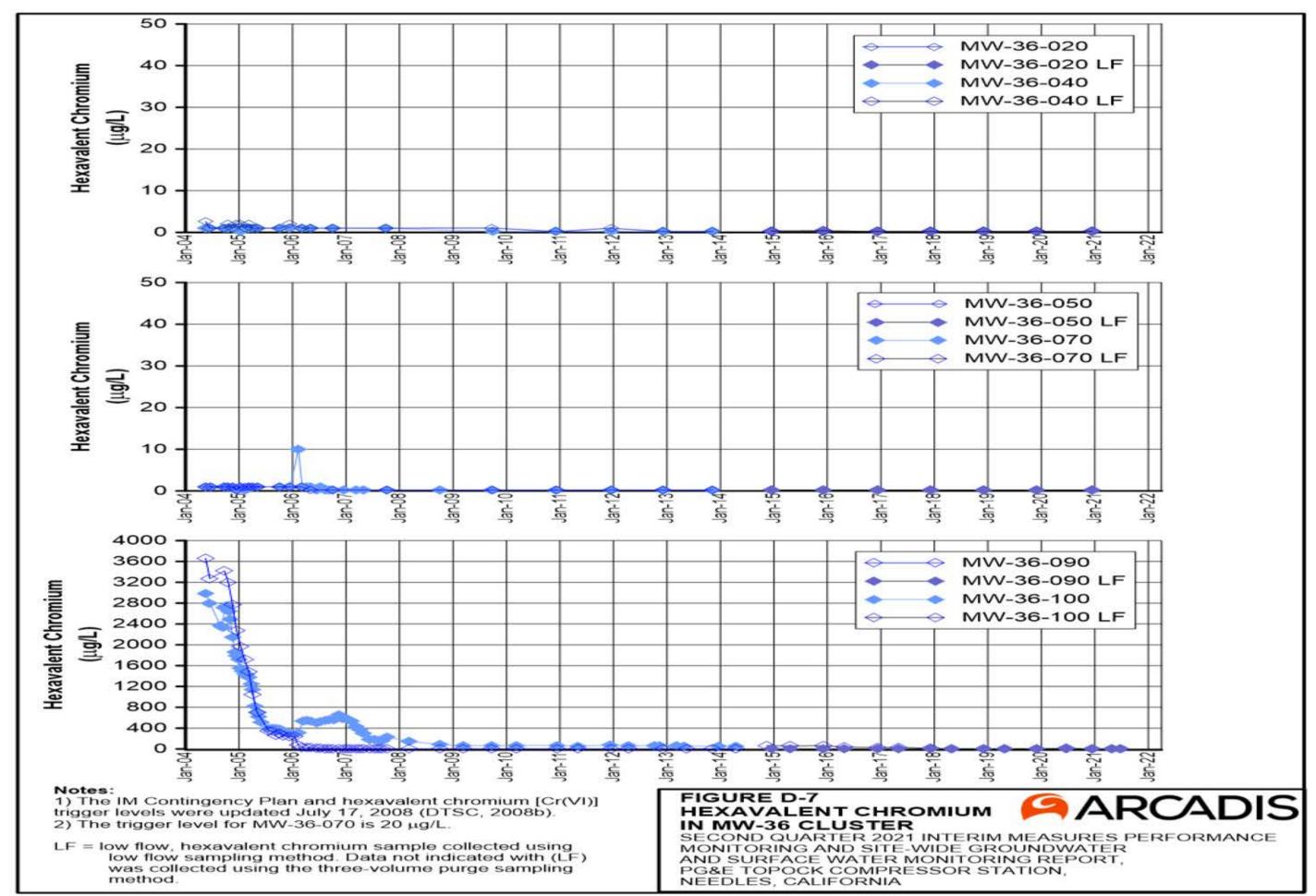

No

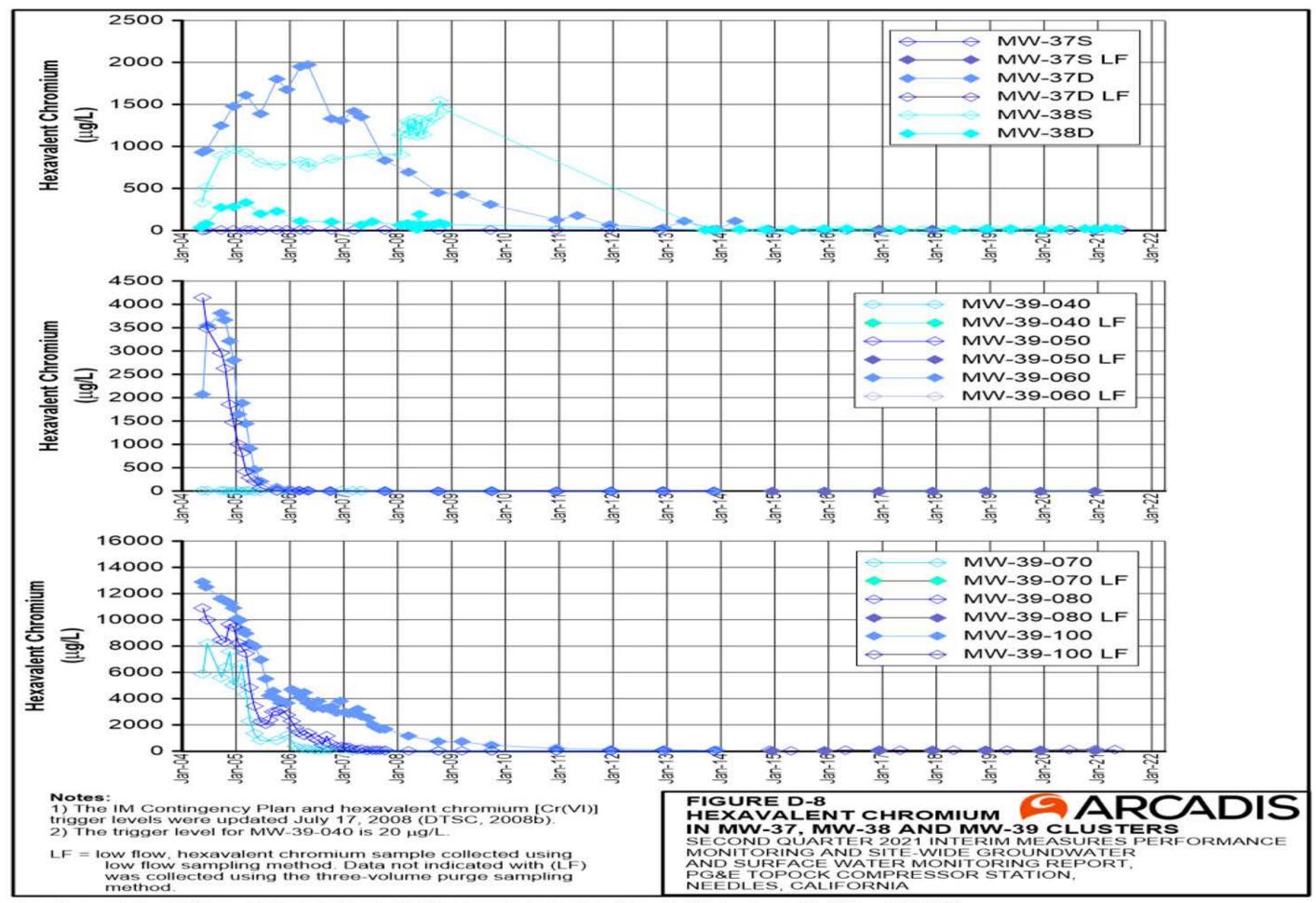

APPENDIX D

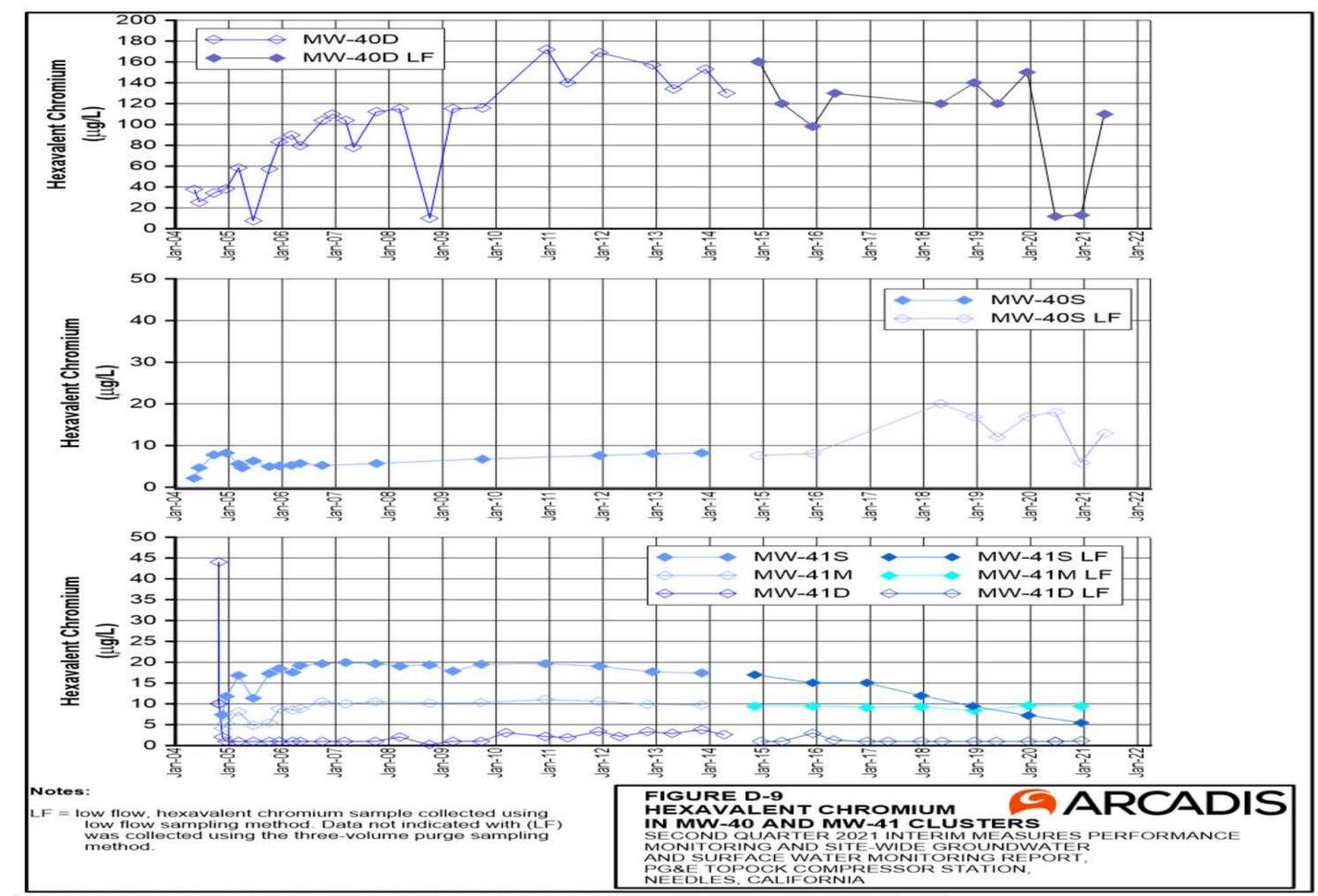

Concentration Time Series Charts, Second Quarter 2021

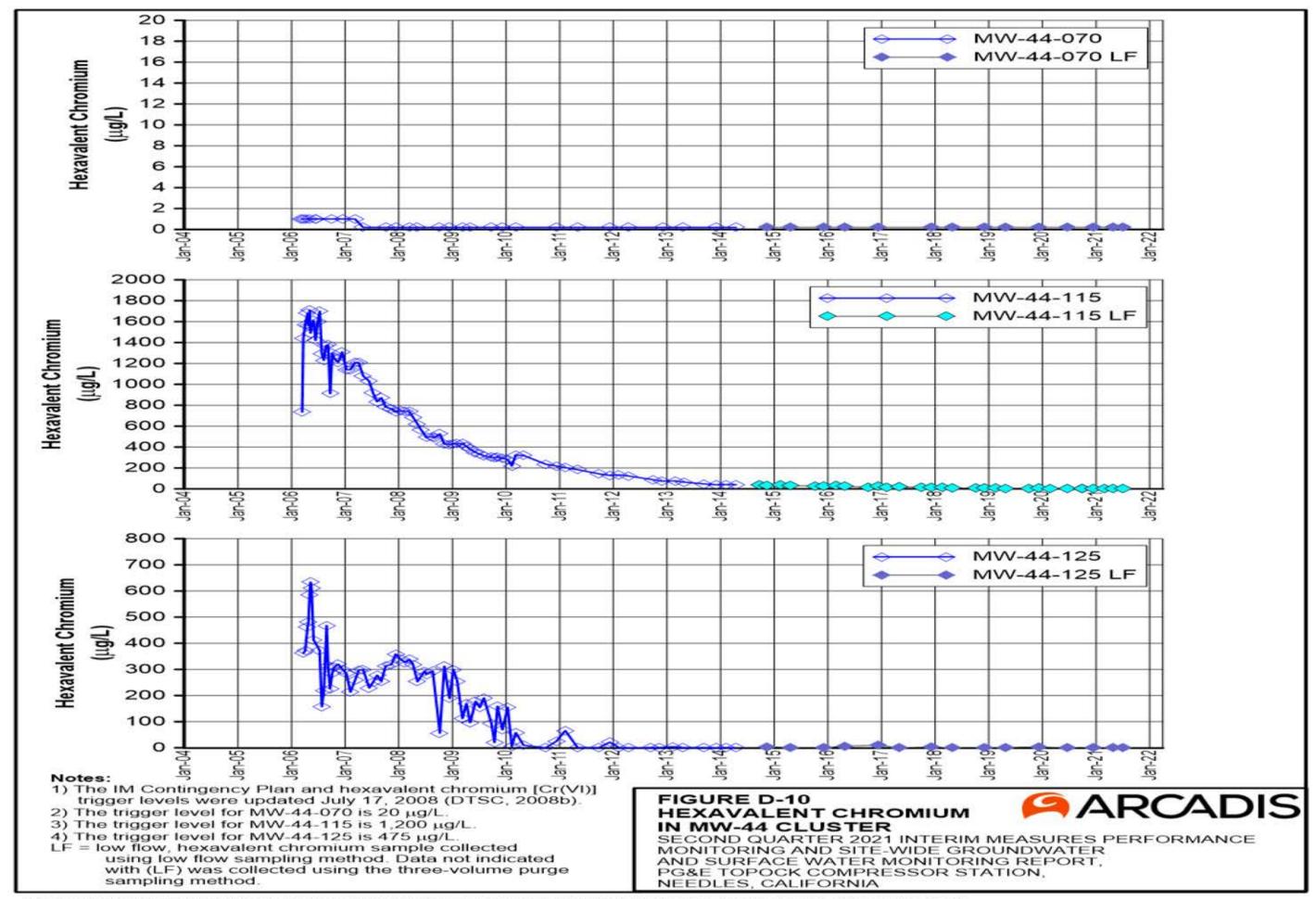


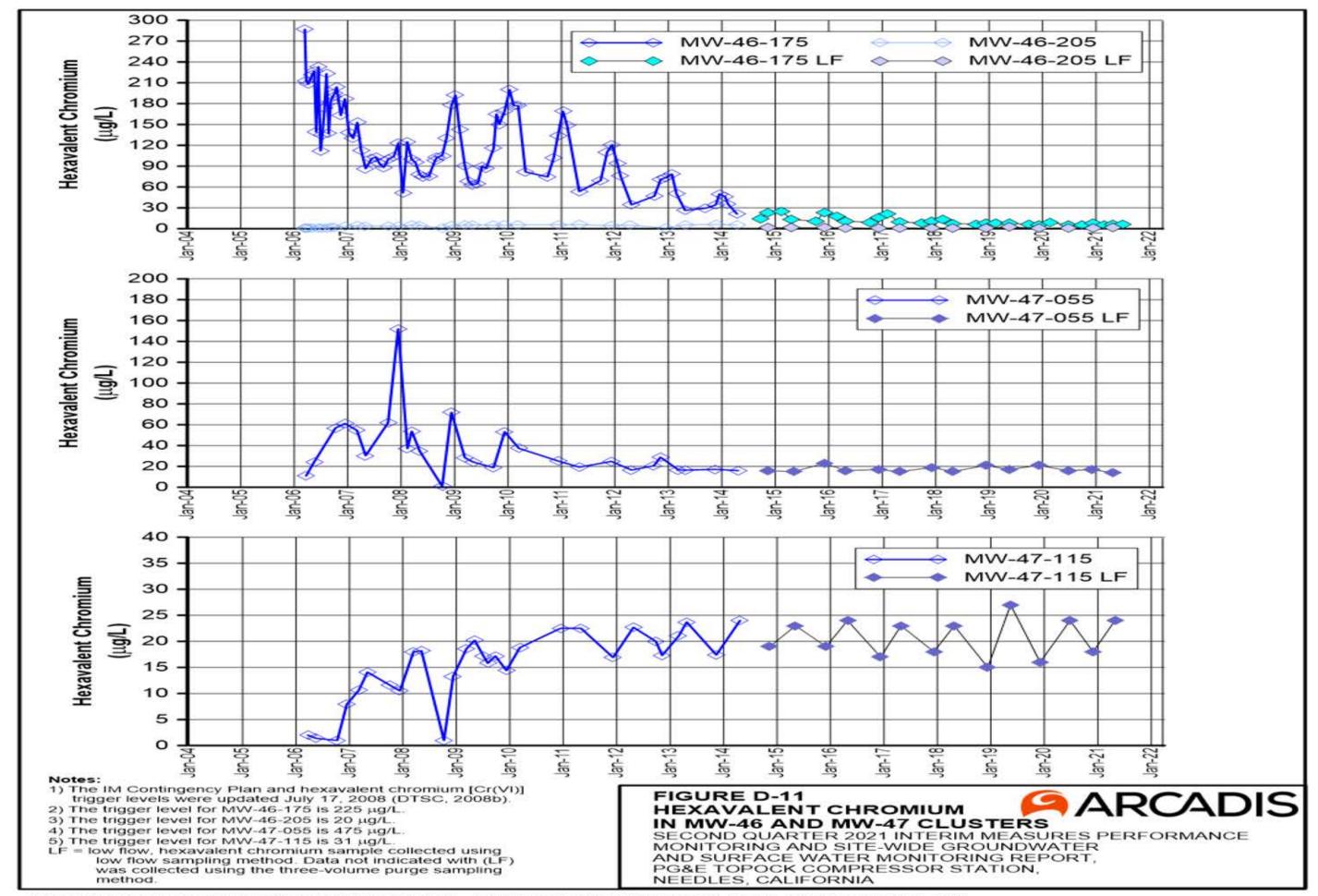


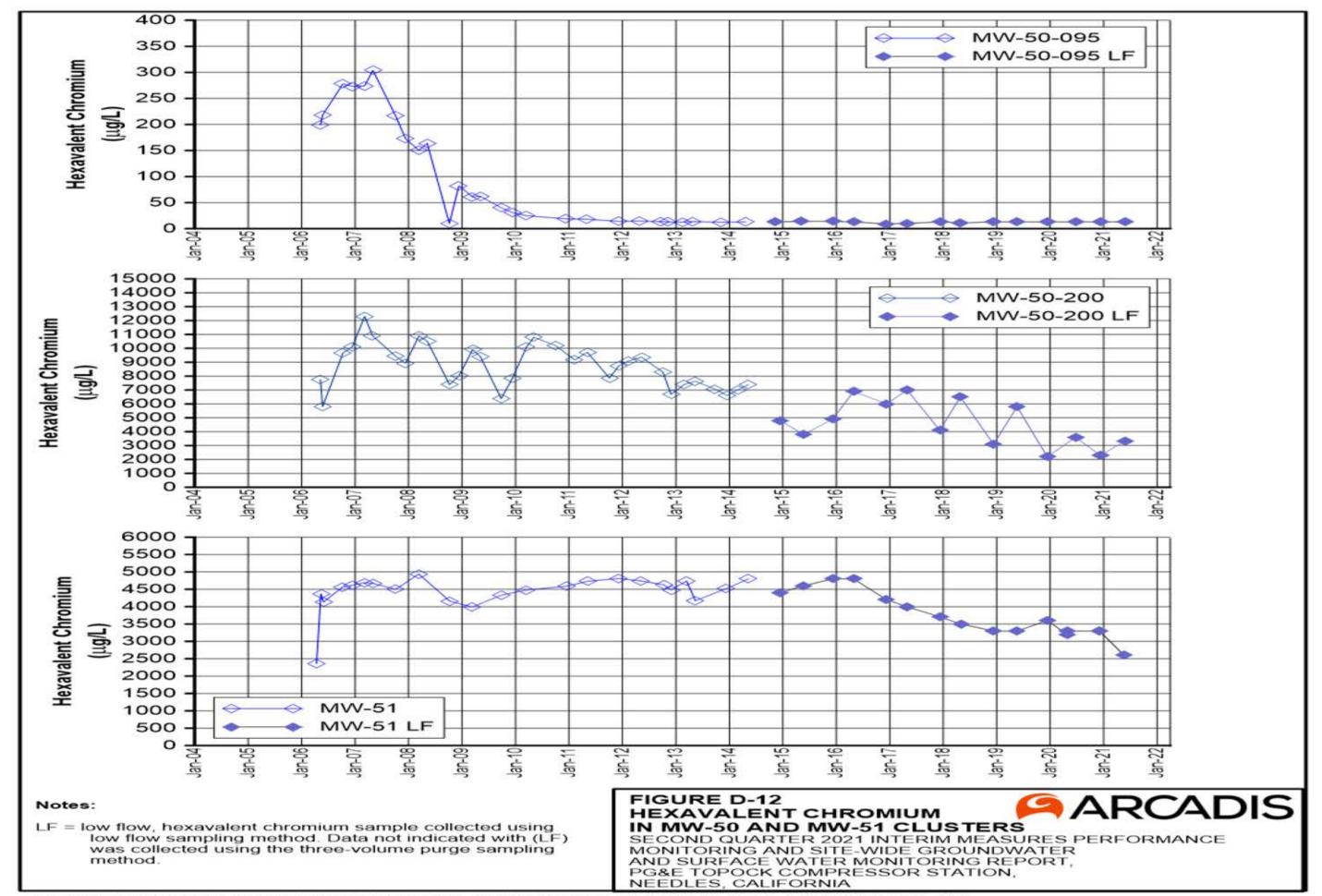


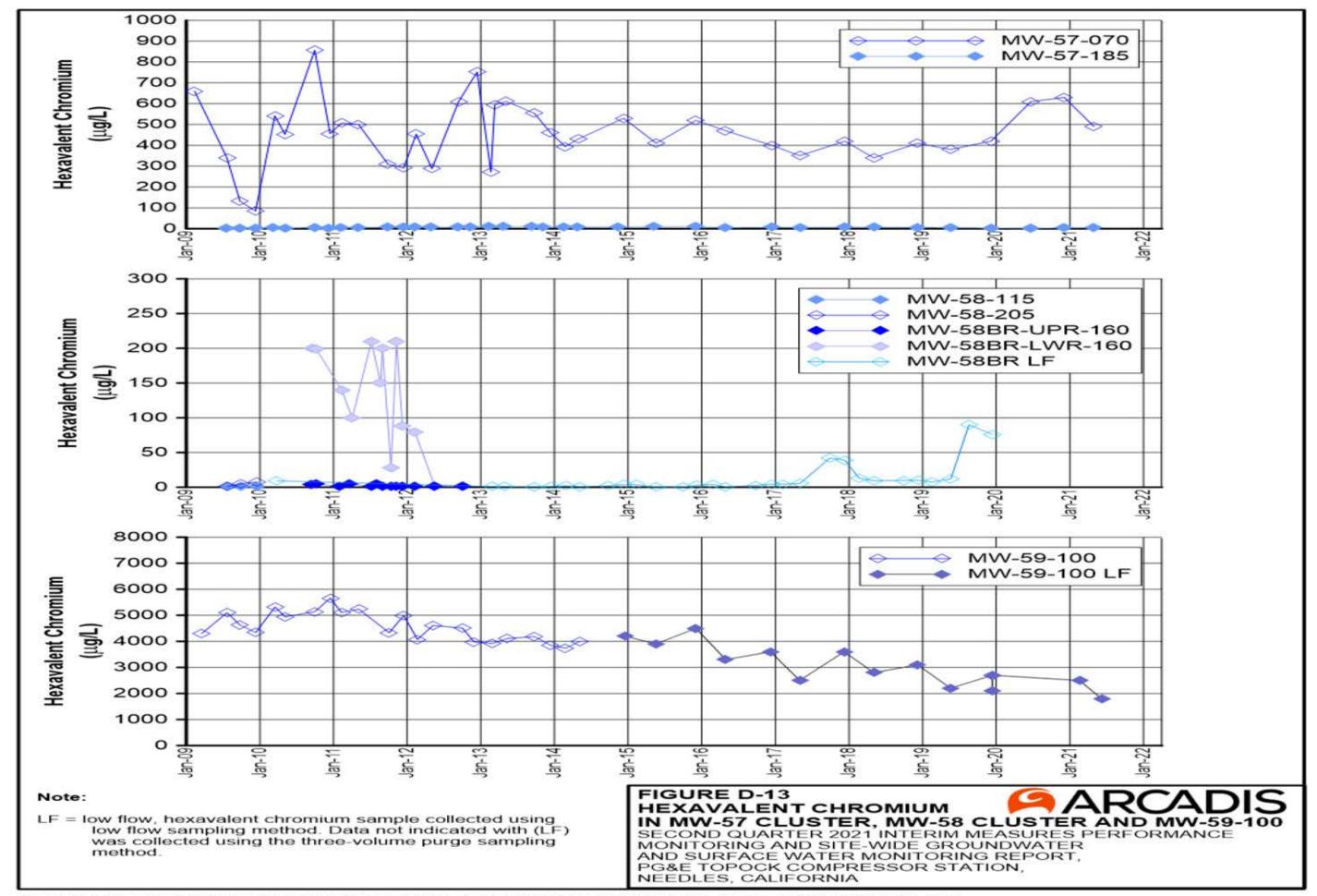


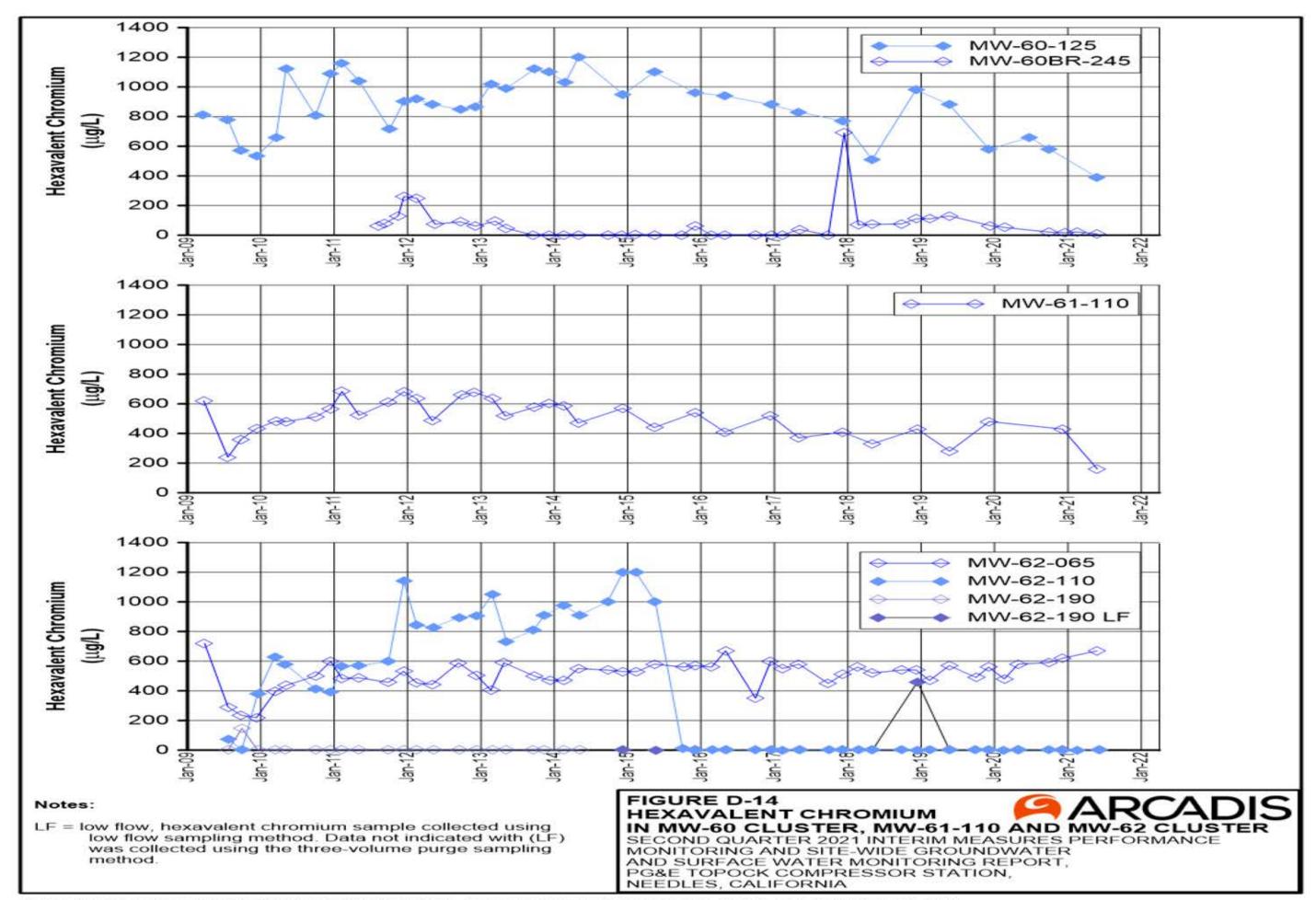


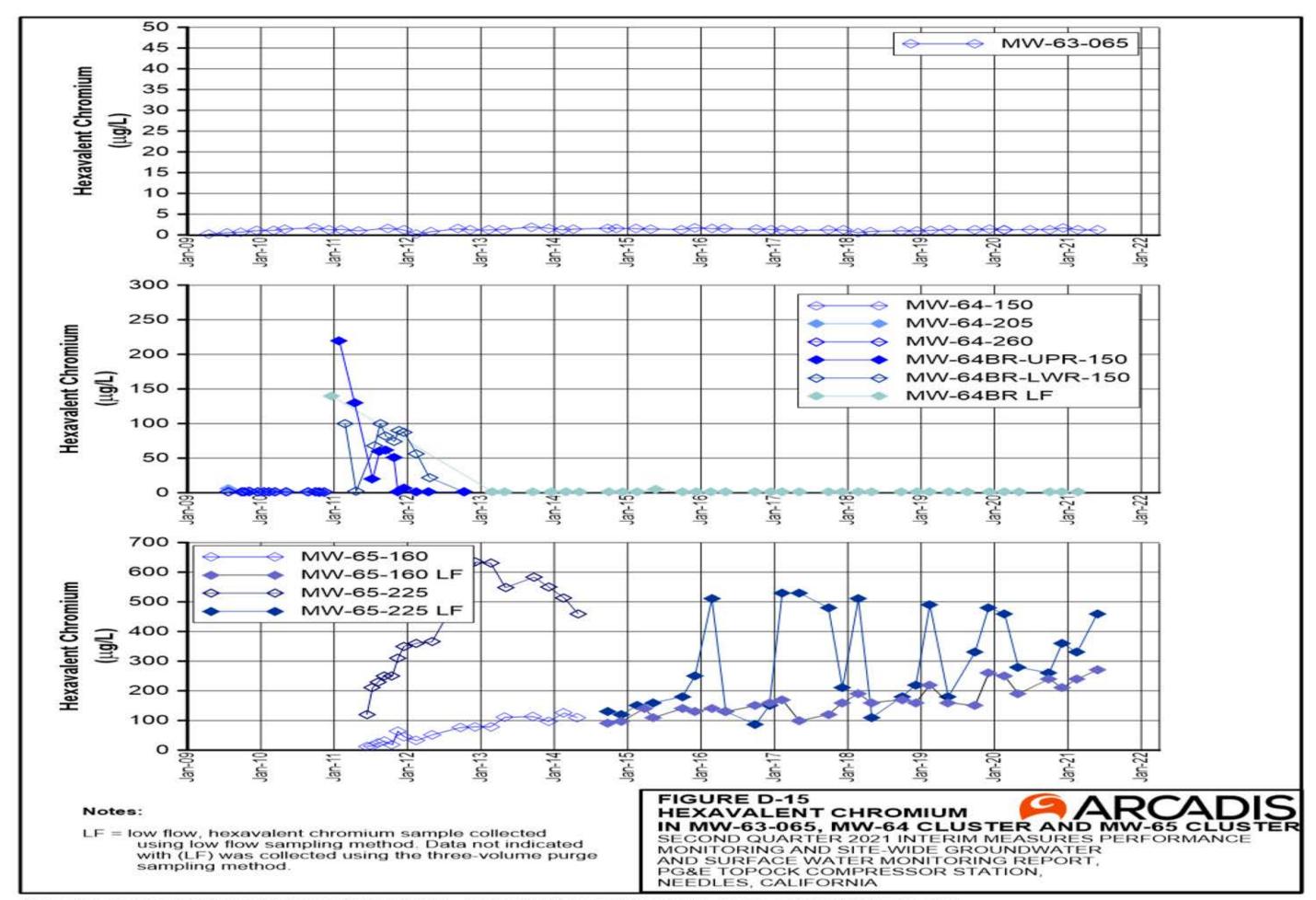


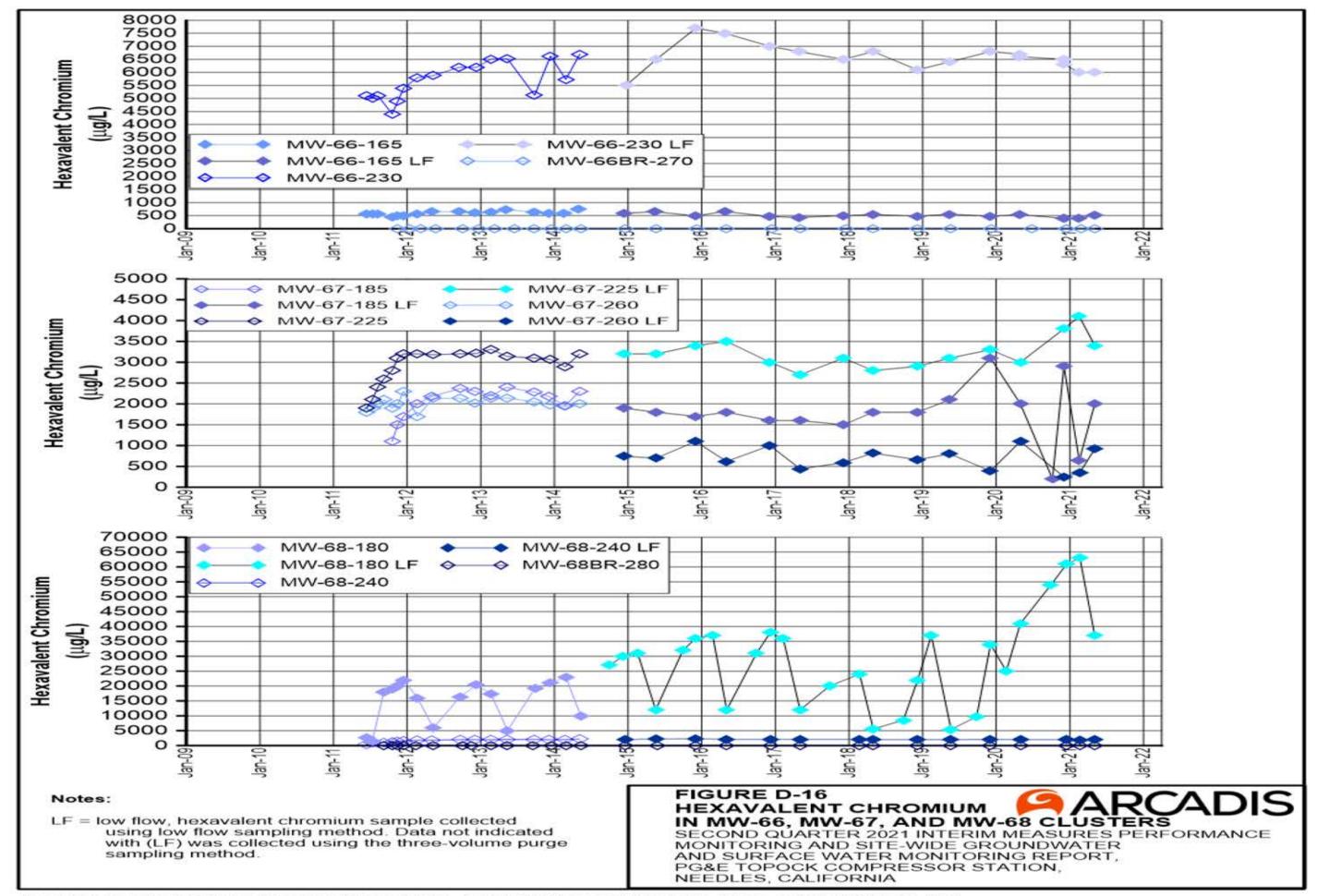


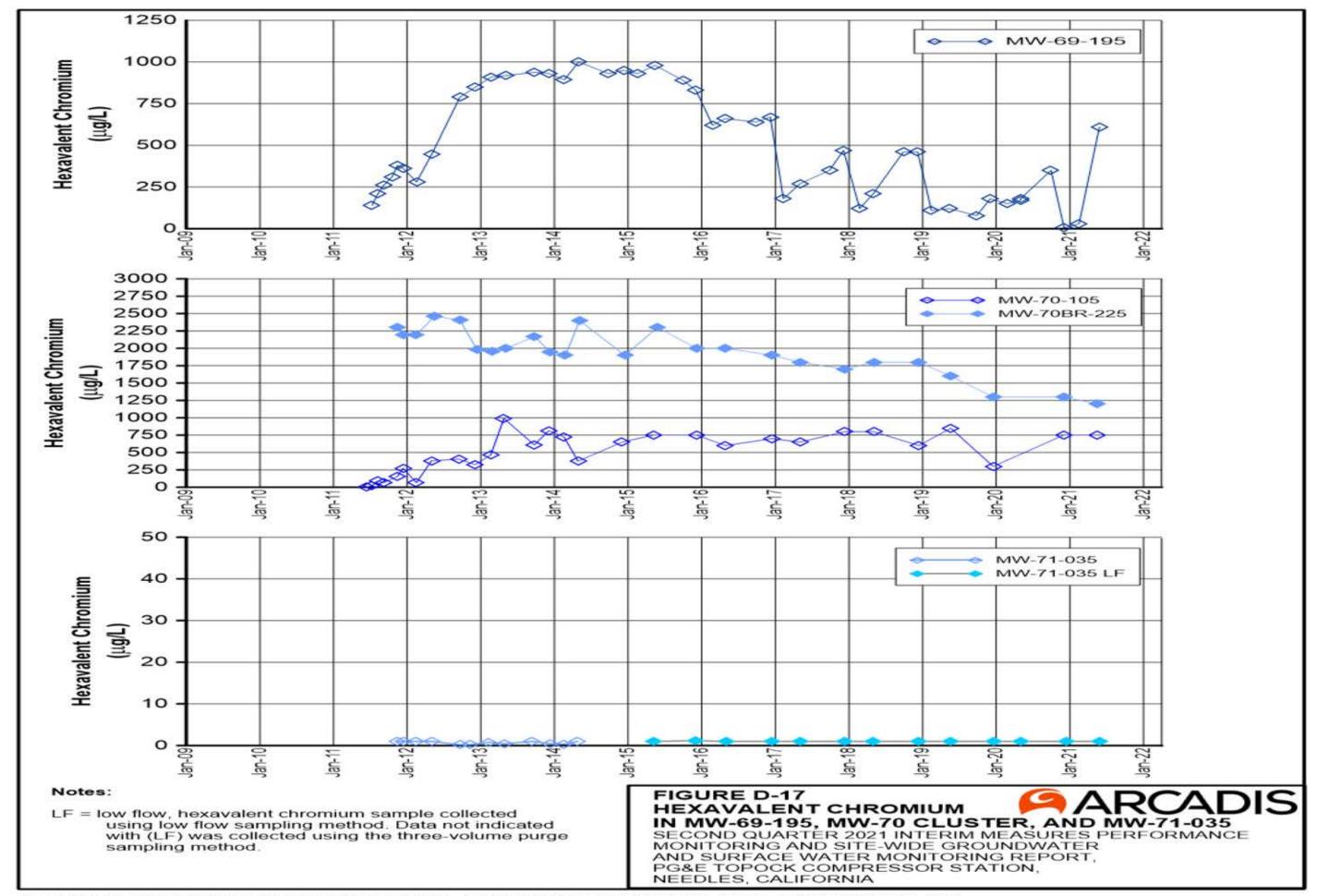


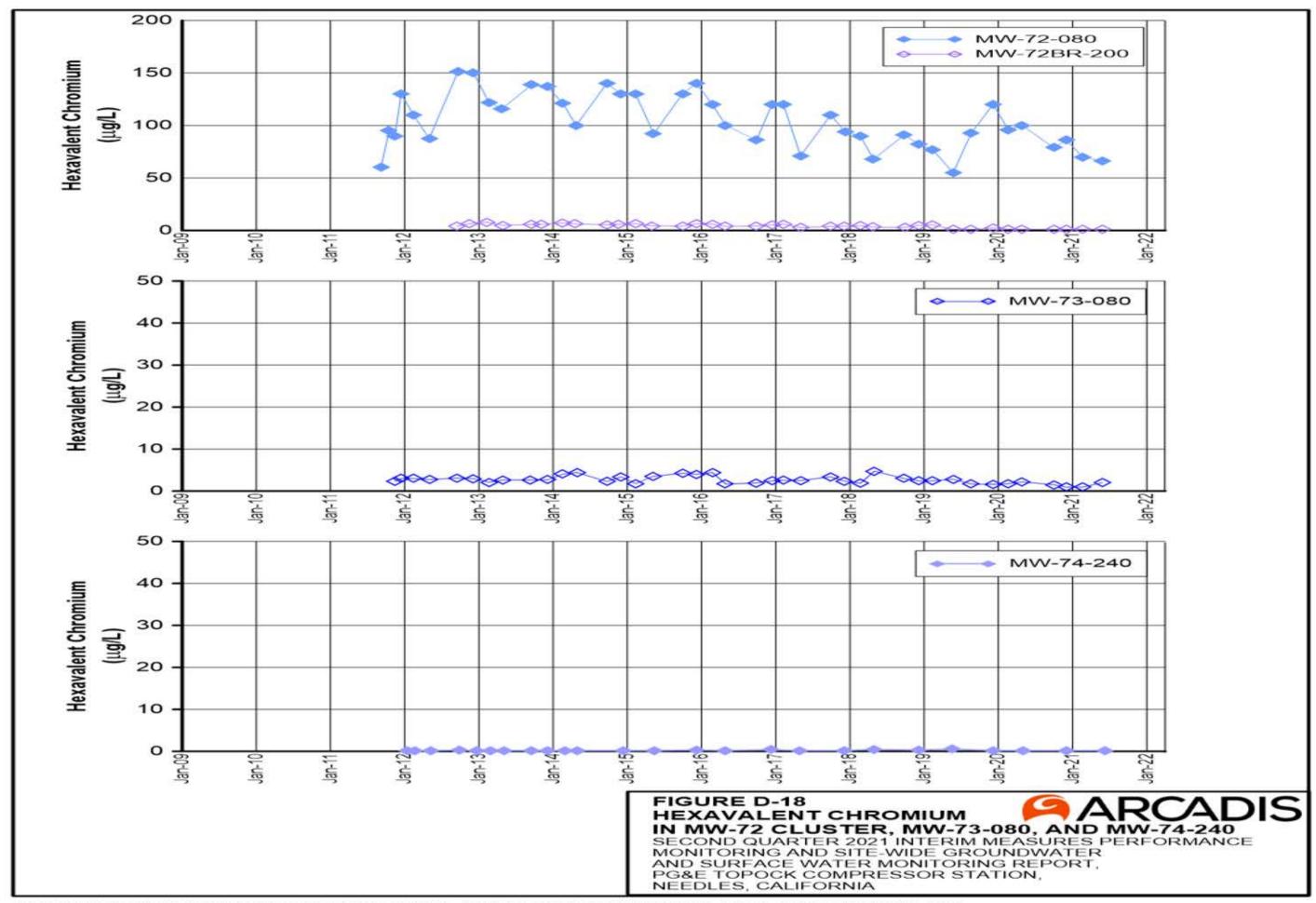












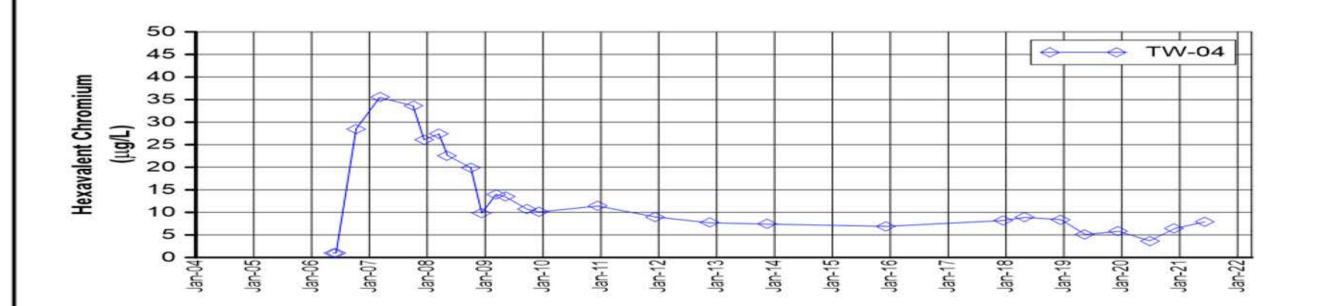


FIGURE D-19 HEXAVALENT CHROMIUM IN TW-04

ARCADIS

SECOND QUARTER 2021 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

APPENDIX E

Interim Measures Extraction System Operations Log, Second Quarter 2021

APPENDIX E INTERIM MEASURE EXTRACTION SYSTEM OPERATIONS LOG, SECOND QUARTER 2021

During Second Quarter 2021 (April through June), extraction wells TW-03D and TW-02D operated at a target pump rate of at 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells TW-02S and PE-01 were not operated during Second Quarter 2021. A portion of the piping/conduit for PE-01 at the MW-20 Bench was disconnected from the Interim Measure number 3 (IM-3) system on December 18, 2019 to allow for remedy construction activities without crossing under the PE-01 piping/conduit. The operational run time for the Interim Measure groundwater extraction system (combined or individual pumping) was approximately 89 percent during Second Quarter 2021. The TW-01 aquifer test started on June 15, 2021, with TW-01 operated at a target rate of 90 gallons per minute for the rest of June.

The IM-3 facility treated approximately 15,246,027 gallons of extracted groundwater during Second Quarter 2021, including 2,011,620 gallons pumped from the TW-01 aquifer test in June.

In addition to extracted groundwater, the IM-3 facility also treated approximately 32,000 gallons of injection well backwashing/re-development water, approximately 2,000 gallons of purge water from site sampling activities, and approximately 0 gallons of Final Groundwater Remedy wastewater. Six containers of solids (sludge) were transported offsite from the IM-3 facility during the reporting period.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 11 percent of downtime during Second Quarter 2021) are summarized below. The times shown are in Pacific Standard Time to be consistent with other data collected (for example, water level data) at the site.

E.1 April 2021

- April 2, 2021 (unplanned): The extraction well system was offline from 6:18 a.m. to 6:30 a.m. to clean the microfilter prefilter. The microfilter basket strainer "prefilter" was plugged with mineral scale and required removal from the system for cleaning. Extraction system downtime was 12 minutes.
- April 6, 2021 (unplanned): The extraction well system was offline from 4:36 p.m. to 4:52 p.m. due to troubleshooting the Raw Water Storage Tank (T-100). The water level meter (LIT-200) in T-100 did not appear to correspond with the flow meter from the extraction well. All flow into T-100 was halted to allow for re-spanning calibration of LIT-200. Extraction system downtime was 16 minutes.
- April 11, 2021 (unplanned): The extraction well system was offline from 8:36 a.m. to 12:20 p.m. due
 to filtering and filling an acid tote. The plant received a 250 gallon tote of hydrochloric acid that was
 contaminated with a solid material that looked like plastic shavings. Due to inadequate supply on site,
 plant personnel strained a portion of the tote contents so the dosing pumps would not plug up.
 Extraction system downtime was 3 hours 44 minutes.
- April 11, 2021 (unplanned): The extraction well system was offline from 1:38 p.m. to 1:42 p.m. due to TW-3D shutting off on its own. An electrical subcontractor has been hired to troubleshoot why the pump shut off on its own. Extraction system downtime was 4 minutes.
- April 14-15, 2021 (unplanned): The extraction well system was offline from 7:06 a.m. on April 14, 2021 to 10:02 a.m. on April 15, 2021 due to replacing about half of the piping between the Pre-treated Water Tank (T-500) and the microfilter which was plugged with mineral scale. Extraction system downtime was 1 day 2 hours 56 minutes.
- April 15, 2021 (unplanned): The extraction well system was offline from 11:30 a.m. to 12:42 p.m. due TW-3D shutting off on its own. Extraction system downtime was 1 hour 12 minutes.
- April 16, 2021 (unplanned): The extraction well system was offline from 11:18 a.m. to 1:24 p.m. due to a plug in the inline static mixer between the Clarifier Feed Pump (P-400) and the Clarifier. The

plant flow was shut off to remove scale and clean the mixer. Also, a new tote for ferrous chloride was plumbed to the chemical feed pump. Extraction system downtime was 2 hours 6 minutes.

- April 18, 2020 (unplanned): The extraction well system was offline from 3:58 a.m. to 4:58 a.m. due to a City of Needles power outage. Extraction system downtime was 1 hour.
- April 18, 2021 (unplanned): The extraction well system was offline from 5:18 a.m. to 9:00 a.m. to repair the Microfilter Feed Pump (P-501), which had seized due to mineral scale build-up. Extraction system downtime was 3 hours 42 minutes.
- April 18, 2021 (unplanned): The extraction well system was offline from 9:18 a.m. to 11:04 a.m. to repair the Primary Reverse Osmosis (RO) variable frequency drive (VFD). The VFD that runs the high pressure pump for the Primary RO failed completely. The plant had to be reconfigured to bypass the Primary RO until it could be fixed (see April 28 below). Extraction system downtime was 1 hour 46 minutes.
- April 18, 2021 (unplanned): The extraction well system was offline from 11:08 a.m. to 3:24 p.m. due to replacing microfilter modules. Extraction system downtime was 4 hours 16 minutes.
- April 18-19, 2021 (unplanned): The extraction well system was offline from 10:34 p.m. on April 18, 2021 to 8:22 a.m. on April 19, 2021; from 10:32 a.m. to 4:00 p.m. on April 19, 2021; and from 4:32 p.m. to 10:20 p.m. on April 19, 2021 due to a pH imbalance in the plant. The pH of the water was too high to inject into the aquifer. The issue was tracked to a tote of sodium hydroxide that was mislabeled as 25% but was really 50% by weight in water. Also, the feed pipe for the Secondary RO was reconfigured to operate by itself. Extraction system downtime was 21 hours 4 minutes.
- April 21, 2021 (unplanned): The extraction well system was offline from 3:08 a.m. on to 12:14 p.m. due to elevated electrical conductivity (EC) and out of spec pH values in the plant. Because the Primary RO was out of service for the failed VFD, the EC in the Treated Water Storage Tank (T-700) was trending upward. The plant had to be taken offline to allow the secondary RO to catch up with the EC trend. The operating conditions also affected the pH of the water. Extraction system downtime was 9 hours 6 minutes.
- April 27, 2021 (unplanned): The extraction well system was offline from 6:44 p.m. to 6:50 p.m. due TW-3D shutting off on its own with no alarm. Extraction system downtime was 6 minutes.
- April 28, 2021 (unplanned): The extraction well system was offline from 7:02 a.m. to 1:48 p.m. and from 2:16 p.m. to 7:04 p.m. to descale the Clarifier Feed Pump (P-400) and replace the Primary RO VFD. Extraction system downtime was 11 hours 34 minutes.
- April 29, 2021 (unplanned): The extraction well system was offline from 3:42 a.m. to 3:46 a.m. due to TW-3D shutting off on its own with no alarm. Extraction system downtime was 4 minutes.
- April 29, 2021 (unplanned): The extraction well system was offline from 6:58 a.m. to 11:28 a.m. to check flow problems for P-400. The inline static mixer between P-400 and the clarifier was removed, and a pipe spool put in its place. Extraction system downtime was 4 hours 30 minutes.
- April 29, 2021 (unplanned): The extraction well system was offline from 11:56 a.m. to 12:04 p.m. to check flow problems for P-400. A leaking flange connection at P-400 was tightened. Extraction system downtime was 8 minutes.
- April 29, 2021 (unplanned): The extraction well system was offline from 8:16 p.m. to 9:06 p.m. and from 9:36 p.m. to 9:42 p.m. due TW-3D shutting off on its own with no alarm. Extraction system downtime was 56 minutes.

E.2 May 2021

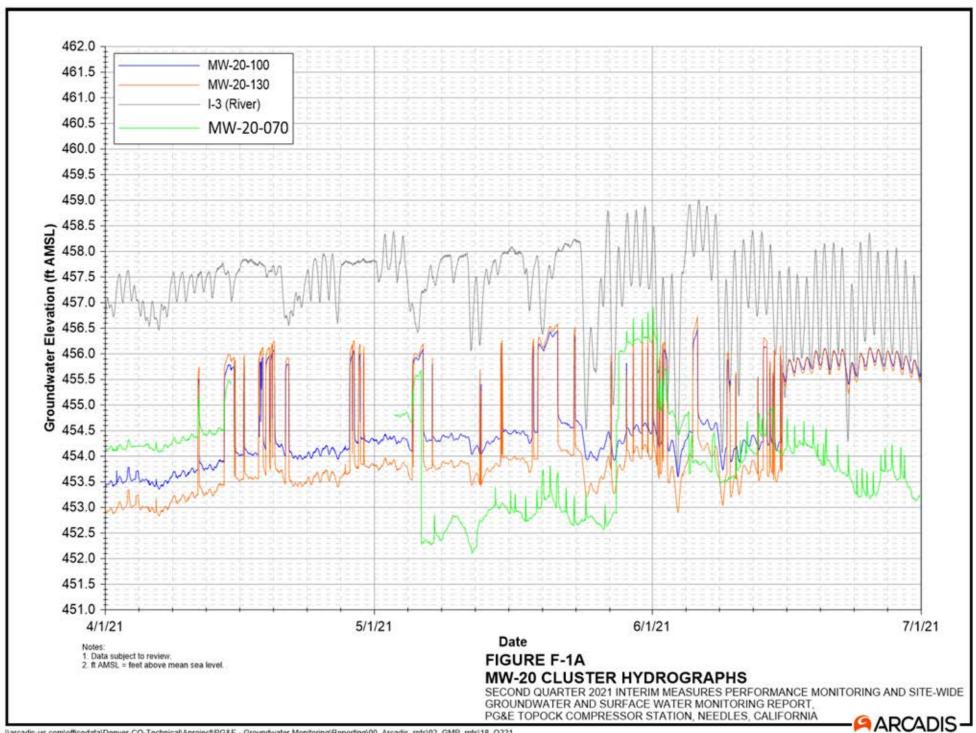
May 5-6, 2021 (unplanned): The extraction well system was offline from 6:56 a.m. to 8:46 a.m. on May 5, 2021 and from 9:02 a.m. on May 5, 2021 to 11:50 a.m. on May 6, 2021 to replace the Microfilter Feed Tank (T-501) which was leaking. The tank was removed and a new tank and associated piping were installed. Extraction system downtime was 1 day 4 hours 38 minutes.

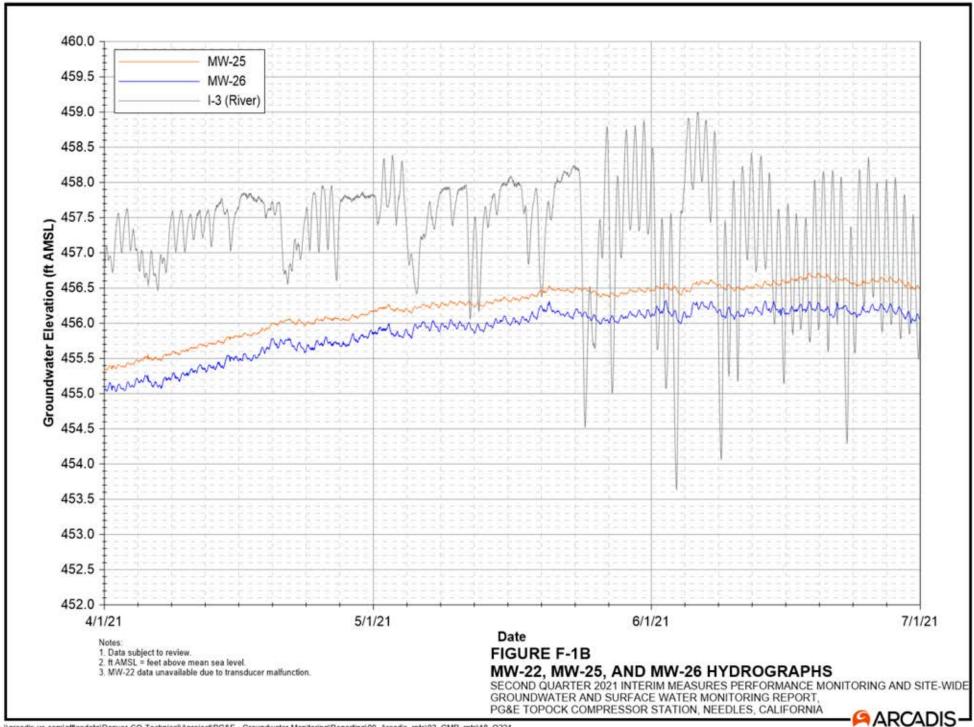
- May 7, 2021 (unplanned): The extraction well system was offline from 12:18 p.m. to 12:44 p.m. due to TW-3D shutting off on its own. Extraction system downtime was 26 minutes.
- May 12, 2020 (unplanned): The extraction well system was offline from 7:28 p.m. to 8:14 p.m. and from 10:56 p.m. to 11:02 p.m. due to a City of Needles power outage. Extraction system downtime was 52 minutes.
- May 15, 2021 (unplanned): The extraction well system was offline from 3:24 a.m. to 4:34 a.m. due to an RO system failure. The control system for the RO low-pressure feed pump (P-601A) shut the pump off and it would not reset. After troubleshooting, the control system accepted a reset command and allowed P-601A to restart. Extraction system downtime was 1 hour 10 minutes.
- May 15, 2021 (unplanned): The extraction well system was offline from 5:42 a.m. to 7:04 a.m.; from 7:52 a.m. to 7:56 a.m.; and from 8:02 a.m. to 8:28 a.m. due to TW-3D shutting off on its own. Extraction system downtime was 1 hour 52 minutes.
- May 18, 2021 (unplanned): The extraction well system was offline from 3:50 p.m. to 7:12 p.m. due
 to both plant air compressors overheating and shutting down. Portable air conditioners were used to
 cool down one of the plant compressors and it was restarted. Extraction system downtime was 3
 hours 22 minutes.
- May 19-21, 2021 (unplanned): The extraction well system was offline from 6:30 a.m. on May 19, 2021 to 11:54 a.m. on May 21, 2021 due to the plant been taken offline to clean and replace piping in the chemical loop section of the plug flow reactor. Extraction system downtime was 2 days 5 hours 24 minutes.
- May 23, 2021 (unplanned): The extraction well system was offline from 7:14 a.m. to 10:20 a.m. due
 to a failure in P-601A. The control system for the RO shut pump P-601A off. An electrical relay in the
 control circuit was replaced and the plant returned to normal operation. Extraction system downtime
 was 3 hours 6 minutes.
- May 27-31, 2021 (unplanned): The extraction well system was offline from 9:54 a.m. to 11:00 a.m. on May 27, 2021; from 3:58 a.m. to 4:28 a.m. on May 29, 2021; from 9:34 p.m. to 10:38 p.m. on May 29, 2021; from 9:20 p.m. to 10: 30 p.m. on May 30, 2021; and from 12:40 p.m. to 1:42 p.m. on May 31, 2021 due to high-water levels in Raw Water Storage Tank (T-100). The operator shut down extraction so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 4 hours 52 minutes.
- May 31, 2020 (unplanned): The extraction well system was offline from 3:44 p.m. to 3:46 p.m. due to a City of Needles power outage. Extraction system downtime was 2 minutes.

E.2 June 2021

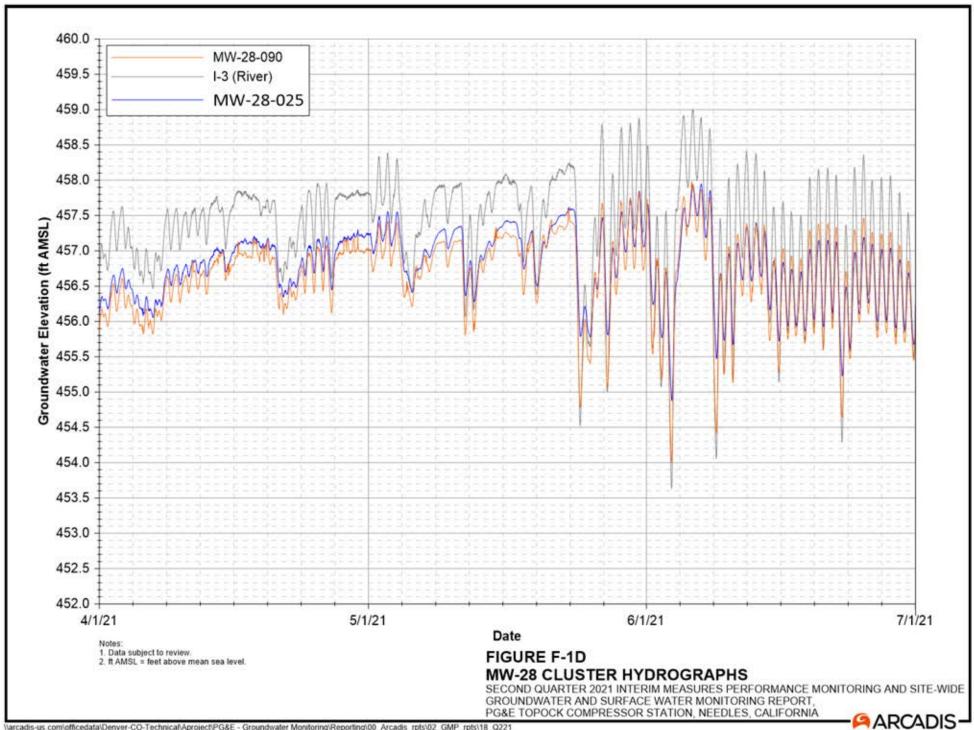
- June 1, 2021 (unplanned): The extraction well system was offline from 1:56 a.m. to 3:42 a.m.; from 1:22 p.m. to 1:52 p.m.; from 1:54 p.m. to 2:04 p.m.; from 2:06 p.m. to 2:18 p.m.; from 2:20 p.m. to 2:30 p.m.; from 2:32 p.m. to 2:44 p.m.; from 2:46 p.m. to 2:56 p.m.; from 7:24 p.m. to 7:42 p.m.; from 7:44 p.m. to 7:52 p.m.; from 7:54 p.m. to 8:02 p.m.; and from 8:04 p.m. to 9:30 p.m. due to high-water levels in the Raw Water Storage Tank (T-100). The operator shut down extraction so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 5 hours 10 minutes.
- June 2, 2021 (unplanned): The extraction well system was offline from 2:40 a.m. to 2:48 a.m.; from 2:50 a.m. to 2:56 a.m.; from 2:58 a.m. to 3:30 a.m.; from 3:34 a.m. to 3:36 a.m.; from 3:38 a.m. to 4:12 a.m.; from 6:26 a.m. to 6:38 a.m.; from 6:40 a.m. to 6:42 a.m.; and from 6:46 a.m. to 5:20 pm due to high-water levels in T-100 that was caused by mineral scale in the piping around Iron Oxidation Reactor #3 (T-301C) and the Clarifier Feed Pump (P-400). The scale restricted plant flow so the groundwater extraction rate had to be reduced. The operator shut down extraction so the tank could drain below the high-level alarm setpoint. Piping between T-301B and T-301C was also replaced. Extraction system downtime was 12 hours 6 minutes.
- June 5-6, 2021 (unplanned): The extraction well system was offline from 1:20 p.m. on June 5, 2021

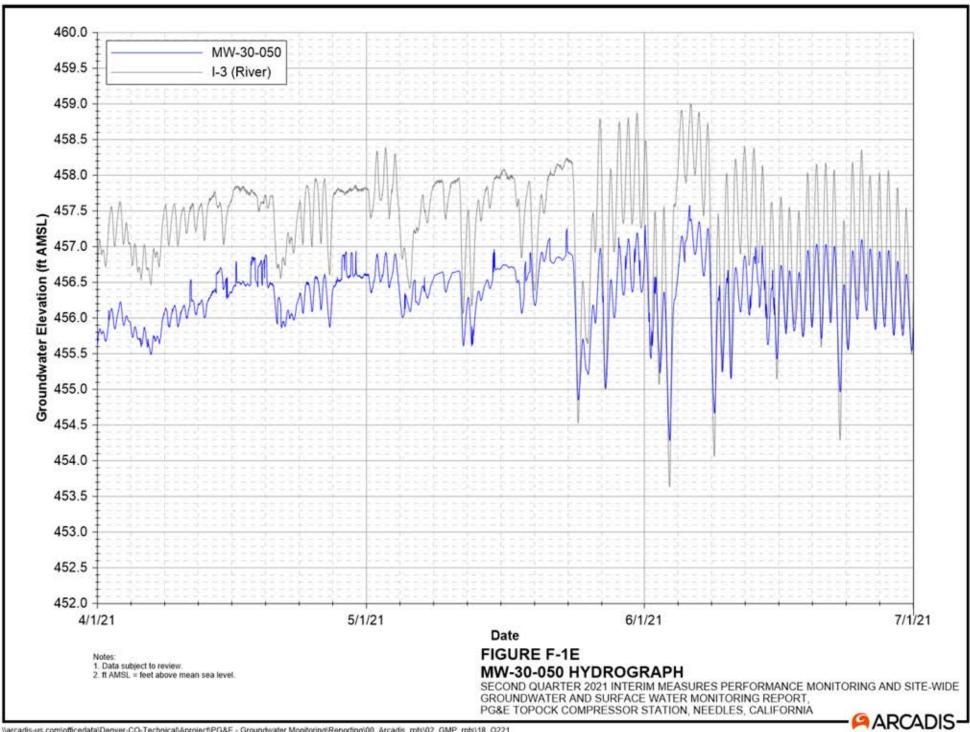
APPENDIX E

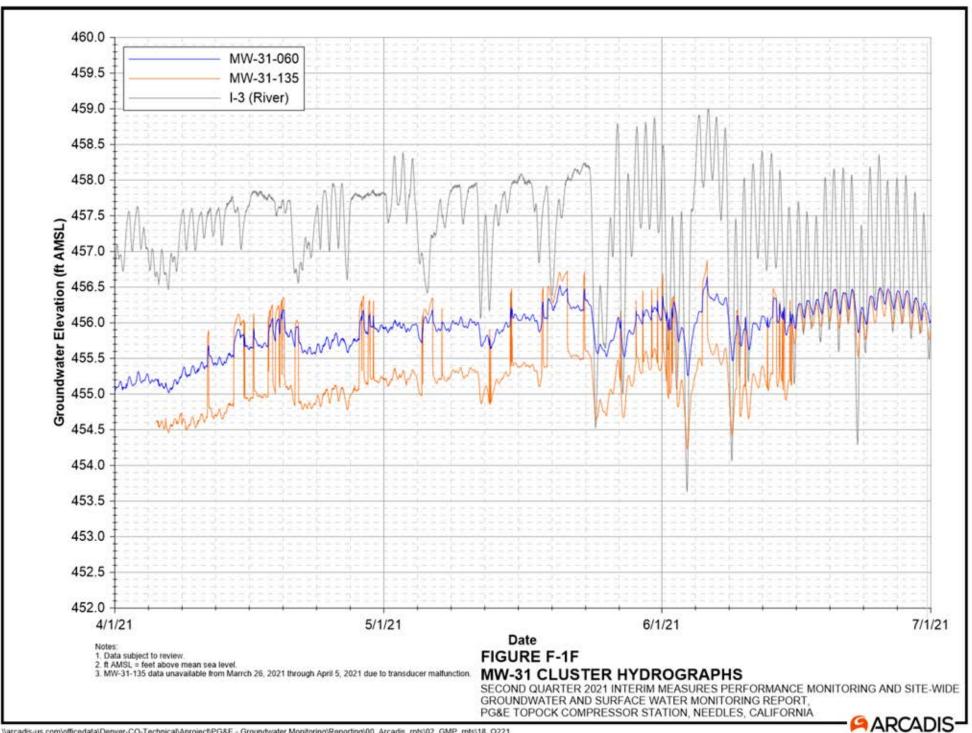

INTERIM MEASURE EXTRACTION SYSTEM OPERATIONS LOG, SECOND QUARTER 2021

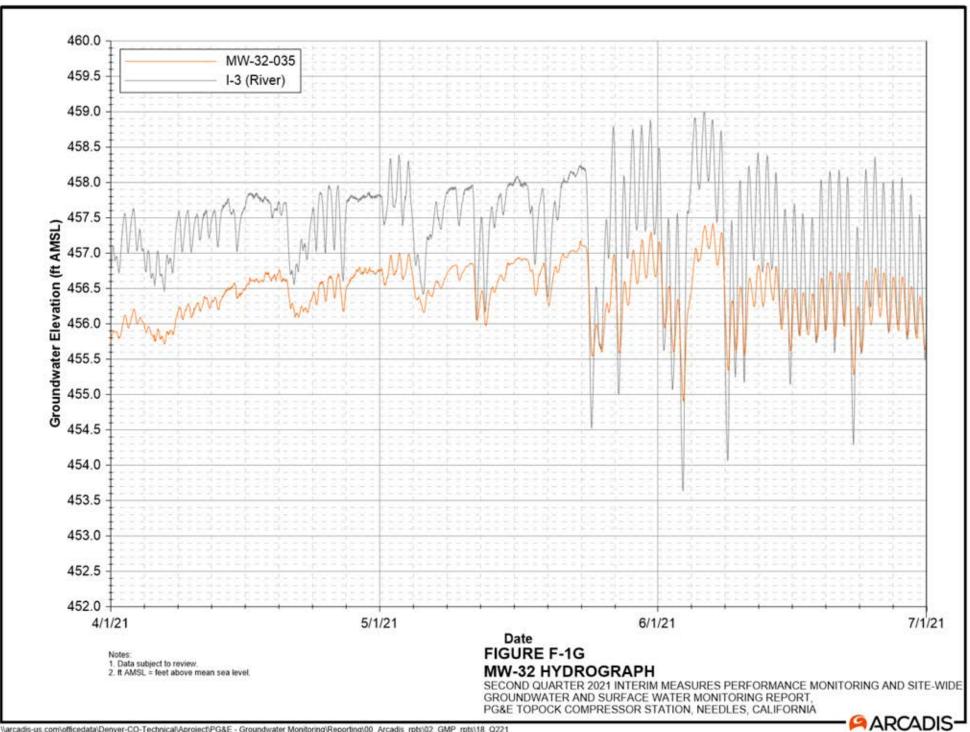

to 2:30 a.m. on June 6, 2021 to allow for replacement of Clarifier Feed Pump (P-400) and temporary piping to be installed between P-400 and the Clarifier. Extraction system downtime was 13 hours 10 minutes.

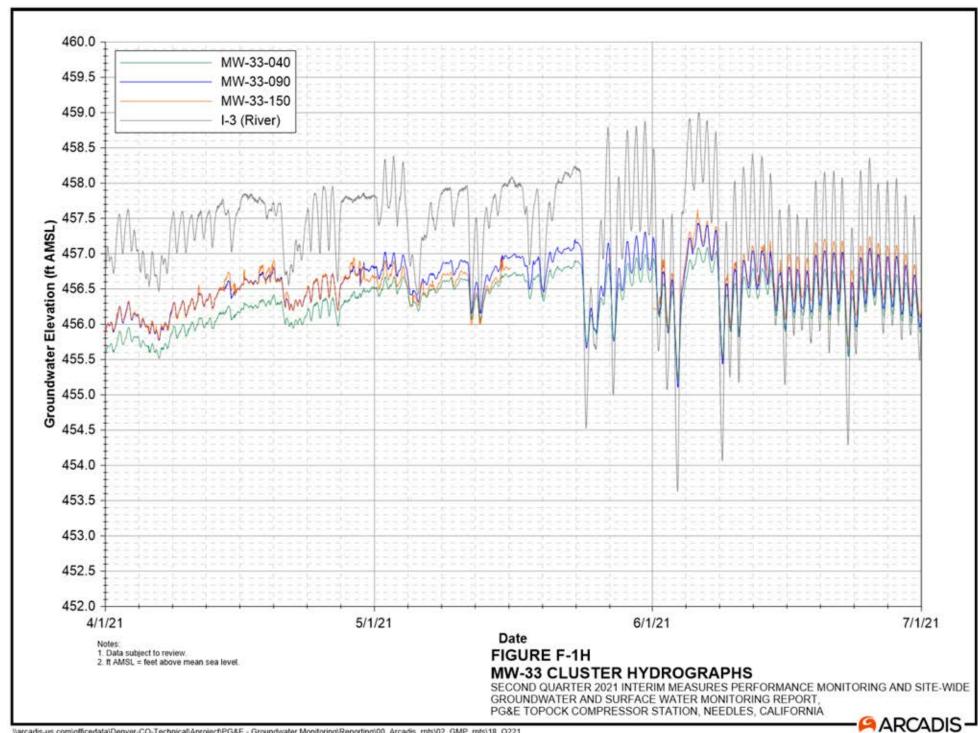
- June 9, 2021 (unplanned): The extraction well system was offline from 8:52 a.m. to 12:44 p.m.; from 3:44 p.m. to 3:46 p.m.; from 3:48 p.m. to 3:54 p.m.; 4:08 p.m. to 4:10 p.m.; from 4:14 p.m. to 4:16 p.m.; from 4:18 p.m. to 4:20 p.m.; from 4:24 p.m. to 4:26 p.m.; from 4:32 p.m. to 4:34 p.m.; from 4:36 p.m. to 4:38 p.m.; and from 4:42 p.m. to 4:44 p.m. to change out the Reverse Osmosis membranes. Extraction system downtime was 4 hours 14 minutes.
- **June 9, 2021 (unplanned):** The extraction well system was offline from 4:46 p.m. to 4:48 p.m.; from 4:52 p.m. to 4:54 p.m.; and from 4:56 p.m. to 5:02 p.m. due to performing a rotation test on the TW-2D well pump. Extraction system downtime was 10 minutes.
- June 10, 2021 (unplanned): The extraction well system was offline from 7:48 a.m. to 7:50 a.m.; from 8:06 a.m. to 8:08 a.m.; and from 9:00 a.m. to 9:02 a.m. due to high-water levels in T-100 because TW-2D was also running. The operator shut down extraction so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 6 minutes.
- June 13, 2021 (unplanned): The extraction well system was offline from 9:54 a.m. to 8:00 p.m. because the IM-3 human machine interface (HMI) system had to be updated to support the TW-01 pump test. Extraction system downtime was 10 hours 6 minutes.
- June 14, 2021 (planned): The extraction well system was offline from 2:02 p.m. to 2:14 p.m. and from 2:34 p.m. to 4:40 p.m. to test TW-01 for the upcoming aquifer test. Extraction system downtime was 2 hours 18 minutes.
- June 15, 2021 (unplanned): The extraction well system was offline from 7:30 a.m. to 8:44 a.m. due to high-water levels in T-100. The operator shut down extraction so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 1 hour 14 minutes.
- **June 15, 2021 (planned):** The extraction well system was offline from 11:50 a.m. to 12:10 p.m. in preparation for the upcoming TW-01 aquifer test. Extraction system downtime was 20 minutes.
- **June 15, 2021 (planned):** The extraction well system was offline from 12:36 p.m. to 12:38 p.m. to begin the TW-01 aquifer test. Extraction system downtime was 2 minutes.

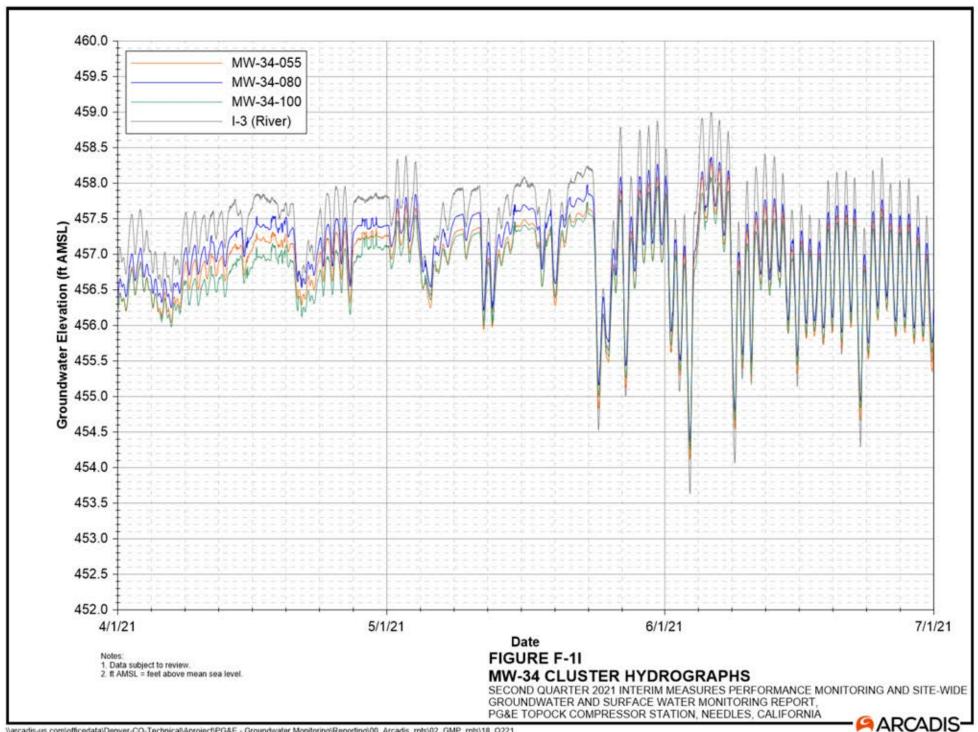

APPENDIX F

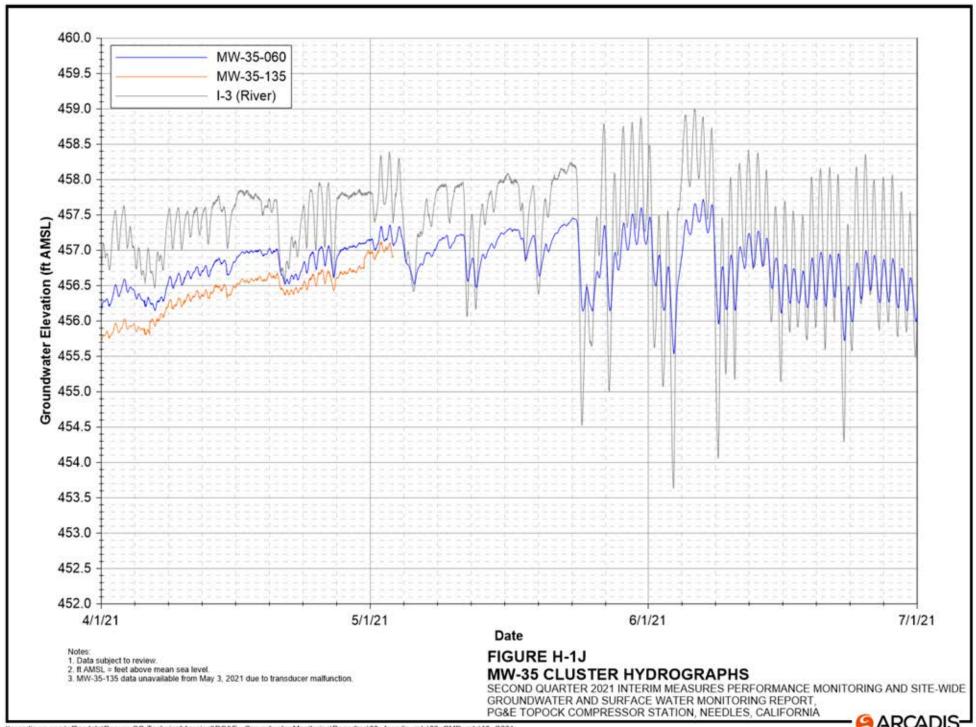

Hydrographs, Second Quarter 2021

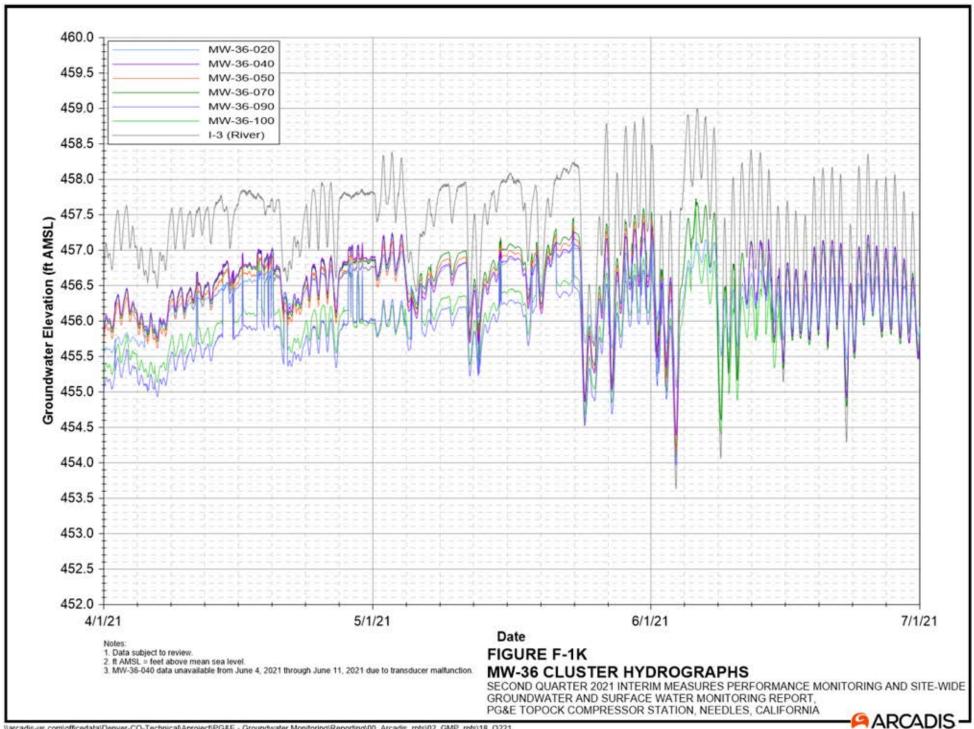


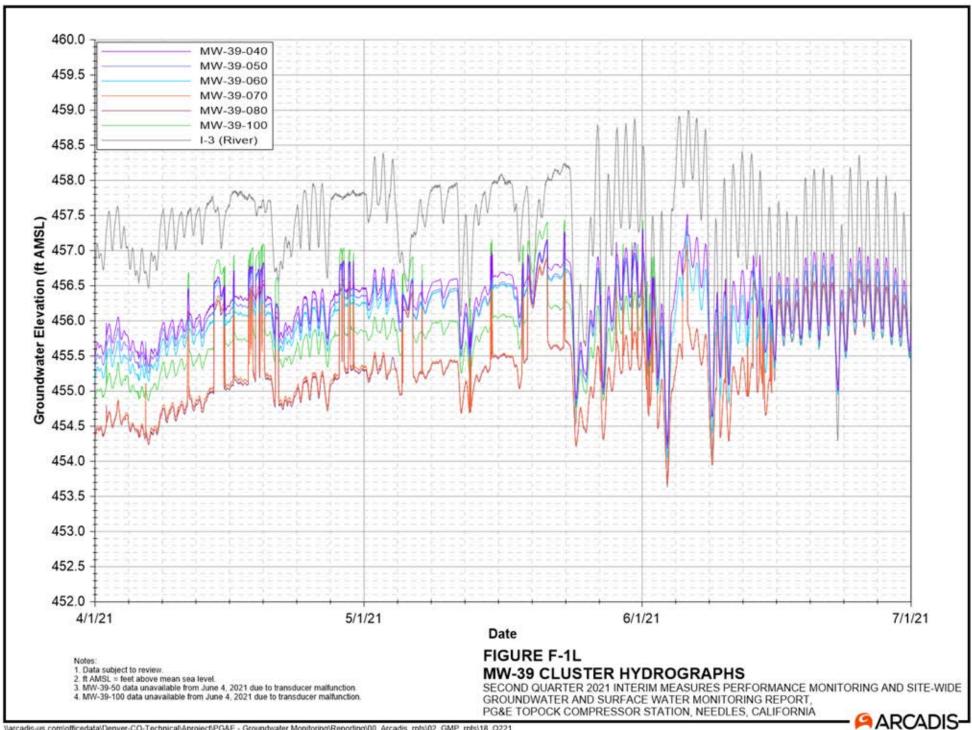


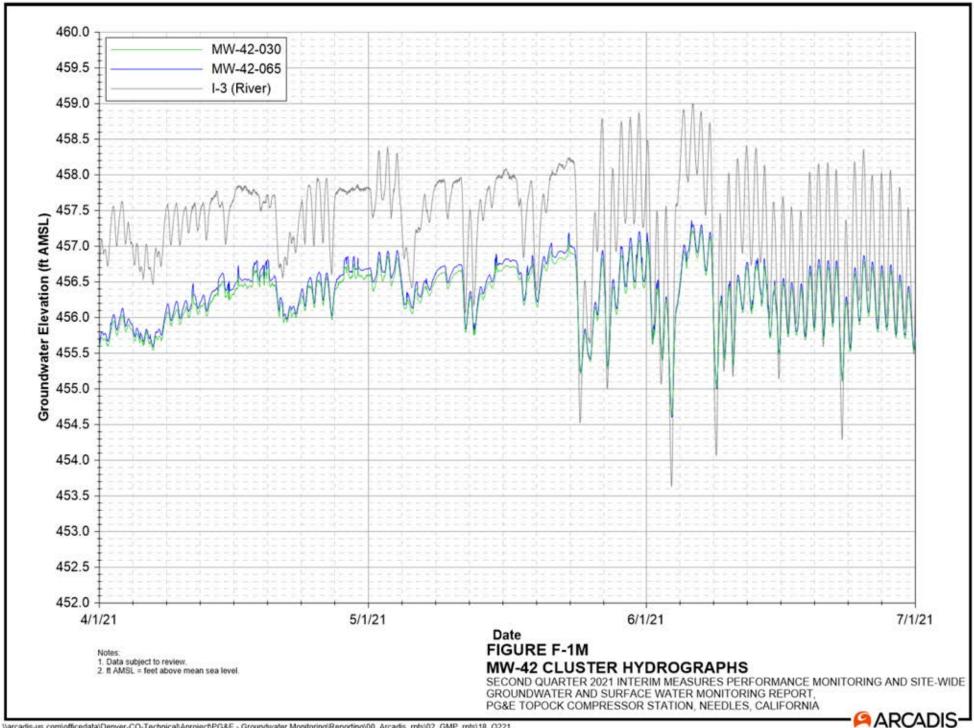


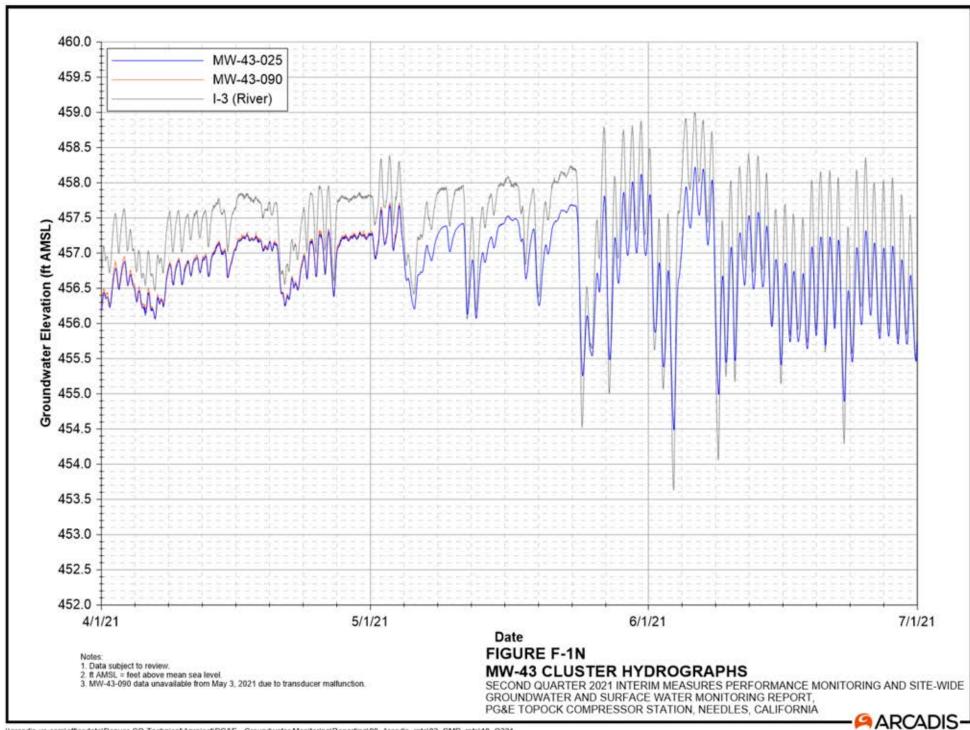


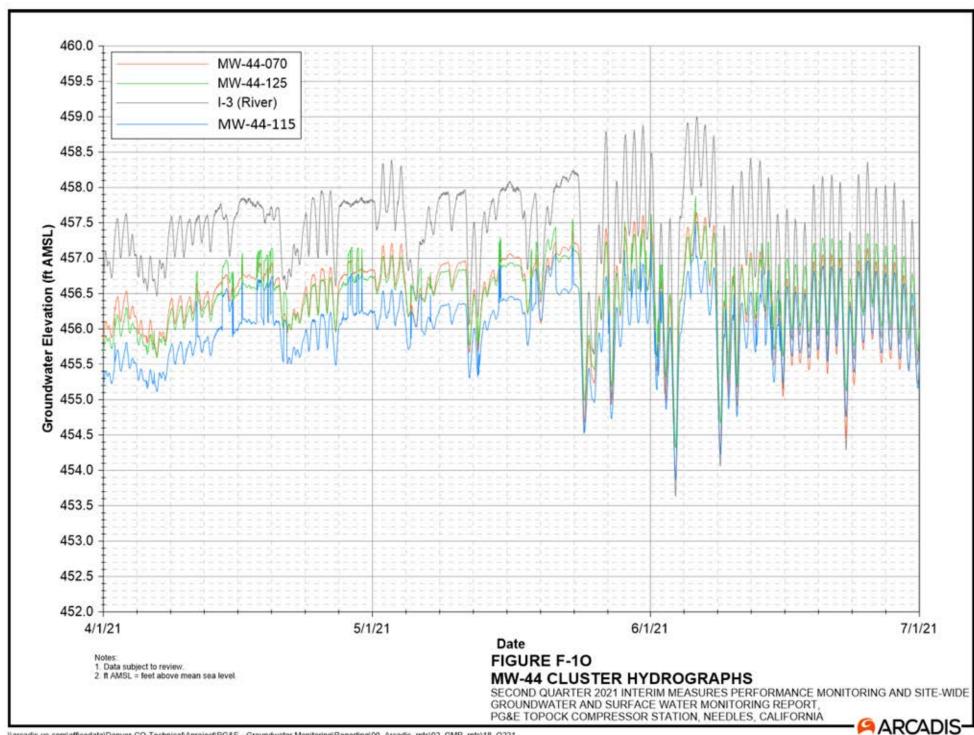


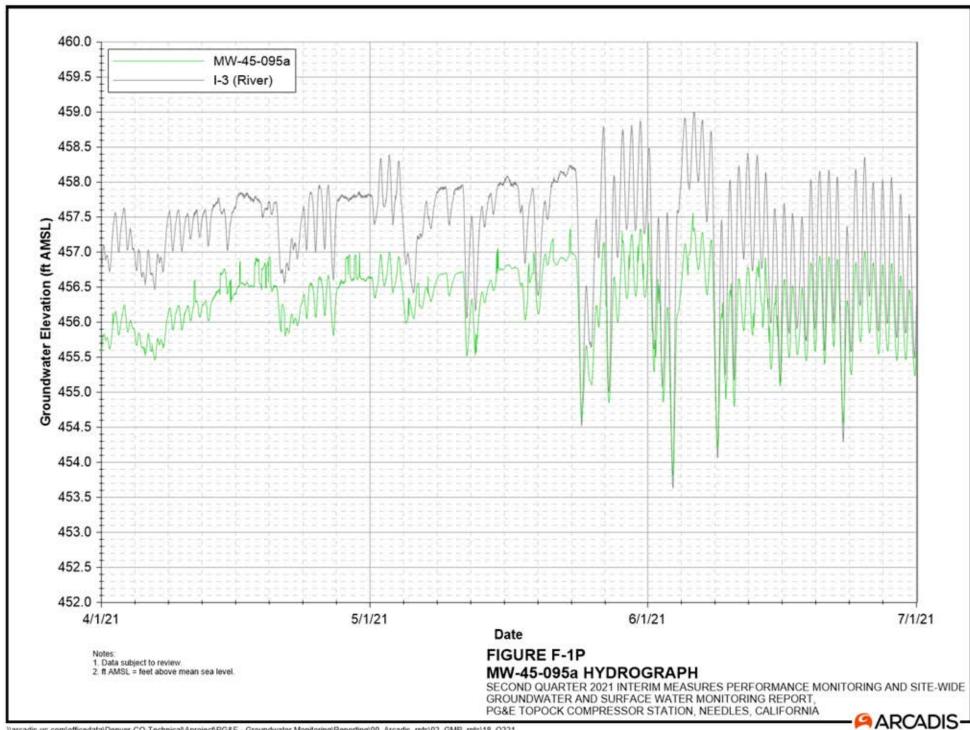


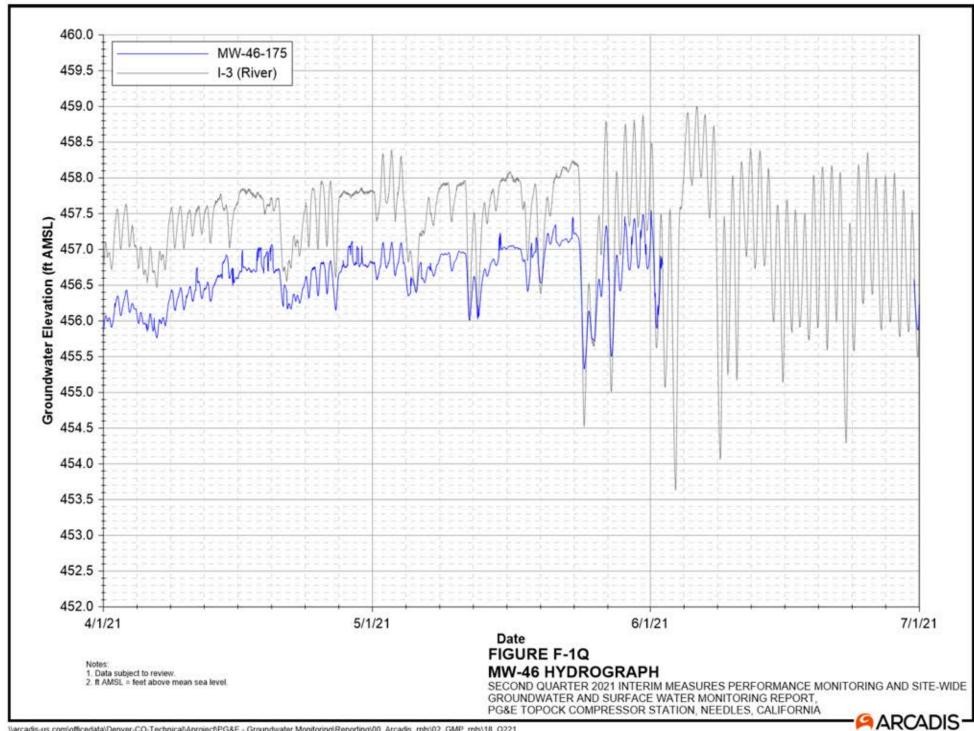


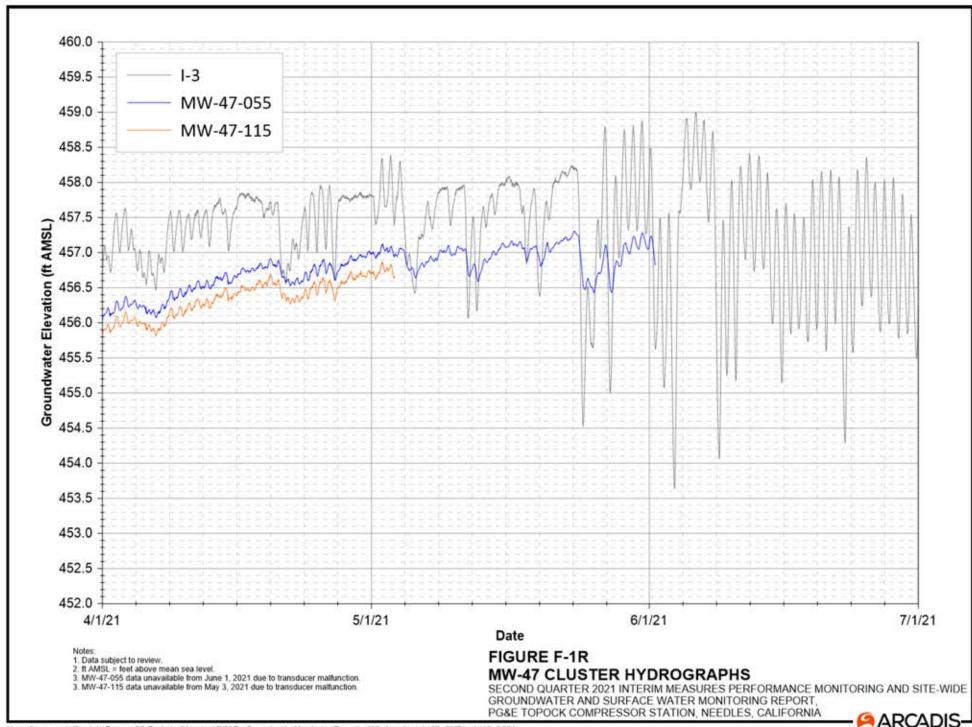


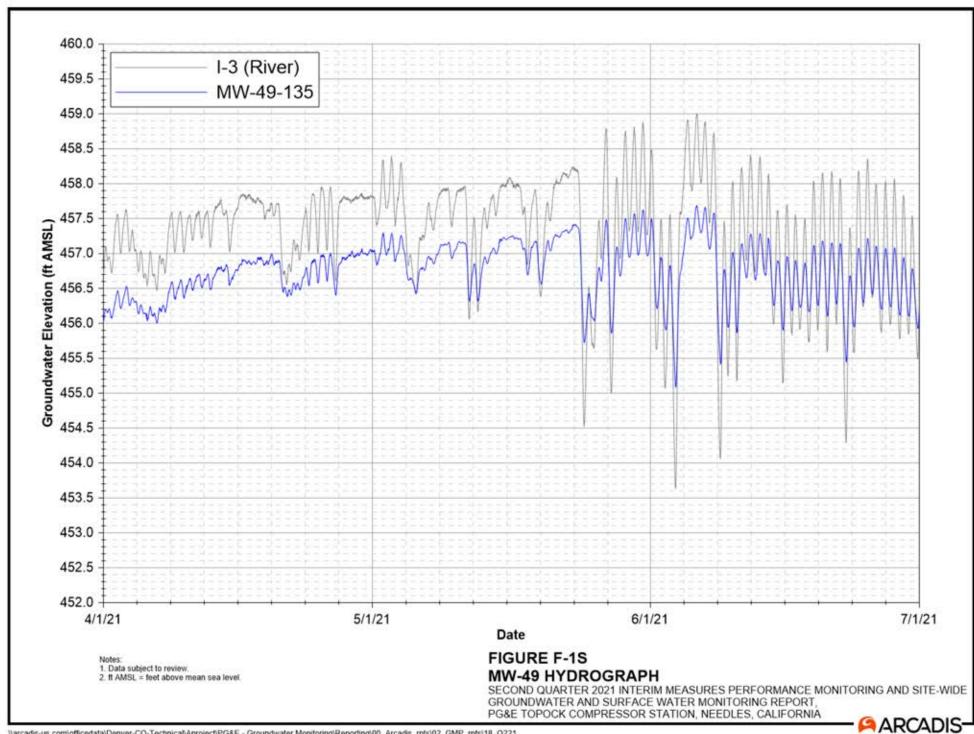


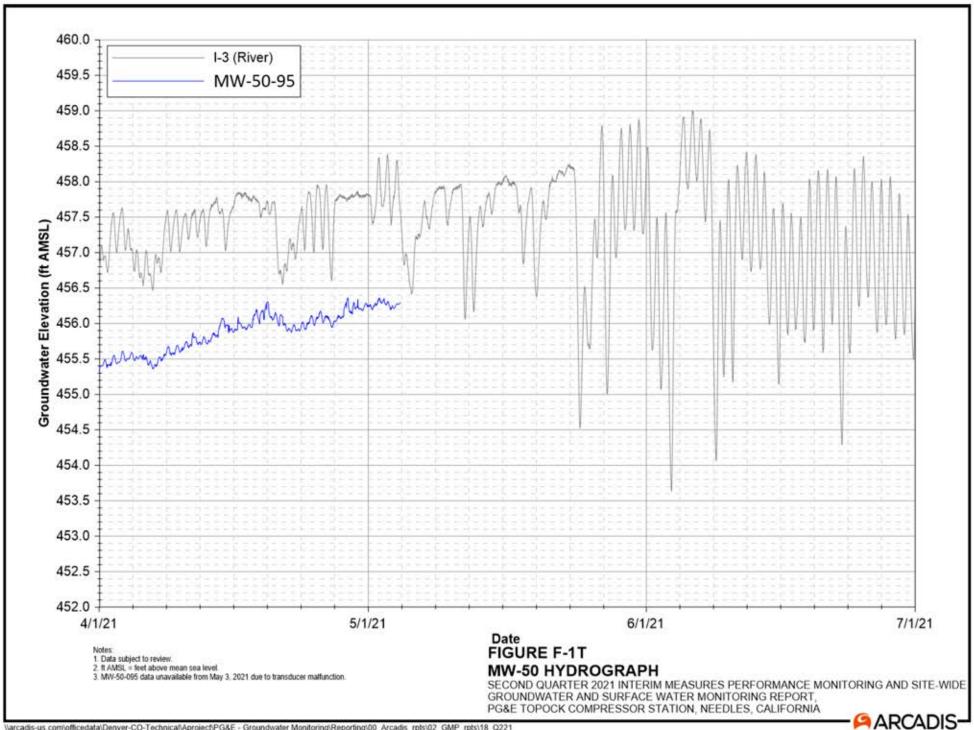


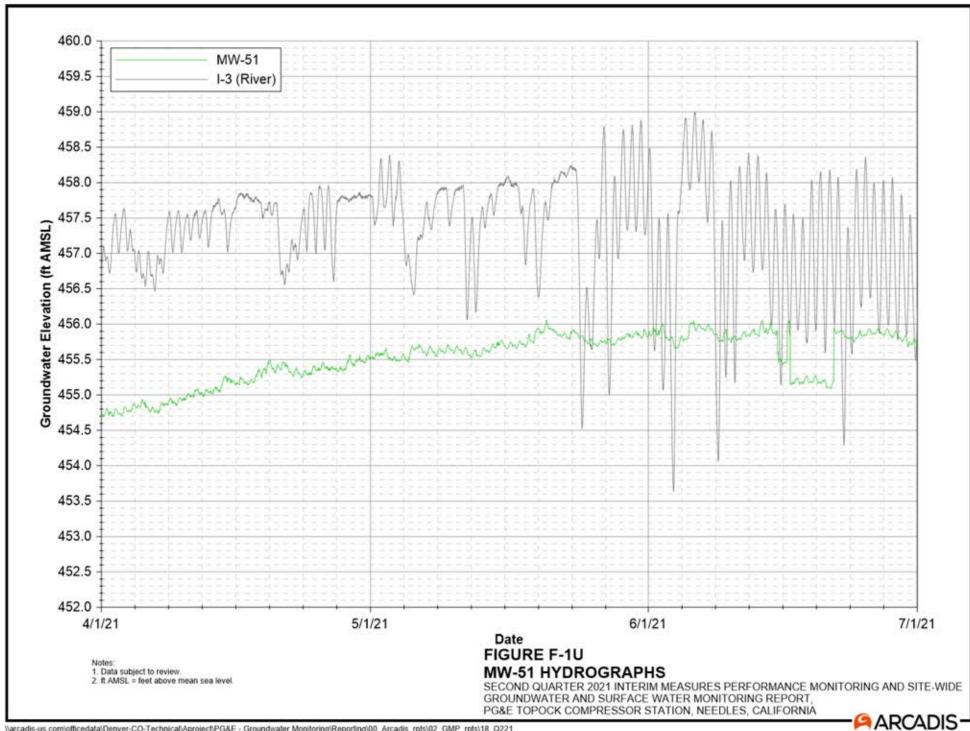


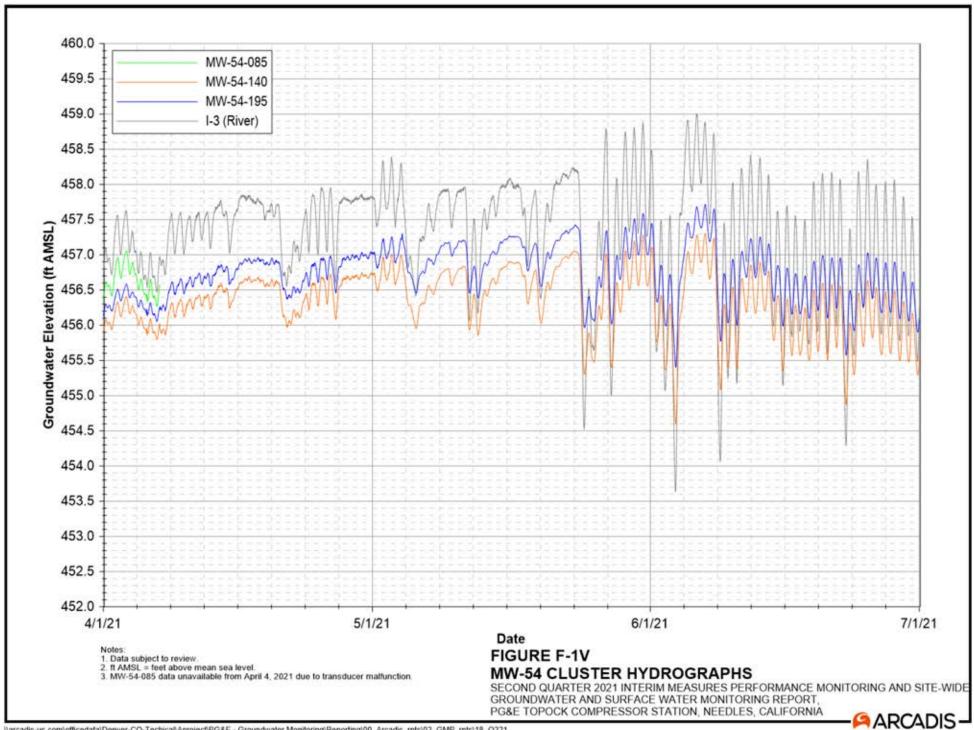


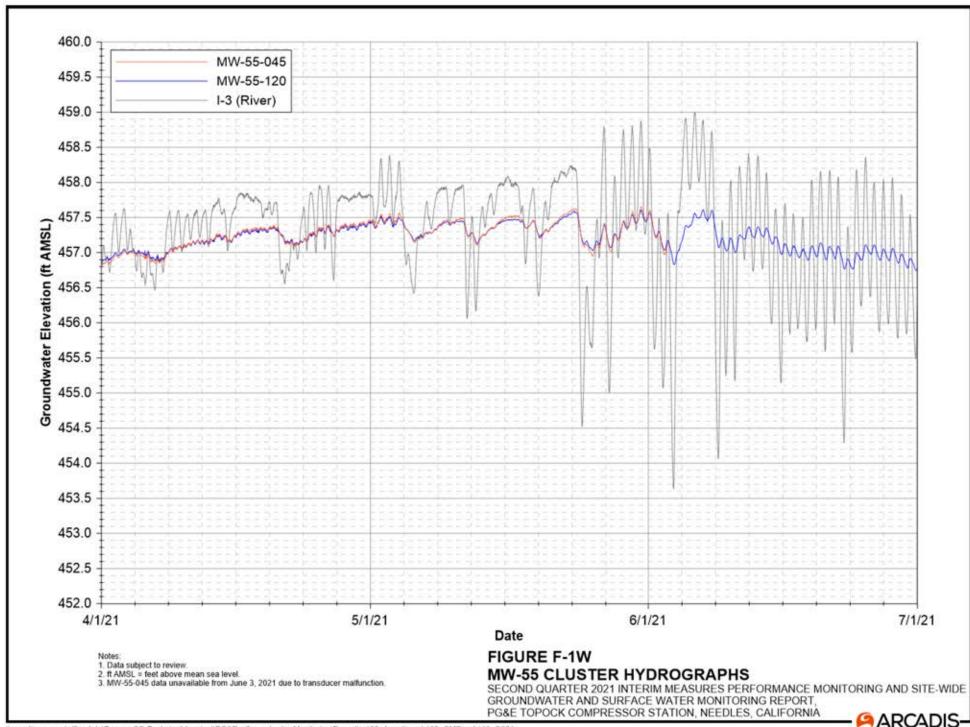


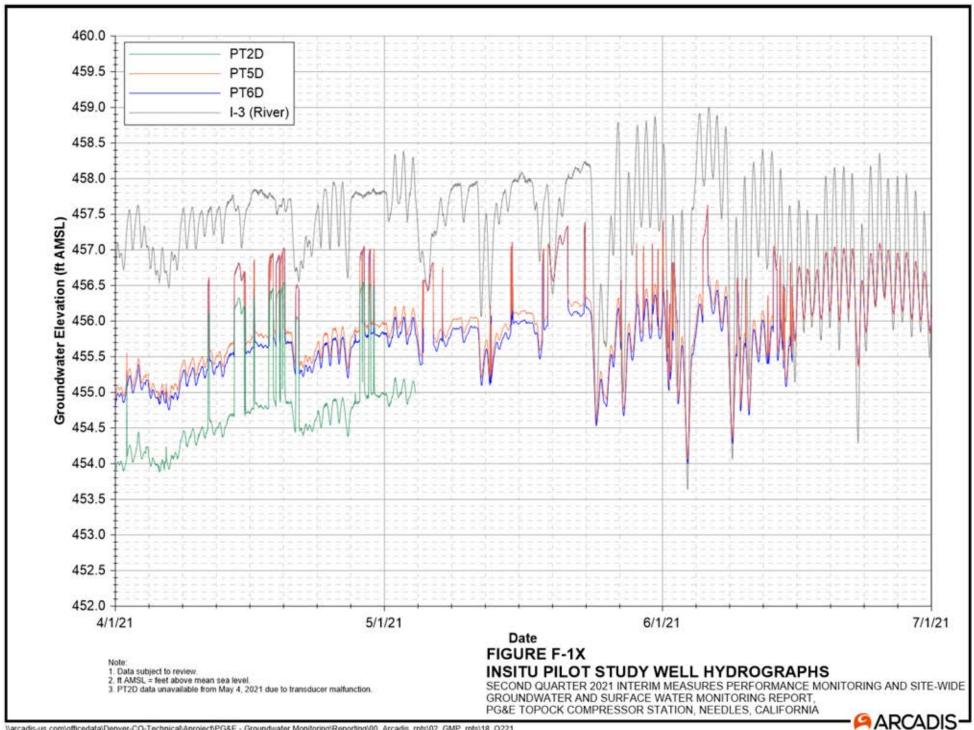












Arcadis U.S., Inc.

101 Creekside Ridge Court

Suite 200

Roseville, California 95678

Tel 916 786 0320

Fax 916 786 0366

www.arcadis.com