

Curt Russell Topock Project Manager Environmental Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.791.5884 Fax: 760.326.5542 E-Mail: gcr4@pge.com

December 15, 2019

Mr. Aaron Yue Project Manager California Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Subject: Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California (PGE20180115A)

Dear Mr. Yue:

Enclosed is the Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California, for Pacific Gas and Electric Company's Interim Measures (IMs) Performance Monitoring Program, the Groundwater Monitoring Program, and the Surface Water Monitoring Program for the Topock Project. This report presents the Second Quarter (July through October 2019) performance monitoring results for the IM-3 hydraulic containment system. This report also presents groundwater and surface water monitoring activities, results, and analyses related to the Groundwater and Surface Water Monitoring Programs during the Third Quarter 2019.

The IM quarterly performance monitoring report is submitted in conformance with the reporting requirements in the California Environmental Protection Agency, Department of Toxic Substances Control's (DTSC) IM directive, dated February 14, 2005, and updates and modifications approved by DTSC in letters or emails dated October 12, 2007; July 14, 2008; July 17, 2008; March 3, 2010; April 28, 2010; July 23, 2010; June 27, 2014; July 20, 2015; and August 18, 2017.

Please contact me at 760.791.5884 if you have any questions on the combined monitoring report.

Sincerely,

Curt Russell Topock Remediation Project Manager

Cc: Chris Guerre/DTSC Pam Innis/DOI Ken Foster/CA-SLC Bruce Campbell/AZ-SLD

Topock Project Executive Abstract				
Document Title:	Date of Document: December 15, 2019			
Third Quarter 2019 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles CA Submitting Agency: DTSC Final Document? Xes No	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E			
Priority Status: HIGH MED X LOW Is this time critical? Yes No Type of Document: Draft Report Letter Memo Other / Explain: Letter Memo What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:	Action Required: Information Only			
What is the consequence of NOT doing this item? What is the consequence of DOING this item? Submittal of this report is a compliance requirement under DTSC requirements.	Other Justification/s: Permit Other / Explain:			
Brief Summary of attached document: This quarterly report documents the monitoring activities and p containment system under the IM Performance Monitoring Prog Monitoring Program for the Topock Project. Hydraulic and chem hydraulic containment system performance based on a set of st Control (DTSC). Key items included in this report are: (1) measure	erformance evaluation of the interim measure (IM) hydraulic gram, the Groundwater Monitoring Program, and Surface Water nical monitoring data were collected and used to evaluate the IM andards approved by the California Department of Substances ed groundwater elevations and hydraulic gradient data at			

compliance well pairs that indicate the direction of groundwater flow is away from the Colorado River and toward the pumping centers on site; (2) hexavalent chromium data for monitoring wells; (3) pumping rates and volumes from the IM extraction system; and (4) Groundwater Monitoring Program and Surface Water Monitoring Program activities and results.

Based on the data and evaluation presented in this report, the IM performance standard has been met for the Third Quarter 2019. On July 23, 2010, DTSC approved a revised reporting schedule for this report that included a revised IM-3 sample collection period from July 1, 2019 through October 31, 2019.

Written by: PG&E

Recommendations: none

Version 9

Pacific Gas and Electric Company

THIRD QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT

Topock Compressor Station, Needles, California

December 15, 2019

This report was prepared under the supervision of a California Professional Geologist

Frederick T. Stanin, P.G., C. Hg Principal Hydrogeologist

Musion () chaffer

Alison Schaffer Arcadis Report Lead

Daniel Bush, P.E. Arcadis Project Manager

THIRD QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT

Topock Compressor Station, Needles, California

Prepared for:

California Department of Toxic Substances Control

Prepared by:

Arcadis U.S., Inc.

101 Creekside Ridge Court

Suite 200

Roseville

California 95678

Tel 916 786 0320

Fax 916 786 0366

Our Ref.:

30019133

Date:

December 15, 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acr	onyn	ns and <i>i</i>	Abbreviations	v		
Exe	cutiv	ve Sumi	mary	1		
1 Introduction						
	1.1	Third (Quarter 2019 Regulatory Communication	1		
	1.2	History of Groundwater Impact at the Site				
		1.2.1	Cr(VI) Impacts to Groundwater	2		
		1.2.2	Background Concentrations of Cr(VI)	2		
	1.3	Site-w	ide Groundwater and Surface Water Monitoring Programs	2		
		1.3.1	Basis for GMP and RMP Programs	2		
		1.3.2	GMP and RMP Monitoring Networks	3		
	1.4	Interin	n Measure Performance Monitoring Program	3		
		1.4.1	Basis for PMP Program	3		
		1.4.2	PMP Monitoring Network	4		
	1.5	Sustai	nability	7		
2	Third Quarter 2019 Monitoring Activities9					
	2.1 Groundwater Monitoring Program					
		2.1.1	Monthly Groundwater Monitoring	9		
		2.1.2	Quarterly Groundwater Monitoring	9		
		2.1.3	Sampling Method Trials at Select Wells1	0		
	2.2	2.2 Surface Water Monitoring Program				
	2.3 IM Performance Monitoring Program					
		2.3.1	Chromium Monitoring1	1		
		2.3.2	IM Extraction System Operation1	1		
		2.3.3	IM Hydraulic Monitoring1	1		
		2.3.4	IM Contingency Plan Monitoring1	2		
3	Site-Wide Groundwater and Surface Water Monitoring Results13					
	3.1	Groun	dwater Monitoring Results1	3		
		3.1.1	Cr(VI) and Dissolved Chromium1	3		
		3.1.2	Contaminants of Potential Concern and In-Situ By-Products1	3		

		3.1.3	Bat Cave Wash	14			
		3.1.4	Well Maintenance	14			
	3.2	Surfac	ce Water Monitoring Results	14			
		3.2.1	Cr(VI) and Dissolved Chromium	14			
		3.2.2	Contaminants of Potential Concern and In Situ By-Products	14			
	3.3	Data \	/alidation and Completeness	15			
4	Thir	d Quar	ter 2019 IM Performance Monitoring Program Evaluation	16			
	4.1	Distrib	oution of Hexavalent Chromium in the Floodplain	16			
	4.2	IM Ext	traction System Operation	16			
	4.3	IM Hy	draulic Monitoring Results	17			
	4.4	IM Co	ntingency Plan Monitoring Results	18			
	4.5	5 Projected River Levels During Next Quarter18					
	4.6	Third	Quarter 2019 Performance Monitoring Program Evaluation Summary	18			
5 Upcoming Operation and Monitoring Events				20			
5.1 Groundwater Monitoring Program							
		5.1.1	Monthly Groundwater Monitoring	20			
		5.1.2	Quarterly Groundwater Sampling	20			
		5.1.3	Sampling Method Trials at Select Wells	20			
	5.2	Surfac	e Water Monitoring Program	20			
	5.3 IM Performance Monitoring Program						
		5.3.1	Chromium Monitoring	20			
		5.3.2	IM Extraction System Operation	20			
		5.3.3	IM Hydraulic Monitoring	21			
		5.3.4	IM Contingency Plan Monitoring	21			
	5.4	Quarte	erly Notifications	21			
	5.5	.5 Monitoring Well Installation					
6	Refe	eferences					

TABLES

- 1-1 Topock Monitoring Reporting Schedule
- 1-2 GMP, RMP, and PMP Monitoring Summary
- 3-1 Groundwater Sampling Results, Third Quarter 2019
- 3-2 Bat Cave Wash Sampling Results, Third Quarter 2019
- 3-3 Surface Water Sampling Results, Third Quarter 2019
- 4-1 Pumping Rate and Extracted Volume for IM-3 System, Third Quarter 2019
- 4-2 Wells Monitored for Conditional Shutdown of PE-01, Third Quarter 2019
- 4-3 Groundwater Elevation Results, Third Quarter 2019
- 4-4 Average Hydraulic Gradients Measured at Well Pairs, Third Quarter 2019
- 4-5 Interim Measure Contingency Plan Trigger Levels and Results, Third Quarter 2019
- 4-6 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

FIGURES

- 1-1 Locations of IM-3 Facilities and Monitoring Locations
- 1-2 Monitoring Locations and Sampling Frequency for GMP
- 1-3 Monitoring Locations and Sampling Frequency for RMP
- 1-4 Locations of Wells and Cross-Sections Used for IM Performance Monitoring
- 3-1a Cr(VI) Sampling Results, Shallow Wells in Alluvial Aquifer and Bedrock, Third Quarter 2019
- 3-1b Cr(VI) Sampling Results, Deep Wells in Alluvial Aquifer and Bedrock, Third Quarter 2019
- 4-1 Cr(VI) Concentrations in Alluvial Aquifer and Bedrock, Third Quarter 2019
- 4-2 Cr(VI) Concentrations Floodplain Cross-Section B, Third Quarter 2019
- 4-3a Average Groundwater Elevations in Shallow Wells and River Elevations, Third Quarter 2019
- 4-3b Average Groundwater Elevations in Mid-depth Wells, Third Quarter 2019
- 4-3c Average Groundwater Elevations in Deep Wells, Third Quarter 2019
- 4-4 Average Groundwater Elevations for Wells in Floodplain Cross-Section A, Third Quarter 2019
- 4-5 Measured Hydraulic Gradients, River Elevation, and Pumping Rate, Third Quarter 2019
- 4-6 Past and Predicted Future River Levels at Topock Compressor Station

APPENDICES

- Appendix A Lab Reports, Third Quarter 2019 (Provided on CD with Hard Copy Submittal)
- Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations
- Appendix C Well Inspection and Maintenance Log, Third Quarter 2019
- Appendix D Cr(VI) Concentration Time Series Charts, Third Quarter 2019
- Appendix E Interim Measures Extraction System Operations Log, Third Quarter 2019
- Appendix F Hydrographs, Third Quarter 2019

ACRONYMS AND ABBREVIATIONS

δ2Η	deuterium
δ18Ο	oxygen-18
µg/L	microgram per liter
COPC	constituent of potential concern
Cr(VI)	hexavalent chromium
DTSC	California Environmental Protection Agency, Department of Toxic Substances Control
ft/ft	foot or feet per foot
GMP	Groundwater Monitoring Program
gpm	gallons per minute
IM	interim measure
IM-3	Interim Measures number 3
IMCP	Interim Measures Contingency Plan
MS	matrix spike
MSD	matrix spike duplicate
ORP	oxidation-reduction potential
PDS	post-digestion spike
PG&E	Pacific Gas and Electric Company
PMP	Performance Monitoring Program
QC	quality control
RCRA	Resource Conservation and Recovery Act
RMP	Surface Water Monitoring Program
RRB	Red Rock Bridge
TDS	total dissolved solids
TSS	total suspended solids
USBR	United States Bureau of Reclamation
USEPA	United States Environmental Protection Agency
UTL	upper tolerance limit

EXECUTIVE SUMMARY

This quarterly report documents the monitoring activities and performance evaluation of the interim measure (IM) hydraulic containment system under the Groundwater Monitoring Program (GMP), Surface Water Monitoring Program (RMP), and IM Performance Monitoring Program (PMP) for the Topock Compressor Station (the site). Chemical and hydraulic monitoring data were collected and used to determine if site conditions have changed and evaluate the IM hydraulic containment system performance based on a set of standards approved by the California Department of Toxic Substances Control (DTSC).

Key items included in this report are: (1) GMP and RMP activities and results; (2) hexavalent chromium data for monitoring wells in the floodplain area; (3) measured groundwater elevations and hydraulic gradient data at compliance well pairs; and (4) pumping rates and volumes from the IM extraction system.

During Third Quarter 2019, IM extraction well TW-03D was operated to support hydraulic control. Hydraulic gradient data indicate that the minimum landward gradient target of 0.001 foot per foot was exceeded each month, providing evidence of hydraulic containment of the hexavalent chromium plume. Hexavalent chromium concentrations greater than 20 micrograms per liter in the floodplain area were contained for removal and treatment. Based on the data and evaluation presented in this report, the IM performance standard has been met for the Third Quarter 2019.

1 INTRODUCTION

Pacific Gas and Electric Company (PG&E) is implementing interim measures (IMs) to address chromium concentrations in groundwater at the Topock Compressor Station (the site). The Topock Compressor Station is located in eastern San Bernardino County, 15 miles southeast of the City of Needles, California, as shown on Figure 1-1.

This report presents the monitoring data from three PG&E monitoring programs:

- Site-wide Groundwater Monitoring Program (GMP)
- Site-wide Surface Water Monitoring Program (RMP)
- Interim Measures (currently Interim Measure Number 3 [IM-3]) Performance Monitoring Program (PMP).

This report presents the monitoring data collected from PG&E's GMP, RMP, and PMP programs between July 1 and October 31, 2019 (hereafter referred to as "Third Quarter 2019"). Table 1-1 shows the current reporting schedule for these programs.

This report is divided into six sections:

Section 1 introduces the site; the GMP, RMP, and PMP programs; and the regulatory framework.

Section 2 describes the Third Quarter 2019 monitoring activities and site operations conducted in support of these programs.

Section 3 presents GMP and RMP monitoring results for the Third Quarter 2019.

Section 4 presents PMP monitoring results and the IM evaluation for the Third Quarter 2019.

Section 5 describes upcoming monitoring events for the Fourth Quarter 2019.

Section 6 lists the references cited throughout this report.

This combined GMP, RMP, and PMP reporting format was approved by the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) in May 2009 (DTSC 2009).

1.1 Third Quarter 2019 Regulatory Communication

PG&E communications with the DTSC in Third Quarter 2019 in regard to the GMP, RMP, and/or PMP programs are outlined below.

- The Second Quarter 2019 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report (PMP-GMP Report) was submitted to the DTSC on August 15, 2019 (Arcadis 2019b).
- Required GMP, RMP, and PMP notifications submitted for Third Quarter 2019 included:
 - On October 2, 2019, Arcadis sent a quarterly email notification to PG&E providing hexavalent chromium (Cr[VI]) and dissolved chromium results from the August 2019 shoreline and in-channel surface water sampling event. During the sampling event, Cr(VI) and dissolved chromium concentrations were lower than the respective reporting limits.

- On November 19, 2019, Arcadis, on behalf of PG&E, sent a quarterly email notification to the DTSC providing Cr(VI) and dissolved chromium results from four subject floodplain wells (MW-34-100, MW-44-115, MW-46-175, and MW-44-125).
- As part of the conditional approval for the shutoff of extraction well PE-01, GMP monitoring results for monitoring wells listed in the July 20, 2015 DTSC approval letter (see Section 1.4.2.2; DTSC 2015) are compared to the maximum Cr(VI) and dissolved chromium concentrations measured in 2014 (or for biennial sampling frequency, the 2013 maximum concentrations), and results that exceed the previous maximum are required to be reported to the DTSC within 40 days after the end of the quarterly GMP sampling event. In Third Quarter 2019, Cr(VI) and dissolved chromium concentrations were below the notification levels; therefore, a notification email was not submitted to the DTSC.

1.2 History of Groundwater Impact at the Site

1.2.1 Cr(VI) Impacts to Groundwater

The Topock Compressor Station began operations in 1951. Remediation efforts are ongoing to address Cr(VI) in soil and groundwater resulting from the historical water discharge practices. A comprehensive library documenting the history of remediation at the Topock Compressor Station is available on the DTSC website at http://dtsc-topock.com/ (DTSC 2018).

1.2.2 Background Concentrations of Cr(VI)

Based on a regional study of naturally occurring metals in groundwater and a statistical evaluation of these data, naturally occurring Cr(VI) in groundwater was calculated to exhibit an upper tolerance limit (UTL) concentration of 32 micrograms per liter (μ g/L; CH2M Hill 2009). This concentration is used as the background concentration for remedial activities. At the site, the Cr(VI) plume is mostly present within unconsolidated alluvial fan and fluvial deposits within the Alluvial Aquifer and, to a lesser extent, in fractured bedrock. Natural groundwater gradients are generally west-to-east at most of the site. The depth to groundwater and the thickness of the saturated sediments vary significantly across the site based on surface topography and the paleo-topography of the top of bedrock surface underneath the site.

1.3 Site-wide Groundwater and Surface Water Monitoring Programs

1.3.1 Basis for GMP and RMP Programs

Routine groundwater and surface water monitoring activities at the site began in 1998 following a Resource Conservation and Recovery Act (RCRA) facility investigation and are ongoing (CH2M Hill 2005). The main objective of the GMP and RMP programs is to monitor concentrations of Cr(VI) and other site constituents in groundwater and surface water to determine if site conditions have changed and to make decisions about remedial options and future monitoring (CH2M Hill 2005). In accordance with the 2005 Monitoring Plan for Groundwater and Surface Water Monitoring (CH2M Hill 2005), quarterly monitoring reports document groundwater and surface water monitoring activities performed at the site

during each reporting period. Monitoring reports to date are available on the DTSC website. This report documents the GMP and RMP monitoring activities conducted in Third Quarter 2019.

1.3.2 GMP and RMP Monitoring Networks

The GMP monitoring well network and RMP surface water monitoring network are shown on Figures 1-2 and 1-3, respectively and summarized in the table below. The complete GMP network includes 145 wells that monitor groundwater in the Alluvial Aquifer and bedrock. Well construction details for wells in the GMP monitoring well network are summarized in Table 1-2. The RMP network consists of 16 surface water monitoring locations, nine of which are sampled at multiple depths.

Groundwater Monitoring Wells	Surface Water Monitoring Wells			
133 monitoring wells in California, including two normally dry wells	10 river channel locations (9 of which are sampled at two different depths)			
8 monitoring wells in Arizona	4 shoreline locations			
4 IM-3 extraction wells	2 other surface water sampling locations (adjacent to the shoreline)			

GMP and RMP monitoring consists of collecting groundwater and surface water samples, inspecting the monitoring wells, and taking corrective actions as needed. GMP and RMP monitoring is performed quarterly, although the monitoring wells included in each GMP event vary by quarter. In addition, GMP monitoring is performed monthly at two extraction wells (TW-03D and PE-01). Table 1-2 provides a list of the monitoring wells and surface water monitoring locations included in the GMP and RMP programs and the monitoring frequency at each location. Monitoring frequency at GMP wells is also shown on Figure 1-2.

If a storm causes surface water flow in Bat Cave Wash, additional groundwater samples are collected from monitoring wells MW-09, MW-10, and MW-11. Bat Cave Wash is an incised ephemeral stream adjacent to the Topock Compressor Station, which flows following rainfall events and drains into the Colorado River (Figures 1-1 and 1-2).

1.4 Interim Measure Performance Monitoring Program

1.4.1 Basis for PMP Program

Operation of the current IM-3 system began in July 2005. The IM-3 system is intended to maintain hydraulic control of the groundwater Cr(VI) plume until the final corrective action is in place at the site (CH2M Hill 2007). The IM-3 system consists of a groundwater extraction system (four extraction wells: TW-02D, TW-03D, TW-02S, and PE-01), conveyance piping, a groundwater treatment plant, and an injection well field (for the discharge of the treated groundwater). Figure 1-1 shows the locations of the IM-3 extraction, conveyance, treatment, and injection facilities.

In a letter dated February 14, 2005, the DTSC issued an IM performance directive that established the operational requirements for the IM and methods for evaluating the performance of the IM (DTSC 2005).

As defined by the DTSC, the performance standard for the IM is to "establish and maintain a net landward hydraulic gradient, both horizontally and vertically, that ensures that Cr(VI) concentrations at or greater than 20 micrograms per liter [µg/L] in the floodplain are contained for removal and treatment" (DTSC 2005). The IM is required to maintain a landward hydraulic gradient of at least 0.001 foot per foot (ft/ft) within the lower portion of the Alluvial Aquifer (DTSC 2005).

In accordance with the February 2005 DTSC directive, the following conditions must be met to demonstrate achievement of the IM performance standard (DTSC 2005):

- Demonstrate that a landward hydraulic gradient is maintained within the lower portion of the Alluvial Aquifer in the floodplain by:
 - Providing potentiometric surface contour maps of the Alluvial Aquifer within the floodplain area
 - o Providing calculated hydraulic gradients using established gradient well pairs.
- Demonstrate that Cr(VI) concentrations greater than 20 µg/L in the floodplain area are contained for removal and treatment by:
 - Depicting the 20 and 50 µg/L isoconcentration contours for Cr(VI) within the floodplain on potentiometric surface maps and hydrogeologic cross-sections
 - Providing maps and cross-sections of the Cr(VI) concentration for the upper, middle, and lower portions of the Alluvial Aquifer in the floodplain area
 - Providing time versus concentration graphs for Cr(VI) measured in floodplain wells.

The February 2005 DTSC directive also defined the reporting requirements for the IM (DTSC 2005). In October 2007, the DTSC approved modifications to the reporting requirements, discontinuing monthly performance monitoring reports and continuing with quarterly and annual reports (DTSC 2007). The DTSC approved additional updates and modifications to the PMP in letters dated October 12, 2007; July 14, 2008; July 16, 2008; March 3, 2010; April 28, 2010; and June 27, 2014 (DTSC 2007, 2008a, 2008b, 2010a, 2010b, 2014).

1.4.2 PMP Monitoring Network

The PMP consists of a network of monitoring wells used to demonstrate achievement of the IM performance standard. Subsets of wells within the PMP network, including: (1) chromium monitoring network; (2) IM extraction wells; (3) IM hydraulic monitoring network; (4) IM Contingency Plan (IMCP) monitoring wells; and (5) IM chemical performance monitoring network, focus on different methods for evaluating performance of the IM. The PMP monitoring network is presented in the table below and shown on Figure 1-4.

PMP Monitoring Network

Chromium Monitoring Network (145 monitoring wells included in the GMP)

IM Extraction Wells (4 monitoring wells)

- TW-02D
- TW-03D
- TW-02S
- PE-01

IM Hydraulic Monitoring Network (57 monitoring wells and 2 river monitoring locations)

- 16 shallow monitoring wells
- 15 mid-depth monitoring wells
- 26 deep monitoring wells
- 2 river monitoring locations: I-3 and Red Rock Bridge (RRB)

IMCP Monitoring Wells (24 monitoring wells)

- 6 shallow monitoring wells
- 5 mid-depth monitoring wells
- 13 deep monitoring wells

IM Chemical Performance Monitoring Network (10 monitoring wells and 1 river monitoring location)

- 5 shallow monitoring wells
- 2 mid-depth monitoring wells
- 3 deep monitoring wells
- 1 river monitoring location: R-28

The subsets of monitoring well networks within the PMP are described in the following subsections.

1.4.2.1 Chromium Monitoring Network

Cr(VI) data, collected as part of the GMP, are used to generate maps, cross-sections, and concentration time series charts that demonstrate that Cr(VI) concentrations greater than 20 µg/L in the floodplain area are contained for removal and treatment. As described in Section 1.3.2, groundwater sampling events are performed quarterly; however, the monitoring wells included in each sampling event vary by quarter. In addition, groundwater sampling is performed monthly at extraction wells TW-03D and PE-01. Table 1-2 lists the monitoring wells included in the chromium monitoring network (i.e., the GMP monitoring network) and the monitoring frequency of each location.

1.4.2.2 IM Extraction Wells

The PMP includes four IM extraction wells, which are used to ensure a landward hydraulic gradient via groundwater extraction (Figure 1-4). The operation of the IM extraction system, including pumping rates, planned/unplanned downtime, and volume of groundwater extracted from each extraction well, is documented to demonstrate proper operation of the extraction system. In addition, the wells are sampled

as part of the GMP: extraction wells TW-03D and PE-01 are sampled monthly, TW-02D is sampled quarterly, and TW-02S is sampled annually.

Wells Monitored for Conditional Shutdown of PE-01

On July 20, 2015, the DTSC conditionally approved a proposal to modify the IM-3 pumping regime by allowing PE-01 to be shut off and pumping to be shifted to TW-03D and TW-02D or TW-02S, so long as gradient targets are maintained and contingency is not triggered based on chromium concentrations in select floodplain wells (DTSC 2015). Because PE-01 pumps water with low concentrations of chromium (typically less than 5 μ g/L), shifting more pumping to a higher concentration extraction well can increase the rate of chromium removal from the floodplain.

As part of the conditional approval for PE-01 shutoff, GMP monitoring results from 47 monitoring wells listed in the July 20, 2015 DTSC approval letter (i.e., wells within approximately 800 feet of TW-03D; Table 1-2) are compared to the maximum detected Cr(VI) and dissolved chromium concentrations from 2014 (or 2013 for wells sampled biennially). If any of the wells exceed the 2014 maximum concentration, then the DTSC must be notified within 40 days after completion of the field sampling event to determine if PE-01 pumping should be reinitiated (DTSC 2015).

1.4.2.3 IM Hydraulic Monitoring Network

The IM hydraulic monitoring network consists of 52 monitoring wells located on the California side of the Colorado River and two river monitoring locations (I-3 and RRB) used to evaluate the performance of the IM-3 system by demonstrating compliance of the required hydraulic gradient of 0.001 ft/ft (Figure 1-4, Table 1-2). In addition, five groundwater monitoring wells located on the Arizona side of the Colorado River (MW-54-085, MW-54-140, MW-54-195, MW-55-045, and MW-55-120; not formally part of the PMP) also provide groundwater elevation data that demonstrate hydraulic gradients on the Arizona side of the river (Figure 1-4). Groundwater and surface water elevation data from these locations are collected monthly using pressure transducers installed at each location.

Groundwater elevation data collected from the IM hydraulic monitoring network are used to develop potentiometric maps of shallow, mid-depth, and deep groundwater and measure hydraulic gradients of three well pairs (northern, central, and southern) to demonstrate compliance with the required 0.001 ft/ft landward hydraulic gradient. On August 18, 2017, the DTSC approved use of monitoring well MW-20-130 in place of well MW-45-095 in the central and southern gradient well pairs during months when extraction well PE-01 is not pumped for hydraulic control at the site (DTSC 2017b). The current gradient well pairs are:

- Northern Gradient Pair: MW-31-135 and MW-33-150
- When PE-01 is operated for hydraulic control:
 - o Central Gradient Pair: MW-45-095 and MW-34-100
 - o Southern Gradient Pair: MW-45-095 and MW-27-085
- When PE-01 is not operated for hydraulic control:
 - Central Gradient Pair: MW-20-130 and MW-34-100

o Southern Gradient Pair: MW-20-130 and MW-27-085

1.4.2.4 IM Contingency Plan Monitoring Wells

The IMCP was developed to detect and control possible migration of the Cr(VI) plume toward the Colorado River (DTSC 2005). Twenty-four IMCP wells were selected as part of an early detection system to detect any increases in chromium concentrations at areas of interest across the site (Figure 1-4, Table 1-2). The IMCP wells are sampled quarterly, as part of the GMP monitoring program (note that not all 24 wells are sampled each quarter), to determine if any increasing trends in Cr(VI) concentrations are observed. If Cr(VI) concentrations exceed the established trigger levels (based on historical Cr[VI] concentrations), then a contingency plan must be implemented in accordance with the Revised Contingency Plan Flow Chart (DTSC 2005; PG&E 2008).

1.4.2.5 IM Chemical Performance Monitoring Network

Eleven IM chemical performance monitoring wells are sampled annually or biennially to help evaluate performance of the future remedy (Figure 1-4, Table 1-2). Wells are sampled for an expanded chemistry suite (dissolved boron, bromide, dissolved calcium, chloride, dissolved magnesium, nitrate/nitrite as nitrogen, dissolved potassium, dissolved sodium, sulfate, total alkalinity [as calcium carbonate], total dissolved solids [TDS], and stable isotopes [oxygen-18 { δ 18O} and deuterium { δ 2H}]), which was last amended in 2008 (DTSC 2008b; PG&E 2008). Currently, nine monitoring wells and one river monitoring location (R-28) are sampled annually, and one well is sampled biennially (MW-26). Results of IM chemical performance monitoring were last reported in the Fourth Quarter 2018 and Annual GMP-PMP Report (Arcadis 2019a). The next scheduled monitoring event is planned for Fourth Quarter 2019.

1.5 Sustainability

The GMP, RMP, and PMP programs strive to use sustainable sampling and data collection practices. This section briefly describes some of the sustainability practices now in use, which aim to reduce emissions from travel, reduce waste, conserve resources, and reduce potential impacts to nesting habitat and culturally sensitive areas.

- Groundwater sampling purge water is disposed on site via the IM-3 treatment plant and injection process.
- The RMP boat contractor is employed locally.
- Laboratory services are provided by a California-certified, Las Vegas-based lab.
- Cr(VI) and nitrate analytical methods were revised to methods with longer holding times.
- Reports are submitted via the DTSC website and electronically, and the number of hard copy quarterly report submittals has been reduced over time.
- Solar-powered data telemetry systems were installed at six key gradient compliance well locations located in floodplain areas with nesting habitat for sensitive avian species.

- Low-flow sampling methods are used at most wells screened in the Alluvial Aquifer, reducing the volume of purge water. In Fourth Quarter 2018, sampling method trials were evaluated for additional wells, which supported changing the sampling method from three-volume purge to low-flow sampling.
- For wells still using the three-volume purge sampling methods, pumps and tubing are sized for the optimum purge technique at each well.
- Utility vehicles (e.g., Polaris Ranger or Kawasaki Mule) and a quiet electric four-wheel-drive utility vehicle are used to access wells on the floodplain and in some culturally sensitive areas rather than the full-size pickup truck.
- The IM-3 pumping regime was modified to allow PE-01 to be periodically shut off with pumping shifted to TW-03D and TW-02D or TW-02S. When applied, this modification allows for an increase in the rate of chromium removal from the floodplain.

2 THIRD QUARTER 2019 MONITORING ACTIVITIES

This section summarizes the monitoring activities completed during Third Quarter 2019 for the GMP, RMP, and PMP programs.

2.1 Groundwater Monitoring Program

The Third Quarter 2019 GMP consisted of monthly and quarterly groundwater monitoring, and sampling method trials at select monitoring wells.

2.1.1 Monthly Groundwater Monitoring

Monthly GMP monitoring events were performed at IM extraction wells PE-01 and TW-03D in July, August, September, and October 2019 and consisted of groundwater sampling. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Samples were collected from the tap of the extraction wells (see Table 1-2). During collection of each groundwater sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, oxidation-reduction potential [ORP], turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada. Samples were analyzed for the following constituents:

- Cr(VI) and dissolved chromium
- General chemistry parameters: specific conductivity, pH, alkalinity, chloride, sulfate, and TDS
- Constituents of potential concern (COPCs): nitrate/nitrite as nitrogen
- In-situ by-products: dissolved iron and dissolved manganese
- Cations: dissolved calcium, dissolved magnesium, and dissolved sodium.

2.1.2 Quarterly Groundwater Monitoring

The quarterly GMP monitoring event was performed on August 19 - 22, September 25 - 26, and October 1 - 3, 2019 and consisted of groundwater sampling and inspection of 20 monitoring wells. In addition, monitoring well MW-54-195 was re-sampled in Third Quarter 2019 to verify the Second Quarter 2019 results. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Samples were collected using low-flow or grab sampling methods (see Table 1-2). During collection of each groundwater sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, ORP, turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada; the sample collected from monitoring well MW-54-195 in Arizona was sent to EMAX Laboratories, Inc. in Torrance, California. Samples were analyzed for the following constituents (note that not all samples were analyzed for the complete analytical suite listed below):

- Cr(VI) and dissolved chromium
- General chemistry parameters: Specific conductivity
- COPCs: dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen
- In-situ by-products: dissolved arsenic and dissolved manganese.

Flow in Bat Cave Wash

In September 2019, PG&E was notified of a rainfall event that caused surface water flow in Bat Cave Wash. Therefore, additional groundwater sampling was performed on September 30, 2019 at monitoring wells MW-09, MW-10, and MW-11 to assess any potential effect of surface water flow on groundwater. Samples were sent to Asset Laboratories in Las Vegas, Nevada and were analyzed for the following constituents:

- Cr(VI) and dissolved chromium
- Bromide
- Chloride
- Dissolved boron
- Dissolved iron
- Cations (dissolved calcium, dissolved magnesium, and dissolved sodium)
- Sulfate
- Total alkalinity as calcium carbonate
- TDS.

2.1.3 Sampling Method Trials at Select Wells

In accordance with a June 27, 2014 email from the DTSC, PG&E began conducting sampling method trials (DTSC 2014). The purpose of the sampling method trials was to directly compare two different sampling methods. In August 2015, PG&E sent a letter to the DTSC recommending additional wells for low-flow sampling and proposing an additional sampling method trial for select bedrock wells (PG&E 2015). The DTSC responded to this request with technical memoranda on April 6 and October 20, 2017, which provided conditional approval for actions including expanding the sampling method trials to specific long-screen and bedrock wells (DTSC 2017a, 2017c).

Sampling method trials were conducted at 10 monitoring wells during the 2018 Annual Reporting Period (January through December 2018) and were discontinued at nine of the 10 monitoring wells in Second Quarter 2019. The sampling method trial at MW-60BR-245 (comparing low-flow and three-volume purge sampling methods) has continued; however, the monitoring well could not be accessed and sampled in Third Quarter 2019 due to site construction activities for the final groundwater remedy.

2.2 Surface Water Monitoring Program

Third Quarter 2019 RMP monitoring was performed on August 21 and 22, 2019. During the RMP monitoring event, 25 surface water samples were collected from 16 locations. At nine of the 16 locations, samples were collected from two depth intervals: shallow (1 foot below water surface) and deep (1 foot above the river bottom). The surface water locations are shown on Figure 1-3 and listed in Table 1-2. During collection of each surface water sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, ORP, turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada for analysis of the following constituents:

- Cr(VI) and dissolved chromium
- General chemistry parameters: Specific conductivity and pH
- COPCs: dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen
- In-situ by-products: dissolved arsenic, total and dissolved iron, and dissolved manganese
- Geochemical Parameters: dissolved barium and total suspended solids (TSS).

2.3 IM Performance Monitoring Program

IM performance monitoring in Third Quarter 2019 consisted of groundwater chromium monitoring within the floodplain area, a review of IM extraction system operation, and IM hydraulic monitoring. In addition, Cr(VI) and dissolved chromium data collected during chromium monitoring activities were used to monitor shutdown of extraction well PE-01 and evaluate the need to implement the IMCP.

2.3.1 Chromium Monitoring

Chromium monitoring was performed as part of the monthly and quarterly GMP monitoring activities. Twenty monitoring wells were sampled for Cr(VI) in August, September, and October 2019. Extraction wells PE-01 and TW-03D were sampled monthly in July, August, September, and October 2019. The monitoring well locations are shown on Figure 1-4 and listed in Table 1-2. Cr(VI) analytical results were used to evaluate Cr(VI) distribution in the floodplain area.

2.3.2 IM Extraction System Operation

The IM extraction system was operated in July, August, September, and October 2019. Pumping rates planned or unplanned downtime, and the volume of groundwater extracted from each IM extraction well were documented. Daily IM-3 inspections were performed, including general facility inspections, flow measurements, and site security monitoring. Daily logs with documentation of inspections are maintained on site.

Wells Monitored for Conditional Shutdown of PE-01

As discussed in Section 1.4.2.2, four GMP monitoring wells were sampled for Cr(VI) and dissolved chromium in Third Quarter 2019 GMP as part of the conditional approval for PE-01 shutdown. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Results were evaluated against the maximum detected Cr(VI) and dissolved chromium concentrations from 2014.

2.3.3 IM Hydraulic Monitoring

Groundwater elevation data from monitoring wells and river monitoring locations within the IM hydraulic monitoring network are measured using pressure transducers, which record continuous water levels at 30-minute intervals. Pressure transducers were downloaded in Third Quarter 2019 during the first 2 weeks of each month from the 52 monitoring wells in the IM hydraulic monitoring network, two river monitoring locations (I-3 and RRB), and five wells located on the Arizona side of the Colorado River. The monitoring well and river monitoring locations are shown on Figure 1-4 and listed in Table 1-2. Pressure

transducers at the six gradient control monitoring wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, MW-45-095, and MW-20-130) were downloaded via a cellular telemetry system.

2.3.4 IM Contingency Plan Monitoring

As discussed in Section 1.4.2.4, three IMCP monitoring wells were sampled for Cr(VI) as part of the Third Quarter 2019 GMP program. The monitoring well locations are shown on Figure 1-4 and listed in Table 1-2. Results were evaluated against established trigger levels (based on historical Cr[VI] concentrations).

3 SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING RESULTS

This section summarizes results from the groundwater and surface water monitoring activities performed during Third Quarter 2019 for the GMP and RMP programs.

3.1 Groundwater Monitoring Results

3.1.1 Cr(VI) and Dissolved Chromium

Table 3-1 presents the Third Quarter 2019 groundwater sample results for Cr(VI) and dissolved chromium, as well as general chemistry parameters (specific conductivity, ORP, pH, and turbidity). The laboratory reports for samples analyzed during Third Quarter 2019 are provided in Appendix A. Note that monitoring wells MW-57-050 and MW-58-065 were dry during the sampling event and monitoring well MW-60BR-245 could not be accessed due to site construction activities for the final groundwater remedy; therefore, these wells were not sampled in Third Quarter 2019 and are not included in Table 3-1. Historical Cr(VI) and dissolved chromium concentration data are presented in Appendix B.

Figures 3-1a and 3-1b show the distribution of Cr(VI) concentrations across the site in wells monitoring the upper-depth (shallow) and lower-depth (deep) intervals of the Alluvial Aquifer and bedrock. These figures also show the interpreted extent of groundwater Cr(VI) concentrations higher than 32 μ g/L for each depth interval. The value of 32 μ g/L is based on the calculated natural background UTL for Cr(VI) in groundwater from the background study (CH2M Hill 2009). The extent of the Cr(VI) plume is consistent with previous years.

During Third Quarter 2019, the maximum detected Cr(VI) and dissolved chromium concentrations were 9,700 μ g/L and 11,000 μ g/L (both at MW-68-180), respectively. In Second Quarter 2019, Cr(VI) and dissolved chromium concentrations at MW-54-195 (ND [0.5] μ g/L and 15.1 μ g/L, respectively) were inconsistent with each other and the dissolved chromium result was not consistent with historical results at this location. The monitoring well was re-sampled in Third Quarter 2019 to verify the Second Quarter 2019 results. Third Quarter 2019 results for Cr(VI) and dissolved chromium were consistent with historical results (Appendix B), indicating that the Second Quarter 2019 dissolved chromium result of 15.1 μ g/L was anomalous.

3.1.2 Contaminants of Potential Concern and In-Situ By-Products

Table 3-1 presents the Third Quarter 2019 groundwater sample results for COPCs (dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen) and in-situ by-products (dissolved arsenic and dissolved manganese). Maximum concentrations for each constituent are summarized below:

- Dissolved molybdenum: 190 μg/L (MW-46-175)
- Dissolved selenium: 10 µg/L (MW-68-180)
- Nitrate/nitrite as nitrogen: 14 milligrams per liter (mg/L; MW-65-160)
- Dissolved arsenic: 13 µg/L (MW-72-080)

• Dissolved manganese: 840 µg/L (MW-64BR).

3.1.3 Bat Cave Wash

Table 3-2 presents analytical results for monitoring wells MW-09, MW-10, and MW-11, which were sampled on September 30, 2019 after a rainfall event in September 2019. The September 2019 results are consistent with historical sampling results from these monitoring wells, including post-rainfall sampling results from Third Quarter 2015, Second Quarter 2016, First Quarter 2017, First Quarter 2018, and First Quarter 2019 (Table 3-2).

3.1.4 Well Maintenance

Monitoring wells were inspected during groundwater sampling activities in Third Quarter 2019. No corrective or maintenance actions were needed. Appendix C provides a summary of the inspection results.

3.2 Surface Water Monitoring Results

3.2.1 Cr(VI) and Dissolved Chromium

Table 3-3 presents the Third Quarter 2019 surface water sample results for Cr(VI) and dissolved chromium, as well as general chemistry parameters (pH and specific conductivity). Cr(VI) and dissolved chromium from the August 2019 sampling event were not detected at concentrations higher than reporting limits at any surface water monitoring location. The laboratory reports for samples analyzed during Third Quarter 2019 are provided in Appendix A.

3.2.2 Contaminants of Potential Concern and In Situ By-Products

Table 3-3 presents the Third Quarter 2019 surface water results for COPCs (dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen), in-situ by-products (dissolved arsenic, total iron, dissolved iron, and dissolved manganese), and other geochemical indicator parameters (dissolved barium and TSS). Maximum concentrations for each constituent are summarized below (with associated locations):

- Dissolved molybdenum: 4.8 µg/L (C-CON-S and C-R27-D)
- Dissolved selenium: 1.9 J µg/L (C-R27-D)
- Nitrate/nitrite as nitrogen: 1.8 mg/L (C-TAZ-D)
- Dissolved arsenic: 2.1 to 2.4 µg/L (all locations)
- Total iron: 290 µg/L (C-MAR-D)
- Dissolved iron: 55 µg/L (C-MAR-D)
- Dissolved manganese: 13 µg/L (RRB)
- Dissolved barium: 110 to 120 µg/L (all locations)
- TSS: 12 mg/L (C-MAR-D and C-MAR-S).

3.3 Data Validation and Completeness

Laboratory analytical data from the Third Quarter 2019 sampling events were reviewed by project chemists to assess data quality and to identify deviations from analytical requirements.

The following bullets summarize the notable analytical qualifications in data reported for the Third Quarter 2019:

- The serial dilution performed on sample MW-58BR-Q319 did not meet the precision criteria for dissolved chromium and dissolved chromium was recovered at concentrations less than quality control (QC) limits in the matrix spike (MS) and matrix spike duplicate (MDS) of sample MW-58BR-Q319. The parent sample and associated field duplicate were qualified as estimated detects and flagged "J."
- Iron was recovered at concentrations less than QC limits in the MS, MSD, and post digestion spike (PDS) of sample C-TAZ-D-Q319. The associated parent sample was qualified as an estimated detect and flagged "J."
- Dissolved selenium demonstrated a relative percent difference greater than QC criteria for the parent/field duplicate pair of samples C-R27-D-Q319/MW-905-Q319. The associated results were qualified as estimated detects and flagged "J."
- Based on the March 2007 USEPA ruling, and reaffirmed in the May 2012 USEPA ruling, pH has a 15minute holding time. As a result, all samples analyzed in a certified lab by Method SM4500-HB (pH) are analyzed outside the USEPA-recommended holding time. Therefore, the pH results for the Third Quarter 2019 sampling event analyzed in a certified lab are considered estimated.

No other significant analytical deficiencies were identified in the Third Quarter 2019 data. Additional details are provided in the data validation reports kept in the project file and available upon request.

4 THIRD QUARTER 2019 IM PERFORMANCE MONITORING PROGRAM EVALUATION

This section summarizes results of the Third Quarter 2019 PMP evaluation.

4.1 Distribution of Hexavalent Chromium in the Floodplain

Cr(VI) data collected as part of the Third Quarter 2019 GMP monitoring activities were used to generate maps, cross-sections, and concentration time series charts to demonstrate that Cr(VI) concentrations greater than 20 μ g/L in the floodplain area are contained for removal and treatment.

Distribution of Cr(VI) concentrations in the upper-depth (shallow wells) and lower-depth (deep wells) intervals of the Alluvial Aquifer is shown in plan-view and cross-section view (cross-section A) on Figure 4-1. Figure 4-2 presents Cr(VI) concentrations for cross-section B, oriented parallel to the Colorado River. The locations of cross-sections A and B are shown on Figure 4-1. The figures demonstrate that Cr(VI) concentrations decrease from west to east along the floodplain (cross-section A) and that concentrations greater than 20 μ g/L are contained in the floodplain area.

Appendix D provides Cr(VI) concentration time series charts for wells sampled in Third Quarter 2019 and includes Cr(VI) concentration time series charts for six deep monitoring wells in the floodplain area (MW-34-100, MW-36-090, MW-36-100, MW-44-115, MW-44-125, and MW-46-175) that have historically been monitored for chromium encroachment. These six wells are located between the IM extraction wells and the Colorado River, and, therefore, show the distribution of Cr(VI) concentrations at the toe of the Cr(VI) plume. As shown by the concentration time series charts, Cr(VI) concentrations have decreased since initiation of the IM extraction system in 2005 and have remained relatively steady over the past few years. In Third Quarter 2019, Cr(VI) concentrations at the six wells were below 20 µg/L (Appendices B and D). In general, wells showing marked decreases in Cr(VI) concentration are generally located in the floodplain area where IM pumping is removing chromium in groundwater.

4.2 IM Extraction System Operation

During Third Quarter 2019, IM extraction well TW-03D operated at an average pumping rate of 123.5 gallons per minute (gpm) to support hydraulic control. The target pumping rate was 135 gpm. Extraction wells PE-01 and TW-02D were only operated for brief periods to support IM-3 system maintenance and sampling. Extraction well TW-02S was not operated. The average monthly pumping rates were 123.4 gpm (July 2019), 110.7 gpm (August 2019), 127.9 gpm (September 2019), and 131.9 (October 2019). Table 4-1 shows the average pumping rates and total groundwater volumes pumped during Third Quarter 2019.

The IM-3 system extracted and treated 21,859,068 gallons of groundwater during Third Quarter 2019, and an estimated 78 pounds (35.4 kilograms) of chromium were removed from the aquifer between June 1 and September 30, 2019 (Table 4-1). Note that groundwater extraction is reported on a different schedule than chromium removal reporting (i.e., July through October and June through September, respectively; Table 4-1). The operational runtime percentage for the IM-3 system during Third Quarter

2019 was 92.7 percent. Appendix E provides the operations log for the IM-3 system, including planned and unplanned downtime.

Chromium Concentrations in Wells Monitored for Conditional Shutdown of PE-01

During Third Quarter 2019, Cr(VI) and dissolved chromium concentrations in monitoring wells MW-34-100, MW-44-115, MW-46-175, and PE-01 were lower than the 2014 maximum concentrations (i.e., notification levels). Shutdown of extraction well PE-01 continued through the end of the reporting period. Table 4-2 presents the Cr(VI) and dissolved chromium concentrations and their associated 2014 maximum concentrations.

4.3 IM Hydraulic Monitoring Results

Table 4-3 presents the Third Quarter 2019 average monthly and quarterly groundwater and river elevations, calculated from the pressure transducer data. Average daily groundwater and river elevations are provided as hydrographs in Appendix F. Groundwater elevations were adjusted for temperature and salinity differences among wells (i.e., adjusted to a common freshwater equivalent).

Hydraulic Gradient Evaluation: California Floodplain

Figures 4-3a, 4-3b, and 4-3c present the average Third Quarter 2019 groundwater elevations and associated groundwater contours for the shallow, mid-depth, and deep wells, respectively. Figure 4-4 presents the average groundwater elevations and associated groundwater contours for wells located in the floodplain along cross-section A. Due to complex vertical gradients present at portions of the Topock site, water levels for some wells are not considered in the contouring on Figures 4-3a, 4-3b, 4-3c, or 4-4.

During Third Quarter 2019, hydraulic gradients were measured for three gradient well pairs selected for performance monitoring of the IM-3 system (shown on Figure 1-4; note that PE-01 was not operated for hydraulic control):

- Northern Gradient Pair: MW-31-135 and MW-33-150
- Central Gradient Pair: MW-20-130 and MW-34-100
- Southern Gradient Pair: MW-20-130 and MW-27-085.

As discussed in Section 1.4.2.3, a landward hydraulic gradient of 0.001 ft/ft must be maintained to demonstrate compliance with the performance standard. Table 4-4 presents the monthly average hydraulic gradients measured for each of the gradient well pairs in Third Quarter 2019, as well as the overall average of all well pairs. The overall monthly average gradients for all well pairs were 0.0033, 0.0031, 0.0032, and 0.0036 ft/ft for July, August, September, and October 2019, respectively. Landward gradients measured each month exceeded the 0.001 ft/ft requirement, as shown in Table 4-4. Figure 4-5 illustrates the measured hydraulic gradients during Third Quarter 2019 with the concurrent Colorado River elevations and IM-3 pumping rates.

Hydraulic Gradient Evaluation: Arizona Side of the Colorado River

During Third Quarter 2019, pressure transducer data were recorded in five wells located on the Arizona side of the Colorado River. The average quarterly groundwater elevations for monitoring wells MW-54-085, MW-54-140, MW-54-195, MW-55-045, and MW-55-120 are presented on Figures 4-3b and 4-3c and

are used for contouring where appropriate. Except for well MW-55-045, all wells in the MW-54 and MW-55 clusters are screened in the deep interval of the Alluvial Aquifer. Well MW-55-045 is screened across portions of the shallow and middle intervals (Figure 4-3b). Average quarterly water levels at the MW-54 and MW-55 well clusters indicate that water level elevations in monitoring wells in Arizona are higher than those in wells across the river on the California floodplain. This indicates that the apparent hydraulic gradient on the Arizona side of the river is westward and, as a result, groundwater flow would also be toward the west in that area. This is consistent with the site conceptual model and with the current numerical groundwater flow model.

4.4 IM Contingency Plan Monitoring Results

During Third Quarter 2019, Cr(VI) concentrations in the three IMCP monitoring wells that were sampled were lower than the established trigger levels; therefore, implementation of the contingency plan was not needed. Cr(VI) concentrations for the IMCP wells and their associated trigger levels are presented in Table 4-5.

4.5 Projected River Levels During Next Quarter

Colorado River water level projections provide river level information that is useful for anticipating IM-3 extraction requirements for the upcoming quarter. The Colorado River stage near the site is measured at river monitoring location I-3. Water levels are directly influenced by releases from Davis Dam, and, to a lesser degree, from Lake Havasu elevations, both of which are controlled by the United States Bureau of Reclamation (USBR). Total releases from Davis Dam follow a predictable annual cycle, with the largest monthly releases typically in spring and early summer and the smallest monthly releases in late fall/winter (November and December). Superimposed on this annual cycle is a diurnal cycle determined primarily by daily fluctuations in electric power demand. Releases within a given 24-hour period often fluctuate over a wider range of flows than that of monthly average flows over an entire year. Figure 4-6 shows the river stage measured at location I-3 superimposed on the projected I-3 river levels.

Projected river levels for future months are based on the USBR projections of Davis Dam discharge and Lake Havasu levels from the preceding month. For example, the projected river level for November 2019 is based on the October 2019 USBR projections of Davis Dam release and Lake Havasu level. Future projections of Colorado River stage, shown on Figure 4-6, are based on USBR long-range projections of Davis Dam releases and Lake Havasu levels from October 2019. There is more uncertainty in these projections at longer times in the future because water demand is based on various factors, including climatic factors.

Current USBR projections, presented in Table 4-6, show that the projected Davis Dam release for November 2019 is 8,400 cubic feet per second, and the predicted Colorado River elevation at the I-3 gauge is 453.71 feet above mean sea level.

4.6 Third Quarter 2019 Performance Monitoring Program Evaluation Summary

A summary of the Third Quarter 2019 PMP evaluation is provided below.

- Cr(VI) isoconcentration maps indicate that Cr(VI) concentrations greater than 20 µg/L in the floodplain area are hydraulically controlled.
- IM extraction well TW-03D was primarily operated to support hydraulic control. A total of 21,859,068 gallons of groundwater were extracted by the IM-3 system, and an estimated 78 pounds (35.4 kilograms) of chromium were removed from groundwater.
- Cr(VI) and dissolved chromium concentrations in monitoring wells located within 800 feet of extraction well TW-03D were lower than their established notification levels. Shutdown of extraction well PE-01 was continued through the end of the reporting period.
- Groundwater potentiometric surface maps and the gradient analysis from designated well pairs provide evidence of hydraulic containment of the Cr(VI) plume. The overall monthly average landward gradients in Third Quarter 2019 were approximately 3.1 to 3.6 times the required minimum magnitude of 0.001 ft/ft.
- Cr(VI) and dissolved chromium concentrations in the IMCP monitoring wells were lower than their established trigger levels, indicating that chromium concentrations did not increase at areas of interest across the site.

5 UPCOMING OPERATION AND MONITORING EVENTS

GMP, RMP, and PMP monitoring activities will continue under direction from the DTSC in Fourth Quarter 2019. Monitoring activities and results will be reported in the Fourth Quarter 2019 and Annual PMP-GMP Report (planned for submittal by March 15, 2020).

5.1 Groundwater Monitoring Program

5.1.1 Monthly Groundwater Monitoring

Monthly GMP monitoring events are planned for November and December 2019 at extraction wells PE-01 and TW-03D.

5.1.2 Quarterly Groundwater Sampling

The quarterly GMP monitoring event is planned for December 2019. This event will consist of groundwater sampling and inspection of 143 monitoring wells. Any necessary corrective actions to monitoring wells will be performed in a timely manner.

If rainfall events occur in Fourth Quarter 2019 that cause surface water flow in Bat Cave Wash, monitoring wells MW-09, MW-10, and MW-11 will be sampled.

5.1.3 Sampling Method Trials at Select Wells

Sampling method trials are proposed to continue at monitoring well MW-60BR-245, as noted in Section 2.1.3. The next sampling method trial for this well is planned for Fourth Quarter 2019 (during the quarterly GMP monitoring event).

5.2 Surface Water Monitoring Program

The surface water monitoring event is planned for November 2019. This event will consist of surface water sampling at 16 locations.

5.3 IM Performance Monitoring Program

5.3.1 Chromium Monitoring

Chromium monitoring will be performed as part of the Fourth Quarter 2019 GMP monitoring events. Cr(VI) data will be collected from a total of 145 monitoring wells.

5.3.2 IM Extraction System Operation

During Fourth Quarter 2019, the IM-3 system will continue operating and operations will be documented. IM extraction wells TW-03D and PE-01 (as needed) will be pumped with a target rate of 135 gpm (Appendix E), except during periods of planned and unplanned downtime, to maintain appropriate hydraulic gradients across the Alluvial Aquifer. Extraction will be primarily from TW-03D, coupled with PE-

01 only if needed to maintain gradient control during low river stages. If TW-03D and PE-01 cannot produce the target pumping rate of 135 gpm, then TW-02D and/or TW-02S may be pumped to supplement TW-03D and achieve total flow.

Fourth Quarter 2019 GMP monitoring results from wells listed in the July 20, 2015 DTSC approval letter for conditional PE-01 shutdown (DTSC 2015) will be compared to the 2014 (or 2013 for wells sampled biennially) maximum Cr(VI) and dissolved chromium concentrations. Results that exceed the 2014/2013 maximum concentrations will be reported to the DTSC within 40 days after the end of the quarterly GMP sampling event.

5.3.3 IM Hydraulic Monitoring

The IM hydraulic monitoring network will continue to be used to demonstrate compliance of the required 0.001 ft/ft landward hydraulic gradient. During the first 2 weeks of each month, pressure transducers will be downloaded from the 52 monitoring wells in the IM hydraulic monitoring network, five wells located on the Arizona side of the Colorado River, and two river monitoring locations. Pressure transducers at the six gradient control wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, MW-45-095, and MW-20-130) will continue to be downloaded via cellular telemetry at monthly or more frequent intervals, as needed, to verify that 0.001 ft/ft landward gradients are maintained.

5.3.4 IM Contingency Plan Monitoring

Fourth Quarter 2019 GMP monitoring results from IMCP wells will be compared to their respective trigger levels. If any exceedances are observed, the DTSC will be notified in accordance with the Revised Contingency Plan Flow Chart (PG&E 2008).

5.4 Quarterly Notifications

Email notifications will be sent in Fourth Quarter 2019 providing Cr(VI) and dissolved chromium results for shoreline and in-channel surface water monitoring locations and monitoring wells MW-34-100, MW-44-115, MW-46-175, and MW-44-125.

5.5 Monitoring Well Installation

In accordance with the Basis of Design Report (CH2M Hill 2015), new monitoring wells, extraction wells, and injection wells are currently being installed as part of the final groundwater remedy at the site. A summary of field activities and monitoring results associated with the installation of the new wells will be reported under separate cover as part of the monthly reporting process associated with construction of the final groundwater remedy.

6 **REFERENCES**

- Arcadis. 2019a. Fourth Quarter 2018 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.
- Arcadis. 2019b. Second Quarter 2019 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. August 15.
- CH2M Hill. 2005. Monitoring Plan for Groundwater and Surface Water Monitoring Program. PG&E Topock Compressor Station, Needles, California. April 11.
- CH2M Hill. 2007. RCRA Facility Investigation/Remedial Investigation Report, Volume 1 Site Background and History. PG&E Topock Compressor Station, Needles, California. August.
- CH2M Hill. 2009. Groundwater Background Study, Steps 3 and 4: Revised Final Report of Results, PG&E Topock Compressor Station, Needles, California. November 6.
- CH2M Hill. 2015. Basis of Design Report/Final [100%] Design Submittal for the Final Groundwater Remedy. November.
- DTSC. 2005. Letter to PG&E. Criteria for Evaluating Interim Measures Performance Requirements to Hydraulically Contain Chromium Plume in Floodplain Area, PG&E Topock Compressor Station, Needles, California (EPA ID No. CAT080011729). February 14.
- DTSC. 2007. Letter to PG&E. Approval of Updates and Modifications to the Interim Measures Performance Monitoring Program. PG&E Topock Compressor Station. October 12.
- DTSC. 2008a. Letter to PG&E. Modifications to Hydraulic Data Collection for the Interim Measures Performance Monitoring Program at PG&E Topock Compressor Station, Needles, California. July 14.
- DTSC. 2008b. Letter to Geology and Remediation Engineering. Updates to the Interim Measures Chemical Performance Monitoring Program. PG&E Topock Compressor Station, Needles, California. July 16.
- DTSC. 2009. Email. Re: Request for Combined Reporting of Topock GMP and PMP. May 26.
- DTSC. 2010a. Email. Re: Topock GMP Monitoring Frequency Modification. March 3.
- DTSC. 2010b. Letter to PG&E. Arizona Monitoring Well Sampling Frequency Modification. PG&E Topock Compressor Station, Needles, California. April 28.
- DTSC. 2014. Email from Chris Guerre/DTSC to Yvonne Meeks/PG&E. PG&E Topock: DTSC Response to Section 7 2013 Annual Report Recommendations. June 27.
- DTSC. 2015. Letter from Aaron Yue/DTSC to Yvonne Meeks/PG&E. Conditional Approval of Proposal to Modify Interim Measures 3 (IM3) Extraction Well Pumping at PG&E Topock Compressor Station, Needles, California (USEPA ID No. CAT080011729). July.
- DTSC. 2017a. Memorandum from Chris Guerre/DTSC to Aaron Yue/DTSC Proposal for Alternative Groundwater Sampling Trial. PG&E Topock Compressor Station Site, Needles, California. April 6.

- DTSC. 2017b. Email from Chris Guerre/DTSC to Jay Piper/CH2M and Curt Russell/PG&E. Re: PG&E Topock – Letter Requesting Modified Key Gradient Well Pairs When PE-01 Is Not Pumping. August 18.
- DTSC. 2017c. Memorandum from Chris Guerre/DTSC to Aaron Yue/DTSC. Response to Comments on Proposal for Alternative Groundwater Sampling Trial. PG&E Topock Compressor Station Site, Needles, California. October 20.
- DTSC. 2018. PG&E Topock Compressor Station: Environmental Investigation and Cleanup Activities. Web page available at: <u>http://dtsc-topock.com/</u>.
- PG&E. 2008. Approved Modifications to the Topock IM Performance Monitoring Program PG&E Topock Compressor Station, Needles, California. August 4.
- PG&E. 2015. Proposed Trial of Alternative Sampling Approaches at Select Monitoring Wells in the Topock GMP and CMP. August 21.

TABLES

Table 1-1 Topock Monitoring Reporting Schedule

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Period	Reporting Period		Anticipated Number of	Anticipated Number of	Anticipated Number of	Anticipated Number of	Anticipated Number of	Anticipated Number of	Anticipated Number of
		Report Submittal	Monitoring Locations:	Monitoring Locations:	Monitoring Locations:	Monitoring Locations:	Monitoring Locations:	Monitoring Locations:	Monitoring Locations:
		Date	Groundwater Monitoring	Surface Water Monitoring	Chromium Monitoring*	Monitoring for Conditional	IM Hydraulic Monitoring	IM Contingency Plan	IM Chemical Performance
			Program (GMP)	Program (RMP)		Shutdown of PE-01*		Monitoring*	Monitoring
First Quarter	January - March	April 30	22	16	22	4	59	3	0
Second Quarter	April - June	August 15	105	16	105	30	59	19	0
Third Quarter	July - October	December 15	22	16	22	4	59	3	0
Fourth Quarter	November - December	March 15	143 annual + 2 biennial	16	143 annual + 2 biennial	47	59	24	10 annual + 1 biennial

Notes:

1. On July 23, 2010, DTSC approved a revised reporting schedule that included a revised IM-3 monitoring period (i.e., chromium removed), as follows:

First Quarter: January - February

Second Quarter: March - May

Third Quarter: June - September

Fourth Quarter: October - December

* = Monitoring consists of collecting hexavalent chromium and/or dissolved chromium data from groundwater monitoring wells; these data are collected during the GMP monitoring event.

GMP = Groundwater Monitoring Program.

DTSC = Department of Toxic Substance Control.

IM = interim measure.

RMP = Surface Water Monitoring Program.
Table 1-2
GMP, RMP, and PMP Monitoring Summary
Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Location ID	Site Area	Measuring Point Elevation (ft amsl)	Well Screen Interval (ft bgs)	Well Screen Lithology	Well Casing Diameter (inches)	Well Depth (ft bgs)	Aquifer Zone	Sampling Method	GMP Monitoring Frequency	RMP Monitoring Frequency	PMP Monitoring: Chromium Monitoring Frequency	PMP Monitoring: Monitoring Frequency for Conditional Shutdown of PE-01	PMP Monitoring: IM Hydraulic Monitoring Frequency	PMP Monitoring: IM Contingency Plan Monitoring Frequency	PMP Monitoring: IM Chemical Performance Monitoring Frequency	Notes
MW-09	Bat Cave Wash	536.56	77 - 87	Alluvial	4 in PVC	89.4	Shallow	LF	Semiannual		Semiannual	-				Bat Cave Wash flow
MW-10	Bat Cave Wash	530.65	74 - 94	Alluvial	4 in PVC	96.9	Shallow	LF	Semiannual		Semiannual					Bat Cave Wash flow
MW-11	Bat Cave Wash	522.54	62.5 - 82.5	Alluvial	4 in PVC	86.1	Shallow	LF	Semiannual		Semiannual	-				Bat Cave Wash flow
MW-12	East of Station	484.01	27.5 - 47.5	Alluvial	4 in PVC	50.4	Shallow	LF	Semiannual		Semiannual	-				
MW-13	Bat Cave Wash	488.64	28.5 - 48.5	Alluvial	4 in PVC	52.0	Shallow	LF	Annual		Annual	-				
MW-15	Edst IVIESd East of New Ponds	570.99	180 5 - 200 5	Alluvial	4 In PVC	203.0	Shallow	16	Annual		Appual					
MW-16	Near New Ponds	657.31	198 - 218	Alluvial	4 in PVC	218.1	Shallow	LF	Biennial		Biennial					
MW-17	West of Mesa Area	589.96	130 - 150	Alluvial	4 in PVC	153.6	Shallow	LF	Biennial		Biennial					
MW-18	West Mesa	545.32	85 - 105	Alluvial	4 in PVC	106.7	Shallow	LF	Annual		Annual					
MW-19	Route 66	499.92	46 - 66	Alluvial	4 in PVC	65.8	Shallow	LF	Semiannual		Semiannual					
MW-20-070	MW-20 bench	500.07	50 - 70	Alluvial	4 in PVC	69.6	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	
MW-20-100	MW-20 bench	500.58	89.5 - 99.5	Alluvial	4 in PVC	101.4	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	
MW-20-130	MW-20 bench	500.66	121 - 131	Alluvial	4 in PVC	132.3	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	Hydraulic Gradient Well
MW-21	Route 66	505.55	39 - 59	Alluvial	4 in PVC	58.5	Shallow	LF	Semiannual		Semiannual			Semiannual		Low recharge well; typically purges dry at 1 casing volume
MW-22	Floodplain	460.72	5.5 - 10.5	Fluvial	2 in PVC	12.4	Shallow	LF	Semiannual		Semiannual	-	Monthly			
MW-23-060	East Ravine	504.08	50 - 60	Bedrock	2 in Sch 40 PVC	60.2	Bedrock	LF	Semiannual		Semiannual					
MW-23-080	East Ravine	504.13	75 - 80	Bedrock	2 in Sch 40 PVC	80.8	Bedrock	LF	Semiannual		Semiannual					
MW-24A	MW-24 Bench	567.16	104 - 124	Alluvial	4 in PVC	127.5	Shallow	LF	Semiannual		Semiannual	-				
MW-24B	MW-24 Bench	563.95	378 - 437	Bedrock	4 in PVC	441.0	Bedrock	3V	Annual		Annual					Low recharge well; typically purges
104/05	No. Bat Co. a Wash	543.00	045 4045	AU - 5-1	41. 01/0	100 5	ch alla	15	Construction of		6		Market and a		A	dry at 1 casing volume
MW-25	Near Bat Cave Wash	542.90	84.5 - 104.5	Alluvial	4 in PVC	106.5	Shallow	LF	Semiannual		Semiannual	 Comiannual	Monthly		Annual	
MW-20	Eloodalain	460.56	7 - 17	Eluvial	2 in PVC	14.4	Shallow	LF	Annual		Δnnual	Annual	Monthly	-	bielilia	
MW-27-020	Floodplain	400.30	473-573	Fluvial	2 in PVC	59.0	Middle	LF	Annual		Annual	Annual	Monthly			
MW-27-085	Floodplain	460.99	77.5 - 87.5	Fluvial	2 in PVC	80.0	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		Hydraulic Gradient Well
MW-28-025	Floodplain	466.77	13 - 23	Fluvial	2 in PVC	21.1	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly			1
MW-28-090	Floodplain	467.53	70 - 90	Fluvial	2 in PVC	98.4	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-29	Floodplain	485.21	29.5 - 39.5	Fluvial	2 in PVC	41.5	Shallow	LF	Semiannual		Semiannual	-				
MW-30-030	Floodplain	468.12	12 - 32	Fluvial	2 in PVC	26.9	Shallow	LF	Annual		Annual	Annual				
MW-30-050	Floodplain	468.81	40 - 50	Fluvial	4 in PVC	52.6	Middle	LF	Annual		Annual	Annual	Monthly			
MW-31-060	MW-20 Bench	496.81	41.5 - 61.5	Alluvial	4 in PVC	64.0	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly		Annual	Undersolie Coodinet Wall
MW-31-135	MW-20 Bench	498.11	113 - 133	Alluvial	2 in PVC	135.4	Deep	LF	Annual		Annual	Annual	wontniy			Hydraulic Gradient Well
MW-32-020	Floodplain	401.51	27.5 - 35	Fluvial	2 IN PVC	37.2	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	 Annual	
MW-32-035	Floodplain	487.38	29 - 39	Fluvial	2 in PVC	41.8	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-33-090	Floodplain	487.55	69 - 89	Alluvial	4 in PVC	88.3	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-33-150	Floodplain	487.77	132 - 152	Alluvial	2 in PVC	155.4	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		Hydraulic Gradient Well
MW-33-210	Floodplain	487.25	190 - 210	Alluvial	2 in PVC	223.0	Deep	LF	Semiannual		Semiannual	Semiannual		Semiannual		
MW-34-055	Floodplain	460.95	45 - 55	Fluvial	4 in PVC	56.6	Middle	LF	Annual		Annual	Annual	Monthly		Annual	
MW-34-080	Floodplain	461.20	73 - 83	Fluvial	4 in PVC	84.3	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual	Annual	
MW-34-100	Floodplain	460.97	89.5 - 99.5	Fluvial	2 in PVC	117.0	Deep	LF	Quarterly		Quarterly	Quarterly	Monthly	Quarterly	Annual	Hydraulic Gradient Well
MW-35-060	Route 66	484.33	41 - 61	Alluvial	2 in PVC	56.8	Shallow	LF	Semiannual		Semiannual		Monthly			
MW-35-135	KOUTE 66	484.24	10 20	Alluvial	2 In PVC	158.7	Deep	LF	Semiannual		Semiannual	Annual	Monthly			
MW-36-040	Floodplain	405.55	30 - 40	Fluvial	1 in PVC	40.3	Shallow	LF	Annual		Annual	Annual	Monthly			
MW-36-050	Floodplain	469.62	46 - 51	Fluvial	1 in PVC	108.0	Middle	LF	Annual		Annual	Annual	Monthly			
MW-36-070	Floodplain	469.27	60 - 70	Fluvial	1 in PVC	70.3	Middle	LF	Annual		Annual	Annual	Monthly	Annual		
MW-36-090	Floodplain	469.64	80 - 90	Fluvial	1 in PVC	90.3	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-36-100	Floodplain	469.65	88 - 98	Fluvial	2 in PVC	108.0	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-37D	Bat Cave Wash	486.19	180 - 200	Alluvial	2 in PVC	226.7	Deep	LF	Semiannual		Semiannual					
MW-375	Bat Cave Wash	485.97	64 - 84	Alluvial	2 in PVC	85.0	Middle	LF	Annual		Annual					
MW-38D	Bat Cave Wash	525.31	163 - 183	Alluvial	2 in PVC	190.9	Deep	LF	Semiannual		Semiannual	-				
MW-385	Bat Cave Wash	526.59	/5 - 95	Alluvial	2 in PVC	98.1	Shallow	LF	Quarterly		Quarterly		 Morthlu			
MW-39-040 MW-20.050	Floodplain	468.02	30 - 40	Fluvial	1 IN PVC	42.1 54 C	Middlo	15	Annual		Annual	Annual	Monthly	Annuai		
MW-39-060	Floodplain	468.00	47 - 52	Alluvial	1 in PVC	15.2	Middle	LF F	Annual		Annual	Annual	Monthly			
MW-39-070	Floodplain	468.02	60 - 70	Alluvial	1 in PVC	71.7	Middle	LF	Annual		Annual	Annual	Monthly			
MW-39-080	Floodplain	467.92	70 - 80	Alluvial	1 in PVC	82.6	Deep	LF	Annual		Annual	Annual	Monthly			
MW-39-100	Floodplain	468.12	80 - 100	Alluvial	2 in PVC	117.7	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-40D	I-40 Median	566.08	240 - 260	Alluvial	2 in PVC	266.0	Deep	LF	Semiannual		Semiannual					
MW-405	I-40 Median	566.04	115 - 135	Alluvial	2 in PVC	134.0	Shallow	н	Semiannual		Semiannual					

Table 1-2
GMP, RMP, and PMP Monitoring Summary
Third Quarter 2019 Interim Measures Performance Monitorin

ng and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Location ID	Site Area	Measuring Point Elevation (ft amsl)	Well Screen Interval (ft bgs)	Well Screen Lithology	Well Casing Diameter (inches)	Well Depth (ft bgs)	Aquifer Zone	Sampling Method	GMP Monitoring Frequency	RMP Monitoring Frequency	PMP Monitoring: Chromium Monitoring Frequency	PMP Monitoring: Monitoring Frequency for Conditional Shutdown of PE-01	PMP Monitoring: IM Hydraulic Monitoring Frequency	PMP Monitoring: IM Contingency Plan Monitoring Frequency	PMP Monitoring: IM Chemical Performance Monitoring Frequency	Notes
MW-41D	Bat Cave Wash	479.42	271 - 291	Alluvial	2 in PVC	311.5	Deep	LF	Semiannual		Semiannual	-				
MW-41M	Bat Cave Wash	479.84	170 - 190	Alluvial	2 in PVC	190.0	Deep	LF	Annual		Annual					
MW-415	Bat Cave Wash	480.07	40 - 60	Alluvial	2 in PVC	60.0	Shallow	LF	Annual		Annual					
MW-42-030 MW-42-055	Floodplain	463.74	9.8 - 29.8	Fluvial	2 In Sch 40 PVC	30.1	Middle	LF	Semiannual		Semiannual	Annual	iviontniy	 Semiannual		
MW-42-055	Floodplain	463.37	56.2 - 66.2	Fluvial	2 in PVC	80.0	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-43-025	Floodplain	462.54	15 - 25	Fluvial	2 in PVC	25.0	Shallow	LF	Annual		Annual		Monthly			
MW-43-075	Floodplain	462.71	65 - 75	Fluvial	2 in PVC	75.0	Deep	LF	Annual		Annual			Annual	-	
MW-43-090	Floodplain	462.76	80 - 90	Fluvial	2 in PVC	97.0	Deep	LF	Annual		Annual		Monthly	Annual		
MW-44-070	Floodplain	4/1.84	61 - /1 105 115	Fluvial	2 In PVC	/U.U 112 E	Middle	LF	Quarterly		Ouarterly	Semiannuai	Monthly	Semiannuai		
MW-44-115	Floodplain	472.11	116 - 125	Alluvial	2 in PVC	128.8	Deep	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-45-095a	Floodplain	468.27	83 - 93	Fluvial	2 in PVC	97.0	Deep	-			-	X (see Note 1)	Monthly	-		Pressure transducer location; Hydraulic Gradient Well
MW-46-175	Floodplain	482.16	165 - 175	Alluvial	2 in PVC	175.5	Deep	LF	Quarterly		Quarterly	Quarterly	Monthly	Quarterly		
MW-46-205	Floodplain	482.23	196.5 - 206.5	Alluvial	2 in PVC	206.5	Deep	LF	Semiannual		Semiannual	Semiannual		Semiannual		
MW-47-055	Floodplain	484.04	45 - 55	Alluvial	2 in PVC	55.0	Shallow	LF	Semiannual		Semiannual	Semiannual	Monthly	Semiannual		
MW-47-115 MW-48	East of Station	484.17	105 - 115	Bedrock	2 in PVC 2 in PVC	115.0	Bedrock	LF	Semiannual		Semiannual	Semiannuai	wontniy 			Low recharge well; typically purges
MW-49-135	Floodplain	483.97	125 - 135	Alluvial	1.5 in PVC	135.0	Deep	LF	Annual		Annual		Monthly			dry at 1 casing volume
MW-49-275	Floodplain	483.95	255 - 275	Alluvial	2 in PVC	274.7	Deep	LF	Annual		Annual					
MW-49-365	Floodplain	484.01	346 - 366	Alluvial	2 in PVC	367.4	Deep	LF	Annual		Annual	-				
MW-50-095	Route 66	496.49	85 - 95	Alluvial	2 In PVC 2 in PVC	95.0	Niddle	LF	Semiannual		Semiannual	-	iviontniy	-		
MW-51	Route 66	501.56	97 - 112	Alluvial	4 in PVC	113.3	Middle	LF	Semiannual		Semiannual	Semiannual	Monthly			
MW-52D	Floodplain	462.16	85 - 87	Fluvial	0.75 in MLABS	89.5	Deep	LF	Semiannual		Semiannual					
MW-52M	Floodplain	462.16	66 - 68	Fluvial	0.75 in MLABS	70.5	Deep	LF	Semiannual		Semiannual					
MW-52S	Floodplain	462.16	47 - 49	Fluvial	0.75 in MLABS	51.5	Middle	LF	Semiannual		Semiannual					
MW-53D	Floodplain	461.32	123.5 - 125	Fluvial	0.75 in MLABS		Deep	LF	Semiannual		Semiannual					
MW-54-085	Arizona	466.10	77 - 87	Fluvial	2 in PVC	93.2	Deep	LF	Semiannual		Semiannual		Monthly			
MW-54-140	Arizona	465.98	128 - 138	Fluvial	2 in PVC	138.0	Deep	LF	Semiannual		Semiannual		Monthly			
MW-54-195	Arizona	466.32	185 - 195	Fluvial	2 in PVC	195.0	Deep	LF	Semiannual		Semiannual		Monthly			
MW-55-045	Arizona	465.84	37 - 47	Fluvial	2 in PVC	54.0	Middle	LF	Semiannual		Semiannual		Monthly			
MW-55-120	Arizona	465.82	108 - 118	Fluvial	2 in PVC	120.3	Deep	LF	Semiannual		Semiannual		Monthly			
MW-56M	Arizona	461.36	73.5 - 75.5	Fluvial	0.75 in MLABS		Deep	LF	Semiannual		Semiannual					
MW-56S	Arizona	461.36	33.5 - 35.5	Fluvial	0.75 in MLABS		Shallow	LF	Semiannual		Semiannual					
MW-57-050	East Ravine	508.76	40 - 50	Bedrock	2 in Sch 40 PVC	50.0	Bedrock	LF	Quarterly		Quarterly					
MW-57-070	East Ravine	509.37	55 - 70	Bedrock	2 in Sch 40 PVC	70.0	Bedrock	LF	Semiannual		Semiannual					
MW-57-185	East Ravine	508.97	70 - 184	Bedrock	4 in Sch 40 PVC	184.7	Bedrock	LF	Semiannual		Semiannual					
MW-58BR	East Ravine	523.20		Bedrock	2 IN SCH 40 PVC	66.0	Bedrock	LF	Quarterly		Quarterly					
MW-59-100	East Ravine	541.61	86 - 101	Alluvial	2 in Sch 40 PVC	101.0	Shallow	LF	Semiannual		Semiannual					
MW-60-125	East Ravine	555.47	103 - 123	Bedrock	2 in Sch 40 PVC	122.5	Bedrock	LF	Semiannual		Semiannual					
MW-60BR-245	East Ravine	554.95	136 - 245	Bedrock	5 in	244.1	Bedrock	LF, 3V	Quarterly		Quarterly					Sampling Method Trial
MW-61-110	East Ravine	544.03	92 - 112	Bedrock	2 in Sch 40 PVC	112.5	Bedrock	LF	Semiannual		Semiannual					
MW-62-065	East Ravine	503.56	44.5 - 64.5	Bedrock	2 IN SCH 40 PVC	110.0	Bedrock	G	Quarterly		Quarterly					
MW-62-190	East Ravine	504.05	155 - 192	Bedrock		190.0	Bedrock	3V	Semiannual		Semiannual					
MW-63-065	East Ravine	504.47	46 - 66	Bedrock	2 in Sch 40 PVC	65.6	Bedrock	LF	Quarterly		Quarterly					
MW-64BR	East Ravine	575.60	2 - 258	Bedrock	3 in	260.0	Bedrock	LF	Quarterly		Quarterly					
MW-65-160	Topock Compressor Station	596.59	150 - 160	Alluvial	2 in PVC	160.1	Shallow	LF	Quarterly		Quarterly					
MW-65-225 MW-66-165	Topock Compressor Station	596.58	215 - 225	Alluvial	2 in PVC	225.1	Deep	LF	Quarterly		Quarterly					
MW-66-230	Topock Compressor Station	586.22	218 - 228	Alluvial	2 in PVC	228.1	Deep	LF	Semiannual		Semiannual					
MW-66BR-270	Topock Compressor Station	586.15	248 - 271	Bedrock	5 in	270.6	Bedrock	3V	Semiannual		Semiannual					
MW-67-185	Topock Compressor Station	625.91	177 - 187	Alluvial	2 in	186.7	Shallow	LF	Semiannual		Semiannual					
MW-67-225	Topock Compressor Station	625.83	210 - 225	Alluvial	2 in PVC	225.0	Middle	LF	Semiannual		Semiannual					
MW-67-260	Topock Compressor Station	625.81	250 - 260	Alluvial	2 in PVC	260.0	Deep	LF	Semiannual		Semiannual					
MW-68-240	Topock Compressor Station	621.17	220 - 240	Alluvial	2 in PVC 2 in PVC	240.1	Deep	LP I F	Semiannual		Semiannual					
MW-68BR-280	Topock Compressor Station	620.64	257 - 279	Bedrock	5 in	278.2	Bedrock	LF	Semiannual		Semiannual	-				
MW-69-195	Topock Compressor Station	631.36	176 - 196	Bedrock	2 in	195.5	Bedrock	LF	Quarterly		Quarterly	-				

Location ID	Site Area	Measuring Point Elevation (ft amsl)	Well Screen Interval (ft bgs)	Well Screen Lithology	Well Casing Diameter (inches)	Well Depth (ft bgs)	Aquifer Zone	Sampling Method	GMP Monitoring Frequency	RMP Monitoring Frequency	PMP Monitoring: Chromium Monitoring Frequency	PMP Monitoring: Monitoring Frequency for Conditional Shutdown of PE-01	PMP Monitoring: IM Hydraulic Monitoring Frequency	PMP Monitoring: IM Contingency Plan Monitoring Frequency	PMP Monitoring: IM Chemical Performance Monitoring Frequency	Notes
MW-70-105	East Ravine	541.47	85 - 105	Bedrock	2 in PVC	107.8	Bedrock	LF	Semiannual		Semiannual				-	
MW-70BR-225	East Ravine	539.84	120 - 227	Bedrock	5 in	229.3	Bedrock	LF	Semiannual		Semiannual					l l
MW-71-035	East Ravine	483.69	26 - 36	Alluvial	2 in	36.2	Shallow	LF	Semiannual		Semiannual					l
MW-72-080	East Ravine	513.32	60 - 80	Bedrock	2 in	80.1	Bedrock	LF	Quarterly		Quarterly				-	
MW-72BR-200	East Ravine	513.79	107 - 200	Bedrock		200.0	Bedrock	LF	Quarterly		Quarterly					l
MW-73-080	East Ravine	505.84	60.2 - 80.2	Bedrock	2 in	79.9	Bedrock	LF	Quarterly		Quarterly					
MW-74-240	East Ravine	672.34	220 - 240	Bedrock	2 in	239.7	Bedrock	LF	Semiannual		Semiannual					
OW-03D	West Mesa	558.63	242 - 262	Alluvial	2 in Sch 40 PVC	272.5	Deep	LF	Annual		Annual				-	
OW-03M	West Mesa	558.9	180 - 200	Alluvial	2 in Sch 40 PVC	200.3	Middle	LF	Annual		Annual					l
OW-03S	West Mesa	558.58	86 - 116	Alluvial	2 in Sch 40 PVC	116.3	Shallow	LF	Annual		Annual					
PGE-07BR	MW-24 Bench		249 - 300	Bedrock	7 in	300.0	Bedrock	3V	Annual		Annual				-	Inactive supply well
PGE-8	Station	596.01	405-554	Bedrock	6.75 in Steel	564.0	Bedrock	3V	Annual		Annual					Inactive injection well
PT-2D	Floodplain		95 - 105	Alluvial	2 in in PVC	105	Deep						Monthly			
PT-5D	Floodplain		95 - 105	Alluvial	2 in in PVC	105	Deep						Monthly		-	
PT-6D	Floodplain		95 - 105	Alluvial	2 in in PVC	105	Deep						Monthly			i i i i i i i i i i i i i i i i i i i
PE-01	Floodplain	457.52	79 - 89	Fluvial	6 in Sch 40	99.0	Deep	tap	Monthly		Monthly	Monthly				IM extraction well
TW-01	Plan B Test	620.55	169 - 269	Alluvial	5 in PVC	271.0	Shallow	3V	Semiannual		Semiannual				-	Inactive pilot test well
TW-02D	MW-20 bench	493.29	113 - 148	Alluvial	6 in Sch 80 PVC	150.0	Deep	tap	Quarterly		Quarterly				-	IM extraction well
TW-02S	MW-20 bench	499.05	42.5 - 92.5	Alluvial	6 in Sch 80 PVC	97.5	Shallow	tap	Annual		Annual					IM extraction well
TW-03D	MW-20 bench	498.09	111 - 156	Alluvial	8 in PVC	156.0	Deep	tap	Monthly		Monthly				-	IM extraction well
TW-04	Floodplain	484.11	210 - 250	Alluvial	4 in PVC	255.0	Deep	LF	Semiannual		Semiannual	Semiannual			-	
TW-05	Route 66	496.30	110 - 150	Alluvial	4 in PVC	155.0	Deep	LF	Semiannual		Semiannual				-	
Park Moabi-3	Park Moabi	518.55	80 - 200	Alluvial	8 in Steel	252.0	Middle	tap	Annual		Annual				-	Active supply well
Park Moabi-4	Park Moabi		93 - 140	Alluvial	Steel		Middle	tap	Annual		Annual				-	Active supply well
C-BNS	In-Channel									Quarterly					-	
C-CON	In-Channel									Quarterly						Deep and shallow depth intervals
C-I-3 (I-3)	In-Channel									Quarterly			Monthly		-	Deep and shallow depth intervals
C-MAR	In-Channel									Quarterly						Deep and shallow depth intervals
C-NR1	In-Channel									Quarterly						Deep and shallow depth intervals
C-NR3	In-Channel									Quarterly					-	Deep and shallow depth intervals
C-NR4	In-Channel									Quarterly						Deep and shallow depth intervals
C-R22A	In-Channel									Quarterly					-	Deep and shallow depth intervals
C-R27	In-Channel									Quarterly					-	Deep and shallow depth intervals
C-TAZ	In-Channel									Quarterly						Deep and shallow depth intervals
R-28	Shoreline									Quarterly				-	Annual	
R-19	Shoreline									Quarterly						Í
R-63	Shoreline									Quarterly						
RRB	Shoreline									Quarterly			Monthly			
SW-1	Other Surface Water			-						Quarterly				-	-	
SW-2	Other Surface Water			-						Quarterly				-		

GMP, RMP, and PMP Monitoring Summary Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report

Table 1-2

PG&E Topock Compressor Station, Needles, California

Notes:
1. On June 27, 2014, DTSC approved discontinuation of groundwater sampling at monitoring well MW-45-095a. This location was originally included in the list of wells monitored for conditional shutdown of PE-01.

-- = not applicable. 3V = three volume. amsl = above mean sea level. bgs = below ground surface. Deep = deep interval of Alluvial Aquifer. DTSC = Department of Toxic Substance Control. ft = feet. G = grab sample. GMP = Groundwater Monitoring Program. H = HydraSleeve ID = identification. IM = interim measure. LF = low flow (minimal drawdown). Middle = mid-depth interval of Alluvial Aquifer. PMP = Performance Monitoring Program. PVC = polyvinyl chloride (pipe) RMP = Surface Water Monitoring Program. Shallow = shallow interval of Alluvial Aquifer. Tap = sampled from tap of extraction well.

Table 3-1

Groundwater Sampling Results, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Specific Conductance (µS/cm)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Arsenic (µg/L)	Dissolved Manganese (µg/L)	Dissolved Iron (µg/L)	ORP (mV)	Field pH (SU)	Turbidity (NTU)
MW-34-100	DA	10/1/2019		LF	ND (0.2)	ND (1.0)	10,000	60	ND (0.5)	ND (0.05)	2.0	64		100	7.3	7.0
MW-38S	SA	9/25/2019		LF	4.8	4.7	1,700	23	4.7	4.4	5.5	52		-1.9	8.0	5.0
MW-44-115	DA	10/1/2019		LF	6.2	6.3	11,000	89	ND (0.5)	ND (0.05)	6.4	ND (0.5)		140	7.7	4.0
MW-46-175	DA	10/1/2019		LF	6.0	6.1	17,000	190	ND (0.5)	1.1				120	7.9	5.0
MW-54-195	DA	8/22/2019		LF	ND (0.5)	ND (2.0)										
MW-58BR	BR	8/19/2019		LF	90	88 J	7,500	22	2.7	1.5	1.9	230		44	7.9	3.0
MW-58BR	BR	8/19/2019	FD	LF	90	89 J	7,600	23	2.6	1.4	1.9	220				
MW-62-065	BR	10/1/2019		LF	490	530	6,200	14	4.2	4.7	1.8	ND (0.5)		200	7.3	3.0
MW-62-110	BR	9/25/2019		G	ND (1.0)	ND (1.0)	12,000	45	ND (0.5)	0.097	3.6	64		16	7.4	3.0
MW-63-065	BR	9/26/2019		LF	1.2	1.0	6,400	16	0.91	1.2	1.5	ND (0.5)		120	7.4	11
MW-63-065	BR	9/26/2019	FD	LF	1.2	1.1	6,500	15	0.89	1.2	1.5	ND (0.5)				
MW-64BR	BR	8/22/2019		LF	ND (1.0)	ND (1.0)	13,000	62	ND (0.5)	ND (0.05)	3.6	840		12	7.7	3.0
MW-65-160	SA	9/26/2019		LF	150	160	3,900	65	9.8	14	0.61	7.5		41	7.4	9.0
MW-65-225	DA	9/26/2019		LF	330	340	13,000	34	4.1	5.2	2.4	ND (0.5)		30	7.3	4.0
MW-65-225	DA	9/26/2019	FD	LF	330	320	13,000	33	4.6	5.7	2.3	ND (0.5)				
MW-68-180	SA	9/26/2019		LF	9,700	11,000	3,500	33	10	11	3.1	ND (0.5)		56	7.6	26
MW-69-195	BR	9/26/2019		LF	78	77	2,600	65	8.0	9.3	2.5	ND (0.5)		16	7.8	25
MW-72-080	BR	8/22/2019		LF	93	91	15,000	77	1.4	0.71	13	ND (0.5)		170	8.0	33
MW-72BR-200	BR	8/22/2019		LF	ND (1.0)	ND (1.0)	14,000	61	ND (0.5)	ND (0.05)	9.8	130		100	8.2	26
MW-73-080	BR	8/22/2019		LF	20	18	11,000	29	3.2	2.9	1.7	ND (0.5)		130	7.6	45
PE-01	DA	7/24/2019		Тар	ND (0.2)	ND (1.0)	3,300			ND (0.05)		450	ND (20)	130	7.2	2.0
PE-01	DA	8/22/2019		Тар	ND (0.2)	ND (1.0)	2,400			ND (0.05)		390	47	160	7.6	2.0
PE-01	DA	9/4/2019		Тар	0.69	ND (1.0)	2,200			ND (0.05)		410	150	63	7.4	
PE-01	DA	10/3/2019		Тар	ND (0.2)	ND (1.0)	3,300			ND (0.05)		420	1,100	31	7.7	2.0
TW-02D	DA	10/3/2019		Тар	95	110	5,500	11	2.3			ND (0.5)				
TW-03D	DA	7/24/2019		Тар	450	430	7,200			2.7		ND (0.5)	ND (20)	70	7.7	3.0
TW-03D	DA	8/22/2019		Тар	410	430	6,900			2.6		ND (0.5)	ND (20)	120	7.7	3.0
TW-03D	DA	9/4/2019		Тар	500	450	7,200			2.7		ND (0.5)	ND (20)	62	7.3	1.0
TW-03D	DA	10/3/2019		Тар	410	430	7,100			2.8		ND (0.5)	ND (20)	62	7.8	3.0

Notes:

1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6.

2. The following analytical methods were used:

Hexavalent chromium = USEPA Method 218.6

Dissolved chromium, dissolved arsenic, dissolved manganese, dissolved molybdenum, dissolved selenium = Method SW6020

PE-01/TW-03D: dissolved chromium, dissolved manganese = USEPA Method 200.8

Dissolved Iron = USEPA Method 200.7

Specific conductance = USEPA Method 120.1

Nitrate/Nitrate as Nitrogen = SM 4500-NO3 F

3. Monitoring wells MW-57-050 and MW-58-065 were dry during the Third Quarter 2019 sampling event. Monitoring well MW-60BR-245 was not sampled in Third Quarter 2019 due to access issues.

4. Monitoring well MW-54-195 was re-sampled in Third Quarter 2019 to verify the Second Quarter 2019 results.

= not applicable.	FD = field duplicate.	ORP = oxidation-reduction potential.
μg/L = micrograms per liter.	G = Grab sample.	SA = shallow interval of Alluvial Aquifer.
μS/cm = microSiemens per centimeter.	J = concentration or reporting limit (RL) estimated by laboratory or data validation.	SU = standard units.
BR = bedrock.	LF = Low Flow (minimal drawdown)	Tap = sampled from tap of extraction well.
COPC = constituent of potential concern.	mV = millivolts.	USEPA = United States Environmental Protection Agency
DA = deep interval of Alluvial Aquifer.	ND = not detected at listed reporting limit.	
DTSC = Department of Toxic Substance Control.	NTU = nephelometric turbidity units.	

Table 3-2

Bat Cave Wash Sampling Results, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Type	Sample Method	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Bromide (mg/L)	Chloride (mg/L)	Dissolved Boron (mg/L)	Dissolved Iron (µg/L)	Dissolved Calcium (mg/L)	Dissolved Magnesium (mg/L)	Dissolved Sodium (mg/L)	Sulfate (mg/L)	Total Alkalinity (mg/L)	Total Dissolved Solids (mg/L)
MW-09	SA	05/12/2015		LF	230	230										
MW-09	SA	10/07/2015		LF	200	230	ND (1.0 J)	650	0.65	29 J	28	110	440	240	130	1,700
MW-09	SA	12/01/2015		LF	190	200	ND (1.0)	640	0.59	21	28	120	400	220	130	1,700
MW-09	SA	05/03/2016		LF	190	200 J	ND (1.0)	720	0.82	ND (20)	27	110	480 J	250	130	1,800
MW-09	SA	12/07/2016		LF	160	160	ND (1.0)	730	0.73	21	32	130	460	240	130	1,700
MW-09	SA	02/09/2017		LF	160	150	0.6	720	0.76	ND (20)	28	110	440	250	140	1,700
MW-09	SA	05/03/2017		LF	160	140										
MW-09	SA	12/07/2017		LF	150	140	ND (1.0 J)	770	0.62	ND (20)	29	110	390	230	130	1,700
MW-09	SA	02/23/2018		LF	150	150	ND (1.0)	770	0.78	31	28	110	520	240	130	1,800
MW-09	SA	05/02/2018		LF	150	140										
MW-09	SA	12/12/2018		LF	140	150	ND (1.0)	780	0.72	69	33	130	480	260	120	1,800
MW-09	SA	03/18/2019		LF	140	130	ND (1.0)	720	0.79 J	43	28	120	470	240	130	1,800 J
MW-09	SA	05/17/2019		LF	150	150										
MW-09	SA	09/30/2019		LF	130	150	ND (1.0)	740	0.72	ND (20)	31	140	420	240	130	1,700
MW-10	SA	05/12/2015		LF	280	290										
MW-10	SA	10/07/2015		LF	190	210	ND (1.0)	500	0.64	110	15	100	380	260	110	1,500
MW-10	SA	12/01/2015		LF	150	170	ND (1.0)	510	0.35	400	11	71	430	260	110	1,400
MW-10	SA	05/03/2016		LF	220	220	ND (1.0)	640	1.1	21	16	100	470	270	120	1,700
MW-10	SA	12/07/2016		LF	180	200	ND (1.0)	510	0.74	64	18	130	390	250	120	1,400
MW-10	SA	02/09/2017		LF	160	150	0.86	610	0.87	ND (20)	18	120	390	260	130	1,600
MW-10	SA	05/03/2017		LF	190	200										
MW-10	SA	12/07/2017		LF	130	130	ND (2.5)	520	0.62	26	17	120	300	250	120	1,400
MW-10	SA	12/07/2017	FD	LF	130	120	ND (2.5)	520	0.66	ND (20)	19	130	310	260	100	1,400
MW-10	SA	02/23/2018		LF	160	160	0.86	670	0.96	250	17	110	470	270	120	1,700
MW-10	SA	05/02/2018		LF	170	160										
MW-10	SA	12/12/2018		LF	110	120	1.1	590	0.78	29	23	140	400	260	110	1,500
MW-10	SA	03/18/2019		LF	150	140	ND (1.0)	660	0.95	110 J	18	130	460	270	120	1,700
MW-10	SA	03/18/2019	FD		150	140	ND (1.0)	660	0.96	64 J	18	130	480	270	130	1,700
MW-10	SA	05/1//2019		LF	180	180										
MW-10	SA	05/1//2019	FD	LF	180	180										
MW-10	SA	09/30/2019			110	110	ND (2.5)	610	0.79	36	21	140	330	260	120	1,500
NIV-11	SA	05/12/2015		LF	130	130								200		
NIV-11	SA	10/07/2015			130	130	ND (1.0)	520	0.41	41	19	120	300	200	/3	1,400
	SA	12/02/2015	50	LF	120	110	ND (1.0)	530	0.35	ND (20)	18	110	310	190	87	1,400
	SA	12/02/2015	FD		120	110	ND (1.0)	520	0.35	ND (20)	18	100	310	180	86	1,300
	SA	05/03/2016	50		110	110	ND (1.0)	520	0.51	ND (20)	18	120	310	190	91	1,400
	SA	12/03/2016	FD		110	110	ND (1.0)	550	0.31	12 (20)	19	120	550	190	91	1,400
	SA	12/07/2016	50		79	84	ND (1.0)	560	0.49	43	21	130	410 J 210 J	190	91	1,300
	SA	02/00/2017	FD		60	60	ND (1.0)	550	0.45	29	21	120	200	190	09	1,300
	SA	02/09/2017			60	60	0.05	550	0.5	ND (20)	19	120	290	190	90	1,500
	SA	12/03/2017			67	61	 ND (2 E)	600	0.44	 ND (20)	21	120	200	100		1 200
	SA	12/07/2017			54	51	ND (2.5)	500	0.44	ND (20)	21	120	300	190	92	1,300
N/N/_11	SA CA	02/23/2018			57	50	ND (1.0)	500	0.47	ND (20)	21	120	520	190	92	1,500
N/N/ 11	54	05/02/2010	ED	LE	57	55										
M/W/_11	5A 5A	12/12/2018	Fυ	LF I F	30 17		ND (1 0)	560	0.43	 ND (20)	23	130	300	180	80	1 400
N/N/_11	5A C A	12/12/2010	ED		47	40 50	ND (1.0)	570	0.45	ND (20)	25	1/0	300	100	20	1 400
MW-11	SA SA	03/18/2010	r D	LF	47	43	ND (1.0)	540	0.47	62	23	140	290	180	96	1 400
MW-11	54	05/17/2019		IF	51	49			0.47				250			1,400
MW-11	54	09/30/2019		IF	44	47	ND (2.5)	590	0.45	ND (20)	22	150	240	180	03	1 400
	37	05/50/2019			-74		(2.5)	550	0.45	110 (20)	23	130	2-10	100	55	1,400

Table 3-2

Bat Cave Wash Sampling Results, Third Quarter 2019 Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

Notes:

The following analytical methods were used:

 Hexavalent chromium = USEPA Method 218.6 or SM3500-CrB
 Dissolved chromium = SW 6020 or SW 6020A
 Bromide and Chloride = USEPA Method 300.0
 Dissolved Boron, dissolved iron, dissolved magnesium, dissolved calcium, and dissolved sodium = USEPA 200.7 or SW 6010B
 Sulfate = USEPA 300.0
 Total Alkalinity = SM 2320 B
 Total dissolved solids = SM 2540 C

 Post-rainfall sampling results are highlighed in grey.

--- = not applicable.
µg/L = micrograms per liter.
FD = field duplicate.
ID = identification.
J = concentration or reporting limit (RL) estimated by laboratory or data validation.
LF = Low Flow (minimal drawdown)
ND = not detected at listed reporting limit.
SA = shallow interval of Alluvial Aquifer.
USEPA = United States Environmental Protection Agency.

Table 3-3 Surface Water Sampling Results, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

Location ID	Sample Date	Sample Type	Hexavalent Chromium (μg/L)	Dissolved Chromium (µg/L)	Field pH (SU)	Specific Conductance (µS/cm)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Arsenic (µg/L)	Dissolved Iron (µg/L)	lron (μg/L)	Dissolved Manganese (µg/L)	Dissolved Barium (µg/L)	Total Suspended Solids (mg/L)
C-BNS	8/21/2019		ND (0.2)	ND (1.0)	8.2	920	4.4	1.3	0.35	2.2	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-CON-D	8/22/2019		ND (0.2)	ND (1.0)	8.1	870	4.5	1.6	0.36	2.4	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-CON-S	8/22/2019		ND (0.2)	ND (1.0)	8.2	860	4.8	1.6	0.36	2.4	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-I-3-D	8/21/2019		ND (0.2)	ND (1.0)	8.1	900	4.6	1.3	0.39	2.3	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-I-3-D	8/21/2019	FD	ND (0.2)	ND (1.0)		910	4.7	1.7	0.39	2.4	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-I-3-S	8/21/2019		ND (0.2)	ND (1.0)	8.1	910	4.5	1.7	0.35	2.4	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-MAR-D	8/22/2019		ND (0.2)	ND (1.0)	8.2	860	4.6	1.6	0.66	2.3	55	290	2.6	110	12
C-MAR-S	8/22/2019		ND (0.2)	ND (1.0)	8.2	860	4.5	1.6	0.36	2.3	ND (20)	220	5.5	110	12
C-NR1-D	8/22/2019		ND (0.2)	ND (1.0)	8.1	870	4.6	1.5	0.35	2.4	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-NR1-S	8/22/2019		ND (0.2)	ND (1.0)	8.2	870	4.7	1.6	0.34	2.4	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-NR3-D	8/22/2019		ND (0.2)	ND (1.0)	8.0	880	4.6	1.7	0.34	2.2	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-NR3-S	8/22/2019		ND (0.2)	ND (1.0)	8.1	870	4.6	1.4	0.34	2.2	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-NR4-D	8/22/2019		ND (0.2)	ND (1.0)	8.4	880	4.4	1.6	0.42	2.2	ND (20)	ND (20)	ND (0.5)	110	ND (5.0)
C-NR4-S	8/22/2019		ND (0.2)	ND (1.0)	8.2	880	4.4	1.5	0.34	2.3	ND (20)	91	ND (0.5)	110	ND (5.0)
C-R22A-D	8/21/2019		ND (0.2)	ND (1.0)	8.1	910	4.5	1.5	0.37	2.3	ND (20)	43	ND (0.5)	120	ND (5.0)
C-R22A-S	8/21/2019		ND (0.2)	ND (1.0)	8.2	920	4.5	1.5	0.34	2.3	ND (20)	27	ND (0.5)	120	ND (5.0)
C-R27-D	8/21/2019		ND (0.2)	ND (1.0)	8.1	920	4.6	0.87 J	0.37	2.4	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-R27-D	8/21/2019	FD	ND (0.2)	ND (1.0)		920	4.8	1.9 J	0.35	2.4	ND (20)	23	ND (0.5)	120	ND (5.0)
C-R27-S	8/21/2019		ND (0.2)	ND (1.0)	8.2	920	4.4	1.7	0.37	2.3	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
C-TAZ-D	8/21/2019		ND (0.2)	ND (1.0)	8.1	890	4.5	1.5	1.8	2.4	ND (20)	36 J	ND (0.5)	120	ND (5.0)
C-TAZ-S	8/21/2019		ND (0.2)	ND (1.0)	8.1	900	4.6	1.3	0.39	2.4	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
R-19	8/22/2019		ND (0.2)	ND (1.0)	8.1	880	4.6	1.4	0.31	2.3	34	35	ND (0.5)	110	ND (5.0)
R-28	8/21/2019		ND (0.2)	ND (1.0)	8.1	920	4.4	1.2	0.33	2.1	ND (20)	ND (20)	ND (0.5)	120	ND (5.0)
R-63	8/21/2019		ND (0.2)	ND (1.0)	8.2	910	4.5	1.7	0.38	2.3	ND (20)	33	ND (0.5)	120	ND (5.0)
RRB	8/22/2019		ND (0.2)	ND (1.0)	8.0	900	4.5	1.6	0.32	2.3	ND (20)	35	13	120	ND (5.0)
SW-1	8/21/2019		ND (0.2)	ND (1.0)	8.0	950									
SW-2	8/21/2019		ND (0.2)	ND (1.0)	8.0	960									

Notes:

1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6.

2. The following analytical methods were used:

Hexavalent chromium = USEPA 218.6

Dissolved chromium, dissolved arsenic, dissolved barium, dissolved manganese, dissolved molybdenum, dissolved selenium = SW6020 Dissolved iron, total iron = SW6010B Specific conductance = USEPA 120.1 Nitrate/Nitrate as Nitrogen = SM 4500-NO3 F

Total suspended solids = SM 2540D

-- = not applicable.
 μg/L = micrograms per liter.
 μS/cm = microSiemens per centimeter.
 COPC = constituent of potential concern.
 DTSC = Department of Toxic Substance Control.
 FD = field duplicate.
 ID = identification.

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

mg/L = milligrams per liter

ND = not detected at listed reporting limit.

SU = standard units.

USEPA = United States Environmental Protection Agency.

Pumping Rate and Extracted Volume for IM-3 System, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Extraction Well ID	July 2019 Average Pumping Rate ^a (gpm)	July 2019 Volume Pumped (gal)	August 2019 Average Pumping Rate ^a (gpm)	August 2019 Volume Pumped (gal)	September 2019 Average Pumping Rate ^a (gpm)	September 2019 Volume Pumped (gal)	October 2019 Average Pumping Rate ^a (gpm)	October 2019 Volume Pumped (gal)	Third Quarter 2019 Average Pumping Rate ^a (gpm)	Third Quarter 2019 Volume Pumped (gal)
TW-02S	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0
TW-02D	0.00	0	0.00	0	0.00	0	0.00	56	0.00	56
TW-03D	123.35	5,506,500	110.67	4,940,207	127.91	5,525,561	131.84	5,885,424	123.44	21,857,691
PE-01	0.01	261	0.01	357	0.00	206	0.01	497	0.01	1,321
TOTAL	123.4	5,506,761	110.7	4,940,564	127.9	5,525,767	131.9	5,885,977	123.5	21,859,068
	-							Chromium Remov	ved This Quarter (kg)	35.4
							(Chromium Removed	l Project to Date (kg)	4,340
								Chromium Remo	ved This Quarter (lb)	78
								Chromium Remove	d Project to Date (lb)	9,570

Notes:

^a The "Average Pumping Rate" is the overall average during the reporting period, including system downtime, based on flow meter readings.

1. Chromium removed includes the period of June 1, 2019 through September 30, 2019.

gal = gallons.

gpm = gallons per minute.

ID = identification.

IM = Interim Measure.

kg = kilograms.

lb = pounds.

Wells Monitored for Conditional Shutdown of PE-01, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report

			Sample	Hexavalent Chromium	Hexavalent	Dissolved Chromium	Dissolved	Exceeded 2014
Location ID	Aquifer Zone	Sample Date	Method	2014 Maximum	Chromium	2014 Maximum	Chromium	Maximum
				Concentration	Q3 2019 Result	Concentration	Q3 2019 Result	Concentration?
MW-20-070	Shallow			2,200	NS	2,400	NS	
MW-26	Shallow			2,400	NS	2,300	NS	
MW-27-020	Shallow			ND (0.20)	NS	ND (1.0)	NS	
MW-28-025	Shallow			ND (0.20)	NS	ND (1.0)	NS	
MW-30-030	Shallow			0.21	NS	ND (1.0)	NS	
MW-31-060	Shallow			600	NS	660	NS	
MW-32-020	Shallow			ND (1.0)	NS	ND (5.0)	NS	
MW-32-035	Shallow			ND (1.0)	NS	ND (1.0)	NS	
MW-33-040	Shallow			0.28	NS	ND (1.0)	NS	
MW-36-020	Shallow			ND (0.20)	NS	ND (1.0)	NS	
MW-36-040	Shallow			0.34	NS	ND (1.0)	NS	
MW-39-040	Shallow			ND (0.20)	NS	ND (1.0)	NS	
MW-42-030	Shallow			0.54	NS	ND (1.0)	NS	
MW-47-055	Shallow			16	NS	16	NS	
MW-20-100	Middle			2,900	NS	2,900	NS	
MW-27-060	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-30-050	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-33-090	Middle			13.3	NS	15.5	NS	
MW-34-055	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-36-050	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-36-070	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-39-050	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-39-060	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-39-070	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-42-055	Middle			0.35	NS	2.8	NS	
MW-42-065	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-44-070	Middle			ND (0.20)	NS	ND (1.0)	NS	
MW-51	Middle			4,800	NS	4.800	NS	
MW-20-130	Deep			9,100	NS	9.000	NS	
MW-27-085	Deep			ND (1.0)	NS	ND (1.0)	NS	
MW-28-090	Deep			ND (0.20)	NS	ND (1.0)	NS	
MW-31-135	Deep			12	NS	12	NS	
MW-33-150	Deep			12	NS	10.8	NS	
MW-33-210	Deep			13	NS	13.5	NS	
MW-34-080	Deen			ND (0.20)	NS	ND (1.0)	NS	
MW-34-100	Deep	10/1/2019	LE	263	ND (0.2)	270	ND (1.0)	No
MW-36-090	Deen			ND (0.20)	NS NS	ND (1.0)	NS	
	Deep			65	NS	62	NS	
MW-39-080	Deep			ND (0.20)	NS	ND (1 0)	NS	
	Deep			57	NS	/10 (1.0)	NS	
	Deen	10/1/2019	IE	41.6	62	/2 9	63	No
MW-44-125	Deep	10/1/2015		401	NS	5.0	NS	110
N/W/ 45-0055	Deep			12 7*	NS	14.2*	NS	
M\W_16_175	Deep	10/1/2010	15	46.3	60	1 11 .2	6.1	No
M/M/ 46 205	Doon	10/1/2019	LF		0.0	40.1	NC NC	UVI
N/\// 40-203	Deep			J.J J/		4.0	INS NC	
10100-47-113	Deeb		 Tan	24		20		
		2/22/2019 8/22/2010	Tap		ND (0.2)			
PE-01	Deep	8/22/2019	тар Тар	5.6	ND (0.2)	6	ND (1.0)	No
		9/4/2019	тар Тар		0.09		ND (1.0)	
T)N/ Q4	Deer	10/3/2019	тар	7 4*	ND (0.2)	20	(1.0)	
I W-04	Deep			7.4 ⁻	NS	20	INS	

Wells Monitored for Conditional Shutdown of PE-01, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Notes:

1. Monitoring wells presented in the table are located within approximately 800 feet of TW-03D, as stated in DTSC 2015.

2. * = Result is the maximum concentration from 2013.

3. Values shown in parentheses are the reporting limit.

4. If a field duplicate sample was collected, the maximum concentration between the primary and field duplicate sample is presented.

- 5. On June 27, 2014, DTSC approved discontinuation of groundwater sampling at monitoring well MW-45-095a.
- 6. Bold values exceeded the 2013 and/or 2014 maximum concentration for hexavalent chromium and/or dissolved chromium.

-- = not applicable.
µg/L = micrograms per liter.
DTSC = Department of Toxic Substance Control.
ID = identification.
LF = low flow (minimal drawdown).
ND = not detected at listed reporting limit.
NS = not sampled.
Tap = sampled from tap of extraction well.

References:

DTSC. 2015. Letter from Aaron Yue/DTSC to Yvonne Meeks/PG&E. "Conditional Approval of Proposal to Modify Interim Measures 3 (IM3) Extraction Well Pumping at Pacific Gas and Electric Company, Topock Compressor Station (PG&E), Needles, California (USEPA ID No. CAT080011729)." July 20.

Groundwater Elevation Results, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

		July Average	August Average	September Average	October Average	Quarterly Average	Dava in Ourstanks
Location ID	Aquifer Zone	Groundwater Elevation	Days in Quarterly				
		(ft amsl)	Average				
MW-20-070	Shallow	454.47	454.41	INC	453.27	454.10	108
MW-22	Shallow	455.65	455.44	455.40	454.72	455.30	123
MW-25	Shallow	456.05	455.90	455.71	455.30	455.74	123
MW-26	Shallow	455.71	455.62	455.44	454.95	455.43	123
MW-27-020	Shallow	456.19	455.64	455.70	454.45	455.49	123
MW-28-025	Shallow	456.17	455.60	455.64	454.36	455.44	123
MW-31-060	Shallow	455.55	455.09	455.13	454.25	455.00	122
MW-32-035	Shallow	INC	455.35	455.37	454.29	INC	86
MW-33-040	Shallow	455.95	455.55	455.51	454.50	455.38	123
MW-35-060	Shallow	456.53	455.98	456.06	454.99	455.89	123
MW-36-020	Shallow	455.80	455.31	455.28	454.21	455.15	123
MW-36-040	Shallow	455.80	455.27	455.20	454.09	455.09	123
MW-39-040	Shallow	455.70	455.43	455.14	454.07	455.08	123
MW-42-030	Shallow	455.70	455.24	455.21	454.13	455.07	123
MW-43-025	Shallow	456.12	455 55	455.61	454 31	455.40	123
MW-47-055	Shallow	456.37	INC	INC	INC	INC	54
MW-20-100	Middle	453.92	453 55	453 54	452.59	453 44	117
	Middle	456.17	455.61	455.65	454 41	455.46	123
MW-30-050	Middle	455.74	455.26	455.30	454.72	455.25	123
	Middle	456.17	435.20	455.61	454.58	455.46	94
MW-34-055	Middle	456.29	455.69	455.79		455.90	94
MW-36-050	Middle	455.73	455.05	455.23	454.05	455.06	123
	Middle	455.75	455.25	455.25	454.06	455.08	123
MW-30-070	Middle	455.75	455.25	455.25	454.00	455.08	123
MW-39-060	Middle	455.30	455.07	455.00	453.60	454.50	123
MW 20.070	Middle	455.20	454.81	454.71	453.00	454.58	123
NW-42-065	Middle	454.55	454.05	454.10	455.10	455.04	123
MW-42-005	Middle	455.07	455.22	455.10	454.10	455.04	123
MW 50 005	Middle	455.90	455.50	455.57	454.14	455.19	123
NAVA E1	Middle	455.64	455.50	433.45	434.05	455.57	125
NNN/ FE 04F	Middle	433.33	455.17	1NC 4E6.24	1NC 4EE 92	1NC 4E6.21	122
NIN/ 20.120	Iviluale	450.72	450.55	450.34	453.65	450.51	123
NIN/ 27.085	Deep	455.66	455.47	455.20	452.12	455.16	123
NIN/ 20.000	Deep	456.10	455.50	455.57	454.38	455.40	123
NIV-28-090	Deep	455.96	455.45	455.43	454.23	455.27	123
MW-31-135	Deep	454.89	454.55	454.44	453.59	454.36	123
MW-33-150	Deep	456.13	455.79	455.72	455.37	455.75	123
NIW-34-080	Deep	456.38	455.82	455.89	454.62	455.68	123
MW-34-100	Deep	456.18	455.64	455.33	454.43	455.40	123
MW-35-135	Deep	456.13	455.75	455.71	454.85	455.61	123
IVIW-36-090	Deep	455.29	454.81	455.04	454.88	455.00	123
MW-36-100	Deep	455.47	455.06	454.93	453.86	454.83	123
IVIW-39-080	Deep	454.65	454.37	454.18	453.17	454.09	123
IVIW-39-100	Deep	455.31	455.03	454.80	453.77	454.73	123
MW-43-090	Deep	456.25	455.67	455.74	454.40	455.51	123
MW-44-115	Deep	455.41	454.97	454.92	453.79	454.77	123
MW-44-125	Deep	455.83	455.41	455.32	454.22	455.18	121
MW-45-095a	Deep	455.69	455.23	455.17	453.99	455.02	123
MW-46-175	Deep	455.98	455.60	455.56	454.53	455.42	123
MW-47-115	Deep	455.87	455.50	455.42	454.57	455.34	123
MW-49-135	Deep	456.31	455.85	455.85	454.76	455.69	123
MW-54-085	Deep	456.31	455.76	455.88	454.68	455.66	123
MW-54-140	Deep	455.77	455.26	455.32	454.30	455.16	123
MW-54-195	Deep	455.23	454.73	455.66	454.90	455.13	123
MW-55-120	Deep	456.72	456.38	456.38	455.83	456.33	123
PT-2D	Deep	454.21	453.95	453.71	452.67	453.63	123
PT-5D	Deep	455.21	454.89	454.72	453.65	454.61	123
PT-6D	Deep	455.03	454.77	454.65	453.59	454.51	123
I-3	Surface water	456.53	455.84	456.06	454.88	455.82	123
RRB	Surface water	INC	INC	INC	INC	INC	0

Notes:

ft amsl = feet above mean sea level.

INC = data are incomplete; less than 75 percent of data were available during the reporting period due to rejection, field equipment malfunction, or inaccessibility. ID = identification.

Average Hydraulic Gradients Measured at Well Pairs, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Well Pair	Reporting Period	Mean Landward Hydraulic Gradient (feet/foot)	Days in Monthly Average	PE-01 Run for Gradient Control?
	July	0.0033		No
	August	0.0031		No
Overall Average	September	0.0032		No
	October	0.0036		No
	July	0.0026	31	
Northern Gradient Pair	August	0.0026	31	
MW-31-135 / MW-33-150	September	0.0027	30	
	October	0.0037	31	
	July			
<u>Central Gradient Pair</u>	August			
(used when PE-01 is run for gradient control) MW-45-095 / MW-34-100	September			
	October			
	July	0.0040	31	No
<u>Central Gradient Pair</u>	August	0.0038	31	No
(used when PE-01 is <u>not</u> run for gradient control) MW-20-130 / MW-34-100	September	0.0036	30	No
	October	0.0040	31	No
	July			
Southern Gradient Pair	August			
(used when PE-01 is fun for gradient control) MW-45-095 / MW-27-085	September			
	October			
	July	0.0032	31	No
Southern Gradient Pair	August	0.0030	31	No
(used when PE-01 is <u>not</u> run for gradient control) MW-20-130 / MW-27-085	September	0.0033	30	No
	October	0.0032	31	No

Notes:

1. The target mean landward hydraulic gradient for the selected well pairs is 0.001 feet/foot.

2. "Days in Monthly Average" refers to the number of days the pressure transducers in both wells were operating correctly.

3. Beginning in August 2017, MW-20-130 was approved for gradient compliance (instead of MW-45-95) at the central and southern well pairs

during months when PE-01 is not run for gradient control.

4. MW-45-095 is also known as MW-45-095a.

^{-- =} monthly gradient not applicable for gradient compliance.

Table 4-5 Interim Measure Contingency Plan Trigger Levels and Results, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Location ID	Aquifer Zone	Sample Date	Sample Method	Hexavalent Chromium Trigger Level (µg/L)	Hexavalent Chromium Q3 2019 Result (µg/L)	Exceeded Trigger Level?
MW-21				20	NS	
MW-27-085				20	NS	
MW-28-090				20	NS	
MW-32-020				20	NS	
MW-32-035				20	NS	
MW-33-040				20	NS	
MW-33-090				25	NS	
MW-33-150				20	NS	
MW-33-210				20	NS	
MW-34-080				20	NS	
MW-34-100	DA	10/1/2019	LF	750	ND (0.2)	No
MW-36-070				20	NS	
MW-39-040				20	NS	
MW-42-055				20	NS	
MW-42-065				20	NS	
MW-43-075				20	NS	
MW-43-090				20	NS	
MW-44-070				20	NS	
MW-44-115	DA	10/1/2019	LF	1,200	6.2	No
MW-44-125				475	NS	
MW-46-175	DA	10/1/2019	LF	225	6.0	No
MW-46-205				20	NS	
MW-47-055				150	NS	
MW-47-115				31	NS	

Notes:

1. If a field duplicate sample was collected, the maximum concentration between the primary and field duplicate sample is presented.

-- = not applicable or not sampled.

 μ g/L = micrograms per liter.

DA = deep interval of Alluvial Aquifer.

ID = identification.

LF = Low Flow (minimal drawdown).

ND = not detected at listed reporting limit.

NS = not sampled.

Q3 = third quarter.

Table 4-6 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report

Month, Year	Davis Dam Release: Projected (cfs)	Davis Dam Release: Actual (cfs)	Davis Dam Release: Difference (cfs)	Colorado River Elevation at I- 3: Predicted (ft amsl)	Colorado River Elevation at I-3: Actual (ft amsl)	Colorado River Elevation at I-3: Difference (feet)
January 2013	8,300	8,299	1	453.20	453.28	0.04
February 2013	10,600	10,972	-372	454.30	454.63	0.40
March 2013	15,200	15,545	-345	456.00	456.29	0.30
April 2013	17,600	17,090	510	456.90	456.74	0.10
May 2013	15,800	15,592	208	456.40	456.44	0.00
June 2013	15,700	15,588	112	456.50	456.47	0.00
July 2013	14,400	13,165	1,235	456.00	455.79	0.20
August 2013	13,100	12,185	915	455.40	455.43	0.00
September 2013	11,700	11,446	254	454.80	455.02	0.20
October 2013	12,300	12,497	-197	454.90	455.09	0.20
November 2013	9,700	8,918	782	454.00	453.98	0.00
December 2013	6,400	7,636	-1,236	452.40	452.81	0.40
January 2014	8,300	8,970	-670	452.80	453.27	0.50
February 2014	11,600	11,850	-250	454.30	454.67	0.30
March 2014	16,600	17,473	-873	456.40	456.70	0.30
April 2014	18,200	17,718	482	457.10	457.08	0.00
May 2014	16,700	16.622	78	456.80	456.68	0.10
June 2014	15,900	15.917	-17	456.60	456.64	0.10
July 2014	15,100	14.640	460	456.30	456.24	0.00
August 2014	12 300	11 336	964	455.20	455.26	0.10
September 2014	13 100	12,000	889	455.30	455 30	0.00
October 2014	10,700	10.434	266	454 30	454.81	0.50
November 2014	10,700	10,434	125	454 30	454.22	0.30
December 2014	6 400	7 235	-835	452.40	452.93	0.10
January 2015	10,400	10.740	-140	454.20	452.55	0.00
Fobruary 2015	10,000	11,740	-140	454.30	454.53	0.03
March 2015	14,900	15,659	-752	455.00	456.20	0.32
April 2015	14,500	17,038	-738	453.50	450.25	0.35
April 2015	16,000	17,170	3110	457.10	450.62	0.20
Iviay 2015	16,000	13,890	2110	456.50	450.00	0.50
Julie 2015	14,500	13,010	080	450.10	455.94	0.10
July 2015	13,400	12,411	989	455.00	455.50	0.10
August 2015	12,100	12,027	-527	455.10	455.45	0.40
Octobor 2015	11,200	10,652	500	455.40	100	0.1
November 2015	10,000	10,055	647	454.70	454.60	0.1
December 2015	6 200	8 556	-00	454.10	453.87	-0.18
January 2016	9,200	9,000	-2,350	453.30	453.48	-0.18
February 2016	11 300	11 700	-400	453.44	454.05	-0.57
March 2016	15,800	15,000	800	455.86	456 51	-0.65
April 2016	15,000	16,400	-1.000	456.77	457.17	-0.40
May 2016	15,400	14 700	1 100	455.98	456.76	-0.78
lune 2016	14 400	14 100	300	456.01	456.64	-0.62
July 2016	13.300	13.100	200	455.73	456.38	-0.65
August 2016	11.500	11,600	-100	455.02	455.70	-0,69
September 2016	12,200	11,900	300	455.19	455.83	-0.63
October 2016	10,400	10,400	0	454.25	455.23	-0.98
November 2016	9,900	9,600	300	453.70	454.40	-0.70
December 2016	8,300	7,800	500	453.37	453.55	-0.18
January 2017	8,000	6,600	1,400	453.22	453.36	-0.14
February 2017	9,500	8,700	800	453.91	454.15	-0.24
March 2017	13,900	13,700	200	455.53	456.10	-0.57
April 2017	15,900	16,100	-200	456.40	456.97	-0.57
May 2017	14,000	13,800	200	455.74	456.39	-0.66
June 2017	13,600	14,300	-700	455.95	456.46	-0.51
July 2017	13,300	13,300	0	455.62	456.22	-0.59
August 2017	11,500	11,500	0	454.91	455.59	-0.68
September 2017	12,700	11,100	1,600	454.39	455.32	-0.93
October 2017	12,000	10,900	1,100	454.01	455.15	-1.14
November 2017	10,400	10,000	400	454.25	454.70	-0.45
December 2017	8,800	9,000	-200	453.51	454.09	-0.58
January 2018	8,100	7,100	1,000	452.50	453.05	-0.55
February 2018	11,100	11,000	100	454.40	454.82	-0.42
March 2018	14,400	13,600	800	455.38	455.94	-0.56

Table 4-6 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Month, Year	Davis Dam Release: Projected (cfs)	Davis Dam Release: Actual (cfs)	Davis Dam Release: Difference (cfs)	Colorado River Elevation at I- 3: Predicted (ft amsl)	Colorado River Elevation at I-3: Actual (ft amsl)	Colorado River Elevation at I-3: Difference (feet)
April 2018	16,000	16,800	-800	456.25	457.09	-0.84
May 2018	15,900	16,300	-400	456.80	457.06	-0.26
June 2018	15,600	15,300	300	456.40	456.88	-0.48
July 2018	13,700	13,400	300	455.60	456.33	-0.73
August 2018	12,000	11,900	100	454.91	455.58	-0.67
September 2018	13,400	13,700	-300	464.03	456.29	7.74
October 2018	11,200	10,300	900	454.54	455.16	-0.62
November 2018	10,500	10,300	200	454.40	455.02	-0.62
December 2018	7,300	6,300	1000	452.94	453.33	-0.39
January 2019	7,300	6,800	500	452.96	453.32	-0.36
February 2019	11,800	10,200	1600	454.71	454.85	-0.14
March 2019	12,400	12,200	200	455.09	455.47	-0.38
April 2019	15,100	14,900	200	456.20	456.55	-0.35
May 2019	15,200	15,200	0	456.40	456.87	-0.47
June 2019	15,100	14,900	200	456.38	456.80	-0.42
July 2019	14,200	14,500	-300	455.90	456.53	-0.63
August 2019	12,700	13,000	-300	455.31	455.84	-0.53
September 2019	13,600	12,900	700	455.52	456.06	-0.54
October 2019	9,800	9,800	0	454.19	454.88	-0.69
November 2019	8,400			453.71		

Notes:

1. Projected river level for each month is calculated based on the preceding month's U.S. Bureau of Reclamation (USBR) projections of Davis Dam release and stage in Lake Havasu.

2. Projected and actual Davis Dam releases are reported monthly by the USBR, available online at https://www.usbr.gov/uc/water/crsp/studies/24Month_11.pdf.

-- = not applicable.

cfs = cubic feet per second.

ft amsl = feet above mean sea level.

INC = incomplete data set for Colorado River elevation at I-3.

NA = difference in predicted and actual river elevation not available due to incomplete dataset.

FIGURES

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL\FIGURE1-1_IM3_GMP_LOCS_2019Q3.MXD 10/8/2019 2:27:49 AM

- Θ Shoreline Surface Water Monitoring Location
- -Ò River Channel Surface Water Monitoring Location
- \ominus Other Surface Water Monitoring Location

- Treatment Plant Effluent Pipeline
- Property Line

- Notes: 1. Location map shows Interim Measure No. 3 (IM-3) active facilities as of current report.
- 2. See Figures 1-2 and 1-3 for complete monitoring locations and identifications.

CTHIRD QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA

LOCATIONS OF IM-3 FACILITIES AND MONITORING LOCATIONS

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL_ADA\FIGURE1-2_GMP_SAMPLING_FREQUENCY_2019Q3.MXD 12/11/2019 9:00:39 AM

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL\FIGURE1-3_GMP_RIVER_SWLOCS_2019Q3.MXD 10/8/2019 2:41:00 AM

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL_ADA\FIGURE1-4_IMP_XSECTION_2019Q3.MXD 12/12/2019 9:48:25 AM

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL_ADA\FIGURE4-1_GMP_CR6_2019Q3_MAX.MXD 12/11/2019 8:54:53 AM

LD:(Opt) PIC:(Opt) PM:(Read) TM:(Opt) LYR:(Opt)ON=*,OFF='REF FIC GAS & ELECTRIC/ProjectFiles)TOPOCK GW MONITORING REPORT

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL_ADA\FIGURE4-3A_GWE_SHALLOW_2019Q3.MXD 12/11/2019 7:48:02 AM

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL\FIGURE4-3B_GWE_MIDDEPTH_2019Q3.MXD 11/14/2019 1:53:48 AM

Z:\GISPROJECTS_ENV\PGE_TOPOCK\GEC\MXD\GMP\3Q19\FINAL\FIGURE4-3C_GWE_DEEP_2019Q3.MXD 11/26/2019 6:28:12 AM

BY: MCKEOUGH 3019 2:11 PM TED: PLOT STYLETABLE: PLTFULL.CTB PC000753 802D101-DWG/RC0 PLOT OS (LMS 2 ACADVER: YR:ON: ž

Z:\GISPROJECTS\ ENV\PGE TOPOCK\GEC\MXD\GMP\3Q19\FINAL\FIGURE4-6 PREDICTED RIVER LEVELS 2019Q3.MXD 11/19/2019 11:03:53 PM

APPENDIX A

Lab Reports, Third Quarter 2019 (Provided on CD with Hard Copy Submittal)

For additional help with the information provided in the lab reports, please contact Alison Schaffer, Arcadis Report Lead, at 303.471.3575.

APPENDIX B

Historical Cr(VI) and Dissolved Chromium Concentrations

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-09	SA	02/09/2017		LF	160	150
MW-09	SA	05/03/2017		LF	160	140
MW-09	SA	12/07/2017		LF	150	140
MW-09	SA	02/23/2018		LF	150	150
MW-09	SA	05/02/2018		LF	150	140
MW-09	SA	12/12/2018		LF	140	150
MW-09	SA	03/18/2019		LF	140	130
MW-09	SA	05/17/2019		LF	150	150
MW-09	SA	09/30/2019		LF	130	150
MW-10	SA	02/09/2017		LF	160	150
MW-10	SA	05/03/2017		LF	190	200
MW-10	SA	12/07/2017		LF	130	130
MW-10	SA	12/07/2017	FD	LF	130	120
MW-10	SA	02/23/2018		LF	160	160
MW-10	SA	05/02/2018		LF	170	160
MW-10	SA	12/12/2018		LF	110	120
MW-10	SA	03/18/2019		LF	150	140
MW-10	SA	03/18/2019	FD	LF	150	140
MW-10	SA	05/17/2019		LF	180	180
MW-10	SA	05/17/2019	FD	LF	180	180
MW-10	SA	09/30/2019		LF	110	110
MW-11	SA	02/09/2017		LF	60	60
MW-11	SA	05/03/2017		LF	67	61
MW-11	SA	12/07/2017		LF	64	61
MW-11	SA	02/23/2018		LF	57	56
MW-11	SA	05/02/2018		LF	57	53
MW-11	SA	05/02/2018	FD	LF	58	55
MW-11	SA	12/12/2018		LF	47	48
MW-11	SA	12/12/2018	FD	LF	47	50
MW-11	SA	03/18/2019		LF	42	43
MW-11	SA	05/17/2019		LF	51	49
MW-11	SA	09/30/2019		LF	44	47
MW-12	SA	05/01/2017		LF	1,900	2,000
MW-12	SA	12/11/2017		LF	1,800	2,100
MW-12	SA	05/01/2018		LF	1,500	1,600
MW-12	SA	12/11/2018		LF	1,500	1,500
MW-12	SA	05/22/2019		LF	1,600	1,600
MW-14	SA	05/01/2017		LF	13	13
MW-14	SA	05/01/2017	FD	3V	13	13
MW-14	SA	12/13/2017		LF	12	13
MW-14	SA	05/01/2018		LF	13	14
MW-14	SA	12/11/2018		LF	13	15

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
<u>MW-14</u>	SA	05/15/2019		LF	14	13
MW-19	SA	04/28/2017		LF	440	430
MW-19	SA	12/08/2017		LF	340	340
MW-19	SA	04/27/2018		LF	370	380
MW-19	SA	12/10/2018		LF	670	780
MW-19	SA	05/15/2019		LF	250	250
MW-20-070	SA	04/27/2017		LF	1,800	1,900
MW-20-070	SA	12/07/2017		LF	1,800	1,900
MW-20-070	SA	04/27/2018		LF	1,700	1,700
MW-20-070	SA	12/11/2018		LF	1,600	1,700
MW-20-070	SA	12/11/2018	FD	LF	1,600	1,800
MW-20-070	SA	05/24/2019		LF	1,700	1,800
MW-20-100	MA	04/27/2017		LF	2,000	2,100
MW-20-100	MA	12/08/2017		LF	1,500	1,400
MW-20-100	MA	12/08/2017	FD	LF	1,500	1,400
MW-20-100	MA	04/27/2018		LF	1,800	1,800
MW-20-100	MA	12/04/2018		LF	1,400	1,500
MW-20-100	MA	05/24/2019		LF	1,300	1,500
MW-20-130	DA	04/27/2017		LF	7,300	8,000
MW-20-130	DA	04/27/2017	FD	LF	7,400	7,600
MW-20-130	DA	12/07/2017		LF	4,100	4,400
MW-20-130	DA	04/27/2018		LF	6,900	7,000
MW-20-130	DA	12/04/2018		LF	5,800	6,100
MW-20-130	DA	05/24/2019		LF	5,900	6,800
MW-20-130	DA	05/24/2019	FD	LF	6,000	6,800
MW-21	SA	05/03/2017		3V	2.1	2.7
MW-21	SA	12/12/2017		LF	2.3	2.7
MW-21	SA	05/02/2018		LF	ND (1.0)	1.0
MW-21	SA	05/02/2018	FD	LF	ND (1.0)	ND (1.0)
MW-21	SA	12/12/2018		LF	1.1	1.2
MW-21	SA	05/23/2019		LF	6.5	6.7
MW-22	SA	04/28/2017		LF	ND (1.0)	ND (1.0)
MW-22	SA	12/06/2017		LF	ND (1.0)	ND (1.0)
MW-22	SA	04/23/2018		LF	ND (1.0)	ND (5.0)
MW-22	SA	12/04/2018		LF	ND (1.0)	ND (1.0)
MW-22	SA	12/04/2018	FD	LF	ND (1.0)	ND (1.0)
MW-22	SA	04/23/2019		LF	ND (1.0)	ND (1.0)
MW-23-060	BR	04/28/2017		LF	38	34
MW-23-060	BR	12/08/2017		LF	40	35
MW-23-060	BR	04/26/2018		LF	39	37 J
MW-23-060	BR	12/11/2018		LF	39	40
MW-23-060	BR	05/21/2019		LF	40	35

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				_ ·		
	–	• • • • •		Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-23-080	BR	04/28/2017		LF	1.2	ND (1.0)
MW-23-080	BR	12/08/2017		LF	1.5	1.9
MW-23-080	BR	04/26/2018		LF	ND (1.0)	1.5
MW-23-080	BR	12/11/2018		LF	ND (1.0)	3.2
MW-23-080	BR	05/21/2019		LF	ND (1.0)	1.1
MW-24A	SA	05/03/2017		LF	ND (0.2)	ND (1.0)
MW-24A	SA	12/07/2017		LF	ND (0.2)	2.7 J
MW-24A	SA	12/07/2017	FD	LF	ND (0.2)	8.7 J
MW-24A	SA	05/02/2018		LF	ND (0.2)	ND (1.0)
MW-24A	SA	12/12/2018		LF	ND (0.2)	ND (1.0)
MW-24A	SA	05/17/2019		LF	ND (0.2)	ND (1.0)
MW-24B	DA	05/03/2017		LF	230	220
MW-24B	DA	05/03/2017	FD	LF	230	210
MW-24B	DA	12/07/2017		LF	250	250
MW-24B	DA	05/02/2018		LF	200	200
MW-24B	DA	12/12/2018		LF	160	150
MW-24B	DA	05/17/2019		LF	86	73
MW-24B	DA	05/17/2019	FD	LF	84	73
MW-25	SA	05/01/2017		LF	76	74
MW-25	SA	12/08/2017		LF	91	90
MW-25	SA	05/01/2018		LF	68	65
MW-25	SA	12/10/2018		LF	100	100
MW-25	SA	12/10/2018	FD	LF	100	100
MW-25	SA	05/15/2019		LF	68	66
MW-26	SA	04/26/2017		LF	2,300	2,600
MW-26	SA	12/11/2017		LF	2,300	2,600
MW-26	SA	12/11/2017	FD	LF	2,400	2,500
MW-26	SA	05/01/2018		LF	2,300	2,400
MW-26	SA	12/07/2018		LF	2,200	2,300
MW-26	SA	05/22/2019		LF	2,300	2,500
MW-27-085	DA	04/28/2017		LF	ND (1.0)	ND (1.0)
MW-27-085	DA	04/28/2017	FD	LF	ND (1.0)	ND (1.0)
MW-27-085	DA	12/04/2017		LF	ND (1.0)	ND (1.0)
MW-27-085	DA	04/24/2018		LF	ND (1.0)	ND (1.0)
MW-27-085	DA	12/05/2018		LF	ND (1.0)	ND (1.0)
MW-27-085	DA	04/22/2019		LF	ND (0.2)	ND (1.0)
MW-28-025	SA	04/26/2017		LF	ND (0.2)	ND (1.0)
MW-28-025	SA	12/07/2017		LF	ND (0.2)	ND (1.0)
MW-28-025	SA	04/25/2018		LF	ND (0.2)	ND (1.0)
MW-28-025	SA	04/25/2018	FD	LF	ND (0.2)	ND (1.0)
MW-28-025	SA	12/14/2018		LF	ND (0.2)	ND (1.0)
MW-28-025	SA	05/21/2019		LF	ND (0.2)	ND (1.0)

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-28-090	DA	04/26/2017		LF	ND (0.2)	1.2
MW-28-090	DA	12/07/2017		LF	ND (0.2)	ND (1.0)
MW-28-090	DA	04/25/2018		LF	ND (0.2)	ND (1.0)
MW-28-090	DA	12/14/2018		LF	ND (0.2)	ND (1.0)
MW-28-090	DA	05/21/2019		LF	ND (0.2)	ND (1.0)
MW-29	SA	04/26/2017		LF	ND (0.2)	ND (1.0)
MW-29	SA	12/07/2017		LF	ND (0.2)	ND (1.0)
MW-29	SA	04/25/2018		LF	ND (0.2)	ND (1.0)
MW-29	SA	12/10/2018		LF	ND (0.2)	ND (1.0)
MW-29	SA	05/21/2019		LF	ND (0.2)	ND (1.0)
MW-31-060	SA	04/27/2017		LF	390	430
MW-31-060	SA	04/27/2017	FD	LF	400	430
MW-31-060	SA	12/12/2017		LF	390	410
MW-31-060	SA	04/27/2018		LF	380	390
MW-31-060	SA	12/10/2018		LF	390	400
MW-31-060	SA	05/20/2019		LF	250	240
MW-31-060	SA	05/20/2019	FD	LF	250	240
MW-32-035	SA	04/27/2017		LF	ND (1.0)	ND (1.0)
MW-32-035	SA	12/04/2017		LF	ND (1.0)	ND (1.0)
MW-32-035	SA	04/23/2018		LF	ND (1.0)	ND (1.0)
MW-32-035	SA	12/04/2018		LF	ND (1.0)	ND (1.0)
MW-32-035	SA	04/23/2019		LF	ND (0.2)	ND (1.0)
MW-33-040	SA	04/26/2017		LF	ND (0.2)	ND (1.0)
MW-33-040	SA	12/07/2017		LF	ND (1.0)	1.7
MW-33-040	SA	04/25/2018		LF	ND (1.0)	1.2
MW-33-040	SA	12/07/2018		LF	ND (1.0)	ND (1.0)
MW-33-040	SA	04/23/2019		LF	ND (0.2)	ND (1.0)
MW-33-090	MA	04/26/2017		LF	5.0	4.9
MW-33-090	MA	12/07/2017		LF	5.5	5.0
MW-33-090	MA	04/24/2018		LF	3.3	3.8
MW-33-090	MA	12/07/2018		LF	1.2	1.7
MW-33-090	MA	12/07/2018	FD	LF	9.3	10
MW-33-090	MA	04/22/2019		LF	2.5	5.5
MW-33-150	DA	04/26/2017		LF	6.2	5.6
MW-33-150	DA	04/26/2017	FD	LF	5.9	5.5
MW-33-150	DA	12/07/2017		LF	7.0	7.2
MW-33-150	DA	04/25/2018		LF	5.2	5.0
MW-33-150	DA	12/07/2018		LF	3.9	6.2
MW-33-150	DA	05/21/2019		LF	5.5	21
MW-33-210	DA	04/26/2017		LF	9.5	8.3
MW-33-210	DA	12/07/2017		LF	14	15
MW-33-210	DA	04/25/2018		LF	6.0	5.9
Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

		_		Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-33-210	DA	12/07/2018		LF	6.7	10
MW-33-210	DA	04/22/2019		LF	10	9.2
MW-34-080	DA	04/27/2017		LF	ND (0.2)	ND (1.0)
MW-34-080	DA	12/06/2017		LF	ND (0.2)	ND (1.0)
MW-34-080	DA	04/24/2018		LF	ND (1.0)	ND (1.0)
MW-34-080	DA	12/05/2018		LF	ND (1.0)	ND (1.0)
MW-34-080	DA	04/24/2019		LF	ND (0.2)	ND (1.0)
MW-34-100	DA	02/06/2017		LF	45	43
MW-34-100	DA	02/06/2017	FD	LF	44	40
MW-34-100	DA	04/27/2017		LF	0.67	1.8
MW-34-100	DA	10/02/2017		LF	ND (1.0)	ND (1.0)
MW-34-100	DA	12/06/2017		LF	ND (1.0)	ND (1.0)
MW-34-100	DA	02/20/2018		LF	ND (1.0)	1.5
MW-34-100	DA	04/24/2018		LF	ND (1.0)	1.1
MW-34-100	DA	04/24/2018	FD	LF	ND (1.0)	1.3
MW-34-100	DA	10/01/2018		LF	ND (1.0)	ND (1.0)
MW-34-100	DA	12/05/2018		LF	ND (1.0)	ND (1.0)
MW-34-100	DA	02/14/2019		LF	ND (1.0)	1.7
MW-34-100	DA	04/24/2019		LF	ND (0.2)	ND (1.0)
MW-34-100	DA	10/01/2019		LF	ND (0.2)	ND (1.0)
MW-35-060	SA	05/01/2017		LF	21	20
MW-35-060	SA	12/08/2017		LF	21	20
MW-35-060	SA	04/27/2018		LF	22	24
MW-35-060	SA	12/10/2018		LF	20	20
MW-35-060	SA	05/24/2019		LF	24	22
MW-35-135	DA	05/01/2017		LF	25	22
MW-35-135	DA	12/08/2017		LF	29	29
MW-35-135	DA	04/27/2018		LF	26	25
MW-35-135	DA	12/10/2018		LF	25	25
MW-35-135	DA	05/24/2019		LF	28	24
MW-36-090	DA	04/27/2017		LF	ND (0.2)	ND (1.0)
MW-36-090	DA	12/06/2017		LF	ND (0.2)	ND (1.0)
MW-36-090	DA	04/24/2018		LF	ND (0.2)	ND (1.0)
MW-36-090	DA	12/06/2018		LF	ND (0.2)	ND (1.0)
MW-36-090	DA	12/06/2018	FD	LF	ND (0.2)	ND (1.0)
MW-36-090	DA	04/24/2019		LF	ND (0.2)	ND (1.0)
MW-36-100	DA	04/27/2017		LF	32	32
MW-36-100	DA	04/27/2017	FD	LF	31	33
MW-36-100	DA	12/06/2017		LF	12	14
MW-36-100	DA	12/06/2017	FD	LF	12	15
MW-36-100	DA	04/24/2018		LF	6.6	11
MW-36-100	DA	12/06/2018		LF	3.3	6.8

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

						<u>.</u>
Leasting ID	A multan Zana	Comula Data		Sample	Hexavalent	Dissolved
Location ID	Aquiter Zone	Sample Date		Ivietnoa	Chromium (µg/L)	Chromium (µg/L)
NW-36-100	DA	04/24/2019	50		7.4	11
IVIW-36-100	DA	04/24/2019	FD		/.1	11
IVIW-37D	DA	05/01/2017			6.6	6.3
NW-37D	DA	12/08/2017		LF	5.0	6.4
MW-37D	DA	05/03/2018			7.4	7.1
MW-37D	DA	12/06/2018		LF	5.1	5.0
MW-37D	DA	05/20/2019		LF	6.2	6.0
MW-38D	DA	05/03/2017		LF	16	14
MW-38D	DA	05/03/2017		3V	17	15
MW-38D	DA	12/07/2017		LF	20	18
MW-38D	DA	12/07/2017		3V	21	18
MW-38D	DA	05/02/2018		LF	15	14
MW-38D	DA	05/02/2018		3V	15	14
MW-38D	DA	12/12/2018		3V	20	20
MW-38D	DA	12/12/2018		LF	21	21
MW-38D	DA	05/17/2019		LF	21	17
MW-38S	SA	02/09/2017		LF	0.57	ND (1.0)
MW-38S	SA	02/09/2017		3V	3.8	3.6
MW-38S	SA	05/03/2017		LF	0.34	ND (1.0)
MW-38S	SA	05/03/2017		3V	1.2	1.2
MW-38S	SA	09/26/2017		LF	3.1	3.6
MW-38S	SA	09/26/2017	FD	LF	3.1 J	3.6
MW-38S	SA	09/26/2017		3V	3.8 J	4.2
MW-38S	SA	12/07/2017		LF	2.3	2.5
MW-38S	SA	12/07/2017		3V	2.9	3.1
MW-38S	SA	02/23/2018		LF	2.8	2.5
MW-38S	SA	02/23/2018		3V	2.8	2.4
MW-38S	SA	05/02/2018		LF	1.8	2.0
MW-38S	SA	05/02/2018		3V	1.1	1.3
MW-38S	SA	09/27/2018		LF	3.0	3.3
MW-38S	SA	09/27/2018		3V	2.7	2.8
MW-38S	SA	12/12/2018		LF	4.2	4.7
MW-38S	SA	12/12/2018		3V	3.9	4.3
MW-38S	SA	02/13/2019		LF	5.1	5.6
MW-38S	SA	02/13/2019		3V	3.7	3.8
MW-385	SA	05/17/2019		IF	6.0	5.7
MW-38S	SA	09/25/2019		L F	4.8	4.7
MW-39-100	DA	04/27/2017		 [F	71	67
MW-39-100	DA	12/05/2017		L F	71	66
MW-39-100		04/24/2018		L. I F	57	54
MW-39-100		12/06/2018		L. I F	63	70
MW-39-100	DA	04/24/2019		LF	88	89

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

Leastion ID	A swifes Zono	Comula Data		Sample	Hexavalent	Dissolved
		Sample Date			Chromium (μg/L)	
		04/25/2018			25 120	51 120
	DA	12/12/2018			ND (1 0)	ND (1 0)
MW-40D	DA	12/12/2018		IE	1/0	1/0
	DA	05/22/2010		LF	120	120
MW-40D		05/22/2019	FD	IF	120	120
MW-405	SA	04/25/2018	10	н	18	17
MW-405	SA	04/25/2018		I.F	20	20
MW-405	SA	12/12/2018		н	17	20
MW-405	SA	12/12/2018		 LE	11	11
MW-405	SA	05/22/2019		Н	12	15
MW-41D	DA	05/01/2017		LF	ND (1 0)	ND (5 0)
MW-41D	DA	12/13/2017		L.	ND (1.0)	ND (1.0)
MW-41D	DA	12/13/2017	FD	LE LE	ND (1.0)	1.2
MW-41D	DA	05/04/2018	. 2	LF	ND (1.0)	ND (1.0)
MW-41D	DA	12/13/2018		LF	ND (1.0)	ND (5.0)
MW-41D	DA	05/15/2019		LF	ND (1.0)	ND (1.0)
MW-42-055	MA	04/28/2017		LF	ND (0.2)	1.3
MW-42-055	MA	12/04/2017		LF	ND (0.2)	1.3
MW-42-055	MA	04/24/2018		LF	ND (0.2)	ND (1.0)
MW-42-055	MA	12/05/2018		LF	ND (0.2)	ND (1.0)
MW-42-055	MA	04/23/2019		LF	ND (0.2)	ND (1.0)
MW-42-065	MA	04/28/2017		LF	ND (0.2)	ND (1.0)
MW-42-065	MA	12/04/2017		LF	ND (0.2)	ND (1.0)
MW-42-065	MA	04/24/2018		LF	ND (0.2)	ND (1.0)
MW-42-065	MA	12/05/2018		LF	ND (0.2)	ND (1.0)
MW-42-065	MA	04/23/2019		LF	ND (0.2)	ND (1.0)
MW-44-070	MA	04/27/2017		3V	ND (0.2)	ND (1.0)
MW-44-070	MA	12/06/2017		LF	ND (0.2)	ND (1.0)
MW-44-070	MA	04/24/2018		LF	ND (0.2)	ND (1.0)
MW-44-070	MA	12/05/2018		LF	ND (0.2)	ND (1.0)
MW-44-070	MA	04/24/2019		LF	ND (0.2)	ND (1.0)
MW-44-115	DA	02/06/2017		LF	18	16
MW-44-115	DA	04/27/2017		LF	21	19
MW-44-115	DA	10/02/2017		LF	15	13
MW-44-115	DA	12/06/2017		LF	14	13
MW-44-115	DA	02/20/2018		LF	13	12
MW-44-115	DA	02/20/2018	FD	LF	13	12
MW-44-115	DA	04/24/2018		LF	8.9	9.5
MW-44-115	DA	10/01/2018		LF	6.4	7.0
MW-44-115	DA	12/05/2018		LF	6.4	5.8
MW-44-115	DA	02/15/2019		LF	9.7	17

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				. .		<u>.</u>
Location ID	Aquifor Zono	Sample Date		Sample	Hexavalent	Dissolved
				IF	Chromium (μg/ L)	Chromium (μg/ L) 6.1
MW-44-115		10/01/2019		LI	6.2	63
MW-44-115	DA	04/27/2017			0.2 ND (0.2)	0.5 ND (1.0)
MW-44-125		12/06/2017		LI	2 9	4.8
M/M/-44-125	DA	04/24/2018			2.5 ND (0.2)	4.0 3 1
M/M/_4/-125	DA	12/05/2018			ND (0.2)	UD (1 0)
M/M/-44-125	DA	12/05/2018	FD		ND (1.0)	ND (1.0)
M/M/_44-125	DA	04/24/2019	ΤD		1 9	10
MW-46-175		02/07/2017		LF	21	18
M/M-46-175	DA	02/07/2017			10	9.7
MW-46-175	DA	10/02/2017			79	7.2
MW 40 175	DA	12/07/2017			11	11
MW-46-175	DA	02/20/2018			13	12
MW-46-175	DA	02/20/2018			77	83
M/M-46-175	DA	10/02/2018			65	7.0
MW-46-175	DA	10/02/2018	FD		6.5	7.0
MW-46-175	DA	12/13/2018	10		8.2	12
MW-46-175	DA	02/15/2010			8.2 8.1	12
M/M-46-175	DA	02/15/2019	ED		7.0	18
M/M-46-175	DA	02/13/2019	FD		7.9	20
	DA	10/01/2019			7.0 6.0	5.1
MW-46-205	DA	04/26/2017			1.2	1 1
MW 46 205	DA	12/07/2017		2\/	1.2 ND (1.0)	
N/N/ 46 205		12/07/2017		50	ND (1.0)	ND (1.0)
MW 46 205	DA	12/12/2018			ND (1.0)	ND (1.0)
M/M-46-205	DA	05/21/2010			2 /	ND (1.0) 2 7
MW-47-055	SA SA	04/26/2017			15	15
MW-47-055	SA SA	04/26/2017	FD	LI	15	15
MW-47-055	SA SA	12/07/2017	10		19	20
MW-47-055	SA SA	12/07/2017	FD		10	20
MW-47-055	SA SA	04/26/2018	10	LI	15	15
MW 47 055	SA SA	04/26/2018	FD		1/	1/
MW-47-055	SA SA	12/10/2018		LF	21	21
MW-47-055	SA SA	05/16/2019		LF	17	15
MW-47-055	SA SA	05/16/2019	FD		17	15
MW-47-115		04/26/2017	טי		23	22
MW-47-115		12/07/2017		L I F	18	16
MW-47-115		04/25/2018			23	23
MW-47-115		12/10/2018			15	15
MW-47-115		12/10/2018	FD		15	15
MW-47-115	DA	05/16/2019	. 2	LF	27	23

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-48	BR	05/03/2017		G	ND (1.0)	ND (1.0)
MW-48	BR	12/13/2017		LF	ND (1.0)	ND (1.0)
MW-48	BR	05/03/2018		LF	ND (1.0)	ND (1.0)
MW-48	BR	12/13/2018		LF	ND (1.0)	ND (5.0)
MW-48	BR	05/23/2019		LF	ND (1.0)	ND (1.0)
MW-50-095	MA	04/28/2017		LF	10	10
MW-50-095	MA	12/08/2017		LF	13	14
MW-50-095	MA	04/27/2018		LF	11	10
MW-50-095	MA	12/10/2018		LF	13	14
MW-50-095	MA	05/20/2019		LF	13	12
MW-50-200	DA	04/28/2017		LF	7,000	7,400
MW-50-200	DA	12/08/2017		LF	4,100	4,300
MW-50-200	DA	04/27/2018		LF	6,500	6,800
MW-50-200	DA	12/10/2018		LF	3,100	3,700
MW-50-200	DA	05/20/2019		LF	5,800	6,200
MW-51	MA	04/26/2017		LF	4,000	4,100
MW-51	MA	04/26/2017	FD	LF	4,000	4,200
MW-51	MA	12/11/2017		LF	3,700	4,100
MW-51	MA	05/01/2018		LF	3,500	3,700
MW-51	MA	12/10/2018		LF	3,300	3,800
MW-51	MA	05/22/2019		LF	3,300	3,800
MW-52D	DA	04/27/2017		LF	ND (1.0)	ND (5.0)
MW-52D	DA	12/05/2017		LF	ND (1.0)	ND (1.0)
MW-52D	DA	04/23/2018		LF	ND (1.0)	ND (5.0)
MW-52D	DA	12/04/2018		LF	ND (1.0)	ND (1.0)
MW-52D	DA	04/23/2019		LF	ND (1.0)	ND (1.0)
MW-52D	DA	04/23/2019	FD	LF	ND (1.0)	ND (1.0)
MW-52M	DA	04/27/2017		LF	ND (1.0)	ND (1.0)
MW-52M	DA	12/05/2017		LF	ND (1.0)	ND (1.0)
MW-52M	DA	12/05/2017	FD	LF	ND (1.0)	ND (1.0)
MW-52M	DA	04/23/2018		LF	ND (1.0)	ND (5.0)
MW-52M	DA	12/04/2018		LF	ND (1.0)	ND (1.0)
MW-52M	DA	04/23/2019		LF	ND (1.0)	ND (1.0)
MW-52S	MA	04/27/2017		LF	ND (1.0)	ND (1.0)
MW-52S	MA	12/05/2017		LF	ND (1.0)	ND (1.0)
MW-52S	MA	04/24/2018		LF	ND (1.0)	ND (1.0)
MW-52S	MA	12/04/2018		LF	ND (1.0)	ND (1.0)
MW-52S	MA	04/23/2019		LF	ND (0.2)	ND (1.0)
MW-53D	DA	04/27/2017		LF	ND (1.0)	ND (1.0)
MW-53D	DA	04/27/2017	FD	LF	ND (1.0)	ND (5.0)
MW-53D	DA	12/05/2017		LF	ND (1.0)	ND (5.0)
MW-53D	DA	04/23/2018		LF	ND (1.0)	ND (1.0)

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

	• ·r -			Sample	Hexavalent	Dissolved
	Aquiter Zone	Sample Date		Method	Chromium (µg/L)	
MW-53D	DA	12/04/2018			ND (1.0)	ND (1.0)
MW-53D	DA	04/23/2019			ND (1.0)	ND (1.0)
MW-53M	DA	04/2//2017		LF	ND (1.0)	ND (5.0)
MW-53M	DA	12/05/2017			ND (0.2)	ND (1.0)
MW-53M	DA	04/23/2018			ND (1.0)	ND (1.0)
MW-53M	DA	12/04/2018			ND (1.0)	ND (1.0)
MW-53M	DA	04/23/2019	()		ND (1.0)	ND (1.0)
MW-54-085	DA	05/04/2017	(a)		ND (0.2) (b)	ND (1.0) (b)
MW-54-085	DA	12/13/2017	(a)	LF	4.96	ND (1.0)
MW-54-085	DA	05/04/2018	(a)	LF	ND (0.1)	ND (0.2)
MW-54-085	DA	12/13/2018	(a)	LF	ND (0.1 J)	ND (2.0)
MW-54-085	DA	05/23/2019	(a)	LF	ND (0.1)	ND (2.0)
MW-54-140	DA	05/04/2017	(a)	LF	ND (0.2) (b)	ND (1.0) (b)
MW-54-140	DA	12/13/2017	(a)	LF	4.92	ND (1.0)
MW-54-140	DA	05/04/2018	(a)	LF	4.95	ND (0.2)
MW-54-140	DA	12/13/2018	(a)	LF	ND (0.5 J)	ND (2.0)
MW-54-140	DA	05/23/2019	(a)	LF	ND (0.5)	ND (2.0)
MW-54-195	DA	05/04/2017	(a)	3V	ND (1.0) (b)	ND (1.0) (b)
MW-54-195	DA	12/13/2017	(a)	LF	4.97	1.2
MW-54-195	DA	05/04/2018	(a)	LF	5.09	ND (0.2)
MW-54-195	DA	12/13/2018	(a)	LF	ND (0.5 J)	ND (2.0)
MW-54-195	DA	05/23/2019	(a)	LF	ND (0.5)	15.1
MW-54-195	DA	08/22/2019	(a)	LF	ND (0.5)	ND (2.0)
MW-55-045	MA	05/02/2017	(a)	LF	ND (0.2) (b)	ND (1.0) (b)
MW-55-045	MA	12/13/2017	(a)	LF	ND (0.2)	ND (1.0)
MW-55-045	MA	05/03/2018	(a)	LF	ND (0.1)	ND (0.2)
MW-55-045	MA	12/13/2018	(a)	LF	ND (0.1 J)	ND (0.2)
MW-55-045	MA	05/23/2019	(a)	LF	ND (0.1)	ND (2.0)
MW-55-120	DA	02/10/2017	(a)	LF	7.5	8.3
MW-55-120	DA	02/10/2017	FD(a)	LF	7.33	8.28
MW-55-120	DA	05/02/2017	(a)	LF	8.1	8.2
MW-55-120	DA	12/13/2017	(a)	LF	7.11	9.03
MW-55-120	DA	05/03/2018	(a)	LF	8.0	8.35
MW-55-120	DA	12/13/2018	(a)	LF	8.29 J	ND (2.0)
MW-55-120	DA	05/23/2019	(a)	LF	7.49	ND (2.0)
MW-56D	DA	05/04/2017	(a)	LF	ND (1.0) (b)	ND (1.0) (b)
MW-56D	DA	12/13/2017	(a)	LF	4.93	ND (1.0)
MW-56D	DA	05/02/2018	(a)	LF	5.03	ND (0.2)
MW-56D	DA	12/13/2018	(a)	LF	ND (0.5 J)	ND (2.0)
MW-56D	DA	12/13/2018	FD(a)	LF	ND (0.5 J)	ND (2.0)
MW-56D	DA	05/23/2019	(a)	LF	ND (0.5)	ND (2.0)

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-56M	DA	05/04/2017	(a)	LF	ND (1.0) (b)	ND (1.0) (b)
MW-56M	DA	12/13/2017	(a)	LF	4.83	ND (1.0)
MW-56M	DA	05/02/2018	(a)	LF	4.99	ND (0.2)
MW-56M	DA	12/13/2018	(a)	LF	ND (0.5 J)	ND (2.0)
MW-56M	DA	05/23/2019	(a)	LF	ND (0.5)	ND (2.0)
MW-56S	SA	05/04/2017	(a)	LF	ND (0.2) (b)	ND (1.0) (b)
MW-56S	SA	12/13/2017	(a)	LF	ND (0.2)	ND (1.0)
MW-56S	SA	05/02/2018	(a)	LF	ND (0.1)	ND (0.2)
MW-56S	SA	12/13/2018	(a)	LF	ND (0.1 J)	ND (2.0)
MW-56S	SA	05/23/2019	(a)	LF	ND (0.1)	ND (2.0)
MW-57-070	BR	05/01/2017		LF	350	340
MW-57-070	BR	12/11/2017		LF	420	430
MW-57-070	BR	05/03/2018		LF	340	360
MW-57-070	BR	12/07/2018		LF	410	420
MW-57-070	BR	05/20/2019		LF	380	400
MW-57-185	BR	05/01/2017		3V	5.9	5.2
MW-57-185	BR	12/11/2017		3V	8.2	7.4
MW-57-185	BR	05/03/2018		3V	7.7	7.5
MW-57-185	BR	12/07/2018		3V	6.4	5.7
MW-57-185	BR	05/20/2019		LF	4.6	5.2
MW-57-185	BR	05/20/2019	FD	LF	4.7	5.1
MW-57-185_D	BR	12/11/2017		LF	3.1	2.7
MW-57-185_D	BR	05/03/2018		LF	4.8	4.7
MW-57-185_D	BR	12/07/2018		LF	6.2	5.9
MW-57-185_S	BR	12/11/2017		LF	3.0	3.3
MW-57-185_S	BR	05/03/2018		LF	5.3	5.2
MW-57-185_S	BR	12/07/2018		LF	5.4	6.0
MW-58BR	BR	02/07/2017		LF	4.3	4.0
MW-58BR	BR	05/02/2017		LF	5.4	5.2
MW-58BR	BR	09/27/2017		LF	42	39
MW-58BR	BR	12/11/2017		LF	39	41
MW-58BR	BR	02/19/2018		LF	13	11
MW-58BR	BR	05/03/2018		LF	9.3	9.2
MW-58BR	BR	09/27/2018		LF	9.7	9.6
MW-58BR	BR	12/13/2018		LF	10	11
MW-58BR	BR	02/14/2019		LF	7.4	9.4
MW-58BR	BR	05/21/2019		LF	12	14
MW-58BR	BR	08/19/2019		LF	90	88 J
MW-58BR	BR	08/19/2019	FD	LF	90	89 J
MW-59-100	SA	05/01/2017		LF	2,500	2,600
MW-59-100	SA	12/07/2017		LF	3,600	3,900
MW-59-100	SA	05/03/2018		LF	2,800	3,000

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Consiste		Disastrad
Location ID	Aquifor Zopo	Sample Date		Sample	Hexavalent	Dissolved Chromium (ug/L)
		12/07/2018			2 100	2 200
M/M/_59-100	SA SA	12/07/2018	ED		3,100	3,300
M/W-59-100	54	05/20/2010	10		2 000	2 200
MW-59-100	SA SA	05/20/2019	FD		2,000	2,200
MW-60-125	BR	05/20/2013			830	830
M/W-60-125	BR	12/06/2017			770	730
MW-60-125	BR	05/02/2017			510	/30
MW-60-125	BR	12/06/2018		LI	980	950
MW-60-125	BR	05/22/2019		IF	880	890
MW-60BB-245	BR	02/08/2017		31/	ND (1 0)	ND (1 0)
MW-60BR-245	BR	05/03/2017		3V	39	36
MW-60BR-245	BR	09/26/2017		3V	ND (1 0)	ND (1 0)
MW-60BR-245	BR	12/14/2017		3V	690	830
MW-60BR-245	BR	02/21/2018		31/	69	59
MW-60BR-245	BR	05/02/2018		3V	73	67
MW-60BR-245	BR	09/25/2018		3V	76	81
MW-60BR-245	BR	12/06/2018		3V	110	120
MW-60BR-245	BR	02/14/2019		3V	110	110
MW-60BR-245	BR	05/22/2019		3V	130	120
MW-60BR-245 D	BR	12/13/2017		LF	ND (1.0)	1.4
MW-60BR-245 D	BR	02/21/2018		LF	4.1	39
MW-60BR-245 D	BR	05/02/2018		LF	1.2	1.7
	BR	09/25/2018		LF	6.4	6.2
MW-60BR-245_D	BR	12/06/2018		LF	20	21
MW-60BR-245_D	BR	02/14/2019		LF	18	17
MW-60BR-245_D	BR	05/23/2019		LF	68	61
MW-60BR-245_S	BR	12/13/2017		LF	2.3	12
MW-60BR-245_S	BR	02/21/2018		LF	ND (1.0)	7.7
MW-60BR-245_S	BR	05/02/2018		LF	1.1	1.5
MW-60BR-245_S	BR	09/25/2018		LF	ND (1.0)	ND (1.0)
MW-60BR-245_S	BR	12/06/2018		LF	17	17
MW-60BR-245_S	BR	02/14/2019		LF	25	29
MW-60BR-245_S	BR	05/23/2019		LF	85	74
MW-61-110	BR	05/02/2017		3V	370	340
MW-61-110	BR	12/06/2017		LF	410	380
MW-61-110	BR	05/04/2018		LF	330	340
MW-61-110	BR	12/13/2018		LF	430	460
MW-61-110	BR	12/13/2018	FD	LF	460	470
MW-61-110	BR	05/23/2019		LF	280	280
MW-62-065	BR	02/09/2017		3V	550	560
MW-62-065	BR	05/02/2017		LF	580	590
MW-62-065	BR	09/25/2017		LF	430	520

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-62-065	BR	09/25/2017	FD	LF	450	500
MW-62-065	BR	12/06/2017		LF	510	500
MW-62-065	BR	02/19/2018		LF	560	510
MW-62-065	BR	02/19/2018	FD	LF	550	530
MW-62-065	BR	05/01/2018		LF	520	530
MW-62-065	BR	09/26/2018		LF	540	570
MW-62-065	BR	12/07/2018		LF	540	610
MW-62-065	BR	02/11/2019		LF	470	550
MW-62-065	BR	05/21/2019		LF	570	560
MW-62-065	BR	10/01/2019		LF	490	530
MW-62-110	BR	02/08/2017		3V	0.45	ND (1.0)
MW-62-110	BR	05/03/2017		Тар	ND (1.0)	1.7
MW-62-110	BR	09/27/2017		Тар	ND (1.0)	ND (1.0)
MW-62-110	BR	12/07/2017		Тар	ND (1.0)	3.0
MW-62-110	BR	02/21/2018		Тар	ND (1.0)	ND (1.0)
MW-62-110	BR	05/03/2018		Тар	ND (1.0)	ND (1.0)
MW-62-110	BR	09/26/2018		3V	ND (1.0)	ND (1.0)
MW-62-110	BR	12/13/2018		Тар	0.32	3.0
MW-62-110	BR	02/14/2019		Тар	ND (1.0)	ND (1.0)
MW-62-110	BR	05/22/2019		Тар	ND (1.0)	ND (1.0)
MW-62-110	BR	09/25/2019		G	ND (1.0)	ND (1.0)
MW-62-190	BR	05/03/2017		Тар	ND (1.0)	ND (1.0)
MW-62-190	BR	12/07/2017		Тар	ND (1.0)	ND (1.0)
MW-62-190	BR	12/07/2017	FD	Тар	ND (1.0)	ND (1.0)
MW-62-190	BR	05/03/2018		Тар	ND (1.0)	ND (1.0)
MW-62-190	BR	12/13/2018		LF	ND (1.0)	ND (1.0)
MW-62-190	BR	05/22/2019		Тар	ND (1.0)	ND (1.0)
MW-63-065	BR	02/09/2017		3V	1.2	1.7
MW-63-065	BR	05/02/2017		LF	1.1	1.5
MW-63-065	BR	09/28/2017		LF	1.2	3.3
MW-63-065	BR	12/12/2017		LF	1.2	2.6
MW-63-065	BR	02/21/2018		LF	0.53	1.6
MW-63-065	BR	04/26/2018		LF	0.85	1.3
MW-63-065	BR	09/24/2018		LF	1.0	1.4
MW-63-065	BR	09/24/2018	FD	LF	1.0	1.5
MW-63-065	BR	12/12/2018		LF	0.95	1.7
MW-63-065	BR	02/14/2019		LF	1.1	1.3
MW-63-065	BR	05/21/2019		LF	1.3	2.8
MW-63-065	BR	09/26/2019		LF	1.2	1.0
MW-63-065	BR	09/26/2019	FD	LF	1.2	1.1
MW-64BR	BR	02/07/2017		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	05/02/2017		LF	ND (1.0)	ND (1.0)

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-64BR	BR	09/25/2017		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	12/06/2017		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	02/19/2018		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	02/19/2018	FD	LF	ND (1.0)	ND (1.0)
MW-64BR	BR	05/02/2018		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	09/24/2018		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	12/13/2018		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	02/13/2019		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	05/21/2019		LF	ND (1.0)	ND (1.0)
MW-64BR	BR	08/22/2019		LF	ND (1.0)	ND (1.0)
MW-65-160	SA	02/08/2017		LF	170	170
MW-65-160	SA	05/04/2017		LF	99	99
MW-65-160	SA	09/26/2017		LF	120	150
MW-65-160	SA	12/05/2017		LF	160	190
MW-65-160	SA	02/22/2018		LF	190	170
MW-65-160	SA	04/30/2018		LF	160	170
MW-65-160	SA	09/27/2018		LF	170	170
MW-65-160	SA	12/05/2018		LF	160	220
MW-65-160	SA	02/13/2019		LF	220	220
MW-65-160	SA	05/16/2019		LF	160	190
MW-65-160	SA	09/26/2019		LF	150	160
MW-65-225	DA	02/08/2017		LF	530	550
MW-65-225	DA	05/04/2017		LF	530	540
MW-65-225	DA	05/04/2017	FD	LF	520	520
MW-65-225	DA	09/26/2017		LF	480	520
MW-65-225	DA	12/05/2017		LF	210	220
MW-65-225	DA	02/22/2018		LF	510	520
MW-65-225	DA	04/30/2018		LF	110	100
MW-65-225	DA	09/27/2018		LF	180	170
MW-65-225	DA	09/27/2018	FD	LF	180	170
MW-65-225	DA	12/05/2018		LF	220	220
MW-65-225	DA	02/13/2019		LF	490	490
MW-65-225	DA	05/16/2019		LF	180	160
MW-65-225	DA	09/26/2019		LF	330	340
MW-65-225	DA	09/26/2019	FD	LF	330	320
MW-66-165	SA	04/25/2017		LF	430	460
MW-66-165	SA	12/05/2017		LF	500	520
MW-66-165	SA	04/30/2018		LF	540	540
MW-66-165	SA	12/05/2018		LF	480	500
MW-66-165	SA	05/16/2019		LF	550	570
MW-66-165	SA	05/16/2019	FD	LF	540	580

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)
MW-66-230	DA	04/25/2017		LF	6,800	7,100
MW-66-230	DA	12/05/2017		LF	6,500	6,900
MW-66-230	DA	04/30/2018		LF	6,700	6,900
MW-66-230	DA	04/30/2018	FD	LF	6,800	6,900
MW-66-230	DA	12/05/2018		LF	6,100	6,200
MW-66-230	DA	05/16/2019		LF	6,400	7,000
MW-66BR-270	BR	05/04/2017		3V	ND (0.2)	ND (1.0)
MW-66BR-270	BR	12/14/2017		3V	ND (0.2)	ND (1.0)
MW-66BR-270	BR	05/02/2018		3V	ND (1.0)	ND (1.0)
MW-66BR-270	BR	12/07/2018		3V	ND (1.0)	ND (1.0)
MW-66BR-270	BR	05/22/2019		3V	ND (1.0)	ND (1.0)
MW-67-185	SA	05/03/2017		LF	1,600	1,700
MW-67-185	SA	12/04/2017		LF	1,500	1,700
MW-67-185	SA	04/30/2018		LF	1,800	1,700
MW-67-185	SA	12/05/2018		LF	1,800	2,000
MW-67-185	SA	05/16/2019		LF	2,100	2,200
MW-67-225	MA	05/04/2017		LF	2,700	3,000
MW-67-225	MA	12/04/2017		LF	3,100	3,100
MW-67-225	MA	04/30/2018		LF	2,800	2,800
MW-67-225	MA	12/05/2018		LF	2,900	3,000
MW-67-225	MA	05/16/2019		LF	3,100	3,300
MW-67-260	DA	05/03/2017		LF	440	400
MW-67-260	DA	12/04/2017		LF	590	630
MW-67-260	DA	04/30/2018		LF	820	830
MW-67-260	DA	12/05/2018		LF	660	710 J
MW-67-260	DA	05/16/2019		LF	800	850
MW-68-180	SA	02/08/2017		LF	35,000	37,000
MW-68-180	SA	02/08/2017	FD	LF	36,000	37,000
MW-68-180	SA	05/03/2017		LF	12,000	12,000
MW-68-180	SA	09/26/2017		LF	20,000	24,000
MW-68-180	SA	02/22/2018		LF	24,000	24,000
MW-68-180	SA	05/01/2018		LF	5,600	6,100
MW-68-180	SA	09/27/2018		LF	8,500	8,900
MW-68-180	SA	12/07/2018		LF	22,000	24,000
MW-68-180	SA	02/13/2019		LF	37,000	42,000
MW-68-180	SA	05/22/2019		LF	5,400	6,200
MW-68-180	SA	09/26/2019		LF	9,700	11,000
MW-68-240	DA	05/03/2017		LF	2,100	2,200
MW-68-240	DA	02/22/2018		LF	2,100	2,000
MW-68-240	DA	05/01/2018		LF	2,000	2,100
MW-68-240	DA	12/05/2018		LF	2,000	1,900
MW-68-240	DA	05/23/2019		LF	2,000	2,000

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

1	A • f =	6		Sample	Hexavalent	Dissolved
	Aquiter Zone	Sample Date		wiethod	_ cnromium (μg/L)	cnromium (µg/L)
IVIVV-68-240	DA	05/23/2019	۴D		1,900	2,100
IVIVV-68BR-280	BR	05/04/2017		3V	ND (1.0)	ND (5.0)
WW-68BR-280	BR	05/04/2017	FD	3V	ND (1.0)	ND (5.0)
IVIVV-68BR-280	BR	02/22/2018		LF	ND (1.0)	ND (1.0)
MW-68BR-280	BR	05/01/2018		LF	ND (1.0)	ND (5.0)
MW-68BR-280	BR	12/05/2018		LF	ND (1.0)	ND (1.0)
MW-68BR-280	BR	05/22/2019		3V	ND (1.0)	ND (1.0)
MW-69-195	BR	02/09/2017		LF	180	160
MW-69-195	BR	05/03/2017		LF	270	270
MW-69-195	BR	09/26/2017		LF	350	360
MW-69-195	BR	12/04/2017		LF	470	440
MW-69-195	BR	02/22/2018		LF	120	110
MW-69-195	BR	05/01/2018		LF	210	210
MW-69-195	BR	09/27/2018		LF	460	450
MW-69-195	BR	12/07/2018		LF	460	470
MW-69-195	BR	02/13/2019		LF	110	100
MW-69-195	BR	05/16/2019		LF	120	120
MW-69-195	BR	09/26/2019		LF	78	77
MW-70-105	BR	05/02/2017		LF	130	120
MW-70-105	BR	12/11/2017		LF	160	150
MW-70-105	BR	05/03/2018		LF	160	150
MW-70-105	BR	12/13/2018		LF	120	130
MW-70-105	BR	05/21/2019		LF	170	170
MW-70BR-225	BR	05/02/2017		3V	1,800	1,800
MW-70BR-225	BR	12/11/2017		LF	1,400	1,600
MW-70BR-225	BR	12/11/2017		3V	1,700	1,800
MW-70BR-225	BR	05/03/2018		LF	1,300	1,300
MW-70BR-225	BR	05/03/2018		3V	1,800	1,800
MW-70BR-225	BR	12/13/2018		LF	1,200	1,400
MW-70BR-225	BR	12/13/2018		3V	1,800	1,900
MW-70BR-225	BR	05/21/2019		LF	1,600	1,700
MW-71-035	SA	05/03/2017		LF	ND (1.0)	ND (1.0)
MW-71-035	SA	12/12/2017		LF	ND (1.0)	1.5
MW-71-035	SA	05/02/2018		LF	ND (1.0)	ND (1.0)
MW-71-035	SA	12/11/2018		LF	ND (1.0)	ND (1.0)
MW-71-035	SA	12/11/2018	FD	LF	ND (1.0)	1.0
MW-71-035	SA	05/23/2019		G	ND (1.0)	ND (1.0)
MW-72-080	BR	02/07/2017		3V	120	110
MW-72-080	BR	05/02/2017		LF	71	61
MW-72-080	BR	09/28/2017		LF	110	99
MW-72-080	BR	09/28/2017	FD	Тар	110	97
MW-72-080	BR	12/07/2017		LF	94	95

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

			Sample	Hexavalent	Dissolved		
Location ID	Aquifer Zone	Sample Date	Method	Chromium (µg/L)	Chromium (µg/L)		
MW-72-080	BR	02/20/2018	LF	90	78		
MW-72-080	BR	04/26/2018	LF	68	62		
MW-72-080	BR	09/26/2018	LF	91	100		
MW-72-080	BR	12/06/2018	LF	82	73		
MW-72-080	BR	02/11/2019	LF	77	92		
MW-72-080	BR	05/24/2019	LF	55	51		
MW-72-080	BR	08/22/2019	LF	93	91		
MW-72BR-200	BR	02/08/2017	3V	6.1	6.7		
MW-72BR-200	BR	05/02/2017	3V	2.9	2.6		
MW-72BR-200	BR	09/27/2017	3V	3.8	3.6		
MW-72BR-200	BR	12/06/2017	3V	4.2	3.8		
MW-72BR-200	BR	02/20/2018	3V	4.5	4.4		
MW-72BR-200	BR	04/26/2018	3V	3.3	2.6		
MW-72BR-200	BR	09/26/2018	3V	3.0	2.9		
MW-72BR-200	BR	12/06/2018	3V	4.9	3.3		
MW-72BR-200	BR	02/12/2019	3V	5.3	5.4		
MW-72BR-200	BR	08/22/2019	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_D	BR	12/06/2017	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_D	BR	02/20/2018	LF	1.6	2.1		
MW-72BR-200_D	BR	04/26/2018	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_D	BR	09/26/2018	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_D	BR	12/06/2018	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_D	BR	02/12/2019	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_S	BR	12/06/2017	LF	1.5	1.7		
MW-72BR-200_S	BR	02/20/2018	LF	ND (1.0)	1.1		
MW-72BR-200_S	BR	04/26/2018	LF	ND (1.0)	2.0		
MW-72BR-200_S	BR	09/26/2018	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_S	BR	12/06/2018	LF	ND (1.0)	ND (1.0)		
MW-72BR-200_S	BR	02/12/2019	LF	ND (1.0)	1.3		
MW-72BR-200_S	BR	05/23/2019	LF	ND (1.0)	ND (1.0)		
MW-73-080	BR	02/08/2017	3V	31	29		
MW-73-080	BR	05/02/2017	LF	30	27		
MW-73-080	BR	09/27/2017	LF	41	41		
MW-73-080	BR	12/06/2017	LF	28	29		
MW-73-080	BR	02/20/2018	LF	22	21		
MW-73-080	BR	05/01/2018	LF	57	58		
MW-73-080	BR	09/24/2018	LF	36	39		
MW-73-080	BR	12/06/2018	LF	29	26		
MW-73-080	BR	02/11/2019	LF	29	34 J		
MW-73-080	BR	05/23/2019	LF	34	35		
MW-73-080	BR	08/22/2019	LF	20	18		

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved		
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)		
MW-74-240	BR	04/27/2017		LF	ND (0.2)	ND (1.0)		
MW-74-240	BR	12/06/2017		LF	ND (0.2)	5.3		
MW-74-240	BR	05/02/2018		LF	0.46	ND (1.0)		
MW-74-240	BR	12/07/2018		LF	0.33	ND (1.0)		
MW-74-240	BR	05/22/2019		LF	0.55	ND (1.0)		
PE-01	DA	01/04/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	02/07/2017		Тар	1.9	1.8		
PE-01	DA	02/07/2017	FD	Тар	1.9	1.9		
PE-01	DA	03/08/2017		Тар	1.7	2.1		
PE-01	DA	04/25/2017		Тар	0.53	ND (1.0)		
PE-01	DA	05/04/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	06/07/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	07/18/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	08/02/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	09/07/2017		Тар	9.0	4.5		
PE-01	DA	10/03/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	11/02/2017		Тар	0.52	ND (1.0)		
PE-01	DA	12/07/2017		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	01/04/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	02/07/2018		Тар	0.7	ND (1.0)		
PE-01	DA	03/07/2018		Тар	2.3	2.0		
PE-01	DA	04/03/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	05/04/2018		Тар	ND (0.2)	1.8		
PE-01	DA	06/07/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	07/03/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	08/01/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	09/06/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	10/02/2018		Тар	7.6	5.6		
PE-01	DA	11/07/2018		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	12/04/2018		Тар	0.68	2.9		
PE-01	DA	01/03/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	02/14/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	03/05/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	04/23/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	05/09/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	06/05/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	07/24/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	08/22/2019		Тар	ND (0.2)	ND (1.0)		
PE-01	DA	09/04/2019		Тар	0.69	ND (1.0)		
PE-01	DA	10/03/2019		Тар	ND (0.2)	ND (1.0)		
TW-01	SA	05/03/2017		LF	2,200	2,400		
TW-01	SA	12/13/2017		3V	2,200	2,300		

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

				Sample	Hexavalent	Dissolved		
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)		
TW-01	SA	12/13/2017	FD	LF	2,200	2,400		
TW-01	SA	05/01/2018		3V	2,400	3,100		
TW-01	SA	12/05/2018		3V	2,100	2,100		
TW-01	SA	05/24/2019		LF	2,300	2,400		
TW-02D	DA	03/08/2017		Тар	0.44	110		
TW-02D	DA	04/28/2017		Тар	530	540		
TW-02D	DA	04/28/2017	FD	Тар	520	530		
TW-02D	DA	10/24/2017		Тар	200	190		
TW-02D	DA	12/07/2017		Тар	110	93		
TW-02D	DA	02/23/2018		LF	140	140		
TW-02D	DA	02/23/2018	FD	LF	150	140		
TW-02D	DA	05/04/2018		Тар	150	150		
TW-02D	DA	05/04/2018	FD	Тар	150	140		
TW-02D	DA	09/26/2018		Тар	ND (0.2)	ND (1.0)		
TW-02D	DA	09/26/2018	FD	Тар	ND (0.2)	ND (1.0)		
TW-02D	DA	12/04/2018		Тар	140	110		
TW-02D	DA	02/14/2019		Тар	120	140		
TW-02D	DA	02/14/2019	FD	Тар	120	130		
TW-02D	DA	04/23/2019		Тар	93	46		
TW-02D	DA	10/03/2019		Тар	95	110		
TW-03D	DA	01/04/2017		Тар	620	620		
TW-03D	DA	02/07/2017		Тар	600	630		
TW-03D	DA	03/08/2017		Тар	560	630		
TW-03D	DA	03/08/2017	FD	Тар	570	580		
TW-03D	DA	04/25/2017		Тар	560	570		
TW-03D	DA	05/04/2017		Тар	550	540		
TW-03D	DA	06/07/2017		Тар	550	550		
TW-03D	DA	07/18/2017		Тар	560	570		
TW-03D	DA	08/02/2017		Тар	540	520		
TW-03D	DA	09/07/2017		Тар	550	540		
TW-03D	DA	10/03/2017		Тар	560	580		
TW-03D	DA	11/02/2017		Тар	550	570		
TW-03D	DA	12/07/2017		Тар	550	570		
TW-03D	DA	01/04/2018		Тар	550	590		
TW-03D	DA	02/07/2018		Тар	550	540		
TW-03D	DA	03/07/2018		Тар	530	520		
TW-03D	DA	04/03/2018		Тар	570	550		
TW-03D	DA	05/04/2018		Тар	490	490		
TW-03D	DA	06/07/2018		Тар	470	480		
TW-03D	DA	07/03/2018		Тар	480	500		
TW-03D	DA	08/01/2018		Тар	480	480		
TW-03D	DA	09/06/2018		Тар	500	510		

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

				Sample	Hexavalent	Dissolved		
Location ID	Aquifer Zone	Sample Date		Method	Chromium (µg/L)	Chromium (µg/L)		
TW-03D	DA	10/02/2018		Тар	480	500		
TW-03D	DA	11/07/2018		Тар	490	510		
TW-03D	DA	12/04/2018		Тар	480	490		
TW-03D	DA	01/03/2019		Тар	500	480		
TW-03D	DA	02/14/2019		Тар	420	520		
TW-03D	DA	03/05/2019		Тар	500	520		
TW-03D	DA	04/23/2019		Тар	470	480		
TW-03D	DA	05/09/2019		Тар	460	440		
TW-03D	DA	06/05/2019		Тар	450	440		
TW-03D	DA	07/24/2019		Тар	450	430		
TW-03D	DA	08/22/2019		Тар	410	430		
TW-03D	DA	09/04/2019		Тар	500	450		
TW-03D	DA	10/03/2019		Тар	410	430		
TW-04	DA	12/14/2017		LF	2.8	4.0		
TW-04	DA	12/14/2017		3V	8.2	8.3		
TW-04	DA	04/26/2018		LF	ND (1.0)	ND (5.0)		
TW-04	DA	04/26/2018		3V	8.9	9.4		
TW-04	DA	12/11/2018		LF	4.2	5.0		
TW-04	DA	12/11/2018		3V	8.2	8.1		
TW-04	DA	12/11/2018	FD	3V	8.4	8.1		
TW-04	DA	05/16/2019		LF	5.1	4.5		
TW-05	DA	12/14/2017		LF	10	13		
TW-05	DA	12/14/2017		3V	14	12		
TW-05	DA	05/01/2018		LF	8.8	9.1		
TW-05	DA	05/01/2018		3V	11	11		
TW-05	DA	12/04/2018		LF	9.5	9.3		
TW-05	DA	12/04/2018		3V	14	14		
TW-05	DA	05/20/2019		LF	11	9.9		
TW-05	DA	05/20/2019	FD	LF	11	9.6		

Notes:

(a) = data were analyzed by an Arizona certified laboratory.

1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from

-- = not applicable.

 μ g/L = micrograms per liter.

3V = three volume.

BR = bedrock.

DA = deep interval of Alluvial Aquifer.

DTSC = Department of Toxic Substance Control.

FD = field duplicate.

G = Grab sample.

Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through October 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

SampleHexavalentDissolvedLocation IDAquifer ZoneSample DateMethodChromium (μg/L)Chromium (μg/L)Chromium (μg/L)Chromium (μg/L)						
Location ID Aquifer Zone Sample Date Method Chromium (µg/L) Chromium (µg/L)				Sample	Hexavalent	Dissolved
	Location ID	Aquifer Zone	Sample Date	Method	Chromium (µg/L)	Chromium (µg/L)

H = HydraSleeve.

ID = identification.

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

LF = Low Flow (minimal drawdown)

MA = mid-depth interval of Alluvial Aquifer.

ND = not detected at listed reporting limit.

SA = shallow interval of Alluvial Aquifer.

Tap = sampled from tap of extraction well.

APPENDIX C

Well Inspection and Maintenance Log, Third Quarter 2019

Appendix C Well Inspection and Maintenance Log, Third Quarter 2019

Third Quarter 2019 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

Well/Piezometer	Inspection Date	Survey Mark Present? (Yes/No)	Standing or Ponded Water? (Yes/No)	Lock in Place? (Yes/No)	Evidence of Well Subsidence? (Yes/No)	Well Labeled on Casing or Pad? (Yes/No)	Traffic Poles Intact? (Yes/No)	Concrete Pad Intact? (Yes/No)	Erosion Around Wellhead? (Yes/No)	Steel Casing Intact? (Yes/No)	PVC Cap Present? (Yes/No)	Standing Water in Annulus? (Yes/No)	Well Casing Intact? (Yes/No)	Photo Taken? (Yes/No)	Action Completed? (Yes/No)
MW-34-100	10/1/2019	Yes	No	Yes	No	Yes		Yes	No	Yes	Yes	No	Yes	Yes	
MW-38S	09/25/2019	Yes	No	Yes	No	Yes		Yes	No	Yes	Yes	No	Yes	Yes	
MW-44-115	10/1/2019	Yes	No	Yes	No	Yes		Yes	No	Yes	Yes	No	Yes	Yes	
MW-46-175	10/1/2019	Yes	No	Yes	No	Yes		Yes	No	Yes	Yes	No	Yes	Yes	
MW-57-050	08/19/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-58-065	08/19/2019	Yes	No	Yes	No	Yes			No	Yes	Yes	No	Yes	Yes	
MW-58BR	08/19/2019	Yes	No	Yes	No	Yes		Yes	No	Yes	Yes	No	Yes	Yes	
MW-62-065	10/1/2019	Yes	No		No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-62-110	09/24/2019	Yes	No		No	Yes		Yes	No			No	Yes	Yes	
MW-63-065	09/26/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-64BR	08/22/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-65-160	09/26/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-65-225	09/26/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-68-180	09/26/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-69-195	09/26/2019	Yes	No	No	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-72-080	08/22/2019	Yes	No	Yes	No	Yes		Yes	No		Yes	No	Yes	Yes	
MW-72BR-200	08/22/2019	Yes	No	Yes	No			Yes	No		Yes	No	Yes	Yes	
MW-73-080	08/22/2019	Yes	No	Yes	No	Yes		Yes	No		Yes	No	Yes	No	
PE-01	07/24/2019	Yes	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	
TW-02D	10/3/2019												Yes	Yes	
TW-03D	08/22/2019	No	No	Yes	No	Yes		Yes	No	Yes			Yes	No	

Note:

-- = not applicable

APPENDIX D

Cr(VI) Concentration Time Series Charts, Third Quarter 2019

2. Results plotted are maximum concentrations from primary and duplicate samples; see Table 3-1 for complete results. 3. MW-36 wells selected to monitor effects of PE-01 pumping on plume west of PE-01. MW-44 wells, MW-46-175, and MW-34-100 selected to monitor concentrations within the plume.

\\arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\15_Q219

AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT. PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

MONITORING WELLS, APRIL 2005 THROUGH OCTOBER 2019

THIRD QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

\\arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

\\arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

\\arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

^{\\}arcadis-us.com\officedata\Denver-CO-Technical\Aproject\PG&E - Groundwater Monitoring\Reporting\00_Arcadis_rpts\02_GMP_rpts\16_Q319

APPENDIX E

Interim Measures Extraction System Operations Log, Third Quarter 2019

APPENDIX E

Interim Measures Extraction System Operations Log, Third Quarter 2019, PG&E Topock Performance Monitoring Program

During Third Quarter 2019 (July through October), extraction well TW-03D operated at a target pump rate of at 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells PE-01 and TW-02D were only operated to collect a sample during Third Quarter 2019. Extraction well TW-02S was not operated during Third Quarter 2019. The operational run time for the Interim Measure groundwater extraction system (combined or individual pumping) was approximately 92.7 percent during Third Quarter 2019.

The Interim Measure Number 3 (IM-3) facility treated approximately 21,859,068 gallons of extracted groundwater during Third Quarter 2019. The IM-3 facility also treated approximately 25,100 gallons of injection well backwashing/re-development water, 450 gallons of purge water from site sampling activities, and 78,300 gallons from remedy wastewater generated from remedy well construction activities. Ten containers of solids (sludge) were transported offsite from the IM-3 facility during the reporting period.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 7.3 percent of downtime during Third Quarter 2019) are summarized below. The times shown are in Pacific Standard Time to be consistent with other data collected (for example, water level data) at the site.

E.1 July 2019

- July 1, 2019 (unplanned): The extraction well system was offline from 3:44 p.m. to 5:22 p.m. because of a high level in T-100 due to backwashing of the injection wells. Extraction system downtime was 1 hour 38 minutes.
- July 3, 2019 (planned): The extraction well system was offline from 10:26 a.m. to 11:48 a.m. due to replacing microfilter modules and testing of the pipeline critical alarms and leak detection system. Extraction system downtime was 1 hour 22 minutes.
- July 10, 2019 (unplanned): The extraction well system was offline from 3:00 p.m. to 3:52 p.m. due to air compressor failure. The air compressor overheated due to extremely high weather temperatures and shutdown. Shading was placed in front of the compressor unit to block direct afternoon sunlight and the unit was returned to service. Extraction system downtime was 52 minutes.
- July 10, 2019 (unplanned): The extraction well system was offline from 9:36 p.m. to 10:50 p.m. due to a highwater level in Raw Water Storage Tank (T-100). The extraction wells were shut down so the tank could drain below the high level alarm setpoint. Extraction system downtime was 1 hour 14 minutes.
- July 11-12, 2019 (unplanned): The extraction well system was offline from 5:38 a.m. to 7:26 a.m. on July 11, 2019 and from 7:54 a.m. on July 11, 2019 to 1:46 p.m. on July 12, 2019 due to leaking microfilter modules and a failed air pressure regulator. The facility was down until a replacement regulator arrived and was installed. While the facility was down, a leak was fixed on the Feed Tank on the microfilter skid 4 (T-501). Extraction system downtime was 1 day, 7 hours 40 minutes.
- July 12, 2019 (unplanned): The extraction well system was offline from 4:20 p.m. to 5:42 p.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain. Extraction system downtime was 1 hour 22 minutes.
- July 13, 2019 (unplanned): The extraction well system was offline from 12:20 p.m. to 12:30 p.m., from 12:54 p.m. to 7:36 p.m., and from 8:00 p.m. to 10:00 p.m. due to RO system problems. Incoming power from the

City of Needles was adversely affecting the Primary RO system. The Plant Manager advised the plant operator to keep the facility down until the power became stable and/or temperatures dropped. Extraction system downtime was 8 hours 52 minutes.

- July 14, 2019 (unplanned): The extraction well system was offline from 7:56 a.m. to 8:00 a.m. due to a programmable logic controller (PLC) and human machine interface (HMI) connectivity issue. Extraction system downtime was 4 minutes.
- July 14, 2019 (unplanned): The extraction well system was offline from 1:42 p.m. to 1:46 p.m.; from 1:48 p.m. to 1:52 p.m.; from 1:54 p.m. to 1:56 p.m.; from 1:58 p.m. to 2:18 p.m.; from 2:20 p.m. to 2:22 p.m.; from 2:24 p.m. to 2:42 p.m.; and from 2:44 p.m. to 2:52 p.m. because of a high level in T-100 due to backwashing of the injection wells. Extraction system downtime was 58 minutes.
- July 14, 2019 (unplanned): The extraction well system was offline from 2:54 p.m. to 3:04 p.m. and from 3:06 p.m. to 3:10 p.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 14 minutes.
- July 15, 2019 (unplanned): The extraction well system was offline from 8:44 a.m. to 9:34 a.m. due to City of Needles Utility Services being onsite to fix incoming voltage. Extraction system downtime was 50 minutes.
- July 18, 2019 (unplanned): The extraction well system was offline from 1:52 p.m. to 2:40 p.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain below the high level alarm setpoint. Extraction system downtime was 48 minutes.
- July 18, 2019 (unplanned): The extraction well system was offline from 8:30 p.m. to 10:06 p.m. due to high weather temperatures causing a blower to shut down. A portable cooling unit was placed in front of the blower unit to help with temperatures. The blower unit was reset and returned to service. Extraction system downtime was 1 hour 36 minutes.
- July 18, 2019 (unplanned): The extraction well system was offline from 10:26 p.m. to 10:48 p.m. due to a lowflow ferrous chloride rate alarm. An adjustment was made to the backflow pressure valve and the facility was returned to service. Extraction system downtime was 22 minutes.
- July 20, 2019 (unplanned): The extraction well system was offline from 10:16 a.m. to 10:30 a.m. due to a high-water level in T-100 caused by rinsing the microfilter modules before the chemical cleaning. Extraction system downtime was 14 minutes.
- July 21, 2019 (unplanned): The extraction well system was offline from 5:08 a.m. to 6:18 a.m. to change out the microfilter modules. Extraction system downtime was 1 hour 10 minutes.
- July 23, 2019 (unplanned): The extraction well system was offline from 8:18 p.m. to 9:16 p.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain below the high level alarm setpoint. Extraction system downtime was 58 minutes.
- July 26, 2019 (unplanned): The extraction well system was offline from 4:10 a.m. to 4:50 a.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain below the high level alarm setpoint. Extraction system downtime was 40 minutes.
- July 28, 2019 (unplanned): The extraction well system was offline from 11:00 a.m. to 12:20 p.m. due to backwashing of the injection wells. Extraction system downtime was 1 hour 20 minutes.
- July 30, 2019 (unplanned): The extraction well system was offline from 6:46 p.m. to 7:26 p.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain below the high level alarm setpoint. Extraction system downtime was 40 minutes.
- July 31, 2019 (unplanned): The extraction well system was offline from 6:14 p.m. to 6:58 p.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain below the high level alarm setpoint. Extraction system downtime was 44 minutes.

E.2 August 2019

- August 2, 2019 (unplanned): The extraction well system was offline from 10:40 a.m. to 12:06 p.m. and from 4:26 p.m. to 4:50 p.m. because of a high level in Raw Water Storage Tank (T-100) due to backwashing of the injection wells. Extraction system downtime was 1 hour 50 minutes.
- August 2-3, 2019 (unplanned): The extraction well system was offline from 11:36 p.m. on August 2, 2019 to 12:22 a.m. on August 3, 2019 due to a high-water level in T-100. The facility was shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 46 minutes.
- August 4, 2019 (unplanned): The extraction well system was offline from 5:40 p.m. to 5:56 p.m. due to a blower failure. The blower overheated due to severe temperatures and shut down. A cooling unit was placed in front of the blower to lower the internal blower temperature and the unit was returned to service. Extraction system downtime was 16 minutes.
- August 5, 2019 (unplanned): The extraction well system was offline from 4:30 a.m. to 5:32 a.m. due to a highwater level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 1 hour 2 minutes.
- August 7, 2019 (unplanned): The extraction well system was offline from 12:18 a.m. to 1:16 a.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 58 minutes.
- August 8, 2019 (unplanned): The extraction well system was offline from 5:16 p.m. to 5:22 p.m. due to a City of Needles power outage. Extraction system downtime was 6 minutes.
- August 8, 2019 (unplanned): The extraction well system was offline from 7:08 p.m. to 7:52 p.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 44 minutes.
- August 9, 2019 (unplanned): The extraction well system was offline from 6:36 a.m. to 8:00 a.m. due to replacing microfilter modules. Extraction system downtime was 1 hour 24 minutes.
- August 10, 2019 (unplanned): The extraction well system was offline from 4:10 a.m. to 4:42 a.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 32 minutes.
- August 10, 2019 (planned): The extraction well system was offline from 8:06 a.m. to 8:40 a.m. due to testing of the pipeline critical alarms and leak detection system. Extraction system downtime was 34 minutes.
- August 12-16, 2019 (planned): The extraction well system was offline from 5:52 a.m. on August 12, 2019 to 8:40 a.m. on August 15, 2019; from 10:02 a.m. to 12:44 p.m. August 15, 2019; and from 1:58 p.m. on August 15, 2019 to 2:44 p.m. on August 16, 2019 for the semiannual scheduled maintenance. Extraction system downtime was 4 days 6 hours 16 minutes.
- August 17, 2019 (unplanned): The extraction well system was offline from 9:56 a.m. to 10:28 a.m. and from 6:54 p.m. to 7:28 p.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 1 hour 22 minutes.
- August 18, 2019 (unplanned): The extraction well system was offline from 10:10 p.m. to 10:58 p.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 48 minutes.
- August 20, 2019 (unplanned): The extraction well system was offline from 3:16 p.m. to 4:38 p.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 1 hour 22 minutes.

- August 22, 2019 (unplanned): The extraction well system was offline from 7:18 a.m. to 7:24 a.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 6 minutes.
- August 22-23, 2019 (unplanned): The extraction well system was offline from 9:20 a.m. to 11:14 a.m. and from 11:26 a.m. to 12:02 p.m. on August 22, 2019; and from 6:00 a.m. to 8:04 a.m. and from 9:56 a.m. to 10:30 a.m. August 23, 2019. Pursuant to the approved Groundwater Remedy C/RAWP and the IM-3 ARARs, the facility treated remedy wastewater generated from well construction activities. The additional water caused high water levels in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 5 hours 8 minutes.
- August 29, 2019 (unplanned): The extraction well system was offline from 4:42 a.m. to 5:18 a.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 36 minutes.
- August 30, 2019 (unplanned): The extraction well system was offline from 5:18 a.m. to 7:22 a.m. due to replacing microfilter modules. Extraction system downtime was 2 hours 4 minutes.
- August 30, 2019 (unplanned): The extraction well system was offline from 7:24 a.m. to 7:34 a.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 10 minutes.

E.3 September 2019

- September 1, 2019 (unplanned): The extraction well system was offline from 9:46 p.m. to 11:24 p.m. due to a City of Needles power outage. Extraction system downtime was 1 hour 38 minutes.
- September 3, 2019 (unplanned): The extraction well system was offline from 5:18 p.m. to 5:20 p.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 2 minutes.
- September 3, 2019 (unplanned): The extraction well system was offline from 6:42 p.m. to 7:32 p.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 50 minutes.
- September 4, 2019 (unplanned): The extraction well system was offline from 7:54 p.m. to 8:14 p.m. to switch the facility to generator power due to storms and lightning in the area. Extraction system downtime was 20 minutes.
- September 5, 2019 (unplanned): The extraction well system was offline from 12:20 a.m. to 12:28 a.m. to switch the facility back to power from the City of Needles. Extraction system downtime was 8 minutes.
- September 5, 2019 (unplanned): The extraction well system was offline from 1:10 a.m. to 1:50 a.m. due to a high water level in T-100. The extraction wells were shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 40 minutes.
- September 7, 2019 (unplanned): The extraction well system was offline from 7:08 a.m. to 7:16 a.m. and from 7:18 a.m. to 7:20 a.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 10 minutes.
- September 7, 2019 (unplanned): The extraction well system was offline from 7:22 a.m. to 8:56 a.m. due to replacing the microfilter modules. Extraction system downtime was 1 hour 34 minutes.
- September 10, 2019 (unplanned): The extraction well system was offline from 7:54 p.m. to 8:22 p.m. due to replacing the RO system filter. Extraction system downtime was 28 minutes.
- September 17, 2019 (planned): The extraction well system was offline from 8:08 a.m. to 2:04 p.m. to remove sludge from the clarifier. Extraction system downtime was 5 hours 56 minutes.

- September 18, 2019 (planned): The extraction well system was offline from 4:10 a.m. to 2:34 p.m. to remove the failed clarifier rake. During that downtime the Process Drain Pump (P-900) was replaced due to age and likelihood of impending failure. Extraction system downtime was 10 hours 24 minutes.
- September 19, 2019 (unplanned): The extraction well system was offline from 3:34 a.m. to 3:44 a.m., from 3:46 a.m. to 4:00 a.m., and from 4:06 a.m. to 4:32 a.m. due to a City of Needles power outage. The facility operator had difficulty getting the RO system to start, which caused several brief outages. Extraction system downtime was 50 minutes.
- September 23, 2019 (unplanned): The extraction well system was offline from 9:10 a.m. to 10:16 a.m. due to replacing microfilter modules. Extraction system downtime was 1 hour 6 minutes.
- September 25, 2019 (unplanned): The extraction well system was offline from 12:20 p.m. to 12:22 p.m., from 4:52 p.m. to 4:58 p.m., and from 5:06 p.m. to 5:12 p.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 14 minutes.
- September 25, 2019 (unplanned): The extraction well system was offline from 5:16 p.m. to 5:50 p.m. due to switching the facility to generator power due to storms and lightning in the area. Extraction system downtime was 34 minutes.
- September 25, 2019 (unplanned): The extraction well system was offline from 8:48 p.m. to 8:54 p.m. due to switching the facility back to power from the City of Needles. Extraction system downtime was 6 minutes.

E.4 October 2019

- October 1-2, 2019 (planned): The extraction well system was offline from 7:00 a.m. to 7:54 a.m. on October 1, 2019; and from 6:24 a.m. to 8:24 a.m. October 2, 2019 to process remedy wastewater generated from remedy well construction activities. Extraction system downtime was 2 hours 54 minutes.
- October 7, 2019 (unplanned): The extraction well system was offline from 8:50 a.m. to 10:02 a.m. due to replacing microfilter modules. Extraction system downtime was 1 hour 12 minutes.
- October 8, 2019 (unplanned): The extraction well system was offline from 3:48 a.m. to 4:22 a.m. due to a high water level in Raw Water Storage Tank (T-100). The plant was shut down so the tank could drain below the high-level alarm setpoint. Extraction system downtime was 34 minutes.
- October 9, 2019 (unplanned): The extraction well system was offline from 10:10 a.m. to 11:10 a.m. due to replacing microfilter modules. Extraction system downtime was 1 hour.
- October 18, 2019 (unplanned): The extraction well system was offline from 9:42 a.m. to 10:48 a.m. due to replacing microfilter modules. Extraction system downtime was 1 hour 6 minutes.
- October 24, 2019 (unplanned): The extraction well system was offline from 7:16 p.m. to 7:50 p.m. due to replacing microfilter modules. Extraction system downtime was 34 minutes.
- October 28, 2019 (unplanned): The extraction well system was offline from 2:30 a.m. to 2:36 p.m., from 3:38 a.m. to 3:46 a.m.; from 4:04 a.m. to 4:10 a.m.; and from 9:42 a.m. to 12:38 p.m. due to lower ambient temperatures causing condensation to form in the tanks and on the level sensors, which was shutting down pumps and ultimately causing tank level issues in the Clarifier Feed Pump (P-400) and the Iron Oxidation Reactor #3 (T-301C). Extraction system downtime was 3 hours 16 minutes.
- October 30, 2019 (unplanned): The extraction well system was offline from 8:12 a.m. to 8:26 a.m. and from 8:54 a.m. to 8:58 a.m. due to a programmable logic controller (PLC) and human machine interface (HMI) connectivity issue. Extraction system downtime was 18 minutes.

APPENDIX F

Hydrographs, Third Quarter 2019

ARCADIS

ARCADIS-

- ARCADIS -

ARCADIS

ARCADIS-

- 🔎 ARCADIS-

- 🛱 ARCADIS-

- ARCADIS -

- 🏳 ARCADIS-

- 🛱 ARCADIS-

Arcadis U.S., Inc.

101 Creekside Ridge Court Suite 200 Roseville, California 95678 Tel 916 786 0320 Fax 916 786 0366

www.arcadis.com