Curt Russell Topock Project Manager Environmental Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363 Mailing Address P.O. Box 337 Needles, CA 92363 760.791.5884 Fax: 760.326.5542 E-Mail: gcr4@pge.com April 30, 2019 Mr. Aaron Yue Project Manager California Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630 **Subject:** First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California (PGE20180115A) Dear Mr. Yue: Enclosed is the First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California, for Pacific Gas and Electric Company's Interim Measures (IMs) Performance Monitoring Program, the Groundwater Monitoring Program, and the Surface Water Monitoring Program for the Topock Project. This report presents the First Quarter (January through March 2019) performance monitoring results for the IM-3 hydraulic containment system. This report also presents groundwater and surface water monitoring activities, results, and analyses related to the Groundwater and Surface Water Monitoring Programs during the First Quarter 2019. The IM quarterly performance monitoring report is submitted in conformance with the reporting requirements in the California Environmental Protection Agency, Department of Toxic Substances Control's (DTSC) IM directive, dated February 14, 2005, and updates and modifications approved by DTSC in letters or emails dated October 12, 2007; July 14, 2008; July 17, 2008; March 3, 2010; April 28, 2010; July 23, 2010; June 27, 2014; July 20, 2015; and August 18, 2017. Please contact me at 760.791.5884 if you have any questions on the combined monitoring report. Sincerely, **Curt Russell** **Topock Remediation Project Manager** Cc: Chris Guerre/DTSC Pam Innis/DOI Ken Foster/CA-SLC Bruce Campbell/AZ-SLD | Topock Project Executive Abstract | | | |---|---|--| | Document Title: | Date of Document: April 30, 2019 | | | First Quarter 2019 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles CA | Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E | | | Submitting Agency: DTSC | | | | Final Document? Xes No | | | | Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document: Draft Report Letter Memo Other / Explain: | Action Required: Information Only Review & Comment Return to: By Date: Other / Explain: | | | What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain: | Is this a Regulatory Requirement? ☑ Yes ☐ No If no, why is the document needed? | | | What is the consequence of NOT doing this item? What is the consequence of DOING this item? Submittal of this report is a compliance requirement under DTSC requirements. | Other Justification/s: Permit Other / Explain: | | | Brief Summary of attached document: | | | | This quarterly report documents the monitoring activities and performance evaluation of the interim measure (IM) hydraulic containment system under the IM Performance Monitoring Program, the Groundwater Monitoring Program, and Surface Water Monitoring Program for the Topock Project. Hydraulic and chemical monitoring data were collected and used to evaluate the IM hydraulic containment system performance based on a set of standards approved by the California Department of Substances Control (DTSC). Key items included in this report are: (1) measured groundwater elevations and hydraulic gradient data at compliance well pairs that indicate the direction of groundwater flow is away from the Colorado River and toward the pumping centers on site; (2) hexavalent chromium data for monitoring wells; (3) pumping rates and volumes from the IM extraction system; and (4) Groundwater Monitoring Program and Surface Water Monitoring Program activities and results. Based on the data and evaluation presented in this report, the IM performance standard has been met for the First Quarter 2019. On July 23, 2010, DTSC approved a revised reporting schedule for this report that included a revised IM-3 sample collection period from January 1, 2019 through March 31, 2019. | | | | Written by: PG&E | | | | Recommendations: | | | | How is this information related to the Final Remedy or Regulator | ry Requirements: | | L This report is required by DTSC as part of the Interim Measures Performance Monitoring Program. Other requirements of this information? None. ### **Related Reports and Documents:** Click any boxes in the Regulatory Road Map (below) to be linked to the Documents Library on the DTSC Topock Web Site (www.dtsc-topock.com). <u>Legend</u> RFA/PA – RCRA Facility Assessment/Preliminary Assessment RFI/RI - RCRA Facility Investigation/CERCLA Remedial Investigation (including Risk Assessment) CMS/FS - RCRA Corrective Measure Study/CERCLA Feasibility Study CEQA/EIR – California Environmental Quality Act/Environmental Impact Report Version 9 ## Pacific Gas and Electric Company # FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT Topock Compressor Station, Needles, California April 30, 2019 This report was prepared under the supervision of a California Professional Geologist Frederick T. Stanin, P.G., C. Hg Principal Hydrogeologist Alison Schaffer Arcadis Report Lead Daniel Bush, P.E. Arcadis Project Manager # FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITEWIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT Topock Compressor Station, Needles, California Prepared for: California Department of Toxic Substances Control Prepared by: Arcadis U.S., Inc. 101 Creekside Ridge Court Suite 200 Roseville California 95678 Tel 916 786 0320 Fax 916 786 0366 Our Ref.: RC000753.802D Date: April 30, 2019 This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited. ### **CONTENTS** | Ac | ronyn | ns and | Abbreviations | V | |---------------------------------------|--------|----------|---|----| | Ex | ecutiv | /e Sum | mary | 1 | | 1 | Intro | oduction | n | 1 | | | 1.1 | First C | Quarter 2019 Regulatory Communication | 1 | | | 1.2 | Histor | y of Groundwater Impact at the Site | 2 | | | | 1.2.1 | Cr(VI) Impacts to Groundwater | 2 | | | | 1.2.2 | Background Concentrations of Cr(VI) | 2 | | | 1.3 | Site-w | vide Groundwater and Surface Water Monitoring Programs | 2 | | | | 1.3.1 | Basis for GMP and RMP Programs | 2 | | | | 1.3.2 | GMP and RMP Monitoring Networks | 3 | | | 1.4 | Interin | n Measure Performance Monitoring Program | 3 | | | | 1.4.1 | Basis for PMP Program | 3 | | | | 1.4.2 | PMP Monitoring Network | 4 | | | 1.5 | Susta | inability | 7 | | 2 | Firs | t Quarte | er 2019 Monitoring Activities | 9 | | | 2.1 | Grour | ndwater Monitoring Program | 9 | | | | 2.1.1 | Monthly Groundwater Monitoring | 9 | | | | 2.1.2 | Quarterly Groundwater Monitoring | 9 | | | | 2.1.3 | Implementation of Alternative Sampling Methods | 10 | | | 2.2 | Surfac | ce Water Monitoring Program | 11 | | 2.3 IM Performance Monitoring Program | | 12 | | | | | | 2.3.1 | Chromium Monitoring | 12 | | | | 2.3.2 | IM Extraction System Operation | 12 | | | | 2.3.3 | IM Hydraulic Monitoring | 12 | | | | 2.3.4 | IM Contingency Plan Monitoring | 13 | | 3 | Site | -Wide (| Groundwater and Surface Water Monitoring Results | 14 | | | 3.1 | Groun | ndwater Monitoring Results | 14 | | | | 3.1.1 | Cr(VI) and Dissolved Chromium | 14 | | | | 3.1.2 | Contaminants of Potential Concern and In-Situ By-Products | 14 | | | | 3.1.3 | Bat Cave Wash | 14 | |---|------|---------|--|----| | | | 3.1.4 | Well Maintenance | 15 | | | 3.2 | Surfa | ce Water Monitoring Results | 15 | | | | 3.2.1 | Cr(VI) and Dissolved Chromium | 15 | | | | 3.2.2 | Contaminants of
Potential Concern and In Situ By-Products | 15 | | | 3.3 | Data ' | Validation and Completeness | 16 | | 4 | Firs | t Quart | er 2019 IM Performance Monitoring Program Evaluation | 17 | | | 4.1 | Distrik | oution of Hexavalent Chromium in the Floodplain | 17 | | | 4.2 | IM Ex | traction System Operation | 17 | | | 4.3 | IM Hy | draulic Monitoring Results | 18 | | | 4.4 | IM Co | ntingency Plan Monitoring Results | 19 | | | 4.5 | Projec | cted River Levels during Next Quarter | 19 | | | 4.6 | First (| Quarter 2019 Performance Monitoring Program Evaluation Summary | 19 | | 5 | Upc | oming | Operation and Monitoring Events | 21 | | | 5.1 | Grour | ndwater Monitoring Program | 21 | | | | 5.1.1 | Monthly Groundwater Monitoring | 21 | | | | 5.1.2 | Quarterly Groundwater Sampling | 21 | | | | 5.1.3 | Sampling Method Trials at Select Wells | 21 | | | 5.2 | Surfa | ce Water Monitoring Program | 21 | | | 5.3 | IM Pe | rformance Monitoring Program | 21 | | | | 5.3.1 | Chromium Monitoring | 21 | | | | 5.3.2 | IM Extraction System Operation | 21 | | | | 5.3.3 | IM Hydraulic Monitoring | 22 | | | | 5.3.4 | IM Contingency Plan Monitoring | 22 | | | 5.4 | Quart | erly Notifications | 22 | | | 5.5 | Monit | oring Well Installation | 22 | | 6 | Refe | erences | 3 | 23 | ### **TABLES** | 1-1 | Topock Monitoring Reporting Schedule | |------------|--| | 1-2 | GMP, RMP, and PMP Monitoring Summary | | 3-1 | Groundwater Sampling Results, First Quarter 2019 | | 3-2 | Bat Cave Wash Sampling Results, First Quarter 2019 | | 3-3 | Surface Water Sampling Results, First Quarter 2019 | | 4-1 | Pumping Rate and Extracted Volume for IM-3 System, First Quarter 2019 | | 4-2 | Wells Monitored for Conditional Shutdown of PE-01, First Quarter 2019 | | 4-3 | Groundwater Elevation Results, First Quarter 2019 | | 1-4 | Average Hydraulic Gradients Measured at Well Pairs, First Quarter 2019 | | 4-5 | Interim Measure Contingency Plan Trigger Levels and Results, First Quarter 2019 | | 4-6 | Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3 | ### **FIGURES** | -1 | Locations of IM-3 Facilities and Monitoring Locations | |------------|--| | -2 | Monitoring Locations and Sampling Frequency for GMP | | -3 | Monitoring Locations and Sampling Frequency for RMP | | -4 | Locations of Wells and Cross-Sections Used for IM Performance Monitoring | | 3-1a | Cr(VI) Sampling Results, Shallow Wells in Alluvial Aquifer and Bedrock, First Quarter 2019 | | 3-1b | Cr(VI) Sampling Results, Deep Wells in Alluvial Aquifer and Bedrock, First Quarter 2019 | | ŀ-1 | Cr(VI) Concentrations in Alluvial Aquifer and Bedrock, First Quarter 2019 | | l-2 | Cr(VI) Concentrations Floodplain Cross-Section B, First Quarter 2019 | | l-3a | Average Groundwater Elevations in Shallow Wells and River Elevations, First Quarter 2019 | | l-3b | Average Groundwater Elevations in Mid-depth Wells, First Quarter 2019 | | I-3c | Average Groundwater Elevations in Deep Wells, First Quarter 2019 | | l-4 | Average Groundwater Elevations for Wells in Floodplain Cross-Section A, First Quarter 2019 | | l-5 | Measured Hydraulic Gradients, River Elevation, and Pumping Rate, First Quarter 2019 | | l-6 | Past and Predicted Future River Levels at Topock Compressor Station | ### **APPENDICES** | Appendix A | Lab Reports, First Quarter 2019 (Provided on CD with Hard Copy Submittal) | |------------|---| | Appendix B | Historical Cr(VI) and Dissolved Chromium Concentrations | | Appendix C | Well Inspection and Maintenance Log, First Quarter 2019 | | Appendix D | Cr(VI) Concentration Time Series Charts, First Quarter 2019 | | Appendix E | Interim Measures Extraction System Operations Log, First Quarter 2019 | | Appendix F | Hydrographs, First Quarter 2019 | ### **ACRONYMS AND ABBREVIATIONS** μg/L micrograms per liter COPC constituent of potential concern Cr(VI) hexavalent chromium DTSC California Environmental Protection Agency, Department of Toxic Substances Control ft/ft foot or feet per foot GMP Groundwater Monitoring Program gpm gallons per minute IM interim measure IM-3 Interim Measures number 3 IMCP Interim Measures Contingency Plan mg/L milligrams per liter MS/MSD matrix spike/matrix spike duplicate ORP oxidation-reduction potential PG&E Pacific Gas and Electric Company PMP Performance Monitoring Program QC quality control RCRA Resource Conservation and Recovery Act RMP Surface Water Monitoring Program RRB Red Rock Bridge TDS total dissolved solids TSS total suspended solids USBR United States Bureau of Reclamation USEPA United States Environmental Protection Agency UTL upper tolerance limit ### **EXECUTIVE SUMMARY** This quarterly report documents the monitoring activities and performance evaluation of the interim measure (IM) hydraulic containment system under the Groundwater Monitoring Program (GMP), Surface Water Monitoring Program (RMP), and IM Performance Monitoring Program (PMP) for the Topock Compressor Station (the site). Chemical and hydraulic monitoring data were collected and used to determine if site conditions have changed and evaluate the IM hydraulic containment system performance based on a set of standards approved by the California Department of Toxic Substances Control (DTSC). Key items included in this report are: (1) GMP and RMP activities and results; (2) hexavalent chromium data for monitoring wells in the floodplain area; (3) measured groundwater elevations and hydraulic gradient data at compliance well pairs; and (4) pumping rates and volumes from the IM extraction system. During First Quarter 2019, IM extraction well TW-03D was operated to support hydraulic control. Hydraulic gradient data indicate that the minimum landward gradient target of 0.001 foot per foot was exceeded each month, providing evidence of hydraulic containment of the hexavalent chromium plume. Hexavalent chromium concentrations greater than 20 micrograms per liter in the floodplain area were contained for removal and treatment. Based on the data and evaluation presented in this report, the IM performance standard has been met for the First Quarter 2019. ### 1 INTRODUCTION Pacific Gas and Electric Company (PG&E) is implementing interim measures (IMs) to address chromium concentrations in groundwater at the Topock Compressor Station (the site). The Topock Compressor Station is located in eastern San Bernardino County, 15 miles southeast of the City of Needles, California, as shown on Figure 1-1. This report presents the monitoring data from three PG&E monitoring programs: - Site-wide Groundwater Monitoring Program (GMP) - Site-wide Surface Water Monitoring Program (RMP) - Interim Measures (currently Interim Measure Number 3 [IM-3]) Performance Monitoring Program (PMP). This report presents the monitoring data collected from PG&E's GMP, RMP, and PMP programs between January 1 and March 31, 2019 (hereafter referred to as "First Quarter 2019"). Table 1-1 shows the current reporting schedule for these programs. This report is divided into six sections: Section 1 introduces the site; the GMP, RMP, and PMP programs; and the regulatory framework. **Section 2** describes the First Quarter 2019 monitoring activities and site operations conducted in support of these programs. **Section 3** presents GMP and RMP monitoring results for the First Quarter 2019. Section 4 presents PMP monitoring results and the IM evaluation for the First Quarter 2019. **Section 5** describes upcoming monitoring events for the Second Quarter 2019. **Section 6** lists the references cited throughout this report. This combined GMP, RMP, and PMP reporting format was approved by the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) in May 2009 (DTSC 2009). ### 1.1 First Quarter 2019 Regulatory Communication PG&E communications with the DTSC in First Quarter 2019 in regard to the GMP, RMP, and/or PMP programs are outlined below. - The Fourth Quarter 2018 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report ("PMP-GMP Report") was submitted to the DTSC on April 15, 2019 (Arcadis 2019). - Required GMP, RMP, and PMP notifications submitted for First Quarter 2019 included: - On April 10, 2019 and April 23, 2019, Arcadis sent a quarterly email notification to PG&E providing preliminary, unvalidated hexavalent chromium (Cr[VI]) and dissolved chromium results from the February 2019 and March 2019 shoreline and in-channel surface water sampling events. During both sampling events, Cr(VI) and dissolved chromium concentrations were lower than the - respective reporting limits, except at monitoring location R-19 during the March 2019 sampling event where dissolved chromium concentrations were detected at 1.7 micrograms per liter (µg/L). - On April 26, 2019, Arcadis, on behalf of PG&E, sent a quarterly email notification to the DTSC providing Cr(VI) and dissolved chromium results from four subject floodplain wells (MW-34-100, MW-44-115, MW-46-175, and MW-44-125). - As part of the conditional approval for the shutoff of extraction well PE-01, GMP monitoring results for monitoring wells listed in the July 20, 2015 DTSC approval letter (see Section 1.4.2.2; DTSC 2015) are compared to the maximum Cr(VI) and dissolved chromium concentrations measured in 2014 (or for biennial sampling frequency, the 2013 maximum concentrations), and results that exceed the previous maximum are required to be reported to the DTSC within 40 days after the end of the quarterly GMP sampling event. In First Quarter 2019, Cr(VI) and dissolved chromium concentrations at PE-01 were below the 2014 maximum concentrations; therefore, a notification email was not submitted to the DTSC. ###
1.2 History of Groundwater Impact at the Site ### 1.2.1 Cr(VI) Impacts to Groundwater The Topock Compressor Station began operations in 1951. Remediation efforts are ongoing to address Cr(VI) in soil and groundwater resulting from the historical water discharge practices. A comprehensive library documenting the history of remediation at the Topock Compressor Station is available on the DTSC website at http://dtsc-topock.com/ (DTSC 2018). ### 1.2.2 Background Concentrations of Cr(VI) Based on a regional study of naturally occurring metals in groundwater and a statistical evaluation of these data, naturally occurring Cr(VI) in groundwater was calculated to exhibit an upper tolerance limit (UTL) concentration of 32 μ g/L (CH2M Hill 2009). This concentration is used as the background concentration for remedial activities. At the site, the Cr(VI) plume is mostly present within unconsolidated alluvial fan and fluvial deposits within the Alluvial Aquifer and, to a lesser extent, in fractured bedrock. Natural groundwater gradients are generally west-to-east at most of the site. The depth to groundwater and the thickness of the saturated sediments vary significantly across the site based on surface topography and the paleo-topography of the top of bedrock surface underneath the site. ### 1.3 Site-wide Groundwater and Surface Water Monitoring Programs ### 1.3.1 Basis for GMP and RMP Programs Routine groundwater and surface water monitoring activities at the site began in 1998 following a Resource Conservation and Recovery Act (RCRA) facility investigation and are ongoing (CH2M Hill 2005). The main objective of the GMP and RMP programs is to monitor concentrations of Cr(VI) and other site constituents in groundwater and surface water to determine if site conditions have changed and to make decisions about remedial options and future monitoring (CH2M Hill 2005). In accordance with the 2005 Monitoring Plan for Groundwater and Surface Water Monitoring (CH2M Hill 2005), quarterly monitoring reports document groundwater and surface water monitoring activities performed at the site during each reporting period. Monitoring reports to date are available on the DTSC website. This report documents the GMP and RMP monitoring activities conducted in First Quarter 2019. ### 1.3.2 GMP and RMP Monitoring Networks The GMP monitoring well network and RMP surface water monitoring network are shown on Figures 1-2 and 1-3, respectively, and are summarized in the table below. The complete GMP network includes 145 wells that monitor groundwater in the Alluvial Aquifer and bedrock. Well construction details for wells in the GMP monitoring well network are summarized in Table 1-2. The RMP network consists of 16 surface water monitoring locations, nine of which are sampled at multiple depths. | Groundwater Monitoring Wells | Surface Water Monitoring Wells | |--|---| | 133 monitoring wells in California, including two normally dry wells | 10 river channel locations (9 of which are sampled at two different depths) | | 8 monitoring wells in Arizona | 4 shoreline locations | | 4 IM-3 extraction wells | 2 other surface water sampling locations (adjacent to the shoreline) | GMP and RMP monitoring consists of collecting groundwater and surface water samples, inspecting the monitoring wells, and taking corrective actions as needed. GMP and RMP monitoring is performed quarterly, although the monitoring wells included in each GMP event vary by quarter. In addition, GMP monitoring is performed monthly at two extraction wells (TW-03D and PE-01). Table 1-2 provides a list of the monitoring wells and surface water monitoring locations included in the GMP and RMP programs and the monitoring frequency at each location. Monitoring frequency at GMP wells is also shown on Figure 1-2. If a storm causes surface water flow in Bat Cave Wash, additional groundwater samples are collected from monitoring wells MW-09, MW-10, and MW-11. Bat Cave Wash is an incised ephemeral stream adjacent to the Topock Compressor Station, which flows following rainfall events and drains into the Colorado River (Figures 1-1 and 1-2). ### 1.4 Interim Measure Performance Monitoring Program ### 1.4.1 Basis for PMP Program Operation of the current IM-3 system began in July 2005. The IM-3 system is intended to maintain hydraulic control of the groundwater Cr(VI) plume until the final corrective action is in place at the site (CH2M Hill 2007). The IM-3 system consists of a groundwater extraction system (four extraction wells: TW-02D, TW-03D, TW-02S, and PE-01), conveyance piping, a groundwater treatment plant, and an injection well field (for the discharge of the treated groundwater). Figure 1-1 shows the locations of the IM-3 extraction, conveyance, treatment, and injection facilities. In a letter dated February 14, 2005, the DTSC issued an IM performance directive that established the operational requirements for the IM and methods for evaluating the performance of the IM (DTSC 2005). As defined by the DTSC, the performance standard for the IM is to "establish and maintain a net landward hydraulic gradient, both horizontally and vertically, that ensures that Cr(VI) concentrations at or greater than 20 micrograms per liter [µg/L] in the floodplain are contained for removal and treatment" (DTSC 2005). The IM is required to maintain a landward hydraulic gradient of at least 0.001 foot per foot (ft/ft) within the lower portion of the Alluvial Aquifer (DTSC 2005). In accordance with the February 2005 DTSC directive, the following conditions must be met to demonstrate achievement of the IM performance standard (DTSC 2005): - Demonstrate that a landward hydraulic gradient is maintained within the lower portion of the Alluvial Aquifer in the floodplain by: - Providing potentiometric surface contour maps of the Alluvial Aquifer within the floodplain area - Providing calculated hydraulic gradients using established gradient well pairs. - Demonstrate that Cr(VI) concentrations greater than 20 μg/L in the floodplain area are contained for removal and treatment by: - Depicting the 20 and 50 µg/L isoconcentration contours for Cr(VI) within the floodplain on potentiometric surface maps and hydrogeologic cross-sections - Providing maps and cross-sections of the Cr(VI) concentration for the upper, middle, and lower portions of the Alluvial Aquifer in the floodplain area - o Providing time versus concentration graphs for Cr(VI) measured in floodplain wells. The February 2005 DTSC directive also defined the reporting requirements for the IM (DTSC 2005). In October 2007, the DTSC approved modifications to the reporting requirements, discontinuing monthly performance monitoring reports and continuing with quarterly and annual reports (DTSC 2007). The DTSC approved additional updates and modifications to the PMP in letters dated October 12, 2007; July 14, 2008; July 16, 2008; March 3, 2010; April 28, 2010; and June 27, 2014 (DTSC 2007, 2008a, 2008b, 2010a, 2010b, 2014). ### 1.4.2 PMP Monitoring Network The PMP consists of a network of monitoring wells used to demonstrate achievement of the IM performance standard. Subsets of wells within the PMP network, including: (1) chromium monitoring network, (2) IM extraction wells, (3) IM hydraulic monitoring network, (4) IM Contingency Plan (IMCP) monitoring wells, and (5) IM chemical performance monitoring network, focus on different methods for evaluating performance of the IM. The PMP monitoring network is presented in the table below and shown on Figure 1-4. ### **PMP Monitoring Network** Chromium Monitoring Network (145 monitoring wells included in the GMP) ### IM Extraction Wells (4 monitoring wells) - TW-02D - TW-03D - TW-02S - PE-01 ### IM Hydraulic Monitoring Network (57 monitoring wells and 2 river monitoring locations) - 16 shallow monitoring wells - 15 mid-depth monitoring wells - 26 deep monitoring wells - 2 river monitoring locations: I-3 and RRB ### IMCP Monitoring Wells (24 monitoring wells) - 6 shallow monitoring wells - 5 mid-depth monitoring wells - 13 deep monitoring wells ### IM Chemical Performance Monitoring Network (10 monitoring wells and 1 river monitoring location) - 5 shallow monitoring wells - 2 mid-depth monitoring wells - 3 deep monitoring wells - 1 river monitoring location: R-28 The subsets of monitoring well networks within the PMP are described in the following subsections. ### 1.4.2.1 Chromium Monitoring Network Cr(VI) data, collected as part of the GMP, are used to generate maps, cross-sections, and concentration time series charts that demonstrate that Cr(VI) concentrations greater than 20 μ g/L in the floodplain area are contained for removal and treatment. As described in Section 1.3.2, groundwater sampling events are performed quarterly; however, the monitoring wells included in each sampling event vary by quarter. In addition, groundwater sampling is performed monthly at extraction wells TW-03D and PE-01. Table 1-2 provides a list of monitoring wells included in the chromium monitoring network (i.e., the GMP monitoring network) and the monitoring frequency of each location. ### 1.4.2.2 IM Extraction Wells The PMP includes four IM extraction wells, which are used to ensure a landward hydraulic gradient via groundwater extraction (Figure 1-4). The operation of the IM extraction system, including pumping rates, planned/unplanned downtime, and volume of groundwater extracted from each extraction well, is documented to demonstrate proper operation of the extraction system. In addition, the wells are sampled as part of the GMP: extraction wells TW-03D and PE-01 are sampled monthly, TW-02D is sampled quarterly, and TW-02S is sampled annually. ### Wells Monitored for Conditional Shutdown of PE-01 On July 20, 2015, the DTSC conditionally approved a proposal to modify the IM-3 pumping regime
by allowing PE-01 to be shut off and pumping to be shifted to TW-03D and TW-02D or TW-02S, so long as gradient targets are maintained and contingency is not triggered based on chromium concentrations in select floodplain wells (DTSC 2015). Because PE-01 pumps water with low concentrations of chromium (typically less than 5 μ g/L), shifting more pumping to a higher concentration extraction well can increase the rate of chromium removal from the floodplain. As part of the conditional approval for PE-01 shutoff, GMP monitoring results from 47 monitoring wells listed in the July 20, 2015 DTSC approval letter (i.e., wells within approximately 800 feet of TW-03D; Table 1-2) are compared to the maximum detected Cr(VI) and dissolved chromium concentrations from 2014 (or 2013 for wells sampled biennially). If any of the wells exceed the 2014 maximum concentration, then the DTSC must be notified within 40 days after completion of the field sampling event to determine if PE-01 pumping should be reinitiated (DTSC 2015). ### 1.4.2.3 IM Hydraulic Monitoring Network The IM hydraulic monitoring network consists of 52 monitoring wells located on the California side of the Colorado River and two river monitoring locations (I-3 and RRB) used to evaluate the performance of the IM-3 system by demonstrating compliance of the required hydraulic gradient of 0.001 ft/ft (Figure 1-4, Table 1-2). In addition, five groundwater monitoring wells located on the Arizona side of the Colorado River (MW-54-085, MW-54-140, MW-54-195, MW-55-045, and MW-55-120; not formally part of the PMP) also provide groundwater elevation data that demonstrate hydraulic gradients on the Arizona side of the river (Figure 1-4). Groundwater and surface water elevation data from these locations are collected monthly using pressure transducers installed at each location. Groundwater elevation data collected from the IM hydraulic monitoring network are used to develop potentiometric maps of shallow, mid-depth, and deep groundwater and measure hydraulic gradients of three well pairs (northern, central, and southern) to demonstrate compliance with the required 0.001 ft/ft landward hydraulic gradient. On August 18, 2017, the DTSC approved use of monitoring well MW-20-130 in place of well MW-45-095 in the central and southern gradient well pairs during months when extraction well PE-01 is not pumped for hydraulic control at the site (DTSC 2017b). The current gradient well pairs are: - Northern Gradient Pair: MW-31-135 and MW-33-150 - When PE-01 is operated for hydraulic control: - Central Gradient Pair: MW-45-095 and MW-34-100 - Southern Gradient Pair: MW-45-095 and MW-27-085 - When PE-01 is not operated for hydraulic control: - Central Gradient Pair: MW-20-130 and MW-34-100 Southern Gradient Pair: MW-20-130 and MW-27-085 ### 1.4.2.4 IM Contingency Plan Monitoring Wells The Interim Measure Contingency Plan (IMCP) was developed to detect and control possible migration of the Cr(VI) plume toward the Colorado River (DTSC 2005). Twenty-four IMCP wells were selected as part of an early detection system to detect any increases in chromium concentrations at areas of interest across the site (Figure 1-4, Table 1-2). The IMCP wells are sampled quarterly, as part of the GMP monitoring program (note that not all 24 wells are sampled each quarter), to determine if any increasing trends in Cr(VI) concentrations are observed. If Cr(VI) concentrations exceed the established trigger levels (based on historical Cr(VI) concentrations), then a contingency plan must be implemented in accordance with the Revised Contingency Plan Flow Chart (DTSC 2005; PG&E 2008). ### 1.4.2.5 IM Chemical Performance Monitoring Network Eleven IM chemical performance monitoring wells are sampled annually or biennially to help evaluate performance of the future remedy (Figure 1-4, Table 1-2). Wells are sampled for an expanded chemistry suite (dissolved boron, bromide, dissolved calcium, chloride, dissolved magnesium, nitrate/nitrite as nitrogen, dissolved potassium, dissolved sodium, sulfate, total alkalinity [as calcium carbonate], total dissolved solids [TDS], and stable isotopes [oxygen-18 $\{\delta 180\}$ and deuterium $\{\delta 2H\}$]), which was last amended in 2008 (DTSC 2008b; PG&E 2008). Currently, nine monitoring wells and one river monitoring location (R-28) are sampled annually, and one well is sampled biennially (MW-26). Results of IM chemical performance monitoring were last reported in the Fourth Quarter 2018 and Annual GMP-PMP Report (Arcadis 2019). The next scheduled monitoring event is planned for Fourth Quarter 2019. ### 1.5 Sustainability The GMP, RMP, and PMP programs strive to use sustainable sampling and data collection practices. This section briefly describes some of the sustainability practices now in use, which aim to reduce emissions from travel, reduce waste, conserve resources, and reduce potential impacts to nesting habitat and culturally sensitive areas. - Groundwater sampling purge water is disposed on site via the IM-3 treatment plant and injection process. - The RMP boat contractor is employed locally. - Laboratory services are provided by a California-certified, Las Vegas-based lab. - Cr(VI) and nitrate analytical methods were revised to methods with longer holding times. - Reports are submitted via the DTSC website and electronically, and the number of hard copy quarterly report submittals has been reduced over time. - Solar-powered data telemetry systems were installed at six key gradient compliance well locations located in floodplain areas with nesting habitat for sensitive avian species. - Low-flow sampling methods are used at most wells screened in the Alluvial Aquifer, reducing the volume of purge water. - For wells still using the three-volume purge sampling methods, pumps and tubing are sized for the optimum purge technique at each well. - Utility vehicles (e.g., Polaris Ranger or Kawasaki Mule) and a quiet electric four-wheel-drive utility vehicle are used to access wells on the floodplain and in some culturally sensitive areas rather than the full-size pickup truck. - The IM-3 pumping regime was modified to allow PE-01 to be periodically shut off with pumping shifted to TW-03D and TW-02D or TW-02S. When applied, this modification allows for an increase in the rate of chromium removal from the floodplain. ### 2 FIRST QUARTER 2019 MONITORING ACTIVITIES This section summarizes the monitoring activities completed during First Quarter 2019 for the GMP, RMP, and PMP programs. ### 2.1 Groundwater Monitoring Program The First Quarter 2019 GMP consisted of monthly and quarterly groundwater monitoring, and sampling method trials at select monitoring wells. ### 2.1.1 Monthly Groundwater Monitoring Monthly GMP monitoring events were performed at IM extraction wells PE-01 and TW-03D in January, February, and March 2019 and consisted of groundwater sampling. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Samples were collected from the tap of the extraction wells (see Table 1-2). During collection of each groundwater sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, oxidation-reduction potential [ORP], turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada. Samples were analyzed for the following constituents: - Cr(VI) and dissolved chromium - General chemistry parameters: specific conductivity, pH, alkalinity, chloride, sulfate, and TDS - Constituents of potential concern (COPCs): nitrate/nitrite as nitrogen - In-situ by-products: dissolved iron and dissolved manganese - Cations: dissolved calcium, dissolved magnesium, and dissolved sodium. ### 2.1.2 Quarterly Groundwater Monitoring The quarterly GMP monitoring event was performed from February 11 through 15, 2019 and consisted of groundwater sampling and inspection of 20 monitoring wells. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Samples were collected using one or multiple sampling methods (including low-flow and three-volume purge; see Table 1-2). During collection of each groundwater sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, ORP, turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, NV and were analyzed for the following constituents (note that not all samples were analyzed for the complete analytical suite listed below): - Cr(VI) and dissolved chromium - · General chemistry parameters: Specific conductivity - COPCs: dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen - In-situ by-products: dissolved arsenic and dissolved manganese. ### Flow in Bat Cave Wash In February 2019, PG&E was notified of a rainfall event that caused surface water flow in Bat Cave Wash. Therefore, additional groundwater sampling was performed on March 18, 2019 at monitoring wells MW-09, MW-10, and MW-11 to assess any potential effect of surface water flow on groundwater. Samples were sent to Asset Laboratories in Las Vegas, NV and were analyzed for the following constituents: - Cr(VI) and dissolved chromium - Bromide - Chloride - Dissolved boron - Dissolved iron - Cations (dissolved calcium, dissolved magnesium, and dissolved sodium) - Sulfate - Total alkalinity as calcium carbonate - TDS. ### 2.1.3 Implementation of Alternative Sampling Methods ### 2.1.3.1 Site-wide Implementation of Low-flow Sampling Method On June 27, 2014, the DTSC approved a change from the traditional three-volume purge sampling method to using a low-flow sampling method (DTSC 2014). This approval applied to monitoring wells screened in alluvial/fluvial sediments with saturated screen lengths of 20 feet or less. Sample collection using the low-flow method at wells meeting the screen length criterion was initiated during the Third Quarter 2014 sampling event and has continued through First Quarter 2019. In October 2017, the DTSC approved
switching additional monitoring wells from the three-volume purge method to low-flow sampling as part of conditional approval for expanded well sampling trials (DTSC 2017c). Two wells in the GMP program (bedrock well MW-61-110 and observation well OW-3S) were approved to switch from three-volume purge to low-flow sampling (with the rest of the wells approved for this switch under the Compliance Monitoring Program – reported under separate cover). No wells were approved for or switched sampling methods in First Quarter 2019. ### 2.1.3.2 Sampling Method Trials at Select Wells In addition to the low-flow sampling method change, and in accordance with a June 27, 2014 email from the DTSC, PG&E began conducting sampling method trials at monitoring wells MW-38S, MW-38D, MW-40S, and MW-40D during Fourth Quarter 2014 (DTSC 2014). The purpose of the sampling method trials is to directly compare two different sampling methods. In August 2015, PG&E sent a letter to the DTSC recommending additional wells for low-flow sampling and proposing an additional sampling method trial for select bedrock wells (PG&E 2015). The DTSC responded to this request with technical memoranda on April 6 and October 20, 2017, which provided conditional approval for actions including expanding the sampling method trials to specific long-screen and bedrock wells (DTSC 2017a, 2017c). During the 2018 Annual Reporting Period (January through December 2018), sampling method trials were conducted at the 10 monitoring wells and frequencies listed below. - Low-flow versus three-volume purge methods: MW-38S (quarterly), MW-38D (semiannual), MW-57-185 (semiannual; sampled at two depth intervals), MW-60BR-245 (quarterly; sampled at two depth intervals), MW-70BR-225 (semiannual; sampled at two depth intervals), MW-72BR-200 (quarterly; sampled at two depth intervals), TW-04 (semiannual), and TW-05 (semiannual) - Low-flow versus HydraSleeve purge methods: MW-40S (semiannual) and MW-40D (semiannual). The sampling method trials were evaluated in Fourth Quarter 2018, and the results were provided in the Fourth Quarter 2018 and Annual PMP-GMP Report (Arcadis 2019). The evaluation results supported the following recommendations: - Change the sampling method from three-volume purge to low-flow for monitoring wells MW-38S, MW-38D, MW-57-185, MW-70BR-225, MW-72BR-200, TW-04, and TW-05. - Change the sampling method from low-flow to HydraSleeve for monitoring well MW-40S. - Discontinue the HydraSleeve method at monitoring well MW-40D and continue using the low-flow purge method at this location. - Continue the low-flow versus three-volume purge sampling method trial at monitoring well MW-60BR-245. These recommendations are planned to be implemented in Second Quarter 2019. ### 2.2 Surface Water Monitoring Program First Quarter 2019 RMP monitoring was performed on February 12 and 13, 2019 during "low-river" conditions and on March 19 and 20, 2019. During both RMP monitoring events, 25 surface water samples were collected from 16 locations. At nine of the 16 locations, samples were collected from two depth intervals: shallow (1 foot below water surface) and deep (1 foot above the river bottom). The surface water locations are shown on Figure 1-3 and listed in Table 1-2. During collection of each surface water sample, field parameters were recorded (i.e., temperature, pH, specific conductivity, ORP, turbidity, TDS, and salinity). Samples were sent to Asset Laboratories in Las Vegas, Nevada for analysis of the following constituents: - Cr(VI) and dissolved chromium - General chemistry parameters: Specific conductivity and pH - COPCs: dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen - In-situ by-products: dissolved arsenic, total and dissolved iron, and dissolved manganese - Geochemical Parameters: dissolved barium and total suspended solids (TSS). ### 2.3 IM Performance Monitoring Program IM performance monitoring in First Quarter 2019 consisted of groundwater chromium monitoring within the floodplain area, a review of IM extraction system operation, and IM hydraulic monitoring. In addition, Cr(VI) and dissolved chromium data collected during chromium monitoring activities were used to monitor shutdown of extraction well PE-01 and evaluate the need to implement the IMCP. ### 2.3.1 Chromium Monitoring Chromium monitoring was performed as part of the monthly and quarterly GMP monitoring activities. Twenty-two monitoring wells were sampled for Cr(VI) in February 2019. Extraction wells PE-01 and TW-03D were sampled monthly in January, February, and March 2019. The monitoring well locations are shown on Figure 1-4 and listed in Table 1-2. Cr(VI) analytical results were used to evaluate Cr(VI) distribution in the floodplain area. ### 2.3.2 IM Extraction System Operation The IM extraction system was operated in January, February, and March 2019. Pumping rates, planned or unplanned downtime, and the volume of groundwater extracted from each IM extraction well were documented. Daily IM-3 inspections were performed, including general facility inspections, flow measurements, and site security monitoring. Daily logs with documentation of inspections are maintained on site. ### Wells Monitored for Conditional Shutdown of PE-01 As discussed in Section 1.4.2.2, four GMP monitoring wells were sampled for Cr(VI) and dissolved chromium in First Quarter 2019 GMP as part of the conditional approval for PE-01 shutdown. The monitoring well locations are shown on Figure 1-2 and listed in Table 1-2. Results were evaluated against the maximum detected Cr(VI) and dissolved chromium concentrations from 2014 (or 2013 for wells sampled biennially). ### 2.3.3 IM Hydraulic Monitoring Groundwater elevation data from monitoring wells and river monitoring locations within the IM hydraulic monitoring network are measured using pressure transducers, which record continuous water levels at 30-minute intervals. Pressure transducers were downloaded in First Quarter 2019 during the first two weeks of each month (January and February) from the 52 monitoring wells in the IM hydraulic monitoring network, two river monitoring locations (I-3 and RRB), and five wells located on the Arizona side of the Colorado River. The monitoring well and river monitoring locations are shown on Figure 1-4 and listed in Table 1-2. Pressure transducers at the six gradient control monitoring wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, MW-45-095, and MW-20-130) were downloaded via a cellular telemetry system. ### 2.3.4 IM Contingency Plan Monitoring As discussed in Section 1.4.2.4, three IMCP monitoring wells were sampled for Cr(VI) as part of the First Quarter 2019 GMP program. The monitoring well locations are shown on Figure 1-4 and listed in Table 1-2. Results were evaluated against established trigger levels (based on historical Cr[VI] concentrations). # 3 SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING RESULTS This section summarizes results from the groundwater and surface water monitoring activities performed during First Quarter 2019 for the GMP and RMP programs. ### 3.1 Groundwater Monitoring Results ### 3.1.1 Cr(VI) and Dissolved Chromium Table 3-1 presents the First Quarter 2019 groundwater sample results for Cr(VI) and dissolved chromium, as well as general chemistry parameters (specific conductivity, ORP, pH, and turbidity). The laboratory reports for samples analyzed during First Quarter 2019 are provided in Appendix A. Note that monitoring wells MW-57-050 and MW-58-065 were dry during the sampling event; therefore, these wells are not included on Table 3-1. Historical Cr(VI) and dissolved chromium concentration data are presented in Appendix B. Figures 3-1a and 3-1b show the distribution of Cr(VI) concentrations across the site in wells monitoring the upper-depth (shallow) and lower-depth (deep) intervals of the Alluvial Aquifer and bedrock. These figures also show the interpreted extent of groundwater Cr(VI) concentrations higher than 32 μ g/L for each depth interval. The value of 32 μ g/L is based on the calculated natural background UTL for Cr(VI) in groundwater from the background study (CH2M Hill 2009). The extent of the Cr(VI) plume is consistent with previous years. During First Quarter 2019, the maximum detected Cr(VI) and dissolved chromium concentrations were 37,000 μ g/L and 42,000 μ g/L (both at MW-68-180), respectively. ### 3.1.2 Contaminants of Potential Concern and In-Situ By-Products Table 3-1 presents the First Quarter 2019 groundwater sample results for COPCs (dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen) and in-situ by-products (dissolved arsenic and dissolved manganese). Maximum concentrations for each constituent are summarized below: - Dissolved molybdenum: 200 µg/L (MW-46-175) - Dissolved selenium: 21 μg/L (MW-68-180) - Nitrate/nitrite as nitrogen: 33 milligrams per liter (mg/L; MW-68-180) - Dissolved arsenic: 16 μg/L (MW-72BR-200) - Dissolved manganese: 940 μg/L (MW-64BR) ### 3.1.3 Bat Cave Wash Table 3-2 presents analytical results from monitoring wells MW-09, MW-10, MW-11, which were sampled on March 18, 2019 after a rainfall event in February 2019. The March 2019 results are consistent with historical sampling results from these monitoring wells, including post-rainfall sampling results from Third Quarter 2015, Second Quarter 2016, First Quarter 2017, and First Quarter 2018 (Table 3-2). The March 2019 results do not provide evidence of impact on general groundwater quality in the shallow aquifer beneath Bat Cave Wash. This conclusion is consistent with observations made following previous flow events. ### 3.1.4 Well Maintenance Monitoring wells were inspected during groundwater sampling activities in First Quarter 2019. No corrective or maintenance actions were needed. Appendix C provides a summary of the inspection results ### 3.2 Surface Water Monitoring Results ### 3.2.1 Cr(VI) and Dissolved Chromium Table 3-3
presents the First Quarter 2019 surface water sample results for Cr(VI) and dissolved chromium, as well as general chemistry parameters (pH and specific conductivity). Cr(VI) and dissolved chromium from the February and March 2019 sampling events were not detected at concentrations higher than reporting limits at any surface water monitoring location, except at location R-19 during the March 2019 sampling event where dissolved chromium concentrations were detected at 1.7 μ g/L. Detections of dissolved chromium have previously been observed at shoreline locations; therefore, no further actions were taken at this time and the surface water monitoring results from the upcoming Second Quarter 2019 sampling event will be closely reviewed. The laboratory reports for samples analyzed during First Quarter 2019 are provided in Appendix A. ### 3.2.2 Contaminants of Potential Concern and In Situ By-Products Table 3-3 presents the First Quarter 2019 surface water results for COPCs (dissolved molybdenum, dissolved selenium, and nitrate/nitrite as nitrogen), in-situ by-products (dissolved arsenic, total iron, dissolved iron, and dissolved manganese), and other geochemical indicator parameters (dissolved barium and TSS). Maximum concentrations for each constituent are summarized below (with associated locations): Dissolved molybdenum: 5.6 µg/L (C-I-3-D, C-I-3-S) Dissolved selenium: 2.4 µg/L (C-I-3-S) Nitrate/nitrite as nitrogen: 7.2 mg/L (C-CON-S) Dissolved arsenic: 2.5 μg/L (C-CON-D) Total iron: 340 μg/L (C-MAR-D) Dissolved iron: 57 µg/L (C-MAR-D) Dissolved manganese: 2.9 μg/L (C-MAR-D) Dissolved barium: 100 to 120 µg/L (all locations) TSS: 31 mg/L (R-29) ### 3.3 Data Validation and Completeness Laboratory analytical data from the First Quarter 2019 sampling events were reviewed by project chemists to assess data quality and to identify deviations from analytical requirements. The following bullets summarize the notable analytical qualifications in data reported for the First Quarter 2019: - Dissolved boron was recovered at concentrations greater than quality control (QC) limits in the matrix spike (MS), matrix spike duplicate (MSD) and post-digestion spike (PDS) of sample MW-09-Q119. The associated parent sample was qualified as an estimated detect and flagged "J." - Dissolved chromium was recovered at concentrations less than QC limits in the MS, MSD and PDS of sample MW-73-080-Q119. The associated parent sample was qualified as an estimated detect and flagged "J." - Iron was recovered at concentrations less than QC limits in the MS, MSD and PDS of sample C-CON-D-Q119. The associated parent sample was qualified as an estimated detect and flagged "J." - Dissolved manganese demonstrated a relative percent difference greater than QC criteria for the field duplicate pair of samples TW-02D-Q119/MW-901-Q119. The associated results were qualified as estimated detects and flagged "J." - Dissolved iron demonstrated a relative percent difference greater than QC criteria for the field duplicate pair of samples MW-10-Q119/MW-922-Q119. The associated results were qualified as estimated detects and flagged "J." - Total dissolved solids demonstrated a relative percent difference greater than QC criteria for the laboratory duplicate pair of samples MW-09-Q119. The associated result was qualified as an estimated detect and flagged "J." No other significant analytical deficiencies were identified in the First Quarter 2019 data. Additional details are provided in the data validation reports kept in the project file and available upon request. # 4 FIRST QUARTER 2019 IM PERFORMANCE MONITORING PROGRAM EVALUATION This section summarizes results of the First Quarter 2019 PMP evaluation. ### 4.1 Distribution of Hexavalent Chromium in the Floodplain Cr(VI) data collected as part of the First Quarter 2019 GMP monitoring activities were used to generate maps, cross-sections, and concentration time series charts to demonstrate that Cr(VI) concentrations greater than 20 µg/L in the floodplain area are contained for removal and treatment. Distribution of Cr(VI) concentrations in the upper-depth (shallow wells) and lower-depth (deep wells) intervals of the Alluvial Aquifer is shown in plan-view and cross-section view (cross-section A) on Figure 4-1. Figure 4-2 presents Cr(VI) concentrations for cross-section B, oriented parallel to the Colorado River. The locations of cross-sections A and B are shown on Figure 4-1. The figures demonstrate that Cr(VI) concentrations decrease from west to east along the floodplain (cross-section A) and that concentrations greater than 20 μ g/L are contained in the floodplain area. Appendix D provides Cr(VI) concentration time series charts for wells sampled in First Quarter 2019 and includes Cr(VI) concentration time series charts for six deep monitoring wells in the floodplain area (MW-34-100, MW-36-090, MW-36-100, MW-44-115, MW-44-125, and MW-46-175) that have historically been monitored for chromium encroachment. These six wells are located between the IM extraction wells and the Colorado River, and, therefore, show the distribution of Cr(VI) concentrations at the toe of the Cr(VI) plume. As shown by the concentration time series charts, Cr(VI) concentrations have decreased since initiation of the IM extraction system in 2005 and have remained relatively steady over the past few years. In First Quarter 2019, Cr(VI) concentrations at the six wells were below 20 µg/L (Appendices B and D). In general, wells showing marked decreases in Cr(VI) concentration are generally located in the floodplain area where IM pumping is removing chromium in groundwater. ### 4.2 IM Extraction System Operation During First Quarter 2019, IM extraction well TW-03D was primarily operated at a target pumping rate of 135 gallons per minute (gpm) to support hydraulic control. Extraction well PE-01 was only operated for brief periods to support IM-3 system maintenance and sampling. Extraction wells TW-02S and TW-02D were not operated except for a brief period during sampling at TW-02D. The IM-3 system extracted and treated 17,273,716 gallons of groundwater during First Quarter 2019, and an estimated 45.5 pounds (20.7 kilograms) of chromium were removed from the aquifer between January 1 and February 28, 2019 (Table 4-1). Note that groundwater extraction is reported on a different schedule than chromium removal reporting (i.e., January - March and January - February, respectively; Table 4-1). The operational runtime percentage for the IM-3 system during First Quarter 2019 was 98.7 percent. Appendix E provides the operations log for the IM-3 system, including planned and unplanned downtime. Extraction wells TW-03D and PE-01 (with mostly all the flow from TW-03D) operated at a combined average pumping rate of 133.2 gpm, including periods of planned and unplanned downtime. The average monthly pumping rates were 134.2 gpm (January 2019), 131.4 gpm (February 2019), and 134.1 (March 2019). Table 4-1 shows the average pumping rates and total groundwater volumes pumped during First Quarter 2019. ### Chromium Concentrations in Wells Monitored for Conditional Shutdown of PE-01 During First Quarter 2019, Cr(VI) and dissolved chromium concentrations in the four wells monitored were lower than the 2014 maximum concentrations. Shutdown of extraction well PE-01 continued through the end of the reporting period. Table 4-2 presents the Cr(VI) and dissolved chromium concentrations and their associated 2014 maximum concentrations. ### 4.3 IM Hydraulic Monitoring Results Table 4-3 presents the First Quarter 2019 average monthly and quarterly groundwater and river elevations, calculated from the pressure transducer data. Average daily groundwater and river elevations are provided as hydrographs in Appendix F. Groundwater elevations were adjusted for temperature and salinity differences among wells (i.e., adjusted to a common freshwater equivalent). ### **Hydraulic Gradient Evaluation: California Floodplain** Figures 4-3a, 4-3b, and 4-3c present the average First Quarter 2019 groundwater elevations and associated groundwater contours for the shallow, mid-depth, and deep wells, respectively. Figure 4-4 presents the average groundwater elevations and associated groundwater contours for wells located in the floodplain along cross-section A. Due to complex vertical gradients present at portions of the Topock site, water levels for some wells are not considered in the contouring on Figures 4-3a, 4-3b, 4-3c, or 4-4. During First Quarter 2019, hydraulic gradients were measured for three gradient well pairs selected for performance monitoring of the IM-3 system (shown on Figure 1-4; note that PE-01 was not operated for hydraulic control): - Northern Gradient Pair: MW-31-135 and MW-33-150 - Central Gradient Pair: MW-20-130 and MW-34-100 - Southern Gradient Pair: MW-20-130 and MW-27-085. As discussed in Section 1.4.2.3, a landward hydraulic gradient of 0.001 ft/ft must be maintained to demonstrate compliance with the performance standard. Table 4-4 presents the monthly average hydraulic gradients measured for each of the gradient well pairs in First Quarter 2019, as well as the overall average of all well pairs. The overall monthly average gradients for all well pairs were 0.0036, 0.0042, and 0.0043 ft/ft for January, February, and March 2019, respectively. Landward gradients measured each month exceeded the 0.001 ft/ft requirement, as shown in Table 4-4. Figure 4-5 illustrates the measured hydraulic gradients during First Quarter 2019 with the concurrent Colorado River elevations and IM-3 pumping rates. ### Hydraulic Gradient Evaluation: Arizona Side of the Colorado River During First Quarter 2019, pressure transducer data were recorded in five wells located on the Arizona side of the Colorado River. The average quarterly groundwater elevations for monitoring wells MW-54-085, MW-54-140, MW-54-195, MW-55-045, and MW-55-120 are presented on Figures 4-3b and 4-3c, and are
used for contouring where appropriate. Except for well MW-55-045, all wells in the MW-54 and MW-55 clusters are screened in the deep interval of the Alluvial Aquifer. Well MW-55-045 is screened across portions of the shallow and middle intervals (Figure 4-3b). Average quarterly water levels at MW-54-085, MW-55-045, and MW-55-120, as shown on Figures 4-3b and 4-3c, indicate that water level elevations in monitoring wells in Arizona are higher than those in wells across the river on the California floodplain. This indicates that the apparent hydraulic gradient on the Arizona side of the river is westward and, as a result, groundwater flow would also be toward the west in that area. This is consistent with the site conceptual model and with the current numerical groundwater flow model. ### 4.4 IM Contingency Plan Monitoring Results During First Quarter 2019, Cr(VI) concentrations in the three IMCP monitoring wells were lower than the established trigger levels; therefore, implementation of the contingency plan was not needed. Cr(VI) concentrations for the IMCP wells and their associated trigger levels are presented in Table 4-5. ### 4.5 Projected River Levels during Next Quarter Colorado River water level projections provide river level information that is useful for anticipating IM-3 extraction requirements for the upcoming quarter. The Colorado River stage near the site is measured at river monitoring location I-3. Water levels are directly influenced by releases from Davis Dam, and, to a lesser degree, from Lake Havasu elevations, both of which are controlled by the United States Bureau of Reclamation (USBR). Total releases from Davis Dam follow a predictable annual cycle, with the largest monthly releases typically in spring and early summer and the smallest monthly releases in late fall/winter (November and December). Superimposed on this annual cycle is a diurnal cycle determined primarily by daily fluctuations in electric power demand. Releases within a given 24-hour period often fluctuate over a wider range of flows than that of monthly average flows over an entire year. Figure 4-6 shows the river stage measured at location I-3 superimposed on the projected I-3 river levels. Projected river levels for future months are based on the USBR projections of Davis Dam discharge and Lake Havasu levels from the preceding month. For example, the projected river level for April 2019 is based on the March 2019 USBR projections of Davis Dam release and Lake Havasu level. Future projections of Colorado River stage, shown on Figure 4-6, are based on USBR long-range projections of Davis Dam releases and Lake Havasu levels from March 2019. There is more uncertainty in these projections at longer times in the future because water demand is based on various factors, including climatic factors. Current USBR projections, presented in Table 4-6, show that the projected Davis Dam release for April 2019 is 15,100 cubic feet per second, and the predicted Colorado River elevation at the I-3 gauge is 456.20 feet above mean sea level. # 4.6 First Quarter 2019 Performance Monitoring Program Evaluation Summary A summary of the First Quarter 2019 PMP evaluation is provided below. • Cr(VI) isoconcentration maps indicate that Cr(VI) concentrations greater than 20 μg/L in the floodplain area are hydraulically controlled. - IM extraction well TW-03D was primarily operated to support hydraulic control. A total of 17,273,716 gallons of groundwater were extracted by the IM-3 system, and an estimated 45.4 pounds (20.7 kilograms) of chromium were removed from groundwater. - Cr(VI) and dissolved chromium concentrations in monitoring wells located within 800 feet of extraction well TW-03D were lower than their established 2014 maximum concentrations (i.e., notification levels). Shutdown of extraction well PE-01 was continued through the end of the reporting period. - Groundwater potentiometric surface maps and the gradient analysis from designated well pairs provide evidence of hydraulic containment of the Cr(VI) plume. The overall monthly average landward gradients in January, February, and March 2019 were 3.6, 4.2, and 4.3 times the required minimum magnitude (0.001 ft/ft), respectively. - Cr(VI) and dissolved chromium concentrations in the IMCP monitoring wells were lower than their established trigger levels, indicating that chromium concentrations did not increase at areas of interest across the site. ### 5 UPCOMING OPERATION AND MONITORING EVENTS GMP, RMP, and PMP monitoring activities will continue under direction from the DTSC in Second Quarter 2019. Monitoring activities and results will be reported in the Second Quarter 2019 PMP-GMP Report (planned for submittal by August 15, 2019). ### 5.1 Groundwater Monitoring Program ### 5.1.1 Monthly Groundwater Monitoring Monthly GMP monitoring events are planned for April, May, and June 2019 at extraction wells PE-01 and TW-03D. ### 5.1.2 Quarterly Groundwater Sampling The quarterly and semiannual GMP monitoring event is planned for April and May 2019. This event will consist of groundwater sampling and inspection of 103 monitoring wells. Any necessary corrective actions to monitoring wells will be performed in a timely manner. If rainfall events occur in Second Quarter 2019 that cause surface water flow in Bat Cave Wash, monitoring wells MW-09, MW-10, and MW-11 will be sampled. ### 5.1.3 Sampling Method Trials at Select Wells Sampling method trials are proposed to continue at monitoring well MW-60BR-245, as noted in Section 2.1.3. The next sampling method trial for this well is planned for Second Quarter 2019 (during the quarterly GMP monitoring event). Sampling method trials at monitoring wells MW-38S, MW-38D, MW-40S, MW-40D, MW-57-185, MW-70BR-225, MW-72BR-200, TW-04, and TW-05 are planned to be discontinued in Second Quarter 2019. ### **5.2 Surface Water Monitoring Program** The surface water monitoring event is planned for May 2019. This event will consist of surface water sampling at 16 locations. ### **5.3** IM Performance Monitoring Program ### 5.3.1 Chromium Monitoring Chromium monitoring will be performed as part of the Second Quarter 2019 GMP monitoring events. Cr(VI) chromium data will be collected from a total of 105 monitoring wells. ### 5.3.2 IM Extraction System Operation During Second Quarter 2019, the IM-3 system will continue operating and operations will be documented. IM extraction wells TW-03D and PE-01 (as needed) will be pumped at a target rate of 135 gpm, except during periods of planned and unplanned downtime, to maintain appropriate hydraulic gradients across the Alluvial Aquifer. Extraction will be primarily from TW-03D, coupled with PE-01 only if needed to maintain gradient control during low river stages. If TW-03D and PE-01 cannot produce the target pumping rate of 135 gpm, then TW-02D and/or TW-02S may be pumped to supplement TW-03D and achieve total flow. Second Quarter 2019 GMP monitoring results from wells listed in the July 20, 2015 DTSC approval letter for conditional PE-01 shutdown (DTSC 2015) will be compared to the 2014 (or 2013 for wells sampled biennially) maximum Cr(VI) and dissolved chromium concentrations. Results that exceed the 2014 maximum concentrations will be reported to the DTSC within 40 days after the end of the quarterly GMP sampling event. ### 5.3.3 IM Hydraulic Monitoring The IM hydraulic monitoring network will continue to be used to demonstrate compliance of the required 0.001 ft/ft landward hydraulic gradient. During the first two weeks of each month, pressure transducers will be downloaded from the 52 monitoring wells in the IM hydraulic monitoring network, five wells located on the Arizona side of the Colorado River, and two river monitoring locations. Pressure transducers at the six gradient control wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, MW-45-095, and MW-20-130) will continue to be downloaded via cellular telemetry at monthly or more frequent intervals, as needed, to verify that 0.001 ft/ft landward gradients are maintained. ### 5.3.4 IM Contingency Plan Monitoring Second Quarter 2019 GMP monitoring results from IMCP wells will be compared to their respective trigger levels. If any exceedances are observed, the DTSC will be notified in accordance with the Revised Contingency Plan Flow Chart (PG&E 2008). ### 5.4 Quarterly Notifications Email notifications will be sent in Second Quarter 2019 providing Cr(VI) and dissolved chromium results for shoreline and in-channel surface water monitoring locations and monitoring wells MW-34-100, MW-44-115, MW-46-175, and MW-44-125. ### 5.5 Monitoring Well Installation In accordance with the Basis of Design Report (CH2M Hill 2015), new monitoring wells, extraction wells, and injection wells are currently being installed as part of the final groundwater remedy at the site. A summary of field activities and monitoring results associated with the installation of the new wells will be reported under separate cover as part of the monthly reporting process associated with construction of the final groundwater remedy. ### 6 REFERENCES - Arcadis. 2018. Fourth Quarter 2017 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15. - Arcadis. 2019. Fourth Quarter 2018 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. April 15. - CH2M Hill. 2005. Monitoring Plan for Groundwater and Surface Water Monitoring Program. PG&E Topock Compressor Station, Needles, California. April 11. - CH2M Hill. 2007. RCRA Facility Investigation/Remedial Investigation Report, Volume 1 Site Background and History. PG&E Topock Compressor Station, Needles, California. August. - CH2M Hill. 2009. Groundwater Background Study, Steps 3 and 4: Revised Final Report of Results, PG&E Topock
Compressor Station, Needles, California. November 6. - CH2M Hill. 2015. Basis of Design Report/Final [100%] Design Submittal for the Final Groundwater Remedy. November. - DTSC. 2005. Letter to PG&E. "Criteria for Evaluating Interim Measures Performance Requirements to Hydraulically Contain Chromium Plume in Floodplain Area, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California (EPA ID No. CAT080011729)." February 14. - DTSC. 2007. Letter to PG&E. "Approval of Updates and Modifications to the Interim Measures Performance Monitoring Program. Pacific Gas and Electric Company, Topock Compressor Station." October 12. - DTSC. 2008a. Letter to PG&E. "Modifications to Hydraulic Data Collection for the Interim Measures Performance Monitoring Program at Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." July 14. - DTSC. 2008b. Letter to Geology and Remediation Engineering. "Updates to the Interim Measures Chemical Performance Monitoring Program. Pacific Gas and Electric Company (PG&E) Company Topock Compressor Station, Needles, California." July 16. - DTSC. 2009. Email. "Re: Request for Combined Reporting of Topock GMP and PMP." May 26. - DTSC. 2010a. Email. "Re: Topock GMP Monitoring Frequency Modification." March 3. - DTSC. 2010b. Letter to PG&E. "Arizona Monitoring Well Sampling Frequency Modification. Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." April 28. - DTSC. 2014. Email from Chris Guerre/DTSC to Yvonne Meeks/PG&E. "PG&E Topock: DTSC response to Section 7 2013 Annual Report Recommendations." June 27. - DTSC. 2015. Letter from Aaron Yue/DTSC to Yvonne Meeks/PG&E "Conditional Approval of Proposal to Modify Interim Measures 3 (IM3) Extraction Well Pumping at Pacific Gas and Electric Company, Topock Compressor Station (PG&E), Needles, California (USEPA ID No. CAT080011729)." July 20. - DTSC. 2017a. Memorandum from Chris Guerre/DTSC to Aaron Yue/DTSC "Proposal for Alternative Groundwater Sampling Trial. Pacific Gas and Electric Company (PG&E) Topock Compressor Station Site, Needles, California," April 6. - DTSC. 2017b. Email from Chris Guerre/DTSC to Jay Piper/CH2M and Curt Russell/PG&E "RE: PG&E Topock letter requesting modified key gradient well pairs when PE-01 is not pumping." August 18. - DTSC. 2017c. Memorandum from Chris Guerre/DTSC to Aaron Yue/DTSC "Response to Comments on Proposal for Alternative Groundwater Sampling Trial. Pacific Gas and Electric Company (PG&E) Topock Compressor Station Site, Needles, California," October 20. - DTSC. 2018. PG&E Topock Compressor Station: Environmental Investigation and Cleanup Activities. Web page. Located at: http://dtsc-topock.com/. - Pacific Gas and Electric Company (PG&E). 2008. Approved Modifications to the Topock IM Performance Monitoring Program PG&E Topock Compressor Station, Needles, California. August 4. - PG&E. 2015. Proposed Trial of Alternative Sampling Approaches at Select Monitoring Wells in the Topock GMP and CMP. August 21. - PG&E. 2017. Response to DTSC's Geological Services unit October 20, 2017 Memorandum titled Comments on Proposal for Alternative Groundwater Sampling Trial. Pacific Gas and Electric, Topock Compressor Station. November 30. # **TABLES** ### Table 1-1 ### **Topock Monitoring Reporting Schedule** First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | | | | | Anticipated Numb | er of Monitoring Locations | 5 | | | |----------------|---------------------|------------------------|---|--|-------------------------|---|----------------------------|---------------------------------|------------------------------------| | Period | Reporting Period | Report Submittal Date | Groundwater Monitoring
Program (GMP) | Surface Water
Monitoring Program
(RMP) | Chromium Monitoring* | Monitoring for
Conditional Shutdown
of PE-01* | IM Hydraulic
Monitoring | IM Contingency Plan Monitoring* | IM Chemical Performance Monitoring | | First Quarter | January - March | April 30 | 22 | 16 | 22 | 4 | 59 | 3 | 0 | | Second Quarter | April - June | August 15 | 105 | 16 | 105 | 30 | 59 | 19 | 0 | | Third Quarter | July - October | December 15 | 22 | 16 | 22 | 4 | 59 | 3 | 0 | | Fourth Quarter | November - December | March 15 | 143 annual + 2 biennial | 16 | 143 annual + 2 biennial | 47 | 59 | 24 | 10 annual + 1 biennial | ### Notes: 1. On July 23, 2010, DTSC approved a revised reporting schedule that included a revised IM-3 monitoring period (i.e., chromium removed), as follows: First Quarter: January - February Second Quarter: March - May Third Quarter: June - September Fourth Quarter: October - December GMP = Groundwater Monitoring Program. DTSC = Department of Toxic Substance Control. IM = interim measure. RMP = Surface Water Monitoring Program. Page 1 of 1 Printed: 3/7/2019 ^{* =} Monitoring consists of collecting hexavalent chromium and/or dissolved chromium data from groundwater monitoring wells; these data are collected during the GMP monitoring event. # Table 1-2 GMP, RMP, and PMP Monitoring Summary First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | | | | Man's | na Mall Canation | na Dataila | - | | | | Monito | oring Programs & Fi | requency | | - | | |------------------------|--------------------------|---|-------------------------------------|--------------------------|-------------------------------------|------------------------|--------------------|--------------------|--------------------------|-------------------|--------------------------|--|----------------------------|--------------------------------------|--|--| | | | | | Monitori | ng Well Construction | on Details | | | | | | | PMP Monitorin | g | | 1 | | Location ID | Site Area | Measuring
Point Elevation
(ft amsl) | Well Screen
Interval
(ft bgs) | Well Screen
Lithology | Well Casing
Diameter
(inches) | Well Depth
(ft bgs) | Aquifer Zone | Sampling
Method | GMP
Monitoring | RMP
Monitoring | Chromium
Monitoring | Monitoring for
Conditional
Shutdown of PE-
01 | IM Hydraulic
Monitoring | IM Contingency
Plan
Monitoring | IM Chemical
Performance
Monitoring | Notes | | ONITORING WELLS | | | | | | | 1 | | | | <u> </u> | | | | | <u> </u> | | MW-09 | Bat Cave Wash | 536.56 | 77 - 87 | Alluvial | 4 in PVC | 89.4 | Shallow | LF | Semiannual | | Semiannual | | | | | Bat Cave Wash flow | | MW-10 | Bat Cave Wash | 530.65 | 74 - 94 | Alluvial | 4 in PVC | 96.9 | Shallow | LF | Semiannual | | Semiannual | | | | | Bat Cave Wash flow | | MW-11 | Bat Cave Wash | 522.54 | 62.5 - 82.5 | Alluvial | 4 in PVC | 86.1 | Shallow | LF | Semiannual | | Semiannual | | | | | Bat Cave Wash flow | | MW-12 | East of Station | 484.01 | 27.5 - 47.5 | Alluvial | 4 in PVC | 50.4 | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-13 | Bat Cave Wash | 488.64 | 28.5 - 48.5 | Alluvial | 4 in PVC | 52.0 | Shallow | LF | Annual | | Annual | - | | | | | | MW-14 | East Mesa | 570.99 | 111 - 131 | Alluvial | 4 in PVC | 133.8 | Shallow | LF | Semiannual | | Semiannual | - | | | | | | MW-15 | East of New Ponds | 641.52 | 180.5 - 200.5 | Alluvial | 4 in PVC | 203.0 | Shallow | LF | Annual | | Annual | - | - | - | - | | | MW-16 | Near New Ponds | 657.31 | 198 - 218 | Alluvial | 4 in PVC | 218.1 | Shallow | LF | Biennial | | Biennial | | | | | | | MW-17 | West of Mesa Area | 589.96 | 130 - 150 | Alluvial | 4 in PVC | 153.6 | Shallow | LF | Biennial | | Biennial | | | | | | | MW-18
MW-19 | West Mesa
Route 66 | 545.32
499.92 | 85 - 105
46 - 66 | Alluvial
Alluvial | 4 in PVC
4 in PVC | 106.7
65.8 | Shallow
Shallow | LF
LF | Annual
Semiannual | | Annual
Semiannual | | | | | | | MW-20-070 | MW-20 bench | 500.07 | 46 - 66
50 - 70 | Alluvial | 4 in PVC | 69.6 | Shallow | LF | Semiannual | | Semiannual | Semiannual | Monthly | | Annual | | | MW-20-100 | MW-20 bench | 500.07 | | Alluvial | 4 in PVC | 101.4 | Middle | LF | Semiannual | | | Semiannual | Monthly | | Annual | | | MW-20-100
MW-20-130 | MW-20 bench | 500.66 | 89.5 - 99.5
121 - 131 | Alluvial | 4 in PVC | 132.3 | | LF | Semiannual | | Semiannual
Semiannual | Semiannual | Monthly | | Annual | Hydraulic Gradient Well | | IVIVV-20-130 | IVIVV-20 DETICIT | 300.00 | 121 - 131 | Alluviai | 4111770 | 132.3 | Deep | Lr | Semiamidai | | Semiamidai | Semiamuai | ivioritiny | | Alliludi | • | | MW-21 | Route 66 | 505.55 | 39 - 59 | Alluvial | 4 in PVC | 58.5 | Shallow | LF | Semiannual | | Semiannual | | | Semiannual | | Low recharge well; typically purges dry
1 casing volume | | MW-22 | Floodplain | 460.72 | 5.5 - 10.5 | Fluvial | 2 in PVC | 12.4 | Shallow | LF | Semiannual | | Semiannual | | Monthly | | | | | MW-23-060 | East Ravine | 504.08 | 50 - 60 | Bedrock | 2 in Sch 40 PVC | 60.2 | Bedrock | LF | Semiannual | | Semiannual | | | | | | | MW-23-080 | East Ravine | 504.13 | 75 - 80 | Bedrock | 2 in Sch 40 PVC | 80.8 | Bedrock | LF | Semiannual | | Semiannual | | | | | | | MW-24A | MW-24 Bench | 567.16 | 104 - 124 | Alluvial | 4 in PVC | 127.5 | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-24B | MW-24 Bench | 564.76 | 193 - 213 | Alluvial | 4 in PVC | 214.8 | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-24BR | MW-24 Bench | 563.95 | 378 - 437 | Bedrock | 4 in PVC | 441.0 | Bedrock | 3V |
Annual | | Annual | | | | | Low recharge well; typically purges dry
1 casing volume | | MW-25 | Near Bat Cave Wash | 542.90 | 84.5 - 104.5 | Alluvial | 4 in PVC | 106.5 | Shallow | LF | Semiannual | | Semiannual | | Monthly | | Annual | | | MW-26 | Route 66 | 502.22 | 51.5 - 71.5 | Alluvial | 2 in PVC | 70.1 | Shallow | LF | Semiannual | | Semiannual | Semiannual | Monthly | | Biennial | | | MW-27-020 | Floodplain | 460.56 | 7 - 17 | Fluvial | 2 in PVC | 14.4 | Shallow | LF | Annual | = | Annual | Annual | Monthly | | | | | MW-27-060 | Floodplain | 461.49 | 47.3 - 57.3 | Fluvial | 2 in PVC | 59.0 | Middle | LF | Annual | | Annual | Annual | Monthly | | | | | MW-27-085 | Floodplain | 460.99 | 77.5 - 87.5 | Fluvial | 2 in PVC | 80.0 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | Hydraulic Gradient Well | | MW-28-025 | Floodplain | 466.77 | 13 - 23 | Fluvial | 2 in PVC | 21.1 | Shallow | LF | Semiannual | | Semiannual | Semiannual | Monthly | | | | | MW-28-090 | Floodplain | 467.53 | 70 - 90 | Fluvial | 2 in PVC | 98.4 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | | | MW-29 | Floodplain | 485.21 | 29.5 - 39.5 | Fluvial | 2 in PVC | 41.5 | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-30-030 | Floodplain | 468.12 | 12 - 32 | Fluvial | 2 in PVC | 26.9 | Shallow | LF | Annual | | Annual | Annual | | | | | | MW-30-050 | Floodplain | 468.81 | 40 - 50 | Fluvial | 4 in PVC | 52.6 | Middle | LF | Annual | | Annual | Annual | Monthly | | | | | MW-31-060 | MW-20 Bench | 496.81 | 41.5 - 61.5 | Alluvial | 4 in PVC | 64.0 | Shallow | LF | Semiannual | | Semiannual | Semiannual | Monthly | | Annual | the decode Condition Well | | MW-31-135 | MW-20 Bench | 498.11 | 113 - 133 | Alluvial | 2 in PVC | 135.4 | Deep | LF
I F | Annual | | Annual | Annual | Monthly | | | Hydraulic Gradient Well | | MW-32-020 | Floodplain | 461.51 | 10 - 20 | Fluvial | 2 in PVC | 19.6 | Shallow | LF
IF | Annual | | Annual | Annual | Administra | Annual | Americal | | | MW-32-035
MW-33-040 | Floodplain
Floodplain | 461.63
487.38 | 27.5 - 35
29 - 39 | Fluvial
Fluvial | 4 in PVC
2 in PVC | 37.2
41.8 | Shallow
Shallow | IF. | Semiannual
Semiannual | - | Semiannual
Semiannual | Semiannual
Semiannual | Monthly
Monthly | Semiannual
Semiannual | Annual | | | MW-33-090 | Floodplain | 487.55 | 69 - 89 | Alluvial | 4 in PVC | 88.3 | Middle | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | | | MW-33-150 | Floodplain | 487.77 | 132 - 152 | Alluvial | 2 in PVC | 155.4 | Deep | IF. | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | Hydraulic Gradient Well | | MW-33-210 | Floodplain | 487.25 | 190 - 210 | Alluvial | 2 in PVC | 223.0 | Deep | I F | Semiannual | | Semiannual | Semiannual | ivioritiny | Semiannual | | riyuradiic Gradient Well | | MW-34-055 | Floodplain | 460.95 | 45 - 55 | Fluvial | 4 in PVC | 56.6 | Middle | I.F. | Annual | | Annual | Annual | Monthly | Jennannuai
 | Annual | | | MW-34-080 | Floodplain | 461.20 | 73 - 83 | Fluvial | 4 in PVC | 84.3 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | Annual | | | MW-34-100 | Floodplain | 460.97 | 89.5 - 99.5 | Fluvial | 2 in PVC | 117.0 | Deep | LF | Quarterly | | Quarterly | Quarterly | Monthly | Quarterly | Annual | Hydraulic Gradient Well | | MW-35-060 | Route 66 | 484.33 | 41 - 61 | Alluvial | 2 in PVC | 56.8 | Shallow | LF | Semiannual | | Semiannual | | Monthly | | | nyaraane araalene wen | | MW-35-135 | Route 66 | 484.24 | 116 - 136 | Alluvial | 2 in PVC | 158.7 | Deep | LF | Semiannual | | Semiannual | | Monthly | | | | | MW-36-020 | Floodplain | 469.33 | 10 - 20 | Fluvial | 1 in PVC | 20.3 | Shallow | LF | Annual | | Annual | Annual | Monthly | _ | | | | MW-36-040 | Floodplain | 469.59 | 30 - 40 | Fluvial | 1 in PVC | 40.3 | Shallow | LF | Annual | | Annual | Annual | Monthly | _ | | | | MW-36-050 | Floodplain | 469.62 | 46 - 51 | Fluvial | 1 in PVC | 108.0 | Middle | LF | Annual | | Annual | Annual | Monthly | _ | | | | MW-36-070 | Floodplain | 469.27 | 60 - 70 | Fluvial | 1 in PVC | 70.3 | Middle | LF | Annual | | Annual | Annual | Monthly | Annual | | | | MW-36-090 | Floodplain | 469.64 | 80 - 90 | Fluvial | 1 in PVC | 90.3 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | | | | | MW-36-100 | Floodplain | 469.65 | 88 - 98 | Fluvial | 2 in PVC | 108.0 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | | | | | MW-37D | Bat Cave Wash | 486.19 | 180 - 200 | Alluvial | 2 in PVC | 226.7 | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-37S | Bat Cave Wash | 485.97 | 64 - 84 | Alluvial | 2 in PVC | 85.0 | Middle | LF | Annual | | Annual | | | | | | | MW-38D | Bat Cave Wash | 525.31 | 163 - 183 | Alluvial | 2 in PVC | 190.9 | Deep | LF, 3V | Semiannual | | Semiannual | | | | | Sampling Method Trial | | MW-38S | Bat Cave Wash | 526.59 | 75 - 95 | Alluvial | 2 in PVC | 98.1 | Shallow | LF, 3V | Quarterly | | Quarterly | - | | - | - | Sampling Method Trial | | MW-39-040 | Floodplain | 468.02 | 30 - 40 | Fluvial | 1 in PVC | 42.1 | Shallow | LF | Annual | | Annual | Annual | Monthly | Annual | | | | MW-39-050 | Floodplain | 467.93 | 47 - 52 | Fluvial | 1 in PVC | 54.6 | Middle | LF | Annual | | Annual | Annual | Monthly | | | | | MW-39-060 | Floodplain | 468.00 | 49 - 59 | Alluvial | 1 in PVC | 15.2 | Middle | LF | Annual | | Annual | Annual | Monthly | - | | | | MW-39-070 | Floodplain | 468.02 | 60 - 70 | Alluvial | 1 in PVC | 71.7 | Middle | LF | Annual | | Annual | Annual | Monthly | - | | | | MW-39-080 | Floodplain | 467.92 | 70 - 80 | Alluvial | 1 in PVC | 82.6 | Deep | LF | Annual | | Annual | Annual | Monthly | | | | | MW-39-100 | Floodplain | 468.12 | 80 - 100 | Alluvial | 2 in PVC | 117.7 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | | | Complies Advanced Total | | MW-40D
MW-40S | I-40 Median | 566.08 | 240 - 260 | Alluvial | 2 in PVC | 266.0 | Deep | LF, H | Semiannual | | Semiannual | | | | | Sampling Method Trial | | | I-4H Median | 566.04 | 115 - 135 | Alluvial | 2 in PVC | 134.0 | Shallow | LF, H | Semiannual | | Semiannual | | | | | Sampling Method Trial | Page 1 of 3 Printed: 3/7/2019 # Table 1-2 GMP, RMP, and PMP Monitoring Summary First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | | | | Monitor | ing Well Constructi | ion Details | | | | | Monito | ring Programs & F | requency | | | | |--------------------------|--|---|-------------------------------------|--------------------------|-------------------------------------|------------------------|--------------------|--------------------|--------------------------|-------------------|--------------------------|---|----------------------------|--------------------------------------|--|---| | | | | | Widilital | ing wen constructi | on Details | | | | | | | PMP Monitorin | g | | 1 | | Location ID | Site Area | Measuring
Point Elevation
(ft amsl) | Well Screen
Interval
(ft bgs) | Well Screen
Lithology | Well Casing
Diameter
(inches) | Well Depth
(ft bgs) | Aquifer Zone | Sampling
Method | GMP
Monitoring | RMP
Monitoring | Chromium
Monitoring | Monitoring for
Conditional
Shutdown of PE
01 | IM Hydraulic
Monitoring | IM Contingency
Plan
Monitoring | IM Chemical
Performance
Monitoring | Notes | | MW-41D | Bat Cave Wash | 479.42 | 271 - 291 | Alluvial | 2 in PVC | 311.5 | Deep | LF | Semiannual | | Semiannual | | | | | + | | MW-41M | Bat Cave Wash | 479.84 | 170 - 190 | Alluvial | 2 in PVC | 190.0 | Deep | LF | Annual | | Annual | | | | | | | MW-41S | Bat Cave Wash | 480.07 | 40 - 60 | Alluvial | 2 in PVC | 60.0 | Shallow | LF | Annual | | Annual | | | | | | | MW-42-030 | Floodplain | 463.74
463.85 | 9.8 - 29.8
42.5 - 52.5 | Fluvial | 2 in Sch 40 PVC | 30.1
52.8 | Shallow | LF
LF | Annual
Semiannual | | Annual | Annual
Semiannual | Monthly |
Semiannual | | | | MW-42-055
MW-42-065 | Floodplain
Floodplain | 463.85 | 56.2 - 66.2 | Fluvial
Fluvial | 2 in PVC
2 in PVC | 80.0 | Middle
Middle | LF | Semiannual | | Semiannual
Semiannual | Semiannual | Monthly | Semiannual | | | | MW-43-025 | Floodplain | 462.54 | 15 - 25 | Fluvial | 2 in PVC | 25.0 | Shallow | LF | Annual | | Annual | | Monthly | | | | | MW-43-075 | Floodplain | 462.71 | 65 - 75 | Fluvial | 2 in PVC | 75.0 | Deep | LF | Annual | | Annual | | ' | Annual | | | | MW-43-090 | Floodplain | 462.76 | 80 - 90 | Fluvial | 2 in PVC | 97.0 | Deep | LF | Annual | | Annual | | Monthly | Annual | | | | MW-44-070 | Floodplain | 471.84 | 61 - 71 | Fluvial | 2 in PVC | 70.0 | Middle | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | | | MW-44-115 | Floodplain | 471.94 | 105 - 115 | Alluvial | 2 in PVC | 113.5 | Deep | LF | Quarterly | | Quarterly | Quarterly | Monthly | Quarterly | - | | | MW-44-125 | Floodplain | 472.11 | 116 - 125 | Alluvial | 2 in PVC | 128.8 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | Pressure transducer location; Hydraulic | | MW-45-095a | Floodplain | 468.27 | 83 - 93 | Fluvial | 2 in PVC | 97.0 | Deep | - | - | | | X (see Note 1) | Monthly | | | Gradient Well | | MW-46-175
MW-46-205 | Floodplain
Floodplain | 482.16
482.23 | 165 - 175
196.5 - 206.5 | Alluvial
Alluvial | 2 in PVC
2 in PVC | 175.5
206.5 | Deep | LF
LF | Quarterly
Semiannual | | Quarterly
Semiannual | Quarterly
Semiannual | Monthly | Quarterly
Semiannual | | | | MW-46-205
MW-47-055 | Floodplain | 482.23 | 45
- 55 | Alluvial | 2 in PVC | 55.0 | Deep
Shallow | IF. | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | | | MW-47-115 | Floodplain | 484.17 | 105 - 115 | Alluvial | 2 in PVC | 115.0 | Deep | LF | Semiannual | | Semiannual | Semiannual | Monthly | Semiannual | | | | MW-48 | East of Station | 486.22 | 124 - 134 | Bedrock | 2 in PVC | 138.0 | Bedrock | LF | Semiannual | | Semiannual | - | | _ | | Low recharge well; typically purges dry at
1 casing volume | | MW-49-135 | Floodplain | 483.97 | 125 - 135 | Alluvial | 1.5 in PVC | 135.0 | Deep | LF | Annual | | Annual | | Monthly | | | 1 casing volume | | MW-49-275 | Floodplain | 483.95 | 255 - 275 | Alluvial | 2 in PVC | 274.7 | Deep | LF | Annual | | Annual | | | | | | | MW-49-365 | Floodplain | 484.01 | 346 - 366 | Alluvial | 2 in PVC | 367.4 | Deep | LF | Annual | | Annual | | | | | | | MW-50-095 | Route 66 | 496.49 | 85 - 95 | Alluvial | 2 in PVC | 95.0 | Middle | LF | Semiannual | | Semiannual | - | Monthly | | | | | MW-50-200 | Route 66 | 496.35 | 190 - 200 | Alluvial | 2 in PVC | 204.5 | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-51
MW-52D | Route 66
Floodplain | 501.56
462.16 | 97 - 112
85 - 87 | Alluvial
Fluvial | 4 in PVC
0.75 in MLABS | 113.3
89.5 | Middle
Deep | LF
IF | Semiannual
Semiannual | | Semiannual
Semiannual | Semiannual | Monthly | | | | | MW-52M | Floodplain | 462.16 | 66 - 68 | Fluvial | 0.75 in MLABS | 70.5 | Deep | LF
IF | Semiannual | | Semiannual | | | | | | | MW-52S | Floodplain | 462.16 | 47 - 49 | Fluvial | 0.75 in MLABS | 51.5 | Middle | LF | Semiannual | | Semiannual | | | | | | | MW-53D | Floodplain | 461.32 | 123.5 - 125 | Fluvial | 0.75 in MLABS | | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-53M | Floodplain | 461.32 | 98.5 - 100 | Fluvial | 0.75 in MLABS | | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-54-085 | Arizona | 466.10 | 77 - 87 | Fluvial | 2 in PVC | 93.2 | Deep | LF | Semiannual | | Semiannual | | Monthly | | | | | MW-54-140
MW-54-195 | Arizona
Arizona | 465.98
466.32 | 128 - 138
185 - 195 | Fluvial
Fluvial | 2 in PVC
2 in PVC | 138.0
195.0 | Deep | LF
LF | Semiannual
Semiannual | | Semiannual
Semiannual | | Monthly
Monthly | | | | | MW-55-045 | Arizona | 465.84 | 37 - 47 | Fluvial | 2 in PVC | 54.0 | Deep
Middle | LF
IF | Semiannual | | Semiannual | | Monthly | | | | | MW-55-120 | Arizona | 465.82 | 108 - 118 | Fluvial | 2 in PVC | 120.3 | Deep | LF | Semiannual | | Semiannual | _ | Monthly | | _ | | | MW-56D | Arizona | 461.36 | 103.5 - 105.5 | Fluvial | 0.75 in MLABS | | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-56M | Arizona | 461.36 | 73.5 - 75.5 | Fluvial | 0.75 in MLABS | | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-56S | Arizona | 461.36 | 33.5 - 35.5 | Fluvial | 0.75 in MLABS | | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-57-050 | East Ravine | 508.76
509.37 | 40 - 50 | Bedrock | 2 in Sch 40 PVC | 50.0 | Bedrock | LF
LF | Quarterly
Semiannual | | Quarterly
Semiannual | | | | | | | MW-57-070
MW-57-185 | East Ravine
East Ravine | 509.37 | 55 - 70
70 - 184 | Bedrock
Bedrock | 2 in Sch 40 PVC
4 in Sch 40 PVC | 70.0
184.7 | Bedrock
Bedrock | LF, 3V | Semiannual | | Semiannual | | | | | Sampling Method Trial | | MW-58-065 | East Ravine | 523.26 | 54 - 64 | Bedrock | 2 in Sch 40 PVC | 66.0 | Bedrock | LF, SV | Quarterly | | Quarterly | | | | | Sampling Method Thai | | MW-58BR | East Ravine | | | Bedrock | | | Bedrock | LF | Quarterly | | Quarterly | | | | | | | MW-59-100 | East Ravine | 541.61 | 86 - 101 | Alluvial | 2 in Sch 40 PVC | 101.0 | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-60-125 | East Ravine | 555.47 | 103 - 123 | Bedrock | 2 in Sch 40 PVC | 122.5 | Bedrock | LF | Semiannual | | Semiannual | | | | | | | MW-60BR-245
MW-61-110 | East Ravine East Ravine | 554.95
544.03 | 136 - 245
92 - 112 | Bedrock
Bedrock | 5 in
2 in Sch 40 PVC | 244.1
112.5 | Bedrock
Bedrock | LF, 3V
LF | Quarterly
Semiannual | | Quarterly
Semiannual | | | | | Sampling Method Trial | | MW-62-065 | East Ravine | 503.56 | 92 - 112
44.5 - 64.5 | Bedrock | 2 in Sch 40 PVC | 67.4 | Bedrock | LF
LF | Quarterly | | Quarterly | | | | | | | MW-62-110 | East Ravine | 504.05 | 85 - 110 | Bedrock | | 110.0 | Bedrock | G | Quarterly | - | Quarterly | _ | | | - | | | MW-62-190 | East Ravine | 504.05 | 155 - 192 | Bedrock | | 190.0 | Bedrock | 3V | Semiannual | | Semiannual | | | | | | | MW-63-065 | East Ravine | 504.47 | 46 - 66 | Bedrock | 2 in Sch 40 PVC | 65.6 | Bedrock | LF | Quarterly | | Quarterly | | | | | | | MW-64BR | East Ravine | 575.60 | 2 - 258 | Bedrock | 3 in | 260.0 | Bedrock | LF | Quarterly | | Quarterly | | | | | | | MW-65-160 | Topock Compressor Station | 596.59 | 150 - 160 | Alluvial | 2 in PVC | 160.1 | Shallow | LF | Quarterly | - | Quarterly | - | | | - | | | MW-65-225
MW-66-165 | Topock Compressor Station
Topock Compressor Station | 596.58
586.16 | 215 - 225
142 - 162 | Alluvial
Alluvial | 2 in PVC
2 in PVC | 225.1
162.1 | Deep
Shallow | LF
LF | Quarterly
Semiannual | | Quarterly
Semiannual | | | | | | | MW-66-230 | Topock Compressor Station | 586.22 | 218 - 228 | Alluvial | 2 in PVC | 228.1 | Deep | LF | Semiannual | | Semiannual | | | | | | | MW-66BR-270 | Topock Compressor Station | 586.15 | 248 - 271 | Bedrock | 5 in | 270.6 | Bedrock | 3V | Semiannual | | Semiannual | | | | | | | MW-67-185 | Topock Compressor Station | 625.91 | 177 - 187 | Alluvial | 2 in | 186.7 | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-67-225 | Topock Compressor Station | 625.83 | 210 - 225 | Alluvial | 2 in PVC | 225.0 | Middle | LF | Semiannual | | Semiannual | | | - | | | | MW-67-260 | Topock Compressor Station | 625.81 | 250 - 260 | Alluvial | 2 in PVC | 260.0 | Deep | LF | Semiannual | | Semiannual | | | - | | | | MW-68-180
MW-68-240 | Topock Compressor Station | 621.17 | 165 - 180
220 - 240 | Alluvial
Alluvial | 2 in PVC
2 in PVC | 180.1
240.1 | Shallow | LF | Quarterly | | Quarterly | | | | | | | MW-68-240
MW-68BR-280 | Topock Compressor Station
Topock Compressor Station | 621.17
620.64 | 220 - 240
257 - 279 | Bedrock | 5 in | 240.1 | Deep
Bedrock | LF
LF | Semiannual
Semiannual | | Semiannual
Semiannual | | | | | | | MW-69-195 | Topock Compressor Station | 631.36 | 176 - 196 | Bedrock | 2 in | 195.5 | Bedrock | LF | Quarterly | | Quarterly | | | | | | | 05 155 | -ppressor station | 1.50 | 100 | | - " | | | | | | | | | | | | Page 2 of 3 Printed: 3/7/2019 ### Table 1-2 GMP, RMP, and PMP Monitoring Summary First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | | | | | | | | | | | Monito | ring Programs & F | requency | | | | |-----------------------|---|---|-------------------------------------|--------------------------|-------------------------------------|------------------------|--------------|--------------------|-------------------|-------------------|------------------------|--|----------------------------|--------------------------------------|--|--------------------------------| | | | | | Monitori | ing Well Construction | on Details | | | | | | | PMP Monitoring | I | | | | Location ID | Site Area | Measuring
Point Elevation
(ft amsl) | Well Screen
Interval
(ft bgs) | Well Screen
Lithology | Well Casing
Diameter
(inches) | Well Depth
(ft bgs) | Aquifer Zone | Sampling
Method | GMP
Monitoring | RMP
Monitoring | Chromium
Monitoring | Monitoring for
Conditional
Shutdown of PE-
01 | IM Hydraulic
Monitoring | IM Contingency
Plan
Monitoring | IM Chemical
Performance
Monitoring | Notes | | MW-70-105 | East Ravine | 541.47 | 85 - 105 | Bedrock | 2 in PVC | 107.8 | Bedrock | LF | Semiannual | | Semiannual | | | | | | | MW-70BR-225 | East Ravine | 539.84 | 120 - 227 | Bedrock | 5 in | 229.3 | Bedrock | LF, 3V | Semiannual | | Semiannual | - | | | - | Sampling Method Trial | | MW-71-035 | East Ravine | 483.69 | 26 - 36 | Alluvial | 2 in | 36.2 | Shallow | LF | Semiannual | | Semiannual | | | | | | | MW-72-080 | East Ravine | 513.32 | 60 - 80 | Bedrock | 2 in | 80.1 | Bedrock | LF | Quarterly | | Quarterly | | | | | | | MW-72BR-200 | East Ravine | 513.79 | 107 - 200 | Bedrock | | 200.0 | Bedrock | LF, 3V | Quarterly | | Quarterly | | | | | Sampling Method Trial | | MW-73-080 | East Ravine | 505.84 | 60.2 - 80.2 | Bedrock | 2 in | 79.9 | Bedrock | LF | Quarterly | | Quarterly | | | | | | | MW-74-240 | East Ravine | 672.34 | 220 - 240 | Bedrock | 2 in | 239.7 | Bedrock | LF | Semiannual | | Semiannual | | | | | | | OW-03D | West Mesa | 558.63 | 242 - 262 | Alluvial | 2 in Sch 40 PVC | 272.5 | Deep | LF | Annual | | Annual | | | | | | | OW-03M | West Mesa | 558.9 | 180 - 200 | Alluvial | 2 in Sch 40 PVC | 200.3 | Middle | LF | Annual | | Annual | | | | | | | OW-03S | West Mesa | 558.58 | 86 - 116 | Alluvial | 2 in Sch 40 PVC | 116.3 | Shallow | LF | Annual | | Annual | _ | | | - | | | PGE-07BR | MW-24 Bench | | 249 - 300 | Bedrock | 7 in | 300.0 | Bedrock | 3V | Annual | | Annual | | | | | Inactive supply well | | PGE-8 | Station | 596.01 | 405-554 | Bedrock | 6.75 in Steel | 564.0 | Bedrock | 3V | Annual | | Annual | | | | | Inactive injection well | | PT-2D | Floodplain | | 95 - 105 | Alluvial | 2 in in PVC | 105 | Deep | | | | | - | Monthly | | | macave injection wen | | PT-5D | Floodplain | | 95 - 105 | Alluvial | 2 in in PVC | 105 | Deep | | _ | | | | Monthly | | | | | PT-6D | Floodplain | _ | 95 - 105 | Alluvial | 2 in in PVC | 105 |
Deep | | _ | | | | Monthly | | | | | T AND EXTRACTON WELLS | Fiooupiaiii | | 33 - 103 | Alluviai | ZIIIIIFVC | 103 | ьеер | | - | - | | | ivioritiny | | | | | PE-01 | Floodplain | 457.52 | 79 - 89 | Fluvial | 6 in Sch 40 | 99.0 | Deep | tap | Monthly | | Monthly | Monthly | | | | IM extraction well | | | | | | Alluvial | | | Shallow | | | | , | | | | | | | TW-01 | Plan B Test | 620.55 | 169 - 269 | | 5 in PVC | 271.0 | | 3V | Semiannual | | Semiannual | | | | | Inactive pilot test well | | TW-02D | MW-20 bench | 493.29 | 113 - 148 | Alluvial | 6 in Sch 80 PVC | 150.0 | Deep | tap | Quarterly | | Quarterly | | | | | IM extraction well | | TW-02S | MW-20 bench | 499.05 | 42.5 - 92.5 | Alluvial | 6 in Sch 80 PVC | 97.5 | Shallow | tap | Annual | | Annual | | | | | IM extraction well | | TW-03D | MW-20 bench | 498.09 | 111 - 156 | Alluvial | 8 in PVC | 156.0 | Deep | tap | Monthly | | Monthly | | | | | IM extraction well | | TW-04 | Floodplain | 484.11 | 210 - 250 | Alluvial | 4 in PVC | 255.0 | Deep | LF, 3V | Semiannual | | Semiannual | Semiannual | | | | Sampling Method Trial | | TW-05 | Route 66 | 496.30 | 110 - 150 | Alluvial | 4 in PVC | 155.0 | Deep | LF, 3V | Semiannual | | Semiannual | | | | | Sampling Method Trial | | TER SUPPLY WELLS | | | | | | | | | | | | | | | | | | Park Moabi-3 | Park Moabi | 518.55 | 80 - 200 | Alluvial | 8 in Steel | 252.0 | Middle | tap | Annual | | Annual | | | | | Active supply well | | Park Moabi-4 | Park Moabi | | 93 - 140 | Alluvial | Steel | | Middle | tap | Annual | | Annual | | | | | Active supply well | | FACE WATER MONITORING | | | | | | | | | | | | | | | | | | C-BNS | In-Channel | | | | - | | | | - | Quarterly | | | | | | | | C-CON | In-Channel | | | | | | | | | Quarterly | | | | | | Deep and shallow depth interva | | C-I-3 (I-3) | In-Channel | | | | | | | | | Quarterly | | | Monthly | | | Deep and shallow depth interva | | C-MAR | In-Channel | - | | | - | | | | | Quarterly | | | | | | Deep and shallow depth interva | | C-NR1 | In-Channel | - | | | - | | | | | Quarterly | - | | | | | Deep and shallow depth interva | | C-NR3 | In-Channel | | | | - | | | | | Quarterly | | | | | | Deep and shallow depth interva | | C-NR4 | In-Channel | | | | | | | | | Quarterly | - | | | | | Deep and shallow depth interva | | C-R22A | In-Channel | | | | | | | | | Quarterly | | | | | | Deep and shallow depth interva | | C-R27 | In-Channel | _ | | | - | | | | | Quarterly | - | | | | | Deep and shallow depth interva | | C-TAZ | In-Channel | - | | | - | | | | | Quarterly | - | | | | | Deep and shallow depth interva | | R-28 | Shoreline | _ | | | _ | | | | | Quarterly | | | | | Annual | | | R-19 | Shoreline | _ | | | _ | | | | | Quarterly | | | | | | | | R-63 | Shoreline | | | | _ | | | | | Quarterly | | | | | | | | RRB | Shoreline | | | | - | | | | | Quarterly | | | Monthly | | | | | SW-1 | Other Surface Water | - | - | - | _ | | - | | - | Quarterly | | | | | - | | | SW-2 | Monitoring Location Other Surface Water Monitoring Location | _ | _ | | | | | | | Quarterly | | | | | | | 1. On June 27, 2014, DTSC approved discontinuation of groundwater sampling at monitoring well MW-45-095a. This location was originally included in the list of wells monitored for conditional shutdown of PE-01. -- = not applicable. 3V = three volume. amsl = above mean sea level. bgs = below ground surface. Deep = deep interval of Alluvial Aquifer. DTSC = Department of Toxic Substance Control. ft = feet. G = grab sample. GMP = Groundwater Monitoring Program. H = HydraSleeve ID = identification. IM = interim measure. LF = low flow (minimal drawdown). Middle = mid-depth interval of Alluvial Aquifer. PMP = Performance Monitoring Program. PVC = polyvinyl chloride (pipe) RMP = Surface Water Monitoring Program. Shallow = shallow interval of Alluvial Aquifer. Tap = sampled from tap of extraction well. Page 3 of 3 Printed: 3/7/2019 Table 3-1 Groundwater Sampling Results, First Quarter 2019 | | | | | | | | | | COPCs | | In | -Situ By-Produc | cts | Sel | lected Field Para | meters | |---------------|--------------|-------------|----------------|------------------|-------------------------------|---------------------------------|------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-----------------------------|----------------------------------|--------------------------|-------------|-------------------|--------------------| | Location ID | Aquifer Zone | Sample Date | Sample
Type | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium
(μg/L) | Specific
Conductance
(µS/cm) | Dissolved
Molybdenum
(µg/L) | Dissolved
Selenium
(µg/L) | Nitrate/Nitrite as
Nitrogen (mg/L) | Dissolved
Arsenic (μg/L) | Dissolved
Manganese
(µg/L) | Dissolved Iron
(μg/L) | ORP
(mV) | Field pH
(SU) | Turbidity
(NTU) | | MW-09 | SA | 3/18/2019 | | LF | 140 | 130 | 2,700 | 3.6 | 5.7 | 12 | 1.8 | ND (0.5) | 43 | 92 | 7.1 | 3.0 | | MW-10 | SA | 3/18/2019 | | LF | 150 | 140 | 2,500 | 19 | 7.2 | 12 | 2.4 | 5.1 | 110 J | 94 | 7.3 | 7.0 | | MW-10 | SA | 3/18/2019 | FD | | 150 | 140 | 2,600 | 20 | 6.7 | 12 | 2.5 | 4.4 | 64 J | | | | | MW-11 | SA | 3/18/2019 | | LF | 42 | 43 | 2,100 | 5.8 | 5.5 | 5.6 | 1.5 | 0.68 | 62 | 100 | 7.4 | 7.0 | | MW-34-100 | DA | 2/14/2019 | | LF | ND (1.0) | 1.7 | 11,000 | 62 | ND (0.5) | ND (0.05) | 1.4 | 110 | | -86.1 | 7.63 | 2.0 | | MW-38S | SA | 2/13/2019 | | LF | 5.1 | 5.6 | 1,600 | 32 | 2.6 | 3.8 | 6.0 | 57 | | -66 | 7.5 | 3.0 | | MW-38S | SA | 2/13/2019 | | 3V | 3.7 | 3.8 | 1,600 | 30 | 3.7 | 4.5 | 6.3 | 75 | | -35 | 7.4 | 2.0 | | MW-44-115 | DA | 2/15/2019 | | LF | 9.7 | 17 | 11,000 | 100 | ND (0.5) | 0.062 | 6.0 | 13 | | -100 | 6.9 | 2.0 | | MW-46-175 | DA | 2/15/2019 | | LF | 8.1 | 18 | 18,000 | 190 | 0.69 | 1.2 | | | | -88 | 6.9 | 2.0 | | MW-46-175 | DA | 2/15/2019 | FD | LF | 7.9 | 20 | 18,000 | 200 | 0.63 | 1.2 | | | | | | | | MW-58BR | BR | 2/14/2019 | | LF | 7.4 | 9.4 | 8,300 | 26 | 1.8 | 0.61 | 1.7 | 320 | | 28 | 7.7 | 26 | | MW-60BR-245 | BR | 2/14/2019 | | 3V | 110 | 110 | 16,000 | 57 | 2.1 | 0.27 | 7.3 | 13 | | -81 | 7.7 | 3.0 | | MW-60BR-245 D | BR | 2/14/2019 | | LF | 18 | 17 | 16,000 | 62 | 2.2 | 0.18 | 6.6 | 21 | | 16 | 7.6 | 3.0 | | MW-60BR-245 S | BR | 2/14/2019 | | LF | 25 | 29 | 16,000 | 63 | 2.9 | 0.18 | 7.3 | 21 | | 3.5 | 7.3 | 5.0 | | MW-62-065 | BR | 2/11/2019 | | LF | 470 | 550 | 6,100 | 16 | 4.6 | 4.7 | 1.7 | 2.5 | | -52 | 7.0 | 12 | | MW-62-110 | BR | 2/14/2019 | | G | ND (1.0) | ND (1.0) | 11,000 | 69 | 1.1 | 0.28 | 13 | 140 | | -50 | 7.3 | 2.0 | | MW-63-065 | BR | 2/14/2019 | | LF | 1.1 | 1.3 | 6,600 | 18 | 0.83 | 0.77 | 1.6 | 22 | | 62 | 6.9 | 26 | | MW-64BR | BR | 2/13/2019 | | LF | ND (1.0) | ND (1.0) | 13,000 | 65 | ND (0.5) | ND (0.05) | 4.1 | 940 | | -42 | 7.0 | 2.0 | | MW-65-160 | SA | 2/13/2019 | | LF | 220 | 220 | 3.800 | 42 | 11 | 15 | 0.76 | ND (0.5) | | 25 | 6.8 | 8.0 | | MW-65-225 | DA | 2/13/2019 | | LF | 490 | 490 | 8,700 | 28 | 8.2 | 9.4 | 2.2 | 12 | | 27 | 6.8 | 14 | | MW-68-180 | SA | 2/13/2019 | | LF | 37,000 | 42,000 | 5,000 | 46 | 21 | 33 | 2.6 | ND (0.5) | | 63 | 7.0 | 49 | | MW-69-195 | BR | 2/13/2019 | | LF | 110 | 100 | 2,800 | 70 | 9.4 | 12 | 2.4 | 1.0 | | 43 | 7.1 | 18 | | MW-72-080 | BR | 2/11/2019 | | LF | 77 | 92 | 16,000 | 83 | 1.2 | 0.74 | 11 | 48 | | -110 | 7.2 | 8.0 | | MW-72BR-200 | BR | 2/12/2019 | | 3V | 5.3 | 5.4 | 14.000 | 85 | ND (0.5) | 0.13 | 16 | 43 | | -79 | 7.8 | 5.0 | | MW-72BR-200 D | BR | 2/12/2019 | | LF | ND (1.0) | ND (1.0) | 14.000 | 82 | ND (0.5) | ND (0.05) | 11 | 140 | | -160 | 7.4 | 3.0 | | MW-72BR-200 S | BR | 2/12/2019 | | LF | ND (1.0) | 1.3 | 14.000 | 82 | ND (0.5) | 0.072 | 12 | 140 | | -150 | 7.3 | 11 | | MW-73-080 | BR | 2/11/2019 | | LF | 29 | 34 J | 12.000 | 38 | 3.4 | 2.8 | 1.5 | 20 | | -71 | 7.0 | 14 | | PE-01 | DA | 1/3/2019 | | Тар | ND (0.2) | ND (1.0) | 2,200 | | | ND (0.05) | | 630 | ND (20) | | | | | PE-01 | DA | 2/14/2019 | | Тар | ND (0.2) | ND (1.0) | 2,200 | | | ND (0.05) | | 500 | ND (20) | | | | | PE-01 | DA | 3/5/2019 | | Тар | ND (0.2) | ND (1.0) | 3,500 | | | ND (0.05) | | 860 | ND (20) | 73 | 7.7 | 1.0 | | TW-02D | DA | 2/14/2019 | | Тар | 120 | 140 | 4,300 | 11 | 2.4 | | | 4.6 J | | 94 | 7.7 | 1.0 | | TW-02D | DA | 2/14/2019 | FD | Тар | 120 | 130 | 4,200 | 11 | 2.2 | | | 11 J | | | | | | TW-03D | DA | 1/3/2019 | 10 | Тар | 500 | 480 | 7,800 | | | 2.7 | | 16 | ND (20) | | | | | TW-03D | DA | 2/14/2019 | | Тар | 420 | 520 | 7,600 | | | 2.8 | | 18 | ND (20) | | | | | TW-03D | DA | 3/5/2019 | | Тар | 500 | 520 | 7,400 | | | 2.9 | | 21 | ND (20) | 76 | 7.7 | 2.0 | | 144 030 | DA | 3/3/2013 | | ıap | 300 | J20 | 7,400 | | | 2.3 | | 41 | 140 (20) | 70 | 1.1 | 2.0 | ### Notes: 1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6. $\ \ 2.\ The\ following\ analytical\ methods\ were\ used:$ Hexavalent chromium = USEPA Method 218.6 Dissolved chromium, dissolved arsenic, dissolved manganese, dissolved molybdenum, dissolved selenium = Method SW6020 PE-01/TW-03D: dissolved chromium, dissolved manganese = USEPA Method 200.8 Dissolved Iron = USEPA Method 200.7 Specific conductance = USEPA Method 120.1 Nitrate/Nitrate as Nitrogen = SM 4500-NO3 F 3. Monitoring wells MW-57-050 and MW-58-065 were dry during the First Quarter 2019 sampling event. -- = not applicable. μg/L = micrograms per liter. μS/cm = microSiemens per centimeter. 3V = three volume purge. BR = bedrock. COPC = constituent of potential concern. DA = deep interval of Alluvial Aquifer. mV DTSC = Department of Toxic Substance Control. FD = field duplicate. ID = identification. J = concentration or reporting limit (RL) estimated by laboratory or data validation. LF = Low Flow (minimal drawdown). mV = millivolts. ND = not detected at listed reporting limit. NTU = nephelometric turbidity units. ${\sf ORP =
oxidation\text{-}reduction potential}.$ SA = shallow interval of Alluvial Aquifer. SU = standard units. Tap = sampled from tap of extraction well. USEPA = United States Environmental Protection Agency. Page 1 of 1 Printed: 4/22/2019 Table 3-2 Bat Cave Wash Sampling Results, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California | Location ID | Aquifer
Zone | Sample Date | Sample
Type | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium
(μg/L) | Bromide (mg/L) | Chloride
(mg/L) | Dissolved
Boron (mg/L) | Dissolved Iron
(μg/L) | Dissolved
Calcium (mg/L) | Dissolved
Magnesium
(mg/L) | Dissolved
Sodium (mg/L) | Sulfate
(mg/L) | Total Alkalinity
(mg/L) | Total Dissolved
Solids (mg/L) | |----------------|-----------------|--------------------------|----------------|------------------|-------------------------------|---------------------------------|----------------------|--------------------|---------------------------|--------------------------|-----------------------------|----------------------------------|----------------------------|-------------------|----------------------------|----------------------------------| | MW-09 | SA | 05/12/2015 | | LF | 230 | 230 | | | | | | | | | | | | MW-09 | SA | 10/07/2015 | | LF | 200 | 230 | ND (1.0 J) | 650 | 0.65 | 29 J | 28 | 110 | 440 | 240 | 130 | 1,700 | | MW-09 | SA | 12/01/2015 | | LF | 190 | 200 | ND (1.0) | 640 | 0.59 | 21 | 28 | 120 | 400 | 220 | 130 | 1,700 | | MW-09 | SA | 05/03/2016 | | LF | 190 | 200 J | ND (1.0) | 720 | 0.82 | ND (20) | 27 | 110 | 480 J | 250 | 130 | 1,800 | | MW-09 | SA | 12/07/2016 | | LF | 160 | 160 | ND (1.0) | 730 | 0.73 | 21 | 32 | 130 | 460 | 240 | 130 | 1,700 | | MW-09 | SA | 02/09/2017 | | LF | 160 | 150 | 0.6 | 720 | 0.76 | ND (20) | 28 | 110 | 440 | 250 | 140 | 1,700 | | MW-09 | SA | 05/03/2017 | | LF | 160 | 140 | | | | | | | | | | | | MW-09 | SA | 12/07/2017 | | LF | 150 | 140 | ND (1.0 J) | 770 | 0.62 | ND (20) | 29 | 110 | 390 | 230 | 130 | 1,700 | | MW-09 | SA | 02/23/2018 | | LF | 150 | 150 | ND (1.0) | 770 | 0.78 | 31 | 28 | 110 | 520 | 240 | 130 | 1,800 | | MW-09 | SA | 05/02/2018 | | LF | 150 | 140 | | | | | | | | | | | | MW-09 | SA | 12/12/2018 | | LF | 140 | 150 | ND (1.0) | 780 | 0.72 | 69 | 33 | 130 | 480 | 260 | 120 | 1,800 | | MW-09 | SA | 03/18/2019 | | LF | 140 | 130 | ND (1.0) | 720 | 0.79 J | 43 | 28 | 120 | 470 | 240 | 130 | 1,800 J | | MW-10 | SA | 05/12/2015 | | LF | 280 | 290 | | | | | | | | | | | | MW-10 | SA | 10/07/2015 | | LF | 190 | 210 | ND (1.0) | 500 | 0.64 | 110 | 15 | 100 | 380 | 260 | 110 | 1,500 | | MW-10 | SA | 12/01/2015 | | LF | 150 | 170 | ND (1.0) | 510 | 0.35 | 400 | 11 | 71 | 430 | 260 | 110 | 1,400 | | MW-10 | SA | 05/03/2016 | | LF | 220 | 220 | ND (1.0) | 640 | 1.1 | 21 | 16 | 100 | 470 | 270 | 120 | 1,700 | | MW-10 | SA | 12/07/2016 | | LF | 180 | 200 | ND (1.0) | 510 | 0.74 | 64 | 18 | 130 | 390 | 250 | 120 | 1,400 | | MW-10 | SA | 02/09/2017 | | LF | 160 | 150 | 0.86 | 610 | 0.87 | ND (20) | 18 | 120 | 390 | 260 | 130 | 1,600 | | MW-10 | SA | 05/03/2017 | | LF | 190 | 200 | | | | | | | | | | | | MW-10 | SA | 12/07/2017 | | LF | 130 | 130 | ND (2.5) | 520 | 0.62 | 26 | 17 | 120 | 300 | 250 | 120 | 1,400 | | MW-10 | SA | 12/07/2017 | FD | LF | 130 | 120 | ND (2.5) | 520 | 0.66 | ND (20) | 19 | 130 | 310 | 260 | 100 | 1,400 | | MW-10 | SA | 02/23/2018 | | LF | 160 | 160 | 0.86 | 670 | 0.96 | 250 | 17 | 110 | 470 | 270 | 120 | 1,700 | | MW-10 | SA | 05/02/2018 | | LF | 170 | 160 | | | | | | | | | | 4.500 | | MW-10 | SA | 12/12/2018 | | LF | 110 | 120 | 1.1 | 590 | 0.78 | 29 | 23 | 140 | 400 | 260 | 110 | 1,500 | | MW-10 | SA
SA | 03/18/2019 | | LF | 150 | 140 | ND (1.0) | 660 | 0.95 | 110 J | 18 | 130 | 460 | 270 | 120 | 1,700 | | MW-10
MW-11 | SA
SA | 03/18/2019 05/12/2015 | FD | LF
LF | 150
130 | 140
130 | ND (1.0) | 660 | 0.96 | 64 J | 18 | 130 | 480 | 270 | 130 | 1,700 | | MW-11 | SA | | | LF | 130 | 130 | | F20 | 0.41 | 41 | 19 | 120 | 300 | 200 | 73 | | | MW-11 | SA | 10/07/2015
12/02/2015 | | LF | 130 | 110 | ND (1.0)
ND (1.0) | 520
530 | 0.41 | ND (20) | 18 | 110 | 310 | 190 | 73
87 | 1,400
1,400 | | MW-11 | SA | 12/02/2015 | FD | LF | 120 | 110 | ND (1.0)
ND (1.0) | 520 | 0.35 | ND (20) | 18 | 100 | 310 | 180 | 86 | 1,300 | | MW-11 | SA | 05/03/2016 | Fυ | LF | 110 | 110 | ND (1.0) | 520 | 0.51 | ND (20) | 18 | 120 | 310 | 190 | 91 | 1,400 | | MW-11 | SA | 05/03/2016 | FD | LF | 110 | 110 | ND (1.0)
ND (1.0) | 530 | 0.51 | ND (20) | 19 | 120 | 330 | 190 | 91 | 1,400 | | MW-11 | SA | 12/07/2016 | 10 | LF | 79 | 84 | ND (1.0) | 560 | 0.49 | 43 | 21 | 130 | 410 J | 190 | 91 | 1,300 | | MW-11 | SA | 12/07/2016 | FD | LF | 80 | 81 | ND (1.0) | 550 | 0.45 | 59 | 21 | 120 | 310 J | 190 | 89 | 1,300 | | MW-11 | SA | 02/09/2017 | 10 | LF | 60 | 60 | 0.63 | 530 | 0.5 | ND (20) | 19 | 120 | 290 | 190 | 98 | 1,300 | | MW-11 | SA | 05/03/2017 | | LF | 67 | 61 | | | | | | | | | | | | MW-11 | SA | 12/07/2017 | | LF | 64 | 61 | ND (2.5) | 600 | 0.44 | ND (20) | 21 | 120 | 300 | 190 | 92 | 1,300 | | MW-11 | SA | 02/23/2018 | | LF | 57 | 56 | ND (1.0) | 560 | 0.47 | ND (20) | 21 | 120 | 320 | 190 | 92 | 1,300 | | MW-11 | SA | 05/02/2018 | | LF | 57 | 53 | | | | | | | | | | | | MW-11 | SA | 05/02/2018 | FD | LF | 58 | 55 | | | | | | | | | | | | MW-11 | SA | 12/12/2018 | | LF | 47 | 48 | ND (1.0) | 560 | 0.43 | ND (20) | 23 | 130 | 300 | 180 | 89 | 1,400 | | MW-11 | SA | 12/12/2018 | FD | LF | 47 | 50 | ND (1.0) | 570 | 0.44 | ND (20) | 25 | 140 | 320 | 190 | 89 | 1,400 | | MW-11 | SA | 03/18/2019 | | LF | 42 | 43 | ND (1.0) | 540 | 0.47 | 62 | 21 | 140 | 290 | 180 | 96 | 1,400 | Page 1 of 2 Printed: 4/29/2019 ### Table 3-2 ### Bat Cave Wash Sampling Results, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California ### Notes: 1. The following analytical methods were used: Hexavalent chromium = USEPA Method 218.6 or SM3500-CrB Dissolved chromium = SW 6020 or SW 6020A Bromide and Chloride = USEPA Method 300.0 Dissolved Boron, dissolved iron, dissolved magnesium, dissolved calcium, and dissolved sodium = USEPA 200.7 or SW 6010B Sulfate = USEPA 300.0 Total Alkalinity = SM 2320 B Total dissolved solids = SM 2540 C 2. Post-rainfall sampling results are highlighed in grey. --- = not applicable. μg/L = micrograms per liter. FD = field duplicate. ID = identification. J = concentration or reporting limit (RL) estimated by laboratory or data validation. LF = Low Flow (minimal drawdown) ND = not detected at listed reporting limit. SA = shallow interval of Alluvial Aquifer. USEPA = United States Environmental Protection Agency. Page 2 of 2 Printed: 4/29/2019 Table 3-3 Surface Water Sampling Results, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, Colifornia | | | | | | | | | COPCs | | | In-Situ By-Pro | oducts | | Geochem | ical Indicators | |--------------|-------------|----------------|-------------------------------|------------------------------|------------------|------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-----------------------------|--------------------------|----------------|----------------------------------|----------------------------|-------------------------------------| | Location ID | Sample Date | Sample
Type | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | Field pH
(SU) | Specific
Conductance
(µS/cm) | Dissolved
Molybdenum
(µg/L) | Dissolved
Selenium
(µg/L) | Nitrate/Nitrite as
Nitrogen (mg/L) | Dissolved Arsenic
(µg/L) | Dissolved Iron
(µg/L) | Iron
(μg/L) | Dissolved
Manganese
(µg/L) | Dissolved
Barium (μg/L) | Total Suspended
Solids
(mg/L) | | IN-CHANNEL L | OCATIONS | | | | | | • | | | | | | • | | | | C-BNS | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.7 | 890 | 5.0 | 1.8 | 0.39 | 2.1 | ND (20) | 37 | ND (0.5) | 120 | ND (5.0) | | C-BNS | 3/19/2019 | | ND (0.2) | ND (1.0) | 7.8 | 820 | 5.2 | 1.4 | 0.42 | 2.2 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | C-CON-D | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.8 | 900 | 4.5 | 1.7 | 0.39 | 2.2 | ND (20) | 140 J | ND (0.5) | 110 | ND (5.0) | | C-CON-D | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.0 | 920 | 5.1 | 1.9 | 0.41 | 2.5 | ND (20) | 43 | ND (0.5) | 110 | ND (5.0) | | C-CON-D | 3/20/2019 | FD | ND (0.2) | ND (1.0) | | 900 | 4.9 | 1.6 | 0.41 | 2.1 | ND (20) | 55 | ND (0.5) | 100 | ND (5.0) | | C-CON-S | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.7 | 900 | 5.0 | 1.8 | 7.2 | 2.2 | ND (20) | 36 | ND (0.5) | 110 | ND (5.0) | | C-CON-S | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.2 | 910 | 4.9 | 1.6 | 0.4 | 2.3 | ND (20) | 67 | ND (0.5) | 110 | ND (5.0) | | C-I-3-D | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.8 | 870 | 4.8 | 2.1 | 0.35 | 2.1 | ND (20) | 23 | ND (0.5) | 110 | ND (5.0) | | C-I-3-D | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.2 | 820 | 5.6 | 1.9 | 0.4 | 2.4 | 22 | 82 | ND (0.5) | 110 | ND (5.0) | | C-I-3-S | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.8 | 860 | 5.0 | 1.7 | 0.36 | 2.0 | ND (20) | ND (20) | ND (0.5) | 120 | ND (5.0) | | C-I-3-S | 2/12/2019 | FD | ND (0.2) | ND (1.0) | | 860 | 4.8 | 1.4 | 0.39 | 2.2 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | C-I-3-S | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.1 | 810 | 5.2 | 2.1 | 0.41 | 2.2 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | C-I-3-S | 3/19/2019 | FD | ND (0.2) | ND (1.0) | | 810 | 5.6 | 2.4 | 0.4 | 2.2 | ND (20) | ND (20) | ND (0.5) | 120 | ND (5.0) | | C-MAR-D | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.1 | 910 | 4.9 | 2.0 | 0.36 | 2.3
| 57 | 340 | 2.9 | 110 | 30 | | C-MAR-D | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.3 | 900 | 5.0 | 1.9 | 0.82 | 2.2 | 26 | 100 | ND (0.5) | 110 | ND (5.0) | | C-MAR-S | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.8 | 910 | 5.2 | 1.7 | 0.37 | 2.3 | 25 | 81 | 1.8 | 120 | ND (5.0) | | C-MAR-S | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.4 | 910 | 4.5 | 1.7 | 0.39 | 2.2 | ND (20) | 150 | ND (0.5) | 100 | 8.5 | | C-NR1-D | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 900 | 5.0 | 1.7 | 0.39 | 2.2 | 24 | 170 | ND (0.5) | 120 | ND (5.0) | | C-NR1-D | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.1 | 910 | 4.6 | 1.7 | 0.39 | 2.0 | ND (20) | 34 | ND (0.5) | 110 | ND (5.0) | | C-NR1-S | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 910 | 5.0 | 1.8 | 0.38 | 2.1 | ND (20) | ND (20) | ND (0.5) | 120 | ND (5.0) | | C-NR1-S | 3/20/2019 | | ND (0.2) | ND (1.0) | | 910 | 4.7 | 2.3 | 0.39 | 2.1 | ND (20) | 110 | ND (0.5) | 110 | ND (5.0) | | C-NR3-D | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 920 | 4.8 | 1.7 | 0.37 | 2.1 | ND (20) | 37 | ND (0.5) | 120 | ND (5.0) | | C-NR3-D | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.0 | 910 | 4.7 | 1.4 | 0.4 | 2.1 | 31 | 39 | ND (0.5) | 100 | ND (5.0) | | C-NR3-S | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 910 | 5.0 | 1.7 | 0.39 | 2.1 | ND (20) | 22 | ND (0.5) | 120 | ND (5.0) | | C-NR3-S | 2/13/2019 | FD | ND (0.2) | ND (1.0) | | 910 | 5.1 | 1.5 | 0.39 | 2.2 | 26 | 23 | ND (0.5) | 120 | ND (5.0) | | C-NR3-S | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.0 | 910 | 4.8 | 1.4 | 0.4 | 2.2 | 23 | 26 | ND (0.5) | 110 | ND (5.0) | | C-NR4-D | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 910 | 5.0 | 1.5 | 0.41 | 2.0 | ND (20) | 22 | ND (0.5) | 120 | ND (5.0) | | C-NR4-D | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.1 | 920 | 4.5 | 1.6 | 0.4 | 2.1 | ND (20) | 33 | ND (0.5) | 100 | ND (5.0) | | C-NR4-S | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 900 | 4.7 | 1.6 | 0.4 | 2.1 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | C-NR4-S | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.0 | 920 | 4.7 | 1.6 | 0.4 | 2.3 | ND (20) | 26 | ND (0.5) | 100 | ND (5.0) | | C-R22A-D | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.8 | 880 | 4.8 | 1.5 | 0.34 | 2.1 | 26 | 42 | ND (0.5) | 120 | ND (5.0) | | C-R22A-D | 3/19/2019 | | ND (0.2) | ND (1.0) | 7.7 | 820 | 5.3 | 1.9 | 0.37 | 2.2 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | C-R22A-D | 3/19/2019 | FD | ND (0.2) | ND (1.0) | | 830 | 5.2 | 1.3 | 0.38 | 2.3 | ND (20) | 23 | ND (0.5) | 120 | ND (5.0) | | C-R22A-S | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.6 | 870 | 4.8 | 1.5 | 0.36 | 1.9 | 22 | 46 | ND (0.5) | 120 | ND (5.0) | | C-R22A-S | 3/19/2019 | | ND (0.2) | ND (1.0) | 7.8 | 820 | 5.4 | 1.7 | 0.41 | 2.4 | ND (20) | 20 | ND (0.5) | 120 | ND (5.0) | | C-R27-D | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.7 | 880 | 5.1 | 2.0 | 0.33 | 2.1 | 26 | 24 | ND (0.5) | 120 | ND (5.0) | | C-R27-D | 3/19/2019 | | ND (0.2) | ND (1.0) | | 820 | 5.1 | 1.5 | 0.4 | 2.2 | 25 | 45 | ND (0.5) | 110 | ND (5.0) | | C-R27-S | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.7 | 900 | 5.0 | 1.6 | 0.33 | 2.1 | ND (20) | 63 | ND (0.5) | 120 | ND (5.0) | | C-R27-S | 3/19/2019 | | ND (0.2) | ND (1.0) | 7.7 | 820 | 4.8 | 1.8 | 0.36 | 2.2 | ND (20) | 25 | ND (0.5) | 110 | ND (5.0) | | C-TAZ-D | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.7 | 860 | 5.4 | 2.1 | 0.35 | 2.3 | 21 | 22 | ND (0.5) | 120 | ND (5.0) | | C-TAZ-D | 2/12/2019 | FD | ND (0.2) | ND (1.0) | | 880 | 5.0 | 1.9 | 0.32 | 2.2 | ND (20) | 29 | ND (0.5) | 120 | ND (5.0) | | C-TAZ-D | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.3 | 810 | 4.9 | 1.3 | 0.41 | 2.2 | ND (20) | 31 | ND (0.5) | 110 | ND (5.0) | | C-TAZ-S | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.8 | 880 | 5.2 | 1.9 | 0.36 | 2.2 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | C-TAZ-S | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.2 | 820 | 5.3 | 2.1 | 0.39 | 2.3 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | Page 1 of 2 Printed: 4/23/2019 Table 3-3 Surface Water Sampling Results, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California | | | | | | | | | COPCs | | | In-Situ By-Pr | oducts | | Geochemi | ical Indicators | |--------------|----------------|----------------|-------------------------------|------------------------------|------------------|------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-----------------------------|--------------------------|----------------|----------------------------------|----------------------------|-------------------------------------| | Location ID | Sample Date | Sample
Type | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | Field pH
(SU) | Specific
Conductance
(μS/cm) | Dissolved
Molybdenum
(µg/L) | Dissolved
Selenium
(μg/L) | Nitrate/Nitrite as
Nitrogen (mg/L) | Dissolved Arsenic
(µg/L) | Dissolved Iron
(µg/L) | Iron
(μg/L) | Dissolved
Manganese
(μg/L) | Dissolved
Barium (μg/L) | Total Suspended
Solids
(mg/L) | | SHORELINE LO | OCATIONS | | | | | | | | | | | | | | | | R-19 | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 910 | 5.0 | 1.8 | 0.39 | 2.1 | ND (20) | 36 | ND (0.5) | 120 | ND (5.0) | | R-19 | 3/20/2019 | | ND (0.2) | 1.7 | 8.3 | 920 | 4.7 | 1.8 | 0.41 | 2.3 | ND (20) | 58 | ND (0.5) | 100 | ND (5.0) | | R-28 | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.7 | 930 | 5.1 | 2.0 | 0.32 | 2.1 | ND (20) | 160 | ND (0.5) | 120 | 31 | | R-28 | 3/19/2019 | | ND (0.2) | ND (1.0) | 7.9 | 820 | 5.3 | 2.0 | 0.38 | 2.1 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | R63 | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.9 | 870 | 5.0 | 1.1 | 0.35 | 2.1 | ND (20) | 25 | ND (0.5) | 120 | ND (5.0) | | R63 | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.0 | 820 | 5.1 | 1.9 | 0.36 | 2.2 | ND (20) | ND (20) | ND (0.5) | 110 | ND (5.0) | | RRB | 2/13/2019 | | ND (0.2) | ND (1.0) | 7.9 | 930 | 5.3 | 1.8 | 0.33 | 2.2 | 22 | 24 | 1.9 | 120 | ND (5.0) | | RRB | 3/20/2019 | | ND (0.2) | ND (1.0) | 8.1 | 940 | 4.4 | 1.4 | 0.36 | 2.2 | ND (20) | 44 | ND (0.5) | 100 | ND (5.0) | | OTHER SURFA | CE WATER LOCAT | IONS | | | | | | | | | | | | | | | SW-1 | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.7 | 960 | | | | | | | | | | | SW-1 | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.0 | 920 | | | | | | | | | | | SW-2 | 2/12/2019 | | ND (0.2) | ND (1.0) | 7.5 | 960 | | | | | | | | | | | SW-2 | 3/19/2019 | | ND (0.2) | ND (1.0) | 8.0 | 890 | | | | | | | | | | ### Notes: 1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6. 2. The following analytical methods were used: Hexavalent chromium = USEPA 218.6 $Dissolved\ chromium,\ dissolved\ arsenic,\ dissolved\ barium,\ dissolved\ manganese,\ dissolved\ molybdenum,\ dissolved\ selenium = SW6020$ Dissolved iron, total iron = SW6010B Specific conductance = USEPA 120.1 Nitrate/Nitrate as Nitrogen = SM 4500-NO3 F Total suspended solids = SM 2540D -- = not applicable. μ g/L = micrograms per liter. μ S/cm = microSiemens per centimeter. COPC = constituent of potential concern. DTSC = Department of Toxic Substance Control. FD = field duplicate. ID = identification. J = concentration or reporting limit (RL) estimated by laboratory or data validation. mg/L = milligrams per liter ND = not detected at listed reporting limit. $SU = standard\ units.$ ${\sf USEPA = United\ States\ Environmental\ Protection\ Agency}.$ Page 2 of 2 Printed: 4/23/2019 Table 4-1 Pumping Rate and Extracted Volume for IM-3 System, First Quarter 2019 | | Januar | y 2019 | Februa | ry 2019 | Marc | n 2019 | First Qua | rter 2019 | |-----------------------|--|------------------------|--|------------------------|--|------------------------|--|------------------------| | Extraction Well
ID | Average Pumping
Rate ^a (gpm) | Volume Pumped
(gal) | | TW-02S | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | TW-02D | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | | TW-03D | 134.16 | 5,989,074 | 131.42 | 5,298,902 | 134.08 | 5,985,134 | 133.22 | 17,273,110 | | PE-01 | 0.00 | 189 | 0.01 | 280 | 0.00 | 137 | 0.00 | 606 | | TOTAL | 134.2 | 5,989,263 | 131.4 | 5,299,182 | 134.1 | 5,985,271 | 133.2 | 17,273,716 | | | - | | - | | | Chromium Removed | d This Quarter (kg) | 20.7 | | | | | | | Chr | omium Removed P | roject to Date (kg) | 4,280 | | | | | | | (| Chromium Remove | d This Quarter (lb) | 45.5 | | | | | | | Chr | omium Removed P | roject to Date (lb) | 9,430 | ### Notes: gal = gallons. gpm = gallons per minute. ID = identification. IM = Interim Measure. kg = kilograms. lb = pounds. Page 1 of 1 Printed: 4/13/2019 ^a The "Average Pumping Rate" is the overall average during the reporting period, including system downtime, based on flow meter readings. ^{1.} Chromium removed includes the period of January 1, 2019 through February 28, 2019. Table 4-2 Wells Monitored for Conditional Shutdown of PE-01, First Quarter 2019 | | | | Hexavalent (| Chromium | Dissolved Chr | omium | - 1 1000 | |---------------------|---------------------|------------------|---|--------------------------|---|-----------------------------|-------------------------------------| | Location ID | Sample Date | Sample
Method | 2014 Maximum
Concentration
(µg/L) | Q1 2019 Result
(μg/L) | 2014 Maximum
Concentration
(μg/L) | Q1 2019
Result
(µg/L) | Exceeded 2014 Maximum Concentration | | LLS IN SHALLOW ZONE | OF ALLUVIAL AQUIFE | R | | | | | | | MW-20-070 | | | 2,200 | NS | 2,400 | NS | | | MW-26 | | | 2,400 | NS | 2,300 | NS | | | MW-27-020 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-28-025 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-30-030 | | | 0.21 | NS | ND (1.0) | NS |
 | MW-31-060 | | | 600 | NS | 660 | NS | | | MW-32-020 | | | ND (1.0) | NS | ND (5.0) | NS | | | MW-32-035 | | | ND (1.0) | NS | ND (1.0) | NS | | | MW-33-040 | | | 0.28 | NS | ND (1.0) | NS | | | MW-36-020 | | | ND (0.20) | NS NS | ND (1.0) | NS | | | MW-36-040 | | | 0.34 | NS
NS | ND (1.0) | NS | | | MW-39-040 | | | | | ND (1.0) | | | | | | | ND (0.20) | NS
NS | • • • | NS | | | MW-42-030 | | | 0.54 | NS | ND (1.0) | NS | | | MW-47-055 | | | 16 | NS | 16 | NS | | | | OF ALLUVIAL AQUIFER | | 2 222 | | 2.000 | | | | MW-20-100 | | | 2,900 | NS | 2,900 | NS | | | MW-27-060 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-30-050 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-33-090 | | | 13.3 | NS | 15.5 | NS | | | MW-34-055 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-36-050 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-36-070 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-39-050 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-39-060 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-39-070 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-42-055 | | | 0.35 | NS | 2.8 | NS | | | MW-42-065 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-44-070 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-51 | | | 4,800 | NS | 4,800 | NS | | | LS IN DEEP ZONE OF | ALLUVIAL AQUIFER | | · | | | | | | MW-20-130 | | | 9,100 | NS | 9,000 | NS | | | MW-27-085 | | | ND (1.0) | NS | ND (1.0) | NS | | | MW-28-090 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-31-135 | | | 12 | NS | 12 | NS | | | MW-33-150 | | | 12 | NS | 10.8 | NS | | | MW-33-210 | | | 13 | NS | 13.5 | NS | | | MW-34-080 | | | ND (0.20) | NS | ND (1.0) | NS | | | MW-34-100 | 2/14/2019 | LF | 263 | ND (1.0) | 270 | 1.7 | No | | MW-36-090 | | | | NS (1.0) | ND (1.0) | NS | | | | | | ND (0.20)
65 | | 62 | NS | | | MW-36-100 | | | | NS
NS | | | | | MW-39-080 | | | ND (0.20) | NS
NE | ND (1.0) | NS | | | MW-39-100 | | | 57 | NS
0.7 | 49 | NS
17 | | | MW-44-115 | 2/15/2019 | LF | 41.6 | 9.7 | 42.9 | 17
NG | No | | MW-44-125 | | | 4.0 J | NS | 5.9 | NS | | | MW-45-095a | | | 13.7* | NS | 14.2* | NS | | | MW-46-175 | 2/15/2019 | LF | 46.3 | 8.1 | 46.1 | 20 | No | | MW-46-205 | | | 5.5 | NS | 4.8 | NS | | | MW-47-115 | | | 24 | NS | 20 | NS | | Page 1 of 2 Printed: 4/6/2019 ### Table 4-2 ### Wells Monitored for Conditional Shutdown of PE-01, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | | | Hexavalent (| Chromium | Dissolved Chr | omium | Exceeded 2014 | |-------------|-----------------------------------|------------------|---|----------------------------------|---|----------------------------------|------------------------| | Location ID | Sample Date | Sample
Method | 2014 Maximum
Concentration
(μg/L) | Q1 2019 Result
(μg/L) | 2014 Maximum
Concentration
(μg/L) | Q1 2019
Result
(µg/L) | Maximum Concentration? | | PE-01 | 1/3/2019
2/14/2019
3/5/2019 | tap | 5.6 | ND (0.2)
ND (0.2)
ND (0.2) | 6 | ND (1.0)
ND (1.0)
ND (1.0) | No | | TW-04 | | | 7.4* | NS | 20 | NS | | ### Notes: - 1. Monitoring wells presented in the table are located within approximately 800 feet of TW-03D, as stated in DTSC 2015. - 2. * = Result is the maximum concentration from 2013. - 3. Values shown in parentheses are the reporting limit. - 4. If a field duplicate sample was collected, the maximum concentration between the primary and field duplicate sample is presented. - 5. On June 27, 2014, DTSC approved discontinuation of groundwater sampling at monitoring well MW-45-095a. - 6. Bold values exceeded the 2013 and/or 2014 maximum concentration for hexavalent chromium and/or dissolved chromium. - -- = not applicable. μ g/L = micrograms per liter. DTSC = Department of Toxic Substance Control. ID = identification. LF = low flow (minimal drawdown). ND = not detected at listed reporting limit. NS = not sampled. Tap = sampled from tap of extraction well. ### References: DTSC. 2015. Letter from Aaron Yue/DTSC to Yvonne Meeks/PG&E. "Conditional Approval of Proposal to Modify Interim Measures 3 (IM3) Extraction Well Pumping at Pacific Gas and Electric Company, Topock Compressor Station (PG&E), Needles, California (USEPA ID No. CAT080011729)." July 20. Page 2 of 2 Printed: 4/6/2019 Table 4-3 Groundwater Elevation Results, First Quarter 2019 | | | Grou | ndwater Elevation (ft a | ımsl) | | |--------------------------|-----------------|------------------|-------------------------|-------------------|------------------------------| | Location ID | January Average | February Average | March Average | Quarterly Average | Days in Quarterly
Average | | LLS IN SHALLOW ZONE OF | · | | | | | | MW-20-070 | 451.77 | 452.41 | 452.87 | 452.35 | 90 | | MW-22 | 453.45 | 453.96 | 454.31 | 453.91 | 90 | | MW-25 | 453.83 | 454.02 | 454.35 | 454.07 | 90 | | MW-26 | 453.57 | 453.78 | 454.17 | 453.84 | 90 | | MW-27-020 | 452.94 | 454.31 | 454.76 | 453.99 | 90 | | MW-28-025 | 452.84 | 454.26 | 454.82 | 453.96 | 90 | | MW-31-060 | 452.76 | 453.55 | 454.01 | 453.44 | 90 | | MW-32-035 | 452.83 | 453.96 | 454.54 | 453.77 | 90 | | MW-33-040 | 454.56 | 454.05 | INC | INC | 64 | | MW-35-060 | 453.51 | 454.64 | 455.19 | 454.44 | 90 | | MW-36-020 | 452.80 | 453.92 | 454.49 | 453.73 | 90 | | MW-36-040 | 452.66 | INC | 454.49 | 453.60 | 76 | | MW-39-040 | 452.59 | 453.54 | 454.26 | 453.46 | 90 | | MW-42-030 | INC | INC | INC | INC | 0 | | MW-43-025 | 452.86 | 454.30 | 454.90 | 454.01 | 90 | | MW-47-055 | 453.42 | 454.31 | 454.84 | 454.19 | 90 | | LLS IN MIDDLE ZONE OF A | LLUVIAL AQUIFER | | | | | | MW-20-100 | 451.15 | 451.83 | 452.30 | 451.75 | 90 | | MW-27-060 | 452.92 | 454.32 | 454.93 | 454.05 | 90 | | MW-30-050 | 452.74 | 453.88 | 454.39 | 453.66 | 90 | | MW-33-090 | 453.06 | 454.09 | 454.63 | 453.92 | 90 | | MW-34-055 | 452.92 | 454.17 | 454.83 | 453.97 | 90 | | MW-36-050 | 452.64 | 453.85 | 454.42 | 453.63 | 90 | | MW-36-070 | 452.64 | 453.83 | 454.39 | 453.61 | 90 | | MW-39-050 | 452.40 | 453.55 | 454.11 | 453.35 | 90 | | MW-39-060 | 452.31 | 453.41 | 453.96 | 453.22 | 90 | | MW-39-070 | 451.67 | 452.67 | 453.18 | 452.50 | 90 | | MW-42-065 | 452.66 | 453.77 | 454.40 | 453.59 | 83 | | MW-44-070 | 452.64 | 453.96 | 454.59 | 453.72 | 90 | | MW-50-095 | INC | 453.99 | 454.32 | INC | 55 | | MW-51 | INC | 453.47 | 453.78 | INC | 53 | | MW-55-045 | 455.15 | 455.71 | 456.06 | 455.64 | 90 | | LLS IN DEEP ZONE OF ALLU | JVIAL AQUIFER | | | | | | MW-20-130 | 450.50 | 451.26 | 451.70 | 451.15 | 90 | | MW-27-085 | 452.88 | 454.21 | 454.80 | 453.96 | 90 | | MW-28-090 | 452.83 | 454.15 | 454.71 | 453.89 | 90 | | MW-31-135 | 451.99 | 452.80 | 453.24 | 452.67 | 90 | | MW-33-150 | 453.32 | 454.19 | 454.70 | 454.07 | 90 | | MW-34-080 | 453.10 | 454.50 | 455.11 | 454.23 | 90 | | MW-34-100 | 453.01 | 454.35 | 454.76 | 454.03 | 89 | | MW-35-135 | 453.44 | 454.24 | 454.75 | 454.14 | 90 | | MW-36-090 | 452.19 | 453.38 | 453.87 | 453.14 | 90 | | MW-36-100 | 452.40 | 453.54 | 454.08 | 453.33 | 90 | | MW-39-080 | 451.67 | 452.53 | 452.99 | 452.39 | 90 | | MW-39-100 | 452.19 | 453.28 | 453.61 | 453.02 | 90 | | MW-43-090 | 453.03 | 454.39 | 454.96 | 454.12 | 90 | | MW-44-115 | INC | INC | INC | INC | 2 | | MW-44-125 | 452.74 | 453.77 | 454.18 | 453.56 | 90 | | MW-45-095a | 452.50 | 453.79 | 454.37 | 453.54 | 90 | | MW-46-175 | 453.11 | 454.13 | 454.65 | 453.96 | 90 | | MW-47-115 | 453.11 | INC | INC | INC | 38 | | MW-49-135 | 453.39 | 454.48 | 455.03 | 454.30 | 90 | | MW-54-085 | 453.29 | 454.66 | 455.22 | 454.38 | 90 | | MW-54-140 | 453.14 | 454.25 | 454.78 | 454.05 | 90 | Page 1 of 2 Printed: 4/9/2019 # Table 4-3 Groundwater Elevation Results, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | Groundwater Elevation (ft amsl) | | | | | | | | |------------------------------------|---------------------------------|------------------|---------------|-------------------|------------------------------|--|--|--| | Location ID | January Average | February Average | March Average | Quarterly Average | Days in Quarterly
Average | | | | | MW-54-195 | 452.68 | 453.57 | 454.16 | 453.46 | 83 | | | | | MW-55-120 | 455.32 | 455.81 | 456.12 | 455.75 | 90 | | | | | PT-2D | 451.54 | 452.53 | 453.00 | 452.35 | 90 | | | | | PT-5D | 452.14 | 453.09 | 453.57 | 452.93 | 90 | | | | | PT-6D | 452.03 | 453.09 | 453.59 | 452.90 | 90 | | | | | SURFACE WATER MONITORING LOCATIONS | | | | | | | | | | I-3 | 453.32 | 454.85 | 455.47 | 454.53 | 90 | | | | | RRB | INC | INC | INC | INC | 0 | | | | ### Notes: ft amsl = feet above mean sea level. INC = data are incomplete; less than 75 percent of data were available during the reporting period due to rejection, field equipment malfunction, or inaccessibility. ID = identification. Page 2 of 2 Printed: 4/9/2019 Table 4-4 Average Hydraulic Gradients Measured at Well Pairs, First Quarter 2019 | Well Pair | Reporting Period | Mean Landward
Hydraulic Gradient
(feet/foot) | Days in
Monthly Average | PE-01 Run for
Gradient Control? | |--|------------------|--|----------------------------|------------------------------------| | | January | 0.0036 | | No | | Overall Average | February | 0.0042 | | No | | | March | 0.0043 | | No | | | January | 0.0028 | 31 | | | <u>Northern Gradient Pair</u>
MW-31-135 / MW-33-150 | February | 0.0029 | 28 | | | | March | 0.0031 | 31 | | | Central Gradient Pair | January | | | | | (used when PE-01 is run for gradient control) | February | | | | | MW-45-095 / MW-34-100 | March | | | | | Central Gradient Pair | January | 0.0044 | 31 | No | | (used when PE-01 is <u>not</u> run for gradient control)
| February | 0.0054 | 27 | No | | MW-20-130 / MW-34-100 | March 0.0054 | | 31 | No | | Southern Gradient Pair | January | | | | | (used when PE-01 is run for gradient control) | February | | | | | MW-45-095 / MW-27-085 | March | | | | | Southern Gradient Pair | January | 0.0035 | 31 | No | | (used when PE-01 is not run for gradient control) | February | 0.0043 | 28 | No | | MW-20-130 / MW-27-085 | March | 0.0045 | 31 | No | ### Notes: - 1. The target mean landward hydraulic gradient for the selected well pairs is 0.001 feet/foot. - 2. "Days in Monthly Average" refers to the number of days the pressure transducers in both wells were operating correctly. - 3. Beginning in August 2017, MW-20-130 was approved for gradient compliance (instead of MW-45-95) at the central and southern well pairs during months when PE-01 is not run for gradient control. - 4. MW-45-095 is also known as MW-45-095a. - -- = monthly gradient not applicable for gradient compliance. Page 1 of 1 Printed: 4/10/2019 Table 4-5 Interim Measure Contingency Plan Trigger Levels and Results, First Quarter 2019 | | | | | Trigger Level | Q1 2019 Result | | |-------------|--------------------------|-----------|------------------|----------------------------------|----------------------------------|----------------------------| | Location ID | Aquifer Zone Sample Date | | Sample
Method | Hexavalent
Chromium
(μg/L) | Hexavalent
Chromium
(μg/L) | Exceeded Trigger
Level? | | MW-21 | | | | 20 | NS | | | MW-27-085 | | | | 20 | NS | | | MW-28-090 | | | | 20 | NS | | | MW-32-020 | | | | 20 | NS | | | MW-32-035 | | | | 20 | NS | | | MW-33-040 | | | | 20 | NS | | | MW-33-090 | | | | 25 | NS | | | MW-33-150 | | | | 20 | NS | | | MW-33-210 | | | | 20 | NS | | | MW-34-080 | | | | 20 | NS | | | MW-34-100 | DA | 2/14/2019 | LF | 750 | ND (1.0) | No | | MW-36-070 | | | | 20 | NS | | | MW-39-040 | | | | 20 | NS | | | MW-42-055 | | | | 20 | NS | | | MW-42-065 | | | | 20 | NS | | | MW-43-075 | | | | 20 | NS | | | MW-43-090 | | | | 20 | NS | | | MW-44-070 | | | | 20 | NS | | | MW-44-115 | DA | 2/15/2019 | LF | 1,200 | 9.7 | No | | MW-44-125 | | | | 475 | NS | | | MW-46-175 | DA | 2/15/2019 | LF | 225 | 8.1 | No | | MW-46-205 | | | | 20 | NS | | | MW-47-055 | | | | 150 | NS | | | MW-47-115 | | | | 31 | NS | | ### Notes: 1. If a field duplicate sample was collected, the maximum concentration between the primary and field duplicate sample is presented. -- = not applicable or not sampled. μ g/L = micrograms per liter. DA = deep interval of Alluvial Aquifer. ID = identification. LF = Low Flow (minimal drawdown). ND = not detected at listed reporting limit. NS = not sampled. Q1 = first quarter. Page 1 of 1 Printed: 4/6/2019 Table 4-6 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3 | | | Davis Dam Release | | | orado River Elevation a | at I-3 | |-----------------------------|------------------|-------------------|------------------|---------------------|-------------------------|------------------------| | Month, Year | Projected (cfs) | Actual (cfs) | Difference (cfs) | Predicted (ft amsl) | Actual (ft amsl) | Difference (feet) | | January 2013 | 8,300 | 8,299 | 1 | 453.20 | 453.28 | 0.04 | | February 2013 | 10,600 | 10,972 | -372 | 454.30 | 454.63 | 0.40 | | March 2013 | 15,200 | 15,545 | -345 | 456.00 | 456.29 | 0.30 | | April 2013 | 17,600 | 17,090 | 510 | 456.90 | 456.74 | 0.10 | | May 2013 | 15,800 | 15,592 | 208 | 456.40 | 456.44 | 0.00 | | June 2013 | 15,700 | 15,588 | 112 | 456.50 | 456.47 | 0.00 | | July 2013 | 14,400 | 13,165 | 1,235 | 456.00 | 455.79 | 0.20 | | August 2013 | 13,100 | 12,185 | 915 | 455.40 | 455.43 | 0.00 | | September 2013 | 11,700 | 11,446 | 254 | 454.80 | 455.02 | 0.20 | | October 2013 | | | -197 | | | 0.20 | | | 12,300 | 12,497 | | 454.90 | 455.09 | | | November 2013 | 9,700 | 8,918 | 782 | 454.00 | 453.98 | 0.00 | | December 2013 | 6,400 | 7,636 | -1,236 | 452.40 | 452.81 | 0.40 | | January 2014 | 8,300 | 8,970 | -670 | 452.80 | 453.27 | 0.50 | | February 2014 | 11,600 | 11,850 | -250 | 454.30 | 454.67 | 0.30 | | March 2014 | 16,600 | 17,473 | -873 | 456.40 | 456.70 | 0.30 | | April 2014 | 18,200 | 17,718 | 482 | 457.10 | 457.08 | 0.00 | | May 2014 | 16,700 | 16,622 | 78 | 456.80 | 456.68 | 0.10 | | June 2014 | 15,900 | 15,917 | -17 | 456.60 | 456.64 | 0.10 | | July 2014 | 15,100 | 14,640 | 460 | 456.30 | 456.24 | 0.00 | | August 2014 | 12,300 | 11,336 | 964 | 455.20 | 455.26 | 0.10 | | September 2014 | 13,100 | 12,211 | 889 | 455.30 | 455.30 | 0.00 | | October 2014 | 10,700 | 10,434 | 266 | 454.30 | 454.81 | 0.50 | | November 2014 | 10,700 | 10,575 | 125 | 454.30 | 454.22 | 0.10 | | December 2014 | 6,400 | 7,235 | -835 | 452.40 | 452.93 | 0.50 | | January 2015 | 10,600 | 10,740 | -140 | 454.30 | 454.39 | 0.09 | | February 2015 | 10,500 | 11,252 | -752 | 454.20 | 454.52 | 0.32 | | March 2015 | 14,900 | 15,658 | -758 | 455.90 | 456.29 | 0.39 | | April 2015 | 18,000 | 17,170 | 830 | 457.10 | 456.82 | 0.28 | | May 2015 | 16,000 | 13,890 | 2110 | 456.50 | 456.06 | 0.50 | | June 2015 | 14,500 | | 884 | 456.10 | 455.94 | 0.16 | | | | 13,616 | | | | | | July 2015 | 13,400 | 12,411 | 989 | 455.60 | 455.50 | 0.10 | | August 2015 | 12,100 | 12,627 | -527 | 455.10 | 455.45 | 0.40 | | September 2015 | 13,300 | 12,734 | 566 | 455.40 | INC | NA
0.1 | | October 2015 | 11,300 | 10,653 | 647 | 454.70 | 454.80 | 0.1 | | November 2015 | 10,000 | 10,066 | -66 | 454.16 | 453.87 | 0.29 | | December 2015 | 6,200 | 8,556 | -2,356
400 | 453.30 | 453.48 | -0.18
-0.60 | | January 2016 | 9,400 | 9,000
11,700 | 100 | 453.44
454.37 | 454.05
454.95 | | | February 2016
March 2016 | 11,300
15,800 | 15,000 | -400
800 | 455.86 | 456.51 | -0.5 <i>7</i>
-0.65 | | April 2016 | 15,400 | 16,400 | -1,000 | 456.77 | 457.17 | -0.40 | | May 2016 | 15,800 | 14,700 | 1,100 | 455.98 | 456.76 | -0.78 | | June 2016 | 14,400 | 14,100 | 300 | 456.01 | 456.64 | -0.62 | | July 2016 | 13,300 | 13,100 | 200 | 455.73 | 456.38 | -0.65 | | August 2016 | 11,500 | 11,600 | -100 | 455.02 | 455.70 | -0.69 | | September 2016 | 12,200 | 11,900 | 300 | 455.19 | 455.83 | -0.63 | | October 2016 | 10,400 | 10,400 | 0 | 454.25 | 455.23 | -0.98 | | November 2016 | 9,900 | 9,600 | 300 | 453.70 | 454.40 | -0.70 | | December 2016 | 8,300 | 7,800 | 500 | 453.37 | 453.55 | -0.18 | | January 2017 | 8,000 | 6,600 | 1,400 | 453.22 | 453.36 | -0.14 | | February 2017 | 9,500 | 8,700 | 800 | 453.91 | 454.15 | -0.24 | | March 2017 | 13,900 | 13,700 | 200 | 455.53 | 456.10 | -0.57 | | April 2017 | 15,900 | 16,100 | -200 | 456.40 | 456.97 | -0.57 | | May 2017 | 14,000 | 13,800 | 200 | 455.74 | 456.39 | -0.66 | Page 1 of 2 Printed: 4/22/2019 # Table 4-6 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California | | Davis Dam Release | | | Colorado River Elevation at I-3 | | | | |----------------|-------------------|--------------|------------------|---------------------------------|------------------|-------------------|--| | Month, Year | Projected (cfs) | Actual (cfs) | Difference (cfs) | Predicted (ft amsl) | Actual (ft amsl) | Difference (feet) | | | June 2017 | 13,600 | 14,300 | -700 | 455.95 | 456.46 | -0.51 | | | July 2017 | 13,300 | 13,300 | 0 | 455.62 | 456.22 | -0.59 | | | August 2017 | 11,500 | 11,500 | 0 | 454.91 | 455.59 | -0.68 | | | September 2017 | 12,700 | 11,100 | 1,600 | 454.39 | 455.32 | -0.93 | | | October 2017 | 12,000 | 10,900 | 1,100 | 454.01 | 455.15 | -1.14 | | | November 2017 | 10,400 | 10,000 | 400 | 454.25 | 454.70 | -0.45 | | | December 2017 | 8,800 | 9,000 | -200 | 453.51 | 454.09 | -0.58 | | | January 2018 | 8,100 | 7,100 | 1,000 | 452.50 | 453.05 | -0.55 | | | February 2018 | 11,100 | 11,000 | 100 | 454.40 | 454.82 | -0.42 | | | March 2018 | 14,400 | 13,600 | 800 | 455.38 | 455.94 | -0.56 | | | April 2018 | 16,000 | 16,800 | -800 | 456.25 | 457.09 | -0.84 | | | May 2018 | 15,900 | 16,300 | -400 | 456.80 | 457.06 | -0.26 | | | June 2018 | 15,600 | 15,300 | 300 | 456.40 | 456.88 | -0.48 | | | July 2018 | 13,700 | 13,400 | 300 | 455.60 | 456.33 | -0.73 | | | August 2018 | 12,000 | 11,900 | 100 | 454.91 | 455.58 | -0.67 | | | September 2018 | 13,400 | 13,700 | -300 | 464.03 | 456.29 | 7.74 | | | October 2018 | 11,200 | 10,300 | 900 | 454.54 | 455.16 | -0.62 | | | November 2018 | 10,500 | 10,300 | 200 | 454.40 | 455.02 | -0.62 | | | December 2018 | 7,300 | 6,300 | 1000 | 452.94 | 453.33 | -0.39 | | | January 2019 | 7,300 | 6,800 | 500 | 452.96 | 453.32 | -0.36 | | | February 2019 | 11,800 | 10,200 | 1600 | 454.71 | 454.85 | -0.14 | | | March 2019 | 12,400 | 12,200 | 200 | 455.09 | 455.47 | -0.38 | | | April 2019 | 15,100 | | | 456.20 | | | | ### Notes: - 1. Projected river level for each month is calculated based on the preceding month's U.S. Bureau of Reclamation (USBR) projections of Davis Dam release and stage in Lake Havasu. - 2. Projected and actual Davis Dam releases are reported monthly by the USBR, available online at https://www.usbr.gov/uc/water/crsp/studies/24Month_04.pdf. -- = not applicable. cfs = cubic feet per second. ft amsl = feet above mean sea level. INC = incomplete data set for Colorado River elevation at I-3. NA = difference in predicted and actual river elevation not available due to incomplete dataset. Page 2 of 2 Printed: 4/22/2019 # **FIGURES** 1,000 FIGURE 1-1 - Groundwater Monitoring Well Completed in Bedrock - Groundwater Monitoring Well Completed in - Test Well or Supply Well (Inactive) - (TW-03D and PE-01 are primary extraction wells; TW-02S and TW-02D are backup extraction wells) - Collect additional sample in quarter following a runoff event with flow through Bat Cave Wash culverts. - Monitoring well currently being evaluated in Sampling Method Trail. - 1. GMP =
Groundwater Monitoring Program FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA ### **MONITORING LOCATIONS AND** SAMPLING FREQUENCY FOR GMP **FIGURE** 1-2 600 1,200 Feet Shoreline Surface Water Monitoring Location Other Surface Water Monitoring Location ## er Monitoring Location ne ### Notes: - Shoreline, river channel, and other surface water monitoring locations are sampled quarterly and twice per quarter during periods of low river stage (typically November - January). - 2. Location for SW-2 is approximate. GPS coverage was not available. - 3. RMP = Surface Water Monitoring Program - 4. TCS = Topock Compressor Station FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA MONITORING LOCATIONS AND SAMPLING FREQUENCY FOR RMP **FIGURE** 1-3 3-1a - Alluvial Aquifer well sampled during sampling event - Bedrock well sampled during sampling event - Extraction well sampled during sampling event ### Cr(VI) Concentrations Not detected at analytical reporting limit Concentration ≥ 32 µg/L Approximate boundary of "deep" wells with Cr(VI) concentrations \geq 32 $\mu g/L$ Approximate bedrock contact at 395 feet above mean sea level. MW-46-175 --Sampling Location Groundwater Cr(VI) Concentration (µg/L) - 1. ND = Cr(VI) not detected at analytical reporting limit. - 2. μ g/L = micrograms per liter - 3. Cr(VI) = Hexavalent Chromium - 4. TCS = Topock Compressor Station - 5. ≥ = greater than or equal to - 6. 32 µg/L is used as the background Cr(VI) concentration in groundwater for remedial activities. - * = Wells with sampled values less than 32 μg/L shown within footprint of 32 µg/L boundary. - 8. Results plotted are maximum concentration from primary - and duplicate samples. The 32 µg/L boundary for Cr(VI) is estimated based on available - groundwater analytical results from Fourth Quarter 2018 and the current quarter. - 10. Long-screened wells and wells screened across more than one depth interval are generally not posted on this map. FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA Cr(VI) SAMPLING RESULTS, DEEP **WELLS IN ALLUVIAL AQUIFER AND BEDROCK, FIRST QUARTER 2019** 3-1b ### Notes: - For Interim Measure (IM) pumping, the target landward gradient for well pairs is 0.001 feet/foot. - Pumping rate plotted is the combined rate of extraction wells TW-03D and PE-01 in operation each month. - Beginning August 2017, MW-20-130 approved for gradient compliance (instead of MW-45-095) at central and southern well pairs during months when PE-01 is not run for gradient control. - 4. AMSL = above mean sea level. - 5. gpm = gallons per minute FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA MEASURED HYDRAULIC GRADIENTS, RIVER ELEVATION, AND PUMPING RATE, FIRST QUARTER 2019 **FIGURE** 4-5 ### Notes: Projected river level for each month in the past is calculated based on the preceding months United States Bureau of Reclamation (USBR) projections of Davis Dam release and stage in Lake Havasu. Future projections of river level at 1-3 are based upon USBR projections presented in the April 24-Month Study (Report dated April 16, 2019). These data are reported monthly by the US Department of Interior, at https://www.usbr.gov/uc/water/crsp/studies/24Month_04.pdf ft AMSL = feet above mean sea level FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA PAST AND PREDICTED FUTURE RIVER LEVELS AT TOPOCK COMPRESSOR STATION Consultancy al and ets FIGURE # **APPENDIX A** Lab Reports, First Quarter 2019 (Provided on CD with Hard Copy Submittal) # **APPENDIX B Historical Cr(VI) and Dissolved Chromium Concentrations** Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | MW-09 SA 05/03/2017 LF 160 140 MW-09 SA 12/07/2017 LF 150 140 MW-09 SA 02/23/2018 LF 150 150 MW-09 SA 05/02/2018 LF 150 140 MW-09 SA 12/12/2018 LF 140 130 MW-09 SA 03/18/2019 LF 140 130 MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 02/03/2018 LF 160 160 MW-10 SA 02/23/2018 LF 170 160 MW-10 SA 03/18/2019 LF 150 140 MW-11 SA 03/18/2019 LF 150 140 MW-11 SA 03/1 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | |--|-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-09 SA 12/07/2017 LF 150 140 MW-09 SA 02/23/2018 LF 150 150 MW-09 SA 05/02/2018 LF 150 140 MW-09 SA 12/12/2018 LF 140 150 MW-10 SA 02/09/2017 LF 140 130 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 LF 190 200 MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 12/07/2017 LF 130 120 MW-10 SA 05/02/2018 LF 170 160 160 MW-10 SA 05/02/2018 LF 110 120 140 MW-10 SA 03/18/2019 LF 150 140 140 MW-10 SA 03/18/2019 LF 150 140 140 | MW-09 | SA | 02/09/2017 | | LF | 160 | 150 | | MW-09 SA 02/23/2018 LF 150 150 MW-09 SA 05/02/2018 LF 150 140 MW-09 SA 05/02/2018 LF 140 150 MW-10 SA 02/09/2017 LF 140 130 MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 LF 190 200 MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 02/23/2018 LF 170 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 LF 150 140 MW-11 SA 03/18/2019 LF 150 140 MW-11 SA 05/0 | MW-09 | SA | 05/03/2017 | | LF | 160 | 140 | | MW-09 SA 05/02/2018 LF 150 140 MW-09 SA 12/12/2018 LF 140 150 MW-09 SA 03/18/2019 LF 140 130 MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 12/07/2017 LF 130 120 MW-10 SA 12/07/2017 FD LF 130 120 MW-10 SA 05/02/2018 LF 160 160 MW-10 SA 05/02/2018 LF 160 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 12/12/2018 LF 170 160 MW-10 SA 12/12/2018 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-11 SA 03/18/2019 LF 150 140 MW-11 SA 03/18/2019 LF 50 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 02/09/2017 LF 67 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 56 MW-11 SA 12/12/2018 LF 57 56 MW-11 SA 12/12/2018 LF 57 56 MW-11 SA 12/12/2018 LF 57 56 MW-11 SA 05/02/2018 53 MW-11 SA 05/02/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 12/12/2018 LF 57 50 MW-11 SA 12/12/2018 LF 57 50 MW-11 SA 05/02/2018 LF 57 50 MW-11 SA 12/12/2018 LF 150 LF 47 48 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,900 2,000 MW-12 SA 12/11/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,600 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 LF 12 13 MW-14 SA 05/01/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-14 SA 05/01/2018 LF 13 15 MW-14 SA 05/01/2018 LF 13 15 MW-14 SA 05/01/2018 LF 13 13 MW-14 SA 05/01/2018 LF 13 04 MW-19 SA 04/27/2018 LF 17,800 1,900 MW-20-070 SA 04/27/2017 LF 1,800 1,900 | MW-09 | SA | 12/07/2017 | | LF | 150 | 140 | | MW-09 SA 12/12/2018 LF 140 150 MW-09 SA 03/18/2019 LF 140 130 MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 12/07/2017 FD LF 130 120 MW-10 SA 02/23/2018 LF 160 160 160 MW-10 SA 05/02/2018 LF 170 160 160 MW-10 SA 03/18/2019 LF 150 140 140 MW-10 SA 03/18/2019 LF 150 140 140 MW-11 SA 03/18/2019 LF 150 140 MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 02/19/2017 LF 67 <td>MW-09</td> <td>SA</td> <td>02/23/2018</td> <td></td> <td>LF</td> <td>150</td> <td>150</td> | MW-09 | SA | 02/23/2018 | | LF | 150 | 150 | | MW-09 SA 03/18/2019 LF 140 130 MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 LF 190 200 MW-10 SA 12/07/2017 FD
LF 130 130 MW-10 SA 02/23/2018 LF 160 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 05/02/2018 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 LF 150 140 MW-11 SA 03/18/2019 LF 150 140 MW-11 SA 02/09/2017 LF 67 61 MW-11 SA 02/20/2018 LF 57 56 MW-11 SA | MW-09 | SA | 05/02/2018 | | LF | 150 | 140 | | MW-10 SA 02/09/2017 LF 160 150 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 FD LF 130 130 MW-10 SA 02/23/2018 LF 160 160 MW-10 SA 05/02/2018 LF 110 120 MW-10 SA 03/18/2019 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 03/18/2019 FD LF 150 140 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 02/20/2018 LF 57 56 | MW-09 | SA | 12/12/2018 | | LF | 140 | 150 | | MW-10 SA 05/03/2017 LF 190 200 MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 12/07/2017 FD LF 130 120 MW-10 SA 02/23/2018 LF 160 160 MW-10 SA 05/02/2018 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 LF 150 140 MW-11 SA 03/18/2019 LF 150 140 MW-11 SA 02/09/2017 LF 67 61 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA | MW-09 | SA | 03/18/2019 | | LF | 140 | 130 | | MW-10 SA 12/07/2017 LF 130 130 MW-10 SA 12/07/2017 FD LF 130 120 MW-10 SA 02/23/2018 LF 160 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 LF 150 140 MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 05/03/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 56 MW-11 SA 05/02/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 <th< td=""><td>MW-10</td><td>SA</td><td>02/09/2017</td><td></td><td>LF</td><td>160</td><td>150</td></th<> | MW-10 | SA | 02/09/2017 | | LF | 160 | 150 | | MW-10 SA 12/07/2017 FD LF 130 120 MW-10 SA 02/23/2018 LF 160 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 12/12/2018 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 02/09/2017 LF 60 60 60 MW-11 SA 05/03/2017 LF 67 61 61 MW-11 SA 05/03/2018 LF 57 56 61 MW-11 SA 05/02/2018 LF 57 56 56 MW-11 SA 05/02/2018 LF 57 53 55 MW-11 SA 12/12/2018 LF 47 48 64 44 48 64 44 | MW-10 | SA | 05/03/2017 | | LF | 190 | 200 | | MW-10 SA 02/23/2018 LF 160 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 05/02/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 | MW-10 | SA | 12/07/2017 | | LF | 130 | 130 | | MW-10 SA 05/02/2018 LF 170 160 MW-10 SA 12/12/2018 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 02/09/2017 LF 60 60 60 MW-11 SA 05/03/2017 LF 67 61 61 MW-11 SA 05/02/2018 LF 57 56 61 MW-11 SA 05/02/2018 LF 57 56 61 MW-11 SA 05/02/2018 LF 57 53 55 55 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 | MW-10 | SA | 12/07/2017 | FD | LF | 130 | 120 | | MW-10 SA 12/12/2018 LF 110 120 MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 12/07/2017 LF 64 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 05/01/2017 LF 42 43 MW-12 </td <td>MW-10</td> <td>SA</td> <td>02/23/2018</td> <td></td> <td>LF</td> <td>160</td> <td>160</td> | MW-10 | SA | 02/23/2018 | | LF | 160 | 160 | | MW-10 SA 03/18/2019 LF 150 140 MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 12/07/2017 LF 64 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 05/02/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,800 2,100 | MW-10 | SA | 05/02/2018 | | LF | 170 | 160 | | MW-10 SA 03/18/2019 FD LF 150 140 MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 12/07/2017 LF 64 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 03/18/2019 LF 47 48 MW-11 SA 03/18/2017 LF 1,900 2,000 MW-12 SA 05/01/2017 LF 1,800 2 | MW-10 | SA | 12/12/2018 | | LF | 110 | 120 | | MW-11 SA 02/09/2017 LF 60 60 MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 12/07/2017 LF 64 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 05/02/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 05/01/2018 LF 1,500 1,6 | MW-10 | SA | 03/18/2019 | | LF | 150 | 140 | | MW-11 SA 05/03/2017 LF 67 61 MW-11 SA 12/07/2017 LF 64 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 05/02/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 12/12/2018 FD LF 47 50 MW-12 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 05/01/2018 LF 1,500 1,500 MW-12 SA 12/11/2018 LF 1,500 < | MW-10 | SA | 03/18/2019 | FD | LF | 150 | 140 | | MW-11 SA 12/07/2017 LF 64 61 MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 03/18/2019 LF 47 48 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 05/01/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 FD 3V 13 | MW-11 | SA | 02/09/2017 | | LF | 60 | 60 | | MW-11 SA 02/23/2018 LF 57 56 MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 FD LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 03/18/2019 LF 42 43 MW-11 SA 03/18/2019 LF 42 43 MW-11 SA 03/18/2019 LF 1,900 2,000 MW-12 SA 05/01/2017 LF 1,800 2,100 MW-12 SA 12/11/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 05/01/2018 LF 13 14 | MW-11 | SA | 05/03/2017 | | LF | 67 | 61 | | MW-11 SA 05/02/2018 LF 57 53 MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 12/11/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 LF 12 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 12/13/2017 LF 13 14 MW-19 <td>MW-11</td> <td>SA</td> <td>12/07/2017</td> <td></td> <td>LF</td> <td>64</td> <td>61</td> | MW-11 | SA | 12/07/2017 | | LF | 64 | 61 | | MW-11 SA 05/02/2018 FD LF 58 55 MW-11 SA 12/12/2018 LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 12/11/2018 LF 1,500 1,600 MW-12 SA 05/01/2018 LF 1,500 1,500 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 12/11/2018 LF 13 14 MW-19 SA 12/10/2018 LF 13 15 MW- | MW-11 | SA | 02/23/2018 | | LF | 57 | 56 | | MW-11 SA 12/12/2018 LF 47 48 MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 05/01/2018 LF 1,500 1,600 MW-12 SA 05/01/2018 LF 1,500 1,500 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 <t< td=""><td>MW-11</td><td>SA</td><td>05/02/2018</td><td></td><td>LF</td><td>57</td><td>53</td></t<> | MW-11 | SA | 05/02/2018 | | LF | 57 | 53 | | MW-11 SA 12/12/2018 FD LF 47 50 MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 05/01/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 12/13/2017 LF 12 13 14 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 370 380 <t< td=""><td>MW-11</td><td>SA</td><td>05/02/2018</td><td>FD</td><td>LF</td><td>58</td><td>55</td></t<> | MW-11 | SA | 05/02/2018 | FD | LF | 58 | 55 | | MW-11 SA 03/18/2019 LF 42 43 MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 05/01/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 05/01/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 04/28/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA | MW-11 | SA | 12/12/2018 | | LF | 47 | 48 | | MW-12 SA 05/01/2017 LF 1,900 2,000 MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 05/01/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 05/01/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 | MW-11 | SA | 12/12/2018 | FD | LF | 47 | 50 | | MW-12 SA 12/11/2017 LF 1,800 2,100 MW-12 SA 05/01/2018 LF 1,500 1,600 MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 05/01/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 04/28/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 | MW-11 | SA | 03/18/2019 | | LF | 42 | 43 | | MW-12 SA 05/01/2018 LF 1,500 1,600
MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 LF 12 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-12 | SA | 05/01/2017 | | LF | 1,900 | 2,000 | | MW-12 SA 12/11/2018 LF 1,500 1,500 MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-12 | SA | 12/11/2017 | | LF | 1,800 | 2,100 | | MW-14 SA 05/01/2017 LF 13 13 MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-12 | SA | 05/01/2018 | | LF | 1,500 | 1,600 | | MW-14 SA 05/01/2017 FD 3V 13 13 MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-12 | SA | 12/11/2018 | | LF | 1,500 | 1,500 | | MW-14 SA 12/13/2017 LF 12 13 MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-14 | SA | 05/01/2017 | | LF | 13 | 13 | | MW-14 SA 05/01/2018 LF 13 14 MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-14 | SA | 05/01/2017 | FD | 3V | 13 | 13 | | MW-14 SA 12/11/2018 LF 13 15 MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-14 | SA | 12/13/2017 | | LF | 12 | 13 | | MW-19 SA 04/28/2017 LF 440 430 MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | | SA | 05/01/2018 | | | 13 | 14 | | MW-19 SA 12/08/2017 LF 340 340 MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | | | 12/11/2018 | | | 13 | 15 | | MW-19 SA 04/27/2018 LF 370 380 MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-19 | SA | 04/28/2017 | | | 440 | 430 | | MW-19 SA 12/10/2018 LF 670 780 MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-19 | SA | | | LF | 340 | 340 | | MW-20-070 SA 04/27/2017 LF 1,800 1,900 MW-20-070 SA 12/07/2017 LF 1,800 1,900 | | SA | | | | | | | MW-20-070 SA 12/07/2017 LF 1,800 1,900 | MW-19 | SA | 12/10/2018 | | | 670 | 780 | | | MW-20-070 | SA | 04/27/2017 | | LF | 1,800 | 1,900 | | MW-20-070 SA 04/27/2018 LF 1,700 1,700 | | SA | | | LF | 1,800 | 1,900 | | | MW-20-070 | SA | 04/27/2018 | | LF | 1,700 | 1,700 | Page 1 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | MW-20-070 SA 12/11/2018 LF 1,600 1,70 MW-20-070 SA 12/11/2018 FD LF 1,600 1,80 MW-20-100 MA 04/27/2017 LF 2,000 2,10 MW-20-100 MA 12/08/2017 FD LF 1,500 1,40 MW-20-100 MA 12/08/2017 FD LF 1,500 1,40 MW-20-100 MA 04/27/2018 LF 1,800 1,80 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 12/07/2018 LF 6,900 7,00 MW-21 SA 05/03/2018 LF 5,800 6,10 MW-21 SA 12/12/2017 LF 2,3 2,7 MW-21 SA 05/02/2018 | lved
n (μg/L) | |--|------------------| | MW-20-100 MA 04/27/2017 LF 2,000 2,10 MW-20-100 MA 12/08/2017 LF 1,500 1,40 MW-20-100 MA 12/08/2017 FD LF 1,500 1,40 MW-20-100 MA 04/27/2018 LF 1,800 1,80 MW-20-100 MA 12/04/2018 LF 1,400 1,50 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2018 LF 6,900 7,60 MW-20-130 DA 12/04/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 JV 2.1 2.7 MW-21 SA 12/12/2018 LF ND (1.0) <td>00</td> | 00 | | MW-20-100 MA 12/08/2017 LF 1,500 1,40 MW-20-100 MA 12/08/2017 FD LF 1,500 1,40 MW-20-100 MA 04/27/2018 LF 1,800 1,80 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2017 LF 7,400 7,60 MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 12/07/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-2130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 05/02/2018 LF ND (1.0) ND (1 MW-21 SA 05/02/2018 LF ND (1.0) ND (1 MW-22 SA 12/12/2018 LF ND (1.0) | 00 | | MW-20-100 MA 12/08/2017 FD LF 1,500 1,40 MW-20-100 MA 04/27/2018 LF 1,800 1,80 MW-20-100 MA 12/04/2018 LF 1,400 1,80 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2017 LF 7,400 7,60 MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 04/27/2018 LF 6,900 7,00 MW-2130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 12/12/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) ND (1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1.0 MW-22 SA 12/12/2018 LF | 0 | | MW-20-100 MA 04/27/2018 LF 1,800 1,80 MW-20-100 MA 12/04/2018 LF 1,400 1,50 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2017 LF 7,400 7,60 MW-20-130 DA 12/07/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 05/03/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1.0 MW-21 SA 12/12/2018 FD LF ND (1.0) ND (1.0 MW-22 SA 12/16/2017 LF | 00 | | MW-20-100 MA 12/04/2018 LF 1,400 1,500 MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2017 FD LF 7,400 7,60 MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 04/27/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 05/03/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 LF ND (1.0) ND (1 MW-21 SA 05/02/2018 LF ND (1.0) ND (1 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-23-060 BR 04/26/2018 LF ND (1.0) | 00 | | MW-20-130 DA 04/27/2017 LF 7,300 8,00 MW-20-130 DA 04/27/2017 FD LF 7,400 7,60 MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 04/27/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 LF ND (1.0) ND (1.0) MW-21 SA 05/02/2018 LF ND (1.0) ND (1.0) MW-21 SA 12/12/2018 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2018 LF ND (1.0)< | 00 | | MW-20-130 DA 04/27/2017 FD LF 7,400 7,600 MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 04/27/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 JV 2.1 2.7 MW-21 SA 05/03/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 LF ND (1.0) ND (1 MW-21 SA 05/02/2018 LF ND (1.0) ND (1 MW-21 SA 12/12/2018 LF ND (1.0) ND (1 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) | 00 | | MW-20-130 DA 12/07/2017 LF 4,100 4,40 MW-20-130 DA 04/27/2018 LF 6,900 7,00 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 12/12/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1.0 MW-22 SA 12/12/2018 LF ND (1.0) ND (1.0 ND (1.0 MW-22 SA 12/06/2017 LF ND (1.0) ND (1.0 ND (1.0 MW-22 SA 12/04/2018 LF ND (1.0) ND (1.0 MW-23-060 | 0 | | MW-20-130 DA 04/27/2018 LF 6,900 7,000 MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 12/12/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1 MW-21 SA 12/12/2018 LF ND (1.0) ND (1 ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 | 00 | | MW-20-130 DA 12/04/2018 LF 5,800 6,10 MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 12/12/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF
ND (1.0) ND (1 MW-21 SA 12/12/2018 LF 1.1 1.2 MW-21 SA 12/12/2018 LF ND (1.0) ND (1 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-23 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 40 | 00 | | MW-21 SA 05/03/2017 3V 2.1 2.7 MW-21 SA 12/12/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1 MW-21 SA 05/02/2018 LF 1.1 1.2 MW-21 SA 12/12/2018 LF ND (1.0) ND (1 MW-21 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-080 BR 12/08/2017 LF 1.5 | 00 | | MW-21 SA 12/12/2017 LF 2.3 2.7 MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1 MW-21 SA 12/12/2018 LF 1.1 1.2 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 04/23/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 12/11/2018 LF 1.5 <td>00</td> | 00 | | MW-21 SA 05/02/2018 LF ND (1.0) 1.0 MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1 MW-21 SA 12/12/2018 LF ND (1.0) ND (1 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (5 MW-22 SA 04/23/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 40 35 MW-23-080 BR | , | | MW-21 SA 05/02/2018 FD LF ND (1.0) ND (1 MW-21 SA 12/12/2018 LF 1.1 1.2 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 04/23/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2018 LF 39 37 MW-23-080 BR 12/11/2018 LF 39 40 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 <td>,</td> | , | | MW-21 SA 12/12/2018 LF 1.1 1.2 MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 04/23/2018 LF ND (1.0) ND (5 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 39 37 MW-23-080 BR 12/11/2018 LF 39 40 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 12/11/2018 LF ND (1.0) 1.5 MW-24A SA 05/03/2017 LF ND (1. |) | | MW-22 SA 04/28/2017 LF ND (1.0) ND (1 MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 04/23/2018 LF ND (1.0) ND (5 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 40 35 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-24A SA 05/03/2017 | L.O) | | MW-22 SA 12/06/2017 LF ND (1.0) ND (1 MW-22 SA 04/23/2018 LF ND (1.0) ND (5 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 40 35 MW-23-060 BR 04/26/2018 LF 39 37 MW-23-080 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.5 1.9 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 12/11/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/08/2017 LF ND (0.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.0) <td< td=""><td><u>,</u></td></td<> | <u>,</u> | | MW-22 SA 04/23/2018 LF ND (1.0) ND (5 MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 40 35 MW-23-060 BR 04/26/2018 LF 39 37 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 12/08/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 12/08/2017 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) | L.O) | | MW-22 SA 12/04/2018 LF ND (1.0) ND (1 MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 40 35 MW-23-060 BR 04/26/2018 LF 39 37 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 12/07/2017 FD LF< | L.O) | | MW-22 SA 12/04/2018 FD LF ND (1.0) ND (1 MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 40 35 MW-23-060 BR 04/26/2018 LF 39 37 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-23-080 BR 12/11/2018 LF ND (0.2) ND (1 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 FD LF < | 5.0) | | MW-23-060 BR 04/28/2017 LF 38 34 MW-23-060 BR 12/08/2017 LF 40 35 MW-23-060 BR 04/26/2018 LF 39 37 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-23-080 BR 12/11/2018 LF ND (0.2) ND (1 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) ND (1 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 | L.O) | | MW-23-060 BR 12/08/2017 LF 40 35 MW-23-060 BR 04/26/2018 LF 39 37 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF ND (1.0) 1.5 MW-23-080 BR 04/26/2018 LF ND (1.0) 3.2 MW-23-080 BR 12/11/2018 LF ND (0.2) ND (1 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | L.O) | | MW-23-060 BR 04/26/2018 LF 39 37 MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) ND (1 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | | | MW-23-060 BR 12/11/2018 LF 39 40 MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | | | MW-23-080 BR 04/28/2017 LF 1.2 ND (1 MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | J | | MW-23-080 BR 12/08/2017 LF 1.5 1.9 MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | 1 | | MW-23-080 BR 04/26/2018 LF ND (1.0) 1.5 MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | L.O) | | MW-23-080 BR 12/11/2018 LF ND (1.0) 3.2 MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 |) | | MW-24A SA 05/03/2017 LF ND (0.2) ND (1 MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | j | | MW-24A SA 12/07/2017 LF ND (0.2) 2.7 MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7 MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | <u>!</u> | | MW-24A SA 12/07/2017 FD LF ND (0.2) 8.7
MW-24A SA 05/02/2018 LF ND (0.2) ND (1
MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | L.O) | | MW-24A SA 05/02/2018 LF ND (0.2) ND (1 MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | J | | MW-24A SA 12/12/2018 LF ND (0.2) ND (1 | J | | | L.O) | | MW-24B DA 05/03/2017 LF 230 220 | L.0) | | |) | | MW-24B DA 05/03/2017 FD LF 230 210 |) | | MW-24B DA 12/07/2017 LF 250 250 |) | | MW-24B DA 05/02/2018 LF 200 200 |) | | MW-24B DA 12/12/2018 LF 160 150 |) | | MW-25 SA 05/01/2017 LF 76 74 | | Page 2 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (µg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-25 | SA | 12/08/2017 | | LF | 91 | 90 | | MW-25 | SA | 05/01/2018 | | LF | 68 | 65 | | MW-25 | SA | 12/10/2018 | | LF | 100 | 100 | | MW-25 | SA | 12/10/2018 | FD | LF | 100 | 100 | | MW-26 | SA | 04/26/2017 | | LF | 2,300 | 2,600 | | MW-26 | SA | 12/11/2017 | | LF | 2,300 | 2,600 | | MW-26 | SA | 12/11/2017 | FD | LF | 2,400 | 2,500 | | MW-26 | SA | 05/01/2018 | | LF | 2,300 | 2,400 | | MW-26 | SA | 12/07/2018 | | LF | 2,200 | 2,300 | | MW-27-085 | DA | 04/28/2017 | | LF | ND (1.0) | ND (1.0) | | MW-27-085 | DA | 04/28/2017 |
FD | LF | ND (1.0) | ND (1.0) | | MW-27-085 | DA | 12/04/2017 | | LF | ND (1.0) | ND (1.0) | | MW-27-085 | DA | 04/24/2018 | | LF | ND (1.0) | ND (1.0) | | MW-27-085 | DA | 12/05/2018 | | LF | ND (1.0) | ND (1.0) | | MW-28-025 | SA | 04/26/2017 | | LF | ND (0.2) | ND (1.0) | | MW-28-025 | SA | 12/07/2017 | | LF | ND (0.2) | ND (1.0) | | MW-28-025 | SA | 04/25/2018 | | LF | ND (0.2) | ND (1.0) | | MW-28-025 | SA | 04/25/2018 | FD | LF | ND (0.2) | ND (1.0) | | MW-28-025 | SA | 12/14/2018 | | LF | ND (0.2) | ND (1.0) | | MW-28-090 | DA | 04/26/2017 | | LF | ND (0.2) | 1.2 | | MW-28-090 | DA | 12/07/2017 | | LF | ND (0.2) | ND (1.0) | | MW-28-090 | DA | 04/25/2018 | | LF | ND (0.2) | ND (1.0) | | MW-28-090 | DA | 12/14/2018 | | LF | ND (0.2) | ND (1.0) | | MW-29 | SA | 04/26/2017 | | LF | ND (0.2) | ND (1.0) | | MW-29 | SA | 12/07/2017 | | LF | ND (0.2) | ND (1.0) | | MW-29 | SA | 04/25/2018 | | LF | ND (0.2) | ND (1.0) | | MW-29 | SA | 12/10/2018 | | LF | ND (0.2) | ND (1.0) | | MW-31-060 | SA | 04/27/2017 | | LF | 390 | 430 | | MW-31-060 | SA | 04/27/2017 | FD | LF | 400 | 430 | | MW-31-060 | SA | 12/12/2017 | | LF | 390 | 410 | | MW-31-060 | SA | 04/27/2018 | | LF | 380 | 390 | | MW-31-060 | SA | 12/10/2018 | | LF | 390 | 400 | | MW-32-035 | SA | 04/27/2017 | | LF | ND (1.0) | ND (1.0) | | MW-32-035 | SA | 12/04/2017 | | LF | ND (1.0) | ND (1.0) | | MW-32-035 | SA | 04/23/2018 | | LF | ND (1.0) | ND (1.0) | | MW-32-035 | SA | 12/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-33-040 | SA | 04/26/2017 | | LF | ND (0.2) | ND (1.0) | | MW-33-040 | SA | 12/07/2017 | | LF | ND (1.0) | 1.7 | | MW-33-040 | SA | 04/25/2018 | | LF | ND (1.0) | 1.2 | | MW-33-040 | SA | 12/07/2018 | | LF | ND (1.0) | ND (1.0) | | MW-33-090 | MA | 04/26/2017 | | LF | 5.0 | 4.9 | Page 3 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-33-090 | MA | 12/07/2017 | | LF | 5.5 | 5.0 | | MW-33-090 | MA | 04/24/2018 | | LF | 3.3 | 3.8 | | MW-33-090 | MA | 12/07/2018 | | LF | 1.2 | 1.7 | | MW-33-090 | MA | 12/07/2018 | FD | LF | 9.3 | 10 | | MW-33-150 | DA | 04/26/2017 | | LF | 6.2 | 5.6 | | MW-33-150 | DA | 04/26/2017 | FD | LF | 5.9 | 5.5 | | MW-33-150 | DA | 12/07/2017 | | LF | 7.0 | 7.2 | | MW-33-150 | DA | 04/25/2018 | | LF | 5.2 | 5.0 | | MW-33-150 | DA | 12/07/2018 | | LF | 3.9 | 6.2 | | MW-33-210 | DA | 04/26/2017 | | LF | 9.5 | 8.3 | | MW-33-210 | DA | 12/07/2017 | | LF | 14 | 15 | | MW-33-210 | DA | 04/25/2018 | | LF | 6.0 | 5.9 | | MW-33-210 | DA | 12/07/2018 | | LF | 6.7 | 10 | | MW-34-080 | DA | 04/27/2017 | | LF | ND (0.2) | ND (1.0) | | MW-34-080 | DA | 12/06/2017 | | LF | ND (0.2) | ND (1.0) | | MW-34-080 | DA | 04/24/2018 | | LF | ND (1.0) | ND (1.0) | | MW-34-080 | DA | 12/05/2018 | | LF | ND (1.0) | ND (1.0) | | MW-34-100 | DA | 02/06/2017 | | LF | 45 | 43 | | MW-34-100 | DA | 02/06/2017 | FD | LF | 44 | 40 | | MW-34-100 | DA | 04/27/2017 | | LF | 0.67 | 1.8 | | MW-34-100 | DA | 10/02/2017 | | LF | ND (1.0) | ND (1.0) | | MW-34-100 | DA | 12/06/2017 | | LF | ND (1.0) | ND (1.0) | | MW-34-100 | DA | 02/20/2018 | | LF | ND (1.0) | 1.5 | | MW-34-100 | DA | 04/24/2018 | | LF | ND (1.0) | 1.1 | | MW-34-100 | DA | 04/24/2018 | FD | LF | ND (1.0) | 1.3 | | MW-34-100 | DA | 10/01/2018 | | LF | ND (1.0) | ND (1.0) | | MW-34-100 | DA | 12/05/2018 | | LF | ND (1.0) | ND (1.0) | | MW-34-100 | DA | 02/14/2019 | | LF | ND (1.0) | 1.7 | | MW-35-060 | SA | 05/01/2017 | | LF | 21 | 20 | | MW-35-060 | SA | 12/08/2017 | | LF | 21 | 20 | | MW-35-060 | SA | 04/27/2018 | | LF | 22 | 24 | | MW-35-060 | SA | 12/10/2018 | | LF | 20 | 20 | | MW-35-135 | DA | 05/01/2017 | | LF | 25 | 22 | | MW-35-135 | DA | 12/08/2017 | | LF | 29 | 29 | | MW-35-135 | DA | 04/27/2018 | | LF | 26 | 25 | | MW-35-135 | DA | 12/10/2018 | | LF | 25 | 25 | | MW-36-090 | DA | 04/27/2017 | | LF | ND (0.2) | ND (1.0) | | MW-36-090 | DA | 12/06/2017 | | LF | ND (0.2) | ND (1.0) | | MW-36-090 | DA | 04/24/2018 | | LF | ND (0.2) | ND (1.0) | | MW-36-090 | DA | 12/06/2018 | | LF | ND (0.2) | ND (1.0) | | MW-36-090 | DA | 12/06/2018 | FD | LF | ND (0.2) | ND (1.0) | Page 4 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-36-100 | DA | 04/27/2017 | | LF | 32 | 32 | | MW-36-100 | DA | 04/27/2017 | FD | LF | 31 | 33 | | MW-36-100 | DA | 12/06/2017 | | LF | 12 | 14 | | MW-36-100 | DA | 12/06/2017 | FD | LF | 12 | 15 | | MW-36-100 | DA | 04/24/2018 | | LF | 6.6 | 11 | | MW-36-100 | DA | 12/06/2018 | | LF | 3.3 | 6.8 | | MW-37D | DA | 05/01/2017 | | LF | 6.6 | 6.3 | | MW-37D | DA | 12/08/2017 | | LF | 5.0 | 6.4 | | MW-37D | DA | 05/03/2018 | | LF | 7.4 | 7.1 | | MW-37D | DA | 12/06/2018 | | LF | 5.1 | 5.0 | | MW-38D | DA | 05/03/2017 | | 3V | 17 | 15 | | MW-38D | DA | 05/03/2017 | | LF | 16 | 14 | | MW-38D | DA | 12/07/2017 | | 3V | 21 | 18 | | MW-38D | DA | 12/07/2017 | | LF | 20 | 18 | | MW-38D | DA | 05/02/2018 | | 3V | 15 | 14 | | MW-38D | DA | 05/02/2018 | | LF | 15 | 14 | | MW-38D | DA | 12/12/2018 | | 3V | 20 | 20 | | MW-38D | DA | 12/12/2018 | | LF | 21 | 21 | | MW-38S | SA | 02/09/2017 | | 3V | 3.8 | 3.6 | | MW-38S | SA | 02/09/2017 | | LF | 0.57 | ND (1.0) | | MW-38S | SA | 05/03/2017 | | 3V | 1.2 | 1.2 | | MW-38S | SA | 05/03/2017 | | LF | 0.34 | ND (1.0) | | MW-38S | SA | 09/26/2017 | | 3V | 3.8 J | 4.2 | | MW-38S | SA | 09/26/2017 | | LF | 3.1 | 3.6 | | MW-38S | SA | 09/26/2017 | FD | LF | 3.1 J | 3.6 | | MW-38S | SA | 12/07/2017 | | 3V | 2.9 | 3.1 | | MW-38S | SA | 12/07/2017 | | LF | 2.3 | 2.5 | | MW-38S | SA | 02/23/2018 | | 3V | 2.8 | 2.4 | | MW-38S | SA | 02/23/2018 | | LF | 2.8 | 2.5 | | MW-38S | SA | 05/02/2018 | | 3V | 1.1 | 1.3 | | MW-38S | SA | 05/02/2018 | | LF | 1.8 | 2.0 | | MW-38S | SA | 09/27/2018 | | 3V | 2.7 | 2.8 | | MW-38S | SA | 09/27/2018 | | LF | 3.0 | 3.3 | | MW-38S | SA | 12/12/2018 | | 3V | 3.9 | 4.3 | | MW-38S | SA | 12/12/2018 | | LF | 4.2 | 4.7 | | MW-38S | SA | 02/13/2019 | | 3V | 3.7 | 3.8 | | MW-38S | SA | 02/13/2019 | | LF | 5.1 | 5.6 | | MW-39-100 | DA | 04/27/2017 | | LF | 71 | 67 | | MW-39-100 | DA | 12/05/2017 | | LF | 71 | 66 | | MW-39-100 | DA | 04/24/2018 | | LF | 57 | 54 | | MW-39-100 | DA | 12/06/2018 | | LF | 63 | 70 | Page 5 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-40D | DA | 04/25/2018 | | Н | 25 | 31 | | MW-40D | DA | 04/25/2018 | | LF | 120 | 120 | | MW-40D | DA | 12/12/2018 | | Н | ND (1.0) | ND (1.0) | | MW-40D | DA | 12/12/2018 | | LF | 140 | 140 | | MW-40S | SA | 04/25/2018 | | Н | 18 | 17 | | MW-40S | SA | 04/25/2018 | | LF | 20 | 20 | | MW-40S | SA | 12/12/2018 | | Н | 17 | 29 | | MW-40S | SA | 12/12/2018 | | LF | 11 | 11 | | MW-41D | DA | 05/01/2017 | | LF | ND (1.0) | ND (5.0) | | MW-41D | DA | 12/13/2017 | | LF | ND (1.0) | ND (1.0) | | MW-41D | DA | 12/13/2017 | FD | LF | ND (1.0) | 1.2 | | MW-41D | DA | 05/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-41D | DA | 12/13/2018 | | LF | ND (1.0) | ND (5.0) | | MW-42-055 | MA | 04/28/2017 | | LF | ND (0.2) | 1.3 | | MW-42-055 | MA | 12/04/2017 | | LF | ND (0.2) | 1.3 | | MW-42-055 | MA | 04/24/2018 | | LF | ND (0.2) | ND (1.0) | | MW-42-055 | MA | 12/05/2018 | | LF | ND (0.2) | ND (1.0) | | MW-42-065 | MA | 04/28/2017 | | LF | ND (0.2) | ND (1.0) | | MW-42-065 | MA | 12/04/2017 | | LF | ND (0.2) | ND (1.0) | | MW-42-065 | MA | 04/24/2018 | | LF | ND (0.2) | ND (1.0) | | MW-42-065 | MA | 12/05/2018 | | LF | ND (0.2) | ND (1.0) | | MW-44-070 | MA | 04/27/2017 | | 3V | ND (0.2) | ND (1.0) | | MW-44-070 | MA | 12/06/2017 | | LF | ND (0.2) | ND (1.0) | | MW-44-070 | MA | 04/24/2018 | | LF | ND (0.2) | ND (1.0) | | MW-44-070 | MA | 12/05/2018 | | LF | ND (0.2) | ND (1.0) | | MW-44-115 | DA | 02/06/2017 | | LF | 18 | 16 | | MW-44-115 | DA | 04/27/2017 | | LF | 21 | 19 | | MW-44-115 | DA | 10/02/2017 | | LF | 15 | 13 | | MW-44-115 | DA | 12/06/2017 | | LF | 14 | 13 | | MW-44-115 | DA | 02/20/2018 | | LF | 13 | 12 | | MW-44-115 | DA | 02/20/2018 | FD | LF | 13 | 12 | | MW-44-115 | DA | 04/24/2018 | | LF | 8.9 | 9.5 | | MW-44-115 | DA | 10/01/2018 | | LF | 6.4 | 7.0 | | MW-44-115 | DA | 12/05/2018 | | LF | 6.4 | 5.8 | | MW-44-115 | DA | 02/15/2019 | | LF | 9.7 | 17 | | MW-44-125 | DA | 04/27/2017 | | LF | ND (0.2) | ND (1.0) | | MW-44-125 | DA | 12/06/2017 | | LF | 2.9 | 4.8 | | MW-44-125 | DA | 04/24/2018 | | LF | ND (0.2) | 3.1 | | MW-44-125 | DA | 12/05/2018 | | LF | ND (1.0) | ND (1.0) | | MW-44-125 | DA | 12/05/2018 | FD | LF | ND (1.0) | ND (1.0) | | MW-46-175 | DA | 02/07/2017 | | LF | 21 | 18 | Page 6 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-46-175 | DA | 04/26/2017 | | LF | 10 | 9.7 | | MW-46-175 | DA | 10/02/2017 | | LF | 7.9 | 7.2 | | MW-46-175 | DA | 12/07/2017 | | LF | 11 | 11 | | MW-46-175 | DA | 02/20/2018 | | LF | 13 |
12 | | MW-46-175 | DA | 04/25/2018 | | LF | 7.4 | 8.3 | | MW-46-175 | DA | 10/02/2018 | | LF | 6.5 | 7.0 | | MW-46-175 | DA | 10/02/2018 | FD | LF | 6.5 | 7.0 | | MW-46-175 | DA | 12/13/2018 | | LF | 8.2 | 12 | | MW-46-175 | DA | 02/15/2019 | | LF | 8.1 | 18 | | MW-46-175 | DA | 02/15/2019 | FD | LF | 7.9 | 20 | | MW-46-205 | DA | 04/26/2017 | | LF | 1.2 | 1.1 | | MW-46-205 | DA | 12/07/2017 | | 3V | ND (1.0) | ND (1.0) | | MW-46-205 | DA | 04/25/2018 | | LF | ND (1.0) | ND (1.0) | | MW-46-205 | DA | 12/13/2018 | | LF | ND (1.0) | ND (1.0) | | MW-47-055 | SA | 04/26/2017 | | LF | 15 | 15 | | MW-47-055 | SA | 04/26/2017 | FD | LF | 15 | 15 | | MW-47-055 | SA | 12/07/2017 | | LF | 18 | 20 | | MW-47-055 | SA | 12/07/2017 | FD | LF | 19 | 20 | | MW-47-055 | SA | 04/26/2018 | | LF | 15 | 15 | | MW-47-055 | SA | 04/26/2018 | FD | LF | 14 | 14 | | MW-47-055 | SA | 12/10/2018 | | LF | 21 | 21 | | MW-47-115 | DA | 04/26/2017 | | LF | 23 | 22 | | MW-47-115 | DA | 12/07/2017 | | LF | 18 | 16 | | MW-47-115 | DA | 04/25/2018 | | LF | 23 | 23 | | MW-47-115 | DA | 12/10/2018 | | LF | 15 | 15 | | MW-47-115 | DA | 12/10/2018 | FD | LF | 15 | 15 | | MW-48 | BR | 05/03/2017 | | G | ND (1.0) | ND (1.0) | | MW-48 | BR | 12/13/2017 | | LF | ND (1.0) | ND (1.0) | | MW-48 | BR | 05/03/2018 | | LF | ND (1.0) | ND (1.0) | | MW-48 | BR | 12/13/2018 | | LF | ND (1.0) | ND (5.0) | | MW-50-095 | MA | 04/28/2017 | | LF | 10 | 10 | | MW-50-095 | MA | 12/08/2017 | | LF | 13 | 14 | | MW-50-095 | MA | 04/27/2018 | | LF | 11 | 10 | | MW-50-095 | MA | 12/10/2018 | | LF | 13 | 14 | | MW-50-200 | DA | 04/28/2017 | | LF | 7,000 | 7,400 | | MW-50-200 | DA | 12/08/2017 | | LF | 4,100 | 4,300 | | MW-50-200 | DA | 04/27/2018 | | LF | 6,500 | 6,800 | | MW-50-200 | DA | 12/10/2018 | | LF | 3,100 | 3,700 | | MW-51 | MA | 04/26/2017 | | LF | 4,000 | 4,100 | | MW-51 | MA | 04/26/2017 | FD | LF | 4,000 | 4,200 | | MW-51 | MA | 12/11/2017 | | LF | 3,700 | 4,100 | Page 7 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | |-------------|--------------|-------------|-----|------------------|-------------------------------|------------------------------| | MW-51 | MA | 05/01/2018 | | LF | 3,500 | 3,700 | | MW-51 | MA | 12/10/2018 | | LF | 3,300 | 3,800 | | MW-52D | DA | 04/27/2017 | | LF | ND (1.0) | ND (5.0) | | MW-52D | DA | 12/05/2017 | | LF | ND (1.0) | ND (1.0) | | MW-52D | DA | 04/23/2018 | | LF | ND (1.0) | ND (5.0) | | MW-52D | DA | 12/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-52M | DA | 04/27/2017 | | LF | ND (1.0) | ND (1.0) | | MW-52M | DA | 12/05/2017 | | LF | ND (1.0) | ND (1.0) | | MW-52M | DA | 12/05/2017 | FD | LF | ND (1.0) | ND (1.0) | | MW-52M | DA | 04/23/2018 | | LF | ND (1.0) | ND (5.0) | | MW-52M | DA | 12/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-52S | MA | 04/27/2017 | | LF | ND (1.0) | ND (1.0) | | MW-52S | MA | 12/05/2017 | | LF | ND (1.0) | ND (1.0) | | MW-52S | MA | 04/24/2018 | | LF | ND (1.0) | ND (1.0) | | MW-52S | MA | 12/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-53D | DA | 04/27/2017 | | LF | ND (1.0) | ND (1.0) | | MW-53D | DA | 04/27/2017 | FD | LF | ND (1.0) | ND (5.0) | | MW-53D | DA | 12/05/2017 | | LF | ND (1.0) | ND (5.0) | | MW-53D | DA | 04/23/2018 | | LF | ND (1.0) | ND (1.0) | | MW-53D | DA | 12/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-53M | DA | 04/27/2017 | | LF | ND (1.0) | ND (5.0) | | MW-53M | DA | 12/05/2017 | | LF | ND (0.2) | ND (1.0) | | MW-53M | DA | 04/23/2018 | | LF | ND (1.0) | ND (1.0) | | MW-53M | DA | 12/04/2018 | | LF | ND (1.0) | ND (1.0) | | MW-54-085 | DA | 05/04/2017 | (a) | LF | ND (0.2) (b) | ND (1.0) (b) | | MW-54-085 | DA | 12/13/2017 | (a) | LF | 4.96 | ND (1.0) | | MW-54-085 | DA | 05/04/2018 | (a) | LF | ND (0.1) | ND (0.2) | | MW-54-085 | DA | 12/13/2018 | (a) | LF | ND (0.1 J) | ND (2.0) | | MW-54-140 | DA | 05/04/2017 | (a) | LF | ND (0.2) (b) | ND (1.0) (b) | | MW-54-140 | DA | 12/13/2017 | (a) | LF | 4.92 | ND (1.0) | | MW-54-140 | DA | 05/04/2018 | (a) | LF | 4.95 | ND (0.2) | | MW-54-140 | DA | 12/13/2018 | (a) | LF | ND (0.5 J) | ND (2.0) | | MW-54-195 | DA | 05/04/2017 | (a) | 3V | ND (1.0) (b) | ND (1.0) (b) | | MW-54-195 | DA | 12/13/2017 | (a) | LF | 4.97 | 1.2 | | MW-54-195 | DA | 05/04/2018 | (a) | LF | 5.09 | ND (0.2) | | MW-54-195 | DA | 12/13/2018 | (a) | LF | ND (0.5 J) | ND (2.0) | | MW-55-045 | MA | 05/02/2017 | (a) | LF | ND (0.2) (b) | ND (1.0) (b) | | MW-55-045 | MA | 12/13/2017 | (a) | LF | ND (0.2) | ND (1.0) | | MW-55-045 | MA | 05/03/2018 | (a) | LF | ND (0.1) | ND (0.2) | | MW-55-045 | MA | 12/13/2018 | (a) | LF | ND (0.1 J) | ND (0.2) | | MW-55-120 | DA | 02/10/2017 | (a) | LF | 7.5 | 8.3 | | | | | | | | | Page 8 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|-------|------------------|-------------------------------|------------------------------| | MW-55-120 | DA | 02/10/2017 | FD(a) | LF | 7.33 | 8.28 | | MW-55-120 | DA | 05/02/2017 | (a) | LF | 8.1 | 8.2 | | MW-55-120 | DA | 12/13/2017 | (a) | LF | 7.11 | 9.03 | | MW-55-120 | DA | 05/03/2018 | (a) | LF | 8.0 | 8.35 | | MW-55-120 | DA | 12/13/2018 | (a) | LF | 8.29 J | ND (2.0) | | MW-56D | DA | 05/04/2017 | (a) | LF | ND (1.0) (b) | ND (1.0) (b) | | MW-56D | DA | 12/13/2017 | (a) | LF | 4.93 | ND (1.0) | | MW-56D | DA | 05/02/2018 | (a) | LF | 5.03 | ND (0.2) | | MW-56D | DA | 12/13/2018 | (a) | LF | ND (0.5 J) | ND (2.0) | | MW-56D | DA | 12/13/2018 | FD(a) | LF | ND (0.5 J) | ND (2.0) | | MW-56M | DA | 05/04/2017 | (a) | LF | ND (1.0) (b) | ND (1.0) (b) | | MW-56M | DA | 12/13/2017 | (a) | LF | 4.83 | ND (1.0) | | MW-56M | DA | 05/02/2018 | (a) | LF | 4.99 | ND (0.2) | | MW-56M | DA | 12/13/2018 | (a) | LF | ND (0.5 J) | ND (2.0) | | MW-56S | SA | 05/04/2017 | (a) | LF | ND (0.2) (b) | ND (1.0) (b) | | MW-56S | SA | 12/13/2017 | (a) | LF | ND (0.2) | ND (1.0) | | MW-56S | SA | 05/02/2018 | (a) | LF | ND (0.1) | ND (0.2) | | MW-56S | SA | 12/13/2018 | (a) | LF | ND (0.1 J) | ND (2.0) | | MW-57-070 | BR | 05/01/2017 | | LF | 350 | 340 | | MW-57-070 | BR | 12/11/2017 | | LF | 420 | 430 | | MW-57-070 | BR | 05/03/2018 | | LF | 340 | 360 | | MW-57-070 | BR | 12/07/2018 | | LF | 410 | 420 | | MW-57-185 | BR | 05/01/2017 | | 3V | 5.9 | 5.2 | | MW-57-185 | BR | 12/11/2017 | | 3V | 8.2 | 7.4 | | MW-57-185 | BR | 05/03/2018 | | 3V | 7.7 | 7.5 | | MW-57-185 | BR | 12/07/2018 | | 3V | 6.4 | 5.7 | | MW-57-185_D | BR | 12/11/2017 | | LF | 3.1 | 2.7 | | MW-57-185_D | BR | 05/03/2018 | | LF | 4.8 | 4.7 | | MW-57-185_D | BR | 12/07/2018 | | LF | 6.2 | 5.9 | | MW-57-185_S | BR | 12/11/2017 | | LF | 3.0 | 3.3 | | MW-57-185_S | BR | 05/03/2018 | | LF | 5.3 | 5.2 | | MW-57-185_S | BR | 12/07/2018 | | LF | 5.4 | 6.0 | | MW-58BR | BR | 02/07/2017 | | LF | 4.3 | 4.0 | | MW-58BR | BR | 05/02/2017 | | LF | 5.4 | 5.2 | | MW-58BR | BR | 09/27/2017 | | LF | 42 | 39 | | MW-58BR | BR | 12/11/2017 | | LF | 39 | 41 | | MW-58BR | BR | 02/19/2018 | | LF | 13 | 11 | | MW-58BR | BR | 05/03/2018 | | LF | 9.3 | 9.2 | | MW-58BR | BR | 09/27/2018 | | LF | 9.7 | 9.6 | | MW-58BR | BR | 12/13/2018 | | LF | 10 | 11 | | MW-58BR | BR | 02/14/2019 | | LF | 7.4 | 9.4 | Page 9 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |---------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-59-100 | SA | 05/01/2017 | | LF | 2,500 | 2,600 | | MW-59-100 | SA | 12/07/2017 | | LF | 3,600 | 3,900 | | MW-59-100 | SA | 05/03/2018 | | LF | 2,800 | 3,000 | | MW-59-100 | SA | 12/07/2018 | | LF | 3,100 | 3,300 | | MW-59-100 | SA | 12/07/2018 | FD | LF | 3,100 | 3,100 | | MW-60-125 | BR | 05/02/2017 | | LF | 830 | 830 | | MW-60-125 | BR | 12/06/2017 | | LF | 770 | 730 | | MW-60-125 | BR | 05/02/2018 | | LF | 510 | 470 | | MW-60-125 | BR | 12/06/2018 | | LF | 980 | 950 | | MW-60BR-245 | BR | 02/08/2017 | | 3V | ND (1.0) | ND (1.0) | | MW-60BR-245 | BR | 05/03/2017 | | 3V | 39 | 36 | | MW-60BR-245 | BR | 09/26/2017 | | 3V | ND (1.0) | ND (1.0) | | MW-60BR-245 | BR | 12/14/2017 | | 3V | 690 | 830 | | MW-60BR-245 | BR | 02/21/2018 | | 3V | 69 | 59 | | MW-60BR-245 | BR | 05/02/2018 | | 3V | 73 | 67 | | MW-60BR-245 | BR | 09/25/2018 | | 3V | 76 | 81 | | MW-60BR-245 | BR | 12/06/2018 | | 3V | 110 | 120 | | MW-60BR-245 | BR | 02/14/2019 | | 3V | 110 | 110 | | MW-60BR-245_D | BR | 12/13/2017 | | LF | ND (1.0) | 1.4 | | MW-60BR-245_D | BR | 02/21/2018 | | LF | 4.1 | 39 | | MW-60BR-245_D | BR | 05/02/2018 | | LF | 1.2 | 1.7 | | MW-60BR-245_D | BR | 09/25/2018 | | LF | 6.4 | 6.2 | | MW-60BR-245_D | BR | 12/06/2018 | | LF | 20 | 21 | | MW-60BR-245_D | BR | 02/14/2019 | | LF | 18 | 17 | | MW-60BR-245_S | BR | 12/13/2017 | | LF | 2.3 | 12 | | MW-60BR-245_S | BR | 02/21/2018 | | LF | ND (1.0) | 7.7 | | MW-60BR-245_S | BR | 05/02/2018 | | LF | 1.1 | 1.5 | | MW-60BR-245_S | BR | 09/25/2018 | | LF | ND (1.0) | ND (1.0) | | MW-60BR-245_S | BR | 12/06/2018 | | LF | 17 | 17 | | MW-60BR-245_S | BR | 02/14/2019 | | LF | 25 | 29 | | MW-61-110 | BR | 05/02/2017 | | 3V | 370 | 340 | | MW-61-110 | BR | 12/06/2017 | | LF | 410 | 380 | | MW-61-110 | BR | 05/04/2018 | | LF | 330 | 340 | | MW-61-110 | BR | 12/13/2018 | | LF | 430 | 460 | | MW-61-110 | BR | 12/13/2018 | FD | LF | 460 | 470 | | MW-62-065 | BR | 02/09/2017 | | 3V | 550 | 560 | | MW-62-065 | BR | 05/02/2017 | | LF | 580 | 590 | | MW-62-065 | BR | 09/25/2017 | | LF | 430 | 520 | | MW-62-065 | BR | 09/25/2017 |
FD | LF | 450 | 500 | | MW-62-065 | BR | 12/06/2017 | | LF | 510 | 500 | | MW-62-065 | BR | 02/19/2018 | | LF | 560 | 510 | Page 10 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-62-065 | BR | 02/19/2018 | FD | LF | 550 | 530 | | MW-62-065 | BR | 05/01/2018 | | LF | 520 | 530 | | MW-62-065 | BR | 09/26/2018 | | LF | 540 | 570 | | MW-62-065 | BR | 12/07/2018 | | LF | 540 | 610 | | MW-62-065 | BR | 02/11/2019 | | LF | 470 | 550 | | MW-62-110 | BR | 02/08/2017 | | 3V | 0.45 | ND (1.0) | | MW-62-110 | BR | 05/03/2017 | | Тар | ND (1.0) | 1.7 | | MW-62-110 | BR | 09/27/2017 | | Тар | ND (1.0) | ND (1.0) | | MW-62-110 | BR | 12/07/2017 | | Тар | ND (1.0) | 3.0 | | MW-62-110 | BR | 02/21/2018 | | Тар | ND (1.0) | ND (1.0) | | MW-62-110 | BR | 05/03/2018 | | G | ND (1.0) | ND (1.0) | | MW-62-110 | BR | 09/26/2018 | | 3V | ND (1.0) | ND (1.0) | | MW-62-110 | BR | 12/13/2018 | | G | 0.32 | 3.0 | | MW-62-110 | BR | 02/14/2019 | | G | ND (1.0) | ND (1.0) | | MW-62-190 | BR | 05/03/2017 | | Тар | ND (1.0) | ND (1.0) | | MW-62-190 | BR | 12/07/2017 | | Тар | ND (1.0) | ND (1.0) | | MW-62-190 | BR | 12/07/2017 | FD | Тар | ND (1.0) | ND (1.0) | | MW-62-190 | BR | 05/03/2018 | | G | ND (1.0) | ND (1.0) | | MW-62-190 | BR | 12/13/2018 | | LF | ND (1.0) | ND (1.0) | | MW-63-065 | BR | 02/09/2017 | | 3V | 1.2 | 1.7 | | MW-63-065 | BR | 05/02/2017 | | LF | 1.1 | 1.5 | | MW-63-065 | BR | 09/28/2017 | | LF | 1.2 | 3.3 | | MW-63-065 | BR | 12/12/2017 | | LF | 1.2 | 2.6 | | MW-63-065 | BR | 02/21/2018 | | LF | 0.53 | 1.6 | | MW-63-065 | BR | 04/26/2018 | | LF | 0.85 | 1.3 | | MW-63-065 | BR | 09/24/2018 | | LF | 1.0 | 1.4 | | MW-63-065 | BR | 09/24/2018 | FD | LF | 1.0 | 1.5 | | MW-63-065 | BR | 12/12/2018 | | LF | 0.95 | 1.7 | | MW-63-065 | BR | 02/14/2019 | | LF | 1.1 | 1.3 | | MW-64BR | BR | 02/07/2017 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 05/02/2017 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 09/25/2017 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 12/06/2017 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 02/19/2018 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 02/19/2018 | FD | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 05/02/2018 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 09/24/2018 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 12/13/2018 | | LF | ND (1.0) | ND (1.0) | | MW-64BR | BR | 02/13/2019 | | LF | ND (1.0) | ND (1.0) | | MW-65-160 | SA | 02/08/2017 | | LF | 170 | 170 | | MW-65-160 | SA | 05/04/2017 | | LF | 99 | 99 | Page 11 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (μg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-65-160 | SA | 09/26/2017 | | LF | 120 | 150 | | MW-65-160 | SA | 12/05/2017 | | LF | 160 | 190 | | MW-65-160 | SA | 02/22/2018 | | LF | 190 | 170 | | MW-65-160 | SA | 04/30/2018 | | LF | 160 | 170 | | MW-65-160 | SA | 09/27/2018 | | LF | 170 | 170 | | MW-65-160 | SA | 12/05/2018 | | LF | 160 | 220 | | MW-65-160 | SA | 02/13/2019 | | LF | 220 | 220 | | MW-65-225 | DA | 02/08/2017 | | LF | 530 | 550 | | MW-65-225 | DA | 05/04/2017 | | LF | 530 | 540 | | MW-65-225 | DA | 05/04/2017 | FD | LF | 520 | 520 | | MW-65-225 | DA | 09/26/2017 | | LF | 480 | 520 | | MW-65-225 | DA | 12/05/2017 | | LF | 210 | 220 | | MW-65-225 | DA | 02/22/2018 | | LF | 510 | 520 | | MW-65-225 | DA | 04/30/2018 | | LF | 110 | 100 | | MW-65-225 | DA | 09/27/2018 | | LF | 180 | 170 | | MW-65-225 | DA | 09/27/2018 | FD | LF | 180 | 170 | | MW-65-225 | DA | 12/05/2018 | | LF | 220 | 220 | | MW-65-225 | DA | 02/13/2019 | | LF | 490 | 490 | | MW-66-165 | SA | 04/25/2017 | | LF | 430 | 460 | | MW-66-165 | SA | 12/05/2017 | | LF | 500 | 520 | | MW-66-165 | SA | 04/30/2018 | | LF | 540 | 540 | | MW-66-165 | SA | 12/05/2018 | | LF | 480 | 500 | | MW-66-230 | DA | 04/25/2017 | | LF | 6,800 | 7,100 | | MW-66-230 | DA | 12/05/2017 | | LF | 6,500 | 6,900 | | MW-66-230 | DA | 04/30/2018 | | LF | 6,700 | 6,900 | | MW-66-230 | DA | 04/30/2018 | FD | LF | 6,800 | 6,900 | | MW-66-230 | DA | 12/05/2018 | | LF | 6,100 | 6,200 | | MW-66BR-270 | BR | 05/04/2017 | | 3V | ND (0.2) | ND (1.0) | | MW-66BR-270 | BR | 12/14/2017 | | 3V | ND (0.2) | ND (1.0) | | MW-66BR-270 | BR | 05/02/2018 | | 3V | ND (1.0) | ND (1.0) | | MW-66BR-270 | BR | 12/07/2018 | | 3V | ND (1.0) | ND (1.0) | | MW-67-185 | SA | 05/03/2017 | | LF | 1,600 | 1,700 | | MW-67-185 | SA | 12/04/2017 | | LF | 1,500 | 1,700 | | MW-67-185 | SA | 04/30/2018 | | LF | 1,800 | 1,700 | | MW-67-185 | SA | 12/05/2018 | | LF | 1,800 | 2,000 | | MW-67-225 | MA | 05/04/2017 | | LF | 2,700 | 3,000 | | MW-67-225 | MA | 12/04/2017 | | LF | 3,100 | 3,100 | | MW-67-225 | MA | 04/30/2018 | | LF | 2,800 | 2,800 | | MW-67-225 | MA | 12/05/2018 | | LF | 2,900 | 3,000 | | MW-67-260 | DA | 05/03/2017 | | LF | 440 | 400 | | MW-67-260 | DA | 12/04/2017 | | LF | 590 | 630 | Page 12 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------| | MW-67-260 | DA | 04/30/2018 | | LF | 820 | 830 | | MW-67-260 | DA | 12/05/2018 | | LF | 660 | 710 J | | MW-68-180 | SA | 02/08/2017 | | LF | 35,000 | 37,000 | | MW-68-180 | SA | 02/08/2017 | FD | LF | 36,000 | 37,000 | | MW-68-180 | SA | 05/03/2017 | | LF | 12,000 | 12,000 | | MW-68-180 | SA | 09/26/2017 | | LF | 20,000 | 24,000 | | MW-68-180 | SA | 02/22/2018 | | LF | 24,000 | 24,000 | | MW-68-180 | SA | 05/01/2018 | | LF | 5,600 | 6,100 | | MW-68-180 | SA | 09/27/2018 | | LF | 8,500 | 8,900 | | MW-68-180 | SA | 12/07/2018 | | LF | 22,000 | 24,000 | | MW-68-180 | SA | 02/13/2019 | | LF | 37,000 | 42,000 | | MW-68-240 | DA | 05/03/2017 | | LF | 2,100 | 2,200 | | MW-68-240 | DA | 02/22/2018 | | LF | 2,100 | 2,000 | | MW-68-240 | DA | 05/01/2018 | | LF | 2,000 | 2,100 | | MW-68-240 | DA | 12/05/2018 | | LF | 2,000 | 1,900 | | MW-68BR-280 | BR | 05/04/2017 | | 3V | ND (1.0) | ND (5.0) | | MW-68BR-280 | BR | 05/04/2017 | FD | 3V | ND (1.0) | ND (5.0) | | MW-68BR-280 | BR | 02/22/2018 | | LF | ND (1.0) | ND (1.0) | | MW-68BR-280 | BR | 05/01/2018 | | LF | ND (1.0) | ND (5.0) | | MW-68BR-280 | BR | 12/05/2018 | | LF | ND (1.0) | ND (1.0) | | MW-69-195 | BR | 02/09/2017 | | LF | 180 | 160 | | MW-69-195 | BR | 05/03/2017 | | LF | 270 | 270 | | MW-69-195 | BR | 09/26/2017 | | LF | 350 | 360 | | MW-69-195 | BR | 12/04/2017 | | LF | 470 | 440 | | MW-69-195 | BR | 02/22/2018 | | LF | 120 | 110 | | MW-69-195 | BR | 05/01/2018 | | LF | 210 | 210 | | MW-69-195 | BR | 09/27/2018 | | LF | 460 | 450 | | MW-69-195 | BR | 12/07/2018 | | LF | 460 | 470 | | MW-69-195 | BR | 02/13/2019 | | LF | 110 | 100 | | MW-70-105 | BR | 05/02/2017 | | LF | 130 | 120 | | MW-70-105 | BR | 12/11/2017 | | LF | 160 | 150 | | MW-70-105 | BR | 05/03/2018 | | LF | 160 | 150 | | MW-70-105 | BR | 12/13/2018 | | LF | 120 | 130 | | MW-70BR-225 | BR | 05/02/2017 | | 3V | 1,800 | 1,800 | | MW-70BR-225 | BR | 12/11/2017 | | 3V | 1,700 | 1,800 | | MW-70BR-225 | BR | 12/11/2017 | | LF | 1,400 | 1,600 | | MW-70BR-225 | BR | 05/03/2018 | | 3V | 1,800 | 1,800 | | MW-70BR-225 | BR | 05/03/2018 | | LF | 1,300 | 1,300 | | MW-70BR-225 | BR | 12/13/2018 | | 3V | 1,800 | 1,900 | | MW-70BR-225 | BR | 12/13/2018 | | LF | 1,200 | 1,400 | | MW-71-035 | SA | 05/03/2017 | | LF | ND (1.0) | ND (1.0) | Page 13 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | | | |---------------|--------------|-------------|----|------------------|-------------------------------|------------------------------|--|--| | MW-71-035 | SA | 12/12/2017 | | LF | ND (1.0) | 1.5 | | | | MW-71-035 | SA | 05/02/2018 | | LF | ND (1.0) | ND (1.0) | | | | MW-71-035 | SA | 12/11/2018 | | LF | ND (1.0) | ND (1.0) | | | | MW-71-035 | SA | 12/11/2018 | FD | LF | ND (1.0) | 1.0 | | | | MW-72-080 | BR | 02/07/2017 | | 3V | 120 | 110 | | | | MW-72-080 | BR | 05/02/2017 | | LF | 71 | 61 | | | | MW-72-080 | BR | 09/28/2017 | | LF | 110 | 99 | | | | MW-72-080 | BR | 09/28/2017 | FD | Tap | 110 | 97 | | | | MW-72-080 | BR | 12/07/2017 | | LF | 94 | 95 | | | | MW-72-080 | BR | 02/20/2018 | | LF | 90 | 78 | | | | MW-72-080 | BR | 04/26/2018 | | LF | 68 | 62 | | | | MW-72-080 | BR | 09/26/2018 | | LF | 91 | 100 | | | | MW-72-080 | BR | 12/06/2018 | | LF | 82 | 73 | | | | MW-72-080 | BR | 02/11/2019 | | LF | 77 | 92 | | | | MW-72BR-200 | BR | 02/08/2017 | | 3V | 6.1 | 6.7 | | | | MW-72BR-200 | BR | 05/02/2017 | | 3V | 2.9 | 2.6 | | | | MW-72BR-200 | BR | 09/27/2017 | | 3V | 3.8 | 3.6 | | | | MW-72BR-200 | BR | 12/06/2017 | | 3V | 4.2 | 3.8 | | | | MW-72BR-200 | BR | 02/20/2018 | | 3V | 4.5 | 4.4 | | | | MW-72BR-200 | BR | 04/26/2018 | | 3V | 3.3 | 2.6 | | | | MW-72BR-200 | BR | 09/26/2018 | | 3V | 3.0 | 2.9 | | | | MW-72BR-200 | BR | 12/06/2018 | | 3V | 4.9 | 3.3 | | | | MW-72BR-200 | BR | 02/12/2019 | | 3V | 5.3 | 5.4 | | | | MW-72BR-200_D | BR | 12/06/2017 | | LF | ND (1.0) | ND (1.0) | | | | MW-72BR-200_D | BR | 02/20/2018 | | LF | 1.6 | 2.1 | | | | MW-72BR-200_D | BR | 04/26/2018 | | LF | ND (1.0) | ND (1.0) | | | |
MW-72BR-200_D | BR | 09/26/2018 | | LF | ND (1.0) | ND (1.0) | | | | MW-72BR-200_D | BR | 12/06/2018 | | LF | ND (1.0) | ND (1.0) | | | | MW-72BR-200_D | BR | 02/12/2019 | | LF | ND (1.0) | ND (1.0) | | | | MW-72BR-200_S | BR | 12/06/2017 | | LF | 1.5 | 1.7 | | | | MW-72BR-200_S | BR | 02/20/2018 | | LF | ND (1.0) | 1.1 | | | | MW-72BR-200_S | BR | 04/26/2018 | | LF | ND (1.0) | 2.0 | | | | MW-72BR-200_S | BR | 09/26/2018 | | LF | ND (1.0) | ND (1.0) | | | | MW-72BR-200_S | BR | 12/06/2018 | | LF | ND (1.0) | ND (1.0) | | | | MW-72BR-200_S | BR | 02/12/2019 | | LF | ND (1.0) | 1.3 | | | | MW-73-080 | BR | 02/08/2017 | | 3V | 31 | 29 | | | | MW-73-080 | BR | 05/02/2017 | | LF | 30 | 27 | | | | MW-73-080 | BR | 09/27/2017 | | LF | 41 | 41 | | | | MW-73-080 | BR | 12/06/2017 | | LF | 28 | 29 | | | | MW-73-080 | BR | 02/20/2018 | | LF | 22 | 21 | | | | MW-73-080 | BR | 05/01/2018 | | LF | 57 | 58 | | | | | | | | | | | | | Page 14 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | | | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------|--|--| | MW-73-080 | BR | 09/24/2018 | | LF | 36 | 39 | | | | MW-73-080 | BR | 12/06/2018 | | LF | 29 | 26 | | | | MW-73-080 | BR | 02/11/2019 | | LF | 29 | 34 J | | | | MW-74-240 | BR | 04/27/2017 | | LF | ND (0.2) | ND (1.0) | | | | MW-74-240 | BR | 12/06/2017 | | LF | ND (0.2) | 5.3 | | | | MW-74-240 | BR | 05/02/2018 | | LF | 0.46 | ND (1.0) | | | | MW-74-240 | BR | 12/07/2018 | | LF | 0.33 | ND (1.0) | | | | PE-01 | DA | 01/04/2017 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 02/07/2017 | | Tap | 1.9 | 1.8 | | | | PE-01 | DA | 02/07/2017 | FD | Tap | 1.9 | 1.9 | | | | PE-01 | DA | 03/08/2017 | | Tap | 1.7 | 2.1 | | | | PE-01 | DA | 04/25/2017 | | Тар | 0.53 | ND (1.0) | | | | PE-01 | DA | 05/04/2017 | | Tap | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 06/07/2017 | | Tap | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 07/18/2017 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 08/02/2017 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 09/07/2017 | | Тар | 9.0 | 4.5 | | | | PE-01 | DA | 10/03/2017 | | Tap | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 11/02/2017 | | Тар | 0.52 | ND (1.0) | | | | PE-01 | DA | 12/07/2017 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 01/04/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 02/07/2018 | | Тар | 0.7 | ND (1.0) | | | | PE-01 | DA | 03/07/2018 | | Тар | 2.3 | 2.0 | | | | PE-01 | DA | 04/03/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 05/04/2018 | | Тар | ND (0.2) | 1.8 | | | | PE-01 | DA | 06/07/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 07/03/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 08/01/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 09/06/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 10/02/2018 | | Тар | 7.6 | 5.6 | | | | PE-01 | DA | 11/07/2018 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 12/04/2018 | | Тар | 0.68 | 2.9 | | | | PE-01 | DA | 01/03/2019 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 02/14/2019 | | Тар | ND (0.2) | ND (1.0) | | | | PE-01 | DA | 03/05/2019 | | Тар | ND (0.2) | ND (1.0) | | | | TW-01 | SA | 05/03/2017 | | LF | 2,200 | 2,400 | | | | TW-01 | SA | 12/13/2017 | | 3V | 2,200 | 2,300 | | | | TW-01 | SA | 12/13/2017 | FD | LF | 2,200 | 2,400 | | | | TW-01 | SA | 05/01/2018 | | 3V | 2,400 | 3,100 | | | | TW-01 | SA | 12/05/2018 | | 3V | 2,100 | 2,100 | | | | TW-02D | DA | 03/08/2017 | | Тар | 0.44 | 110 | | | Page 15 of 17 Printed: 4/22/2019 Appendix B Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | | | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------|--|--| | TW-02D | DA | 04/28/2017 | | Тар | 530 | 540 | | | | TW-02D | DA | 04/28/2017 | FD | Тар | 520 | 530 | | | | TW-02D | DA | 10/24/2017 | | Тар | 200 | 190 | | | | TW-02D | DA | 12/07/2017 | | Тар | 110 | 93 | | | | TW-02D | DA | 02/23/2018 | | LF | 140 | 140 | | | | TW-02D | DA | 02/23/2018 | FD | LF | 150 | 140 | | | | TW-02D | DA | 05/04/2018 | | Тар | 150 | 150 | | | | TW-02D | DA | 05/04/2018 | FD | Тар | 150 | 140 | | | | TW-02D | DA | 09/26/2018 | | Тар | ND (0.2) | ND (1.0) | | | | TW-02D | DA | 09/26/2018 | FD | Тар | ND (0.2) | ND (1.0) | | | | TW-02D | DA | 12/04/2018 | | Тар | 140 | 110 | | | | TW-02D | DA | 02/14/2019 | | Тар | 120 | 140 | | | | TW-02D | DA | 02/14/2019 | FD | Тар | 120 | 130 | | | | TW-03D | DA | 01/04/2017 | | Тар | 620 | 620 | | | | TW-03D | DA | 02/07/2017 | | Тар | 600 | 630 | | | | TW-03D | DA | 03/08/2017 | | Тар | 560 | 630 | | | | TW-03D | DA | 03/08/2017 | FD | Тар | 570 | 580 | | | | TW-03D | DA | 04/25/2017 | | Тар | 560 | 570 | | | | TW-03D | DA | 05/04/2017 | | Тар | 550 | 540 | | | | TW-03D | DA | 06/07/2017 | | Тар | 550 | 550 | | | | TW-03D | DA | 07/18/2017 | | Тар | 560 | 570 | | | | TW-03D | DA | 08/02/2017 | | Тар | 540 | 520 | | | | TW-03D | DA | 09/07/2017 | | Тар | 550 | 540 | | | | TW-03D | DA | 10/03/2017 | | Тар | 560 | 580 | | | | TW-03D | DA | 11/02/2017 | | Тар | 550 | 570 | | | | TW-03D | DA | 12/07/2017 | | Тар | 550 | 570 | | | | TW-03D | DA | 01/04/2018 | | Тар | 550 | 590 | | | | TW-03D | DA | 02/07/2018 | | Тар | 550 | 540 | | | | TW-03D | DA | 03/07/2018 | | Тар | 530 | 520 | | | | TW-03D | DA | 04/03/2018 | | Тар | 570 | 550 | | | | TW-03D | DA | 05/04/2018 | | Тар | 490 | 490 | | | | TW-03D | DA | 06/07/2018 | | Тар | 470 | 480 | | | | TW-03D | DA | 07/03/2018 | | Тар | 480 | 500 | | | | TW-03D | DA | 08/01/2018 | | Тар | 480 | 480 | | | | TW-03D | DA | 09/06/2018 | | Тар | 500 | 510 | | | | TW-03D | DA | 10/02/2018 | | Тар | 480 | 500 | | | | TW-03D | DA | 11/07/2018 | | Тар | 490 | 510 | | | | TW-03D | DA | 12/04/2018 | | Тар | 480 | 490 | | | | TW-03D | DA | 01/03/2019 | | Тар | 500 | 480 | | | | TW-03D | DA | 02/14/2019 | | Тар | 420 | 520 | | | | TW-03D | DA | 03/05/2019 | | Тар | 500 | 520 | | | Page 16 of 17 Printed: 4/22/2019 # Appendix B # Historical Cr(VI) and Dissolved Chromium Concentrations, January 2017 through March 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California | Location ID | Aquifer Zone | Sample Date | | Sample
Method | Hexavalent
Chromium (μg/L) | Dissolved
Chromium (µg/L) | | |-------------|--------------|-------------|----|------------------|-------------------------------|------------------------------|--| | TW-04 | DA | 12/14/2017 | | 3V | 8.2 | 8.3 | | | TW-04 | DA | 12/14/2017 | | LF | 2.8 | 4.0 | | | TW-04 | DA | 04/26/2018 | | 3V | 8.9 | 9.4 | | | TW-04 | DA | 04/26/2018 | | LF | ND (1.0) | ND (5.0) | | | TW-04 | DA | 12/11/2018 | | 3V | 8.2 | 8.1 | | | TW-04 | DA | 12/11/2018 | | LF | 4.2 | 5.0 | | | TW-04 | DA | 12/11/2018 | FD | 3V | 8.4 | 8.1 | | | TW-05 | DA | 12/14/2017 | | 3V | 14 | 12 | | | TW-05 | DA | 12/14/2017 | | LF | 10 | 13 | | | TW-05 | DA | 05/01/2018 | | 3V | 11 | 11 | | | TW-05 | DA | 05/01/2018 | | LF | 8.8 | 9.1 | | | TW-05 | DA | 12/04/2018 | | 3V | 14 | 14 | | | TW-05 | DA | 12/04/2018 | | LF | 9.5 | 9.3 | | # **Notes:** (a) = data were analyzed by an Arizona certified laboratory. 1. Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6. -- = not applicable. μ g/L = micrograms per liter. 3V = three volume. BR = bedrock. DA = deep interval of Alluvial Aquifer. DTSC = Department of Toxic Substance Control. FD = field duplicate. G = Grab sample. H = HydraSleeve. ID = identification. J = concentration or reporting limit (RL) estimated by laboratory or data validation. LF = Low Flow (minimal drawdown). MA = mid-depth interval of Alluvial Aquifer. ND = not detected at listed reporting limit. SA = shallow interval of Alluvial Aquifer. Tap = sampled from tap of extraction well. Page 17 of 17 Printed: 4/22/2019 # **APPENDIX C** Well Inspection and Maintenance Log, First Quarter 2019 ## Appendix C # Well Inspection and Maintenance Log, First Quarter 2019 First Quarter 2019 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California | Well/Piezometer | Inspection Date | Survey Mark
Present?
(Yes/No) | Standing or
Ponded
Water?
(Yes/No) | Lock in Place?
(Yes/No) | Evidence of
Well
Subsidence?
(Yes/No) | Well Labeled
on Casing or
Pad?
(Yes/No) | Traffic Poles
Intact?
(Yes/No) | Concrete Pad
Intact?
(Yes/No) | Erosion
Around
Wellhead?
(Yes/No) | Steel Casing
Intact?
(Yes/No) | PVC Cap
Present?
(Yes/No) | Standing
Water in
Annulus?
(Yes/No) | Well Casing
Intact?
(Yes/No) | Photo Taken?
(Yes/No) | Action
Completed?
(Yes/No) | |-----------------|-----------------|-------------------------------------|---|----------------------------|--|--|--------------------------------------|-------------------------------------|--|-------------------------------------|---------------------------------|--|------------------------------------|--------------------------|----------------------------------| | MW-09 | 03/18/2019 | Yes | No | Yes | No | Yes | | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-10 | 03/18/2019 | Yes | No | Yes | No | Yes
| | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-11 | 03/18/2019 | Yes | No | Yes | No | Yes | | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-38S | 02/13/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-44-115 | 02/15/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-46-175 | 02/15/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-57-050 | 02/14/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-58-065 | 02/14/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-58BR | 02/14/2019 | Yes | No | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-60BR-245 | 02/14/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-62-065 | 02/11/2019 | Yes | No | Yes | No | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-62-110 | 02/13/2019 | Yes | No | Yes | No | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-63-065 | 02/14/2019 | Yes | No | Yes | No | Yes | | Yes | No | | Yes | No | Yes | Yes | | | MW-64BR | 02/13/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-65-160 | 02/13/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-65-225 | 02/13/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-68-180 | 02/13/2019 | Yes | No | Yes | No | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-69-195 | 02/13/2019 | Yes | No | Yes | No | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-72-080 | 02/11/2019 | Yes | No | Yes | No | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-72BR-200 | 02/12/2019 | Yes | No | Yes | No | Yes | | Yes | No | Yes | Yes | No | Yes | Yes | | | MW-73-080 | 02/11/2019 | Yes | No | Yes | No | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | | | PE-01 | 02/14/2019 | | | | | | | | | | | | | | | | TW-02D | 02/14/2019 | | | | | | | | | | | | | | | ### Notes: -- = not applicable Page 1 of 1 Printed: 4/22/2019 # **APPENDIX D** Cr(VI) Concentration Time Series Charts, First Quarter 2019 low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling method. # IN MW-10, MW-12, AND MW-13 was collected using the three-volume purge sampling method. low flow sampling method. Data not indicated with (LF) HEXAVALENT CHROMIUM IN MW-14, MW-16, MW-17, MW-18, AND MW-19 FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA ### Notes: LF = low flow, hexavalent chromium sample collected using low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling method. # **HEXAVALENT CHROMIUM** IN MW-20 AND MW-23 CLUSTERS AND MW-25 FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA was collected using the three-volume purge sampling low flow sampling method. Data not indicated with (LF) MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA - trigger levels were updated July 17, 2008 (DTSC, 2008b). - 2) The trigger level for MW-33-040 is 20 $\mu g/L$. - 3) The trigger level for MW-33-090 is 25 μ g/L. - 4) The trigger level for MW-33-150 is 20 μ g/L. - 5) The trigger level for MW-33-210 is 20 μ g/L. - LF = low flow, hexavalent chromium sample collected using low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling method. # **HEXAVALENT CHROMIUM IN MW-33 CLUSTER** - 1) The IM Contingency Plan and hexavalent chromium [Cr(VI)] trigger levels were updated July 17, 2008 (DTSC, 2008b). - 2) The trigger level for MW-34-080 is 20 μ g/L. - 3) The trigger level for MW-34-100 is 750 $\mu g/L$. LF = low flow, hexavalent chromium sample collected using low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling method # FIGURE D-6 HEXAVALENT CHROMIUM IN MW-34 AND MW-35 CLUSTERS 4) The trigger level for MW-44-125 is 475 μ g/L. LF = low flow, hexavalent chromium sample collected using low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling method. - 4) The trigger level for MW-47-055 is 475 μ g/L. 5) The trigger level for MW-47-115 is 31 μ g/L. - LF = low flow, hexavalent chromium sample collected using low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling # **IN MW-46 AND MW-47 CLUSTERS** # Notes: LF = low flow, hexavalent chromium sample collected using low flow sampling method. Data not indicated with (LF) was collected using the three-volume purge sampling method. # FIGURE D-12 HEXAVALENT CHROMIUM IN MW-50 AND MW-51 CLUSTERS ### FIGURE D-19 HEXAVALENT CHROMIUM IN TW-04 FIRST QUARTER 2019 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA ## **APPENDIX E** Interim Measures Extraction System Operations Log, First Quarter 2019 ### APPENDIX E ### Interim Measures Extraction System Operations Log, First Quarter 2019, PG&E Topock Performance Monitoring Program During First Quarter 2019 (January through March), extraction well TW-3D operated at a target pump rate of at 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction well PE-01 was only operated to collect a sample during First Quarter 2019. Extraction wells TW-2D and TW-2S were not operated during First Quarter 2019. The operational run time for the Interim Measure groundwater extraction system (combined or individual pumping) was approximately 98.7 percent during First Quarter 2019. The Interim Measure Number 3 (IM-3) facility treated approximately 17,273,716 gallons of extracted groundwater during First Quarter 2019. The IM-3 facility also treated approximately 400 gallons of purge water from site sampling activities. Eight containers of solids (sludge) were transported offsite from the IM-3 facility during the reporting period. Periods of planned and unplanned extraction system downtime (that together resulted in approximately 1.3 percent of downtime during First Quarter 2019) are summarized below. The times shown are in Pacific Standard Time to be consistent with other data collected (for example, water level data) at the site. ### **E.1 January 2019** - January 9, 2019 (unplanned): The extraction well system was offline from 10:54 a.m. to 12:40 a.m. to change out the Clarifier Feed Pump (P-400) and the microfilter modules. Extraction system downtime was 1 hour 46 minutes. - **January 13, 2019 (unplanned):** The extraction well system was offline from 7:16 a.m. to 8:24 a.m. to change out the microfilter modules. Extraction system downtime was 1 hour 8 minutes. - January 22, 2019 (unplanned): The extraction well system was offline from 10:48 a.m. to 10:58 a.m. due to a programmable logic controller (PLC) and human machine interface (HMI) connectivity issue. Extraction system downtime was 10 minutes. - **January 22, 2019 (unplanned):** The extraction well system was offline from 7:00 p.m. to 7:14 p.m. due to a PLC and HMI connectivity issue. Extraction system downtime was 14 minutes. ### E.2 February 2019 - **February 3, 2019 (unplanned):** The extraction well system was offline from 4:54 a.m. to 6:46 a.m. to change out the microfilter modules. Extraction system downtime was 1 hour 52 minutes. - February 6, 2019 (unplanned): The extraction well system was offline from 10:14 a.m. to 10:16 a.m. and again from 10:18 a.m. to 10:20 a.m. and again from 10:26 a.m. to 10:36 a.m. due to programmable logic controller (PLC) and human machine interface (HMI) connectivity issue. Extraction system downtime was 14 minutes. - **February 7, 2019 (unplanned):** The extraction well system was offline from 10:50 a.m. to 11:52 a.m. to replace the flow meter Treated Water Transfer Pump (P-700) and clean sensor (FSL-201). Extraction system downtime was 1 hour 2 minutes. - **February 8 9, 2019 (unplanned):** The extraction well system was offline from 7:38 a.m. February 8, 2019 to 7:58 a.m. February 8, 2019 and from 8:16 p.m. February 9, 2019 to 9:28 p.m. February 9, 2019 to maintain appropriate water levels in Raw Water Storage Tank (T-100). There was a blockage downstream from the pump (P-200) that restricted flow and had no effect on reducing the high water level at T-100. The extraction well was shut down so that T-100 could recover to proper water levels. Extraction system downtime was 1 hours 32 minutes. - **February 12, 2019 (unplanned):** The extraction well system was offline from 3:08 a.m. to 3:26 a.m. due to a City of Needles power outage. Extraction system downtime was 18 minutes. - February 17, 2019 (unplanned): The extraction well system was offline from 12:58 a.m. to 1:58 a.m. to maintain appropriate water levels in T-100. There was a blockage further downstream from P-200 that restricted flow and had no effect on reducing the high water level at T-100. The extraction well was shut down so that T-100 could recover to proper water levels. Extraction system downtime was 1 hour. - **February 18, 2019 (unplanned):** The extraction well system was offline from 3:02 a.m. to 3:38 a.m. due to a City of Needles power outage. Extraction system downtime was 36 minutes. - February 18-22, 2019 (unplanned): The extraction well system was offline from 9:22 p.m. February 18, 2019 to 10:22 p.m. February 18, 2019 and from 12:18 p.m. February 19, 2019 to 1:54 p.m. February 19, 2019 and from 2:12 a.m. February 20, 2019 to 2:52 a.m. February 20, 2019 and from 5:18 p.m.
February 20, 2019 to 6:26 p.m. February 20, 2019 and from 3:58 a.m. February 21, 2019 to 4:48 February 21, 2019 and from 10:40 a.m. February 21, 2019 to 11:28 a.m. February 21, 2019 and from 3:14 a.m. February 22, 2019 to 4:00 a.m. February 22, 2019 to maintain appropriate water levels in T-100. There was a blockage downstream from P-200 that restricted flow and had no effect on reducing the high water level at T-100. The extraction well was shut down so that T-100 could recover to proper water levels. Extraction system downtime was 3 hours 48 minutes. - **February 22, 2019 (unplanned):** The extraction well system was offline from 8:48 a.m. to 11:28 a.m. to remove a blockage in the piping between the oxidation tanks T-301B and T-301C that was causing the previous high water levels in T-100. Extraction system downtime was 2 hours 40 minutes. - **February 27, 2019 (unplanned):** The extraction well system was offline from 9:10 a.m. to 10:10 a.m. to change out the microfilter modules. Extraction system downtime was 1 hour. ### E.3 March 2019 - March 13, 2019 (unplanned): The extraction well system was offline from 9:12 a.m. to 9:18 a.m., from 9:38 a.m. to 9:40 a.m., from 9:42 a.m. to 9:46 a.m., from 9:48 a.m. to 9:50 a.m., and from 9:52 a.m. to 9:54 a.m. due to a programmable logic controller (PLC) and human machine interface (HMI) connectivity issue. Extraction system downtime was 16 minutes. - March 14, 2019 (unplanned): The extraction well system was offline from 8:58 a.m. to 11:08 a.m. to change out the microfilter modules. Extraction system downtime was 2 hours 10 minutes. - March 17, 2019 (unplanned): The extraction well system was offline from 1:30 p.m. to 2:32 p.m. due to a high-water level in Raw Water Storage Tank (T-100). The plant was shut down so the tank could drain. Extraction system downtime was 1 hour 2 minutes. - March 26, 2019 (unplanned): The extraction well system was offline from 12:28 a.m. to 2:42 a.m. due to a micro-filter malfunction. The plant was shut down to replace the air controller on a pneumatic valve. Extraction system downtime was 2 hours 14 minutes. - March 26, 2019 (unplanned): The extraction well system was offline from 9:00 a.m. to 9:16 a.m. because of a high-water level in the Iron Oxidation Reactor 3 Tank (T-301C). Plant was shut down so the tank could drain. Extraction system downtime was 16 minutes. • March 28, 2019 (unplanned): The extraction well system was offline from 1:00 p.m. to 2:44 p.m. due to a high-water level in T-100. Plant was shut down so the tank could drain. Extraction system downtime was 1 hour 44 minutes. # **APPENDIX F** Hydrographs, First Quarter 2019 ### Arcadis U.S., Inc. 101 Creekside Ridge Court Suite 200 Roseville, California 95678 Tel 916 786 0320 Fax 916 786 0366 www.arcadis.com