

DRAFT STATEMENT OF BASIS For a

For a Preferred Groundwater Remedy

Pacific Gas and Electric Company, Topock Compressor Station Needles, California EPA ID NO. CAT080011729

April 28, 2010

Figure of Proposed Project and Site

DRAFT STATEMENT OF BASIS FOR A PREFERRED REMEDIAL ALTERNATIVE AT PACIFIC GAS AND ELECTRIC COMPANY, TOPOCK COMPRESSOR STATION

INTRODUCTION

The Department of Toxic Substances Control (DTSC) is issuing this draft Statement of Basis for a preferred groundwater remedy (Preferred Alternative) at the Pacific Gas and Electric Company ("PG&E"), Topock Compressor Station and its surrounding area affected by the groundwater contamination ("the Site") located near Needles, California. This draft Statement of Basis identifies the Preferred Alternative among the remedial action alternatives evaluated for cleaning up groundwater contaminated by past waste disposal practices at the Site.

This draft Statement of Basis is being issued by DTSC as the lead agency responsible for Corrective Action activities conducted at the Site pursuant to an agreement signed between DTSC and PG&E in 1996 under the authority of the California Health and Safety Code section 25187 and the Resource Conservation and Recovery Act (RCRA) addressing areas contaminated by the historical release of hazardous constituents at the Site. DTSC is coordinating the selection of the Preferred Alternative with the United States Department of the Interior (DOI). As a Federal agency with land ownership interests surrounding the Site area, DOI has a similar, but separate authority under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). DOI is concurrently proposing a Preferred Alternative under a Proposed Plan in accordance with CERCLA requirements.

DTSC is issuing this Draft Statement of Basis for a Preferred Alternative as part of its public participation responsibilities.

DTSC, in consultation with DOI, may modify the Preferred Alternative or select another response action presented in this draft Statement of Basis after receipt of new information and/or review of public comments. Therefore, the public is encouraged to review and comment on all alternatives presented in this draft Statement of Basis.

PUBLIC COMMENT PERIOD: JUNE 4, 2010 - JULY 19, 2010

DTSC will accept written comments on the draft Statement of Basis during the public comment period ending July 19, 2010. You may submit your comments to:

Mr. Aaron Yue Project Manager Department of Toxic Substances Control 5796 Corporate Avenue, Cypress, California 90630 E-mail: <u>ayue@dtsc.ca.gov</u>

You are invited to attend one of the open house/public hearing sessions to learn about the draft Statement of Basis for cleaning up groundwater at the PG&E Topock Site. Written and oral comments will also be accepted during the public hearing portion immediately following the open house. These sessions will be held at the following locations:

OPEN HOUSES / PUBLIC HEARINGS

June 22, 2010	Parker Community/Senior Center, Parker, AZ	
	,	5:00 – 6:30 p.m.
	-	6:30 – 8:00 p.m.
June 23, 2010	Lake Havasu City Aquatic Center,	
	Lake Havasu City, AZ	
	Open House	5:30 – 7:00 p.m.
	-	7:00 – 8:30 p.m.
June 29, 2010	Needles High School,	
	Needles, CA	,
	· ·	5:00 – 6:30 p.m.
	-	6:30 – 8:00 p.m.
June 30, 2010	Topock Elementary School, Topock, AZ	
	▲ /	5:00 – 6:30 p.m.
	.	6:30 – 8:00 p.m.
This draft State	ment of Basis, dr	aft EIR, project repo
		tod documents and

This draft Statement of Basis, draft EIR, project reports, fact sheets, and other project related documents are located in the information repositories listed on the last page and at the Topock Website at: http://www.dtsc-topock.com, under "Document Library" Detailed information concerning groundwater contamination at the Site can be found in the 2009 Volume 2 RCRA Facility Investigation/Remedial Investigation ("RFI/RI") Report and 2009 Volume 2 Addendum. The Detailed comparative evaluation of remedial alternatives can be found in the 2009 Corrective Measures Study/Feasibility Study ("CMS/FS"). These and other documents are contained in the Administrative Record file in the public repositories for the Site (see last page for locations). DTSC and DOI encourage the public to review these documents to gain a more comprehensive understanding of the Site and the activities that have been conducted to date.

PG&E TOPOCK COMPRESSOR STATION HISTORY

The PG&E Topock Compressor Station ("Station") is located adjacent to the Colorado River in eastern San Bernardino County, California, approximately 15 miles southeast of Needles, California, south of Interstate 40, in the north end of the Chemehuevi Mountains. The Station occupies approximately 15 acres of a 65-acre parcel of PG&E-owned land. The PG&E property is surrounded by the Havasu National Wildlife Refuge ("the Refuge") and lies directly south of land under the jurisdiction of the Bureau of Land Management (BLM) and Bureau of Reclamation (BOR).

PG&E began operations at the Station in December 1951 to compress natural gas supplied from the southwestern United States for transport through pipelines to PG&E's service territory in central and northern California. Historic records indicate that PG&E held rights to operate a gas pipeline and compressor station dating back to the Federal Act of 2/25/20 (41 Stat. 449, as amended). Based on available title records, PG&E gained full ownership of the land in 1965.

Operations at the Station have been fairly consistent since the facility began operations in 1951. The operations consist of six major activities: compression of natural gas, cooling of the compressed natural gas and compressor lubricating oil, water conditioning, wastewater treatment, facility and equipment maintenance, and miscellaneous operations. The greatest use of chemical products involves treatment of cooling water, and the greatest volume of waste produced consists of "blowdown" from the cooling towers. Blowdown consists of used cooling water that is periodically removed from the operating circuit because it contains too much salt generated from repeated evaporation of the cooling water.

From 1951 to 1985, hexavalent chromium-based corrosion inhibitors and biocides were added to the cooling water circuit to protect the piping and equipment in the cooling towers. After 1964, the cooling tower blowdown was treated to remove hexavalent chromium prior to discharge. Until approximately 1970, cooling tower blowdown was discharged directly into Bat Cave Wash, an unlined arroyo immediately west of the Station and either percolated into the ground or evaporated at the surface. Around 1970, PG&E discontinued blowdown discharge to the wash and began discharging treated blowdown into four single-lined evaporation ponds located west of Bat Cave Wash. From 1970 to 1973, PG&E injected treated blowdown into bedrock beneath the site using an injection well (well PGE-08), but that process proved impractical and was discontinued.

In 1985, PG&E replaced the hexavalent chromiumbased cooling water treatment products with nonhazardous phosphate-based products, at which time PG&E discontinued operation of the blowdown treatment system. Use of the four, single-lined evaporation ponds continued until 1989, when they were replaced with four new double-lined ponds that are still in use under permits by the California Colorado River Basin Regional Water Quality Control Board. The cooling tower blowdown treatment system and the single-lined ponds were physically removed and clean-closed by 1993.

SITE BACKGROUND

Investigation activities at the Site by PG&E and DTSC date to the late 1980s with the identification of solid waste management units and areas of concern through a RCRA Facility Assessment. In 1996, PG&E and DTSC entered into a Corrective Action Consent Agreement in which PG&E agreed to perform a RCRA Facility Investigation/Corrective Measures Study subject to the oversight and approval of DTSC. In 2005, PG&E and DOI entered into an Administrative Consent Agreement in which PG&E agreed to perform a CERCLA Remedial Investigation/ Feasibility Study to characterize the nature and extent of contamination and develop and evaluate cleanup alternatives subject to the oversight and approval of DOI.

Since 2005, DTSC and DOI have coordinated in their oversight of PG&E's work under these agreements. Investigative and remedial activities have been performed pursuant to both RCRA corrective action and CERCLA remedial action requirements. The RCRA Facility Investigation has been combined with a CERCLA Remedial Investigation (the "RFI/RI Report") and the RCRA Corrective Measures Study has been combined with the CERCLA Feasibility Study (the "CMS/FS Report").

To efficiently manage the large volume of information generated by the investigation of the Site and accelerate cleanup of groundwater, the investigation of the Site has been separated into two components: the first is an investigation of groundwater contamination and the second will focus on contaminants in surface and subsurface soil. As a result, the RFI/RI Report has been separated into three volumes. PG&E has completed the 2007 Volume 1 (Site Background and History), 2009 Volume 2 (Hydrogeologic Characterization and Results of Groundwater and Surface Water Investigations), and a 2009 Volume 2 Addendum. Volume 3 is pending and will include final characterization data of soil contamination and evaluation of the potential for soil contamination to leach into groundwater at the Site.

While the RFI/RI was underway, beginning in 2004, DTSC and DOI directed PG&E to undertake certain measures, known as "Interim Measures" or "Time Critical Removal Actions", to ensure that hexavalent chromium and other contaminants in the groundwater did not reach the Colorado River. Interim Measures 1, 2, and 3, collectively, involved the construction of treatment facilities and installation of four extraction wells to pump contaminated water out of the aquifer for treatment and disposal. More importantly, these Interim Measures were designed to pull contaminated groundwater away from the Colorado River until a permanent remedy could be selected. DTSC originally envisioned a single remedy decision for soil and groundwater. However, due to the potential threat to the water resource at the site and the Colorado River, selection of a remedy for the groundwater contamination became priority while the soils investigation was delayed. DTSC anticipates a separate soil remediation decision, if necessary, in the future.

SITE CHARACTERISTICS

Cultural and Environmental Resources

The Site is located within an area considered to be of traditional cultural importance and spiritual significance to federally-recognized Native American tribes with ancestral ties to the region. Nine federally recognized Native American tribes have ancestral ties to the area and have expressed interest in the project: the Chemehuevi Indian Tribe, Cocopah Tribe of Arizona, Colorado River Indian Tribes, Fort Mojave Indian Tribe, Havasupai Indian Tribe, Hualapai Indian Tribe, Quechan Tribe of the Fort Yuma Indian Reservation, Twenty-Nine Palms Band of Mission Indians, and Yavapai-Prescott Tribe. Many of these tribes expressed strong beliefs that the selection of remedial action at the Site must fully consider the significance of cultural resources potentially affected and that adverse effects must be mitigated to the fullest extent possible. Tribal views regarding the significance of the cultural resources potentially affected and the importance of mitigating adverse

effects on those resources have been and will continue to be solicited and incorporated into the decision-making process as the remedy is selected, designed, and implemented.

The project Site area contains sensitive cultural resources that are of religious and cultural significance to some of these tribes, as well as other identified historic areas, such as portions of Route 66. These cultural resources are subject to the protections provided by numerous federal statutes, regulations, and Executive Orders.

Protection of historic properties and cultural resources, in particular those that are listed, or eligible for listing, on the National Register of Historic Places, requires that DOI, in consultation with State Historic Preservation Offices, the Advisory Council on Historic Preservation, the tribes, and other consulting parties, identify adverse effects associated with remedial action at the Site and seek ways to avoid, minimize, or mitigate such effects. The BLM, on behalf of itself, DOI, Fish and Wildlife Services (FWS), and BOR, is the lead federal agency for historic and cultural issues at the Site. Substantive mitigation measures adopted by the BLM as a result of federal consultation will be satisfied during the design and implementation of the remedy at the site.

DTSC, as the California state lead agency on this project, solicited input from interested tribes, and evaluated the potential impacts of the remedial action and identified proposed mitigation measures within a draft Environmental Impact Report (dEIR) in accordance with requirements of the California Environmental Qualtiy Act (CEQA). The dEIR is also available in the public repository for review and comment at the same time as this draft Statement of Basis.

The Site is also located within an environmentally sensitive area that includes the Havasu National Wildlife Refuge, endangered species and migratory bird habitat, and public land formally designated as an Area of Critical Environmental Concern by the BLM. Moreover, much of the Site lies within the floodplain of the Colorado River, a source of drinking water and irrigation for millions of people downstream. Remedial action within this area must comply with the applicable land management requirements established and implemented by BLM, FWS, and BOR. In addition, the contaminated groundwater is located within a groundwater basin that has been designated for beneficial uses under the Colorado River Basin Regional Water Quality Control Board.

Hexavalent Chromium Groundwater Plume

The RFI/RI Volume 2 Report for groundwater, completed in February 2009, characterized groundwater and surface water for contamination associated with past PG&E blowdown discharges from the Compressor Station. Groundwater occurs beneath the ground surface in alluvial geologic deposits consisting primarily of sands and gravels, with some silts and clays.

The groundwater data indicate that a plume of groundwater contaminated with mainly hexavalent chromium extends from the location of the former area where blowdown was discharged in Bat Cave Wash to the floodplain area adjacent to the Colorado River, north of the railroad tracks. Current data indicate that hexavalent chromium is not discharging to the Colorado River. Within the plume, hexavalent chromium is typically present at all depth intervals of the upland portion of the aquifer, but is generally limited to deep wells in portions of the floodplain aquifer near the river. Organic-rich and low-oxygen conditions exist in the aquifer and sediments near and underlying the river that convert hexavalent chromium to a less mobile, less toxic form known as trivalent chromium. This trivalent chromium will drop out of the groundwater under normal subsurface conditions as it will bind to the geologic deposits at the Site.

As hexavalent chromium migrates in groundwater from the upland area deposits to the organic rich conditions near and beneath the river, it undergoes a chemical change to trivalent chromium.

Besides hexavalent chromium as the main groundwater contaminant, the February 2009 RFI/RI Volume 2 Addendum also indicated possible additional chemicals of potential concern within localized areas of the groundwater plume that may have originated from PG&E operations. These substances include molybdenum, selenium and nitrate.

East Ravine Bedrock Plume

During the 2009 East Ravine Groundwater Investigation, hexavalent chromium was also found in groundwater within the bedrock formations east and southeast of the Compressor Station. The contamination occurs in discrete fractures in the bedrock which limits the flow and overall quantity of groundwater in the bedrock. PG&E has estimated that the mass of the hexavalent chromium in bedrock likely represents less than one percent of the total hexavalent chromium plume mass.

The lateral extent of East Ravine groundwater contamination appears to extend approximately 1,500 feet east southeast of the Compressor Station. However, the investigation of East Ravine groundwater is ongoing and the source and full extent of the bedrock contamination has not been determined. Studies of the East Ravine area are expected to continue during the remedy design phase of the project.

SUMMARY OF SITE RISKS

As part of the Site investigation, a baseline risk assessment was conducted to determine the current and future risks posed by contaminants in groundwater to humans and ecological receptors. The primary contaminants of potential concern resulting from the evaluation in the risk assessment include hexavalent chromium, selenium, nitrate, and molybdenum.

Based on the results of the risk assessment, there are no unacceptable risks to human health or the environment from groundwater contamination under current conditions. Currently, there is no direct exposure to groundwater and no significant contaminant transport pathway from groundwater to surface water.

Hexavalent chromium is present at concentrations that could pose an unacceptable risk to a future hypothetical groundwater user, if the contaminated groundwater were to be used as a source of drinking water. Based on the results of the site investigation and risk assessment, hexavalent chromium was the contaminant addressed in the detailed alternative analysis in the 2009 Corrective Measures Study/ Feasibility Study and was carried forward into remedy selection.

Three additional contaminants of potential concern, (selenium, nitrate, and molybdenum), were evaluated in the RFI/RI and groundwater risk assessment. Although the risk assessment concluded that these constituents are not a source of significant risk in comparison to hexavalent chromium, these substances do contribute to a total non-cancer risk at localized areas within the plume boundary in excess of risk assessment guidelines. The presence and extent of these substances will be evaluated further during the soil investigation at the Site. The CMS/FS concluded that institutional controls should be enforced to restrict development of contaminated groundwater as a drinking water supply and monitoring of these constituents should continue as part of the Site-wide groundwater monitoring activities throughout future actions taken at the Site.

Because there is no significant ecological exposure pathway for contact with impacted site groundwater, there are no ecological receptors currently at risk of adverse effects due to the presence of contaminants of potential concern in the groundwater.

Based on the results of the risk assessment, it is DTSC's current judgment that the Preferred Alternative identified in this draft Statement of Basis, or one of the other alternatives considered in this document, is necessary to protect public health or welfare or the environment from releases of hazardous substances to the environment.

REMEDIAL ACTION OBJECTIVES

The remedial action objectives ("RAOs") are based on the conclusions of the risk assessment and the requirement that the selected remedy attain applicable or relevant and appropriate requirements (ARARs) identified for the Site. The RAOs for groundwater are to:

• Prevent ingestion of groundwater as a drinking water source having hexavalent chromium in excess of the regional background concentration of 32 micrograms per liter.

• Prevent or minimize migration of total chromium and hexavalent chromium in groundwater to ensure concentrations in surface water do not exceed water quality standards that support the designated beneficial uses of the Colorado River (11 micrograms per liter).

• Reduce the mass of total chromium and hexavalent chromium in groundwater at the Site to achieve compliance with ARARs in groundwater. This RAO will be achieved through attainment of a cleanup goal of 32 micrograms per liter of hexavalent chromium.

• Ensure that the current geographic plume boundaries are not permanently expanded following completion of the remedial action.

SUMMARY OF REMEDIAL ALTERNATIVES

The remedial alternatives to address contaminated groundwater at the Site that were evaluated in the 2009 CMS/FS are presented below. The alternatives are identified with letters to correspond with the description of the alternatives within the CMS/FS report.

Generally speaking, Alternatives A and B would not include any active treatment or other measures to remove hexavalent chromium from groundwater. Alternatives C, D, and E would rely primarily on treating the hexavalent chromium underground (also known as "in-situ" treatment) by injecting a carbon food source into the aquifer to "feed" the naturallyoccurring bacteria thereby accelerating the change of hexavalent chromium to trivalent chromium by enhancing the naturally occurring biological conditions that degrade hexavalent chromium. Alternative F would extract contaminated groundwater and treat it above-ground using a water treatment plant. Alternatives G and H would combine in-situ treatment with above-ground treatment. Alternative I would continue the existing Interim Measure currently in place by which limited volumes of water are extracted and treated using an existing above-ground treatment facility. Except for Alternatives A and I, all other alternatives evaluated include the decommissioning of the existing Interim Measure treatment system. Decommissioning would occur after remedy construction and start up, and DTSC deems the remedy to be operating properly and successfully.

Provided below is a more specific description of each alternative. Because of the collaboration between

DTSC and DOI, and the substantive equivalence of the remedy selection criteria between RCRA and CERCLA, in the Section that follows (Evaluation of Alternatives), the Alternatives are compared using a combined remedy selection criteria as required by RCRA and CERCLA. As explained in that Section, Alternative E is the DTSC Preferred Alternative for the hexavalent chromium groundwater contamination present at the Site.

Alternative A: No Action

Regulations governing the cleanup programs generally require that the "no action" alternative be evaluated to establish a baseline for comparison. Under the No Action alternative, no active construction or operational activities would occur. There would be no active treatment to reduce chromium concentrations in groundwater. While natural processes converting hexavalent chromium to trivalent chromium would continue to occur within the river sediments near the Colorado River, for the foreseeable future there would be no government restrictions on the use of groundwater in locations where concentrations exceed cleanup levels. No additional groundwater monitoring facilities would be constructed under this alternative, nor would any ongoing sampling or well maintenance activities be conducted to monitor concentrations of contaminants in groundwater or in the Colorado River.

Estimated Capital Cost: \$0 Estimated Time to Achieve RAOs: 220-2,200 years

Alternative B – Monitored Natural Attenuation

No active treatment to reduce hexavalent chromium concentrations in groundwater would occur under this alternative. This alternative would rely only on the naturally occurring organic conditions in shallow groundwater areas of the floodplain to convert and remove hexavalent chromium from groundwater. Restrictions on the use of groundwater in the area of the plume would be maintained during the remediation period. The existing groundwater monitoring network would potentially be enhanced with additional monitoring wells, and the monitoring program of routine sampling, analysis, and reporting would occur until the cleanup goals are attained.

Estimated Net Present Value: \$25,000,000 -\$54,000,000 Estimated Time to Achieve RAOs: 220-2,200 years

Alternative C – High volume In-situ Treatment

Alternative C would involve active in-situ groundwater treatment through distribution of an organic carbon food source (such as whey) through high volume injection through a minimum number of wells installed primarily in previously disturbed areas. The organic carbon would be injected to enhance natural biological conditions to convert hexavalent chromium to the less mobile and less toxic trivalent chromium form thereby removing it from groundwater. This alternative would be implemented in two phases; the first phase would treat the plume edge nearest the river, while the second would treat the interior of the plume with a limited number of constructed wells.

Estimated Net Present Value: \$119,000,000 -\$255,000,000 Estimated Time to Achieve RAOs: 10 to 60 years

Alternative D – Sequential In-situ Treatment

Under this alternative, treatment of the plume would be accomplished through injection of carbon using wells within the interior of the plume to convert hexavalent chromium to a less soluble trivalent chromium, thereby removing chromium from groundwater. Treatment would be implemented in several phases involving construction of approximately 12 lines of injection and extraction wells to distribute the carbon food sources over the entire plume.

Estimated Net Present Value: \$118,000,000 -\$254,000,000 Estimated Time to Achieve RAOs: 10 to 20 years Alternative E – In-situ Treatment with Fresh Water Flushing

Alternative E involves flushing to push the plume through an In-situ Reduction Zone ("IRZ") located along National Trails Highway. Flushing would be accomplished through a combination of fresh water injection and injection of carbon amended groundwater in wells to the west of the plume. This alternative would also include using extraction wells near the Colorado River shoreline to capture the plume, accelerate cleanup of the floodplain, and flush the groundwater with elevated hexavalent chromium through the treatment zone. Additional extraction wells are located in an area northeast of the Compressor Station where the flushing efficiency from injection wells alone is relatively poor. Groundwater extracted from the near-river wells and wells northeast of the Compressor Station would be treated with the carbon food source and the water would be reinjected west of and/or within the hexavalent chromium plume.

Estimated Net Present Value: \$92,000,000 -\$198,000,000 Estimated Time to Achieve RAOs: 10 to 110 years

Alternative F – *Pump and Treat*

This alternative would involve pumping groundwater, above-ground treatment to remove chromium from the extracted groundwater, and reinjection of the treated water back to the aquifer.

Estimated Net Present Value: \$187,000,000 -\$401,000,000 Estimated Time to Achieve RAOs: 15 to 150 +years

Alternative G – Combined Floodplain In-situ / Pump and Treat

This alternative would combine floodplain cleanup by in-situ treatment, with treatment of the uplands portion of the plume by pumping groundwater, above-ground treatment to remove chromium from the extracted groundwater, and reinjection of the treated water back to the aquifer. The floodplain cleanup would involve construction of in-situ treatment zones at National Trails Highway and between National Trails Highway and the Colorado River. This alterative differs from Alternative H in that pump and treat is the dominant feature of the cleanup rather than in-situ treatment.

Estimated Net Present Value: \$177,000,000 -\$380,000,000 Estimated Time to Achieve RAOs: 10 to 90 years

Alternative H – Combined Upland In-situ / Pump and Treat

This alternative would combine in-situ treatment in the upland portions of the plume, with pump-andtreat technology in the floodplain (consisting of pumping groundwater, above-ground treatment to remove chromium from the extracted groundwater, and reinjection of the treated water back to the aquifer). This alternative differs from Alternative G by relying on an in-situ treatment zone as the dominant feature of the cleanup rather than pump and treat.

Estimated Net Present Value: \$127,000,000 -\$273,000,000 Estimated Time to Achieve RAOs: 10 to 70 years

Alternative I – Continued Operation of Interim Measure Groundwater Treatment

This alternative would involve continued operation of the current Interim Measure Groundwater Treatment Plant as the final remedial action at the site. The plant includes a pump and treat system that removes groundwater and utilizes chemical reduction, precipitation and filtration to remove hexavalent chromium. The Interim Measure system would operate with the existing equipment with existing procedures using the existing process at the existing flow rate until RAOs are attained.

Estimated Net Present Value: \$186,000,000 - \$398,000,000

Estimated Time to Achieve RAOs: 100 to 960 years

Addressing Chromium in Bedrock in East Ravine

The development of a hydraulic containment system and treatment system for groundwater in the bedrock is proposed for alternatives C, D, E, F, G, and H instead of developing and evaluating a range of remedial alternatives to attain RAOs in bedrock. East Ravine bedrock groundwater would be addressed through natural attenuation (e.g., dilution) in alternatives A, B and I.

For alternatives C through H, hydraulic containment would involve pumping from a group of wells near the eastern end of the East Ravine. The assumed location for these wells from a hydraulic and infrastructure perspective would be along the former National Trails Highway. The approach for management and treatment of groundwater extracted from the bedrock would vary depending on the alternative. According to the CMS/FS, the quantity of extracted bedrock groundwater is anticipated to be minor relative to alluvial groundwater. For alternatives C, D, and E, bedrock groundwater would be amended with a carbon food source and reinjected in the alluvial aquifer along with amended alluvial groundwater. For alternatives F, G, and H, extracted bedrock groundwater would undergo above ground treatment with extracted alluvial groundwater. For alternative B and I, bedrock groundwater would be monitored to assure that the concentration of hexavalent chromium is reduced by natural conditions over time and that there is no adverse effect to the Colorado River.

If it is determined that additional measures are needed to achieve RAOs in the East Ravine bedrock, other technologies similar to proposed remedial alternatives in the CMS/FS could be applied to supplement the pumping wells. In addition to pumping for hydraulic control, technologies that may be applicable to East Ravine bedrock would include, but are not limited to, freshwater injection for flushing and injection of carbon amendments for in place (in-situ) treatment of hexavalent chromium.

EVALUATION OF ALTERNATIVES

Although the RCRA remedy selection criteria differ from the CERCLA nine criteria slightly in terminologies, they are substantively the same. Because of the collaboration between DTSC and DOI, the selection criteria presented combined the RCRA Corrective Action evaluation criteria with the CERCLA remedy selection criteria. Similar to CERCLA, the RCRA remedy selection criteria is divided into the Corrective Action Standards, the remedy selection decision factors and similar public acceptance modifying criteria. These criteria are used to evaluate the different remediation alternatives individually and against each other in order to select a remedy. This section of the draft Statement of Basis profiles the relative performance of each alternative against the selection criteria, noting how it compares to the other options under consideration. The RCRA/CERCLA combined evaluation criteria are discussed below. "Detailed Analysis of Alternatives" can be found in the CMS/FS.

Cost includes estimated capital and annual		
operations and maintenance costs, as well as present		
worth cost. Present worth cost is the total cost of an		
alternative over time in terms of today's dollar value.		
Cost estimates are expected to be accurate within a		
range of +50 to -30 percent.		
State/Support Agency Acceptance considers		
whether the Otesta arms are with the arms have and		

whether the State agrees with the analyses and recommendations, as described in the Proposed Plan.

Community Acceptance considers whether the local community agrees with DTSC's analyses and preferred alternative. Comments received on the draft Statement of Basis are an important indicator of community acceptance.

As described below, two of these combined criteria, "Protect Human Health and The Environment, Attain Media Cleanup Goals, and Control Sources Of Releases" and "Compliance with ARARs," are considered Corrective Action Standards or Threshold Criteria. All remedial alternatives must satisfy these standards and criteria in order to be considered for selection. The next five criteria are known as "balancing criteria" or "remedy selection decision factors" which are factors that are used for relative comparison of the remedial alternatives under consideration. Finally, the last two criteria, State/Support Agency Acceptance and Community Acceptance are known as "modifying criteria."

1. Protect Human Health and The Environment, Attain Media Cleanup Goals, and Control Sources Of Releases

Alternative A does not meet the selection criteria for protecting human health and the environment because there would be no institutional controls imposed to restrict use of groundwater in locations where hexavalent chromium concentrations exceed the cleanup goals, and there would be no monitoring to evaluate whether geochemical conditions near the river required to reach the cleanup goals remained in place over the long time period necessary to achieve these goals. The remaining Alternatives (B through I), were all found to meet the standard and threshold criteria of protecting human health and the environment. Alternatives C, D, E, F, G, and H were ranked high for this criterion while Alternatives B and I ranked medium for this criterion primarily because of the long time required to attain cleanup goals, as well as the uncertainty about the robustness of the natural geochemical conditions near the river and the high level of operation and maintenance.

2. Compliance with ARARs

Applicable or Relevant and Appropriate Requirements (ARARs) are those cleanup standards, standards of control, and other substantive federal or more stringent State requirements that have been determined to be legally applicable to, or well suited to ("relevant and appropriate"), addressing hazardous substances, remedial actions, or other circumstances presented at a site. ARARs generally are classified as chemical-specific, location-specific, or actionspecific. The ARARs for the Topock Site are identified in Appendix B of the CMS/FS.

Based on the specific circumstances presented at the Topock Site and as described in the CMS/FS, Alternatives A, B and I do not satisfy the requirement established by the California State Water Resources Control Board Resolution 92-49 that cleanup goals be achieved within a "reasonable time frame." For this reason, Alternatives A, B, and I have been eliminated from further consideration.

Because of the importance of the area to certain Native American tribes with ancestral ties to the region, and the presence of cultural resources of religious and cultural significance, as well as other sensitive cultural resources, several cultural resource protection statutes, regulations, and Executives Orders have been identified as ARARs for the Topock Site. As described in the CMS/FS, none of the alternatives under consideration were eliminated from further consideration based on its failure to satisfy cultural resource ARARs. In order to ensure that the remedy selected attains the substantive requirements established by these ARARs, however, as a remedy is selected, designed, and implemented, the federal agencies will continue to engage in consultation with tribes. State Historic Preservation Officers, and others to identify potential effects on

cultural resources and to seek ways to avoid, minimize, or mitigate any adverse effects.

With respect to any remedial action to be undertaken within the Havasu National Wildlife Refuge, the National Wildlife System Administration Act has been identified as an ARAR. As described in the CMS/FS, none of the alternatives under consideration were eliminated from further consideration based on its failure to satisfy this ARAR. After a remedy is selected, the Fish and Wildlife Service will identify, during remedial design and implementation, those measures necessary to ensure that the selected remedy satisfies this ARAR.

3. Long-term Effectiveness, Permanence, and Reliability

Alternative A (No Action) ranked the lowest of all alternatives because this alternative does not include monitoring to verify the effectiveness of natural recovery processes and to determine when the RAOs have been achieved.

Alternative B ranked medium because it would include monitoring and institutional controls; however, this alternative relies on natural attenuation to convert hexavalent chromium to trivalent chromium, and while the reducing conditions have been shown to be robust, there is no way to prove that these conditions exist everywhere or would persist into the future hundreds to thousands of years from now.

Alternatives F, G, H, and I all ranked medium for long-term effectiveness, permanence, and reliability. These alternatives include ex-situ treatment; the resulting waste generation requiring land disposal of treatment residuals at an offsite, permitted landfill requires long-term containment, management, and monitoring that are not required by the alternatives that include in-situ treatment.

Alternatives C, D, and E ranked medium-high for this criterion. While there is uncertainty regarding the ability to distribute the carbon food source across the

targeted area, and Alternative E relies on flushing to remove contaminants from the upland portion of the aquifer, comparatively few long-term controls are expected for these alternatives following attainment of cleanup goals.

4. Reduction of Toxicity, Mobility, or Volume of Contaminants through Treatment

Alternatives F, G, and I are ranked high because the toxicity, mobility, and volume of hexavalent chromium is lessened throughout the plume because the majority of the chromium mass after treatment would be removed and managed in a permitted disposal facility.

C, D, E, and H are ranked medium high because the converted chromium will remain within the subsurface formation. Additionally, byproducts are anticipated from in-situ treatment, but they are expected to be localized and could remain temporarily elevated above baseline and background concentrations in some portions of the aquifer.

Alternatives A and B ranked medium because the amount of plume destroyed or treated is less certain due to the passive nature of treatment and the extent and average capacity of the floodplain area to naturally reduce hexavalent chromium over time.

5. Short-term Effectiveness

Alternative B was ranked medium because of the minimal footprint, but relatively long time to cleanup.

Alternatives C and E were ranked medium-low because of the comparatively shorter remediation period and relatively limited construction and operational activities that would occur primarily in previously disturbed areas. Alternatives A, D, F, G, H, and I received a low ranking for short-term effectiveness. Alternative A was ranked low primarily because of the extensive time to cleanup with no controls during the remedial period. Alternatives F, G, H, and I were ranked low as a result of construction and operation of an aboveground treatment plant and the greater amount of construction, aboveground visual impact, worker/operator presence onsite, electrical power requirements, and trucking requirements for chemical delivery and waste transportation and disposal. Alternative D ranked low primarily because the location of remedial facilities would not be limited to previously disturbed areas and because of the need for subsequent additional disturbance from grading, road construction, facility construction, and operation and maintenance.

6. Implementability

Alternatives A and B are ranked high for implementability because Alternative A involves no remedial action, and the only remedial activities associated with Alternative B are monitoring well construction and maintenance and administration of an institutional control. Alternative I also ranked high because the system has been shown to be technically implementable over the years it has operated. Alternatives D, E, F, G, and H were ranked medium because while these alternatives are administratively implementable, there will be technical challenges associated with the active treatment processes. Alternative E requires additional approvals from landowners and associated water agencies for the water supply well and pipeline. Alternative C was ranked low for this criterion because of the relatively more complex technical challenges associated with balancing carbon delivery and hydraulic containment of the plume.

7. Cost

The costs for Alternatives A and B are the lowest; therefore, these alternatives are ranked high in costeffectiveness. Alternatives C, D, E, and H are the next most costly; therefore, these alternatives are ranked medium in cost-effectiveness. Alternatives F, G, and I are the most expensive of the alternatives and are therefore ranked low in cost effectiveness.

8. State/Support Agency Acceptance

DTSC and DOI have worked together in closely coordinating each agency's respective authorities and overseeing PG&E's performance of work under the federal CERCLA Consent Agreement and the State Corrective Active Consent Agreement by which the CMS/FS has been prepared. Through this coordination, both DOI and DTSC approved the CMS/FS in December, 2009. Furthermore, DTSC and DOI worked in partnership to ensure that this draft Statement of Basis and the DOI Proposed Plan for the Preferred Alternative are closely coordinated in scope and in content. Based on this coordinated approach, DTSC and DOI, while considering the action independently, reached a similar conclusion on the Preferred Alternative to submit for public review and comment.

9. Community Acceptance

Community acceptance of the Preferred Alternative will be evaluated after the close of the public comment period with consideration of the comments received. Community acceptance will be described in the Final Statement of Basis for the Site.

SUMMARY OF THE PREFERRED ALTERNATIVE

DTSC's recommendation for the Preferred Alternative, based on the analysis and conclusions presented in the CMS/FS, and in conjunction with the findings of potential impacts evaluated in the draft EIR, is Alternative E – In-situ Treatment with Fresh Water Flushing. Alternative E is recommended because it will achieve the RAOs while substantially reducing, through treatment, the amount of hexavalent chromium in the groundwater [which is the principal threat at the site], and will do so in a reasonable time frame, and with fewer adverse effects to cultural resources and biological resources than other alternatives considered. Alternative E will also allow the decommissioning of the existing Interim Measure treatment plant after PG&E demonstrates, with DTSC's concurrence, that the remedy is successfully treating and controlling the

movement of contaminated groundwater and its secondary byproducts at the Site.

Because DTSC recognizes that the variable nature of the geologic materials beneath the site may result in some localized areas being resistant to in-situ treatment and flushing, these areas may require optimized remedial efforts including focused injection/extraction. Additionally, DTSC's preferred alternative includes monitored natural attenuation as a long term component to address residual hexavalent chromium that may remain in portions of the aquifer formation after the majority has been treated by the in-situ treatment with fresh water flushing technology. Monitored natural attenuation relies on the naturally occurring degradation and dilution properties of the groundwater system to convert hexavalent chromium to trivalent chromium in groundwater.

Land Use Restrictions - Due to the incomplete evaluation of soil contamination at the Site and the potential unacceptable risk to a future hypothetical groundwater user, the proposed remedy requires that certain restrictions be imposed on future land use activities. The proposed restrictions are necessary to protect human health and the environment, and to maintain the short and long term protectiveness of the remedy. The restrictions may be imposed through a "Covenant to Restrict Use of Property" ("Covenant") which is an enforceable institutional control mechanism. The Covenant restrictions "run with the land" and apply no matter who owns the property. The land use restrictions may, with regulatory agency approval, be revised if site conditions should change in the future (e.g., new land use). The specific language for the Covenant with PG&E, and other land owners will be developed after DTSC selects the final remedy. However, restrictions to be considered may include, but not limited to the following:

- Growing food crops or any agricultural products
- Drilling for drinking water, oil or gas
- Extraction of ground water for purposes other than ground water monitoring, site remediation or construction dewatering

- Any activity that may disturb or adversely affect the operation and maintenance of the groundwater monitoring network and site remediation system that is not part of a DOI or DTSC approved corrective action work plan or facility closure plan for the property without prior written agency approval.
- Any redevelopment of the property until a Risk Management Plan (RMP) is prepared for the specific project and is approved in writing by DTSC. A RMP identifies, at a minimum, the specific project proposed for construction, the previous site history, the nature and extent of contamination from all media, the potential pathways of receptor exposure and health impacts from existing site contamination, and practical ways to mitigate the impacts for the specific project. The Covenant and the RMP work together to ensure that potential impacts from exposure to contaminated soils, ground water or other media are managed in a manner that is protective of human health and the environment. The RMP may be revised or amended.

Risk Management Activities. The following activities will require risk management at the Site:

- Any activities that will disturb the soil or ground water, such as excavation, grading, removal, trenching, filling, earth moving or mining, shall only be permitted on the property pursuant to a corrective action work plan approved in writing by DTSC, or an RMP approved in writing by DTSC.
- Any contaminated media brought to the surface as a result of remediation related activities including, but not limited to, pumping, grading, excavation, trenching, or backfilling shall be managed in accordance with all applicable provisions of state and federal laws.

Five Year Remedy Performance Evaluation Reports

The purpose of these reports is to provide an evaluation of the long-term effectiveness and reliability of the selected remedy including in-situ treatment and monitored natural attenuation with recommendations for improvement. The report examines such questions as: Are the media cleanup objectives and remedy performance standards being achieved? How well are things working? Are contaminant concentrations levels trending downward? What improvements are necessary and how will they be implemented?

Financial Assurance for The Remedy

Financial Assurance is required for monitoring, construction, operation and maintenance of any selected remedy. PG&E will be required to comply with the financial responsibility requirements pursuant to California Health and Safety Code Section 25245 to assure that the required remediation work will be completed now and into the future. PG&E must satisfy the financial responsibility requirement within a reasonable period of time as determined by DTSC after selection of the Preferred Alternative. The initial funding level shall be based on the conceptual cost estimate for the alternative as set forth in the CMS/FS. The funding level for financial assurance mechanism will be adjusted to reflect the costs estimate to be revised as part of the final remedy design and updated annually.

Based on the information currently available, DTSC believes the Preferred Alternative (Alternative E with the addition of monitored natural attenuation) meets the threshold criteria and best addresses the balancing criteria/ remedy selection decision factors. DTSC has also identified several mitigation measures during the preparation of the draft EIR pursuant to CEQA requirements. These mitigation measures are considered a part of the action required for the implementation of the Preferred Alternative (see the draft EIR for the listing of the mitigation measures). DTSC expects the groundwater Preferred Alternative as defined above to satisfy all requirements of a final groundwater remedy as required under the RCRA Corrective Action program and will satisfy the requirements in accordance with the 1996 Corrective Action Consent Agreement with PG&E.

COMMUNITY PARTICIPATION

DTSC, in conjunction with DOI, is providing information regarding the cleanup of the PG&E Topock Site to the public through open house/public hearings sessions, the Administrative Record file in the public information repositories for the Site, and announcements published in several local community area newspapers prior to the start of the Public Comment Period. (Listed on page 17) DTSC and DOI encourage the public to gain a more comprehensive understanding of the Site and the investigation and cleanup activities that have been and will be conducted at the Site. DTSC, in consultation with DOI, may modify the Preferred Alternative or select another remedial alternative presented in this draft Statement of Basis upon evaluation of new information and/or comments received during the public comment period. Therefore, the public is encouraged to review and comment on all alternatives presented in this draft Statement of Basis and its associated draft EIR.

The dates for the public comment period and the location, dates and time of the open houses and hearing sessions are provided on the front page of this draft Statement of Basis. The locations of the public repositories for the Administrative Record file can be found on the last page of this document.

For further information on the PG&E Topock cleanup and to submit written comments during the public comment period, please contact:

Mr. Aaron Yue Project Manager Department of Toxic Substances Control 5796 Corporate Avenue Cypress, California 90630 Email: <u>ayue@dtsc.ca.gov</u> Fax: 714.484.5439 This draft Statement of Basis, draft EIR, project reports, fact sheets, and other project related documents are located in the information repositories listed below:

<u>Needles Library</u> 1111 Bailey Avenue Needles, CA 92363 Contact: Kristin Mouton, (760) 326-9255

<u>Chemehuevi Indian Reservation</u> Environmental Protection Office 2000 Chemehuevi Trail Havasu Lake, CA 92363 Contact: Dave Todd, (760) 858-1140

Golden Shores/Topock Station Library 13136 S. Golden Shores Parkway Topock, AZ 86436 Contact: Avis McKinnon, (928) 768-2235

Lake Havasu City Library 1770 McCulloch Boulevard Lake Havasu City, AZ 86403 Contact: Sharon Lane, (928) 453-0718

<u>Colorado River Indian Tribes Library</u> Second Avenue and Mohave Road Parker, AZ 85344 Contact: Amelia Flores (928) 669-1285

Parker Library 1001 Navajo Avenue Parker, AZ 85344 Contact: Jana Ponce, (928) 669-2622

Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630 Contact: Julie Johnson, (714) 484-5337 Please call for an appointment.

Or you may access the DTSC Website at: <u>http://www.dtsc.ca.gov</u>

or the Topock Website at: <u>http://www.dtsc-topock.com</u> Under "Document Library" Public notices announcing the comment period and hearing locations will be published in the following newspapers listed below:

Mohave Daily News

- San Bernardino County
- Today's News-Herald

Needles Desert Star

Parker Pioneer

Topock Topics

Kingman Daily Minor