Topock Project I	Executive Abstract
Document Title:	Date of Document: January 15, 2013
Combined Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half 2012, and Performance Assessment Report, Interim Measures No. 3, Injection Well Field (PGE20130115A)	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E
Submitting Agency: DOI	
Final Document? X Yes No	
Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document: Draft Report Letter Memo	Action Required: Information Only Review & Comment Return to: By Date: Other / Explain:
□ Other / Explain: What does this information pertain to? □ Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) □ RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) □ Corrective Measures Study (CMS)/Feasibility Study (FS) □ Corrective Measures Implementation (CMI)/Remedial Action □ California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) □ Interim Measures □ Other / Explain:	Is this a Regulatory Requirement? Yes No If no, why is the document needed?
What is the consequence of NOT doing this item? What is the consequence of DOING this item? Submittal of this report is a compliance requirement under DOI's ARARs beginning August 2011.	Other Justification/s: Permit Other / Explain:
of injection wells operation and the influence of treated water of	f adverse effects to aquifer water quality as a result of the injection. al and safety impacts associated with the trucking of treated
and compliance wells (CW series) screened in the shallow, midd	ne injection well area and (2) to ensure that the quality of the nitoring network consists of multiple observation wells (OW series) lle, and/or deep zones of the alluvial aquifer. The injection of d Half 2012, wells that exhibit water quality similar to the injected certain middle and all deep-zone compliance wells. Two of the
	d Half 2012 monitoring event, the 28.0 μg/L chromium result in lance, the result is not considered to be the result of the injection ium from the IM-3 treatment plant is approximately 1.0 μg/L or

2005. The results are thus considered reflective of the background water quality. In a letter dated January 5, 2007, DTSC stated

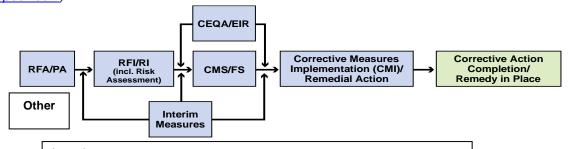
that it was not necessary to follow contingency plan requirements for hexavalent and background chromium with respect to OW-2S and OW-5S. The Colorado River Basin RWQCB concurred with this decision in a letter dated March 2, 2007. As such, the contingency plan was not triggered due to the chromium concentration detected in OW-2S. No other samples exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS. The next CMP event is scheduled to occur in April 2013.

Written by: PG&E

Recommendations:

This report is for your information only.

How is this information related to the Final Remedy or Regulatory Requirements:


Submittal of this report is a compliance requirement under DOI ARARs beginning August 2011.

Other requirements of this information?

None.

Related Reports and Documents:

Click any boxes in the Regulatory Road Map (below) to be linked to the Documents Library on the DTSC Topock Web Site (www.dtsc-topock.com).

Version 9

RFA/PA – RCRA Facility Assessment/Preliminary Assessment

RFI/RI - RCRA Facility Investigation/CERCLA Remedial Investigation (including Risk Assessment)

CMS/FS - RCRA Corrective Measure Study/CERCLA Feasibility Study

CEQA/EIR - California Environmental Quality Act/Environmental Impact Report

Yvonne J. Meeks Manager

Environmental Remediation

Mailing Address 4325 South Higuera Street San Luis Obispo, Ca 93401

6588 Ontario Road San Luis Obispo, Ca 93401

805.234.2257 E-Mail: YJM1@pge.com

January 15, 2013

Ms. Pamela Innis DOI Topock Remedial Project Manager United States Department of the Interior Office of Environmental Policy and Compliance P.O. Box 2507-D (D-108) Denver Federal Center, Building 56 Denver, CO 80225-0007

Mr. Aaron Yue **Project Manager** California Environmental Protection Agency, **Department of Toxic Substances Control** 5796 Corporate Avenue Cypress, CA 90630

Combined Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Subject:

Half 2012, and Performance Assessment Report Injection Well Field, Interim Measures No. 3, Injection

Well Field, PG&E Topock Compressor Station, Needles, California (Document ID: PGE20130115A)

Dear Ms. Innis and Mr. Yue:

This letter presents the Combined Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half 2012, and the Performance Assessment Report for the Interim Measures No. 3 at the Pacific Gas and Electric Company Topock Compressor Station.

The first performance assessment report (PAR) for the Interim Measure No. 3 (IM-3) injection well field was submitted on November 30, 2006, in accordance with the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) conditional authorization (Condition 18) to begin operating the IM-3 facilities, dated July 15, 2005. In response to the submitted report, DTSC in its January 5, 2007 letter, approved continued operation of the IM-3 injection wells and required Pacific Gas and Electric Company to continue submitting a PAR every 2 years to evaluate the injection well operations and the influence of treated water on aquifer quality.

This PAR documents performance of the injection well operations and the influence of treated water on aquifer quality through December 2012. With agency concurrence, this report is submitted on January 15, 2013 to be consistent with the compliance monitoring report (CMP) already scheduled for submittal on January 15, 2013.

This CMP presents the results of the Second Half 2012 compliance monitoring program groundwater monitoring event and has been prepared in conformance with the United States Department of the Interior August 18, 2011 letter stating that the IM-3 Waste Discharge Requirements are applicable or relevant and appropriate requirements.

The current contingency plan specifies the concentrations and values for hexavalent chromium [Cr(VI)], chromium, total dissolved solids (TDS), and pH to be used to determine if contingency plan actions are necessary based on sample results. The water quality objectives concentrations that are used to trigger the contingency plan Ms. Pam Innis Mr. Aaron Yue January 15, 2013 Page 2

are Cr(VI) greater than 32.6 micrograms per liter (μ g/L), chromium greater than 28.0 μ g/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

During the Second Half 2012 sampling event, the $28.0 \,\mu g/L$ chromium result in OW-2S was at the chromium water quality objective trigger level. For this exceedance, the result is not considered to be the result of the injection of treated groundwater because the average concentration of chromium from the IM-3 treatment plant is approximately $1.0 \,\mu g/L$ or less. Cr(VI) and background chromium concentrations at OW-2S have frequently been above the water quality objectives since November 2005. In addition, other parameters that would indicate arrival of the injected water at OW-2S (such as a change in sulfate or TDS concentrations) are not observed in samples from this well. The results are thus considered reflective of the variance in background water quality. In a letter dated January 5, 2007, DTSC stated that it was not necessary to follow contingency plan requirements for hexavalent and chromium with respect to OW-2S and OW-5S. The California Regional Water Quality Control Board, Colorado River Basin concurred with this decision in a letter dated March 2, 2007. As such, the contingency plan was not triggered due to the background chromium concentration detected in OW-2S. No other sample results exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS during the Second Half 2012 sampling event. The next CMP event is scheduled to occur in April 2013.

If you have any questions regarding the PAR or the CMP report, please call me at (805) 546-5243.

Sincerely,

Yvonne Meeks

Topock Remediation Project Manager

Geonne Meeks

cc: Robert Perdue, Water Board Jose Cortez, Water Board Christopher Guerre, DTSC

Enclosures:

Combined Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2012, and Performance Assessment Report, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Combined Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2012, and Performance Assessment Report,

Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Document ID: PGE20130115A

Prepared for

United States Department of the Interior

On behalf of

Pacific Gas and Electric Company

January 15, 2013

CH2MHILL

155 Grand Avenue, Suite 800 Oakland, CA 94612

Combined Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2012, and Performance Assessment Report, Interim Measures No. 3, Injection Well Field,

PG&E Topock Compressor Station, Needles, California

Prepared for

California Environmental Protection Agency,
Department of Toxic Substance Control

on Behalf of

Pacific Gas and Electric Company

January 15, 2013

This report was prepared under the supervision of a California Professional Engineer

This report was prepared under the supervision of a California Professional Geologist

John Porcella, P.E. Project Engineer Serena Lee

Professional Geologist, P.G. #8259

Jay Piper

Project Manager

Contents

Section	n	Page
Acrony	yms and Abbreviations	v
1.0	Introduction	1-1
	1.1 History and Purpose of the Topock Interim Measure	1-1
	1.2 Description of Groundwater Injection Well Field	
	1.3 Compliance Monitoring Program	
	1.3.1 Status of Monitoring Activities	1-5
2.0	Summary of CMP Second Half 2012 Results	
	2.1 Analytical Results	
	2.1.1 Hexavalent Chromium and Chromium	
	2.1.2 Other Metals and General Chemistry	
	2.1.3 ARAR Monitoring Requirements	
	, , , , , , , , , , , , , , , , , , , ,	
3.0	Injection Well Operational Assessment	
	3.1 Injection Well Performance	
	3.2 Effect of Injection on Groundwater Levels	
4.0	Influence of Treated Water on Aquifer Water Quality	
	4.1 Treatment Plant Effluent Water Quality and Groundwater Quality Before and After Injection	
- 0	4.2 Water Quality Trends	
5.0	Summary and Recommendations	
6.0	References	6-1
7.0	Certification	7-1
Appen	dices	
Α	Laboratory Reports, Second Half 2012 (provided on CD-ROM only)	
В	Field Sheets (provided on CD-ROM only)	
С	ARAR Monitoring Information for Groundwater Samples, Second Half 2012	
Exhibit	ts	
1-1	Summary of Injection, Observation, and Compliance Wells Design Information and Installation Dates	1-3
1-2	Summary of Injection Field Monitoring Wells	
1-3	Historical Modifications to the Compliance Monitoring Program	1-4
Tables		
1-1	Operational Status of Interim Measures No. 3 Injection Wells from July 2005 through December 2012	
1-2	Well Construction and Sampling Summary for Groundwater Samples, Second Half 2012	
2-1	Chromium Results for Groundwater Samples, Second Half 2012	
2-2	Metals and Cation Results for Groundwater Samples, Second Half 2012	
2-3	Other Inorganics Results for Groundwater Samples, Second Half 2012	
3-1	Injection Rates and Volumes	
3-2	Manual Water Level Measurements and Elevations, Second Half 2012	

ES122810042555BAO\110130003 iii

- 3-3 Vertical Gradients within the OW and CW Clusters
- 3-4 Field Parameter Measurements and Manual Water Level Measures for Groundwater Samples, Second Half 2012
- 4-1 Treated Water Quality Compared to OW and CW Pre-injection Water Quality
- 4-2 Treated Water Quality Compared to Second Half 2012 Sampling Event Water Quality

Figures

- 1-1 Site Location and Interim Measures No. 3 Treatment System
- 1-2 Monitoring Locations for CMP and Injection Well Field
- 3-1 IM-3 Operation Data Injection Well Performance August 2005 December 2012
- 3-2A CW-1 Hydrographs and IW Injection Rate
- 3-2B CW-2 Hydrographs and IW Injection Rate
- 3-2C CW-3 Hydrographs and IW Injection Rate
- 3-2D CW-4 Hydrographs and IW Injection Rate
- 3-2E OW-1 Hydrographs and IW Injection Rate
- 3-2F OW-2 Hydrographs and IW Injection Rate
- 3-2G OW-5 Hydrographs and IW Injection Rate
- 3-3A Average Groundwater Elevation Contours for Shallow Wells, October 23, 2012
- 3-3B Average Groundwater Elevation Contours for Mid-Depth Wells, October 23, 2012
- 3-3C Average Groundwater Elevation Contours for Deep Wells, October 23, 2012
- 3-4A Average Groundwater Elevation Contours for Mid-Depth Wells, November 29, 2010
- 3-4B Average Groundwater Elevation Contours for Deep Wells, November 29, 2010
- 3-5A Average Groundwater Elevation Contours for Mid-Depth Wells, October 1 to October 31, 2008
- 3-5B Average Groundwater Elevation Contours for Deep Wells, October 1 to October 31, 2008
- 4-1A OW-1S, OW-2S, OW-5S Water Quality Hydrographs
- 4-1B OW-1M, OW-2M, OW-5M Water Quality Hydrographs
- 4-1C OW-1D, OW-2D, OW-5D Water Quality Hydrographs
- 4-1D CW-1M, CW-2M, CW-3M, CW-4M Water Quality Hydrographs
- 4-1E CW-1D, CW-2D, CW-3D, CW-4D Water Quality Hydrographs

ES122810042555BA0\110130003

Acronyms and Abbreviations

ARAR applicable or relevant and appropriate requirement

Cr chromium

Cr(VI) hexavalent chromium

CMP compliance monitoring program

CW compliance well

DOI United States Department of the Interior

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

gpm gallons per minute

IM Interim Measure

IM-3 Interim Measure No. 3

IW injection well

μg/L micrograms per litermg/L milligrams per literOW observation well

PAR performance assessment report
PG&E Pacific Gas and Electric Company
QAPP quality assurance project plan

TDS total dissolved solids

USEPA United States Environmental Protection Agency

Water Board California Regional Water Quality Control Board, Colorado River Basin

WDR Waste Discharge Requirements

WQO water quality objective

ES122810042555BAO\110130003

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM is implemented under the oversight of California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) and consists of groundwater extraction for hydraulic control of the plume boundaries near the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as Interim Measure No. 3 (IM-3). Currently, the IM-3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well (IW) field for the discharge of the treated groundwater. Figure 1-1 shows the location of the IM extraction, conveyance, treatment, and injection facilities. (All figures and tables are located at the end of this report.) The injection well field comprises two injection wells and a network of monitoring wells.

On July 15, 2005, DTSC conditionally authorized PG&E to begin operating the IM-3 facilities, including the injection well field (DTSC, 2005a). As part of the authorization, DTSC considered the injection of treated water from the IM-3 system as a limited-duration pilot study authorized through January 31, 2007. DTSC further directed that PG&E assess the performance of the injection well field and submit a report by November 30, 2006.

As directed, on November 30, 2006, PG&E submitted the first biennial *Performance Assessment Report IM3 Injection Well Field, PG&E Topock Compressor Station, Needles, California* (PAR) (CH2M HILL, 2006a), documenting performance of the IM-3 injection well field during the DTSC-mandated temporary operation period. Based on data presented in the November 2006 PAR, in a letter dated January 5, 2007 (DTSC, 2007a), DTSC approved the continued operations of the IM-3 injection wells and required PG&E to continue to submit a performance assessment report every 2 years to evaluate the injection well operations and the influence of treated water on aquifer quality.

This fourth biennial PAR documents performance of the injection well operations and the influence of treated water on aquifer quality through December 2012. As done previously (DTSC, 2010a), DTSC concurred via an email dated November 29, 2012 (DTSC, 2012), with the PG&E proposal to defer the submission of the biennial report until January 15, 2013 and to combine this report with the *Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2012, Interim Measures No. 3, PG&E Topock Compressor Station, Needles, California*.

The submission of this fourth biennial report meets the requirement of Condition 18 in DTSC's July 15, 2005 and January 5, 2007 letters to assess the performance of the injection well field as a methodology for management of treated water from the IM-3 system beyond the pilot study period. This report briefly describes the background of the project and the IM-3 system, including the design basis. The report also discusses injection system operational performance, injection system maintenance activities, and groundwater quality and hydraulic changes associated with the injection system to provide the rationale for continued subsurface injection of treated groundwater.

1.1 History and Purpose of the Topock Interim Measure

The purpose of the IM at the Topock Compressor Station is to maintain hydraulic control of the groundwater plume boundaries in the Colorado River floodplain until the time that a final corrective action is in place at the site. As defined by DTSC, the performance standard for the IM is to "establish and maintain a net landward hydraulic gradient, both horizontally and vertically, that ensures that hexavalent chromium [Cr(VI)] concentrations at or greater than 20 micrograms per liter $[\mu g/L]$ in the floodplain are contained for removal and treatment" (DTSC, 2005b).

PG&E began implementing the IM at the PG&E Topock site in March 2004. Initially, groundwater was extracted from a monitoring well cluster, MW-20, located on a bench above and to the west of the Colorado River floodplain (commonly referred to as the MW-20 bench). Prior to the construction and operation of the current groundwater treatment and injection system, a batch treatment plant was located on the MW-20 bench, and

ES122810042555BAO\110130003 1-1

treated groundwater was transported offsite for disposal at a permitted facility. While this operation was effective in controlling hydraulic gradients in the vicinity of the floodplain, it also generated a large number of truck trips from the site to the permitted disposal facility to manage the entire flow of extracted groundwater, and the treatment capacity was limited to approximately 80 gallons per minute (gpm) due to space limitations on the MW-20 bench.

This operation was eventually replaced by the current groundwater extraction well system. Groundwater extraction began at wells TW-2S and TW-2D in May 2004, at well TW-3D in December 2005, and at well PE-1 in early 2006. Of the four extraction wells, two are currently in normal operation (TW-3D and PE-1).

Construction of the current IM-3 treatment and injection system began in September 2004 and was completed in July 2005. The existing groundwater treatment system is a continuous, multi-step process that involves removing chromium by chemical reduction, precipitation, and filtration, and reducing total dissolved solids (TDS) using reverse osmosis. The treatment plant is designed to treat up to 135 gpm of extracted groundwater. Treatment plant operation yields an effluent (injection) flow rate of approximately 125 gpm. The remaining flow (up to 15 gpm) becomes a reverse osmosis brine stream that is transported offsite for disposal at a permitted facility. Additional information on the treatment process performance and capacities is contained in the *Interim Measures No. 3 Treatment and Extraction System Operation and Maintenance Plan Rev. 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2006b) and the *Construction Completion Report, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005a).

Treated groundwater is returned to the aquifer through an injection system consisting of two wells, IW-2 and IW-3. Injection of treated groundwater from IM-3 began on July 31, 2005, as authorized by Waste Discharge Requirements (WDR) Order R7-2004-0103 (California Regional Water Quality Control Board, Colorado River Basin Region [Water Board], 2004). Treated groundwater from the Topock IM-3 has been continuously managed through injection since that time.

WDR Order R7-2006-0060 (Water Board, 2006) was issued September 20, 2006 and was the successor to WDR Order No. R7-2004-0103. The Waste Discharge Requirements (WDR Order No. R7-2006-0060) expired on September 20, 2011 and was replaced by the United States Department of the Interior (DOI) enforcement of the WDR as applicable or relevant and appropriate requirements (ARARs), as documented in correspondence between the Water Board, DOI, and PG&E during the summer of 2011, and as further discussed in Section 1.3.

In compliance with ARARs, PG&E collects treated effluent samples from the IM-3 treatment plant and analyzes for dissolved chromium (Cr), Cr(VI), metals, specific conductance, TDS, turbidity, flow rate, major inorganic cations and anions, and water quality indicator parameters. The results of these analyses are reported quarterly to the DOI and the Water Board, along with other required information and a summary of operations.

1.2 Description of Groundwater Injection Well Field

Treated effluent from the IM-3 treatment plant is pumped through an aboveground pipeline to the injection well field located nearly 2,000 feet west of the plant. The well field, located on what is referred to as the East Mesa, comprises two injection wells (IW-2 and IW-3). Surrounding the injection wells are three observation well (OW) clusters (OW-1, OW-2, and OW-5) located on the East Mesa. Surrounding the East Mesa are four additional monitoring well clusters, known as the compliance wells (CWs): CW-1, CW-2, CW-3, and CW-4. The locations of the injection wells, observation well clusters, and the compliance well clusters are shown in Figure 1-2.

Information for the three different well types is summarized in Exhibit 1-1. The injection wells, observation well clusters, and compliance well clusters were installed between December 2004 and February 2005.

1-2 ES122810042555BAO\110130003

EXHIBIT 1-1

Summary of Injection, Observation, and Compliance Wells Design Information and Installation Dates

Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and

PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Well Type (IDs)	Description	Work Plan	Installation Date	Installation Report
Injection (IW-2, IW-3)	Six-inch diameter stainless-steel louvered screens connected to mild steel risers using a mechanical coupling device. One hundred and sixty-foot screened interval. Total depth of injection wells: 340 and 330 feet deep, respectively. Two hundred gpm each design injection capacity.	CH2M HILL, 2004a	December 2004	CH2M HILL, 2005c
Observation (OW-1,	Monitoring well clusters consisting of three individual completions at various depths. Two-inch Schedule 40 polyvinyl chloride casing and screen. Twenty-foot screened interval.	CH2M HILL,	September to	CH2M HILL,
OW-2, OW-5)		2004b	December 2004	2005c
Compliance (CW-1,	Monitoring well clusters consisting of two individual completions at various depths. Two-inch Schedule 40 polyvinyl chloride casing and screen. Fifty-foot screened interval.	CH2M HILL,	January to	CH2M HILL,
CW-2, CW-3, CW-4)		2005b	February 2005	2005c

The design injection capacity of 200-gpm each for IW-2 and IW-3 provides 50-percent excess capacity above the plant design capacity in each injection well, and the two wells also provide 100-percent injection well redundancy as only one well is in service at a time.

Two types of monitoring wells have been installed in the injection well field. Exhibit 1-2 lists the name, well identifications, and monitoring zone of each type.

EXHIBIT 1-2 Summary of Injection Field Monitoring Wells

Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

		Distance from	M	onitoring Zone	s
Group Name	Well IDs	Injection Wells, feet	Shallow	Mid-depth	Deep
Observation Wells	OW-1, OW-2, and OW-5	50 to 100	Х	Х	Χ
Compliance Wells	CW-1, CW-2, CW-3, and CW-4	300 to 550		Х	Χ

Source: CH2M HILL, 2005c.

The procedures for maintaining the injection wells are described in the *Interim Measures No. 3 Injection Well Operation and Maintenance Plan, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005d) and its revision (CH2M HILL, 2006b).

1.3 Compliance Monitoring Program

The Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, Topock Compressor Station, Needles, California (CH2M HILL, 2005e) (herein referred to as the Compliance Monitoring Plan) was submitted to the Water Board and the DTSC on June 17, 2005. The Compliance Monitoring Plan and its Addendum (CH2M HILL, 2005f) provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the compliance monitoring program (CMP). Several modifications of the sampling and reporting procedures have been approved since 2005, as outlined in Exhibit 1-3.

ES122810042555BAO\110130003 1-3

EXHIBIT 1-3
Historical Modifications to the Compliance Monitoring Program

Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Modification	Approval Date	Reference			
Modification of reporting requirements	DTSC: June 9, 2006	DTSC, 2006			
Reduction of constituents analyzed during quarterly	Water Board: January 23, 2007	Water Board, 2007a			
sampling of CMP observation wells	DTSC: January 22, 2007	DTSC, 2007b			
		CH2M HILL, 2006c			
Change from laboratory pH to field-collected pH for	Water Board: October 16, 2007	Water Board, 2007b			
reporting	DTSC: January 22, 2008	DTSC, 2008a			
Modification of hexavalent chromium analytical	Water Board: November 13, 2007	Water Board, 2007c			
methods to extend hold time to 28 days	DTSC: January 22, 2008	DTSC, 2008a			
Modification of sampling and reporting frequency and	Water Board: August 28, 2008	Water Board, 2008			
the field pH trigger range for the CMP contingency plan	DTSC: December 12, 2008 (pH), September 3, 2009	DTSC, 2008b, 2009			
DOI adopts WDRs as ARARs	DOI: August 18, 2011	DOI, 2011			
	Water Board: July 26, 2011	Water Board, 2011			
		PG&E, 2011			

PG&E is currently performing the CMP, as authorized by the DOI waste discharge ARARs. Specifically, the letter agreement issued July 26, 2011 from the Water Board to DOI (Water Board, 2011) requested:

- DOI concurrence that the WDRs are ARARs under the Comprehensive Environmental Response,
 Compensation and Liability Act of 1980 response action ongoing at the site.
- DOI confirmation that it will enforce these WDRs pursuant to the Administrative Consent Agreement entered into by DOI and PG&E in 2005 in lieu of the Water Board's adoption of a new Board Order to replace the expiring Board Order that set forth the WDRs.
- DOI concurrence with the roles and responsibilities between DOI and the Water Board for monitoring and enforcement.

In its letter dated August 18, 2011, the DOI provided concurrence and confirmation as requested (DOI, 2011). PG&E confirmed these changes with a letter to the DOI and the Water Board dated September 7, 2011 (PG&E, 2011). These changes add the DOI as the receiving regulatory agency for the CMP reports, with the Water Board continuing to receive report copies. Work described in this report was performed in accordance with the ARARs established in the July 26, 2011 letter (Water Board, 2011).

The ARARs specify effluent limitations, prohibitions, specifications, and provisions for subsurface injection. The monitoring and reporting program contained within the ARARs specifies the requirements for the CMP to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality.

Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005a), and injection into IW-2 began on July 31, 2005. Table 1-1 provides a summary of the history of injection for IM-3.

Figure 1-2 shows the locations of the injection wells and the groundwater monitoring wells (OWs and CWs) in the CMP. Table 1-2 provides a summary of information on well construction and sampling methods for all wells in the CMP.

1-4 ES122810042555BA0\110130003

As of October 2012, samples are collected from OWs and CWs according to the following schedule:

- Three OWs (OW-1S, OW-2S, and OW-5S) located near the IM-3 injection well field are sampled semiannually (during the second and fourth quarters) for a limited suite of constituents.
- Six OWs (OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D) are:
 - Sampled annually for a limited suite of constituents during the fourth quarter.
 - Sampled for a full suite of constituents one cluster at a time on a triennial (once every 3 years) schedule.
 Within each 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents.
 The triennial sampling will occur during the annual event (fourth quarter).
- Eight CWs are sampled semiannually for a limited suite of constituents and annually (during the fourth quarter) for a full suite of constituents.

For semiannual events, laboratory analyses include TDS, turbidity, specific conductance, a reduced suite of metals, and several inorganic cations and anions. Annual and triennial sampling events for CWs and select OWs include chromium, Cr(VI), metals, specific conductance, TDS, turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data—including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity—are also measured during each monitoring event (CH2M HILL, 2005e).

This report presents the results of the Second Half 2012 CMP groundwater monitoring event. The Second Half 2012 event was a semiannual event conducted from October 15 through October 18, 2012. The monitoring and sampling activities completed during the Second Half 2012 consisted of the following activities:

- Water quality samples were collected from nine observation and eight compliance monitoring wells.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at wells CW-2D and OW-5M to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005g) and standard operating procedure addendums.

CMP groundwater samples were analyzed by California-certified analytical laboratories: Truesdail Laboratories, Inc. in Tustin, California, Advanced Technology Laboratories in Las Vegas, Nevada, and Advanced Sciences in Corvallis, Oregon. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005g) and standard operating procedure addendums. Data validation and management were conducted in accordance with the *PG&E Program Quality Assurance Project Plan* [QAPP] (CH2M HILL, 2012a) and the *Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects* (CH2M HILL, 2008) and revisions.

1.3.1 Status of Monitoring Activities

1.3.1.1 Semiannual Monitoring

The next semiannual CMP monitoring event will occur in April during the first half of 2013. This CMP monitoring event will include the sampling and analysis scope presented in Attachment A of DOI's November 18, 2011 letter (DOI, 2011). The groundwater monitoring report for this CMP monitoring event will be submitted by July 15, 2013.

E\$122810042555BAO\110130003 1-5

1.3.1.2 Annual Monitoring

The next annual CMP monitoring event will occur in October during the second half of 2013. The groundwater monitoring report for this annual CMP monitoring event will be submitted by January 15, 2014.

1-6 ES122810042555BAO\110130003

2.0 Summary of CMP Second Half 2012 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the Second Half 2012. Figure 1-2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), chromium, specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the Second Half 2012 monitoring event are presented in Appendices A and B, respectively.

2.1 Analytical Results

Nine observation wells and eight compliance wells were sampled during the Second Half 2012 sampling event. Analytical results for Cr(VI), chromium, other metals, and general chemistry parameters are shown in Tables 2-1, 2-2, and 2-3 and are discussed below. Interim action levels/water quality objectives (WQOs) were updated on August 8, 2006 when PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), chromium, TDS, and pH to be used to determine if contingency plan actions were necessary based on sample results. A modification of the CMP contingency plan pH range was approved by the Water Board and DTSC in 2008 (Water Board, 2008; DTSC, 2008b).

2.1.1 Hexavalent Chromium and Chromium

Table 2-1 shows the Cr(VI) and chromium analytical results for groundwater in the shallow, middle, and deep wells from the Second Half 2012 CMP sampling event. During the Second Half 2012 sampling event, no Cr(VI) sample results exceeded the WQO trigger level for Cr(VI) of 32.6 μ g/L. For shallow wells, the maximum detected Cr(VI) concentration was 26.8 μ g/L in well OW-2S on October 18, 2012. For the middle wells, the maximum detected Cr(VI) concentration was 7.2 μ g/L in well CW-4M on October 16, 2012. For the deep wells, the maximum detected Cr(VI) concentration was 1.1 μ g/L in well CW-4D on October 16, 2012.

For shallow wells, the maximum detected chromium concentration was 28.0 μ g/L in well OW-2S on October 18, 2012. For the middle wells, the maximum detected chromium concentration was 6.6 μ g/L in well CW-4M on October 16, 2012. For the deep wells, all concentrations were nondetect [ND (1.0)]. During the Second Half 2012 sampling event, the 28.0 μ g/L background chromium result in OW-2S was at the chromium WQO trigger level. This result is not considered to be the result of the injection of treated groundwater because the average concentration of chromium from the IM-3 treatment plant is approximately 1.0 μ g/L or less (CH2M HILL, 2012b). Cr(VI) and background chromium concentrations at OW-2S have frequently been above the WQOs since November 2005. In addition, other parameters that would indicate arrival of the injected water at OW-2S (such as a change in sulfate or TDS concentrations) are not observed in samples from this well. The results are thus considered reflective of the variance in background water quality. In a letter dated January 5, 2007 (DTSC, 2007a), DTSC stated that it was not necessary to follow contingency plan requirements for hexavalent and chromium with respect to OW-2S and OW-5S. The Water Board concurred with this decision in a letter dated March 2, 2007 (Water Board, 2007d). As such, the contingency plan was not triggered due to the background chromium concentration detected in OW-2S. No other sample results exceeded the WQOs for Cr(VI), Cr, pH, or TDS during the Second Half 2012 sampling event.

2.1.2 Other Metals and General Chemistry

Table 2-2 presents the other metals and cation results for the CMP groundwater wells sampled during the Second Half 2012. Metals and cations detected in the Second Half 2012 sampling event included arsenic, barium, boron, calcium, magnesium, molybdenum, potassium, selenium, silver, sodium, vanadium, and zinc. In general, concentrations of metals and cations detected during the Second Half 2012 sampling event are similar to those detected in previous sampling events.

ES122810042555BAO\110130003 2-1

Table 2-3 presents other inorganic analyte and anion results from the CMP well samples. During the Second Half 2012, the sampling results from all wells were within the WQOs for TDS (less than 10,800 milligrams per liter [mg/L]) and pH (within 6.2 to 9.2). Sampling results for TDS varied from 1,030 mg/L in well OW-2S to 4,600 mg/L in well CW-3M. Field pH varied from 7.6 in wells OW-1S and OW-1M to 8.1 in wells CW-2D, CW-3D, and OW-2S.

Tables 2-2 and 2-3 also include results from a subset of wells being analyzed for contaminants of potential concern, including molybdenum, selenium, and nitrate. In an email dated March 3, 2010, DTSC directed monitoring of these contaminants of potential concern and potential in situ byproducts at select CMP wells (DTSC, 2010b).

2.1.3 ARAR Monitoring Requirements

Table C-1 in Appendix C identifies the laboratory that performed each analysis and lists the following information as required by the ARARs for the Second Half 2012 CMP monitoring event:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

2.2 Analytical Data Quality Review

The laboratory analytical data generated from the Second Half 2012 CMP monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP and QAPP addendums (CH2M HILL, 2008, 2012a). A detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

2.2.1 Matrix Interference

Matrix interference that affected the sensitivity for Cr(VI) when using United States Environmental Protection Agency (USEPA) Method E218.6 was encountered in one of the groundwater samples. The Cr(VI) sample result reflects an adjusted reporting limit of 1.0 μ g/L as a result of the serial dilution that was required to overcome the matrix interference and provide an acceptable matrix spike recovery. No qualifier flags were applied.

2.2.2 Matrix Spike Samples

All matrix spike acceptance criteria were met.

2.2.3 Quantitation and Sensitivity

With the exception of the matrix interference issues discussed in Section 2.2.1, all method and analyte combinations met the project reporting limit objectives.

2-2 ES122810042555BA0\110130003

2.2.4 Holding-time Data Qualification

For the current semiannual sampling event, all method holding-time requirements were met, except for following:

- Five samples analyzed for mercury (USEPA Method 200.8) one day outside holding time. The nondetect sample results were qualified and flagged "UJ" or nondetect with an estimated reporting limit.
- Six samples were analyzed for turbidity (SM 2130B) one day outside holding time. The nondetect sample result was qualified and flagged "UJ," and the detect sample results were qualified and flagged "J."

All other method analytical holding-time requirements were met.

2.2.5 Field Duplicates

All field duplicate acceptance criteria were met.

2.2.6 Method Blanks

All method blank acceptance criteria were met.

2.2.7 Equipment Blanks

All equipment blank acceptance criteria were met.

2.2.8 Laboratory Duplicates

All laboratory duplicate acceptance criteria for the analytical methods were met.

2.2.9 Calibration

Initial and continuing calibrations were performed as required by the analytical methods. All calibration criteria were met.

2.2.10 Temperature

Five samples analyzed for Nitrate/Nitrite (USEPA 353.2) were received in the subcontract laboratory at a temperature greater than 6 degrees Celsius. The detected sample results were qualified and flagged "J."

2.2.11 Conclusion

For the Second Half 2012 CMP sampling event, the completeness objectives were met for all method and analyte combinations. The analyses and data quality met the QAPP and laboratory method quality control criteria except as noted above. Overall, the analytical data are considered acceptable for the purpose of the CMP.

ES122810042555BAO\110130003 2-3

3.0 Injection Well Operational Assessment

3.1 Injection Well Performance

The injection well field is designed to accept all of the treated water from the IM-3 treatment plant. This is the primary performance metric. Table 3-1 lists the average injection rate, monthly and cumulative total volume of water injected, and the primary wells in service from August 2005 through December 2012.

The injection well performance has been monitored since they were put into service. A summary of operational status of IM-3 injection wells from July 2005 through December 2012 is presented in Table 1-1. Injection well performance is measured in terms of specific injectivity, which is measured in gallons per minute of flow per foot of increased head in the well (water level rise). Over time, the specific injectivity of injection wells typically declines due to plugging of pores from suspended solids in the injectate, precipitation of minerals in the well bore, air entrapment in the formation, biofouling, or a combination of these factors.

As indicated in Table 3-1, for the first reporting period (August 2005 through October 2006), IW-2 was used almost exclusively. The initial specific injectivity of IW-2 was approximately 33 gpm per foot; however, by October 2005, the specific injectivity was measured at 18 to 20 gpm per foot, as shown on Figure 3-1. Backwashing was conducted between July and November 2006 in an effort to restore the specific injectivity of IW-2; however, over time, IW-2 exhibited progressive loss in specific injectivity that backwashing was unable to reverse. IW-2 was removed from service from September 2006 through August 2008 in preparation for well rehabilitation (IW-3 was put into service during this time). The specific injectivity of IW-2 ranged from roughly 9 to 13 gpm per foot before it was removed from service in September 2006.

Based on the IW-2 well video survey conducted on November 13, 2007, moderate geochemical fouling in the form of a black-colored precipitate (believed to be manganese) was observed throughout the well. The precipitation of the black material was believed to be the principal cause of the decrease in IW-2's specific injectivity. Mechanical well rehabilitation efforts were conducted during February and March 2008 at IW-2 in an effort to restore the specific injectivity using less aggressive rehabilitation methods compared to chemical treatment methods. Mechanical rehabilitation methods, including brushing, bailing, over-pumping and surging, and airlift swabbing were employed to remove the solids and precipitate buildup. These efforts resulted in a measured increase in the specific capacity from 9 to 19 gpm per foot once the well was returned to service in August 2008.

Despite mechanical well rehabilitation and backwashing efforts conducted at IW-2 during 2008, the specific injectivity increase was short-lived, and specific injectivity declined from 19 to roughly 3 gpm per foot between September 2008 and November 2009; therefore, a second mechanical rehabilitation effort was conducted at IW-2 during February 2010. The specific injectivity increased from 3 to 12 gpm per foot but the increase in the specific capacity was again short-lived and declined to roughly 9 between February and November 2010. Injection well IW-3 was in service from September 2006 through August 2008 and was used almost exclusively during this time, as indicated in Table 3-1. The initial specific injectivity of IW-3 was approximately 35 to 38 gpm per foot, but specific injectivity declined to roughly 8 to 13 gpm per foot by September 2008 despite routine backwashing. IW-2 was returned to service in September 2008, and the two injection wells were alternated until November 2009 when mechanical well rehabilitation efforts were conducted at IW-3. The specific injectivity increased from roughly 8 to 19 gpm per foot after completing mechanical well rehabilitation at IW-3, but the increase in specific injectivity was also short lived; it declined to 5 gpm per foot by February 2010.

Manganese was believed to be the primary cause of injection well plugging throughout the life of both injection wells. Manganese is a byproduct in the treatment plant at IM-3 and, before March 2010, the effluent manganese concentrations varied sporadically, ranging from nondetect (< $10 \, \mu g/L$) up to $100 \, \mu g/L$. Since February 2010, changes were implemented at the IM-3 treatment plant to reduce manganese in the effluent. The effluent manganese concentrations during May 2010 through December 2010 were more stable and were less than $15 \, \mu g/L$. The reduction in manganese may be the reason for the slight upward trend observed in the specific

ES122810042555BAO\110130003 3-1

injectivity after March 2010, as seen in both IW-3 and IW-2, shown on Figure 3-1. The specific injectivity of IW-3 increased from roughly 5 to 9 gpm per foot from March to October 2010.

More aggressive rehabilitation efforts were conducted at both wells during October and November 2010 using chemical treatment. A 10-percent hydrochloric acid solution was injected and agitated into the well screen sections before aggressive and extensive swabbing and removal of dissolved manganese by pumping and surging were conducted. The specific injectivity in both wells increased from about 9 to 25 gpm per foot after chemical rehabilitation efforts were completed, as shown on Figure 3-1.

During the 2010 chemical well rehabilitation event, equipment was installed in the injection wells so that the Aqua Gard method (a nonintrusive well maintenance method) could be conducted in the future without having to modify the well heads. The Aqua Gard method uses liquid carbon dioxide that is injected into the well. Once injected into the well, the rapid expansion of the carbon-dioxide-phase change from liquid to gas results in an agitation mechanism that loosens geochemical deposits, silt, and biological plugging material that had reduced the specific injectivity of the well. Carbon dioxide injection is then followed by aggressive backwashing (or pumping) to remove the material that was loosened during carbon dioxide injection.

By May 2012, specific injectivity had declined to approximately 16.5 gpm per foot in IW-02 and 18 gpm per foot in IW-03 so the Aqua Gard treatment was conducted at both wells. After completing Aqua Gard, the specific injectivity increased to 22 gpm per foot in IW-02 and to 30 gpm per foot in IW-03. The specific injectivity has remained relatively constant since the treatment.

Backwashing of the injection wells will continue to maintain the specific injectivity of the injection wells. The injection wells will be operated on an alternating schedule, with each well receiving injection for roughly 2 to 4 weeks then offline for 2 to 4 weeks, with a backwash event occurring before being returned to service. This schedule will result in 6 months of idle time and 6 to 12 backwash events per well per year. If performance indicates a drop in specific injectivity, then the wells will either be backwashed more frequently or be rehabilitated using Aqua Gard or aggressive chemical methods.

It is important to note that each individual injection well currently has sufficient capacity to inject the entire treatment plant effluent flow. The system has adequate spare capacity, and the maintenance program is implemented to maintain sufficient capacity for operation.

3.2 Effect of Injection on Groundwater Levels

Table 3-2 presents the manual water level measurements and groundwater elevations from snapshots taken during Third and Fourth Quarters 2012 per the DOI ARAR requirements (DOI, 2011). In compliance with Condition No. 2 of DTSC's 2009 conditional approval letter (DTSC, 2009), confirmation was obtained from the IM-3 Plant Manager that the IM-3 plant was operating normally on both the day before and the day of CMP sample collection, with no backwash or unplanned shutdowns (see Appendix B for field notes).

Water level measurements were collected continuously (measurements collected every half hour) with pressure transducers in select wells to produce hydrographs. Figures 3-2A through 3-2G present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the Second Half 2012 reporting period at specified observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 3-3A through 3-3C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The measurement date is shown on each figure title.

Table 3-3 presents a summary of the manual water levels and field water quality data measured during the Second Half 2012 monitoring event. A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and before groundwater sampling.

A discussion of the collected data follows in the sections below.

3-2 ES122810042555BAO\110130003

3.2.1 Groundwater Gradient Characteristics

The monitoring wells in the middle and deep zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation. Therefore, the groundwater contours in Figures 3-3B and 3-3C should be viewed as approximate.

The injection well field is located in the East Mesa area of the Topock site, as shown on Figure 1-2. Overall sitewide water level contour maps for shallow wells are prepared annually under a separate report, with flow consistently being shown to move to the east/northeast across the uplands portions of the site (CH2M HILL, 2012c).

The effects of injection in the IM-3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection wells IW-2 and IW-3. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 86 months of injection, the mound increased and then stabilized in height at approximately 1 foot or less in elevation above the surrounding water level elevations. Figures 3-3B and 3-3C present groundwater elevation contours for the average groundwater elevation of the mound within the middle and deep wells using October 23, 2012 groundwater elevations. Similarly, Figures 3-4A and 3-4B present water level contour maps for middle and deep wells using November 2010 data. For the past 2 years, the injection rate at IM-3 injection well field has averaged approximately 127 gpm. Figure 3-5A and 3-5B present water-level contour maps for middle and deep wells using October 2008 data. Over the past 4 years of injection, the water level contour patterns are comparable for both middle and deep wells, respectively, indicating that the groundwater levels in the middle and deep zones are currently in near hydraulic steady-state with the current rate of injection. Comparison between these figure sets does not show significant change in water level contours over 4 years of IM-3 operation. It is not anticipated that continued injection at the current rate will result in any further significant changes in groundwater level, flow directions, or velocities in the injection well field.

The groundwater mound associated with injection is broader and flatter in the deep zone. The mound in the middle zone is more localized around the injection wells. This is consistent with the spinner log results from both injection wells, which showed higher permeability in the deep zone. The mound displays approximately 1 foot or less of total height in either middle or deep zones, as measured by the difference between OW and CW groundwater elevations, as shown in Figures 3-3B and 3-3C. This represents a slight increase in the magnitude of the horizontal gradient, although this increase is restricted to the area of the mound itself. Outside of the defined mound area, there is no significant effect of injection on groundwater levels.

The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (more widely spaced contours) in the direction of the major axis are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area. In aquifers in alluvial fan depositional environments, the permeability is often higher in the down-fan direction and lower in the cross-fan direction. This is due to the higher degree of connectedness of the sand and gravel layers in the direction of stream flow on the former fans (Fetter, 1994). The orientation of the long axis of the mound near the injection well field is northeast-southwest and generally consistent with the likely alignment of alluvial fans in the area.

As shown in Table 3-1, the combined injection rates at IW-2 and IW-3 have ranged between 113.5 and 134.2 gpm since December 2010. Groundwater levels have been monitored in all observation and compliance wells since several months before starting injection. Figures 3-2A through 3-2G are hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed since June 2005 at the observation and compliance monitoring wells. Average vertical gradients in the IM-3 injection well field area have been upward at the OW and CW clusters since injection began and also generally upward between each of the depth intervals in those same well clusters. Table 3-4 presents the vertical gradient data calculated using the May 2, 2012 groundwater elevations. The observed gradients from Second Half 2012 and since injection began are consistent with IM-3

ES122810042555BAO\110130003 3-3

design expectations. Because the injection wells are screened in the deeper portions of the aquifer, the injection of treated water into the deep zone of the aquifer tends to increase the head in the deep and middle portions of the aquifer more than in the shallow portion. Groundwater levels in the middle and deep observation and compliance wells respond more quickly to changes in injection rate than shallow water levels. This is partially due to the semiconfined nature of the aquifer in middle and lower zones. Confined and semiconfined aquifers typically have storage coefficients several orders of magnitude smaller than unconfined aquifer systems and therefore respond much more quickly to changes in hydraulic stress. The other reason for this observation is that the vast majority of injected water is flowing into the deep zone, based on spinner log borehole flow profile data collected shortly after the injection well installation. Moreover, the aquifer response of the middle and deep wells to the injected water is generally comparable for all the biennial reporting periods (first biennial reporting period August 2005 through October 2006, second biennial reporting period November 2006 through December 2008, third biennial reporting period January 2009 through December 2010, and the fourth biennial reporting period January 2011 through December 2012).

The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is generally of the same order of magnitude throughout the injection area. The observed groundwater gradients in the IM-3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

3-4 ES122810042555BAO\110130003

4.0 Influence of Treated Water on Aquifer Water Quality

4.1 Treatment Plant Effluent Water Quality and Groundwater Quality Before and After Injection

Injection of treated water began on July 31, 2005. Previously, under WDR No. R7-2006-0060 for the IM-3 groundwater treatment system and now under the DOI's ARARs, PG&E is required to submit quarterly monitoring reports regarding operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water quality of the treated water being injected into the IM-3 injection well field.

Table 4-1 lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contain no detectable Cr(VI) or chromium, which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents but observable differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 4-1 also provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, October 7, 2007, and October 2, 2012. While there are differences among some parameters in these samples, a number of parameters show relatively consistent concentrations in the effluent. Analytes that are relatively consistent over the injection time period include Cr(VI), chromium, fluoride, molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. These seven constituents provide a characterization of the effluent that does not appear to vary greatly over time and can serve as a basis for determining whether a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of October 2010 through October 2012 effluent characteristics):

- Cr(VI): typically nondetect (or below 1.0 μg/L)
- Chromium: typically nondetect (1.0 μg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 20 μg/L
- Nitrate/nitrite as nitrogen: approximately 3.0 mg/L
- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative summary of the treated water quality over time.

Table 4-2 presents a comparison between the treated water quality and the results from the most recent sampling event (the Second Half 2012 sampling event). These samples were collected after approximately 86 months of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the Second Half 2012 sample results show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, OW-5D, CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are at locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Wells OW-1S, CW-2M, and CW-4M have chemical characteristics approaching that of treated water. To date, shallow

ES122810042555BAO\110130003 4-1

observation wells OW-2S and OW-5S and compliance well CW-3M do not show water quality effects due to injection of treated water, indicating that injected water has not yet reached these depths and locations. However, well OW-5S has increased in TDS since injection began in 2005, and CW-3M has increased in nitrate/nitrite as nitrogen, suggesting that the injection front is approaching these wells. Field-measured chemical parameters for the monitoring wells are presented in Table 3-3.

4.2 Water Quality Trends

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM-3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, chromium, fluoride, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each observation well during the second half 2010 within the IM-3 injection well field are presented in Figures 4-1A through 4-1E.

The graphs are divided into the three depth (shallow, mid, and deep) intervals for the observation wells, followed by the two intervals for the compliance wells. The effluent water quality information is also presented on these figures for comparative purposes. (Starting with First Quarter 2008, pH measurements on groundwater samples were no longer made through laboratory analysis due to the new 15-minute holding time for laboratory measurements with USEPA Method 150.1).

Observation well water quality hydrographs are presented in Figures 4-1A through 4-1C. These hydrographs show the same overall patterns: wells that are identified as affected by treated water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no net trends. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, it is inferred that the movement of treated water is nonuniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth wells (OW-2S and OW-5S) show little water quality variation over time. Sodium, chloride, vanadium, and molybdenum are particularly consistent with baseline pre-injection concentrations and show that the local groundwater quality at these shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 4-1D and 4-1E. Wells CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D show trends in TDS, sulfate, nitrate/nitrite as nitrogen, chromium, molybdenum, and Cr(VI) similar to the treated water. Wells CW-1M, CW-2M, and CW-4M show decreasing trends in Cr(VI) and chromium. These changes are attributed to the arrival of treated injection water.

4-2 ES122810042555BA0\110130003

5.0 Summary and Recommendations

The IM-3 groundwater injection system has operated successfully since July 31, 2005 and has been shown to be an effective strategy for management of treated groundwater generated through implementation of the IM at the PG&E Topock Compressor Station. The following summarizes the performance highlights of the injection system.

- **Predicted aquifer response**: The aquifer has responded hydraulically to the injection as expected. The groundwater mound near the injection wells is predominantly in the middle and deep aquifer zones and appears to show the influence of preferential permeability in the deep zone. The magnitude of the mound in the area of the nearby OW wells is approximately 0.8 foot in the deep zone and 1.0 foot in the middle zone based on the Second Half 2012 October snapshot data, and the magnitude dissipates with distance from the injection well. The direction of preferential flow appears to be in a northeast/southwest direction parallel with the depositional grain of the alluvial fan in the area of the injection wells. Preferential flow along the axis of an alluvial fan results from the alignment of sand and gravel layers along the stream channels as the fan is deposited (Fetter, 1994). Sand and gravel grains will tend to align with their long sides in the direction of the flow of water that deposits them off the fan. This alignment results in higher hydraulic conductivity in this direction than in the transverse or vertical directions.
- No adverse affect to aquifer water quality: There are no indications of adverse effects to aquifer water quality as a result of the injection. No unexpected or adverse geochemical reactions have been observed. The water quality in the middle and deep zones is generally improving in areas where the injected water has displaced the native groundwater. Injected water has not directly affected the shallow aquifer zone, although some water quality changes observed in the shallow zone may be associated with changes in localized groundwater flow directions associated with the injection.
- **Limited effect on shallow groundwater**: As expected, injected water is moving through the aquifer almost entirely in the middle and deep zones. Only minor effects in two shallow observation wells have been observed. Adverse effects of injection, if any, would therefore be seen first in the middle and deep zones, with a significant lag in time before arriving at shallower depths.
- Successful injection well operation: The injection wells have performed without significant problems for the fourth biennial reporting period, maintaining sufficient injection capacity throughout operation even though injection well performance declined during the life of the wells. Well rehabilitation, including Aqua Gard treatment and backwashing implemented at both wells, has improved and sustained the specific injectivity, as shown on Figure 3-1. Moreover, alternate use of both the injection wells has allowed smooth operation of the IM-3 injection well field. Backwashing will be performed regularly at each well to sustain the efficiency and well performance at both injection wells.
- Improved environment and safer operations: Operating the injection wells reduces the adverse
 environmental and safety impacts associated with the trucking of treated groundwater to a permitted offsite
 facility (offsite disposal of the 470 million gallons injected through December 2012 would have required over
 70,000 tanker truck trips). Reduced truck traffic results in lower vehicle emissions and reduces the chance of
 accidents.
- Water quality objectives achieved: During the Second Half 2012 monitoring event, the 28.0 μg/L background chromium result in OW-2S was at the chromium WQO trigger level. For this exceedance, the result is not considered to be the result of the injection of treated groundwater because the average concentration of chromium from the IM-3 treatment plant is approximately 1.0 μg/L or less. Cr(VI) and background chromium concentrations at OW-2S have frequently been above the WQOs since November 2005. The results are thus considered reflective of background water quality. In a letter dated January 5, 2007 (DTSC, 2007a), DTSC stated that it was not necessary to follow contingency plan requirements for hexavalent and background chromium with respect to OW-2S and OW-5S. The Water Board concurred with this decision in a letter dated March 2, 2007 (Water Board, 2007d). As such, the contingency plan was not triggered due to the background

ES122810042555BAO\110130003 5-1

chromium concentration detected in OW-2S. No other samples exceeded the water quality objectives for Cr(VI), pH, or TDS.

For these reasons, PG&E plans continued operation of the injection system under DTSC and DOI oversight as an effective method for managing the treated water and as an integral part of IM-3 system operations.

5-2 ES122810042555BAO\110130003

6.0 References

California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2005a. Letter to PG&E. "Conditional Approval for the Start Up and Operation of the Interim Measures No. 3 Treatment System and Injection Wells, Pacific Gas & Electric Company, Topock Compressor Station." July 15.
2005b. Letter to PG&E. "Criteria for Evaluating Interim Measures Performance Requirements to Hydraulically Contain Chromium Plume in Floodplain Area, Pacific Gas & Electric Company, Topock Compressor Station." February 14.
2006. Letter to PG&E. "Third and Fourth Quarter Groundwater Monitoring Reports, Compliance Monitoring Program for Interim Measures No. 3 Injection Well Field Area, Pacific Gas & Electric Company Topock Compressor Station, Needles, California." June 9.
2007a. Letter to PG&E. "Acceptance of the Performance Assessment Report for IM-3 Injection Well Field, Pacific Gas & Electric Company, Topock Compressor Station, Needles, California (EPA ID No. CAT080011729)." January 5.
2007b. Letter to PG&E. "Conditional Approval of Request for Reduced Groundwater Sampling Frequency for Select Constituents at Pacific Gas & Electric Company, Topock Compressor Station, Needle California." January 22.
2008a. Letter to PG&E. "Re: Analytical Methods for WDR Monitoring Programs." January 22.
2008b. Letter to PG&E. "PG&E Topock: pH Modification to the CMP." December 12.
2009. Letter to PG&E. "Conditional Approval of Modifications to the Compliance Monitoring Program, Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles California (EPA ID No. CAT080011729)." September 3.
2010a. Email to PG&E. "Re: Your attention appreciated – Request for Modification of Deadline/Format – PG&E Topock IM3 Biennial Performance Assessment Report for the Injection Wellfield" November 23.
2010b. Email to PG&E."Topock GMP Monitoring Frequency Modification, Topock Compressor Station, Needles, California." March 3.
2012. Email from Aaron Yue/DTSC to Jay Piper/CH2M HILL. "RE: Request for Modification of Deadline/Format PG&E Topock IM3 Biennial Performance Assessment Report for the Injection Wellfield." November 29.
California Regional Water Quality Control Board, Colorado River Region (Water Board). 2004. Waste Discharge Requirements R7-2004-0103. October 13.
2006. Waste Discharge Requirements R7-2006-0060. September 20.
2007a. Letter to PG&E. "Conditional Approval of Limited Sampling Frequency for Selected Metals/General, PG&E, Topock Compressor Station, Needles, California." January 23.
2007b. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060 and R7-2004-0080, Topock Compressor Station, San Bernardino County." October 16.
2007c. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060, R7-2006-0008, R7-2004-0080, and R7-2007-0015, Topock Compressor Station, San Bernardino County." November 13.
2007d. Letter to PG&E. "Contingency Plan Flow Chart, Board Order R7-2006-0060, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California." March 2.

ES122810042555BAO\110130003 6-1

- . 2008. Letter to PG&E. "Revision of Monitoring and Reporting Program (MRP), Board Order No. R7-2006-0060 Revision 1, Topock Compressor Station, San Bernardino County." August 28. _. 2011. Letter to DOI. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility – PG&E Topock Compressor Station Site." July 26. CH2M HILL. 2004a. Work Plan for Injection Well Installation on Parcel 650-151-06, PG&E Topock Compressor Station, Needles, California. November 15. . 2004b. Revised Final - Field Activities Summary for Observation Well Installation and Groundwater Characterization under IM-3, PG&E Topock Compressor Station, Needles, California. September 1. . 2005a. Construction Completion Report, PG&E Topock Compressor Station, Needles, California. October 18. . 2005b. Final Design Plan for Groundwater Compliance Monitoring, PG&E Topock Compressor Station, Needles, California. January 5. . 2005c. Groundwater and Hydrogeologic Investigation Report for Interim Measures No. 3 Injection Area, PG&E Topock Compressor Station, Needles, California. June 22. . 2005d. Interim Measures No. 3 Injection Well Operation and Maintenance Plan, PG&E Topock Compressor Station, Needles, California. April 7. . 2005e. Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, PG&E Topock Compressor Station, Needles, California. June 17. . 2005f. Addendum to the Compliance Monitoring Plan for the IM No. 3 Injection Area, Topock Compressor Station, Needles, California. December 13. . 2005g. Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California. March 31. _. 2006a. Performance Assessment Report IM-3 Injection Well Field, PG&E Topock Compressor Station, Needles, California. November 30. . 2006b. Interim Measures Extraction System Operation and Maintenance Plan, Rev. 1, PG&E Topock Compressor Station, Needles, California. March 13. . 2006c. Request for Approval to Implement Limited Sampling Frequency for Selected Metals/General Minerals for PG&E Topock Compressor Station, PG&E Topock Compressor Station, Needles, California. December 1. . 2008. PG&E Program Quality Assurance Project Plan, Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects. December. . 2012a. PG&E Program Quality Assurance Project Plan , Revision 2. August. . 2012b. Combined Second Quarter 2012 Monitoring and Semiannual January – June 2012 Operation and Maintenance Report, Interim Measure No. 3 Groundwater Treatment System, Document ID: PGE20120713A, PG&E Topock Compressor Station Needles, California. July 13. . 2012c. Fourth Quarter 2011 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.
- Fetter, C.W. 1994. Applied Hydrogeology. Third Edition. Prentice-Hall, New York, 691 p.
- Pacific Gas and Electric Company (PG&E). 2011. Letter to DOI and Water Board "Re: Applicable or Relevant and Appropriate Requirements (ARARs) for the Waste Discharge associated with Interim Measure 3 Facility at PG&E's Topock Compressor Station." September 7.

6-2 ES122810042555BAO\110130003

United States Department of the Interior (DOI). 2011. Letter to PG&E and Water Board. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility – PG&E Topock Compressor Station Site." August 18.

ES122810042555BAO\110130003 6-3

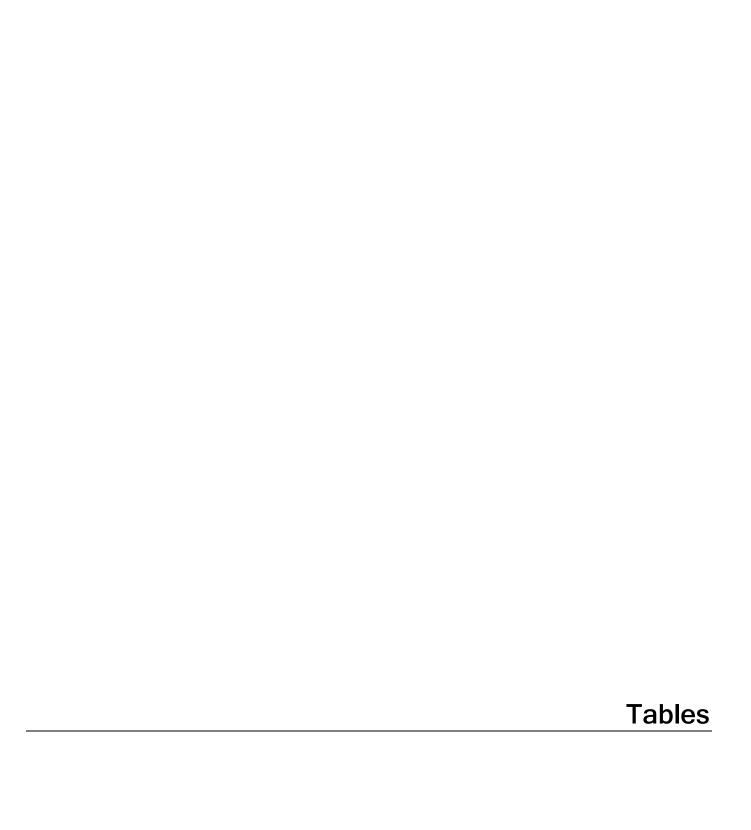
7.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 2, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding ARARs.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:


Name: Yvonne J. Meeks

Company: Pacific Gas and Electric Company

Title: <u>Topock Project Manager</u>

Date: <u>January 15, 2013</u>

ES122810042555BAO\110130003 7-1

TABLE 1-1

Operational Status of Interim Measures No. 3 Injection Wells From July 2005 Through December 2012

Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and

PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Time Period	Injection Status
July 31, 2005 to Fourth Quarter 2005	Injection occurred at IW-2.
First Quarter 2006	Injection occurred primarily at IW-2 except during intervals of operational testing, when injection was divided equally between IW-2 and IW-3.
Second Quarter 2006	Injection occurred at IW-2.
Third Quarter 2006	In August 2006, IW-2 went offline for routine maintenance, and injection commenced at IW-3.
Fourth Quarter 2006	Injection occurred at IW-3, except during routine maintenance.
First Quarter 2007	Injection occurred at IW-3 and transitioned over to IW-2 on March 8.
Second Quarter 2007	Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.
Third Quarter 2007	Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.
Fourth Quarter 2007	Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.
First Quarter 2008	Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.
Second Quarter 2008	Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing was performed at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.
Third Quarter 2008	Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short interval on July 25 and from August 12 – August 31, 2008. Backwashing was performed at IW-3 on June 17, June 27, July 9, July 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing was performed at IW-2 on September 9 - September 11, 2008.
Fourth Quarter 2008	Injection occurred at IW-3 and then switched to IW-2 on September 23. Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued at IW-2 until December 16, 2008 and occurred concurrently and continued at IW-3 on December 11, 2008.
First Quarter 2009	Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events were performed periodically during the intervals when each injection well was offline. Routine and scheduled maintenance occurred 12/18/08 and 1/21/09 at which time both wells were offline.
Second Quarter 2009	Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.
Third Quarter 2009	IM3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned.
Fourth Quarter 2009	Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.
First Half 2010	Injection occurred mainly at IW-3 until March 3, 2010. Beginning March 3, 2010, IM3 injection alternated between the two wells approximately every two weeks until April 20, 2010 for a

TABLE 1-1

Operational Status of Interim Measures No. 3 Injection Wells From July 2005 Through December 2012

Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and

PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Time Period	Injection Status
	planned shutdown. On April 22, 2010, injection resumed at IW-3 and alternated between the two wells approximately every two weeks. Backwashing was performed periodically during the intervals when each injection well was offline.
Second Half 2010	Injection occurred primarily at IW-2 with the exception of the following periods when it primarily occurred at IW-3: July 22 - August 25, August 30 - September 7, September 16 - October 15, November 5 -18, and December 17- 31, 2010.
First Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 27 - February 10, February 23 - March 7, March 30 - April 20, May 6 – June 7, and June 22-28, 2011. Backwashing was performed periodically during the intervals when each injection well was offline. A planned shutdown occurred April 25-29 and June 28-30.
Second Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 14 through August 3, August 10 through 13, September 11 through 22, October 6 through10; and October 27 Through December 31. Backwashing was performed periodically during the intervals when each injection well was offline.
First Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 1 through January 6, 2012; February 2 through February 16, 2012; March 2 through April 5, 2012; May 10 through May 21, 2012; May 29 through June 1, 2012, June 14,2012 and June 21 through June 27, 2012.
Second Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 18 through July 25, 2012; August 1 through August 13, 2012; August 17 through August 22, 2012; August 31 through September 26, 2012; and September 29 through October 9, 2012.

TABLE 1-2
Well Construction and Sampling Summary for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Well ID	Site Area	Measuring Point Elevation (ft AMSL)	Screen Interval (ft bgs)	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typical Purge Rat (gpm)	Typical Purge Volume (gallons)		Transducer Status	Remarks
IM Compliar	nce Wells	•			•							
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	190.0	109.3	Temp Redi-Flo	AR 2	42	165		
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	300.2	109.5	Temp Redi-Flo	AR 3	98	180		
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	208.3	93.1	Temp Redi-Flo	AR 2	56	195		
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	355.0	92.6	Temp Redi-Flo	AR 3	134	159		
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	222.0	78.0	Temp Redi-Flo	AR 2	74	180		
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	340.0	77.3	Temp Redi-Flo	AR 3	134	143		
CW-04M	East Mesa	518.55	119.5 - 169.5	2 (PVC)	169.8	61.8	Temp Redi-Flo	AR 2	56	160		
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	303.0	61.6	Temp Redi-Flo	AR 3	124	134		
IM Observat	tion Wells											
OW-01S	East Mesa	550.21	83.5 - 113.5	2 (PVC)	113.5	93.9	Temp Redi-Flo	AR 1	10.2	100	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	185.8	93.7	Temp Redi-Flo	AR 3	48	109.6		
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	277.3	93.4	Temp Redi-Flo	AR 3	94	111.4		
OW-02S	East Mesa	548.88	71 - 101	2 (PVC)	103.6	92.6	Temp Redi-Flo	AR 1	15	100	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	210.3	91.8	Temp Redi-Flo	AR 2	61	111.4		
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	340.0	91.8	Temp Redi-Flo	AR 2	127	110.3		
OW-05S	East Mesa	551.83	70 - 110	2 (PVC)	110.3	95.4	Temp Redi-Flo	AR 1	8	100	Active	
OW-05M	East Mesa	551.81	210 - 250	2 (PVC)	250.3	94.4	Temp Redi-Flo	AR 2	80	112.5	Active	
OW-05D	East Mesa	552.41	300 - 320	2 (PVC)	350.0	95.0	Temp Redi-Flo	AR 3	131	113.2	Active	

Notes:

AMSL above mean sea level BGS below ground surface

BTOC below top of polyvinyl chloride (PVC) casing Redi-Flo AR adjustable-rate electric submersible pump

Temp temporary

gpm gallons per minute

Depth to water for each well was collected on May 2, 2012. All wells were purged and sampled using 3 well-volume method.

TABLE 2-1
Chromium Results for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

	Method:	E218.6	E200.8	
Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	
CW-01M	10/16/2012	1.50	1.30	
CW-01D	10/16/2012	0.46	ND (1.0)	
CW-02M	10/15/2012	2.40	2.10	
CW-02D	10/15/2012	0.76	ND (1.0)	
CW-02D	10/15/2012 (FD)	0.79	ND (1.0)	
CW-03M	10/15/2012	6.40	6.50	
CW-03D	10/15/2012	0.90	ND (1.0)	
CW-04M	10/16/2012	7.20	6.60	
CW-04D	10/16/2012	1.10	ND (1.0)	
OW-01S	10/16/2012	14.0	14.0	
OW-01M	10/18/2012	1.20	ND (1.0)	
OW-01D	10/16/2012	0.85	ND (1.0)	
OW-02S	10/18/2012	26.8	28.0	
OW-02M	10/18/2012	1.20	ND (1.0)	
OW-02D	10/18/2012	0.54	ND (1.0)	
OW-05S	10/18/2012	17.0	18.0	
OW-05M	10/18/2012	0.44	ND (1.0)	
OW-05M	10/18/2012 (FD)	0.44	ND (1.0)	
OW-05D	10/18/2012	0.38	ND (1.0)	

Notes:

FD field duplicate

ND parameter not detected at the listed reporting limit

μg/L micrograms per liter

Hexavalent Chromium and Chromium are field filtered.

TABLE 2-2 Metals and Cation Results for Groundwater Samples, Second Half 2012 Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field PG&E Topock Compressor Station, Needles, California

	Method:												Dissolve	d E200.7, E20	0.8											
Location ID	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Lead	Manganes μg/L	e Mercury	Molybden	um Nickel	Selenium	Silver	Thallium	Vanadiur	n Zinc	Boron	Calciu	m Iron ^a	Iron ^b Po		Magnesiun	n Sodium
CW-01M	10/16/2012	ND (50)	ND (0.5)	1.70	94.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5)	19.0	ND (5.0)	3.50	3.20	ND (0.5)	3.40	ND (20)	0.923	170	ND (0.02)	ND (0.02)	14.0	13.4	1440
CW-01D	10/16/2012	ND (50)	ND (0.5)	1.50	27.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5)	20.0	ND (5.0)	3.50	3.60	ND (0.5)	ND (3.0)	ND (20)	0.918	190	ND (0.02)	ND (0.02)	14.0	17.0	1410
CW-02M	10/15/2012	ND (50)	ND (0.5)	2.10	71.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5) J	19.0	ND (5.0)	2.40	ND (3.0)	ND (0.5)	4.20	ND (20)	1.08	143	ND (0.02)	ND (0.02)	13.1	10.6	1470
CW-02D	10/15/2012	ND (50)	ND (0.5)	3.70	13.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5) J	12.0	ND (5.0)	3.00	ND (3.0)	ND (0.5)	5.30	ND (20)	0.975	83.1	ND (0.02)	ND (0.02)	11.1	4.39	1660
CW-02D	10/15/2012 FD	ND (50)	ND (0.5)	3.40	13.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5) J	11.0	ND (5.0)	3.20	ND (3.0)	ND (0.5)	5.20	ND (20)	0.976	83.4	ND (0.02)	ND (0.02)	12.1	4.38	1580
CW-03M	10/15/2012	ND (50)	ND (0.5)	1.40	49.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5) J	24.0	ND (5.0)	1.60	3.80	ND (0.5)	ND (3.0)	ND (20)	1.03	209	ND (0.02)	ND (0.02)	16.2	16.6	1640
CW-03D	10/15/2012	ND (50)	ND (0.5)	1.70	14.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5) J	17.0	ND (5.0)	3.30	ND (3.0)	ND (0.5)	ND (3.0)	32.2	1.11	78.2	ND (0.02)	ND (0.02)	12.5	5.74	1570
CW-04M	10/16/2012	ND (50)	ND (0.5)	2.30	97.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5)	10.0	ND (5.0)	1.90	3.40	ND (0.5)	4.00	ND (20)	0.845	179	ND (0.02)	ND (0.02)	12.8	14.2	1300
CW-04D	10/16/2012	ND (50)	ND (0.5)	4.00	20.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5)	24.0	ND (5.0)	2.70	ND (3.0)	ND (0.5)	4.50	ND (20)	1.11	117	ND (0.02)	ND (0.02)	12.6	7.23	1590
OW-01S	10/16/2012												14.0													515
OW-01M	10/18/2012	ND (50)	ND (0.5)	2.30	78.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5)	23.0	ND (5.0)	3.30	ND (3.0)	ND (0.5)	3.60	ND (20)	0.823	152	ND (0.02)	ND (0.02)	16.2	20.7	1360
OW-01D	10/16/2012	ND (50)	ND (0.5)	1.30	34.0	ND (3.0)	ND (3.0)	ND (3.0)	ND (5.0)	ND (10)	ND (0.5)	ND (0.5)	20.0	ND (5.0)	3.50	3.30	ND (0.5)	3.20	ND (20)	0.954	184	0.026	ND (0.02)	13.4	16.5	1440
OW-02S	10/18/2012												46.0													298
OW-02M	10/18/2012												23.0													1250
OW-02D	10/18/2012												21.0													1290
OW-05S	10/18/2012												17.0													364
OW-05M	10/18/2012												21.0													1330
OW-05M	10/18/2012 FD												21.0													1260
OW-05D	10/18/2012												22.0													1350

NOTES:

FD field duplicate

ND parameter not detected at the listed reporting limit mg/L milligrams per liter

μg/L micrograms per liter
--- data not collected or available
J concentration estimated by laboratory or data validation

a Total Iron

b Dissolved Iron

TABLE 2-3
Other Inorganics Results for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

	Method:	E120.1	Field	SM2540C	SM2130B	E300.0	E300.0	E300.0	E353.3	SM2320B	SM4500NH3D
Location ID	Sample Date	Specific Conductance (µmhos/cm)	pH (pH units)	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Alkalinity, total as CaCo3 (mg/L)	Ammonia as Nitrogen (mg/L)
CW-01M	10/16/2012	7190	7.8	4440	0.142 J	2130	2.01	492	2.86	58.0	ND (0.5)
CW-01D	10/16/2012	7180	7.8	4270	ND (0.1) J	2120	2.46	496	2.69	53.0	ND (0.5)
CW-02M	10/15/2012	7250	7.9	4000	0.136	2080	2.80	479	2.78 J	49.0	ND (0.5)
CW-02D	10/15/2012	7420	8.1	4100	ND (0.1)	2240	2.92	503	2.80 J	61.0	ND (0.5)
CW-02D	10/15/2012 (FD)	7470	FD	4180	ND (0.1)	2120	2.90	502	2.79 J	62.0	ND (0.5)
CW-03M	10/15/2012	8440	7.8	4600	ND (0.1)	2530	2.88	458	1.76 J	46.0	ND (0.5)
CW-03D	10/15/2012	7440	8.1	4190	ND (0.1)	2120	4.37	499	2.95 J	59.0	ND (0.5)
CW-04M	10/16/2012	6720	7.8	4170	0.120 J	1970	1.86	419	2.33	51.0	ND (0.5)
CW-04D	10/16/2012	7620	8.0	4430	0.127 J	2200	3.46	505	2.63	52.0	ND (0.5)
OW-01S	10/16/2012	4100	7.6	2690	0.487 J	1160	2.34	258	3.20		
OW-01M	10/18/2012	7070	7.6	4340	0.101	2110	2.56	480	2.78	45.0	ND (0.5)
OW-01D	10/16/2012	7200	7.8	4510	0.336 J	2090	2.34	489	2.71	56.0	ND (0.5)
OW-02S	10/18/2012	1610	8.1	1030	0.419	378	5.06	98.3	3.95		
OW-02M	10/18/2012	7150	7.9	4360	ND (0.1)	2060	2.58	482	2.73		
OW-02D	10/18/2012	7150	8.0	4300	ND (0.1)	2090	2.15	480	2.84		
OW-05S	10/18/2012	2770	7.7	1800	0.290	1140	1.85	141	2.62		
OW-05M	10/18/2012	7170	7.8	4430	0.145	2040	2.42	488	2.74		
OW-05M	10/18/2012 (FD)	7170	FD	4440	ND (0.1)	2070	2.27	488	2.78		
OW-05D	10/18/2012	7120	8.0	4200	ND (0.1)	2050	2.29	479	2.79		

NOTES:

ND parameter not detected at the listed reporting limit

FD field duplicate

μmhos/cm micro-mhos per centimeter
NTU Nephelometric Turbidity Unit

mg/L milligrams per liter

--- data not collected or available

J concentration estimated by laboratory or data validation

TABLE 3-1
Injection Rates and Volumes
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Date	Average Injection Rate (gpm)	Monthly Total (gallons)	Cumulative Total (gallons)	Primary Injection Well in Service
August-05	58.8	2,626,360	2,626,360	IW-2
September-05	67.2	2,904,094	5,530,454	IW-2
October-05	80.6	3,597,275	9,127,729	IW-2
November-05	74.5	3,216,979	12,344,708	IW-2
December-05	103.5	4,622,252	16,966,960	IW-2
January-06	113.5	5,067,560	22,034,520	IW-2
February-06	121.4	4,896,522	26,931,042	IW-2
March-06	121.1	5,405,223	32,336,265	IW-2
April-06	116.7	5,039,655	37,375,920	IW-2
May-06	118.9	5,305,831	42,681,751	IW-2
June-06	116.9	5,050,593	47,732,344	IW-2
July-06	119.2	5,322,857	53,055,201	IW-2
August-06	121.6	5,429,628	58,484,829	IW-3
September-06	121	5,229,047	63,713,876	IW-3
October-06	122.6	5,473,384	69,187,260	IW-3
November-06	122.1	5,275,516	74,462,776	IW-3
December-06	124.1	5,542,012	80,004,788	IW-3
January-07	123.5	5,510,915	85,515,703	IW-3
February-07	126	5,079,402	90,595,105	IW-3
March-07	123.8	5,525,669	96,120,774	IW-2
April-07	96.5	4,169,396	100,290,170	IW-3
May-07	126.8	5,658,656	105,948,826	IW-3
June-07	127.3	5,499,332	111,448,158	IW-3
July-07	122.1	5,448,764	116,896,922	IW-2
August-07	125.8	5,614,418	122,511,340	IW-3
September-07	128.1	5,531,784	128,043,124	IW-3
October-07	128.1	5,717,776	133,760,900	IW-3
November-07	124.1	5,361,317	139,122,217	IW-3
December-07	124.6	5,560,689	144,682,906	IW-3
January-08	123.1	5,492,958	150,175,864	IW-3
February-08	126.5	5,283,674	155,459,538	IW-3
March-08	124.3	5,550,583	161,010,121	IW-3
April-08	93.5	4,040,973		

TABLE 3-1
Injection Rates and Volumes
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Date	Average Injection Rate (gpm)	Monthly Total (gallons)	Cumulative Total (gallons)	Primary Injection Well in Service
May-08	124.2	5,542,847	170,593,941	IW-3
June-08	128.6	5,553,857	176,147,798	IW-3
July-08	127.4	5,685,501	181,833,299	IW-3
August-08	127.7	5,702,022	187,535,321	IW-2
September-08	120.2	5,193,691	192,729,012	IW-3
October-08	125.7	5,613,447	198,342,459	IW-2
November-08	128.4	5,548,109	203,890,568	IW-3
December-08	124.2	5,542,252	209,432,820	IW-3
January-09	123.6	5,517,257	214,950,079	IW-3
February-09	131.5	5,303,429	220,253,508	IW-3
March-09	125.9	5,618,103	225,871,612	IW-3
April-09	101.2	4,372,758	230,244,370	IW-3
May-09	122.8	5,482,349	235,726,719	IW-3
June-09	125.5	5,420,397	241,147,116	IW-2
July-09	83.4	3,725,059	244,872,175	IW-3
August-09	127.3	5,680,943	250,553,118	IW-3
September-09	93.7	4,046,699	254,599,817	IW-2
October-09	131.1	5,853,536	260,453,352	IW-2
November-09	130.5	5,639,433	266,092,786	IW-2
December-09	120.5	5,377,155	271,469,941	IW-3
January-10	126.3	5,637,472	277,107,412	IW-3
February-10	124.8	5,031,840	282,139,252	IW-3
March-10	126.0	5,625,524	287,764,777	IW-3
April-10	112.0	4,839,690	292,604,467	IW-3
May-10	131.8	5,882,290	298,486,757	IW-3
June-10	123.9	5,354,115	303,840,872	IW-3
July-10	120.8	5,390,898	309,231,770	IW-2
August-10	118.8	5,302,122	314,533,892	IW-3
September-10	131.2	5,667,255	320,201,147	IW-3
October-10	126.8	5,658,794	325,859,940	IW-2
November-10	130.3	5,629,913	331,489,853	IW-2
December-10	129.4	5,774,967	337,264,820	IW-3
January-11	126.5	5,647,947	342,912,767	IW-3

TABLE 3-1
Injection Rates and Volumes
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California

Date	Average Injection Rate (gpm)	Monthly Total (gallons)	Cumulative Total (gallons)	Primary Injection Well in Service
February-11	129.2	5,208,707	348,121,474	IW-2
March-11	128.8	5,747,411	353,868,885	IW-3
April-11	113.5	4,903,434	358,772,319	IW-2
May-11	130.5	5,825,578	364,597,897	IW-2
June-11	121.2	5,236,904	369,834,802	IW-2
July-11	125.0	5,580,178	375,414,979	IW-2
August-11	114.7	5,120,270	380,535,249	IW-3
September-11	130.0	5,614,683	386,149,933	IW-3
October-11	128.8	5,748,120	391,898,052	IW-3
November-11	129.7	5,603,492	397,501,544	IW-2
December-11	129.6	5,784,322	403,285,866	IW-2
January-12	130.8	5,837,548	409,123,414	IW-3
February-12	130.1	5,432,832	414,556,246	IW-2
March-12	128.8	5,747,601	420,303,847	IW-2
April-12	115.2	4,975,734	425,279,582	IW-3
May-12	133.3	5,951,440	431,231,022	IW-3
June-12	134.2	5,795,380	437,026,402	IW-3
July-12	133.4	5,954,462	442,980,863	IW-3
August-12	114.0	5,091,104	448,071,968	IW-2
September-12	130.9	5,654,269	453,726,237	IW-2
October-12	132.1	5,896,425	459,622,662	IW-3
November-12	131.6	5,686,609	465,309,270	IW-3
December-12	130.9	5,841,981	471,151,251	IW-3

Source: The injection flow rate is measured by flow meters mounted in the piping leading into IW-02 and IW-03. Data are logged in the IM No. 3 control system, from which this information is reported.

TABLE 3-2
Manual Water Level Measurements and Elevations, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location ID	Well Depth (feet BTOC)	Measuring Point Elevation (feet AMSL)	: Monito Date &		Water Level Measurement (feet BTOC)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
CW-01M	190.0	566.07	17-Jul-12	7:57 AM	108.21	0.49	457.80
			23-Oct-12	9:43 AM	109.35	0.49	456.66
CW-01D	300.2	566.46	17-Jul-12	7:59 AM	108.37	0.48	457.94
			23-Oct-12	9:46 AM	109.50	0.48	456.81
CW-02M	208.3	549.45	17-Jul-12	8:03 AM	91.85	0.49	457.50
			23-Oct-12	9:35 AM	93.07	0.49	456.29
CW-02D	355.0	549.43	17-Jul-12	8:04 AM	91.47	0.48	457.69
			23-Oct-12	9:38 AM	92.60	0.48	456.56
CW-03M	222.0	534.10	17-Jul-12	8:08 AM	76.79	0.60	457.31
			23-Oct-12	9:32 AM	77.97	0.60	456.13
CW-03D	340.0	534.14	17-Jul-12	8:10 AM	76.20	0.50	457.69
			23-Oct-12	9:29 AM	77.29	0.50	456.60
CW-04M	169.8	518.55	17-Jul-12	8:16 AM	60.63	0.46	457.83
			23-Oct-12	9:55 AM	61.77	0.46	456.69
CW-04D	303.0	518.55	17-Jul-12	8:18 AM	60.53	0.52	457.85
			23-Oct-12	9:53 AM	61.63	0.52	456.75
OW-01S	113.5	550.21	17-Jul-12	8:23 AM	92.72	0.28	457.45
			23-Oct-12	10:01 AM	93.93	0.28	456.24
OW-01M	185.8	550.36	17-Jul-12	8:25 AM	92.52	0.47	457.75
			23-Oct-12	10:04 AM	93.67	0.47	456.60
OW-01D	277.3	550.36	17-Jul-12	8:26 AM	92.30	0.48	457.89
			23-Oct-12	10:06 AM	93.40	0.48	456.79
OW-02S	103.6	548.88	17-Jul-12	8:29 AM	91.35	0.12	457.49
			23-Oct-12	10:09 AM	92.60	0.12	456.25
OW-02M	210.3	548.52	17-Jul-12	8:30 AM	90.66	0.48	457.74
			23-Oct-12	10:11 AM	91.81	0.48	456.59
OW-02D	340.0	549.01	17-Jul-12	8:32 AM	90.74	0.48	458.01
			23-Oct-12	10:14 AM	91.78	0.48	456.97
OW-05S	110.3	551.83	17-Jul-12	8:36 AM	94.20	0.17	457.59
			23-Oct-12	10:17 AM	95.37	0.17	456.42
OW-05M	250.3	551.81	17-Jul-12	8:38 AM	93.27	0.48	458.48
			23-Oct-12	10:19 AM	94.36	0.48	457.39
OW-05D	350.0	552.41	17-Jul-12	8:40 AM	93.95	0.52	458.45
			23-Oct-12	10:22 AM	94.98	0.52	457.43

Date printed: 1/3/2013

TABLE 3-2

Manual Water Level Measurements and Elevations, Second Half 2012 Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field PG&E Topock Compressor Station, Needles, California

Notes:

AMSL above mean sea level

BTOC below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

Date printed: 1/3/2013

TABLE 3-3
Field Parameters and Manual Water Level Measurements for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location ID	Sampling Date	Specific Conductance (µmhos/cm)	Temperature (°C)	рН	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Salinity (%)	Depth To Water (feet BTOC)
CW-01M	10/16/2012	7314	29.7	7.8	66.7	9.3	0.2	0.47	109.07
CW-01D	10/16/2012	7283	28.74	7.8	66.6	7.92	0.2	0.47	109.22
CW-02M	10/15/2012	7302	36.08	7.9	29.8	7.48	0.2	0.47	92.82
CW-02D	10/15/2012	7507	30.51	8.1	37.6	7.28	0.2	0.48	92.38
CW-03M	10/15/2012	8495	30.19	7.8	-1.7	3.43	0.2	0.55	78.60
CW-03D	10/15/2012	7509	30.67	8.1	12.2	7.43	0.2	0.48	77.95
CW-04M	10/16/2012	6823	29.81	7.8	64.7	5.2	0.4	0.44	61.50
CW-04D	10/16/2012	7717	30.48	8.0	80.7	8.61	0.7	0.5	61.32
OW-01S	10/16/2012	4295	29.66	7.6	61.9	8.26	1	0.28	93.46
OW-01M	10/18/2012	7123	28.06	7.6	77.2	8	0.5	0.46	93.55
OW-01D	10/16/2012	7277	27.8	7.8	56.4	7.6	0.9	0.47	93.08
OW-02S	10/18/2012	1716	29.55	8.1	43.2	7.92	1	0.11	92.40
OW-02M	10/18/2012	7154	29.63	7.9	47	7.67	1	0.46	91.66
OW-02D	10/18/2012	7181	29.56	8.0	48.4	6.4	0.2	0.46	91.69
OW-05S	10/18/2012	2954	30.01	7.7	46.6	6.28	2	0.19	95.10
OW-05M	10/18/2012	7183	28.93	7.8	51.2	9.06	1	0.46	94.14
OW-05D	10/18/2012	7138	29.54	8.0	42.9	8.05	2	0.46	94.76

Notes:

µmhos/cm micro-mhos per centimeter

°C degree centigrade

ORP oxidation reduction potential

mV millivolts

mg/L milligrams per liter

NTU Nephelometric Turbidity Unit

% percentage

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

Date printed: 1/3/2013

TABLE 3-4

Vertical Gradients within the OW and CW Clusters

Combined CMP Semiannual Groundwater Monitoring Report, Second
Half 2012, and PAR, Interim Measures No. 3, Injection Well Field,
PG&E Topock Compressor Station, Needles, California

Well Pairs	Vertical Gradient (ft/ft)a
CW-01D to CW-01M	0.0014
CW-02D to CW-02M	0.0020
CW-03D to CW-03M	0.0048
CW-04D to CW-04M	0.0005
OW-01M to OW-01S	0.0047
OW-01D to OW-01M	0.0021
OW-02M to OW-02S	0.0030
OW-02D to OW-02M	0.0032
OW-05M to OW-05S	0.0069
OW-05D to OW-05M	0.0005

^a Positive value signifies an upward gradient.

Gradients calculated using October 23, 2012 groundwater levels.

TABLE 4-1 **Treated Water Quality Compared to OW and CW Pre-injection Water Quality** *Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field, PG&E Topock Compressor Station, Needles, California*

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Dissolved Molybdenum (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Treated Water	8/29/2005	ND (1.0)	ND (2.1)	1.95	8.3	3.70	450	3620
Treated Water	10/7/2009	ND (0.2)	ND (1.0)	2.39	15.5	2.72	500	4310
Treated Water	10/2/2012	0.21	ND (1.0)	2.10	20.4	3.00	497	4350
OW-01S	7/28/2005	19.4	23.5	2.45	17.2	3.2	114	1320
OW-01M	7/27/2005	16.3	18.9	2.31	27	1.01	311	3450
OW-01D	7/27/2005	ND(1.0)	ND(1.3)	1.14	46.1	0.321	441	6170
OW-02S	7/28/2005	15.3	14.8	3.79	35.6	3.81	126	1090
OW-02M	7/28/2005	5.4	5.7	2.19	32.4	0.735	342	4380
OW-02D	7/28/2005	ND(1.0)	ND(1.2)	0.966	51.2	0.1	616	9550
OW-05S	7/28/2005	23.4	25.6	2.3	17.1	3.55	105	1060
OW-05M	7/28/2005	8.6	8.8	2.74	35.4	0.621	417	5550
OW-05D	7/28/2005	ND(1.0)	ND(1.2)	1.11	57	0.151	480	8970
CW-01M	9/15/2005	18.1	17.8	2.34	21.6	1.11	318	2990
CW-01D	9/15/2005	ND(1.0)	1.6	0.951	32.1	0.972	379	6230
CW-02M	9/15/2005	15.8	15.5	2.3	23.1	0.908	342	3500
CW-02D	9/15/2005	ND(1.0)	1.6	0.982	41.6	0.28	601	8770
CW-03M	9/15/2005	8.8	8.1	2.57	24.2	0.642	464	4740
CW-03D	9/15/2005	ND(1.0)	ND(1.0)	1.4	29.2	0.304	672	9550
CW-04M	9/15/2005	19.2	19	1.5	12.3	1.18	240	3310
CW-04D	9/15/2005	ND(1.0)	ND(1.0)	1.01	26	0.188	534	7470

NOTES:

ND = Not detected at the listed reporting limit.

mg/L = milligrams per liter.

 μ g/L = micrograms per liter.

Hexavalent chromium samples were analyzed using method 7199 in 2005 and then by method E218.6.

Chromium samples were analyzed using method 6020A for samples collected on 7/28/2005, by method 6010B for samples collected on 9/15/2005, by method 6020B for samples collected on 8/29/2005 and by method E200.8 for all other chromium samples.

Chromium samples of the treated water were unfiltered.

TABLE 4-2
Treated Water Quality Compared to Second Half 2012 Sampling Event Water Quality
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and
PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Molybdenum (μg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	10/5/2010	0.31	ND (1.0)	2.05	17.6	2.89	497	4190
Treated Water	10/4/2011	ND (1.0)	ND (1.0)	2.09	18.6	2.92	501	4260
Treated Water	10/2/2012	0.21	ND (1.0)	2.10	20.4	3.00	497	4350
CW-01M	10/16/2012	1.50	1.30	2.01	19.0	2.86	492	4440
CW-01D	10/16/2012	0.46	ND (1.0)	2.46	20.0	2.69	496	4270
CW-02M	10/15/2012	2.40	2.10	2.80	19.0	2.78 J	479	4000
CW-02D	10/15/2012 (FD)	0.79	ND (1.0)	2.90	11.0	2.79 J	502	4180
CW-02D	10/15/2012	0.76	ND (1.0)	2.92	12.0	2.80 J	503	4100
CW-03M	10/15/2012	6.40	6.50	2.88	24.0	1.76 J	458	4600
CW-03D	10/15/2012	0.90	ND (1.0)	4.37	17.0	2.95 J	499	4190
CW-04M	10/16/2012	7.20	6.60	1.86	10.0	2.33	419	4170
CW-04D	10/16/2012	1.10	ND (1.0)	3.46	24.0	2.63	505	4430
OW-01S	10/16/2012	14.0	14.0	2.34	14.0	3.20	258	2690
OW-01M	10/18/2012	1.20	ND (1.0)	2.56	23.0	2.78	480	4340
OW-01D	10/16/2012	0.85	ND (1.0)	2.34	20.0	2.71	489	4510
OW-02S	10/18/2012	26.8	28.0	5.06	46.0	3.95	98.3	1030
OW-02M	10/18/2012	1.20	ND (1.0)	2.58	23.0	2.73	482	4360
OW-02D	10/18/2012	0.54	ND (1.0)	2.15	21.0	2.84	480	4300
OW-05S	10/18/2012	17.0	18.0	1.85	17.0	2.62	141	1800
OW-05M	10/18/2012 (FD)	0.44	ND (1.0)	2.27	21.0	2.78	488	4440
OW-05M	10/18/2012	0.44	ND (1.0)	2.42	21.0	2.74	488	4430
OW-05D	10/18/2012	0.38	ND (1.0)	2.29	22.0	2.79	479	4200

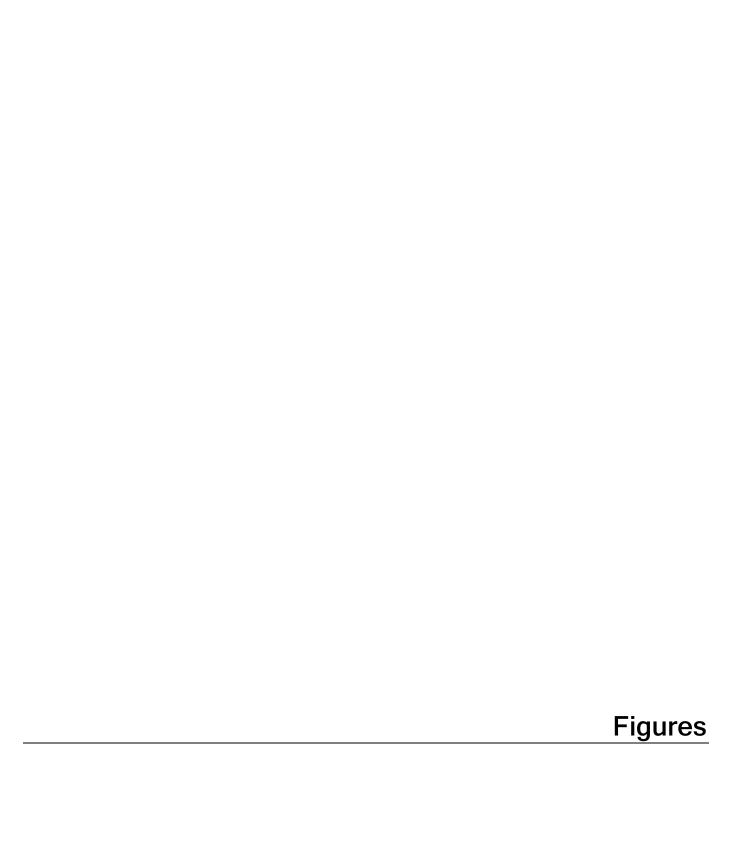
Notes:

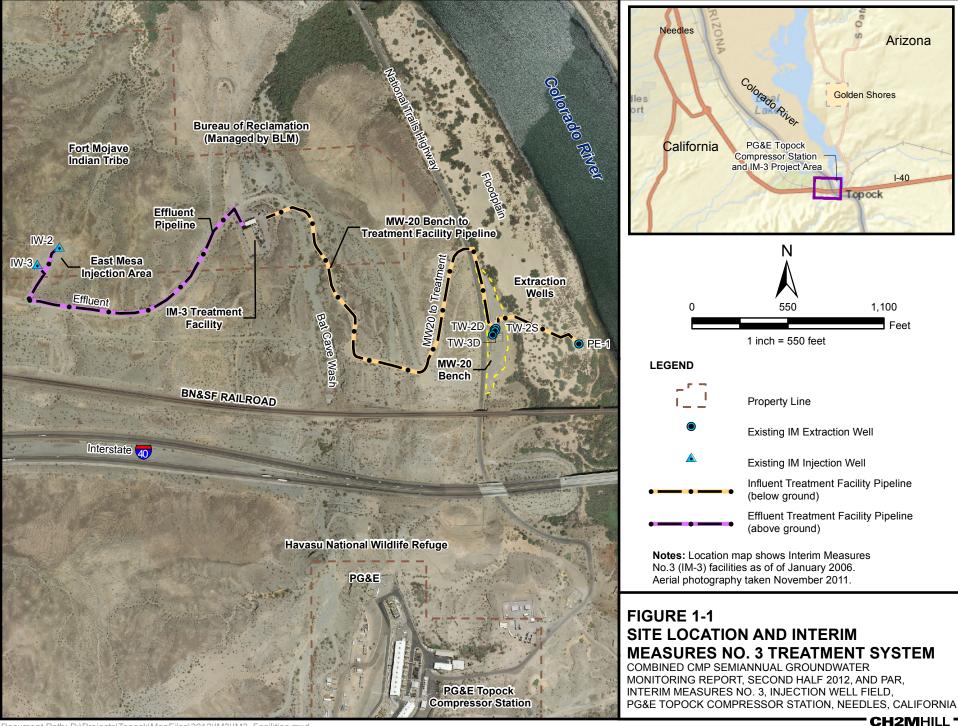
FD field duplicate

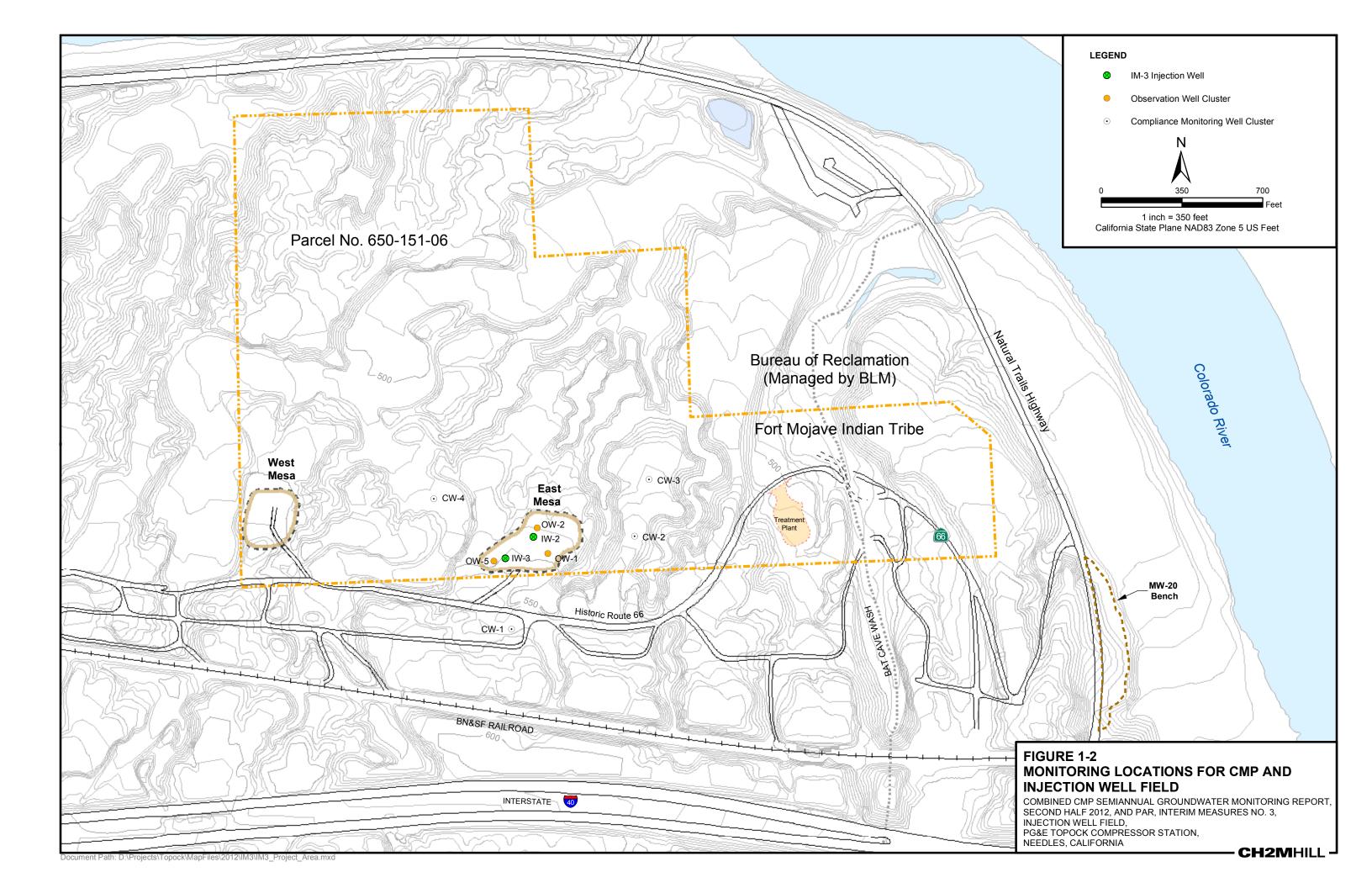
ND parameter not detected at the listed reporting limit

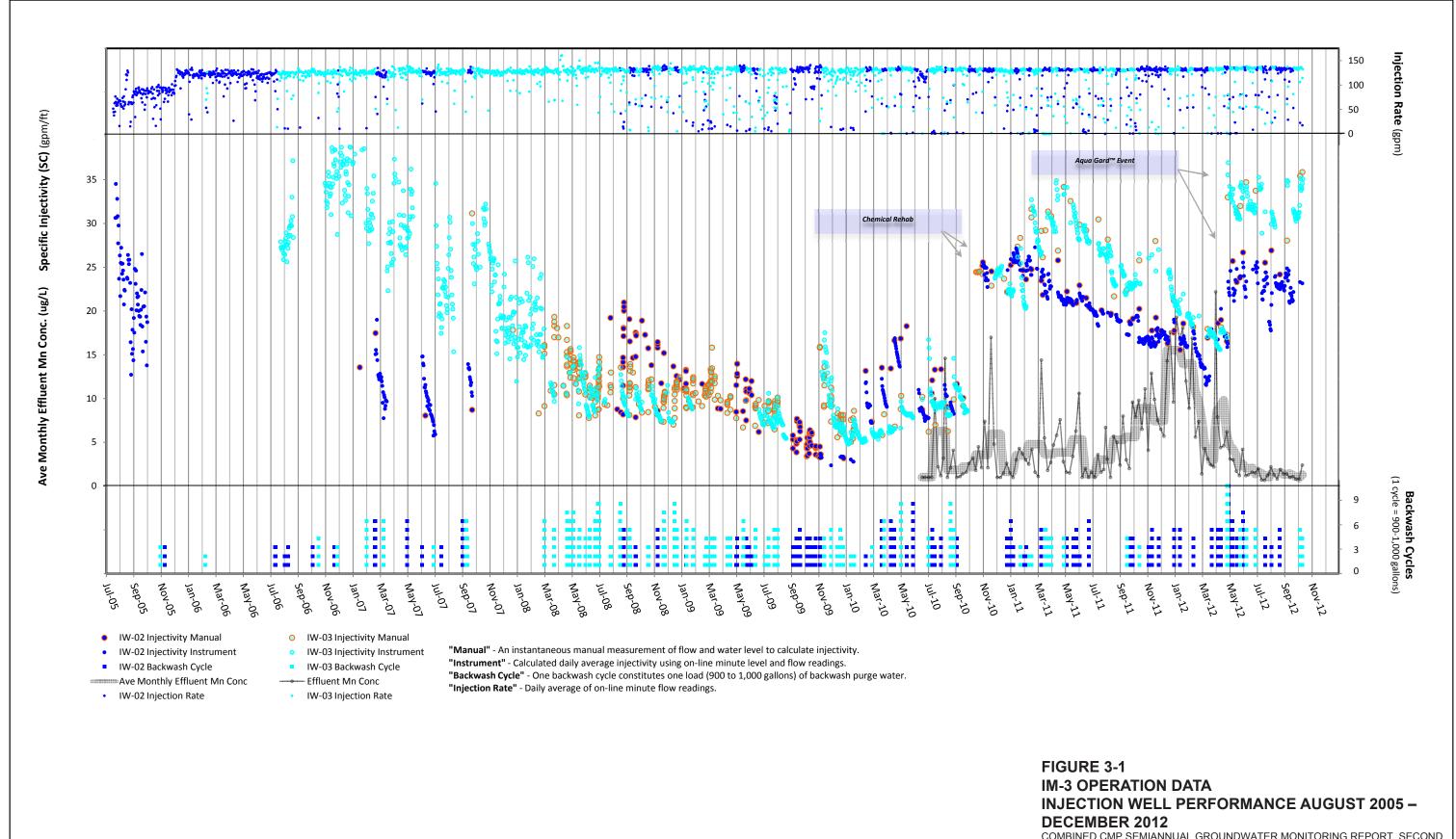
 $\begin{array}{ll} \text{mg/L} & \text{milligrams per liter} \\ \text{\mug/L} & \text{micrograms per liter} \end{array}$

--- not sampled or required for this event

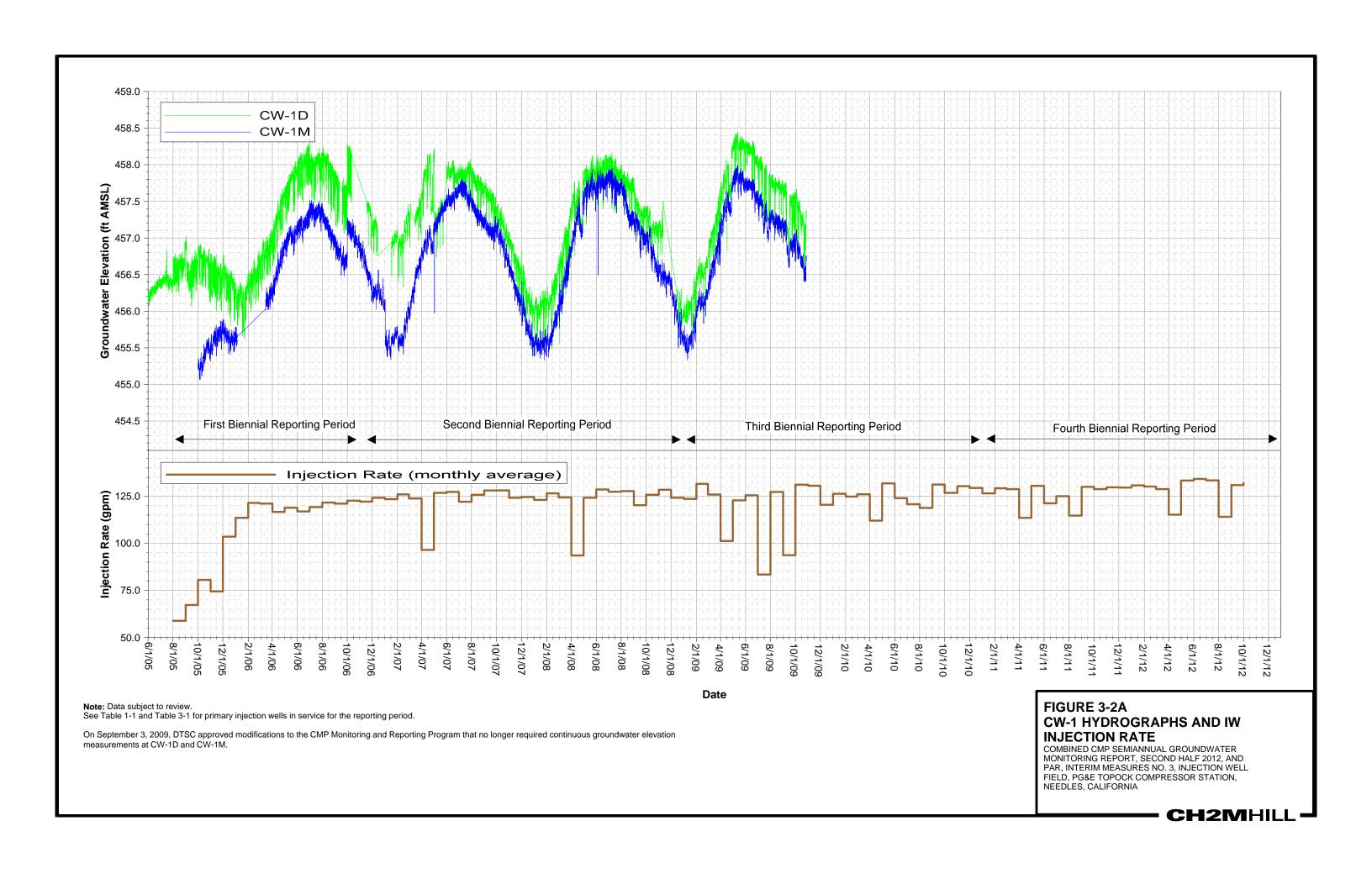

All hexavalent chromium samples were analyzed with method E218.6

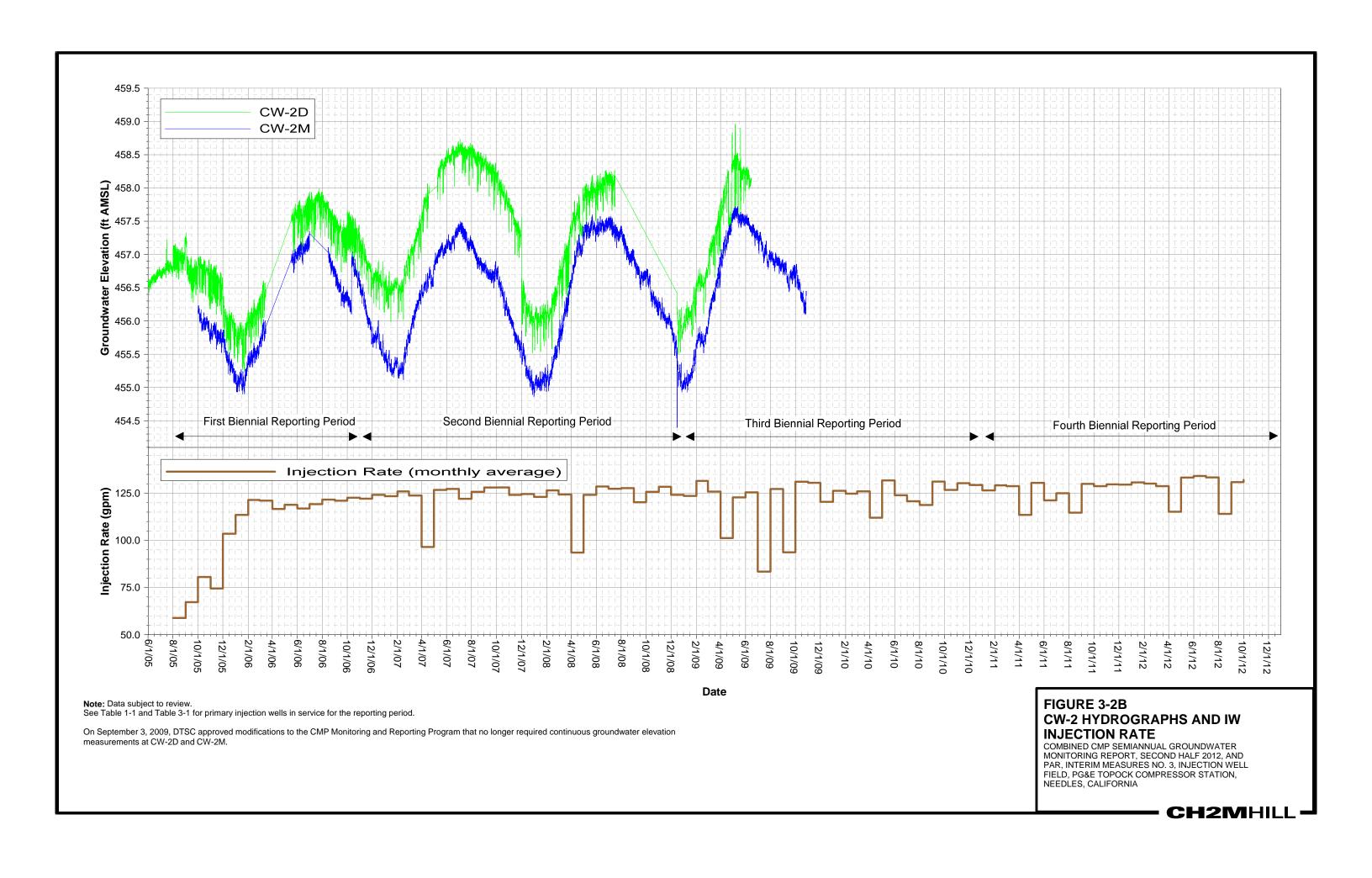

All chromium and molybdenum samples were analyzed with methods E200.8 and E200.7, respectively. Chromium and molybdenum samples were field filtered, except for the treated water.

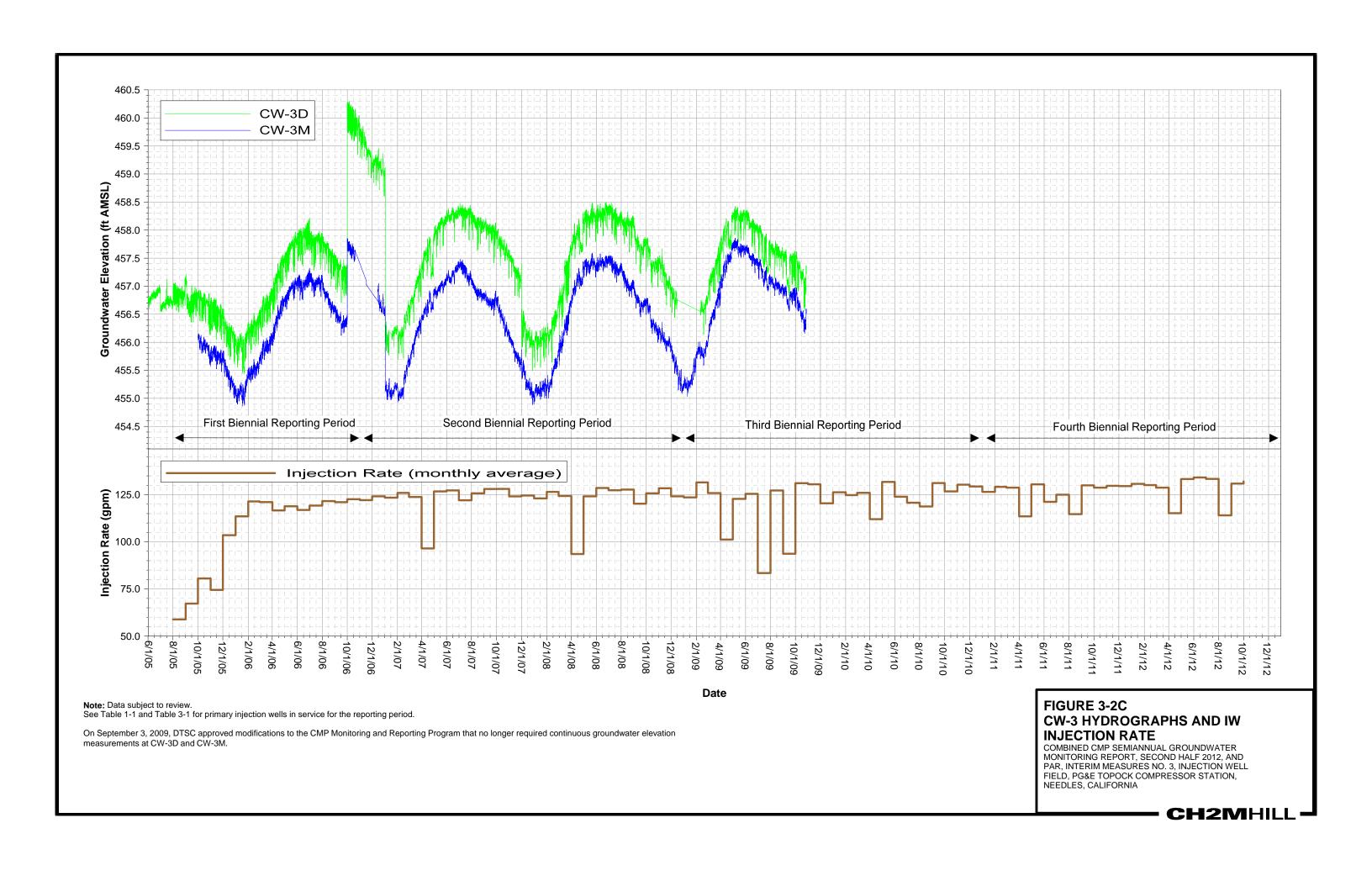

Fluoride and Sulfate samples were analyzed with method E300.0.

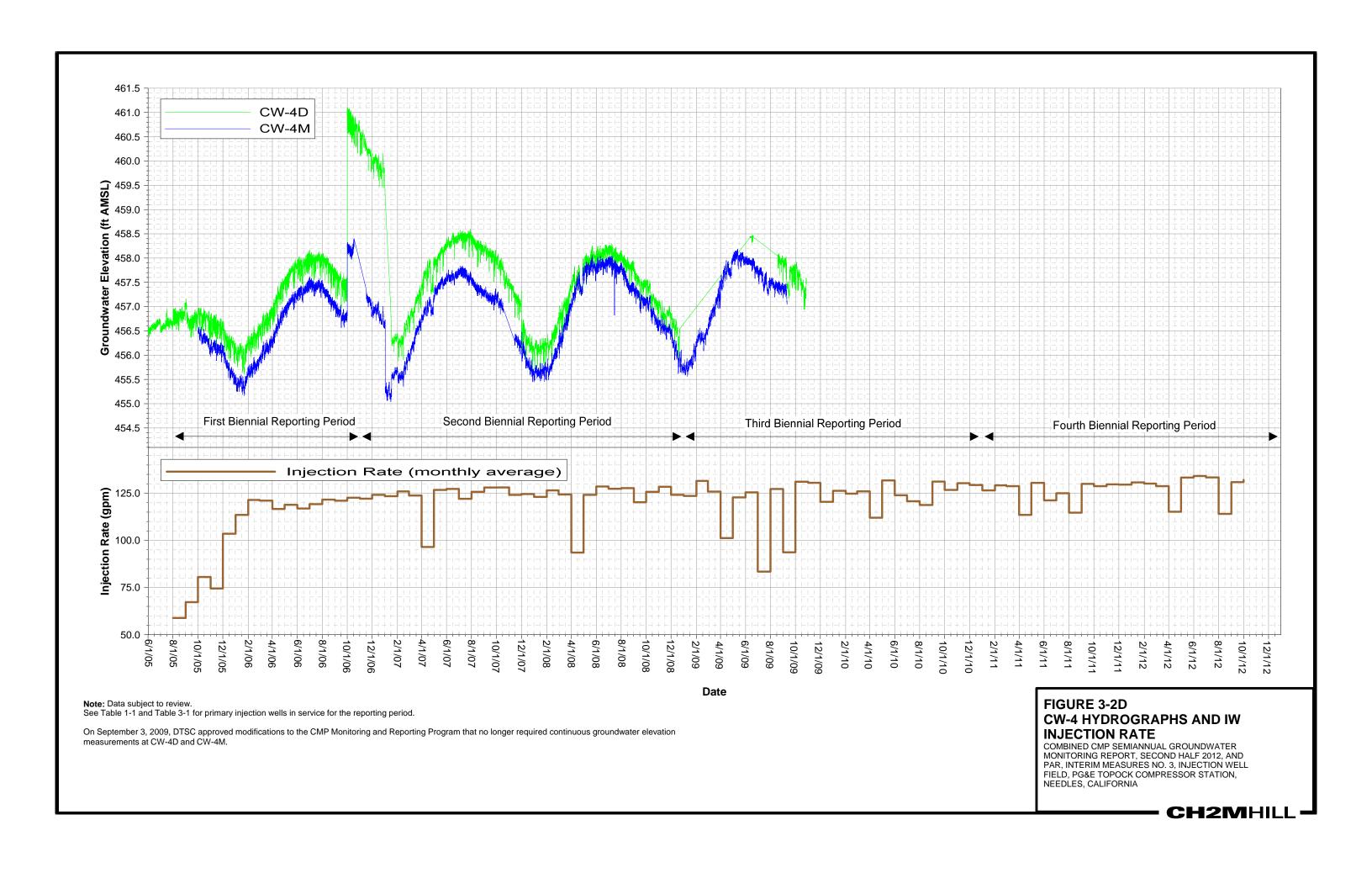

All nitrate/nitrite as nitrogen samples were analyzed with method E353.2, except for treated water which used method E300.

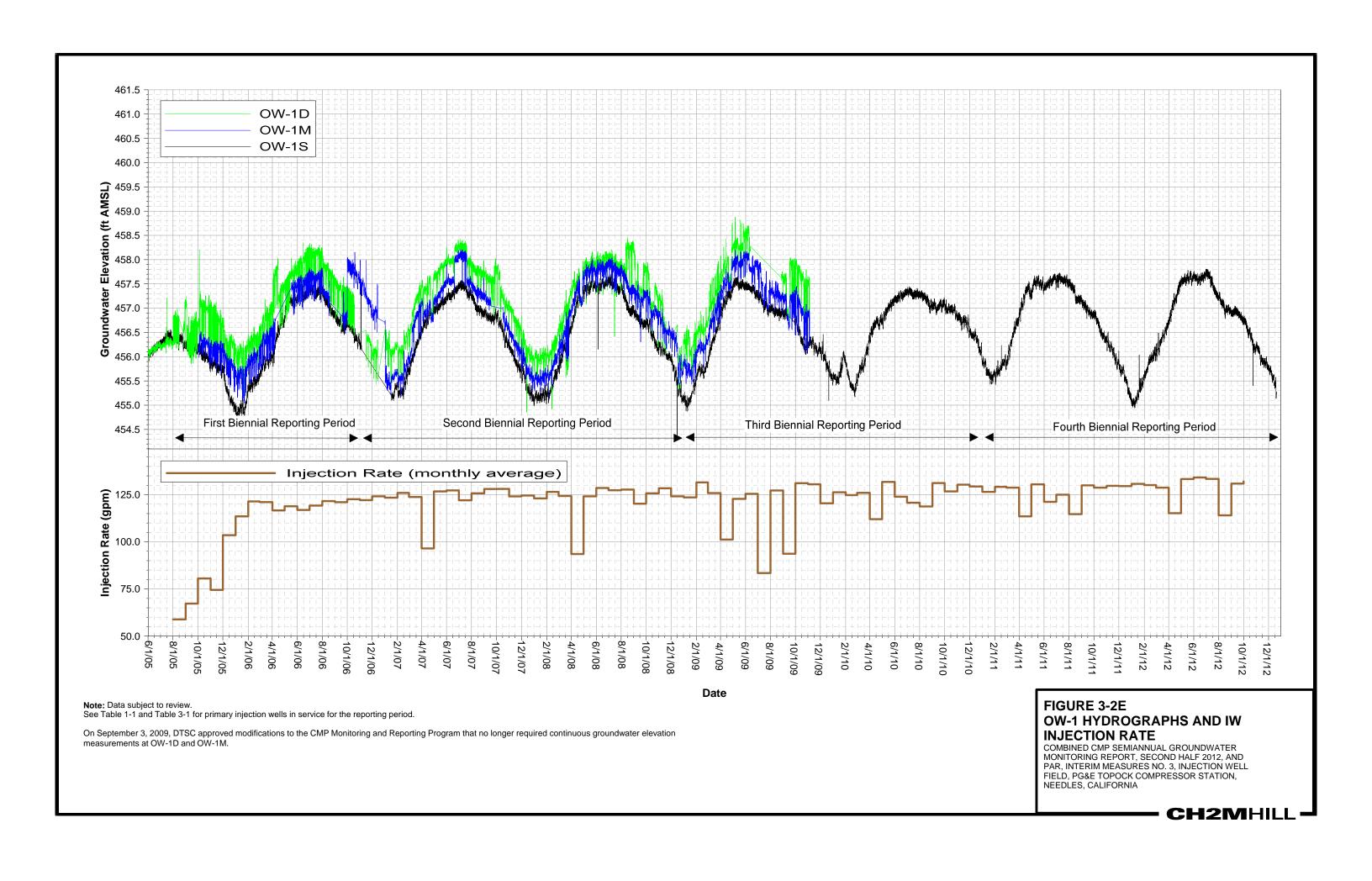
All total dissolved solid samples were analyzed with method SM2540C.

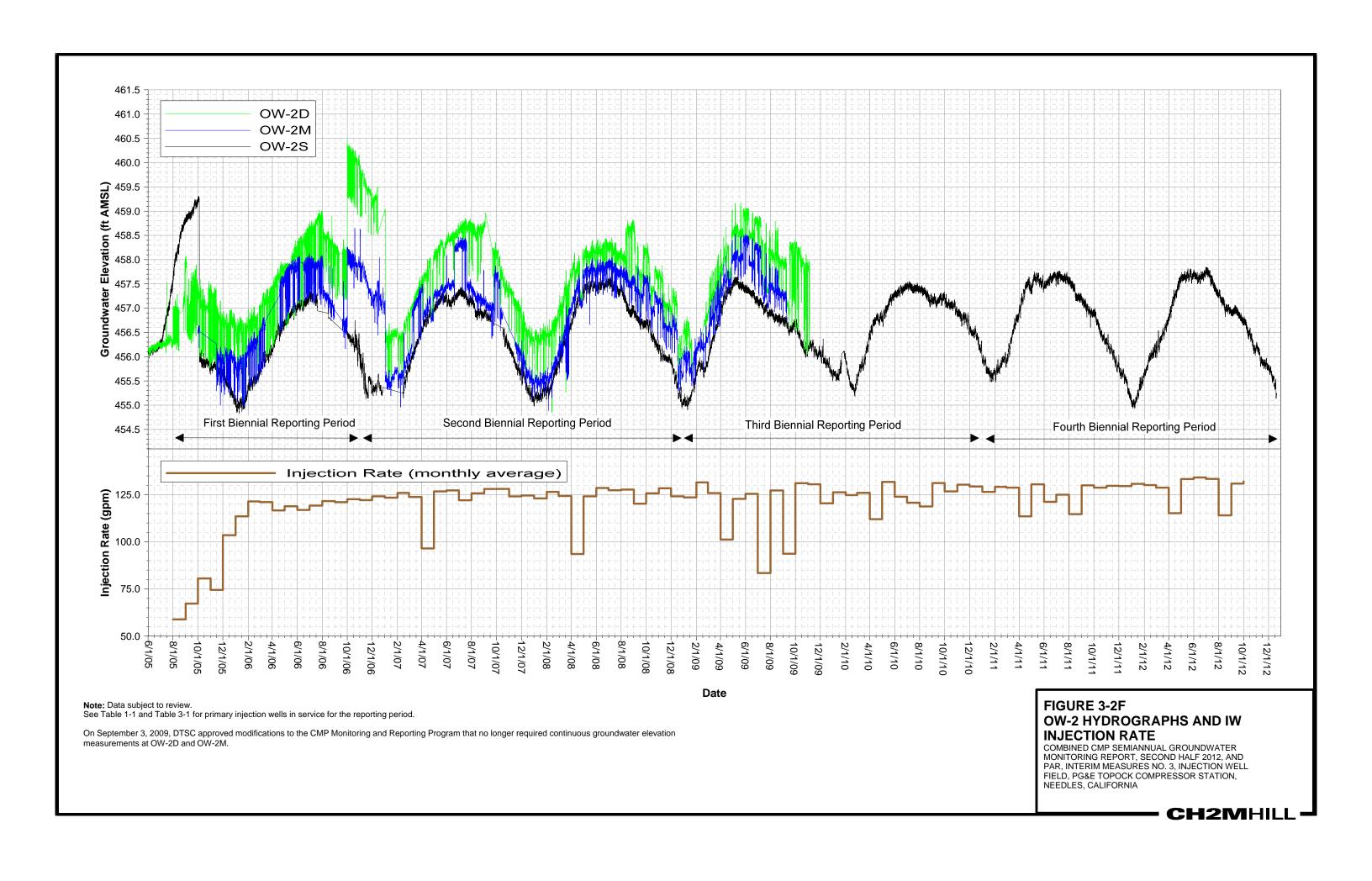


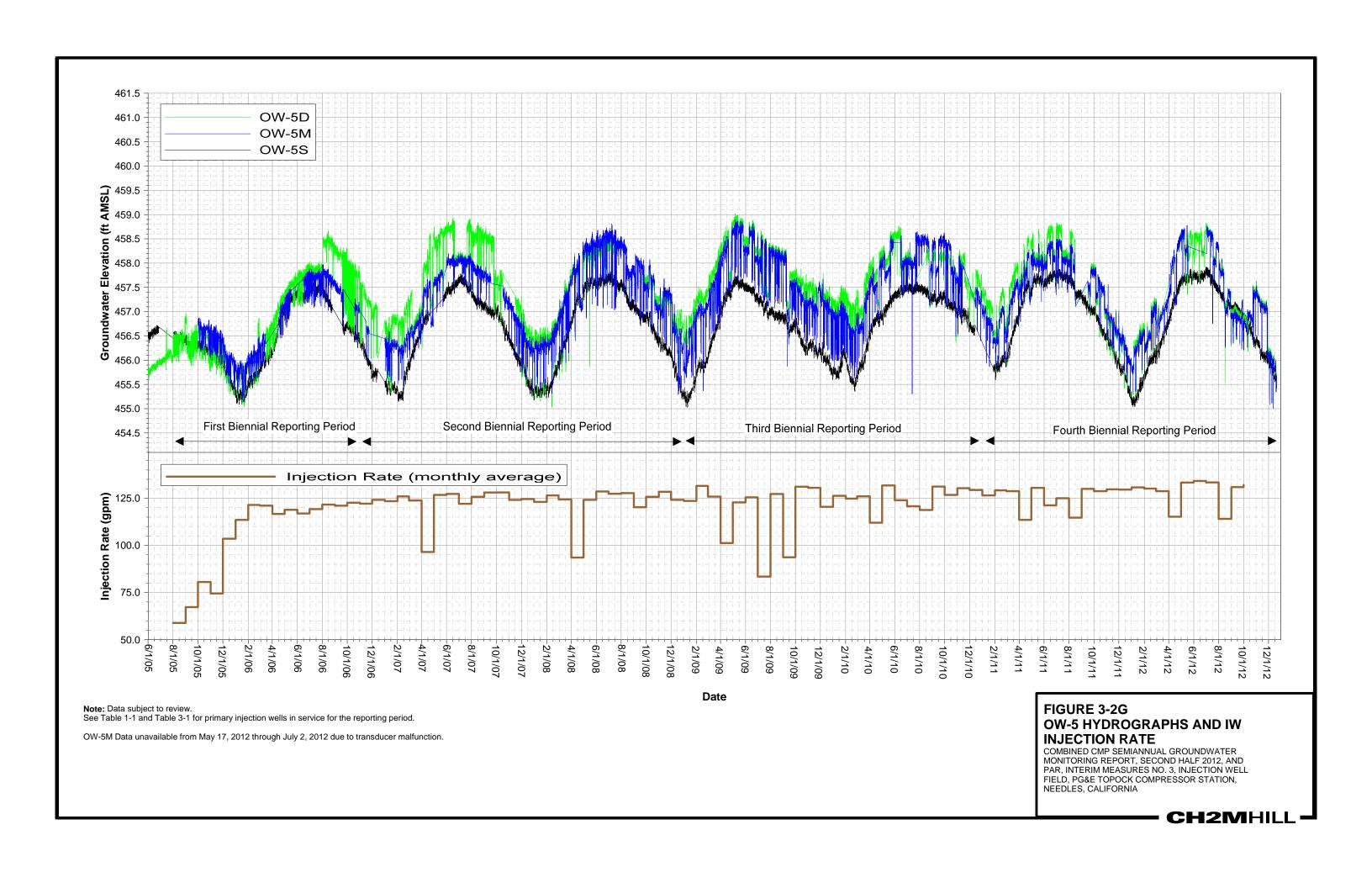


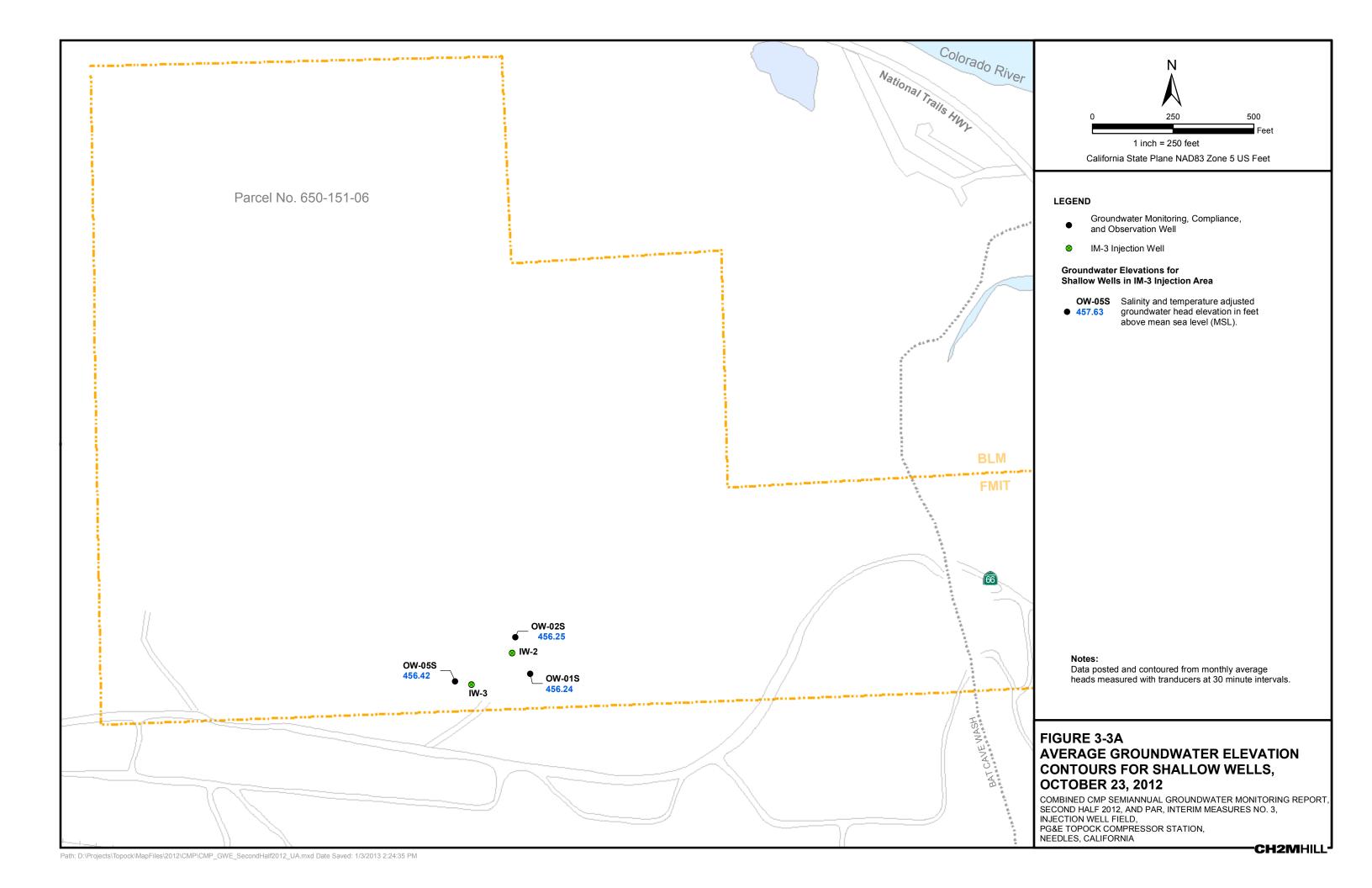


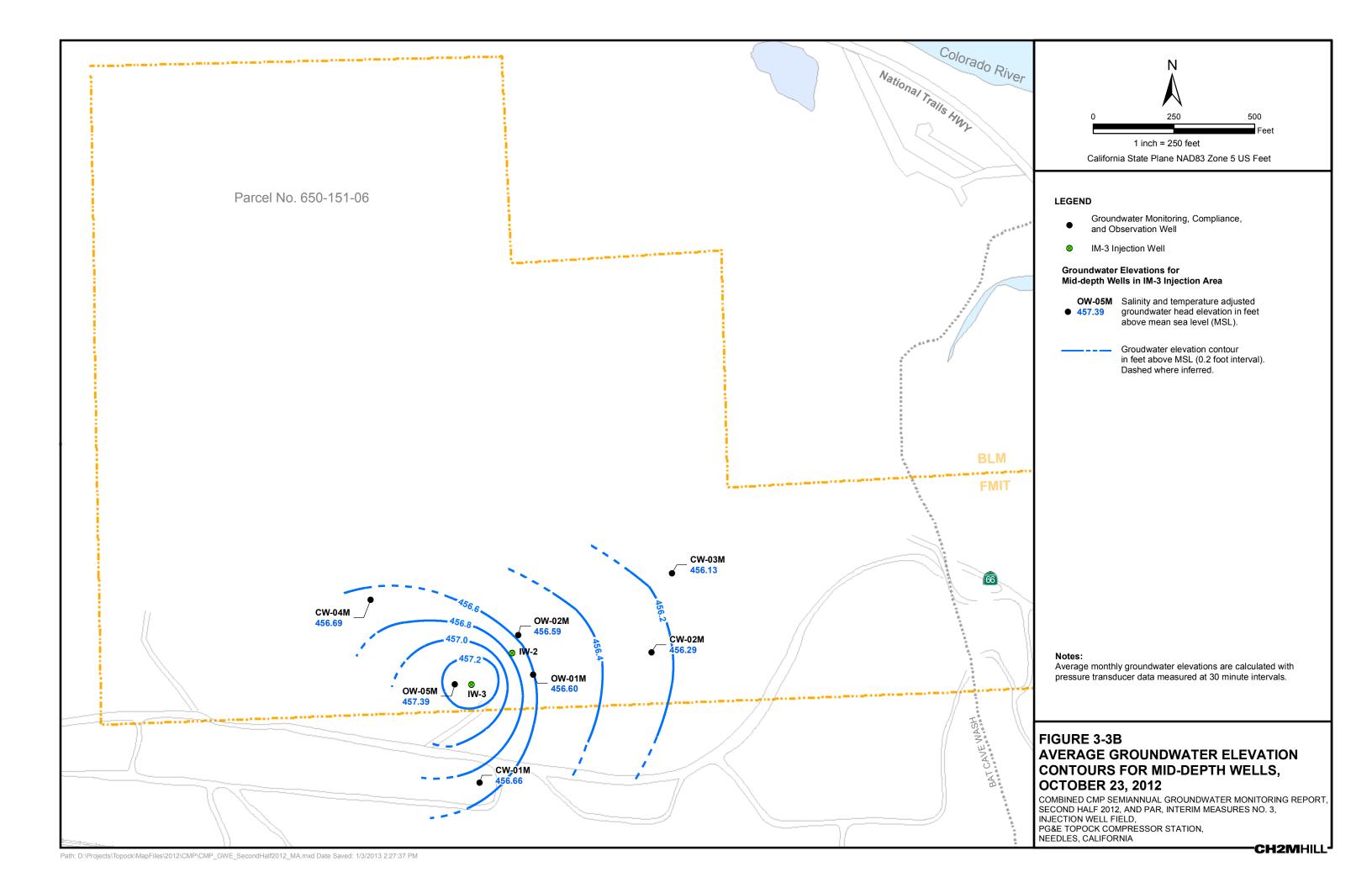

COMBINED CMP SEMIANNUAL GROUNDWATER MONITORING REPORT, SECOND

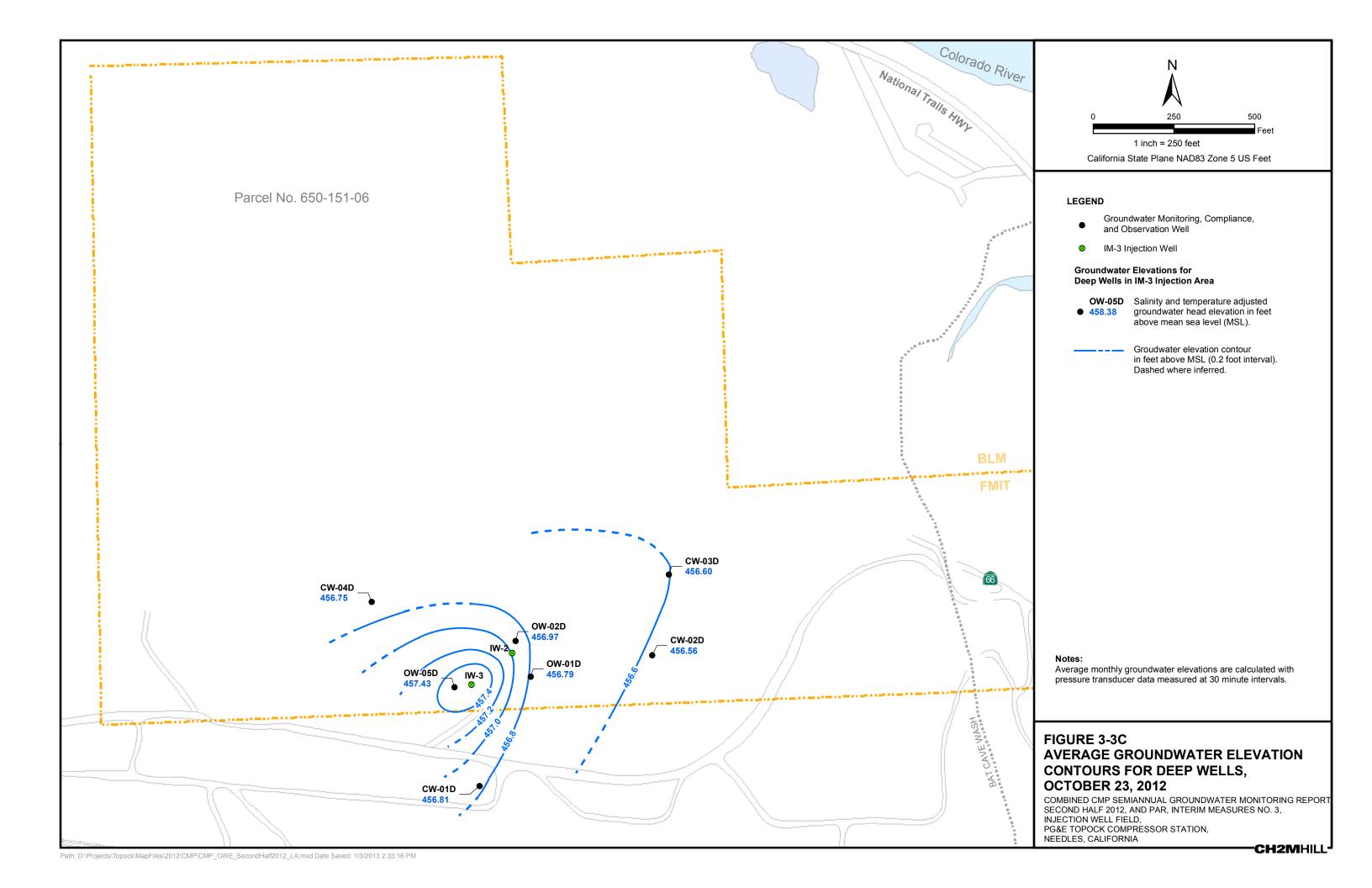

HALF 2012, AND PAR, INTERIM MEASURES NO. 3, INJECTION WELL FIELD, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

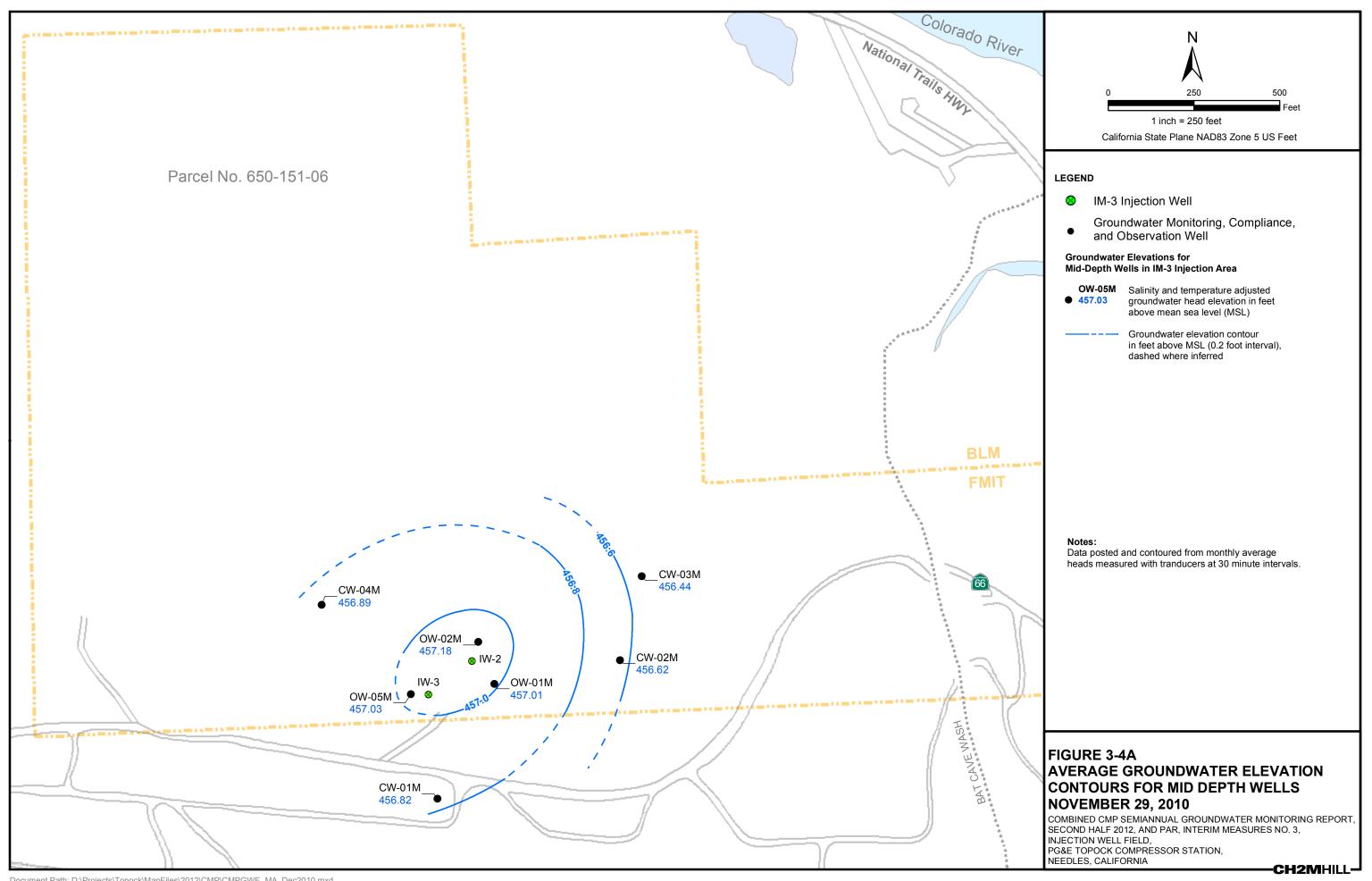


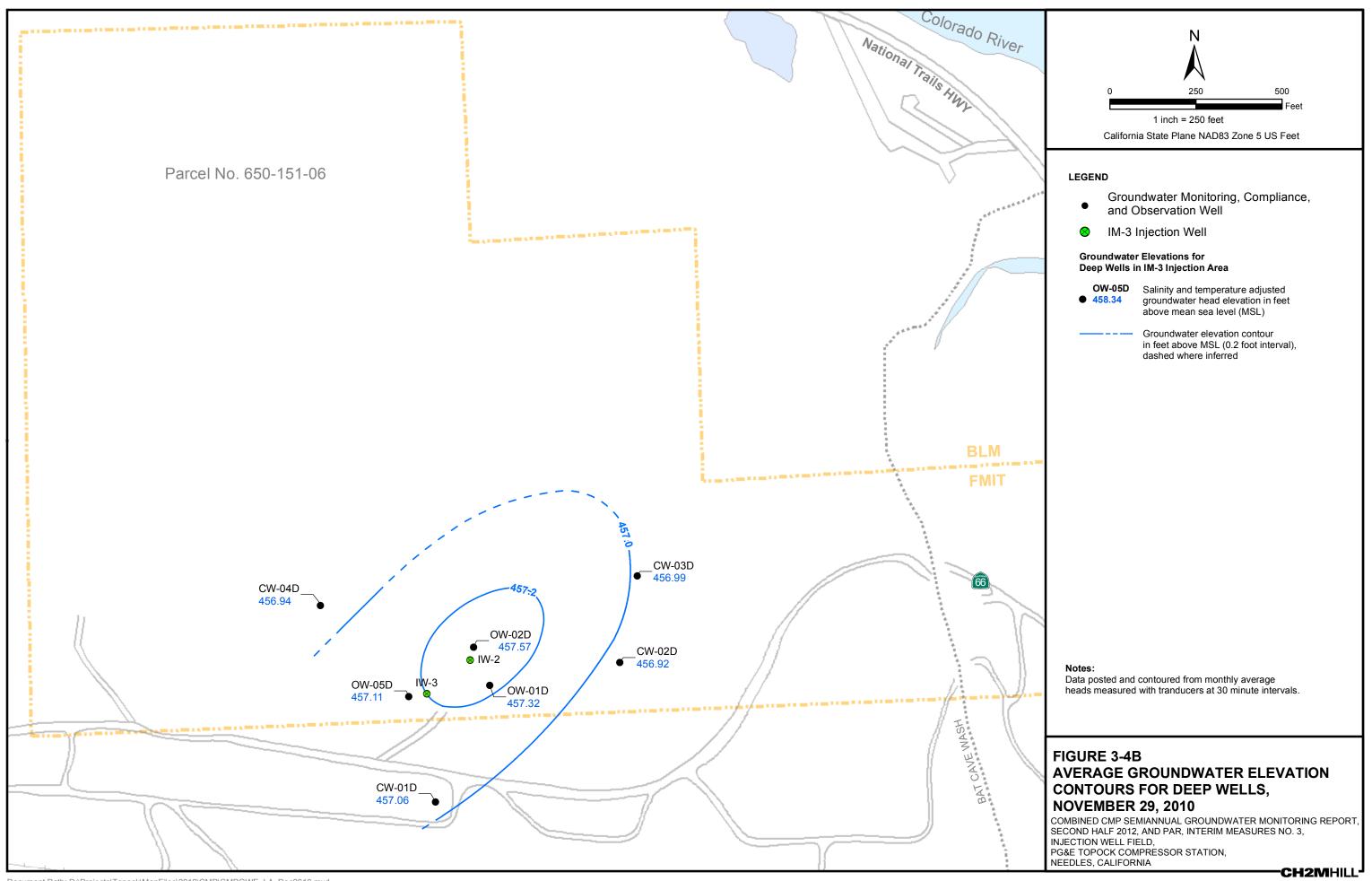


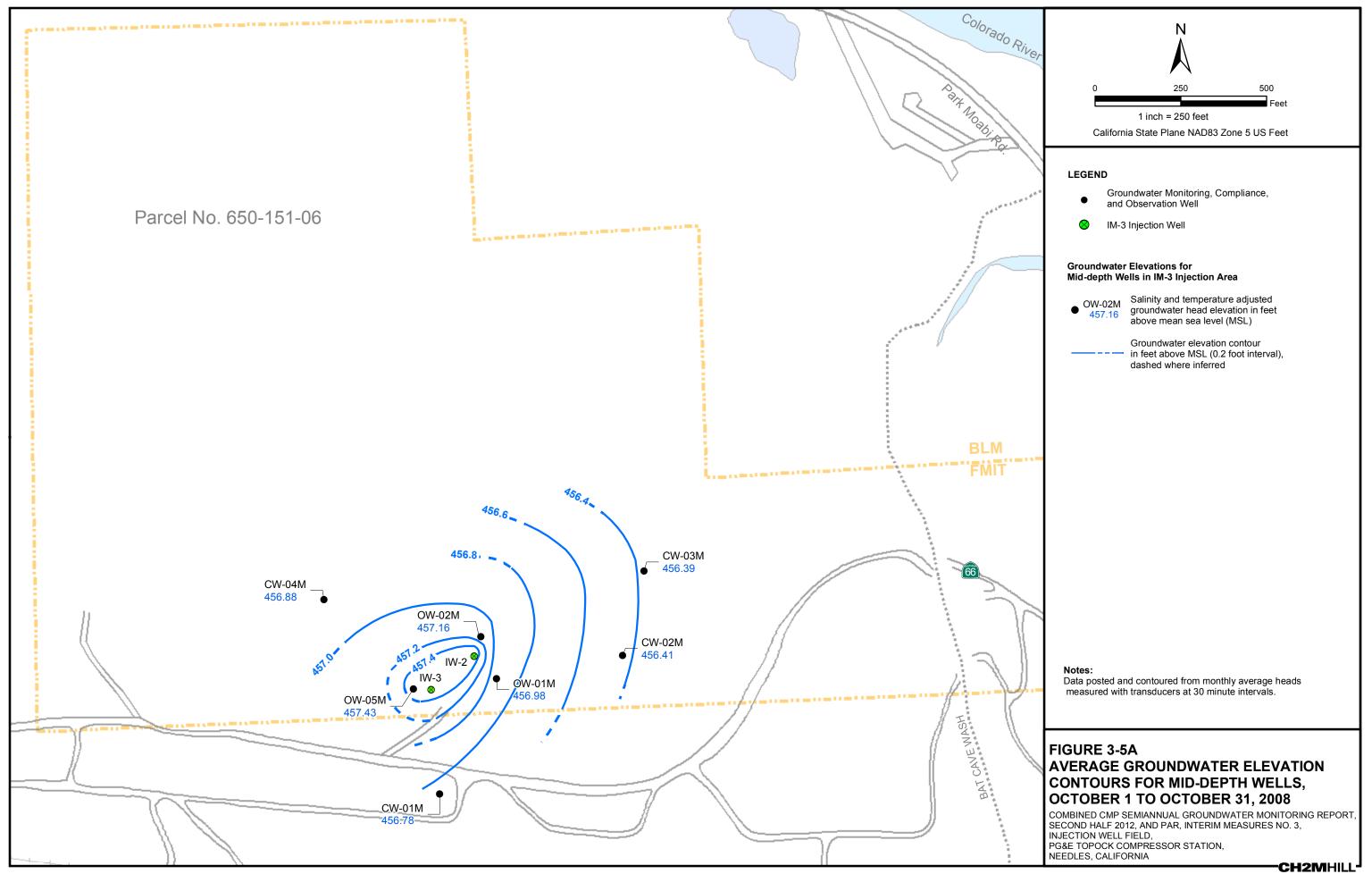


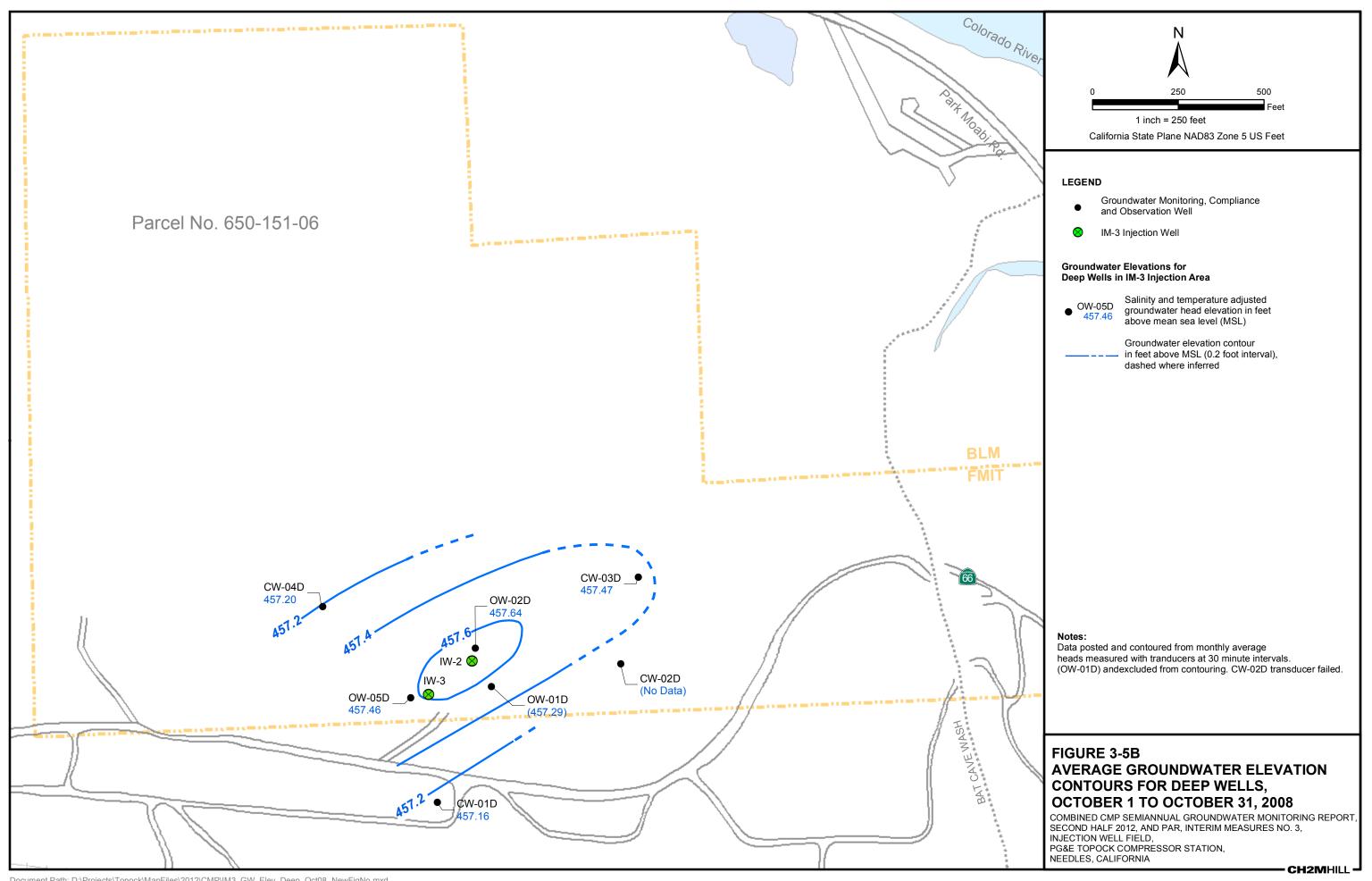


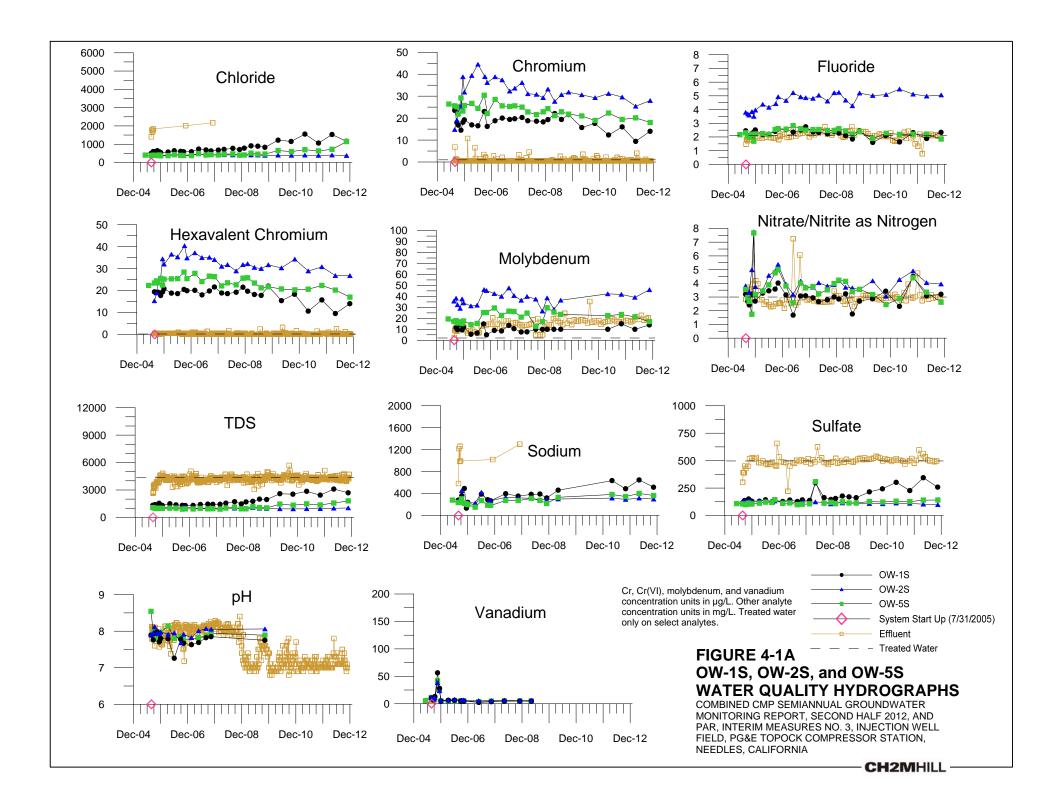


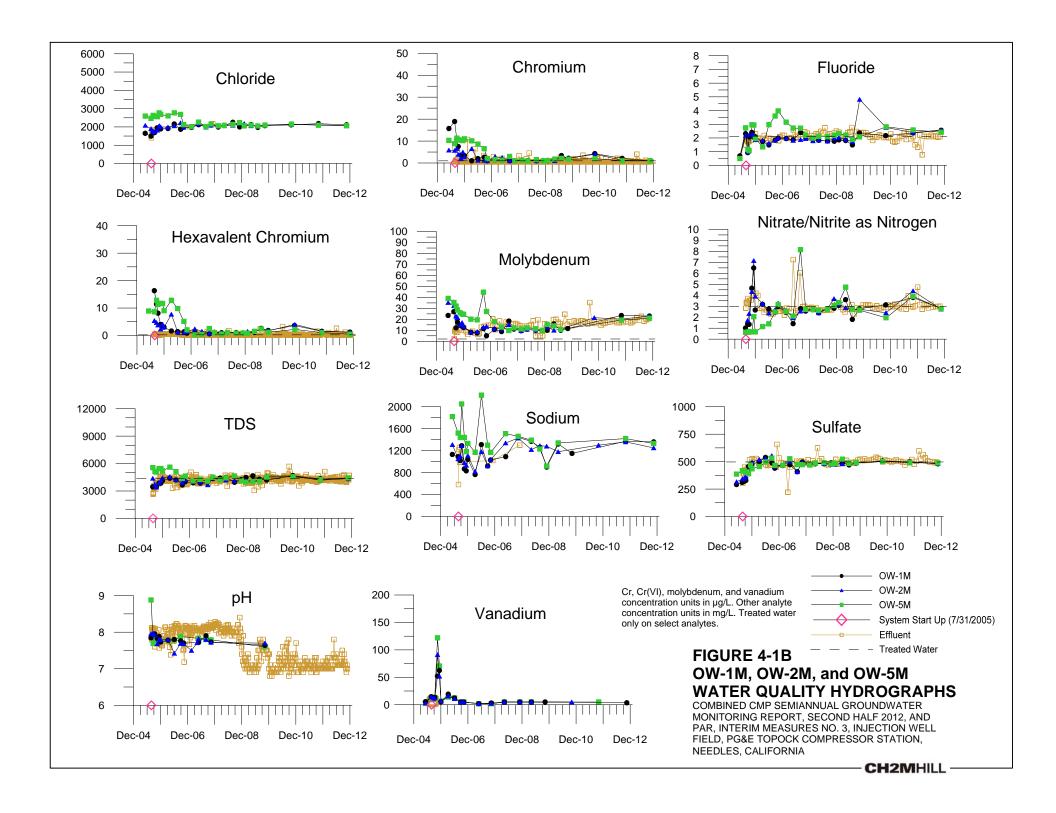


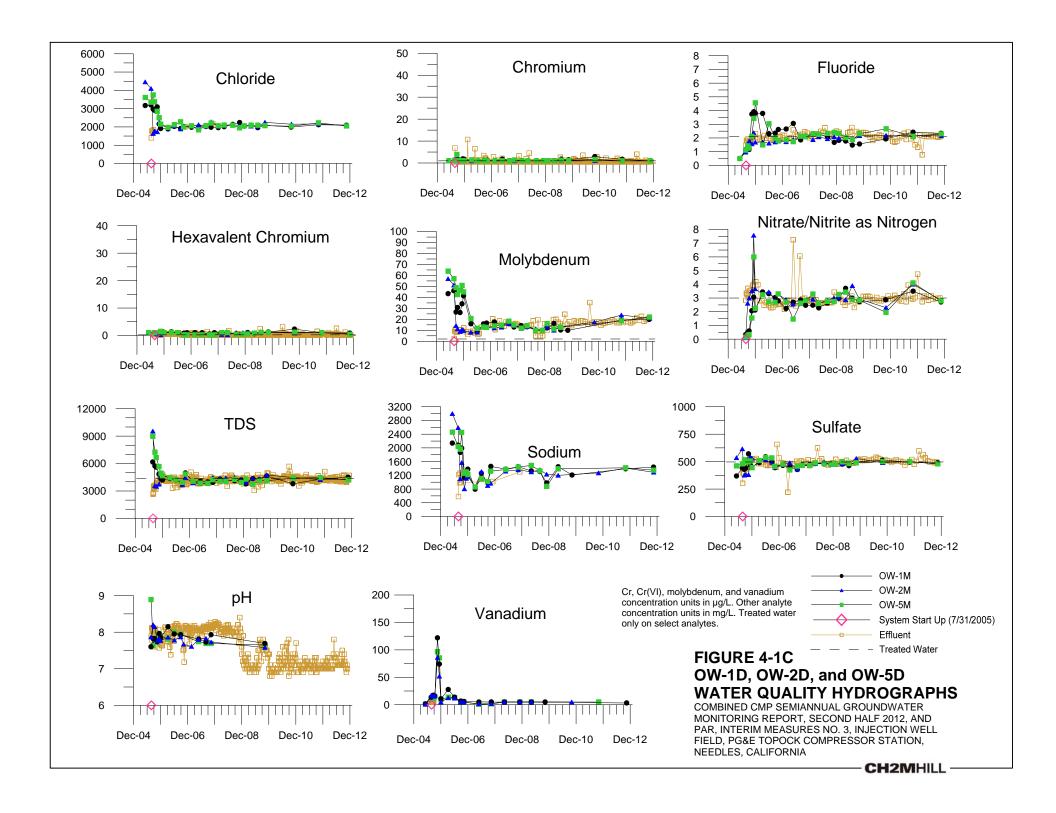


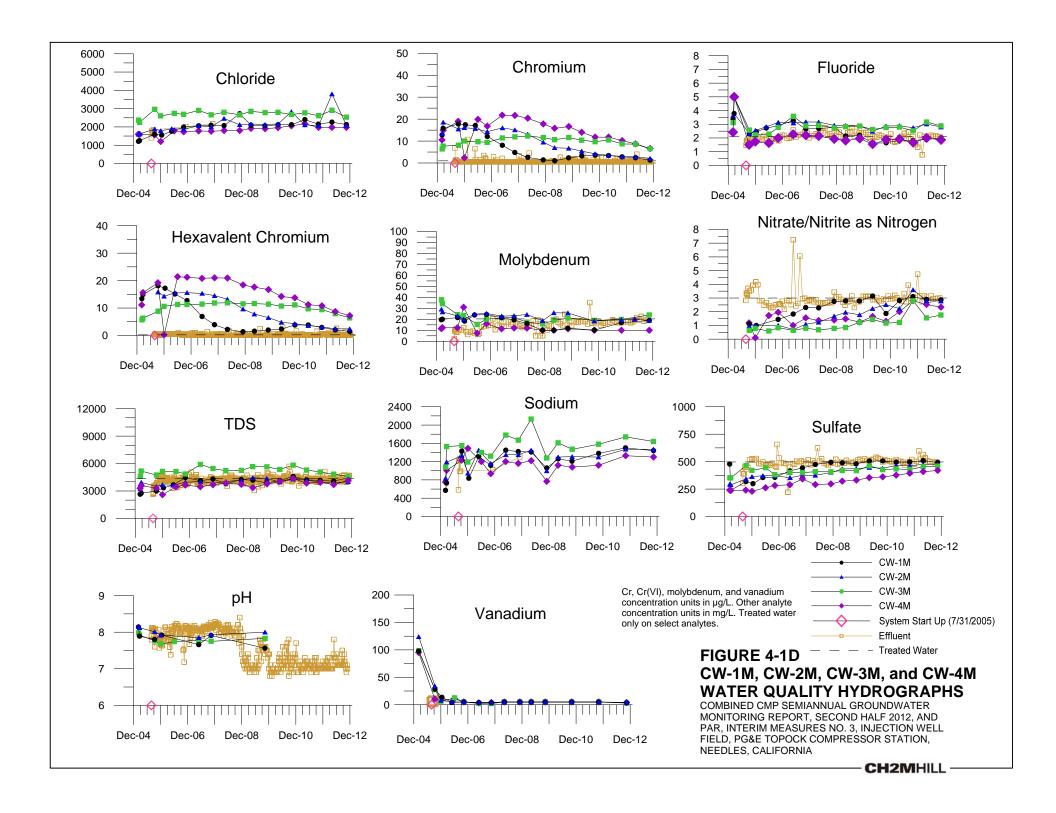


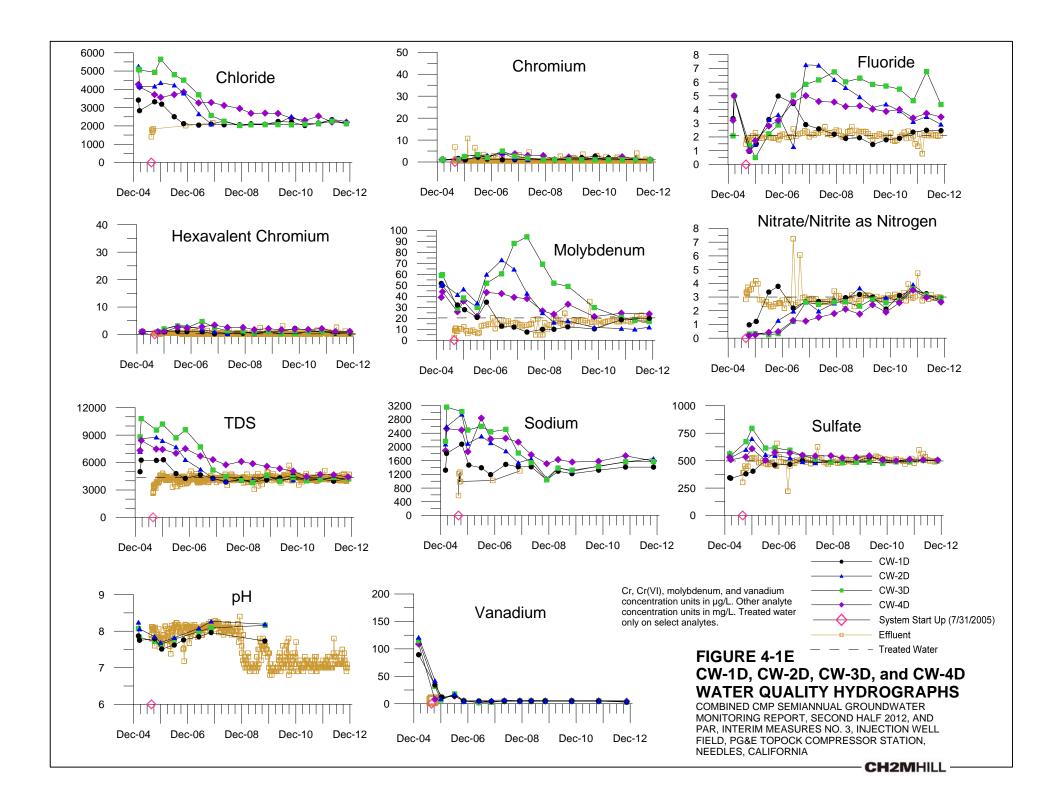


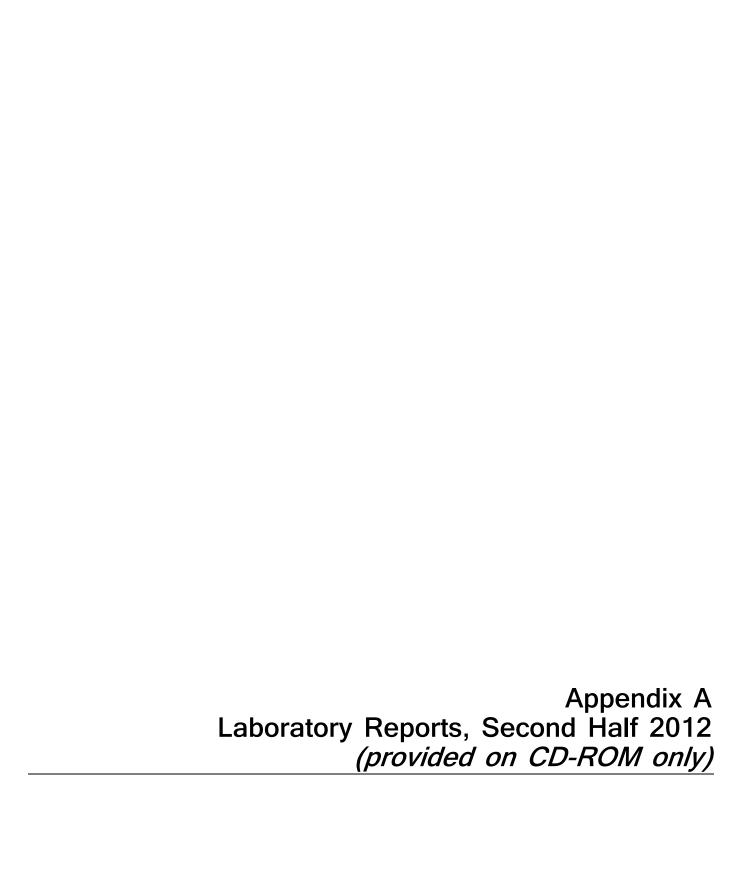












14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 2, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK 2012-CMP-028, GROUNDWATER MONITORING

PROJECT, TLI NO.: 804408

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2012-CMP-028 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody October 16, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

On October 17, 2012, Mr. Shawn Duffy updated the metals analyte list and provided a revised chain of custody.

Due to instrument problems, samples for Total Dissolved Metals analysis by EPA 200.8 (except Mercury) were sub-contracted to Advanced Technology Laboratories – Las Vegas with Mr. Duffy's approval. The results will be forwarded when they become available.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

🎝 🍃 Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Five (5) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 423575.MP.02.CM

Date: December 2, 2012 **Collected:** October 15, 2012 **Received:** October 16, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2320B	Total Alkalinity	Melissa Scharfe
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Melissa Scharfe
SW 6010B	Metals by ICP	Ethel Suico
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Bita Emami
EPA 218.6	Hexavalent Chromium	George Wahba

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 804408

Date Received: October 16, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
Euo Campio in	TICIAID	Mothou	Modiod	- Cumple Date	111110			O.III.O	
804408-001	CW-02D-028	E120.1	NONE	10/15/2012	10:36	EC	7420	umhos/cm	2.0
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Aluminum	ND	ug/L	50.0
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	BORON	975	ug/L	200
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Calcium	83100	ug/L	5000
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Iron	ND	ug/L	20.0
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Magnesium	4.39	mg/L	0.500
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Potassium	11100	ug/L	5000
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Sodium	1660000	ug/L	500000
804408-001	CW-02D-028	E200.7	FLDFLT	10/15/2012	10:36	Zinc	ND	ug/L	20.0
804408-001	CW-02D-028	E200.8	FLDFLT	10/15/2012	10:36	Mercury	ND	ug/L	0.50
804408-001	CW-02D-028	E218.6	FLDFLT	10/15/2012	10:36	Chromium, Hexavalent	0.76	ug/L	0.20
804408-001	CW-02D-028	E300	NONE	10/15/2012	10:36	Chloride	2240	mg/L	100
804408-001	CW-02D-028	E300	NONE	10/15/2012	10:36	Fluoride	2.92	mg/L	0.500
804408-001	CW-02D-028	E300	NONE	10/15/2012	10:36	Sulfate	503	mg/L	25.0
804408-001	CW-02D-028	SM2130B	NONE	10/15/2012	10:36	Turbidity	ND	NTU	0.100
804408-001	CW-02D-028	SM2320B	NONE	10/15/2012	10:36	Alkalinity	61.0	mg/L	5.00
804408-001	CW-02D-028	SM2320B	NONE	10/15/2012	10:36	Alkalinity, Bicarbonate (As	61.0	mg/L	5.00
804408-001	CW-02D-028	SM2320B	NONE	10/15/2012	10:36	Alkalinity, Carbonate (As (ND	mg/L	5.00
804408-001	CW-02D-028	SM2540C	NONE	10/15/2012	10:36	Total Dissolved Solids	4100	mg/L	250
804408-001	CW-02D-028	SM4500NH3D	NONE	10/15/2012	10:36	Ammonia-N	ND	mg/L	0.500
804408-001	CW-02D-028	SW6010B	NONE	10/15/2012	10:36	Iron	ND	ug/L	20.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804408-003	CW-03D-028	E120.1	NONE	10/15/2012	14:26	EC			
							7440	umhos/cm	2.00
804408-003	CW-03D-028	E200.7	FLDFL T	10/15/2012	14:26	Aluminum	ND	ug/L	50.0
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	BORON	1110	ug/L	200
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	Calcium	78200	ug/L	10000
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	Iron	ND	ug/L	20.0
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	Magnesium	5.74	mg/L	0.500
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	Potassium	12500	ug/L	2000
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	Sodium	1570000	ug/L	100000
804408-003	CW-03D-028	E200.7	FLDFLT	10/15/2012	14:26	Zinc	32.2	ug/L	20.0
804408-003	CW-03D-028	E200.8	FLDFLT	10/15/2012	14:26	Mercury	ND	ug/L	0.50
804408-003	CW-03D-028	E218.6	FLDFLT	10/15/2012	14:26	Chromium, Hexavalent	0.90	ug/L	0.20
804408-003	CW-03D-028	E300	NONE	10/15/2012	14:26	Chloride	2120	mg/L	100
804408-003	CW-03D-028	E300	NONE	10/15/2012	14:26	Fluoride	4.37	mg/L	0.500
804408-003	CW-03D-028	E300	NONE	10/15/2012	14:26	Sulfate	499	mg/L	25.0
804408-003	CW-03D-028	SM2130B	NONE	10/15/2012	14:26	Turbidity	ND	NTU	0.100
804408-003	CW-03D-028	SM2320B	NONE	10/15/2012	14:26	Alkalinity	59.0	mg/L	5.00
804408-003	CW-03D-028	SM2320B	NONE	10/15/2012	14:26	Alkalinity, Bicarbonate (As	59.0	mg/L	5.00
804408-003	CW-03D-028	SM2320B	NONE	10/15/2012	14:26	Alkalinity, Carbonate (As (ND	mg/L	5.00
804408-003	CW-03D-028	SM2540C	NONE	10/15/2012	14:26	Total Dissolved Solids	4190	mg/L	250
804408-003	CW-03D-028	SM4500NH3D	NONE	10/15/2012	14:26	Ammonia-N	ND	mg/L	0.500
804408-003	CW-03D-028	SW6010B	NONE	10/15/2012	14:26	Iron	ND	ug/L	20.0

TRUESDAIL LABORATORIES, INC.

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804408-002	CW-02M-028	E120.1	NONE	10/15/2012	12:04	EC	7250	umhos/cm	2.00
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Aluminum	ND	ug/L	50.0
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	BORON	1080	ug/L	200
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Calcium	143000	ug/L	10000
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Iron	ND	ug/L	20.0
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Magnesium	10.6	mg/L	0.500
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Potassium	13100	ug/L	2000
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Sodium	1470000	ug/L	100000
804408-002	CW-02M-028	E200.7	FLDFLT	10/15/2012	12:04	Zinc	ND	ug/L	20.0
804408-002	CW-02M-028	E200.8	FLDFLT	10/15/2012	12:04	Mercury	ND	ug/L	0.50
804408-002	CW-02M-028	E218.6	FLDFLT	10/15/2012	12:04	Chromium, Hexavalent	2.4	ug/L	0.20
804408-002	CW-02M-028	E300	NONE	10/15/2012	12:04	Chloride	2080	mg/L	100
804408-002	CW-02M-028	E300	NONE	10/15/2012	12:04	Fluoride	2.80	mg/L	0.500
804408-002	CW-02M-028	E300	NONE	10/15/2012	12:04	Sulfate	479	mg/L	25.0
804408-002	CW-02M-028	SM2130B	NONE	10/15/2012	12:04	Turbidity	0.136	NTU	0.100
804408-002	CW-02M-028	SM2320B	NONE	10/15/2012	12:04	Alkalinity	49.0	mg/L	5.00
804408-002	CW-02M-028	SM2320B	NONE	10/15/2012	12:04	Alkalinity, Bicarbonate (As	49.0	mg/L	5.00
804408-002	CW-02M-028	SM2320B	NONE	10/15/2012	12:04	Alkalinity, Carbonate (As (ND	mg/L	5.00
804408-002	CW-02M-028	SM2540C	NONE	10/15/2012	12:04	Total Dissolved Solids	4000	mg/L	250
804408-002	CW-02M-028	SM4500NH3D	NONE	10/15/2012	12:04	Ammonia-N	ND	mg/L	0.500
804408-002	CW-02M-028	SW6010B	NONE	10/15/2012	12:04	Iron	ND	ug/L	20.0

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
804408-004	CW-03M-028	E120.1	NONE	10/15/2012	15:34	EC	8440	umhos/cm	2.00
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Aluminum	ND	ug/L	50.0
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	BORON	1030	ug/L	200
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Calcium	209000	ug/L	10000
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Iron	ND	ug/L	20.0
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Magnesium	16.6	mg/L	0.500
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Potassium	16200	ug/L	2000
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Sodium	1640000	ug/L	100000
804408-004	CW-03M-028	E200.7	FLDFLT	10/15/2012	15:34	Zinc	ND	ug/L	20.0
804408-004	CW-03M-028	E200.8	FLDFLT	10/15/2012	15:34	Mercury	ND	ug/L	0.500
804408-004	CW-03M-028	E218.6	FLDFLT	10/15/2012	15:34	Chromium, Hexavalent	6.4	ug/L	1.0
804408-004	CW-03M-028	E300	NONE	10/15/2012	15:34	Chloride	2530	mg/L	100
804408-004	CW-03M-028	E300	NONE	10/15/2012	15:34	Fluoride	2.88	mg/L	0.500
804408-004	CW-03M-028	E300	NONE	10/15/2012	15:34	Sulfate	458	mg/L	25.0
804408-004	CW-03M-028	SM2130B	NONE	10/15/2012	15:34	Turbidity	ND	NTU	0.100
804408-004	CW-03M-028	SM2320B	NONE	10/15/2012	15:34	Alkalinity	46.0	mg/L	5.00
804408-004	CW-03M-028	SM2320B	NONE	10/15/2012	15:34	Alkalinity, Bicarbonate (As	46.0	mg/L	5.00
804408-004	CW-03M-028	SM2320B	NONE	10/15/2012	15:34	Alkalinity, Carbonate (As (ND	mg/L	5.00
804408-004	CW-03M-028	SM2540C	NONE	10/15/2012	15:34	Total Dissolved Solids	4600	mg/L	250
804408-004	CW-03M-028	SM4500NH3D	NONE	10/15/2012	15:34	Ammonia-N	ND	mg/L	0.500
804408-004	CW-03M-028	SW6010B	NONE	10/15/2012	15:34	Iron	ND	ug/L	20.0

	E: 1115	Analysis	Extraction	0	Sample	Danasastan	D 14	1114	D .
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
804408-005	OW-90-028	E120.1	NONE	10/15/2012	7:10	EC	7470	umhos/cm	2.00
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Aluminum	ND	ug/L	50.0
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	BORON	976	ug/L	200
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Calcium	83400	ug/L	10000
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Iron	ND	ug/L	20.0
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Magnesium	4.38	mg/L	0.500
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Potassium	12100	ug/L	2000
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Sodium	1580000	ug/L	100000
804408-005	OW-90-028	E200.7	FLDFLT	10/15/2012	7:10	Zinc	ND	ug/L	20.0
804408-005	OW-90-028	E200.8	FLDFLT	10/15/2012	7:10	Mercury	ND	ug/L	0.50
804408-005	OW-90-028	E218.6	FLDFLT	10/15/2012	7:10	Chromium, Hexavalent	0.79	ug/L	0.20
804408-005	OW-90-028	E300	NONE	10/15/2012	7:10	Chloride	2120	mg/L	100
804408-005	OW-90-028	E300	NONE	10/15/2012	7:10	Fluoride	2.90	mg/L	0.500
804408-005	OW-90-028	E300	NONE	10/15/2012	7:10	Sulfate	502	mg/L	25.0
804408-005	OW-90-028	SM2130B	NONE	10/15/2012	7:10	Turbidity	ND	NTU	0.100
804408-005	OW-90-028	SM2320B	NONE	10/15/2012	7:10	Alkalinity	62.0	mg/L	5.00
804408-005	OW-90-028	SM2320B	NONE	10/15/2012	7:10	Alkalinity, Bicarbonate (As	62.0	mg/L	5.00
804408-005	OW-90-028	SM2320B	NONE	10/15/2012	7:10	Alkalinity, Carbonate (As (ND	mg/L	5.00
804408-005	OW-90-028	SM2540C	NONE	10/15/2012	7:10	Total Dissolved Solids	4180	mg/L	250
804408-005	OW-90-028	SM4500NH3D	NONE	10/15/2012	7:10	Ammonia-N	ND	mg/L	0.500
804408-005	OW-90-028	SW6010B	NONE	10/15/2012	7:10	Iron	ND	ug/L	20.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 27

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/2/2012

Laboratory No. 804408

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project Number: 423575.MP.02.CM P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 10/16/2012 9:30:00 PM

Field ID	Lab ID	Collected	Matrix
CW-02D-028	804408-001	10/15/2012 10:36	Water
CW-02M-028	804408-002	10/15/2012 12:04	Water
CW-03D-028	804408-003	10/15/2012 14:26	Water
CW-03M-028	804408-004	10/15/2012 15:34	Water
OW-90-028	804408-005	10/15/2012 07:10	Water

Anions By I.C EPA 300.0		Batch 10AN12Z				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
804408-001 Chloride	mg/L	10/24/2012 13:36	500	17.4	100	2240
Sulfate	mg/L	10/24/2012 15:51	50.0	1.54	25.0	503
804408-002 Chloride	mg/L	10/24/2012 13:48	500	17.4	100	2080
Sulfate	mg/L	10/24/2012 16:02	50.0	1.54	25.0	479
804408-003 Chloride	mg/L	10/24/2012 13:59	500	17.4	100	2120
Sulfate	mg/L	10/24/2012 16:13	50.0	1.54	25.0	499
804408-004 Chloride	mg/L	10/24/2012 14:10	500	17.4	100	2530
Sulfate	mg/L	10/24/2012 16:25	50.0	1.54	25.0	458
804408-005 Chloride	mg/L	10/24/2012 14:22	500	17.4	100	2120
Sulfate	mg/L	10/24/2012 16:36	50.0	1.54	25.0	502

Method Blank			
Parameter	Unit	DF	Result
Chloride	mg/L	1.00	ND
Sulfate	mg/L	1.00	ND
Nitrate as Nitrogen	mg/L	1.00	ND

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without principal authorization from Truesdail Laboratories.

Client: E2 Consulting Eng	ineers, Ind		roject Name: roject Numbei	PG&E Topock Pror: 423575.MP.02.CM	=	Page 2 of 27 Printed 12/2/2012
Duplicate						Lab ID = 804485-004
Parameter Chloride Sulfate Duplicate	Unit mg/L mg/L	DF 50.0 50.0	Result 107 110	Expected 107 112	RPD 0.371 1.38	Acceptance Range 0 - 20 0 - 20 Lab ID = 804492-014
Parameter Nitrate as Nitrogen Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0.243	RPD 0	Acceptance Range 0 - 20
Parameter Chloride Sulfate Nitrate as Nitrogen Matrix Spike	Unit mg/L mg/L mg/L	DF 1.00 1.00 1.00	Result 4.01 20.0 4.01	Expected 4.00 20.0 4.00	Recovery 100 100 100	Acceptance Range 90 - 110 90 - 110 90 - 110 Lab ID = 804485-004
Parameter Chloride Sulfate Matrix Spike	Unit mg/L mg/L	DF 50.0 50.0	Result 298 315	Expected/Added 307(200) 312(200)	Recovery 95.7 102	Acceptance Range 85 - 115 85 - 115 Lab ID = 804492-014
Parameter Nitrate as Nitrogen MRCCS - Secondary	Unit mg/L	DF 1.00	Result 2.31	Expected/Added 2.24(2.00)	Recovery 103	Acceptance Range 85 - 115
Parameter Chloride Sulfate Nitrate as Nitrogen MRCVS - Primary	Unit mg/L mg/L mg/L	DF 1.00 1.00 1.00	Result 4.01 20.1 4.01	Expected 4.00 20.0 4.00	Recovery 100 100 100	Acceptance Range 90 - 110 90 - 110 90 - 110
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.98	Expected 3.00	Recovery 99.3	Acceptance Range 90 - 110
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.7	Acceptance Range 90 - 110
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.97	Expected 3.00	Recovery 98.9	Acceptance Range 90 - 110
Parameter Sulfate	Unit mg/L	DF 1.00	Result 15.0	Expected 15.0	Recovery 99.8	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without pripressition from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 4 of 27 Printed 12/2/2012

Parameter		Unit	Ana	lyzed I)F	MDL	RL	Result
804408-001 Fluoride		mg/L	10/20)/2012 16:48 5	.00	0.104	0.500	2.92
804408-002 Fluoride		mg/L	10/20)/2012 16:59 5	.00	0.104	0.500	2.80
804408-003 Fluoride		mg/L	10/20)/2012 17:34 5	.00	0.104	0.500	4.37
804408-004 Fluoride		mg/L	10/20)/2012 17:45 5	.00	0.104	0.500	2.88
804408-005 Fluoride		mg/L	10/20)/2012 17:56 5	.00	0.104	0.500	2.90
Method Blank			· · · · · · · · · · · · · · · · · · ·					
Parameter	Unit	DF	Result					
Bromide	mg/L	1.00	ND					
Chloride	mg/L	1.00	ND					
Fluoride	mg/L	1.00	ND					
Sulfate	mg/L	1.00	ND					
Nitrate as Nitrogen	mg/L	1.00	ND					
Duplicate							Lab ID = 8	304411-006
Parameter	Unit	DF	Result	Expected	RF	סי	Accepta	nce Range
Chloride	mg/L	10.0	25.5	25.6	(0.376	0 - 20	•
Sulfate	mg/L	10.0	39.0	39.2	(0.412	0 - 20	
Duplicate							Lab ID = 8	304436-001
Parameter	Unit	DF	Result	Expected	RF	PD	Accepta	nce Range
Bromide	mg/L	5.00	ND	0	(כ	0 - 20	
Fluoride	mg/L	5.00	ND	0	(כ	0 - 20	
Duplicate							Lab ID = 8	304460-011
Parameter	Unit	DF	Result	Expected	RF	PD	Acceptar	nce Range
Nitrate as Nitrogen	mg/L	1.00	2.09	2.08	(0.527	0 - 20	_
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	ecovery	Acceptar	nce Range
Bromide	mg/L	1.00	3.98	4.00	9	99.5	90 - 110	
Chloride	mg/L	1.00	4.02	4.00	1	100	90 - 110	
Fluoride	mg/L	1.00	4.14	4.00	1	104	90 - 110	
Sulfate	mg/L	1.00	20.0	20.0	1	100	90 - 110	
Nitrate as Nitrogen	mg/L	1.00	4.00	4.00	1	100	90 - 110	
Matrix Spike							Lab ID = 8	04411-006
Parameter	Unit	DF	Result	Expected/Adde	d Re	covery	Acceptar	nce Range
Chloride	mg/L	10.0	66.0	65.6(40.0)	1	101	85 - 115	
Sulfate	mg/L	10.0	143	139(100)	1	104	85 - 115	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without provide authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 7 of 27 Printed 12/2/2012

Alkalinity by SM 23208			Batch	10ALK12C				
Parameter		Unit	Ana	llyzed	DF	MDL	RL	Result
804408-001 Alkalinity as C	aCO3	mg/L	10/18	3/2012	1.00	0.555	5.00	61.0
Bicarbonate (0	Calculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	61.0
Carbonate (Ca	alculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	ND
804408-002 Alkalinity as C	aCO3	mg/L	10/18	3/2012	1.00	0.555	5.00	49.0
Bicarbonate (0	Calculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	49.0
Carbonate (Ca	alculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	ND
804408-003 Alkalinity as C	aCO3	mg/L	10/18	3/2012	1.00	0.555	5.00	59.0
Bicarbonate (0	Calculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	59.0
Carbonate (Ca	alculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	ND
804408-004 Alkalinity as C	aCO3	mg/L	10/18	3/2012	1.00	0.555	5.00	46.0
Bicarbonate (0	Calculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	46.0
Carbonate (Ca	alculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	ND
804408-005 Alkalinity as C	aCO3	mg/L	10/18	3/2012	1.00	0.555	5.00	62.0
Bicarbonate (0	Calculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	62.0
Carbonate (Ca	alculated)	mg/L	10/18	3/2012	1.00	0.555	5.00	ND
Method Blank								
Parameter	Unit	DF	Result					
Alkalinity as CaCO3	mg/L	1.00	ND					
Duplicate							Lab ID =	804295-005
Parameter	Unit	DF	Result	Expected	F	RPD	•	ance Range
Alkalinity as CaCO3	mg/L	1.00	35.0	36.0		2.82	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Alkalinity as CaCO3	mg/L	1.00	101	100		101	90 - 110)
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	-	ince Range
Alkalinity as CaCO3	mg/L	1.00	102	100		102	90 - 110	
Matrix Spike							Lab ID =	804408-005
Parameter	Unit	DF	Result	Expected/A	dded F	Recovery		ince Range
Alkalinity as CaCO3	mg/L	1.00	155	162(100)		93.0	75 - 125)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 8 of 27 Printed 12/2/2012

Parameter		Unit	Ar	nalyzed	DF	MDL	RL	Result
804408-001 Specific Conduc	tivity	umhos	/cm 10/	18/2012	1.00	0.116	2.00	7420
804408-002 Specific Conduc	tivity	umhos	/cm 10/	18/2012	1.00	0.116	2.00	7250
804408-003 Specific Conduc	tivity	umhos	/cm 10/	18/2012	1.00	0.116	2.00	7440
804408-004 Specific Conduc	tivity	umhos	/cm 10/	18/2012	1.00	0.116	2.00	8440
804408-005 Specific Conduc	tivity	umhos/	cm 10/	18/2012	1.00	0.116	2.00	7470
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID =	804407-001
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result 7370	Expected 7370	F	RPD 0	Accepta 0 - 10	ance Range 804408-005
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7470	Expected 7470	F	RPD 0	Accepta 0 - 10	ince Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result 700	Expected 706	F	Recovery 99.2	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 703	Expected 706	F	Recovery 99.6	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 694	Expected 706	F	Recovery 98.3	Accepta 90 - 110	ince Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 971	Expected 998	R	ecovery 97.3	Accepta 90 - 110	
MRCVS - Primary			.		_			
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 968	Expected 998	R	lecovery 97.0	Accepta 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 9 of 27 Printed 12/2/2012

Metals by EPA 6010B, Total			Batch	102912A-Th2					
Parameter	Service of the production of the	Unit	Ana	lyzed	DF	MDL	RL	Result	
804408-001 Iron		ug/L	10/29	9/2012 15:37	1.00	0.900	20.0	ND	
804408-002 Iron		ug/L	10/29	9/2012 15:54	1.00	0.900	20.0	ND	
804408-003 Iron		ug/L	10/29	9/2012 16:00	1.00	0.900	20.0	ND	
804408-004 Iron		ug/L	10/29/2012 16:06 1.00		0.900	20.0	ND		
804408-005 Iron		ug/L	10/29)/2012 16:12 ·	1.00	0.900	20.0	ND	
Method Blank									
Parameter	Unit	DF	Result						
Iron	ug/L	1.00	ND						
Duplicate							Lab ID =	804408-001	
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range	
Iron	ug/L	1.00	ND	0		0	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range	
Iron	ug/L	1.00	2220	2000		111	85 - 115	5	
Matrix Spike							Lab ID =	804408-001	
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range	
Iron	ug/L	1.00	2060	2000(2000)		103	75 - 125	5	
MRCCS - Secondary	/ Pilifib								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	
Iron	ug/L	1.00	5220	5000		104	95 - 105	, ,	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery		nce Range	
Iron	ug/L	1.00	5460	5000		109	90 - 110	1	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery		nce Range	
iron	ug/L	1.00	5250	5000		105	90 - 110	ŀ	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range	
Iron	ug/L	1.00	5400	5000		108	90 - 110	l	
Interference Check S	Standard A								
Parameter	Unit	DF	Result	Expected	F	Recovery	-	nce Range	
Iron	ug/L	1.00	2180	2000		109	80 - 120		

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 11 of 27

Project Number: 423575.MP.02.CM

Printed 12/2/2012

Chrome VI by EPA 218.6			Batch					
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
804408-001 Chromium, Hex	avalent	ug/L	10/24	1/2012 04:26	1.00	0.00920	0.20	0.76
804408-002 Chromium, Hex	avalent	ug/L	10/24	4/2012 04:37	1.00	0.00920	0.20	2.4
804408-003 Chromium, Hex	avalent	ug/L	10/24	4/2012 04:47	1.00	0.00920	0.20	0.90
804408-004 Chromium, Hex	avalent	ug/L	10/24	4/2012 10:51	5.00	0.0460	1.0	6.4
804408-005 Chromium, Hex	avalent	ug/L	10/24	1/2012 05:08	1.00	0.00920	0.20	0.79
Method Blank				200				
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804413-005
Parameter	Unit	DF	Result	Expected	ı	RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	10.6	10.6		0.194	0 - 20	_
Low Level Calibration	Nerification	1						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	0.186	0.200		93.0	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.95	5.00		98.9	90 - 110)
Matrix Spike							Lab ID =	804408-001
Parameter	Unit	DF	Result	Expected/Add	ed f	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	1.74	1.76(1.00)		97.9	90 - 110)
Matrix Spike							Lab ID =	804408-002
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	7.31	7.43(5.00)		97.5	90 - 110)
Matrix Spike							Lab ID =	804408-003
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	1.87	1.90(1.00)		97.0	90 - 110)
Matrix Spike							Lab ID =	804408-004
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.00	30.3	31.7(25.0)		94.3	90 - 110)
Matrix Spike							Lab ID =	804408-004
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	16.2	16.4(10.0)		98.0	90 - 110)

Client: E2 Consulting En		oject Name: oject Number	PG&E Topock Pror: 423575.MP.02.CM	-	Page 12 of 27 Printed 12/2/2012	
Matrix Spike						Lab ID = 804408-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.75	Expected/Added 1.79(1.00)	Recovery 95.7	Acceptance Range 90 - 110 Lab ID = 804413-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.26	Expected/Added 6.50(5.00)	Recovery 95.1	Acceptance Range 90 - 110 Lab ID = 804413-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.32	Expected/Added 6.50(5.00)	Recovery 96.5	Acceptance Range 90 - 110 Lab ID = 804413-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 8.60	Expected/Added 8.90(5.00)	Recovery 93.9	Acceptance Range 90 - 110 Lab ID = 804413-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.36	Expected/Added 1.42(1.00)	Recovery 93.2	Acceptance Range 90 - 110 Lab ID = 804413-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.37	Expected/Added 1.41(1.00)	Recovery 95.7	Acceptance Range 90 - 110 Lab ID = 804413-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 16.8	Expected/Added 17.7(10.0)	Recovery 91.8	Acceptance Range 90 - 110 Lab ID = 804413-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 17.4	Expected/Added 18.3(10.0)	Recovery 91.4	Acceptance Range 90 - 110 Lab ID = 804413-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 6.09	Expected/Added 6.36(5.00)	Recovery 94.6	Acceptance Range 90 - 110 Lab ID = 804413-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.12	Expected/Added 6.44(5.00)	Recovery 93.5	Acceptance Range 90 - 110 Lab ID = 804413-011
Parameter Chromium, Hexavalent Matríx Spike	Unit ug/L	DF 1.00	Result 15.3	Expected/Added 16.2(10.0)	Recovery 91.5	Acceptance Range 90 - 110 Lab ID = 804413-014
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 8.37	Expected/Added 8.79(5.00)	Recovery 91.6	Acceptance Range 90 - 110

Client: E2 Consulting Er	ıgineers, İn		roject Name: roject Numbe	PG&E Topo er: 423575.MP.	•	ect		Page 13 of 27 12/2/2012
MRCCS - Secondary								
Parameter	Unit	ÐF	Result	Expected		Recovery	Accept	ance Range
Chromium, Hexavalent MRCVS - Primary	ug/L	1.00	4.96	5.00		99.2	90 - 11	0
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.00	10.1	10.0		101	95 - 10	5
MRCVS - Primary								
Parameter	Unit	ÐF	Result	Expected		Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.00	10.1	10.0		101	95 - 10	_
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.00	9.93	10.0		99.3	95 - 10	_
MRCVS - Primary	_							
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.00	9.71	10.0		97.1	95 - 10	_
MRCVS - Primary								
Parameter	Unit	ÐF	Result	Expected		Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.00	9.68	10.0		96.8	95 - 10	_
Total Dissolved Solids b	y SM 254			10TDS12E				_
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
304408-001 Total Dissolved	Solids	mg/L	10/18	3/2012	1.00	0.757	250	4100
804408-002 Total Dissolved	Solids	mg/L	10/18	/2012	1.00	0.757	250	4000
304408-003 Total Dissolved	Solids	mg/L	10/18	/2012	1.00	0.757	250	4190
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	804332-004
Parameter	Unit	DF	Result	Expected	!	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	335	331		1.20	0 - 10	5
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	1	Recovery	Accenta	ance Range
	J						500ptt	

498

500

99.6

90 - 110

1.00

mg/L

Total Dissolved Solids

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 14 of 27

Project Number: 423575.MP.02.CM

Printed 12/2/2012

Total Dissolved Solids by SM 2540 C		0 C	Batch 10TDS12F						
Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result	
804408-004 Total Dissolved	04408-004 Total Dissolved Solids		10/19/2012		1.00	0.757	250	4600	
804408-005 Total Dissolved	Solids	mg/L	10/19	9/2012	1.00 0.757		250	4180	
Method Blank									
Parameter	Unit	DF	Result						
Total Dissolved Solids	mg/L	1.00	ND						
Duplicate							Lab ID =	804408-005	
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range	
Total Dissolved Solids	mg/L	1.00	4140	4180		0.962	0 - 10	_	
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range	
Total Dissolved Solids	mg/L	1.00	489	500		97.8	90 - 110)	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 15 of 27 Printed 12/2/2012

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804408-001 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804408-002 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804408-003 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804408-004 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804408-005 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Duplicate							Lab ID = 8	B 04303-00 1
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Ammonia as N	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	7.96	8.00		99.5	90 - 110	
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.24	8.00		103	90 - 110	
Matrix Spike							Lab ID = 8	304408-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	7.22	8.00(8.00)		90.2	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	R	Recovery	Acceptar	nce Range
Ammonia as N	mg/L	1.00	6.14	6.00		102	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	5.99	6.00		99.8	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	5.46	6.00		90.9	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 16 of 27 Printed 12/2/2012

Metals by EPA 200.8, Diss	solved		Batch	ı 111312A				
Parameter		Unit	Ana	llyzed	DF	MDL	RL	Result
804408-001 Mercury		ug/L	11/13	3/2012 16:33 2	2.50	0.0600	0.50	ND
804408-002 Mercury		ug/L	11/13	3/2012 16:40 2	2.50	0.0600	0.50	ND
804408-003 Mercury		ug/L	11/13	3/2012 16:47	2.50	0.0600	0.50	ND
804408-004 Mercury		ug/L	11/13	3/2012 16:55	2.50	0.0600	0.50	ND
804408-005 Mercury		ug/L	11/13	3/2012 17:02 2	.50	0.0600	0.50	ND
Method Blank								
Parameter	Unit	DF	Result					
Mercury	ug/L	1.00	ND					
Low Level Calibration V	erification							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Mercury	ug/L	1.00	0.245	0.200		122	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Mercury	ug/L	2.50	10.7	10.0		107	85 - 118	5
Matrix Spike							Lab ID =	804359-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Mercury	ug/ L	2.50	10.8	10.0(10.0)		108	75 - 125	5
Matrix Spike Duplicate							Lab ID =	804359-001
Parameter	Unit	DF	Result	Expected/Adde	ed :	Recovery	Accepta	nce Range
Mercury	ug/L	2.50	10.7	10.0(10.0)		107	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	•	nce Range
Mercury	ug/L	1.00	2.04	2.00		102	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	!	Recovery	•	ince Range
Mercury	ug/L	1.00	2.19	2.00		110	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	!	Recovery	•	ince Range
Mercury	ug/L	1.00	2.18	2.00		109	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	!	Recovery	•	nce Range
Mercury	ug/L	1.00	2.14	2.00		107	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 18 of 27 Printed 12/2/2012

Metals by 200.7, Dissolved	1		Batch 110712A-Th2				
Parameter		Unit	Analyzed	DF	MDL	RL	Result
804408-001 Aluminum		ug/L	11/07/2012 12:28	1.00	10.0	50.0	ND
Boron		ug/L	11/07/2012 12:28	1.00	2.70	200	975
Iron		ug/L	11/07/2012 12:28	1.00	9.50	20.0	ND
Magnesium		ug/L	11/07/2012 12:28	1.00	55.4	500	4390
Zinc		ug/L	11/07/2012 12:28	1.00	7.00	20.0	ND
804408-002 Aluminum		ug/L	11/07/2012 13:12	1.00	10.0	50.0	ND
Boron		ug/L	11/07/2012 13:12	1.00	2.70	200	1080
Iron		ug/L	11/07/2012 13:12	1.00	9.50	20.0	ND
Magnesium		ug/L	11/07/2012 13:12	1.00	55.4	500	10600
Zinc		ug/L	11/07/2012 13:12	1.00	7.00	20.0	ND
804408-003 Aluminum		ug/L	11/07/2012 13:17	1.00	10.0	50.0	ND
Boron		ug/L	11/07/2012 13:17	1.00	2.70	200	1110
Iron		ug/L	11/07/2012 13:17	1.00	9.50	20.0	ND
Magnesium		ug/L	11/07/2012 13:17	1.00	55.4	500	5740
Zinc		ug/L	11/07/2012 13:17	1.00	7.00	20.0	32.2
304408-004 Aluminum		ug/L	11/07/2012 13:23	1.00	10.0	50.0	ND
Boron		ug/L	11/07/2012 13:23	1.00	2.70	200	1030
Iron		ug/L	11/07/2012 13:23	1.00	9.50	20.0	ND
Magnesium		ug/L	11/07/2012 13:23	1.00	55.4	500	16600
Zinc		ug/L	11/07/2012 13:23	1.00	7.00	20.0	ND
304408-005 Aluminum		ug/L	11/07/2012 13:29	1.00	10.0	50.0	ND
Boron		ug/L	11/07/2012 13:29	1.00	2.70	200	976
Iron		ug/L	11/07/2012 13:29	1.00	9.50	20.0	ND
Magnesium		ug/L	11/07/2012 13:29	1.00	55.4	500	4380
Zinc		ug/L	11/07/2012 13:29	1.00	7.00	20.0	ND
Method Blank							
Parameter	Unit	DF	Result				
	,,	4 00	NB				

Parameter	Unit	DF	Result
Aluminum	ug/L	1.00	ND
Iron	ug/L	1.00	ND
Zinc	ug/L	1.00	ND
Magnesium	ug/L	1.00	ND
Boron	ug/L	1.00	ND

Client: E2 Consulting Engineers, Inc.			Project Name: Project Number:	oject 1	Page 19 of 27 Printed 12/2/2012	
Duplicate						Lab ID = 804408-001
Parameter Aluminum	Unit ug/L	DF 1.00	Result ND	Expected 0	RPD 0	Acceptance Range 0 - 20
Iron	ug/L	1.00		0	0	0 - 20
Zinc	ug/L	1.00		0	0	0 - 20
Magnesium	ug/L	1.00	4490	4390	2.16	0 - 20
Boron	ug/L	1.00	998	975	2.35	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	1970	2000	98.6	85 - 115
Iron	ug/L	1.00	2090	2000	104	85 - 115
Zinc	ug/L	1.00	1900	2000	94.8	85 - 115
Magnesium	ug/L	1.00	2120	2000	106	85 - 115
Boron	ug/L	1.00	1920	2000	96.0	85 - 115
Matrix Spike						Lab ID = 804408-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Aluminum	ug/L	1.00	1670	2000(2000)	83.6	75 - 125
Iron	ug/L	1.00	1900	2000(2000)	95.0	75 - 125
Zinc	ug/L	1.00	2120	2000(2000)	106	75 - 125
Magnesium	ug/L	1.00	6570	6390(2000)	109	75 - 125
Boron	ug/L	1.00	2870	2980(2000)	94.8	75 - 125
Matrix Spike Duplicate						Lab ID = 804408-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Aluminum	ug/L	1.00	1620	2000(2000)	81.2	75 - 125
Iron	ug/L	1.00	1840	2000(2000)	91.8	75 - 125
Zinc	ug/L	1.00	2050	2000(2000)	102	75 - 125
Magnesium	ug/L	1.00	6380	6390(2000)	99.4	75 - 125
Boron	ug/L	1.00	2810	2980(2000)	91.6	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	4810	5000	96.2	95 - 105
Iron	ug/L	1.00	5020	5000	100	95 - 105
Zinc	ug/L	1.00	4800	5000	96.0	95 - 105
Magnesium	ug/L	1.00	4900	5000	97.9	95 - 105
Boron	ug/L	1.00	4910	5000	98.1	95 - 105

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 23 of 27 Printed 12/2/2012

Metals by 200.7, Dissol		• • • •				B 415	D.	- · ·
Parameter		Unit	Analy		DF	MDL	RL	Result
804408-001 Calcium		ug/L		2012 15:07	50.0	600	5000	83100
Potassium		ug/L	11/06/	2012 16:14	5.00	1350	5000	11100
Sodium		ug/L	11/06/	2012 13:31	500	197000	500000	1660000
804408-002 Calcium		ug/L	11/06/	2012 14:14	100	1200	10000	143000
Potassium		ug/L	11/06/2	2012 16:37	2.00	540	2000	13100
Sodium		ug/L	11/06/2	2012 14:14	100	39400	100000	1470000
804408-003 Calcium		ug/L	11/06/2	2012 14:20	100	1200	10000	78200
Potassium		ug/L	11/06/2	2012 16:43	2.00	540	2000	12500
Sodium		ug/L	11/06/2	2012 14:20	100	39400	100000	1570000
804408-004 Calcium		ug/L	11/06/2	2012 14:26	100	1200	10000	209000
Potassium		ug/L	11/06/2	2012 16:49	2.00	540	2000	16200
Sodium		ug/L	11/06/2	2012 14:26	100	39400	100000	1640000
804408-005 Calcium		ug/L	11/06/2	2012 14:32	100	1200	10000	83400
Potassium		ug/L	11/06/2	2012 16:55	2.00	540	2000	12100
Sodium		ug/L	11/06/2	2012 14:32	100	39400	100000	1580000
Method Blank								
Parameter	Unit	DF	Result					
Calcium	ug/L	1.00	ND					
Potassium	ug/L	1.00	ND					
Sodium	ug/L	1.00	ND					
Duplicate							Lab ID = 8	04408-001
Parameter	Unit	DF	Result	Expected	F	PD.	Acceptan	ce Range
Calcium	ug/L	50.0	84400	83100		1.55	0 - 20	
Potassium	ug/L	5.00	10600	11100		4.23	0 - 20	
Sodium	ug/L	500	1580000	1660000		4.62	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	lecovery	Acceptan	ce Range
Calcium	ug/L	1.00	2190	2000		110	85 - 115	
Potassium	ug/L	1.00	2140	2000		107	85 - 115	
Sodium	ug/L	1.00	1980	2000		99.0	85 - 115	

Client: E2 Consulting En	•			Project Name: PG&E Topock Project Project Number: 423575.MP.02.CM				
Matrix Spike						Lab ID = 804408-001		
Parameter Calcium	Unit ug/L	DF 50.0	Result 189000	Expected/Added 183000(100000)	Recovery 106	Acceptance Range 75 - 125		
Potassium	ug/L	5.00	21700	21100(10000)	106	75 - 125		
Sodium	ug/L	500	2690000	2660000(100000	103	75 - 125		
MRCCS - Secondary					_			
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Calcium	ug/L	1.00	5060	5000	101	95 - 105		
Potassium	ug/L	1.00 1.00	4960 4900	5000 5000	99.2	95 - 105		
Sodium	ug/L	1.00	4900	5000	97.9	95 - 105		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Calcium	ug/L	1.00	5190	5000	104	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Calcium	ug/L	1.00	4980	5000	99.5	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Calcium	ug/L	1.00	5020	5000	100	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Calcium	ug/L	1.00	5010	5000	100	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Calcium	ug/L	1.00	5130	5000	102	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Potassium	ug/L	1.00	4790	5000	95.8	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Potassium	ug/L	1.00	5080	5000	102	90 - 110		
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Potassium	ug/L	1.00	4960	5000	99.2	90 - 110		
	=							

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 27 of 27 Printed 12/2/2012

Turbidity by SM 2130 B			Batch	10TUC12J				
Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result
804408-001 Turbidity		NTU	10/17	7/2012	1.00	0.0140	0.100	ND
804408-002 Turbidity		NTU	10/17	7/2012	1.00	0.0140	0.100	0.136
804408-003 Turbidity		NTU	10/17	7/2012	1.00	0.0140	0.100	ND
804408-004 Turbidity		NTU	10/17/2012 1.00 0.0			0.0140	0.100	ND
804408-005 Turbidity		NTU	10/17	7/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter Turbidity	Unit NTU	DF 1.00	Result ND					
Duplicate							Lab ID =	804408-005
Parameter Turbidity	Unit NTU	DF 1.00	Result ND	Expected 0	F	RPD 0	Accepta 0 - 20	nce Range
Lab Control Sample								
Parameter Turbidity	Unit NTU	DF 1.00	Result 8.20	Expected 8.00	F	Recovery 102	Accepta 90 - 110	nce Range
Lab Control Sample			Б. "	-	_		Α ,	314.
Parameter Turbidity	Unit NTU	DF 1.00	Result 8.10	Expected 8.00	<u></u>	Recovery 101	90 - 110	nce Range

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS12E Date Analyzed: 10/15/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	71.8091	71.8108	71.8105	0.0003	No	0.0014	14.0	25.0	ND	1
804302-1	50	71.3078	71.3677	71.3673	0.0004	No	0.0595	1190.0	50.0	1190.0	1
804302-2	50	69.5551	69.6245	69.6241	0.0004	No	0.0690	1380.0	50.0	1380.0	1
804302-3	50	65.4453	65.5167	65.5166	0.0001	No	0.0713	1426.0	50.0	1426.0	1
804302-4	50	78.3756	78.4832	78.4832	0.0000	No	0.1076	2152.0	50.0	2152.0	1
804302-5	50	68.8712	68.9165	68.9161	0.0004	No	0.0449	898.0	50.0	898.0	1
804302-6	50	67.7686	67.8279	67.8279	0.0000	No	0.0593	1186.0	50.0	1186.0	1
804332-1	100	68.0106	68.0364	68.0360	0.0004	No	0.0254	254.0	25.0	254.0	11
804332-2	100	69.4115	69.4389	69.4389	0.0000	No	0.0274	274.0	25.0	274.0	1
804332-3	100	67.2086	67.2429	67.2425	0.0004	No	0.0339	339,0	25.0	339.0	11
804332-4	100	72.0944	72.1279	72.1275	0.0004	No	0.0331	331.0	25.0	331.0	11
804332-4D	100	69.2080	69.2416	69.2415	0.0001	No	0.0335	335.0	25.0	335.0	1
LCS	100	72.3864	72.4363	72.4362	0.0001	No	0.0498	498.0	25.0	498.0	1
804332-5	100	74.6076	74.639	74.6386	0.0004	No	0.0310	310.0	25.0	310.0	1
804332-6	50	51.0602	51.1278	51.1278	0.0000	No	0.0676	1352.0	50.0	1352.0	1
804332-7	50	49.3551	49.4087	49.4087	0.0000	No	0.0536	1072.0	50.0	1072.0	1
804332-8	50	49.8836	49.9372	49.9372	0.0000	No	0.0536	1072.0	50.0	1072.0	1
804332-9	50	50.6353	50.6952	50.6949	0.0003	No	0.0596	1192.0	50.0	1192.0	11
804357-5	50	75.7609	75.7913	75.7913	0.0000	No	0.0304	608.0	50.0	608.0	1
804357-6	50	111.3691	111.4003	111.4003	0.0000	No	0.0312	624.0	50.0	624.0	1
804408-1	10	49.1835	49.2245	49.2245	0.0000	No	0.0410	4100.0	250.0	4100.0	1
804408-2	10	75.2925	75.3327	75.3325	0.0002	No	0.0400	4000.0	250.0	4000.0	1
804408-3	10	50.1285	50.1705	50.1704	0.0001	No	0.0419	4190.0	250.0	4190.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

 $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	498	500	99.6%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804332-4	0.0331	0.0335	0.6%	≤5%	Yes

Jenny T.

Analyst Printed Name

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \ 10$$

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{A \text{ or } B = C}{C}\right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g). Maksim

Hope T.

Reviewer Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12E

Date Analyzed: 10/15/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804302-1	1820	0.65	1183	1.01
804302-2	2050	0.67	1332.5	1.04
804302-3	2060	0.69	1339	1.06
804302-4	3150	0.68	2047.5	1.05
804302-5	1380	0.65	897	1.00
804302-6	1780	0.67	1157	1.03
804332-1	450	0.56	292.5	0.87
804332-2	435	0.63	282.75	0.97
804332-3	527	0.64	342.55	0.99
804332-4	523	0.63	339.95	0.97
804332-4D	523	0.64	339.95	0.99
LCS				
804332-5	480	0.65	312	0.99
804332-6	1913	0.71	1243.45	1.09
804332-7	1620	0.66	1053	1.02
804332-8	1654	0.65	1075.1	1.00
804332-9	1758	0.68	1142.7	1.04
804357-5	1021	0.60	663.65	0.92
804357-6	1015	0.61	659.75	0.95
804408-1	7480	0.55	4862	0.84
804408-2	7250	0.55	4712.5	0.85
804408-3	7440	0.56	4836	0.87
1000	/44/			

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS12F Date Analyzed: 10/16/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	69.5584	69.5585	69.5584	0.0001	No	0.0000	0.0	25.0	ND	1
804408-4	10	50.7026	50.7486	50.7486	0.0000	No	0.0460	4600.0	250.0	4600.0	1
804408-5	10	47.5155	47.5575	47,5573	0.0002	No	0.0418	4180.0	250,0	4180.0	1
804409-6	100	66.8046	66.8309	66.8305	0.0004	No	0.0259	259.0	25.0	259.0	1
804409-7	50	76.6743	76.7234	76.723	0.0004	No	0.0487	974.0	50.0	974.0	1
804409-8	100	76.1917	76.2420	76.2417	0.0003	No	0.0500	500.0	25.0	500.0	1
804409-10	100	68.8025	68.8361	68.8357	0.0004	No	0.0332	332.0	25.0	332.0	1
804409-11	100	67.0518	67.0850	67.0847	0,0003	No	0.0329	329.0	25.0	329.0	1
804434-1	50	76.2794	76.3722	76.372	0.0002	No	0.0926	1852.0	50.0	1852.0	1
804434-2	50	65,6670	65.7573	65.7570	0.0003	No	0.0900	1800.0	50.0	1800.0	1
804434-3	20	48.5862	48.6679	48.6677	0.0002	No	0.0815	4075.0	125.0	4075.0	1
804408-5D	10	50.1575	50.1989	50.1989	0.0000	No	0.0414	4140.0	250.0	4140.0	1
LCS	100	73.4436	73.4925	73.4925	0.0000	No	0.0489	489.0	25.0	489.0	1
804434-4	50	69.3397	69.4434	69.443	0.0004	No	0.1033	2066.0	50.0	2066.0	1
804434-5	20	51.4496	51.5385	51.5383	0.0002	No	0.0887	4435.0	125.0	4435.0	1
804434-6	50	78.3965	78.4765	78.4765	0.0000	No	0.0800	1600.0	50.0	1600.0	1
804434-7	20	49.1782	49.268	49.2679	0.0001	No	0.0897	4485.0	125.0	4485.0	1
804434-8	100	50.8651	50.8911	50.8911	0.0000	No	0.0260	260.0	25.0	260.0	1
804434-9	50	67.6984	67.8248	67.8248	0.0000	No	0.1264	2528.0	50.0	2528.0	11
804439	50	76.3414	76.384	76.3836	0.0004	No	0.0422	844.0	50.0	844.0	1
804452-1	50	66.7120	66.8212	66.8211	0.0001	No	0.1091	2182.0	50.0	2182.0	1
804452-2	20	51.4696	51.5205	51.5205	0.0000	No	0.0509	2545.0	125.0	2545.0	1
804438-1	100	111.7303	111.7672	111.7668	0.0004	No	0.0365	365.0	25.0	365.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

Lubolutor	y Control Ot	ampie (Loc	Journal	7	
QC Std LD.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	489	500	97.8%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804408-5	0.0418	0.0414	0.5%	≤5%	Yes
			-	-	

Jenny T.

Analyst Printed Name

LCS Recovery

$$P = \left(\frac{LC}{LC}\right) \times 100$$

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim - Hope T

Reviewer Printed Name

Reviewer Signature

048

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12F
Date Analyzed: 10/16/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
			~~	
804408-4	8440	0.55	5486	0.84
804408-5	7470	0.56	4855.5	0.86
804409-6	441	0.59	286.65	0.90
804409-7	1453	0.67	944.45	1.03
804409-8	771	0.65	501.15	1.00
804409-10	520	0.64	338	0.98
804409-11	519	0.63	337.35	0.98
804434-1	2580	0.72	1677	1.10
804434-2	2590	0.69	1683.5	1.07
804434-3	5380	0.76	3497	1.17
804408-5D	7470	0.55	4855.5	0.85
LCS				
804434-4	2830	0.73	1839.5	1.12
804434-5	5960	0.74	3874	1.14
804434-6	2370	0.68	1540.5	1.04
804434-7	5930	0.76	3854.5	1.16
804434-8	438	0.59	284.7	0,91
804434-9	3670	0.69	2385.5	1.06
804439	1410	0.60	916.5	0.92
804452-1	3660	0.60	2379	0.92
804452-2	4080	0.62	2652	0.96
804438-1	534	0.68	347.1	1.05
				-

Alkalinity by SM 2320B

Analytical Batch: 10ALK12C Matrix: Water
Date of Analysis: 10/18/12

Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL titrant to reach pH 0.3 unit lower	Total Alkalinity as CaCO3	RL, ppm	Total Alkalinity Reported Value	HCO3 Conc. as CaCO ₃ (ppm)	CO3 Alkalinity as CaCO₃ (ppm)	OH Alkalinity as CaCO ₃ (ppm)	Low Alkalinity as CaCO ₃ (<20ppm)
BLANK	6.25	50	0.02		0.0	0.00		0.0	5	ND	ND	ND	ND	·
804233-2	7.14	50	0.02		0.0	22 80		456.0	5	456.0	456.0	ND	ND :	
804246	8:53	50	0.02	0.2	3.0	3.15		63.0	5	63.0	57.0	6	ND	
804295-5	10.49	50	0.02	1.30	26.0	1.80		36.0	5	36.0	ND	20	16	
804295-5 DUP	10.54	50	0.02	1 30	26.0	1.75		35.0	5	35.0	ND .	18	. 17	
804295-6	10.53	50	0.02	1,3	26.0	1.65		33.0	5	33.0	ND	14	19	
804332-3	7.79	50	0.02		0.0	6.25		125.0	5	125.0	125.0	ND	ND	
804332-4	7.96	50	0.02		0.0	6.50		130.0	5	130.0	130.0	ND	ND	1
804408	8.00	50	0.02		0.0	3.05		61.0	5	61.0	61.0	ND	ND	
804408-7	7.83	50	0.02		0.0	2.45		49.0	5	49.0	49.0	ND .	ND	*: ***
804408-3	8:00	50	0.02		0.0	2.95		59.0	5	59.0	59.0	ND	ND	
804408-4	7.73	50	0.02		0.0	2,30		46.0	5	46.0	46.0	ND	ND	- 0
804408-5	8.01	50	0.02		0.0	3.10		62.0	5	62.0	62.0	ND	ND	
804408-5 MS	9:67	50	0.02	2.3	45.0	7.75	1	155.0	5	155.0	65.0	90	ND	
804409 7	7.18	50	0.02		0.0	14.65	T	293.0	5	293.0	293.0	ND	ND	
804409-8	7.43	50	0.02		0.0	8.40		168,0	5	168.0	168.0	ND	ND	
804409-10	7.79	50	0.02		0.0	7,05		141.0	5	141.0	141.0	ND	ND	
804409-11	7.75	50	0.02	 Enfolsementation sectors. 	0.0	7.30		146.0	5	146.0	146.0	ND	ND	
804411-6	9:04	50	0:02	0.6	11.0	7.50		150.0	5	150.0	128.0	22	ND	
LCS	10.52	50	0.02	2.4	47.0	5:05		101.0	5	101.0	7.0	94	ND	
LCSD	10:57	50	0.02	2.3	46.0	5.10		102.0	5	102.0	10.0	92	ND	

Calculations as follows:

Tor P=

 $\left(\frac{A \times N \times 50000}{mL \ sample}\right)$

Where:

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used

N = normality of standard acid

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000

mL sample

Where: B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

Accept Limit

<5

QC Std I.D.	Measured Value, ppm	Theoretical Value, ppm	%Recovery	Accetance Limit	QC Within Control?
LCS	101	100	101.0%	90-110	Yes
LCSD	102	100	102.0%	90-110	Yes

QC Within

Control?

Yes

Duplicate Determination Difference Summary

Lab Number I.D.	Measured Value, ppm	Dup Value, ppm	RPD	Accetance Limit	QC Within Control?
804295-5	36	35	2.8%	≤20%	Yes

Sample Matrix Spike (MS/MSD) Summary

Lab Number	Conc of Unspk spl	Dil Factor	Added Spk Conc	MS/MSD Amt	Measrd Conc of Spk Spl	Theor Conc of Spk Spl	MS/MSD %Rec	MS Accept Limit	QC Within Control?	RPD	RPD Accept Limit	QC Within Control?
804408-5	62	1	100	100	155	162.00	93%	75-125	Yes			
604406-0	Day of the second	1	100	100				75-125		- 1		

Melissa S.
Analyst Printed Name

101712c

Blank Summary

Measured

Value, ppm

Reporting

Limit, RL

5 ppm

me

Ánalyst Signature

Hope-T.

Reviewer Printed Name

Reviewer Signature

S (

ן כ

6

CH2MHILL

CHAIN OF CUSTODY RECORD

Page 1 OF

Project Name PGS Location Topock		Ç	ontainer:	250 ml Poly (NH4)28	500 ml Poly HNO3.	1x500 ml Poly HNO3	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2SO4	* The Metals list should be: Al,Sb,As,Ba, Be,B,Ca,Cd,Co,Cr,Cu,Fe,Pb,Mg,Mn,Hg,Mo,Ni,		
Project Manager J		Prese	rvatives:	04/NH40 H, 4°C		4°C						pH<2. 4°C	Se, Aq, Tl, V, Zn, K, Na		
Sample Manager M	fatt Ringle	r .	Filtered:	Field	NA	Field	NA	NA	NA	NA	NA	NA	10/17/2012		
		Holdin	ng Time:	28	180	180	2	2	2	2	2	28	10/17/2012		
Project Number 4 Task Order Project 2012-CMP Turnaround Time Shipping Date: 10 COC Number: 1	-028 10 Days 9/16/2012	02.CM		Cr6 (E218.6) Field Filterad		- A	Specific Conductance (E120.1)	Anions (E300.0) Cl. Fl. 804	Turbidity (SM2120)	TDS (SM2540C)	Alkelinity (SM2320B)	Ammonia (SM4500NH3)	ALERT !! Level III QC	Number of Containers	COMMENT
CW-02D-028	10/15/2012	10:36	Water	x	х	X	X	×	x	X	. X	x		6	n
CW-02M-028	10/15/2012	12:04	Water	х	x	х	х	х	×	x	x	х		6	П
CW-03D-028	10/15/2012	14:26	Water	· x	X	X	х	×	X	х	х	×		6	DH
CW-03M-028	10/15/2012	15:34	Water	x .	×	x	X	x	x	X	х	X		6	Π^{\prime}
OW-90-026	10/15/2012	7:10	Water	×	х	x	х	х	×	х	х	Х		6	D_
OW-86-028	10/16/2012	7:10	Water	x		1								1	Hold
OW-37-028	10/16/2012	7:15	Water	x										1	Hdo
<u> </u>			******************		J		<u> </u>	· F	.	 	ł		TOTAL NUMBER OF CONTAINERS	32	İ

Approved by Signatures Date/Time Shipping Details

Approved by Sampled Davila 10/16/12 15:40 Airbill No:

Received by Relinquished by Rafact Davila 10-16-12 2/13 Lab Name: Truesdail Laboratories, Inc. Received by Sampled Till 19/16/12 2/13 Lab Phone: (714) 730-5239

ATTN:

Special Instructions:

October 1-5, 2012

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303

804408

CH2MHILL

CHAIN OF CUSTODY RECORD

0/16/2012 3:17:52 PM

Page 1 OF 1

	CHZWIHIL	-											INLCO	10/10/2012 3.17.52 FW Page 10/10/2012 3.17.52 FW	·	
	Project Name PG Location Topock Project Manager	K	,	ontainer: ervatives:	250 ml Poly (NH4)2S O4/NH4O H, 4°C	Poly HNO3, 4°C	1x500 ml Poly HNO3, 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2SO4, pH<2, 4°C			
	Sample Manager	Matt Ringi)r	Filtered:	Field	NA	Field	NA	NA	NA	NA	NA	NA			
			Hold	ing Time:	28	180	180	2	2	2	2	2	28			
	Project Number 4 Task Order Project 2012-CMi Turnaround Time Shipping Date: 1 COC Number: 1	P-028 10 Days	3	Matrix	Cr6 (E218.6) Field Filtered	Metals (6010B) Total Fe	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) Cl, Fl, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)	Level III QC	Number of Containers	COMMENTS
_l	CW-02D-028	10/15/2012	10:36	Water	X	Х	X	Х	Х	х	Х	_ X	х		6	7
-2	CW-02M-028	10/15/2012	12:04	Water	Х	х	×	Х	Х	Х	Х	Х	х		6	1
-3	CW-03D-028	10/15/2012	14:26	Water	Х	х	х	х	Х	Х	Х	X	Х		6	DH-2
Ý	CW-03M-028	10/15/2012	15:34	Water	х	х	х	Х	Х	х	Х	Х	х		6	7
-5	OW-90-028	10/15/2012	7:10	Water	Х	Х	Х	Х	Х	Х	Х	Х	Х		6	
	OW-86-028	10/16/2012	7:10	Water	Х										que.	Hold
•	OW-87-028	10/16/2012	7:15	Water	×						,				April 1	Hdo
			·		•			7		,				TOTAL NUMBER OF CONTAINERS	32	

For Sample Conditions

See Form Attached

	1	<u></u> .			
Approved by	Signatures Date	e/Time Shipping	Details	A TTAL.	Special Instructions:
Sampled by	15	Method of Shipment:	courier	ATTN;	October 1-5, 2012
Relinquished by		On Ice: yes / no		Sample Custody	
Received by	Day 6 10/16/12	15:40 Airbill No:			
Relinquished by	Davida 10-16-1	2// 7 Lab Name: Iruescan L	aboratories, Inc.		Report Copy to Shawn Duffy
Received by Linda	TLI 10/16/1	2 2/-30 Lab Phone: (714) 730-	6239		(530) 229-3303

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials	
10/16/12	804358-1	9.5	NIA	NIA	1~1 1A	HAV	
	-2						
	-3						
	-4				·		
	-5						
	-6			·			
	1. 7	<u></u>				L	
10/16/12	804359-1	9+5	NIA	HIA	NIA	HAV	
	^2						
	-3						
	-4		<u> </u>				
	-5						
	-6			· ·			
	.7			·	· · · · · · · · · · · · · · · · · · ·		
	-8						
	. 9						
1	10					10	
1'	804407	7	2 ml	9.5	11:30 AM	HAV	
10/17/12	<u> 204408 -1</u>	9.5	NIA	NIA	NIA	HAV	
	2						
	-3						
	-4						
2011-1110		- 2/	4110			<u> </u>	
10/17/14	804409-1	7,5	NIA	NIA	NIA	HAU	
	-3						
	-14						
	. 3						
	-6						
	,4						
<u>~</u>		*				<u>-1/- </u>	

11-29-12

HAV 10126112

Turbidity/pH Check

\$0\\\ 4\\\ 5\\\ 1\\\ 1\\\ 1\\\ 1\\\ 1\\\ 1	Turbidity/pH Check												
804275 (12) C C 2 10/11/2 M.M 300 A 804275 (12) V V V SOLO A 804275 (12) V V V SOLO A 804271	omments												
804 275 [12] C C 2 10/11/2 M.M 3010 A 804 275 [12] V V V V V V V V V V V V V V V V V V V													
804 275 [1-2]													
80426 (1-5) 3 V V V SO 1209 1209 1209 1209 1209 1209 1209 1209													
\$04209' 71 22 10/12/12 M.M. 3010A 804211 804236 804864(1-21) 804894													
804 211 814 236 (1-6) 804 237 804 264(1-21) 804 264(1-21) 804 264(1-21) 804 303 70 22 10/15/10 MM 3010 A 204 343 (1/15/4) < > > 2 10/15/10 MM 3010 A 204 343 (1/15/4) < > > 2 10/15/10 MM 3010 A 804 305 (1-3) 804 305 (1-3) 804 305 (1-3) 804 306 (1-2) 804 306 (1-2) 804 306 (1-2) 804 306 (1-2) 804 306 (1-3) 804 306 (1-3) 804 306 (1-3) 804 307 (1-6) 804 307 (1-6)													
814 236 (1-6/ 204 237 804 26 (1-2) 804 26 (1-2) 804 26 (1-2) 804 26 (1-2) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-8) 84 275 (1-9) 84 275 (1-9) 84 275 (1-9) 84 275 (1-9) 84 275 (1-9) 84 275 (1-9) 84 275 (1-9) 85 27 28 28 (1-8) 86 27 28 28 (1-8) 86 27 28 28 (1-8) 86 27 28 28 28 28 28 28 28 28 28 28 28 28 28													
804238 8042641-21 8042941-31 204303 7/ 22 10/15/12 M.M. 3010A 2043430344 1 72 M.M. 3010A 2043431-1-3) 10735711-61 2/ 29 10/16/12 M.M. 3010B 80430814-51 80430814-51 80430814-51 804400(1-2) 804400(1-2) 804413 (1-6) 804413 (1-6) 804413 (1-6) 804413 (1-6) 804413 (1-6) 804413 (1-6) 804413 (1-6) 804376 804376 804396(1-3) 804376													
804238 8042641-21 8042941-31 204303 7/ 22 10/15/12 MM 3010A 204343(1)2541 < 1 72 1 MM 3010A 20422-1-41 20422-1-41 20423511-61 < 1 < 2 10/16/12 MM 3010A 804321-1-31 8043811-52 8043811-52 8043811-52 8043811-52 8043811-52 8043811-52 8043811-61 < 1 < 2 10/16/12 MM 3010A 8043811-52 8043811-52 8043811-61 < 1 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-61 8043811-71 8043811-71 8043911-71 8043911-73 8040511-73 8040511-73 8040511-73 8040511-73 8040511-73 8040511-73 80406511-74 80406511-74													
804 264(1-21 804 284 8													
804 294 3 11-31 21 22 10/15/12 M.M 3010 A 84295/1-81													
\$0429 3 (1-3) 21 22 10/15/12 M.M 3010 A 84295 1-8													
8 4 2 9 5 1-8 V													
804 303 7/ Z2 10/15/10 MM 3010 A Ea 43 43 (13 (13 14)) < \ 72 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
Ea 4 3 4 3 (1,124) < 7 2 Ea 42 22 (1-4) g a 42 21 (1-3) 10 735 1 11-6/ < / < 2 /0/6/2 M.M. 30 10 A 804 358 11-54 204 360 (1-2) 104 40 (1-2) 204 40 (1-2) 204 41 (1-6) 204 41 (1-6) 204 41 (1-6) 204 2 69 (1-12) < 1 × > 2 \													
\$04222\(\u00e42\) \$0422\(\u00e42\) \$0422\(\u00e42\) \$0435\(\u00e41\) \$0435\(\u00e41\) \$0435\(\u00e41\) \$0436\(\u00e42\) \$0436\(\u00e42\) \$0436\(\u00e42\) \$0446\(\u00e42\) \$0440\(\u00e42\) \$0440\(\u00e42\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0441\(\u00e44\) \$0427\(\u00e44\) \$0437\(\u00e44\) \$0439\(\u00e44\) \$0443\(\u00e44\) \$0443\(\u00e44\) \$0443\(\u00e44\) \$0443\(\u00e44\) \$0443\(\u00e44\) \$0443\(\u00e44\) \$0440\(\u00e44\) \$0440	PHCZ												
8 04221 (1-3) \$ 0735 1 (1-6) < 1 < 2 /0/16/12 M.M. 30/0A 8 04 358 (1-5) 8 04 360 (1-2) 104 40 = 21 72 /0/14/2 M.M. 33/02 8 04 40 (1-2) 8 04 40 (1-2) 8 04 41 (1-6) 9 04 41 (1-6) 9 04 41 (1-6) 9 04 41 (1-6) 8 04 2 6 9 (10-12) < 1 < 7 2 10-18-12 BE 8 04 3 78 8 04 3 99 (1-3) 8 0 44 05 (1-3)	777												
804357(1-6) 21 22 10/16/12 M.M 3010A 804358(1-5); 804360(1-2) 104407 2 1 72 10/17/2 MM 3010A 804400 (1-2) 804413 (1-6) 804413 (1-6) 804470(1-7) 804270(1-7) 804378 804398(1-3) 804405 (1-3)													
804 358 (1-5) 804 359 (1-9) 804 360 (1-2) 114 40 = 1 72 10 /14 /2 MM 30 /02 804 409 (1-11) 804 410 (1-2) 804 41 (1-6) 904 41 (1-6) 204 2 69 (10-12) < 1 x 72 10-18-12 BE NC 12130 pm 13-19-12 Be 4270(1-7) 8043 78 8043 98 (1-3) 804405 (1-3)	\												
804 360(1-2) 804 360(1-2) 804 360(1-2) 804 40 40 1-11 804 411 (1-6) 804 411 (1-6) 804 413 (1-15) 804 2 69(10-12) <1 x >2 10-18-12 BE NO 12-19-12 BE 8043 78 8043 78 80405 (1-3) 80405 (1-3)													
807 360 (1-2) 804 360 (1-2) 804 408 (1-5) 804 409 (1-11) 804 419 (1-6) 804 419 (1-6) 204 2 69 (10-12) <1 x >2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
104 407 21 72 10/14/2 MM 3010A 904 408 (1-5) 22 104 409 (1-11) 204 410 (1-21) 204 413 (1-6) 204 213 (1-4) 205 213 (1-4)													
80440 (1-5)													
104409 (1-11) 204410 (1-21) 104413 (1-6) 2042 69(10-12) <1 x >2 10-18-12 BE N°C 12130PM 13-19-12 BE 804378 804378 804399(1-3) 804405 (1-3)													
104409 (1-11) 204410 (1-21) 104413 (1-6) 2042 69(10-12) <1 x >2 10-18-12 BE N°C 12130PM 13-19-12 BE 804378 804378 804399(1-3) 804405 (1-3)													
804411 (1-6) 20442 (1-4) 2042 69(10-12) <1 x 72 10-18-12 BE NO 12:30pm 10-19-12 B 8042 70(1-7)													
20442 (1-41 2042 69 (10-12) < 1 x > 2 10-18-12 BE NO 12130 pm 13-19-12 B 8042 70(1-7)													
904413 (1-151)													
204269(10-12) <1 x >2 10-18-12 BE NO 12130PM 13-19-12 P 804270(1-7)													
204269(10-12) <1 x >2 10-18-12 BE NO 12:30pm 10-19-12 BE 804270(1-7)													
804270(1-7) J 804376 10-22-12 F 804399(1-3) V	7H <2												
8 ° 43 99 (1-3) 8 ° 4405 (1-3)	1												
80 4405 (1-3)	2H<2												
80 4405 (1-3)	1												
804428(1-3)													
804429 (10-12)													
801439 II SZ 10/18/12 KK YCS .													
804439 \(\text{2}\) \(\text{2}\													
204418 [1-5] 21 22 10/22/12 WM 3010A													
804 434 (1-9)													
804 4 3 5 1-4 6-41													
804236 [1-7, 6-10]	· · ·												
80423I													
904438													
804 858 (1-31 V V V V J 304 304 21 22 10/16/12 MM 3010A													

Notes:

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	ient: <u>E2</u>	Lab # <u>80440</u> 8
Da	te Delivered: <u>/</u> 0/ <u>/6</u> /12	Field Service
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ⊠N/A
3.	Are there any special requirements or notes on the COC?	'□Yes □No ÞÁN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
<i>5.</i>	Were all requested analyses understood and acceptable?	ØYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>∫. &° C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	∭ Yes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No ŒN/A
9.	Does the number of samples received agree with COC?	ØYes □No □N/A
10.	Did sample labels correspond with the client ID's?	ØYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: △Truesdail □Client	ØYes □No □N/A
12.	Were samples pH checked? pH = <u>See</u> CoC	Ó Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØYes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH Std	ØYes □No □N/A
5.	Sample Matrix: □Liquid □Drinking Water □Ground □ □Sludge □Soil □Wipe □Paint □Solid □	
6.	Comments:	
7.	Sample Check-In completed by Truesdail Log-In/Receiving: _	Hex

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 2, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK 2012-CMP-028, GROUNDWATER MONITORING

PROJECT, TLI No.: 804461

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2012-CMP-028 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody October 18, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Samples 804461-1 through 804461-6 for Turbidity by SM 2130B were received past the method specified holding time.

On October 23, 2012, Mr. Shawn Duffy updated the metals analyte list and provided a revised chain of custody.

Due to instrument problems, samples for Total Dissolved Metals analysis by EPA 200.8 (except Mercury) were sub-contracted to Advanced Technology Laboratories – Las Vegas with Mr. Duffy's approval. The results will be forwarded when they become available.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: Fourteen (14) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 423575.MP.02.CM

Laboratory No.: 804461

Date: December 2, 2012

Collected: October 16 - 18, 2012

Received: October 18, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2320B	Total Alkalinity	Melissa Scharfe
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Melissa Scharfe
SW 6010B	Metals by ICP	Ethel Suico
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Bita Emami
EPA 218.6	Hexavalent Chromium	George Wahba

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 804461

Date Received: October 18, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-001	CW-01D-028	E120.1	NONE	10/16/2012	11:52	EC	7180	umhos/cm	2.00
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Aluminum	ND	ug/L	50.0
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	BORON	918	ug/L	200
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Calcium	190000	ug/L	10000
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Iron	ND	ug/L	20.0
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Magnesium	17000	ug/L	500
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Potassium	14000	ug/L	2000
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Sodium	1410000	ug/L	100000
804461-001	CW-01D-028	E200.7	FLDFLT	10/16/2012	11:52	Zinc	ND	ug/L	20.0
804461-001	CW-01D-028	E200.8	FLDFLT	10/16/2012	11:52	Mercury	ND	ug/L	0.50
804461-001	CW-01D-028	E218.6	FLDFLT	10/16/2012	11:52	Chromium, Hexavalent	0.46	ug/L	0.20
804461-001	CW-01D-028	E300	NONE	10/16/2012	11:52	Chloride	2120	mg/L	50.0
804461-001	CW-01D-028	E300	NONE	10/16/2012	11:52	Fluoride	2.46	mg/L	0.500
804461-001	CW-01D-028	E300	NONE	10/16/2012	11:52	Sulfate	496	mg/L	25.0
804461-001	CW-01D-028	SM2130B	NONE	10/16/2012	11:52	Turbidity	ND J	NTU	0.100
804461-001	CW-01D-028	SM2320B	NONE	10/16/2012	11:52	Alkalinity	53.0	mg/L	5.00
804461-001	CW-01D-028	SM2320B	NONE	10/16/2012	11:52	Alkalinity, Bicarbonate (As	53.0	mg/L	5.00
804461-001	CW-01D-028	SM2320B	NONE	10/16/2012	11:52	Alkalinity, Carbonate (As (ND	mg/L	5.00
804461-001	CW-01D-028	SM2540C	NONE	10/16/2012	11:52	Total Dissolved Solids	4270	mg/L	250
804461-001	CW-01D-028	SM4500NH3D	NONE	10/16/2012	11:52	Ammonia-N	ND	mg/L	0.500
804461-001	CW-01D-028	SW6010B	NONE	10/16/2012	11:52	Iron	ND	ug/L	20.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-002	CW-01M-028	E120.1	NONE	10/16/2012	12:34	EC	7190	umhos/cm	2.00
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Aluminum	ND	ug/L	50.0
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	BORON	923	ug/L	200
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Calcium	170000	ug/L	10000
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Iron	ND	ug/L	20.0
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Magnesium	13400	ug/L	500
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Potassium	14000	ug/L	2000
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Sodium	1440000	ug/L	100000
804461-002	CW-01M-028	E200.7	FLDFLT	10/16/2012	12:34	Zinc	ND	ug/L	20.0
804461-002	CW-01M-028	E200.8	FLDFLT	10/16/2012	12:34	Mercury	ND	ug/L	0.50
804461-002	CW-01M-028	E218.6	FLDFLT	10/16/2012	12:34	Chromium, Hexavalent	1.5	ug/L	0.20
804461-002	CW-01M-028	E300	NONE	10/16/2012	12:34	Chloride	2130	mg/L	50.0
804461-002	CW-01M-028	E300	NONE	10/16/2012	12:34	Fluoride	2.01	mg/L	0.500
804461-002	CW-01M-028	E300	NONE	10/16/2012	12:34	Sulfate	492	mg/L	25.0
804461-002	CW-01M-028	SM2130B	NONE	10/16/2012	12:34	Turbidity	0.142 J	NTU	0.100
804461-002	CW-01M-028	SM2320B	NONE	10/16/2012	12:34	Alkalinity	58.0	mg/L	5.00
804461-002	CW-01M-028	SM2320B	NONE	10/16/2012	12:34	Alkalinity, Bicarbonate (As	58.0	mg/L	5.00
804461-002	CW-01M-028	SM2320B	NONE	10/16/2012	12:34	Alkalinity, Carbonate (As (ND	mg/L	5.00
804461-002	CW-01M-028	SM2540C	NONE	10/16/2012	12:34	Total Dissolved Solids	4440	mg/L	250
804461-002	CW-01M-028	SM4500NH3D	NONE	10/16/2012	12:34	Ammonia-N	ND	mg/L	0.500
804461-002	CW-01M-028	SW6010B	NONE	10/16/2012	12:34	Iron	ND	ug/L	20.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-003	CW-04D-028	E120.1	NONE	10/16/2012	8:48	EC	7620	umhos/cm	2.00
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Aluminum	ND	ug/L	50.0
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	BORON	1110	ug/L	200
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Calcium	117000	ug/L	10000
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Iron	ND	ug/L	20.0
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Magnesium	7230	ug/L	500
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Potassium	12600	ug/L	2000
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Sodium	1590000	ug/L	100000
804461-003	CW-04D-028	E200.7	FLDFLT	10/16/2012	8:48	Zinc	ND	ug/L	20.0
804461-003	CW-04D-028	E200.8	FLDFLT	10/16/2012	8:48	Mercury	ND	ug/L	0.50
804461-003	CW-04D-028	E218.6	FLDFLT	10/16/2012	8:48	Chromium, Hexavalent	1.1	ug/L	0.20
804461-003	CW-04D-028	E300	NONE	10/16/2012	8:48	Chloride	2200	mg/L	50.0
804461-003	CW-04D-028	E300	NONE	10/16/2012	8:48	Fluoride	3.46	mg/L	0.500
804461-003	CW-04D-028	E300	NONE	10/16/2012	8:48	Sulfate	505	mg/L	25.0
804461-003	CW-04D-028	SM2130B	NONE	10/16/2012	8:48	Turbidity	0.127 J	NTU	0.100
804461-003	CW-04D-028	SM2320B	NONE	10/16/2012	8:48	Alkalinity	52.0	mg/L	5.00
804461-003	CW-04D-028	SM2320B	NONE	10/16/2012	8:48	Alkalinity, Bicarbonate (As	52.0	mg/L	5.00
804461-003	CW-04D-028	SM2320B	NONE	10/16/2012	8:48	Alkalinity, Carbonate (As 0	ND	mg/L	5.00
804461-003	CW-04D-028	SM2540C	NONE	10/16/2012	8:48	Total Dissolved Solids	4430	mg/L	250
804461-003	CW-04D-028	SM4500NH3D	NONE	10/16/2012	8:48	Ammonia-N	ND	mg/L	0.500
804461-003	CW-04D-028	SW6010B	NONE	10/16/2012	8:48	Iron	ND	ug/L	20.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-004	CW-04M-028	E120.1	NONE	10/16/2012	9:57	EC	6720	umhos/cm	2.00
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Aluminum	ND	ug/L	50.0
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	BORON	845	ug/L	200
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Calcium	179000	ug/L	10000
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Iron	ND	ug/L	20.0
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Magnesium	14200	ug/L	500
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Potassium	12800	ug/L	2000
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Sodium	1300000	ug/L	100000
804461-004	CW-04M-028	E200.7	FLDFLT	10/16/2012	9:57	Zinc	ND	ug/L	20.0
804461-004	CW-04M-028	E200.8	FLDFLT	10/16/2012	9:57	Mercury	ND	ug/L	0.50
804461-004	CW-04M-028	E218.6	FLDFLT	10/16/2012	9:57	Chromium, Hexavalent	7.2	ug/L	0.20
804461-004	CW-04M-028	E300	NONE	10/16/2012	9:57	Chloride	1970	mg/L	50.0
804461-004	CW-04M-028	E300	NONE	10/16/2012	9:57	Fluoride	1.86	mg/L	0.500
804461-004	CW-04M-028	E300	NONE	10/16/2012	9:57	Sulfate	419	mg/L	25.0
804461-004	CW-04M-028	SM2130B	NONE	10/16/2012	9:57	Turbidity	0.120 J	NTU	0.100
804461-004	CW-04M-028	SM2320B	NONE	10/16/2012	9:57	Alkalinity	51.0	mg/L	5.00
804461-004	CW-04M-028	SM2320B	NONE	10/16/2012	9:57	Alkalinity, Bicarbonate (As	51.0	mg/L	5.00
804461-004	CW-04M-028	SM2320B	NONE	10/16/2012	9:57	Alkalinity, Carbonate (As (ND	mg/L	5.00
804461-004	CW-04M-028	SM2540C	NONE	10/16/2012	9:57	Total Dissolved Solids	4170	mg/L	250
804461-004	CW-04M-028	SM4500NH3D	NONE	10/16/2012	9:57	Ammonia-N	ND	mg/L	0.500
804461-004	CW-04M-028	SW6010B	NONE	10/16/2012	9:57	Iron	ND	ug/L	20.0

Lab Sampla ID	Field ID	Analysis Method	Extraction	Sample Date	Sample	Parameter	Dogult	Linito	DI
Lab Sample ID		Method	Method	Sample Date	Time	Parameter	Result	Units	RL
804461-005	OW-01D-028	E120.1	NONE	10/16/2012	14:28	EC	7200	umhos/cm	2.00
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Aluminum	ND	ug/L	50.0
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	BORON	954	ug/L	200
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Calcium	184000	ug/L	10000
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Iron	ND	ug/L	20.0
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Magnesium	16500	ug/L	500
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Potassium	13400	ug/L	2000
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Sodium	1440000	ug/L	100000
804461-005	OW-01D-028	E200.7	FLDFLT	10/16/2012	14:28	Zinc	ND	ug/L	20.0
804461-005	OW-01D-028	E200.8	FLDFLT	10/16/2012	14:28	Mercury	ND	ug/L	0.50
804461-005	OW-01D-028	E218.6	FLDFLT	10/16/2012	14:28	Chromium, Hexavalent	0.85	ug/L	0.20
804461-005	OW-01D-028	E300	NONE	10/16/2012	14:28	Chloride	2090	mg/L	50.0
804461-005	OW-01D-028	E300	NONE	10/16/2012	14:28	Fluoride	2.34	mg/L	0.500
804461-005	OW-01D-028	E300	NONE	10/16/2012	14:28	Sulfate	489	mg/L	25.0
804461-005	OW-01D-028	SM2130B	NONE	10/16/2012	14:28	Turbidity	0.336 J	NTU	0.100
804461-005	OW-01D-028	SM2320B	NONE	10/16/2012	14:28	Alkalinity	56.0	mg/L	5.00
804461-005	OW-01D-028	SM2320B	NONE	10/16/2012	14:28	Alkalinity, Bicarbonate (As	56.0	mg/L	5.00
804461-005	OW-01D-028	SM2320B	NONE	10/16/2012	14:28	Alkalinity, Carbonate (As (ND	mg/L	5.00
804461-005	OW-01D-028	SM2540C	NONE	10/16/2012	14:28	Total Dissolved Solids	4510	mg/L	250
804461-005	OW-01D-028	SM4500NH3D	NONE	10/16/2012	14:28	Ammonia-N	ND	mg/L	0.500
804461-005	OW-01D-028	SW6010B	NONE	10/16/2012	14:28	Iron	26.0	ug/L	20.0
804461-006	OW-01S-028	E120.1	NONE	10/16/2012	15:07	EC	4100	umhos/cm	2.00
804461-006	OW-01S-028	E200.7	FLDFLT	10/16/2012	15:07	Sodium	515000	ug/L	25000
804461-006	OW-01S-028	E218.6	FLDFLT	10/16/2012	15:07	Chromium, Hexavalent	14.0	ug/L	0.20
804461-006	OW-01S-028	E300	NONE	10/16/2012	15:07	Chloride	1160	mg/L	50.0
804461-006	OW-01S-028	E300	NONE	10/16/2012	15:07	Fluoride	2.34	mg/L	0.500
804461-006	OW-01S-028	E300	NONE	10/16/2012	15:07	Sulfate	258	mg/L	25.0
804461-006	OW-01S-028	SM2130B	NONE	10/16/2012	15:07	Turbidity	0.487 J	NTU	0.100
804461-006	OW-01S-028	SM2540C	NONE	10/16/2012	15:07	Total Dissolved Solids	2690	mg/L	125

TRUESDAIL LABORATORIES, INC.

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-007	OW-01M-028	E120.1	NONE	10/18/2012	7:54	EC	7070	umhos/cm	2.00
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Aluminum	ND	ug/L	50.0
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	BORON	823	ug/L	200
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Calcium	152000	ug/L	25000
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Iron	ND	ug/L	20.0
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Magnesium	20700	ug/L	1000
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Potassium	16200	ug/L	1000
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Sodium	1360000	ug/L	100000
804461-007	OW-01M-028	E200.7	FLDFLT	10/18/2012	7:54	Zinc	ND	ug/L	20.0
804461-007	OW-01M-028	E200.8	FLDFLT	10/18/2012	7:54	Mercury	ND	ug/L	0.50
804461-007	OW-01M-028	E218.6	FLDFLT	10/18/2012	7:54	Chromium, Hexavalent	1.2	ug/L	0.20
804461-007	OW-01M-028	E300	NONE	10/18/2012	7:54	Chloride	2110	mg/L	50.0
804461-007	OW-01M-028	E300	NONE	10/18/2012	7:54	Fluoride	2.56	mg/L	0.500
804461-007	OW-01M-028	E300	NONE	10/18/2012	7:54	Sulfate	480	mg/L	25.0
804461-007	OW-01M-028	SM2130B	NONE	10/18/2012	7:54	Turbidity	0.101	NTU	0.100
804461-007	OW-01M-028	SM2320B	NONE	10/18/2012	7:54	Alkalinity	45.0	mg/L	5.00
804461-007	OW-01M-028	SM2320B	NONE	10/18/2012	7:54	Alkalinity, Bicarbonate (As	45.0	mg/L	5.00
804461-007	OW-01M-028	SM2320B	NONE	10/18/2012	7:54	Alkalinity, Carbonate (As (ND	mg/L	5.00
804461-007	OW-01M-028	SM2540C	NONE	10/18/2012	7:54	Total Dissolved Solids	4340	mg/L	250
804461-007	OW-01M-028	SM4500NH3D	NONE	10/18/2012	7:54	Ammonia-N	ND	mg/L	0.500
804461-007	OW-01M-028	SW6010B	NONE	10/18/2012	7:54	Iron	ND	ug/L	20.0
804461-008	OW-02D-028	E120.1	NONE	10/18/2012	9:27	EC	7150	umhos/cm	2.00
804461-008	OW-02D-028	E200.7	FLDFLT	10/18/2012	9:27	Sodium	1290000	ug/L	50000
804461-008	OW-02D-028	E218.6	FLDFLT	10/18/2012	9:27	Chromium, Hexavalent	0.54	ug/L	0.20
804461-008	OW-02D-028	E300	NONE	10/18/2012	9:27	Chloride	2090	mg/L	50.0
804461-008	OW-02D-028	E300	NONE	10/18/2012	9:27	Fluoride	2.15	mg/L	0.500
804461-008	OW-02D-028	E300	NONE	10/18/2012	9:27	Sulfate	480	mg/L	25.0
804461-008	OW-02D-028	SM2130B	NONE	10/18/2012	9:27	Turbidity	ND	NTU	0.100
804461-008	OW-02D-028	SM2540C	NONE	10/18/2012	9:27	Total Dissolved Solids	4300	mg/L	250

TRUESDAIL LABORATORIES, INC.

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-009	OW-02M-028	E120.1	NONE	10/18/2012	11:45	EC	7150	umhos/cm	2,00
804461-009	OW-02M-028	E200.7	FLDFLT	10/18/2012	11:45	Sodium	1250000	ug/L	50000
804461-009	OW-02M-028	E218.6	FLDFLT	10/18/2012	11:45	Chromium, Hexavalent	1.2	ug/L	0.20
804461-009	OW-02M-028	E300	NONE	10/18/2012	11:45	Chloride	2060	mg/L	50.0
804461-009	OW-02M-028	E300	NONE	10/18/2012	11:45	Fluoride	2.58	mg/L	0.500
804461-009	OW-02M-028	E300	NONE	10/18/2012	11:45	Sulfate	482	mg/L	25.0
804461-009	OW-02M-028	SM2130B	NONE	10/18/2012	11:45	Turbidity	ND	NTU	0.100
804461-009	OW-02M-028	SM2540C	NONE	10/18/2012	11:45	Total Dissolved Solids	4360	mg/L	250
804461-010	OW-02S-028	E120.1	NONE	10/18/2012	10:04	EC	1610	umhos/cm	2.00
804461-010	OW-02S-028	E200.7	FLDFLT	10/18/2012	10:04	Sodium	298000	ug/L	50000
804461-010	OW-02S-028	E218.6	FLDFLT	10/18/2012	10:04	Chromium, Hexavalent	26.8	ug/L	0.20
804461-010	OW-02S-028	E300	NONE	10/18/2012	10:04	Chloride	378	mg/L	50.0
804461-010	OW-02S-028	E300	NONE	10/18/2012	10:04	Fluoride	5.06	mg/L	0.500
804461-010	OW-02S-028	E300	NONE	10/18/2012	10:04	Sulfate	98.3	mg/L	25.0
804461-010	OW-02S-028	SM2130B	NONE	10/18/2012	10:04	Turbidity	0.419	NTU	0.100
804461-010	OW-02S-028	SM2540C	NONE	10/18/2012	10:04	Total Dissolved Solids	1030	mg/L	50.0
804461-011	OW-05D-028	E120.1	NONE	10/18/2012	12:56	EC	7120	umhos/cm	2.00
804461-011	OW-05D-028	E200.7	FLDFLT	10/18/2012	12:56	Sodium	1350000	ug/L	50000
804461-011	OW-05D-028	E218.6	FLDFLT	10/18/2012	12:56	Chromium, Hexavalent	0.38	ug/L	0.20
804461-011	OW-05D-028	E300	NONE	10/18/2012	12:56	Chloride	2050	mg/L	50.0
804461-011	OW-05D-028	E300	NONE	10/18/2012	12:56	Fluoride	2.29	mg/L	0.500
804461-011	OW-05D-028	E300	NONE	10/18/2012	12:56	Sulfate	479	mg/L	25.0
804461-011	OW-05D-028	SM2130B	NONE	10/18/2012	12:56	Turbidity	ND	NTU	0.100
804461-011	OW-05D-028	SM2540C	NONE	10/18/2012	12:56	Total Dissolved Solids	4200	mg/L	250
804461-012	OW-05M-028	E120.1	NONE	10/18/2012	14:03	EC	7170	umhos/cm	2.00
804461-012	OW-05M-028	E200.7	FLDFLT	10/18/2012	14:03	Sodium	1330000	ug/L	50000
804461-012	OW-05M-028	E218.6	FLDFLT	10/18/2012	14:03	Chromium, Hexavalent	0.44	ug/L	0.20
804461-012	OW-05M-028	E300	NONE	10/18/2012	14:03	Chloride	2040	mg/L	50.0
804461-012	OW-05M-028	E300	NONE	10/18/2012	14:03	Fluoride	2.42	mg/L	0.500
804461-012	OW-05M-028	E300	NONE	10/18/2012	14:03	Sulfate	488	mg/L	25.0
804461-012	OW-05M-028	SM2130B	NONE	10/18/2012	14:03	Turbidity	0.145	NTU	0.100
804461-012	OW-05M-028	SM2540C	NONE	10/18/2012	14:03	Total Dissolved Solids	4430	mg/L	250

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804461-013	OW-05S-028	E120.1	NONE	10/18/2012	14:41	EC	2770	umhos/cm	2.00
804461-013	OW-05S-028	E200.7	FLDFLT	10/18/2012	14:41	Sodium	364000	ug/L	50000
804461-013	OW-05S-028	E218.6	FLDFLT	10/18/2012	14:41	Chromium, Hexavalent	17.0	ug/L	0.20
804461-013	OW-05S-028	E300	NONE	10/18/2012	14:41	Chloride	1140	mg/L	50.0
804461-013	OW-05S-028	E300	NONE	10/18/2012	14:41	Fluoride	1.85	mg/L	0.500
804461-013	OW-05S-028	E300	NONE	10/18/2012	14:41	Sulfate	141	mg/L	25.0
804461-013	OW-05S-028	SM2130B	NONE	10/18/2012	14:41	Turbidity	0.290	NTU	0.100
804461-013	OW-05S-028	SM2540C	NONE	10/18/2012	14:41	Total Dissolved Solids	1800	mg/L	50.0
804461-014	OW-91-028	E120.1	NONE	10/18/2012	7:05	EC	7170	umhos/cm	2.00
804461-014	OW-91-028	E200.7	FLDFLT	10/18/2012	7:05	Sodium	1260000	ug/L	50000
804461-014	OW-91-028	E218.6	FLDFLT	10/18/2012	7:05	Chromium, Hexavalent	0.44	ug/L	0.20
804461-014	OW-91-028	E300	NONE	10/18/2012	7:05	Chloride	2070	mg/L	50.0
804461-014	OW-91-028	E300	NONE	10/18/2012	7:05	Fluoride	2.27	mg/L	0.500
804461-014	OW-91-028	E300	NONE	10/18/2012	7:05	Sulfate	488	mg/L	25.0
804461-014	OW-91-028	SM2130B	NONE	10/18/2012	7:05	Turbidity	ND	NTU	0.100
804461-014	OW-91-028	SM2540C	NONE	10/18/2012	7:05	Total Dissolved Solids	4440	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 423575.MP.02.CM
P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 10/18/2012 8:40:00 PM

Laboratory No. 804461 Page 1 of 36

Printed 12/2/2012

Field ID	Lab ID	Collected	Matrix	
CW-01D-028	804461-001	10/16/2012 11:52	Water	
CW-01M-028	804461-002	10/16/2012 12:34	Water	
CW-04D-028	804461-003	10/16/2012 08:48	Water	
CW-04M-028	804461-004	10/16/2012 09:57	Water	
OW-01D-028	804461-005	10/16/2012 14:28	Water	
OW-01S-028	804461-006	10/16/2012 15:07	Water	
OW-01M-028	804461-007	10/18/2012 07:54	Water	
OW-02D-028	804461-008	10/18/2012 09:27	Water	
OW-02M-028	804461-009	10/18/2012 11:45	Water	
OW-02S-028	804461-010	10/18/2012 10:04	Water	
OW-05D-028	804461-011	10/18/2012 12:56	Water	
OW-05M-028	804461-012	10/18/2012 14:03	Water	
OW-05S-028	804461-013	10/18/2012 14:41	Water	
OW-91-028	804461-014	10/18/2012 07:05	Water	

Anions By I.C EPA 300.0		Batch 10AN12AA				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
804461-001 Chloride	mg/L	10/25/2012 14:21	500	17.4	50.0	2120
Fluoride	mg/L	10/25/2012 10:44	5.00	0.104	0.500	2.46
Sulfate	mg/L	10/25/2012 18:22	50.0	1.54	25.0	496
804461-002 Chloride	mg/L	10/25/2012 15:31	500	17.4	50.0	2130
Fluoride	mg/L	10/25/2012 10:55	5.00	0.104	0.500	2.01
Sulfate	mg/L	10/25/2012 18:33	50.0	1.54	25.0	492
804461-003 Chloride	mg/L	10/25/2012 15:42	500	17.4	50.0	2200
Fluoride	mg/L	10/25/2012 11:07	5.00	0.104	0.500	3.46
Sulfate	mg/L	10/25/2012 18:45	50.0	1.54	25.0	505
804461-004 Chloride	mg/L	10/25/2012 15:54	500	17.4	50.0	1970
Fluoride	mg/L	10/25/2012 11:18	5.00	0.104	0.500	1.86

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without programmer authorization from Truesdail Laboratories.

Client: E2 Consulting Engi	neers, Inc		roject Name: PG&E Topoo roject Number: 423575.MP.	-	ct	Printed 12	age 2 of 36 2/2/2012
804461-004 Sulfate		mg/L	10/25/2012 18:56	50.0	1.54	25.0	419
804461-005 Chloride		mg/L	10/25/2012 16:05	500	17.4	50.0	2090
Fluoride		mg/L	10/25/2012 11:29	5.00	0.104	0.500	2.34
Sulfate		mg/L	10/25/2012 19:30	50.0	1.54	25.0	489
804461-006 Chloride		mg/L	10/25/2012 16:16	500	17.4	50.0	1160
Fluoride		mg/L	10/25/2012 11:41	5.00	0.104	0.500	2.34
Sulfate		mg/L	10/25/2012 19:42	50.0	1.54	25.0	258
804461-007 Chloride		mg/L	10/25/2012 16:28	500	17.4	50.0	2110
Fluoride		mg/L	10/25/2012 11:52	5.00	0.104	0.500	2.56
Sulfate		mg/L	10/25/2012 19:53	50.0	1.54	25.0	480
804461-008 Chloride		mg/L	10/25/2012 16:39	500	17.4	50.0	2090
Fluoride		mg/L	10/25/2012 12:04	5.00	0.104	0.500	2.15
Sulfate		mg/L	10/25/2012 20:05	50.0	1.54	25.0	480
804461-009 Chloride		mg/L	10/25/2012 17:13	500	17.4	50.0	2060
Fluoride		mg/L	10/25/2012 13:12	5.00	0.104	0.500	2.58
Sulfate		mg/L	10/25/2012 20:16	50.0	1.54	25.0	482
804461-010 Chloride		mg/L	10/25/2012 17:25	500	17.4	50.0	378
Fluoride		mg/L	10/25/2012 13:24	5.00	0.104	0.500	5.06
Sulfate		mg/L	10/25/2012 20:27	50.0	1.54	25.0	98.3
804461-011 Chloride		mg/L	10/25/2012 17:36	500	17.4	50.0	2050
Fluoride		mg/L	10/25/2012 13:35	5.00	0.104	0.500	2.29
Sulfate		mg/L	10/25/2012 20:39	50.0	1.54	25.0	479
804461-012 Chloride		mg/L	10/25/2012 17:48	500	17.4	50.0	2040
Fluoride		mg/L	10/25/2012 13:46	5.00	0.104	0.500	2.42
Sulfate		mg/L	10/25/2012 20:50	50.0	1.54	25.0	488
804461-013 Chloride		mg/L	10/25/2012 17:59	500	17.4	50.0	1140
Fluoride		mg/L	10/25/2012 13:58	5.00	0.104	0.500	1.85
Sulfate		mg/L	10/25/2012 21:02	50.0	1.54	25.0	141
804461-014 Chloride		mg/L	10/25/2012 18:10	500	17.4	50.0	2070
Fluoride		mg/L	10/25/2012 14:09	5.00	0.104	0.500	2.27
Sulfate		mg/L	10/25/2012 21:13	50.0	1.54	25.0	488
Method Blank							
Parameter	Unit	DF	Result				
Chloride	mg/L	1.00	ND				
Fluoride	mg/L	1.00	ND				
Sulfate	mg/L	1.00	ND				

Client: E2 Consulting En	gineers, In		roject Name: roject Numbe	PG&E Topock Pror: 423575.MP.02.CM	-	Page 3 of 36 Printed 12/2/2012
Duplicate						Lab ID = 804484-011
Parameter Fluoride Duplicate	Unit mg/L	DF 1.00	Result 0.856	Expected 0.856	RPD 0	Acceptance Range 0 - 20 Lab ID = 804492-004
Parameter Chloride Sulfate Lab Control Sample	Unit mg/L mg/L	DF 25.0 25.0	Result 72.5 89.9	Expected 73.6 90.2	RPD 1.51 0.374	Acceptance Range 0 - 20 0 - 20
Parameter Chloride Fluoride Sulfate Matrix Spike	Unit mg/L mg/L mg/L	DF 1.00 1.00 1.00	Result 4.00 4.14 20.0	Expected 4.00 4.00 20.0	Recovery 100. 104 100	Acceptance Range 90 - 110 90 - 110 90 - 110 Lab ID = 804484-011
Parameter Fluoride Matrix Spike	Unit mg/L	DF 1.00	Result 2.90	Expected/Added 2.86(2.00)	Recovery 102	Acceptance Range 85 - 115 Lab ID = 804492-004
Parameter Chloride Sulfate MRCCS - Secondary	Unit mg/L mg/L	DF 25.0 25.0	Result 172 195	Expected/Added 174(100) 190(100)	Recovery 98.2 105	Acceptance Range 85 - 115 85 - 115
Parameter Chloride Fluoride Sulfate MRCVS - Primary	Unit mg/L mg/L mg/L	DF 1.00 1.00 1.00	Result 4.00 4.14 20.1	Expected 4.00 4.00 20.0	Recovery 99.9 104 100	Acceptance Range 90 - 110 90 - 110 90 - 110
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.98	Expected 3.00	Recovery 99.5	Acceptance Range 90 - 110
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.96	Expected 3.00	Recovery 98.6	Acceptance Range 90 - 110
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.6	Acceptance Range 90 - 110
Parameter Chloride	Unit mg/L	DF 1.00	Result 2.96	Expected 3.00	Recovery 98.7	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 5 of 36 Printed 12/2/2012

Alkalinity by SM 23208	3		Batch	10ALK12E				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804461-001 Alkalinity as C	aCO3	mg/L	10/19	9/2012	1.00	0.555	5.00	53.0
Bicarbonate (Calculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	53.0
Carbonate (Ca	alculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	ND
804461-002 Alkalinity as C	aCO3	mg/L	10/19	9/2012	1.00	0.555	5.00	58.0
Bicarbonate (0	Calculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	58.0
Carbonate (Ca	alculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	ND
804461-003 Alkalinity as C	aCO3	mg/L	10/19/2012		1.00	0.555	5.00	52.0
Bicarbonate (0	Calculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	52.0
Carbonate (Ca	alculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	ND
804461-004 Alkalinity as C	aCO3	mg/L	10/19	9/2012	1.00	0.555	5.00	51.0
Bicarbonate (0	Calculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	51.0
Carbonate (Ca	alculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	ND
804461-005 Alkalinity as C	aCO3	mg/L	10/19/2012		1.00	0.555	5.00	56.0
Bicarbonate (0	Calculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	56.0
Carbonate (Ca	alculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	ND
804461-007 Alkalinity as C	aCO3	mg/L	10/19	9/2012	1.00	0.555	5.00	45.0
Bicarbonate (0	Calculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	45.0
Carbonate (Ca	alculated)	mg/L	10/19	9/2012	1.00	0.555	5.00	ND
Method Blank								
Parameter	Unit	DF	Result					
Alkalinity as CaCO3	mg/L	1.00	ND					
Duplicate							Lab ID =	804461-005
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Alkalinity as CaCO3	mg/L	1.00	51.0	56.0		9.34	0 - 20	
Lab Control Sample					l e Line is et la			
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Alkalinity as CaCO3	mg/L	1.00	108	100		108	90 - 110)
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Alkalinity as CaCO3	mg/L	1.00	104	100		104	75 - 125	
Matrix Spike							Lab ID =	804461-007
Parameter	Unit	DF	Result	Expected/A	dded F	Recovery	ery Acceptance Range	
Alkalinity as CaCO3	mg/L	1.00	149	145(100)		104	75 - 125	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 6 of 36 Printed 12/2/2012

Parameter	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Unit	Ana	alyzed	DF	MDL	RL	Result
804461-001 Specific Condu	uctivity	umhos	/cm 10/23	3/2012	1.00	0.116	2.00	7180
804461-002 Specific Condu	uctivity	umhos	/cm 10/23	3/2012	1.00	0.116	2.00	7190
804461-003 Specific Condu	uctivity	umhos	cm 10/23	3/2012	1.00	0.116	2.00	7620
804461-004 Specific Condu	uctivity	umhos	cm 10/23	3/2012	1.00	0.116	2.00	6720
804461-005 Specific Condu	uctivity	umhos	cm 10/23	3/2012	1.00	0.116	2.00	7200
804461-006 Specific Condu	uctivity	umhos	cm 10/23	3/2012	1.00	0.116	2.00	4100
804461-007 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	7070
804461-008 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	7150
804461-009 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	7150
804461-010 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	1610
804461-011 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	7120
804461-012 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	7170
804461-013 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	2770
804461-014 Specific Condu	uctivity	umhos/	cm 10/23	3/2012	1.00	0.116	2.00	7170
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	804461-01
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Specific Conductivity	umhos	1.00	1620	1610	*	0.619	0 - 10	
Duplicate							Lab ID =	804461-014
Parameter	Unit	DF	Result	Expected	F	RPD	•	ince Range
Specific Conductivity	umhos	1.00	7160	7170		0.140	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Specific Conductivity	umhos	1.00	702	706		99.4	90 - 110)
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	R	tecovery		ince Range
Specific Conductivity	umhos	1.00	705	706		99.8	90 - 110	
MRCCS - Secondar	y							
Parameter	Unit	DF	Result	Expected	R	Recovery	•	ince Range
Specific Conductivity	umhos	1.00	694	706		98.3	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 8 of 36 Printed 12/2/2012

Metals by EPA 6010B, To	otal		Batch	102912A-Th2				
Parameter		Unit	Ana	ılyzed l	ϽF	MDL	RL	Result
804461-001 Iron		ug/L	10/29	9/2012 16:18 1	.00	0.900	20.0	ND
804461-002 Iron		ug/L	10/29	9/2012 16:46 1	.00	0.900	20.0	ND
804461-003 Iron		ug/L	10/29	9/2012 16:52 1	.00	0.900	20.0	ND
804461-004 Iron		ug/L	10/29	9/2012 16:58 1	.00	0.900	20.0	ND
804461-005 Iron		ug/L	10/29	9/2012 17:04 1	.00	0.900	20.0	26.0
804461-007 Iron		ug/L	10/29	9/2012 17:10 1	.00	0.900	20.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Duplicate							Lab ID =	804408-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Iron	ug/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Iron	ug/L	1.00	2220	2000		111	85 - 115	5
Matrix Spike							Lab ID =	804408-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	2060	2000(2000)		103	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	5220	5000		104	95 - 105	5
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Iron	ug/L	1.00	5460	5000		109	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	5250	5000		105	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	5400	5000		108	90 - 110	•
Interference Check St	andard A							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	2180	2000		109	80 - 120)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 10 of 36 Printed 12/2/2012

804461-001 Chromium, Hexavalent ug/L 10/29/2012 11:34 1.00 0.00920 0.20 0.46 804461-002 Chromium, Hexavalent ug/L 10/29/2012 11:45 1.00 0.00920 0.20 1.5 804461-003 Chromium, Hexavalent ug/L 10/29/2012 11:55 1.00 0.00920 0.20 1.1 804461-004 Chromium, Hexavalent ug/L 10/29/2012 12:05 1.00 0.00920 0.20 7.2 804461-005 Chromium, Hexavalent ug/L 10/29/2012 12:16 1.00 0.00920 0.20 0.85 804461-006 Chromium, Hexavalent ug/L 10/29/2012 12:26 1.00 0.00920 0.20 14.0 804461-007 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:47 1.00 0.00920 0.20 1.2 804461-009 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 0.54 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 1.2 804461-011 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 0.30 804461-012 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 0.30 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.24 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.20 0.44 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.20 0.44 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.20 0.44	Chrome VI by EPA 218.	6		Batch	10CrH12X				
804461-002 Chromium, Hexavalent ug/L 10/29/2012 11:45 1.00 0.00920 0.20 1.5 804461-003 Chromium, Hexavalent ug/L 10/29/2012 11:55 1.00 0.00920 0.20 1.1 804461-004 Chromium, Hexavalent ug/L 10/29/2012 12:05 1.00 0.00920 0.20 7.2 804461-005 Chromium, Hexavalent ug/L 10/29/2012 12:16 1.00 0.00920 0.20 1.8 804461-006 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-009 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 0.54 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 0.20 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:40	Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result
804461-003 Chromium, Hexavalent ug/L 10/29/2012 11:55 1.00 0.00920 0.20 1.1 804461-004 Chromium, Hexavalent ug/L 10/29/2012 12:05 1.00 0.00920 0.20 7.2 804461-005 Chromium, Hexavalent ug/L 10/29/2012 12:16 1.00 0.00920 0.20 0.85 804461-006 Chromium, Hexavalent ug/L 10/29/2012 12:27 1.00 0.00920 0.20 14.0 804461-007 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 0.54 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-011 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 0.20 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.20 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:50	804461-001 Chromium, Hex	avalent	ug/L	10/29	9/2012 11:34	1.00	0.00920	0.20	0.46
804461-004 Chromium, Hexavalent ug/L 10/29/2012 12:05 1.00 0.00920 0.20 7.2 804461-005 Chromium, Hexavalent ug/L 10/29/2012 12:16 1.00 0.00920 0.20 0.85 804461-006 Chromium, Hexavalent ug/L 10/29/2012 12:26 1.00 0.00920 0.20 14.0 804461-007 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:47 1.00 0.00920 0.20 0.54 804461-090 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 0.20 1.2 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 0.20 6.8 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.24 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 1.70 804461-014 Chromium, Hexavalent <td< td=""><td>804461-002 Chromium, Hex</td><td>avalent</td><td>ug/L</td><td>10/29</td><td>9/2012 11:45</td><td>1.00</td><td>0.00920</td><td>0.20</td><td>1.5</td></td<>	804461-002 Chromium, Hex	avalent	ug/L	10/29	9/2012 11:45	1.00	0.00920	0.20	1.5
804461-005 Chromium, Hexavalent ug/L 10/29/2012 12:16 1.00 0.00920 0.20 0.85 804461-006 Chromium, Hexavalent ug/L 10/29/2012 12:26 1.00 0.00920 0.20 14.0 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 0.54 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 0.38 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:48 1.00 0.00920 0.20 0.38 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:40 1.00 0.00920 0.20 0.70 0.44 Method Blank Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 </td <td>804461-003 Chromium, Hex</td> <td>avalent</td> <td>ug/L</td> <td>10/29</td> <td>9/2012 11:55</td> <td>1.00</td> <td>0.00920</td> <td>0.20</td> <td>1.1</td>	804461-003 Chromium, Hex	avalent	ug/L	10/29	9/2012 11:55	1.00	0.00920	0.20	1.1
804461-006 Chromium, Hexavalent ug/L 10/29/2012 12:26 1.00 0.00920 0.20 14.0 804461-007 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:47 1.00 0.00920 0.20 0.54 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-011 Chromium, Hexavalent ug/L 10/29/2012 15:36 1.00 0.00920 0.20 26.8 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.20 0.28 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.20 0.44 Method Blank Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 0 - 20 Parameter <	804461-004 Chromium, Hex	avalent	ug/L	10/29	9/2012 12:05	1.00	0.00920	0.20	7.2
804461-007 Chromium, Hexavalent ug/L 10/29/2012 12:37 1.00 0.00920 0.20 1.2 804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:47 1.00 0.00920 0.20 0.54 804461-009 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-011 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 26.8 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:58 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:00 1.00 0.00920 0.20 0.44 Method Blank Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Lab ID = 804461 Parameter Unit DF	804461-005 Chromium, Hex	avalent	ug/L	10/29	9/2012 12:16	1.00	0.00920	0.20	0.85
804461-008 Chromium, Hexavalent ug/L 10/29/2012 12:47 1.00 0.00920 0.20 0.54 804461-009 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-011 Chromium, Hexavalent ug/L 10/29/2012 14:58 1.00 0.00920 0.20 0.38 804461-011 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.38 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 17:0 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 Method Blank Parameter Unit DF Result Expected RPD Acceptance Re Chromium, Hexavalent ug/L 1.00 14:0 14:0 0.242 0-20 Low Level Calibration Verification Parameter Unit DF Result Expected Recovery Acceptance Re Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70-130 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Re Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90-110 Matrix Spike Parameter Unit DF Result Expected Recovery Acceptance Re Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90-110 Lab ID = 804461 Parameter Unit DF Result Expected Recovery Acceptance Re Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90-110 Lab ID = 804461 Parameter Unit DF Result Expected Recovery Acceptance Re Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90-110 Lab ID = 804461 Dab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Re Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90-110 Lab ID = 804461 Dab I	804461-006 Chromium, Hex	avalent	ug/L	10/29	9/2012 12:26	1.00	0.00920	0.20	14.0
804461-009 Chromium, Hexavalent ug/L 10/29/2012 13:35 1.00 0.00920 0.20 1.2 804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 26.8 804461-011 Chromium, Hexavalent ug/L 10/29/2012 14:58 1.00 0.00920 0.20 0.38 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:40 1.00 0.00920 0.20 17.0 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 17.0 804461-014 Chromium, Hexavalent ug/L 1.00 ND 0.00920 0.20 0.24 Method Blank Parameter Unit DF Result Expected RPD Acceptance Ra Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery <td>804461-007 Chromium, Hex</td> <td>avalent</td> <td>ug/L</td> <td>10/29</td> <td>9/2012 12:37</td> <td>1.00</td> <td>0.00920</td> <td>0.20</td> <td>1.2</td>	804461-007 Chromium, Hex	avalent	ug/L	10/29	9/2012 12:37	1.00	0.00920	0.20	1.2
804461-010 Chromium, Hexavalent ug/L 10/29/2012 13:45 1.00 0.00920 0.20 26:8 804461-011 Chromium, Hexavalent ug/L 10/29/2012 14:58 1.00 0.00920 0.20 0.38 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:40 1.00 0.00920 0.20 17:0 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 Method Blank Parameter Unit DF Result Chromium, Hexavalent ug/L 1.00 ND Duplicate Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 14:0 14:0 0.242 0 - 20 Low Level Calibration Verification Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Result Expected Re	804461-008 Chromium, Hex	avalent	ug/L	10/29	9/2012 12:47	1.00	0.00920	0.20	0.54
804461-011 Chromium, Hexavalent ug/L 10/29/2012 14:58 1.00 0.00920 0.20 0.38 804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:40 1.00 0.00920 0.20 17:08 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 17:08 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 804461-014 Chromium, Hexavalent ug/L 1.00 ND	804461-009 Chromium, Hex	avalent	ug/L	10/29)/2012 13:35	1.00	0.00920	0.20	1.2
804461-012 Chromium, Hexavalent ug/L 10/29/2012 15:08 1.00 0.00920 0.20 0.44 804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:40 1.00 0.00920 0.20 17.0 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 Method Blank Parameter Unit DF Result Result Chromium, Hexavalent ug/L 1.00 ND Lab ID = 804461 Duplicate Lab ID = 804461 Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Description Description Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 To - 130 Description Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 5.00 5.00 100 90 - 110	804461-010 Chromium, Hex	avalent	ug/L	10/29)/2012 13:45	1.00	0.00920	0.20	26.8
804461-013 Chromium, Hexavalent ug/L 10/29/2012 15:40 1.00 0.00920 0.20 17.0 804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 Method Blank Parameter Unit DF Result Result Chromium, Hexavalent ug/L 1.00 ND ND Lab ID = 804461 Lab ID = 804461 Parameter Unit DF Result Expected RPD Acceptance Result Acceptance Result Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 20	804461-011 Chromium, Hex	avalent	ug/L	10/29)/2012 14:58	1.00	0.00920	0.20	0.38
804461-014 Chromium, Hexavalent ug/L 10/29/2012 15:50 1.00 0.00920 0.20 0.44 Method Blank Parameter Unit DF Result Result Chromium, Hexavalent Ug/L 1.00 ND Lab ID = 804461 Parameter Unit DF Result Expected RPD Acceptance Rad Chromium, Hexavalent Ug/L 1.00 14.0 14.0 0.242 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Rad Chromium, Hexavalent Ug/L 1.00 5.00 5.00 100 90 - 110 Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rad Chromium, Hexavalent Ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rad Chromium, Hexavalent Ug/L 1.00<	804461-012 Chromium, Hex	avalent	ug/L	10/29	9/2012 15:08	1.00	0.00920	0.20	0.44
Method Blank Parameter Unit DF Result Chromium, Hexavalent ug/L 1.00 ND Lab ID = 804461 Parameter Unit DF Result Expected RPD Acceptance Rad Chromium, Hexavalent Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Parameter Unit DF Result Expected Recovery Acceptance Rad Rad Rad Rad Rad Rad Rad Rad Rad Rad	804461-013 Chromium, Hex	avalent	ug/L	10/29	9/2012 15:40	1.00	0.00920	0.20	17.0
Parameter Chromium, Hexavalent Chromium, Hexavalent Duplicate Unit Unit DF Result Expected RPD Acceptance Result Description Parameter Chromium, Hexavalent Low Level Calibration Verification Unit DF Result Expected Recovery Description Recovery Acceptance Result Description Parameter Chromium, Hexavalent Lab Control Sample Unit DF Result Expected Recovery Description Recovery Acceptance Result Description Parameter Chromium, Hexavalent Lab Control Sample Unit DF Result Expected Recovery Description Recovery Acceptance Result Description Parameter Chromium, Hexavalent Lab ID = 804461 Unit DF Result Expected/Added Recovery Acceptance Result Description Recovery Acceptance Result Description Parameter Chromium, Hexavalent Lab ID = 804461 Unit DF Result Expected/Added Recovery Acceptance Result Description Recovery Acceptance Result Description Parameter Chromium, Hexavalent Lab ID = 804461 Unit DF Result Expected/Added Recovery Acceptance Result Description Recovery Acceptance Result Description Parameter Chromium, Hexavalent Lab ID = 804461 Recovery Acceptance Result Description Recovery Acceptance Result Description	804461-014 Chromium, Hex	avalent	ug/L	10/29	/2012 15:50	1.00	0.00920	0.20	0.44
Chromium, Hexavalent ug/L 1.00 ND Duplicate Lab ID = 804461 Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 5.00 5.00 100 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Lab ID = 804461 Lab ID = 804461 Lab ID = 804461 Lab ID = 804461 <	Method Blank								
Parameter	Parameter	Unit	DF	Result					
Parameter Unit DF Result Expected RPD Acceptance Result Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Low Level Calibration Verification Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90 - 110 Matrix Spike Parameter Unit DF Result Expected Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90 - 110 Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Result Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Result Expected/Added Recovery Accep	Chromium, Hexavalent	ug/L	1.00	ND					
Chromium, Hexavalent ug/L 1.00 14.0 14.0 0.242 0 - 20 Low Level Calibration Verification Parameter Unit DF Result Expected Recovery Acceptance Rate Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Parameter Unit DF Result Expected Recovery Acceptance Rate Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90 - 110 Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Parameter Unit DF Result Expected/Added Recovery Acceptance Rate	Duplicate							Lab ID =	804461-006
Parameter Unit DF Result Expected Recovery Acceptance Rac Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Rac Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90 - 110 Lab ID = 804461- Parameter Unit DF Result Expected/Added Recovery Acceptance Rac Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Lab ID = 804461- Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Rac Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Lab ID = 804461- Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Rac Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Lab ID = 804461- Matrix Spike	Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Parameter Unit DF Result Expected Recovery Acceptance Recovery Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Recovery Acceptance Recovery Acceptance Recovery Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90 - 110 Matrix Spike Parameter Unit DF Result Expected Recovery Acceptance Recovery Accepta	Chromium, Hexavalent	ug/L	1.00	14.0	14.0		0.242	0 - 20	
Chromium, Hexavalent ug/L 1.00 0.209 0.200 105 70 - 130 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Recovery Acceptanc	Low Level Calibration	Verification							
Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Radical Recovery Chromium, Hexavalent ug/L 1.00 5.00 100. 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Radical Recovery Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Radical Recovery	Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Range
Parameter Unit DF Result Expected Recovery Acceptance Racovery DF Result Spike Expected Recovery Acceptance Racovery DF Result Expected/Added Recovery Acceptance Racovery DF Result Expected/Added Recovery Acceptance Racovery DF Result D	Chromium, Hexavalent	ug/L	1.00	0.209	0.200		105	70 - 130)
Chromium, Hexavalent ug/L 1.00 5.00 5.00 100. 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rade (1.00) Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rade (1.00)	Lab Control Sample								
Matrix Spike Parameter Chromium, Hexavalent Matrix Spike Parameter Unit DF Result 1.00 1.41 1.46(1.00) 95.0 90 - 110 Lab ID = 8044616 Lab ID = 8044616	Parameter				•		•	-	-
Parameter Unit DF Result Expected/Added Recovery Acceptance Rac Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Lab ID = 804461. Parameter Unit DF Result Expected/Added Recovery Acceptance Rac Rac Rac Rac Rac Rac Rac Rac Rac Rac	Chromium, Hexavalent	ug/L	1.00	5.00	5.00		100.		
Chromium, Hexavalent ug/L 1.00 1.41 1.46(1.00) 95.0 90 - 110 Matrix Spike Lab ID = 804461 Parameter Unit DF Result Expected/Added Recovery Acceptance Rame	Matrix Spike							Lab ID =	804461-001
Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Ra	Parameter				•	dded	_	•	-
Parameter Unit DF Result Expected/Added Recovery Acceptance Ra	Chromium, Hexavalent	ug/L	1.00	1.41	1.46(1.00)		95.0		
,	Matrix Spike							Lab ID =	804461-002
Chromium, Hexavalent ug/L 1.00 6.37 6.49(5.00) 97.6 90 - 110					•	dded	•	•	-
	Chromium, Hexavalent	ug/L	1.00	6.37	6.49(5.00)		97.6	90 - 110)

Client: E2 Consulting En	gineers, Inc.		Project Name: Project Number:	PG&E Topock Pro 423575.MP.02.CM	-	Page 11 of 36 Printed 12/2/2012
Matrix Spike						Lab ID = 804461-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.02	Expected/Added 6.13(5.00)	Recovery 97.8	Acceptance Range 90 - 110 Lab ID = 804461-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 17.0	Expected/Added 17.2(10.0)	Recovery 97.5	Acceptance Range 90 - 110 Lab ID = 804461-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.82	Expected/Added 1.85(1.00)	Recovery 97.4	Acceptance Range 90 - 110 Lab ID = 804461-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.01	Expected/Added 6.25(5.00)	Recovery 95.3	Acceptance Range 90 - 110 Lab ID = 804461-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.48	Expected/Added 1.54(1.00)	Recovery 94.3	Acceptance Range 90 - 110 Lab ID = 804461-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.91	Expected/Added 6.24(5.00)	Recovery 93.4	Acceptance Range 90 - 110 Lab ID = 804461-011
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.33	Expected/Added 1.38(1.00)	Recovery 95.6	Acceptance Range 90 - 110 Lab ID = 804461-012
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.36	Expected/Added 1.44(1.00)	Recovery 92.2	Acceptance Range 90 - 110 Lab ID = 804461-014
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.42	Expected/Added 1.44(1.00)	Recovery 98.7	Acceptance Range 90 - 110 Lab ID = 804493-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 7.96	Expected/Added 8.23(5.00)	Recovery 94.7	Acceptance Range 90 - 110 Lab ID = 804493-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.949	Expected/Added 1.00(1.00)	Recovery 94.9	Acceptance Range 90 - 110 Lab ID = 804493-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 7.29	Expected/Added 7.52(5.00)	Recovery 95.4	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Printed 12/2/2012

Page 13 of 36

Total Dissolved Solids	by SM 254	0 C	Batch	10TDS12I				
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
804461-001 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4270
804461-002 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4440
804461-003 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4430
804461-004 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4170
804461-005 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4510
804461-006 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	125	2690
804461-007 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4340
804461-008 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4300
804461-009 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4360
804461-010 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	50.0	1030
804461-011 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4200
804461-012 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4430
804461-013 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	50.0	1800
804461-014 Total Dissolved	Solids	mg/L	10/22	2/2012	1.00	0.757	250	4440
Method Blank							J. 443	
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	804461-006
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	2720	2690		1.11	0 - 10	_
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	485	500		97.0	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 14 of 36

Project Number: 423575.MP.02.CM

Printed 12/2/2012

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804461-001 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804461-002 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804461-003 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804461-004 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804461-005 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
804461-007 Ammonia as N		mg/L	10/22	2/2012 1	.00	0.00980	0.500	ND
Method Blank								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result ND					
Duplicate	3		. –				Lab ID =	304303-001
Parameter Ammonia as N Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	F	RPD 0	Accepta 0 - 20	nce Range
	1.14.14	הר	Dazult	Ermontod	-)·	^ - - - - - - -	1940 - 2 LL
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 7.96	Expected 8.00	r	Recovery 99.5	90 - 110	nce Range
Lab Control Sample D	_	7,00	7.50	0.00		55.5	50 - 110	
Parameter	Unit	DF	Result	Expected	F	Recovery	Accenta	nce Range
Ammonia as N	mg/L	1.00	8.24	8.00	·	103	90 - 110	_
Matrix Spike							Lab ID = 8	304408-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	7.22	8.00(8.00)		90.2	75 - 125	J
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	nce Range
Ammonia as N	mg/L	1.00	6.14	6.00		102	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	5.99	6.00		99.8	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	5.46	6.00		90.9	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 15 of 36 Printed 12/2/2012

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804461-001 Mercury		ug/L	11/13	3/2012 20:33	2.50	0.100	0.50	ND
804461-002 Mercury		ug/L	11/13	3/2012 21:22	2.50	0.100	0.50	ND
804461-003 Mercury		ug/L	11/13	3/2012 21:30	2.50	0.100	0.50	ND
804461-004 Mercury		ug/L	11/13	3/2012 21:37	2.50	0.100	0.50	ND
804461-005 Mercury		ug/L	11/13	3/2012 21:44	2.50	0.100	0.50	ND
804461-007 Mercury		ug/L	11/13	/2012 21:58	2.50	0.100	0.50	ND
Method Blank								
Parameter	Unit	DF	Result					
Mercury	ug/L	1.00	ND					
Duplicate							Lab ID =	804461-001
Parameter	Unit	DF	Result	Expected	I	RPD	Accepta	ance Range
Mercury	ug/L	2.50	ND	0		0	0 - 20	
Low Level Calibration	on Verification							
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accepta	nce Range
Mercury	ug/L	1.00	0.233	0.200		117	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Mercury	ug/L	2.50	10.1	10.0		101	85 - 115	
Matrix Spike							Lab ID =	804461-001
Parameter	Unit	DF	Result	Expected/Add	led l	Recovery	•	ince Range
Mercury	ug/L	2.50	9.06	10.0(10.0)		90.6	75 - 125	
Matrix Spike Duplic	ate						Lab ID =	804461-001
Parameter	Unit	DF	Result	Expected/Add	led l	Recovery	•	ince Range
Mercury	ug/L	2.50	9.33	10.0(10.0)		93.3	75 - 125	5
MRCCS - Seconda	y							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Mercury	ug/L	1.00	2.02	2.00		101	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Mercury	ug/L	1.00	1.99	2.00		99.7	90 - 110	1
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Mercury	ug/L	1.00	2.02	2.00		101	90 - 110	1

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Printed 12/2/2012

Page 17 of 36

Metals by 200.7, Dissolved		Batch 110712A-Th2				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
804461-001 Aluminum	ug/L	11/07/2012 13:35	1.00	10.0	50.0	ND
Boron	ug/L	11/07/2012 13:35	1.00	2.70	200	918
Iron	ug/L	11/07/2012 13:35	1.00	9.50	20.0	ND
Magnesium	ug/L	11/07/2012 13:35	1.00	55.4	500	17000
Zinc	ug/L	11/07/2012 13:35	1.00	7.00	20.0	ND
304461-002 Aluminum	ug/L	11/07/2012 13:41	1.00	10.0	50.0	ND
Boron	ug/L	11/07/2012 13:41	1.00	2.70	200	923
Iron	ug/L	11/07/2012 13:41	1.00	9.50	20.0	ND
Magnesium	ug/L	11/07/2012 13:41	1.00	55.4	500	13400
Zinc	ug/L	11/07/2012 13:41	1.00	7.00	20.0	ND
304461-003 Aluminum	ug/L	11/07/2012 13:47	1.00	10.0	50.0	ND
Boron	ug/L	11/07/2012 13:47	1.00	2.70	200	1110
Iron	ug/L	11/07/2012 13:47	1.00	9.50	20.0	ND
Magnesium	ug/L	11/07/2012 13:47	1.00	55.4	500	7230
Zinc	ug/L	11/07/2012 13:47	1.00	7.00	20.0	ND
304461-004 Aluminum	ug/L	11/07/2012 13:53	1.00	10.0	50.0	ND
Boron	ug/L	11/07/2012 13:53	1.00	2.70	200	845
Iron	ug/L	11/07/2012 13:53	1.00	9.50	20.0	ND
Magnesium	ug/L	11/07/2012 13:53	1.00	55.4	500	14200
Zinc	ug/L	11/07/2012 13:53	1.00	7.00	20.0	ND
304461-005 Aluminum	ug/L	11/07/2012 13:59	1.00	10.0	50.0	ND
Boron	ug/L	11/07/2012 13:59	1.00	2.70	200	954
Iron	ug/L	11/07/2012 13:59	1.00	9.50	20.0	ND
Magnesium	ug/L	11/07/2012 13:59	1.00	55.4	500	16500
Zinc	ug/L	11/07/2012 13:59	1.00	7.00	20.0	ND

Nachaad Diank			
Method Blank			
Wichiga Diami			

Parameter	Unit	DF	Result
Aluminum	ug/L	1.00	ND
Iron	ug/L	1.00	ND
Zinc	ug/L	1.00	ND
Magnesium	ug/L	1.00	ND
Boron	ug/L	1.00	ND

Client: E2 Consulting Eng	gineers, In		Project Name: Project Numbe	PG&E Topock Pror: 423575.MP.02.CM	=	Page 18 of 36 Printed 12/2/2012
Duplicate						Lab ID = 804408-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Aluminum	ug/L	1.00	ND	0	0	0 - 20
Iron	ug/L	1.00	ND	0	0	0 - 20
Zinc	ug/L	1.00	ND	0	0	0 - 20
Magnesium	ug/L	1.00	4490	4390	2.16	0 - 20
Boron	ug/L	1.00	998	975	2.35	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	1970	2000	98.6	85 - 115
iron	ug/L	1.00	2090	2000	104	85 - 115
Zinc	ug/L	1.00	1900	2000	94.8	85 - 115
Magnesium	ug/L	1.00	2120	2000	106	85 - 115
Boron	ug/L	1.00	1920	2000	96.0	85 - 115
Matrix Spike						Lab ID = 804408-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Aluminum	ug/L	1.00	1670	2000(2000)	83.6	75 - 125
Iron	ug/L	1.00	1900	2000(2000)	95.0	75 - 125
Zinc	ug/L	1.00	2120	2000(2000)	106	75 - 125
Magnesium	ug/L	1.00	6570	6390(2000)	109	75 - 125
Boron	ug/L	1.00	2870	2980(2000)	94.8	75 - 125
Matrix Spike Duplicate						Lab ID = 804408-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Aluminum	ug/L	1.00	1620	2000(2000)	81.2	75 - 125
Iron	ug/L	1.00	1840	2000(2000)	91.8	75 - 125
Zinc	ug/L	1.00	2050	2000(2000)	102	75 - 125
Magnesium	ug/L	1.00	6380	6390(2000)	99.4	75 - 125
Boron	ug/L	1.00	2810	2980(2000)	91.6	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	4810	5000	96.2	95 - 105
Iron	ug/L	1.00	5020	5000	100	95 - 105
Zinc	ug/L	1.00	4800	5000	96.0	95 - 105
Magnesium	ug/L	1.00	4900	5000	97.9	95 - 105
Boron	ug/L	1.00	4910	5000	98.1	95 - 105

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 22 of 36 Printed 12/2/2012

Metals by 200.7, Disso	olved		Batch	110612A-Th2				
Parameter		Unit	Analy	zed	DF	MDL	RL	Result
804461-001 Calcium	-	ug/L	11/06/2	2012 14:38	100	1200	10000	190000
Potassium		ug/L	11/06/2	2012 17:01	2.00	540	2000	14000
Sodium		ug/L	11/06/2	2012 14:38	100	39400	100000	1410000
804461-002 Calcium		ug/L	11/06/2	2012 14:43	100	1200	10000	170000
Potassium		ug/L	11/06/2	2012 17:01	2.00	540	2000	14000
Sodium		ug/L	11/06/2	2012 14:43	100	39400	100000	1440000
804461-003 Calcium		ug/L	11/06/2	2012 14:49	100	1200	10000	117000
Potassium		ug/L	11/06/2	2012 17:34	2.00	540	2000	12600
Sodium		ug/L	11/06/2	2012 14:49	100	39400	100000	1590000
804461-004 Calcium		ug/L	11/06/2	2012 14:55	100	1200	10000	179000
Potassium		ug/L	11/06/2	2012 17:40	2.00	540	2000	12800
Sodium		ug/L	11/06/2	2012 14:55	100	39400	100000	1300000
804461-005 Calcium		ug/L	11/06/2	2012 15:01	100	1200	10000	184000
Potassium		ug/L	11/06/2	2012 17:46	2.00	540	2000	13400
Sodium		ug/L	11/06/2	2012 15:01	100	39400	100000	1440000
Method Blank								
Parameter	Unit	DF	Result					
Calcium	ug/L	1.00	ND					
Potassium	ug/L	1.00	ND					
Sodium	ug/L	1.00	ND					
Duplicate							Lab ID = 8	04408-001
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptan	ce Range
Calcium	ug/L	50.0	84400	83100		1.55	0 - 20	
Potassium	ug/L	5.00	10600	11100		4.23	0 - 20	
Sodium	ug/L	500	1580000	1660000		4.62	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Calcium	ug/L	1.00	2190	2000		110	85 - 115	
Potassium	ug/L	1.00	2140	2000		107	85 - 115	
Sodium	ug/L	1.00	1980	2000		99.0	85 - 115	

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 26 of 36

Project Number: 423575.MP.02.CM Printed 12/2/2012

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
304461-007 Aluminum		ug/L			.00	9.50	50.0	ND
Boron		ug/L			.00	1.70	200	823
Iron		ug/L			.00	5.10	20.0	ND
Zinc		ug/L			.00	1.60	20.0	ND
Method Blank		ug/L	10/30	12012 13.37	.00	1.00	20.0	ND
		D.F.	D					
Parameter	Unit	DF 1.00	Result ND					
Aluminum	ug/L	1.00						
Iron	ug/L	1.00	ND					
Zinc	ug/L	1.00	ND					
Boron	ug/L	1.00	ND				Lab ID -	004400.005
Duplicate								804409-007
Parameter	Unit	DF	Result	Expected	F	RPD	•	ince Range
Aluminum	ug/L	1.00	ND	0		0	0 - 20	
Iron	ug/L	1.00	ND	0		0	0 - 20	
Zinc	ug/L	1.00	ND	0		0	0 - 20	
Boron	ug/L	1.00	491	498		1.40	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Aluminum	ug/L	1.00	2190	2000		110	85 - 115	j
Iron	ug/L	1.00	2120	2000		106	85 - 115	5
Zinc	ug/L	1.00	2030	2000		101	85 - 115	;
Boron	ug/L	1.00	1950	2000		97.6	85 - 115	;
Matrix Spike							Lab ID =	804409-007
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Aluminum	ug/L	1.00	1670	2000(2000)		83.6	75 - 125	,
Iron	ug/L	1.00	1860	2000(2000)		93.2	75 - 125	i
Zinc	ug/L	1.00	2050	2000(2000)		102	75 - 125	i
Boron	ug/L	1.00	2400	2500(2000)		95.2	75 - 125	j
Matrix Spike Duplicate							Lab ID =	804409-007
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Aluminum	ug/L	1.00	1650	2000(2000)		82.4	75 - 125	_
Iron	ug/L	1.00	1870	2000(2000)		93.5	75 - 125	;
Zinc	ug/L	1.00	2030	2000(2000)		102	75 - 125	
Boron	ug/L	1.00	2370	2500(2000)		93.6	75 - 125	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without productive authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 30 of 36

Project Number: 423575.MP.02.CM

Printed 12/2/2012

Metals by 200.7, Dissol	ved		Batch	102912A			
Parameter		Unit	Ana	llyzed [DF MDL	RL F	Result
804461-007 Potassium		ug/L	10/29	9/2012 14:35 2	.00 360	1000 1	6200
Method Blank		7.					
Parameter	Unit	DF	Result				
Potassium	ug/L	1.00	ND				
Duplicate						Lab ID = 804	409-007
Parameter	Unit	DF	Result	Expected	RPD	Acceptance	Range
Potassium	ug/L	2.00	7460	7410	0.646	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	2130	2000	107	85 - 115	
Matrix Spike						Lab ID = 804	409-007
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Acceptance	Range
Potassium	ug/L	2.00	11500	11400(4000)	103	75 - 125	
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	5020	5000	100	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	5030	5000	101	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	4940	5000	98.8	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	4690	5000	93.8	90 - 110	
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	2060	2000	103	80 - 120	
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance	Range
Potassium	ug/L	1.00	1940	2000	97.2	80 - 120	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 32 of 36 Printed 12/2/2012

Metals by 200.7, Disso	lved		Batch	102512A				
Parameter		Unit	Anal	yzed [)F	MDL	RL	Result
804461-006 Sodium		ug/L	10/25/	2012 13:55 5	0.0	5650	25000	515000
804461-007 Calcium		ug/L	10/25/	2012 14:01 5	0.0	836	25000	152000
Magnesium		ug/L	10/25/	2012 18:24 2	.00	103	1000	20700
Sodium		ug/L	10/25/	2012 14:28 2	00	22600	100000	1360000
804461-008 Sodium		ug/L	10/25/	2012 15:11 1	00	11300	50000	1290000
804461-009 Sodium		ug/L	10/25/	2012 15:16 1	00	11300	50000	1250000
804461-010 Sodium		ug/L	10/25/	2012 14:17 1	00	11300	50000	298000
804461-011 Sodium		ug/L	10/25/	2012 14:23 1	00	11300	50000	1350000
804461-012 Sodium		ug/L	10/25/	2012 14:54 1	00	11300	50000	1330000
804461-013 Sodium		ug/L	10/25/	2012 15:00 1	00	11300	50000	364000
804461-014 Sodium		ug/L	10/25/	2012 15:05 1	00	11300	50000	1260000
Method Blank								
Parameter	Unit	DF	Result					
Calcium	ug/L	1.00	ND					
Sodium	ug/L	1.00	ND					
Magnesium	ug/L	1.00	ND					
Duplicate							Lab ID = 8	04409-007
Parameter	Unit	DF	Result	Expected	RF	D	Acceptan	ce Range
Calcium	ug/L	100	154000	155000	C).517	0 - 20	
Sodium	ug/L	100	107000	106000	1	1.22	0 - 20	
Magnesium	ug/L	10.0	26800	25800	3	3.91	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	covery	•	ce Range
Calcium	ug/L	1.00	2020	2000	1	101	85 - 115	
Sodium	ug/L	1.00	1920	2000	9	96.2	85 - 115	
Magnesium	ug/L	1.00	2110	2000	1	06	85 - 115	
Matrix Spike							Lab ID = 8	04409-007
Parameter	Unit	DF	Result	Expected/Adde	d Re	covery	Acceptan	ce Range
Calcium	ug/L	100	350000	355000(200000) 9	7.5	75 - 125	-
Sodium	ug/L	100	298000	306000(200000)) 9	5.8	75 - 125	
Magnesium	ug/L	10.0	45000	45800(20000)	g	96.1	75 - 125	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 35 of 36

Printed 12/2/2012

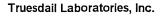
Interference Check Standard AB

Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Magnesium	ug/L	1.00	2190	2000	110	80 - 120

	- 5 -								
Turbidity by SM 2130 B			Batch	10TUC12L					
Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result	
804461-001 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	ND	
804461-002 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.142	
804461-003 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.127	
804461-004 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.120	
804461-005 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.336	
804461-006 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.487	,
804461-007 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.101	
804461-008 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	ND	
804461-009 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	ND	
804461-010 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.419	
804461-011 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	ND	
804461-012 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.145	
804461-013 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	0.290	
804461-014 Turbidity		NTU	10/19	9/2012	1.00	0.0140	0.100	ND	
Method Blank							.61		7
Parameter	Unit	DF	Result						
Turbidity	NTU	1.00	ND						
Duplicate							Lab ID =	804461-010)
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range)
Turbidity	NTU	1.00	0.421	0.419		0.476	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	•
Turbidity	NTU	1.00	7.97	8.00		99.6	90 - 110		
Lab Control Sample D	uplicate								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range)
Turbidity	NTU	1.00	7.85	8.00		98.1	90 - 110		

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 36 of 36

Project Number: 423575.MP.02.CM Printed 12/2/2012


Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS12I Date Analyzed: 10/22/12

., Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	67.0518	67.0518	67.0518	0.0000	No	0.0000	0.0	25.0	ND	1
804460-5	100	73.7964	73.8282	73.8282	0.0000	No	0.0318	318.0	25.0	318.0	1
804460-6	100	76.7928	76,8253	76.8249	0.0004	No	0.0321	321.0	25.0	321.0	1
804460-11	50	77.7819	77.8735	77.8735	0.0000	No	0.0916	1832.0	50.0	1832.0	1
804460-12	50	73.4426	73.5333	73.5333	0.0000	No	0.0907	1814.0	50.0	1814.0	1
804461-1	10	47.8657	47.9085	47.9084	0.0001	No	0.0427	4270.0	250.0	4270.0	1
804461-2	10	50.1252	50.1700	50.1696	0.0004	No	0.0444	4440.0	250.0	4440.0	1
804461-3	10	47.9485	47.9929	47.9928	0.0001	No	0.0443	4430.0	250.0	4430.0	1
804461-4	10	50.1529	50.195	50.1946	0.0004	No	0.0417	4170.0	250.0	4170.0	1
804461-5	10	47.5133	47.5586	47.5584	0.0002	No	0.0451	4510.0	250.0	4510.0	1
804461-6	20	48.9959	49.0497	49.0497	0.0000	No	0.0538	2690.0	125.0	2690.0	1
804461-6D	20	75.2899	75.3443	75.3443	0.0000	No	0.0544	2720.0	125.0	2720.0	1
LCS	100	76.7944	76.8432	76.8429	0.0003	No	0.0485	485.0	25.0	485.0	1
804461-7	10	49.6789	49.7224	49.7223	0.0001	No	0.0434	4340.0	250.0	4340.0	1
804461-8	10	51.0588	51.1021	51.1018	0.0003	No	0.0430	4300.0	250.0	4300.0	1
804461-9	10	47.2196	47.2632	47.2632	0.0000	No	0.0436	4360,0	250.0	4360.0	11
804461-10	50	75.1997	75.2518	75.2514	0.0004	No	0.0517	1034.0	50.0	1034.0	1
804461-11	10	51.4230	51.4653	51.465	0.0003	No	0.0420	4200.0	250.0	4200.0	1
804461-12	10	48.1372	48.1819	48.1815	0.0004	No	0.0443	4430.0	250.0	4430.0	11
804461-13	50	72.5253	72.6151	72.6151	0.0000	No	0.0898	1796.0	50.0	1796.0	11
804461-14	10	51.4302	51.4747	51.4746	0.0001	No	0.0444	4440.0	250.0	4440.0	1
804485-2	100	111,3678	111.3902	111.3898	0.0004	No	0.0220	220.0	25.0	220.0	1
804485-4	100	69.2029	69.2481	69.248	0.0001	No	0.0451	451.0	25.0	451.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

$$\left(\frac{A-B}{C}\right) \times 10^6$$

RL= reporting limit, ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	485	500	97.0%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804461-6	0.0538	0.0544	0.6%	≤5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \, 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{|A \text{ or } B - C|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim Hope I-

Reviewer Printed Name

WelChem TDS_2012.xls

Jenny T.

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12I
Date Analyzed: 10/22/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804460-5	445	0.71	289.25	1.10
804460-6	452	0.71	293.8	1.09
804460-11	2700	0.68	1755	1.04
804460-12	2680	0.68	1742	1.04
804461-1	7320	0.58	4758	0.90
804461-2	7380	0.60	4797	0.93
804461-3	7740	0.57	5031	0.88
804461-4	6880	0.61	4472	0.93
804461-5	7320	0.62	4758	0.95
804461-6	4230	0.64	2749.5	0.98
804461-6D	4230	0.64	2749.5	0.99
LCS				
804461-7	7260	0.60	4719	0.92
804461-8	7320	0.59	4758	0.90
804461-9	7200	0.61	4680	0.93
804461-10	1760	0,59	1144	0.90
804461-11	7270	0.58	4725.5	0.89
804461-12	7330	0.60	4764.5	0.93
804461-13	2950	0.61	1917.5	0.94
804461-14	7300	0.61	4745	0.94
804485-2	391	0.56	254.15	0.87
804485-4	754	0.60	490.1	0.92

Alkalinity by SM 2320B

Analytical Batch: 10ALK12E Matrix: Water Date of Analysis: 10/19/12

Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL titrant to reach pH 0.3 unit lower	Total Alkalinity as CaCO3	RL, ppm	Total Alkalinity Reported Value	HCO3 Conc. as CaCO₃ (ppm)	CO3 Alkalinity as CaCO₃ (ppm)	OH Alkalinity as CaCO₃ (ppm)	Low Alkalinity as CaCO ₃ (<20ppm)
BLANK	7.20	50	0.02		0.0	0.00		0.0	5	ND	ND	ND	ND	
804317	7.88	50	0.02		0.0	7 45		149.0	5	149.0	149.0	ND	ND	
804436-1	6.93	50	0.02		0.0	19.70	·	394.0	5	394.0	394.0	ND	ND	
804436-2	7.13	50	0.02		0.0	13.60		272.0	5	272.0	272.0	ND	ND	
804436-3	7.39	50	0.02		0.0	13.10		262.0	5	262.0	262.0	ND	ND	
804461-1	7.78	50	0.02		0.0	2.65	I	53.0	5	53.0	53.0	ND	ND	
804461-2	7.81	50	0.02	And the second second second	0.0	2.90	1	58.0	5	58.0	58.0	ND	. ND	
804461-3	7.97	50	0.02	and the second of the second of the second of	0.0	2.60	T	52.0	5	52.0	52.0	ND	ND	
804461-4	7.77	50	0.02		0.0	2.55		51.0	5	51.0	51.0	ND	ND	
804461-5	7.78	50	0.02		0.0	2.80		56.0	5	56.0	56.0	ND	ND	
804461-5 DUP	7.80	50	0.02		0.0	2.55	1	51.0	5	51.0	51.0	ND	ND	
804461-7	7.84	50	0.02	1	0.0	2.25		45.0	5	45.0	45.0	ND	ND	
804461-7 MS	9.71	50	0.02	2.3	46.0	7.45	1	149.0	5	149.0	57.0	92	ND	
LOS	10.41	50	0.02	22	43.0	5,40	†	108.0	5	108.0	22.0	86	ND	
LCSD	10.54	50	0.02	I	47.0	5.20	1	104.0	5	104.0	10.0	94	ND	
						72	-							
			-											
		+	+	1			+			1	1			

Calculations as follows:

Tor P=

mL sample

Where:

 $(2 \times B - C) \times N \times 50000$

mL sample

Blank Summary

Reporting Limit, RL			QC Within Control?	
5 ppm	0	<5	Yes	

Where: T = Total Alkalinity, mg CaCO3/L.

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used N = normality of standard acid

as mg/L CaCO3 B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

Low Alkalinity: =

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

QC Std I.D.	Measured Value, ppm	Theoretical Value, ppm	%Recovery	Accetance Limit	QC Within Control?
LCS	108	100	108.0%	90-110	Yes
LCSD	104	100	104.0%	90-110	Yes

Duplicate Determination Difference Summary

Lab Number Measured I.D. Measured Value, ppm		Dup Value, ppm	RPD	Accetance Limit	QC Within Control?	
804461-5	56	51	9.3%	≤20%	Yes	

Sample Matrix Spike (MS/MSD) Summary

Lab Number	Conc of Unspk spl	Dil Factor	Added Spk Conc	MS/MSD Amt	Measrd Conc of Spk Spl	Theor Conc of Spk Spl	MS/MSD %Rec	MS Accept Limit	QC Within Control?	RPD	RPD Accept Limit	QC Within Control?
804461-7	45	1	100	100	149	145.00	104%	75-125	Yes			
00440.144		1	100	100				10-120			ļ. <u></u>	

Melissa S. Analyst Printed Name 101912e

Reviewer Printed Name

804461

CH2MHILL

CHAIN OF CUSTODY RECORD

10/18/2012 3:21:06 PM

Page 1 OF 2

	Project Name PG Location Topock	• • • • • • • • • • • • • • • • • • • •	k 1	Container:	250 ml Poly (NH4)2S	900 mi Poly HNO3,	500 mi Poly HNO3,	1x500 ml Poly HNO3	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2SO4	* The Metals list should be: Al,Sb,As, Ba,Be,B,Ca,Cd,Co,Cr,Cu,Fe,Pb,Mg,Mn,Hq,			
	Project Manager .		Pres	ervatives:	04/NH40 H, 4°C	4°C	4*G	4°C						pH<2. 4*C	Mo, Ni, Se, Ag, Tl, V, Zn, K, Na			
-	Sample Manager I	Vlatt Ringi	er	Filtered:	Field	Fleid	NA	Field	NA	NA	NA	NA	NA	NA	10/23/2012 M			
		. A La Hall		ling Time:	28	180	180	180	2	2	2	2	2	26	10/23/2012			v
	Project Number 4 Task Order Project 2012-CMI Turnaround Time Shipping Date: 1 COC Number: 5	P-025 10 Days	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	Matrix Matrix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Or, Mo.Na	Metals (6010B) Total Fe	* Metals (E200series) Field O Filtered AlSbAsBeBeBCaCdCoCrOuFe 5	Specific Conductance (£120,1)	Anions (E300.0) CI, Fl. SO4	Turbidity (SM2130)	TOS (SM2540C)	Alkalinity (SM23208)	Ammonia (SM4500NH3)	For Sample Conditions See Form Attached	Number of Containers	Co	MMENTS
١	CW-01D-028	10/16/2012	11:52	Water	×		Х	×	X	Х	Х	x	×	х		6	1	
2	CW-01M-928	10/16/2012	12:34	Water	х		х	x	х	х	Х	x	X	х		6	П	A
3	CW-040-029	10/16/2012	8:48	Water	X		×	X	×	X	х	×	X	×		6	T	***************************************
N	CW-94M-028	10/16/2012	9:57	Water	ж		X	x	×	Х	x	×	Х	×		6	H)U=
2	OW-01D-028	10/16/2012	14:28	Water	Х		×	х	x	х	×	x	×	x		6	H	
6	OW-015-026	10/16/2012	15:07	Water	х	x	<u> </u>		х	x	х	x	Hallandentrière Sèrie	 		4	lt	MARITMANNIAN
	OW-83-028-	10/17/2012	8:25	Water	х										- ALEKTII	1	u	d)
Ì	OW-89-028	10/17/2012	8:35	Water	х				***************************************				***************************************		LEGVELTIT CO-	1	ĬŪ.	
7	OW-91M-028	10/18/2012	7:54	Water	x		х	х	X	х	×	×	х	Х		6	7	361.1
וֹצֵ	OW-02D-028	10/18/2012	9:27	Wafer	Х	х	-		ж	X	х	х				4	H	
4	OW-02M-078	10/18/2012	11:45	Water	х	х	1		x	х	х	x	***************************************			4	T)
0	OW-025-028	10/18/2012	10:04	Water	X	х	†		x	х	х	х	••••••			4	H	ne
,	OW-05D-028	10/18/2012	12:56	Water	х	Х			Х	х	×	х	- d- u- e-u-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-	-		4	H	/
51 F	· · · · · · · · · · · · · · · · · · ·		1				1	11						1	1	L		

Approved by Sampled by

Relinquished by Relinquished by

Received by

Signatures

Shipping Details

Method of Shipment: courier

On Ice: yes / no

10-18-12 15:46 Airbill No:
10-18-12 20:46 Lab Name: Truesdail Laboratories, Inc.
10-18-12 20:46 Lab Phone: (714) 730-6239

ATTN:

Special Instructions:

October 1-5, 2012

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303

804461

CHOMAHILL

CHAIN OF CUSTODY RECORD

10/18/2012 3:21:07 PM

Page 2 OF 2

CHEIVITILL							U 11	Line .	J. UU	~ : UU	1 1/1-0		r 10/30/2012 3/21/07 PW Page Z OF	
Project Name PG&	or inharm	ontainer:	250 ml Poly	500 ml Poly	500 ml Poly	tx500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly		
Location Topock Project Manager Ja	Consist	rvalives:	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	H2SO4, pH≪2, 4°C		
Sample Manager M	att Ringier	Filtered:	Field	Field	NA	Field	NA	NA	NA	NA	NA	NA		
	Holdi	ng Time:	28	189	180	180	2	2	2	2	2	28		
Project Number 42 Task Order Project 2012-CMP- Turnaround Time Shipping Date: 10 COC Number: 5	-028 10 Days /18/2012	Matrix	C/6 (E218,6) Field Filtered	Metals (E200.7-£200.8) Field Filtered Cr.Mo.Na	Metals (60108) Total Fa	Metals (E200series) Field Filtered AISbAsBaBCaCdCaCdCaCrCuFePb	Specific Conductance (E) 20,1)	Anions (E300.0) Ct, Fl, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM23208)	Ammonie (SM4500NH3)	ALERT II Level III QC	соммен
OW-055-028	10/18/2012 14:41	Water	X	X.			x	Х	х	х			4	2
OW-91-028	10/18/2012 7:05	Water	X	X			Х	Х	х	×			4	TIM
OW-83-028	1509		火				 			·	************		TOTAL NUMBER OF CONTAINERS	Hol
OW-84-028	1916		K								***************************************	A COLUMN TO THE PARTY OF THE PA		Holi
OM-82-038	1 1521	ı	X		-									Hel

Date/Time 10-18-12 1540 Signatures Shipping Details Special Instructions: Approved by ATTN: October 1-5, 2012 Method of Shipment: courier Sampled by Relinquished by OReceived by On Ice: yes / no Sample Custody 10-18-12 15:46 Airbill No: 10-18-12 226 Lab Name: Truesdail Laboratories, Inc. 10/18/12 20:40 Lab Phone: (714) 730-6239 Report Copy to Relinquished by Shawn Duffy Received by (530) 229-3303

204461

CH2MHILL

CHAIN OF CUSTODY RECORD

10/18/2012 3:21:06 PM

Page 1 OF 2

Project Name Po	G&E Topoc	k (Container:	250 ml Poly	500 ml Poly	500 ml Poly	1x500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly				
Location Topod Project Manager		Pres	ervatives:	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	H2SO4, pH<2, 4°C		,		
Sample Manager	Matt Ringie	er	Filtered:	Field	Field	NA	Field	NA	NA	NA	NA	NA	NA		1,		
			ling Time:	28	180	180	180	2	2	2	2	2	28				-
Project Number Task Order Project 2012-CN Turnaround Time Shipping Date: COC Number: 5	1P-028 • 10 Days 10/18/2012	5	<i>M</i> atrix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Cr,Mo,Na	Metals (6010B) Total Fe	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)	For Sample Conditions See Form Attached	Number of Containers	CO	DMMENTS :
CW-01D-028	10/16/2012	11:52	Water	х		Х	Х	Х	Х	х	х	Х	х		6	1	
CW-01M-028	10/16/2012	12:34	Water	х		Х	х	Х	Х	Х	X	Х	х		6		
CW-04D-028	10/16/2012	8:48	Water	х		Х	х	х	Х	х	х	Х	х	·	6	T	
CW-04M-028	10/16/2012	9:57	Water	x	-	х	х	x	×	х	х	×	х		6	П	PU=2
OW-01D-028	10/16/2012	14:28	Water	Х		х	Х	Х	Х	Х	х	Х	х	Shipper	6	П	
OW-01S-028	10/16/2012	15:07	Water	х	х	·		х	x	х	х				4	lt	
OW-88-028	10/17/2012	 	Water	x										ALKIN	1	ĺŪ	ld d
OW-89-028	10/17/2012	 	Water	х										Levalition	1		leld)
OW-01M-028	10/18/2012		Water	X		·x	x	х	x	Х	x		x		6	5)
OW-02D-028	10/18/2012	9:27	Water	x	×			x	x		х				4	H	
OW-02M-028	10/18/2012	 	Water	X	×			х	x	×	×			· · · · · · · · · · · · · · · · · · ·	4	H	p
OW-02S-028		ļ	Water	x	x			×	x	×	X				4	H	1/11-2
OW-05D-028		 	Water	X	X			X		X	x				4	${f H}$	
OW-05M-028		 	Water						X						+	₩	
, O.1. UOIRE O.L.O	10/10/2012	14;03	veatel	Х	Х			Х	Х	<u> </u>	Х				4	Ļ	

Approved by Sampled by Relinquished by Received by Relinquished by

Received by

Signatures

Shipping Details

Method of Shipment: courier

On Ice: yes / no

10-18-12 15:46 Airbill No: 10-18-12 20:46 Lab Name: Truesdail Laboratories, Inc. TLI 10/18/12 20:46 Lab Phone: (714) 730-6239

ATTN:

Special Instructions:

October 1-5, 2012

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303

CH2MHILL

CHAIN OF CUSTODY RECORD

10/18/2012 3:21:07 PM Page **2** OF **2**

																
	Project Name PG&E Topod	ck Conta	iner: 250 Po		500 ml Poly	500 ml Poly	1x500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly			
	Location Topock		(NH4)28	HNO3,	HNO3,	HNO3,	4°C	4°C	4°C	4°C	4°C	H2SO4,			
	Project Manager Jay Piper	Preservati	ves: O4/N H, 4		4°C	4°C	4°C						pH<2, 4°C			
	Sample Manager Matt Ring	ier _{Filte}	red: Fie	ld	Field	NA	Field	NA	NA	NA	NA	NA	NA			
		Holding T	ime: 28	3	180	180	180	2	2	2	2	2	28			•
	Project Number 423575.MI Task Order Project 2012-CMP-028 Turnaround Time 10 Day Shipping Date: 10/18/2012 COC Number: 5	rs	rix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Cr,Mo,Na	Metals (60108) Total Fe	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)	ALERT!! Level III QC	Number of Containers	COMMENTS
2	OW-05S-028 10/18/2012	14:41 Wa	ter x		Х			х	Х	Х	х				4	7
14	OW-91-028 10/18/2012	7:05 Wa	ter x		Х			х	х	х	х				4	PM=2
•	OM-83-038 10-18-13	1 ' ' 1	\	١								٠		TOTAL NUMBER OF CONTAINERS	338	Holl
	OW-84-028	1516	D			,										Hol J
	OM-82-038	1521	X	,	The state of the s	-										Addison to the second s
	Ass	1		ı												Held

	1					
Approved by	Signatures	Date/Time	Shipping Details		Special Instructions:	
Sampled by	-K//	10-18 12	Method of Shipment: courier	ATTN:	October 1-5, 2012	
Relinguished by	1/1X	1540	On Ice: yes / no	Sample Custody		
Recorded by	Af c	10-18-12 15:40	Airbill No:	oumpic oustody		
Relinguished by	in l		Lab Name: Truesdail Laboratories, Inc.		Report Copy to	
Received by	Word - r	76/16	Lab Phone: (714) 730-6239		Shawn Duffy (530) 229-3303	
- 0	und, Tel	0/18/12 20:00	, , , , , , , , , , , , , , , , , , , ,		(000) FF0-000à	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
804438.1	9.5	NIA	NIA	1914	HAV
	Ĵ,	J.	1,	ار ا	J,
804459-1	9.5	NIA	NIA	NIA	HAV
1 .2				Î)
(- 3					
-4					
-5					
-6					
18					İ
1 , 9					
-/0					
_]11	Ţ.	J,	م	1.	
804460-1	9.5	NIA	NIA	NIA	HDV
-2		1			
-3					
-5					
.6		·			
. %					
-9					
-10			Ì		
. ; 9					
	1,				
:43	•			-Ju	
	9.5	NIA	NIA	NIA	HAV
1 -2	1				İ
.3					
-5	1		,	,	1.
	\$64438.1 2 804459.1 -2 804459.1 -3 -4 -5 -6 -7 -8 -10 -11 804460.1 -2 -3 -4 -7 -8 -9 -10 -11 -12 -13 -12 -13 -14 -12 -13 -14	\$64438.1 9.5 1.2 1, \$04459.1 9.5 1.2 1 -3 1 -4 1 -6 1 -7 1 -8 1 -9 1 -10 1 -11 1 -7 1 -9 1 -10 1 -11 1 -7 1 -9 5 -10 1 -11 1 -7 1 -9 1 -10 1 -11 1 -7 1 -12 1 -12 1 -13 1 -14 1 -15 1 -17 1 -18 1 -19 1 -10 1 -11 1 -12 1 -13 1 -14 1 -15 1 -17 1 -18 1 -19 1 -10 1 -11 1 -12 1 -13 1 -14 1 -15 1 -17 1 -18 1 -19 1 -10 1 -11 1 -12 1 -13 1 -14 1 -15 1 -17 1 -18 1 -19 1 -10 1 -10 1 -11 1 -12 1 -13 1 -14 1 -15 1 -17 1 -18 1 -19 1	\$64436.1 9.5 NIA 1 2 1, \$04469.1 9.5 NIA -4 -6 -7 -8 -10 -10 -10 -10 -11 -7 -8 -6 -7 -8 -9 -10 -10 -11 -12 -10 -11 -12 -13 -10 -11 -12 -13 -14 -15 -10 -11 -12 -13 -14 -15 -10 -11 -12 -13 -14 -15 -10 -11 -12 -13 -14 -15 -10 -11 -12 -13 -14 -15 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -10 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -10 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -10 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -10 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -10 -10 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -10 -10 -10 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -19 -10 -10 -10 -10 -10 -10	\$64438.1 9.5 NIA NIA 1 2 1, J, J, 804459.1 9.5 NIA NIA 1 2 1 1 3 1 1 4 1 804461.1 9.5 NIA NIA NIA NIA NIA NIA NIA NIA	804438.7 9.5 NIA NIA NIA 1 2 J, J, J, 804459-1 9.5 NIA NIA 1 2 J 1 3 J 1 4 J 804461.1 9.5 NIA NIA NIA NIA NIA NIA NIA NIA

18-71-12 HAV 10131112

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
10/19/12	804461-6	9.5	NIA	NIA	NIA	HAV
	1 *7		<u> </u>			1
	.8					
	. 9				·	·
	^10					
	-17					
	-12					
	-13					
,), 14		J.	<u></u>	-_^	م ا
10/19/12	804478	9.5	NIA	NIA	1414	HAV
16/23/12		9.5	NIA	VIA	NA	Q.
	-2				l l	
	-3					
	-4					
	5					
	-6					
	J -7	4	. 4	1	1	
10/21/12	804512	7	2ml/10mL	9.5	12:15 pm	<u> </u>
					•	
,		`				

MAY 10/31/15

Turbidity/pH Check

	_		Turbio	dity/pH C	heck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
804 459 listell	41	22	10/22/12	MKI	3010A			
804 459 (1-5, 2.11)			1					
804461 11-141	1	-	1/	1/	1/			
804418	< \	>2	10-22-12	BE	No	15100	10-23-12	PH < 2
504444	71	~ 2	10/23/12	MM	3010A			
PHYLL	1		1	1				
804447								
804472								
804482								
804 494			1					
804499	1/		,	7				
80(1502	1		J	1		1		
804502	<1	<2	10/24/12	M.M	3010 A	>		
804512	21	>2	10/21/12	V	1/2			
804507-1	<u>∠</u> ,	72	10/25/12	ms	No	16:10 pm	11-04	RH < 2
804507-2	Z1	72	10/25/12	พง	No	16:12		
804507-3	<1 \	72	10/25/12	MS	No	16:15		
B04506	<1	72	10/25/12	m>	No	16:17		
804529-10	<1	>2	10/25/12	M2	No	16:19	T	4
804529-11	<u> </u>	72	10/25/12	MS	No	16:22		
304629-12	₹ \	72	10/25/12	Ms	No	16:24	1	
204 320	>1	22	10/29/12	M.M	3010A	10.01		
804532	1		10/20/12	1	1			
804537	7							
804543								
804544								
804575								
804546								
804547	,							
804562	1	<i>b</i>		1	. 1			,
80 4570 (19294)	< /	72	10-30-12	B2-	No	8100 AM	11-4	PH<2
& DU573(1-3)	2)	>2	10/31/12	KK	ver	TTLCOID		
204 574	71	52	10/31/12	V	TV .	V	AID.	
204609	21	72	10/31/12	MM	30101	Y		
2000	7/	42	1	7	1			
2043F3	Rubber	-			THLC			
804593	>1	22			1,			
804607	J.	1	Y	J.	3010A			
2046012	1/	72	10/31/12	M.M		11:30	10/31/12	pu < 2
204620	71	<u> </u>	11-2-12	19E	30/0A	t. John	1-1-11-2	pu - L
804621		1	1 1	1	7			
804622								
804623			· ·					
80 48561								
- 4800		<u> </u>	V	Y				

- Notes:

 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

 2. All Total Recoverable Analytes must be pH adjusted and digested.

 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

Cli	ent: <u>E2</u>	Lab # _ 804461
Da	te Delivered: <u>/</u> 0/ <u>/8</u> /12 Time: <u>&0/4</u> 0 By: □Mail Ø	Field Service
1.	Was a Chain of Custody received and signed?	AYes DNO DNA
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÆN/A
3 .	Are there any special requirements or notes on the COC?	□Yes □No Jan/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	₫Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)?3.8°C	☐Ye s □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	άYes □No □N/A
8.	Were sample custody seals intact?	Q.Y.és Q.No Ø.N/A
9.	Does the number of samples received agree with COC?	Yes ONO ONA
10.	Did sample labels correspond with the client ID's?	DYes ONO ON/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by ⊅ Truesdail □ Client	△Yes □No □N/A
2.	Were samples pH checked? pH = <u>Sel C.O.C</u>	✓Yes □No □N/A
3.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	☑Yes □No □N/A
4 .	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std	AYes □No □N/A
<i>5.</i>	Sample Matrix: DLiquid Drinking Water Ground W	. 111 / //
6.	Comments:	· · ·
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	/ Sleaberere

Advanced Technology Laboratories, Inc.

Client: Truesdail Laboratories Date Reported: December 4, 2012

Project: PGE Topock, 423575.MP.02.CM Collected: October 15, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 200.7	Metals by ICP	Claire Ignacio
EPA 200.8	Metals by ICP/MS	Claire Ignacio

Advanced Technology Laboratories, Inc.

Client: Truesdail Laboratories Date Reported: December 5, 2012

Project:PGE Topock, 423575.MP.02.CMCollected:October 16-18, 2012Lab Order:N008957Received:November 21, 2012

Sample: Fourteen (14) Groundwater Samples

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 200.7	Metals by ICP	Claire Ignacio
EPA 200.8	Metals by ICP/MS	Claire Ignacio

ANALYTICAL REPORT

For:

PGE Topock

ASL Report #: L2665

Project ID: 423575.MP.02.CM

Attn: Jay Piper/LAS

cc:

Data Center/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

(541) 758-0235 ext.23144

November 02, 2012

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.

Oregon (100022) Arizona (0771) Louisiana (05031)

Sample Receipt Comments

We certify that the test results meet all NELAP requirements except those listed below:

• Samples were received at a temperature of 10.1°C.

Sample Cross-Reference

ASL		Date/Time	Date
Sample ID	Client Sample ID	Collected	Received
L266501	CW-02D-028	10/15/12 10:36	10/18/12
L266502	CW-02M-028	10/15/12 12:04	10/18/12
L266503	CW-03D-028	10/15/12 14:26	10/18/12
L266504	CW-03M-028	10/15/12 15:34	10/18/12
L266505	OW-90-028	10/15/12 07:10	10/18/12

CASE NARRATIVE AUTOMATED CHEMISTRY ANALYSIS

Lab Na	me: <u>C</u>	H2M HILL/LAB/CVO	ASL SDG#	: <u>L2665</u>
Project	: <u>PGE</u>	<u>Topock</u>	Project #:	423575.MP.02.CM
I.	Metho Analys	d(s): ris: E353.2		
II.	_	t/Holding Times: ceptance criteria were met.		
III.	Analys	sis:		
	A.	Initial Calibration(s): All acceptance criteria were met.		
	В.	Calibration Verification(s): All acceptance criteria were met.		
	C.	Blanks: All acceptance criteria were met.		
	D.	Laboratory Control Sample(s): All acceptance criteria were met.		
	E.	Matrix Spike/Matrix Spike Duplicate Sa Analyzed in accordance with standard op	•	edure.
	F.	Analytical Exception(s): None.		
IV.	Docum None.	nentation Exception(s):		
V.	CH2M the dat	fy that this data package is in compliance we will HILL, both technically and for completent a contained in this hardcopy data package lee, as verified by the following signatures.	ess, except for	r the conditions detailed above. Release of
Prepare	ed by:	Donal A Hand)	Date: 10/31/12
Review	ved by:	SO/W-		Date: 2 Nov 2012

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

CW-02D-028

SDG No.: <u>L2665</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: L266501

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.80		MG/L	10	3 ML	E353.2	10/19/12
w										
										·
·····										
										<u> </u>
										+
						-				
										<u> </u>
						ļ				
		-								-
		1				ļ				
		 								
		<u> </u>				ļ				
		<u> </u>				-				
						 				
						-				
								_		
		-								

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

CW-(02M-	028		
------	------	-----	--	--

SDG No.: <u>L2665</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: L266502

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.78		MG/L	10	3 ML	E353.2	10/19/12
								_		
									-	
								·		
								-		
			_							

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

SDG No.: <u>L2665</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L266503

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.95		MG/L	10	3 ML	E353.2	10/19/12
								,		
										<u> </u>
								,		
							-			

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

CW-03M-028

SDG No.: <u>L2665</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L266504

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	1.76		MG/L	10	3 ML	E353.2	10/19/12
					L					
			1							
			×							
·										
			<u> </u>							
					ļ	-	 			
					ļ		ļ			
		1		L	L	L	<u> </u>			<u> </u>

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

SDG No.: <u>L2665</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: <u>L266505</u>

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.79		MG/L	10	3 ML	E353.2	10/19/12
	_									
						,				
			_							
										_
			-							
								•		
· ·										

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

B1-101912

SDG No.: <u>L2665</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: WB1-101912

Date Received: //

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.00280	0.0100	0.0100	υ	MG/L	1	3 ML	E353.2	10/19/12
			_							
		<u> </u>								
		-								
		-								
		-								
		 								
		ļ								
<u></u>										
<u> </u>										
					-					
		-								
		<u> </u>								

7-WC

GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: <u>L2665</u>

Lab Name: CH2M HILL/LAB/CVO

Analysis Method: <u>E353.2</u>

LCS ID: BS1W1019

Initial Calibration ID: 052112NO32SMcal

Date Analyzed: 10/19/12

Matrix: (Soil/Water) WATER

Time Analyzed: 1208

Instrument: SMARTCHEM

Concentration Units: MG/L

Amalusta.	Elmonto	Found	°-D	QC Limits %R	
Analyte	Expected		%R		Q
Nitrate/Nitrite-N	0.416	0.382	92	90-110	
-				=	
				-	
		_			
					1
					-
					+
-					
					-
-					
					-
					ļ
					1
-					1
					+
					·

^{*} Values outside of QC limits

Comments:

CH2MHIL	L				CHAIN OF CUSTODY RECORD 10/16/2012 3:13:08 PM Page 1	OF	1_
Project Name PG Location Topoc Project Manager	k		Container	Poly H2SO4,			i.2665
Sample Manager	Matt Ringi		Filtered:				
Project Number Task Order Project 2012-CM Turnaround Time Shipping Date: 1 COC Number: 2	P-028 12 Days 0/16/2012	°.02.C∦	-	Nitrate/Nitrite (SM4500NO3-E)		Number of Containers	6. COMMENTS
CW-02D-028	10/15/2012	10:36	Water	х		1	
CW-02M-028	10/15/2012	12:04	Water	x		1	2
CW-03D-028	10/15/2012	14:26	Water	х		1	3
CW-03M-028	10/15/2012	15:34	Water	х		1	4
OW-90-028	10/15/2012	7:10	Water	х		1	5
			*		TOTAL NUMBER OF CONTAINERS	5	

Date/Time Signatures **Shipping Details Special Instructions:** Approved by ATTN: October 1-5, 2012 Method of Shipment: Sampled by On Ice: yes / no Sample Custody Relinquished by 10/16/12 15:40Airbill No: 10-16-12 21:30 Lab Name: CH2M HILL Applied Sciences Lab Receivedby and Report Copy to Relinquished by Kathy McKinley Shawn Duffy Lab Phone: (541) 752-4271 Receivedby (530) 229-3303

Breit llayen

10/18/12

Sample Receipt Record

Batch Number:	-21065 PC15	<u> </u>	Date received:	0.	12	
Client/Project:	1 GIF TOPO	15	Checked by:			_
			Checked by:	_		
VERIFICATION OF SAM	MPLE CONDITIONS (verify a	all items), HD = Client Hand delivered	Samples	NA	YES	NO
Radiological Screening	for DoD					
Were custody seals inta	ct and on the outside of the	ne cooler?				
Type of packing materia	il: Ice Blue Ice Bubble w	vrap				
Was a Chain of Custody	(CoC) Provided?					
Was the CoC correctly f	filled out (If No, document	in the SRER)			/	
Did the CoC list a correct	ct bottle count and the pre	servative types (Y=OK, N	=Corrected on CoC)		\mathcal{I}	
Were the sample contai	ners in good condition (br	oken or leaking)?		_		
Containers supplied by	ASL?					
Any sample with < 1/2 h	olding time remaining? If	so contact LPM			_	
Samples have multi-pha	ase? If yes, document on S	SRER		-		
Was there ice in the coo	oler? Enter temp. If >6°C	contact client/SRER	(O. ∫ °c			
All VOCs free of air bub	bles? No, document on S	BRER				
-	ed and met requirements		RER			
Enough sample volume	provided for analysis? No	o, document in SRER			/	a (i
Did sample labels agree	with COC? No, documen	nt in SRER		_		No.
Dissolved/Soluble metal	Is filtered in the field?	,		/.		
Dissolved/Soluble metal	ls have sediment in botton	m of container? Document	in SRER			
Sample ID		Reagent	Reagent Lot Number	Volume	e Added	Initials
-				_		
	-					
					_	
						ľ.
				_		
				_		

Sample Receipt Exception Report

Sample Batch Number: 12605	Client/Project PGE Topock
The following exceptions were noted:	
	Comments (write number of exception description and the impacted sample numbers)
No custody seal as required by project	5- Temperatures Recieved
No chain-of-custody provided	at 101 -> 10 4 00
Analysis, description, date of collection not provided	10-1 ROG BAM 10/18/12
Samples broken or leaking on receipt.	Limited blue ice, pearuts and condboard box.
5. Temperature of samples inappropriate for analysis requested	1
Container inappropriate for analysis requested	1
7. Inadequate sample volume.	-
Preservation inappropriate for analysis requested	
Samples received out of holding time for analysis requested	
Discrepancies between COC form and container labels.	
11. Other.	
ACTION TAKEN:	
	ollysis per shown Duffy /RIDP
Originator: Porent Manaum	Date: 10118117
Client was notified on:	Client Contact: Show Duffy (RDD)
(Date/Time) 10/18/17// 1115	3,00,10,7,600
Client Comissos	
Client Services:	

ANALYTICAL REPORT

For:

PGE Topock

ASL Report #: L2696

Project ID: 423575.MP.02.CM

Attn: Jay Piper/LAS

cc:

Data Center/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

(541) 758-0235 ext.23144 November 02, 2012

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

 $Any \ unusual \ difficulties \ encountered \ during \ the \ analysis \ of \ your \ samples \ are \ discussed \ in \ the \ attached \ case \ narratives.$

Oregon (100022) Arizona (0771) Louisiana (05031)

Sample Receipt Comments

We certify that the test results meet all NELAP requirements.

Sample Cross-Reference

ASL	·	Date/Time	Date
Sample ID	Client Sample ID	Collected	Received
L269601	CW-01D-028	10/16/12 11:52	10/23/12
L269602	CW-01M-028	10/16/12 12:34	10/23/12
L269603	CW-04D-028	10/16/12 08:48	10/23/12
L269604	CW-04M-028	10/16/12 09:57	10/23/12
L269605	OW-01D-028	10/16/12 14:28	10/23/12
L269606	OW-01S-028	10/16/12 15:07	10/23/12
L269607	OW-01M-028	10/18/12 07:54	10/23/12
L269608	OW-02D-028	10/18/12 09:27	10/23/12
L269609	OW-02M-028	10/18/12 11:45	10/23/12
L269610	OW-02S-028	10/18/12 10:04	10/23/12
L269611	OW-05D-028	10/18/12 12:56	10/23/12
L269612	OW-05M-028	10/18/12 14:03	10/23/12
L269613	OW-05S-028	10/18/12 14:41	10/23/12
L269614	OW-91-028	10/18/12 07:05	10/23/12

CASE NARRATIVE AUTOMATED CHEMISTRY ANALYSIS

Lab Na	me: <u>C</u>	H2M HILL/LAB/CVO	ASL SDG#:	<u>L2696</u>
Project:	PGE	Z Topock	Project #:	423575.MP.02.CM
I.	Metho Analys	d(s): sis: E353.2		
II.	_	ot/Holding Times: ceptance criteria were met.		
III.	Analys	sis:		
	A.	Initial Calibration(s): All acceptance criteria were met.		
	В.	Calibration Verification(s): All acceptance criteria were met.		
	C.	Blanks: All acceptance criteria were met.		
	D.	<u>Laboratory Control Sample(s):</u> All acceptance criteria were met.		
	E.	Matrix Spike/Matrix Spike Duplicate San Analyzed in accordance with standard op	•	lure.
	F.	Analytical Exception(s): None.		
IV.	Docur None.	nentation Exception(s):		
V.	CH2M the da	fy that this data package is in compliance will HILL, both technically and for completent ta contained in this hardcopy data package have, as verified by the following signatures.	ess, except for	the conditions detailed above. Release of
Prepare	ed by:	Donal A Hum		Date:
Review	ed by:	0011-		Date: 2 Nov 2012

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

28	
----	--

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: <u>L269601</u>

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.69		MG/L	10	3 ML	E353.2	10/26/12

									-	
			_							
										1

		-								

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

CW-01M-028

SDG No.: L2696 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: L269602

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.86		MG/L	10	3 ML	E353.2	10/26/12
									<u> </u>	
								-		
		-								
		_		_						
				-						
									_	
										_
						-			_	
									-	
-										
			<u></u>							_

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

CW-	04D	-028

SDG No.: <u>L2696</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: <u>L269603</u>

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.63		MG/L	10	3 ML	E353.2	10/26/12
			*							
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
									-	
								·		

1A-WC GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

|--|--|

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L269604

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.33		MG/L	10	3 ML	E353.2	10/26/12

			-							

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-01D-028

SDG No.: L2696

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L269605

CAS No.	Analyte	DL	PQL	Result	Q	Uņits	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.71		MG/L	10	3 ML	E353.2	10/26/12
										
					_				<u>, , , , , , , , , , , , , , , , , , , </u>	
								-		

·										
									· · · · · · · · · · · · · · · · · · ·	
								_		
									<u></u>	
										
		l			ļ					-
					 -			_		
l					-					-
						-				
					-					
			·		<u> </u>					
		L			<u> </u>	ļ				

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-01S-028

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L269606

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
3NO2N 1	Nitrate/Nitrite-N	0.0280	0.100	3.20		MG/L	10	3 ML	E353.2	10/26/12
İ				***************************************						
					_					
										<u> </u>
			-							
										-
				•						
					-					
			-							
					_					
					***********					-

										ļ

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-01M-028

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L269607

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.78		MG/L	10	3 ML	E353.2	10/26/12
							·			
								_		
-										
								Ö		
			-							
			_							

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-02D-028

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L269608

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.84		MG/L	10	3 ML	E353.2	10/26/12
										-
					_					

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-02M-028

SDG No.: <u>L2696</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: L269609

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.73		MG/L	10	3 ML	E353.2	10/26/12
	 									
	 									
	 				_					
	 									
	 					_				
	 									
	 						_			
<u> </u>	 									
				_						
								-		
										_
									<u> </u>	
			_					-	_	
	-								_	
		-								
_	 									
	 									
	<u> </u>					-				
						-				
	<u> </u>									
			_			ļ			-	_
				<u></u>						
						ļ				
						ļ				
]						
										<u> </u>
-										

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

SDG No.: <u>L2696</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: L269610

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	3.95		MG/L	10	3 ML	E353.2	10/26/12
	· · · · · · · · · · · · · · · · · · ·									

		<u> </u>								
						<u> </u>				
										-
						ļ				

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

-WC	0.5	5D-	02	8		

SDG No.: <u>L2696</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: L269611

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.79		MG/L	10	3 ML	E353.2	10/26/12
							· · · · · · · · · · · · · · · · · · ·			
						<u> </u>				
				-						-
			·····							

1A-WC GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-0	5M-0	28	

SDG No.: L2696 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: L269612

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.74		MG/L	10	3 ML	E353.2	10/26/12
				-						
,				******						
· · · · · · · · · · · · · · · · · · ·										
		<u> </u>								
		!							<u> </u>	
										
									4	
					,					
	·									
								·····	· · · · · · · · · · · · · · · · · · ·	
					·····					
***************************************									_	

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

|--|

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: L269613

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.62		MG/L	10.	3 ML	E353.2	10/26/12
·····										

									······································	
										
										
		-								
·										
						-				
										-
	<u> </u>									
	,									
						ļ				
										-
					ļ		ļ			
		ļ								ļ
		ļ								
		ļ								
		ļ								
	1						1			1

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-	91-	028

SDG No.: <u>L2696</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: <u>L269614</u>

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0280	0.100	2.78		MG/L	10	3 ML	E353.2	10/26/12
			<u>-</u>							
										_
			-							
-										
	+									
						_				
	 					 				
						-				
										_
_										
									-	
					-					
		_								
		 	-			_				
		 				-				-

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

12	1	1		6		2	2	2	2	2		į	ŧ	5		1		•	2	
----	---	---	--	---	--	---	---	---	---	---	--	---	---	---	--	---	--	---	---	--

SDG No.: <u>L2696</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Matrix: WATER Lab Sample ID: WB1-102612

Date Received: __/_/

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.00280	0.0100	0.0100	U	MG/L	1	3 ML	E353.2	10/26/12
		-								
										
**										
										
									1	
						<u> </u>				
										
						,				
						ļ				
		ļ								<u> </u>
		 								
,	HAVE THE TOTAL PROPERTY OF THE TOTAL PROPERT	-								

		ļ								
		_			L					

7-WC

GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: <u>L2696</u> Lab Name: <u>CH2M HILL/LAB/CVO</u>

Analysis Method: E353.2 LCS ID: BS1W1026

Initial Calibration ID: 052112NO32SMcal Date Analyzed: 10/26/12

Matrix: (Soil/Water) WATER Time Analyzed: 1736

Instrument: SMARTCHEM Concentration Units: MG/L

Analyte	Expected	Found	%R	QC Limits %R	Q
			_i		 `
Nitrate/Nitrite-N	0.416	0.404	97	90-110	
					_
				•	
					1
					1
					1
					+
					+
					+-
					_
					
					
-					
				-	
					1
***************************************					+
					+
					+
					+
					
					+
•					

^{*} Values outside of QC limits

Comments:

CH2MHIL	L_				CHAIN OF CUSTODY RECORD 10/18/2012 3:20:36 PM	Page 1 OF	É
Project Name Po		k	Container:	1 Liter Poly H2SO4,			
Project Manager		Pres	ervatives:	pH<2, 4°C		` I	
Sample Manager	Matt Ringi	er	Filtered:	NA -	2.50	u	
			ding Time:	28			
Project Number Task Order	423575.MP	.02.CN	^	Nitra			
Project 2012-CM	P-028			Nitrate/Nitrite		Z	
Turnaround Time		3				Number	
Shipping Date: 1	0/18/2012			(SM4		으	,
COC Number: 6				(SM4500NO3-		Con	
				03-		Containers	
	DATE	TIME	Matrix	Ü		. 378	COMMENTS
CW-01D-028	10/16/2012	11:52	Water	x	-1	1	<i>z.</i>
CW-01M-028	10/16/2012	12:34	Water	x	7	1	
CW-04D-028	10/16/2012	8:48	Water	x	-3	1	
CW-04M-028	10/16/2012	9:57	Water	х	-4	1	
OW-01D-028	10/16/2012	14:28	Water	х	<u>-</u> \$	1	
OW-01S-028	10/16/2012	15:07	Water	х	- G	1	
OW-01M-028	10/18/2012	7:54	Water	х	-7	1	
OW-02D-028	10/18/2012	9:27	Water	x	- 6	1	
OW-02M-028	10/18/2012	11:45	Water	х	-9	1	
OW-02S-028	10/18/2012	10:04	Water	х	-10	1	
OW-05D-028	10/18/2012	12:56	Water	x	- U	1	
OW-05M-028	10/18/2012	14:03	Water	х	-17	1	
OW-05S-028	10/18/2012	14:41	Water	х	-13	1_	
OW-91-028	10/18/2012	7:05	Water	х	-ILI	1	
Annroyed by	1	Sign	, atures		Date/Time Shipping Details Special Instructions:		

Approved by Sampled by Relinquished by Receivedby Relinquished by

Received by Linda, 722

Method of Shipment:

On Ice: yes / no

10-18-12 1540 Airbill No: 10-18-12 1540 Lab Name: CH2M HILL Applied Sciences Lab 19/18/12 20:40 Lab Phone: (541) 752-4271

Cermen Ben 10/23/12 1030

ATTN:

October 1-5, 2012

Sample Custody

and Kathy McKinley

Report Copy to Shawn Duffy

(530) 229-3303

Sample Receipt Record

Batch Number: <u>LQC96</u> Client/Project: <u>PG+E</u>	_	Date received: Checked by:	10-2	3-12		
Client/Project: PG4E	_,	Checked by:		OR		
		Checked by:)		
VERIFICATION OF SAMPLE CONDITIONS (verify a	all items), HD = Client Hand deliver	red Samples	NA	YES	NO	1
Radiological Screening for DoD			V			
Were custody seals intact and on the outside of th	e cooler?			V	-	
Type of packing material. Ice Blue Ice (Bubble w	rap			V		
Was a Chain of Custody (CoC) Provided?				V		
Was the CoC correctly filled out (If No, document	in the SRER)			c		
Did the CoC list a correct bottle count and the pres	servative types (Y=OK,	N=Corrected on CoC)		V	_	
Were the sample containers in good condition (bro	oken or leaking)?					
Containers supplied by ASL?					V	
Any sample with < 1/2 holding time remaining? If	so contact LPM				V	
Samples have multi-phase? If yes, document on S	RER				V	
Was there ice in the cooler? Enter temp. If >6°C of	contact client/SRER	2.2°0		1		
All VOCs free of air bubbles? No, document on S	RER		V			Ì
pH of all samples checked and met requirements?		SRER		1/		
Enough sample volume provided for analysis? No.				V		
Did sample labels agree with COC? No, documen				V		1
Dissolved/Soluble metals filtered in the field?			L			
Dissolved/Soluble metals have sediment in bottom	of container? Docume	ent in SRER				
Sample ID	Reagent	Reagent Lot Number	Volume	e Added	Initials]
				•		
		5				
	н	,				
		1				
]
					Page	 386 of ∶

December 04, 2012

Sean Condon CA-ELAP No.: 2676

Truesdail Laboratories NV Cert. No.: NV-009222007A

14201 Franklin Ave.

Tustin, CA 92780

TEL: (714) 730 6229

FAX: (714) 730-6462 Workorder No.: N008954

RE: PGE Topock, 423575.MP.02.CM

Attention: Sean Condon

Enclosed are the results for sample(s) received on November 21, 2012 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

In grogermunds

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CLIENT: Truesdail Laboratories

Project: PGE Topock, 423575.MP.02.CM CASE NARRATIVE

Date: 04-Dec-12

Lab Order: N008954

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

CLIENT: Truesdail Laboratories

Project: PGE Topock, 423575.MP.02.CM Work Order Sample Summary

Date: 04-Dec-12

Lab Order: N008954
Contract No: 2012-CMP-028

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N008954-001A CW-02D-028	Water	10/15/2012 10:36:00 AM	11/21/2012	12/4/2012
N008954-002A CW-02M-028	Water	10/15/2012 12:04:00 PM	11/21/2012	12/4/2012
N008954-003A CW-03D-028	Water	10/15/2012 2:26:00 PM	11/21/2012	12/4/2012
N008954-004A CW-03M-028	Water	10/15/2012 3:34:00 PM	11/21/2012	12/4/2012
N008954-005A OW-90-028	Water	10/15/2012 7:10:00 AM	11/21/2012	12/4/2012

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories

N008954 Lab Order:

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008954-001 Client Sample ID: CW-02D-028

Collection Date: 10/15/2012 10:36:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual	U nits	DF	Date Analyzed
DISSOLVED METALS BY ICF)						
			EP	A 200.7			
RunID: ICP2_121127D	QC Batch: 412	91		PrepDate	11/2	1/2012	Analyst: CEI
Barium	13	0.36	3.0	μς	J/L	1	11/27/2012 04:51 PM
Beryllium	ND	0.12	3.0	μς	g/L	1	11/27/2012 04:51 PM
Cadmium	ND	0.37	3.0	μς	g/L	1	11/27/2012 04:51 PM
Cobalt	ND	0.37	3.0	μς	g/L	1	11/27/2012 04:51 PM
Copper	ND	2.2	5.0	μς	g/L	1	11/27/2012 04:51 PM
Lead	ND	1.6	10	μς	g/L	1	11/27/2012 04:51 PM
Nickel	ND	0.70	5.0	μς	J/L	1	11/27/2012 04:51 PM
Silver	ND	0.39	3.0	μς	g/L	1	11/27/2012 04:51 PM
Vanadium	5.3	0.31	3.0	μς	_J /L	1	11/27/2012 04:51 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: CW-02M-028

N008954 Lab Order:

Collection Date: 10/15/2012 12:04:00 PM **Project:** PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-002

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY ICP							
			EP	A 200.7			
RunID: ICP2_121127D	QC Batch: 412	91		PrepDa	ate:	11/21/2012	Analyst: CEI
Barium	71	0.36	3.0		μg/L	1	11/27/2012 04:56 PM
Beryllium	ND	0.12	3.0		μg/L	1	11/27/2012 04:56 PM
Cadmium	ND	0.37	3.0		μg/L	1	11/27/2012 04:56 PM
Cobalt	ND	0.37	3.0		μg/L	1	11/27/2012 04:56 PM
Copper	ND	2.2	5.0		μg/L	1	11/27/2012 04:56 PM
Lead	ND	1.6	10		μg/L	1	11/27/2012 04:56 PM
Nickel	ND	0.70	5.0		μg/L	1	11/27/2012 04:56 PM
Silver	ND	0.39	3.0		μg/L	1	11/27/2012 04:56 PM
Vanadium	4.2	0.31	3.0		μg/L	1	11/27/2012 04:56 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories Client Sample ID: CW-03D-028

N008954 Lab Order: **Collection Date:** 10/15/2012 2:26:00 PM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-003

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY ICP							
			EP	A 200.7			
RunID: ICP2_121127D	QC Batch: 412	291		PrepDa	ate:	11/21/2012	Analyst: CEI
Barium	14	0.36	3.0		μg/L	1	11/27/2012 05:05 PM
Beryllium	ND	0.12	3.0		μg/L	1	11/27/2012 05:05 PM
Cadmium	ND	0.37	3.0		μg/L	1	11/27/2012 05:05 PM
Cobalt	ND	0.37	3.0		μg/L	1	11/27/2012 05:05 PM
Copper	ND	2.2	5.0		μg/L	1	11/27/2012 05:05 PM
Lead	ND	1.6	10		μg/L	1	11/27/2012 05:05 PM
Nickel	ND	0.70	5.0		μg/L	1	11/27/2012 05:05 PM
Silver	ND	0.39	3.0		μg/L	1	11/27/2012 05:05 PM
Vanadium	ND	0.31	3.0		μg/L	1	11/27/2012 05:05 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories Client Sample ID: CW-03M-028

N008954 Lab Order: Collection Date: 10/15/2012 3:34:00 PM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-004

Analyses	Result	MDL	PQL	Qual U	nits DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 412	91		PrepDate:	11/21/2012	Analyst: CEI
Barium	49	0.36	3.0	μg/l	_ 1	11/27/2012 05:14 PM
Beryllium	ND	0.12	3.0	μg/l	_ 1	11/27/2012 05:14 PM
Cadmium	ND	0.37	3.0	μg/l	_ 1	11/27/2012 05:14 PM
Cobalt	ND	0.37	3.0	μg/l	_ 1	11/27/2012 05:14 PM
Copper	ND	2.2	5.0	μg/l	_ 1	11/27/2012 05:14 PM
Lead	ND	1.6	10	μg/l	_ 1	11/27/2012 05:14 PM
Nickel	ND	0.70	5.0	μg/l	_ 1	11/27/2012 05:14 PM
Silver	3.8	0.39	3.0	μg/l	_ 1	11/27/2012 05:14 PM
Vanadium	ND	0.31	3.0	μg/l	_ 1	11/27/2012 05:14 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories

Lab Order: N008954

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008954-005

Client Sample ID: OW-90-028

Collection Date: 10/15/2012 7:10:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY ICP)						
			EP	A 200.7			
RunID: ICP2_121127D	QC Batch: 412	91		PrepDate	e:	11/21/2012	Analyst: CEI
Barium	13	0.36	3.0	μ	g/L	1	11/27/2012 05:30 PM
Beryllium	ND	0.12	3.0	μ	g/L	1	11/27/2012 05:30 PM
Cadmium	ND	0.37	3.0	μ	g/L	1	11/27/2012 05:30 PM
Cobalt	ND	0.37	3.0	μ	g/L	1	11/27/2012 05:30 PM
Copper	ND	2.2	5.0	μ	g/L	1	11/27/2012 05:30 PM
Lead	ND	1.6	10	μ	g/L	1	11/27/2012 05:30 PM
Nickel	ND	0.70	5.0	μ	g/L	1	11/27/2012 05:30 PM
Silver	ND	0.39	3.0	μ	g/L	1	11/27/2012 05:30 PM
Vanadium	5.2	0.31	3.0	μ	g/L	1	11/27/2012 05:30 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

CLIENT: Truesdail Laboratories

Work Order: N008954

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Date: 04-Dec-12

Sample ID: MB-41291	SampType: MBLK	TestCode: 200.7_WDPG Units: µg/L	Prep Date: 11/21/2012	RunNo: 86465
Client ID: PBW	Batch ID: 41291	TestNo: EPA 200.7	Analysis Date: 11/27/2012	SeqNo: 1479863
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	ND	3.0		
Beryllium	ND	3.0		
Cadmium	ND	3.0		
Cobalt	ND	3.0		
Copper	ND	5.0		
Lead	ND	10		
Nickel	ND	5.0		
Silver	ND	3.0		
Vanadium	ND	3.0		
Sample ID: LCS-41291	SampType: LCS	TestCode: 200.7_WDPG Units: μg/L	Prep Date: 11/21/2012	RunNo: 86465
Client ID: LCSW	Batch ID: 41291	TestNo: EPA 200.7	Analysis Date: 11/27/2012	SeqNo: 1479864
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	48.351	3.0 50.00 0	96.7 85 115	
Beryllium	9.304	3.0 10.00 0	93.0 85 115	
Cadmium	9.246	3.0 10.00 0	92.5 85 115	
Cobalt	9.993	3.0 10.00 0	99.9 85 115	
Copper	9.267	5.0 10.00 0	92.7 85 115	
Lead	46.416	10 50.00 0	92.8 85 115	
Nickel	50.401	5.0 50.00 0	101 85 115	
Silver	9.681	3.0 10.00 0	96.8 85 115	
Vanadium	9.926	3.0 10.00 0	99.3 85 115	
Sample ID: N008954-002A-MS	SampType: MS	TestCode: 200.7_WDPG Units: µg/L	Prep Date: 11/21/2012	RunNo: 86465
Client ID: ZZZZZZ	Batch ID: 41291	TestNo: EPA 200.7	Analysis Date: 11/27/2012	SeqNo: 1479880
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: Truesdail Laboratories

Work Order: N008954

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Sample ID: N008954-002A-MS	SampType: MS	TestCod	de: 200.7_WD	PG Units: μg/L		Prep Da	te: 11/21/2	2012	RunNo: 86465		
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7			Analysis Da	te: 11/27/2	2012	SeqNo: 147	79880	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	122.467	3.0	50.00	71.45	102	75	125				
Beryllium	9.830	3.0	10.00	0	98.3	75	125				
Cadmium	8.422	3.0	10.00	0	84.2	75	125				
Cobalt	9.430	3.0	10.00	0	94.3	75	125				
Copper	11.097	5.0	10.00	0	111	75	125				
Lead	43.466	10	50.00	0	86.9	75	125				
Nickel	48.990	5.0	50.00	0	98.0	75	125				
Silver	12.738	3.0	10.00	2.670	101	75	125				
Vanadium	14.875	3.0	10.00	4.218	107	75	125				
Sample ID: N008954-002A-MSD	SampType: MSD	TestCod	de: 200.7_WD	PG Units: μg/L		Prep Da	te: 11/21/2	.012	RunNo: 864	465	
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7			Analysis Da	te: 11/27/2	2012	SeqNo: 147	79886	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	123.413	3.0	50.00	71.45	104	75	125	122.5	0.769	20	
Beryllium	10.081	3.0	10.00	0	101	75	125	9.830	2.52	20	
Cadmium	8.812	3.0	10.00	0	88.1	75	125	8.422	4.53	20	
Cobalt	9.581	3.0	10.00	0	95.8	75	125	9.430	1.59	20	
Copper	11.017	5.0	10.00	0	110	75	125	11.10	0.721	20	
Lead	44.822	10	50.00	0	89.6	75	125	43.47	3.07	20	
Nickel	50.282	5.0	50.00	0	101	75	125	48.99	2.60	20	
Silver	12.835	3.0	10.00	2.670	102	75	125	12.74	0.757	20	
Vanadium	14.945	3.0	10.00	4.218	107	75	125	14.88	0.465	20	
Sample ID: N008957-007A-MS	SampType: MS	TestCod	de: 200.7_WD	PG Units: μg/L	·	Prep Da	te: 11/21/2	2012	RunNo: 864	465	
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7			Analysis Da	te: 11/27/2	012	SeqNo: 147	79887	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	125.884	3.0	50.00	78.07	95.6	75	125				
Beryllium	9.709	3.0	10.00	0	97.1	75	125				
Qualifiers:											

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: Truesdail Laboratories

Work Order: N008954

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Sample ID: N008957-007A-MS	SampType: MS		TestCode: 200.7_WDPG Units: μg/L			Prep Date: 11/21/2012 Analysis Date: 11/27/2012			RunNo: 86465		
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7			Analysis Da	te: 11/27/2	012	SeqNo: 147	9887	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	8.228	3.0	10.00	0	82.3	75	125				
Cobalt	9.328	3.0	10.00	0	93.3	75	125				
Copper	11.662	5.0	10.00	2.211	94.5	75	125				
Lead	42.618	10	50.00	0	85.2	75	125				
Nickel	48.380	5.0	50.00	0	96.8	75	125				
Silver	13.132	3.0	10.00	2.931	102	75	125				
Vanadium	13.820	3.0	10.00	3.626	102	75	125				

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories Client Sample ID: CW-02D-028

N008954 Lab Order: Collection Date: 10/15/2012 10:36:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-001

Analyses	Result	MDL	PQL	Qual U	Jnits DF	Date Analyzed
DISSOLVED METALS BY ICPMS						
			EPA	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg	/L 1	12/3/2012 01:47 PM
Arsenic	3.7	0.035	0.10	μg	/L 1	12/3/2012 01:47 PM
Chromium	ND	0.17	1.0	μg	/L 1	12/3/2012 01:47 PM
Manganese	ND	0.16	0.50	μg	/L 1	12/3/2012 01:47 PM
Molybdenum	12	0.074	0.50	μg	/L 1	12/3/2012 01:47 PM
Selenium	3.0	0.084	0.50	μg	/L 1	12/3/2012 01:47 PM
Thallium	ND	0.075	0.50	μg	/L 1	12/3/2012 01:47 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Ε Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories

N008954 Lab Order:

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008954-002 Client Sample ID: CW-02M-028

Collection Date: 10/15/2012 12:04:00 PM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual U	J nits	DF	Date Analyzed
DISSOLVED METALS BY ICPM	ns .						
			EPA	A 200.8			
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/	21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg	ı/L	1	12/3/2012 04:52 PM
Arsenic	2.1	0.035	0.10	μg	ı/L	1	12/3/2012 04:52 PM
Chromium	2.1	0.17	1.0	μg	ı/L	1	12/3/2012 04:52 PM
Manganese	ND	0.16	0.50	μg	ı/L	1	12/3/2012 04:52 PM
Molybdenum	19	0.074	0.50	μg	ı/L	1	12/3/2012 04:52 PM
Selenium	2.4	0.084	0.50	μg	ı/L	1	12/3/2012 04:52 PM
Thallium	ND	0.075	0.50	μg	ı/L	1	12/3/2012 04:52 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

Truesdail Laboratories Client Sample ID: CW-03D-028

CLIENT: N008954 Lab Order:

Collection Date: 10/15/2012 2:26:00 PM **Project:** PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-003

Analyses	Result	MDL	PQL	Qual U	Units DF	Date Analyzed
DISSOLVED METALS BY ICPMS						
			EPA	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg	/L 1	12/3/2012 02:20 PM
Arsenic	1.7	0.035	0.10	μg	/L 1	12/3/2012 02:20 PM
Chromium	ND	0.17	1.0	μg	/L 1	12/3/2012 02:20 PM
Manganese	ND	0.16	0.50	μg	/L 1	12/3/2012 02:20 PM
Molybdenum	17	0.074	0.50	μg	/L 1	12/3/2012 02:20 PM
Selenium	3.3	0.084	0.50	μg	/L 1	12/3/2012 02:20 PM
Thallium	ND	0.075	0.50	μg	/L 1	12/3/2012 02:20 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories Client Sample ID: CW-03M-028

N008954 Lab Order: Collection Date: 10/15/2012 3:34:00 PM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-004

Analyses	Result	MDL	PQL	Qual U	Inits DF	Date Analyzed
DISSOLVED METALS BY ICPMS						
			EPA	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/	L 1	12/3/2012 04:57 PM
Arsenic	1.4	0.035	0.10	μg/	L 1	12/3/2012 04:57 PM
Chromium	6.5	0.17	1.0	μg/	L 1	12/3/2012 04:57 PM
Manganese	ND	0.16	0.50	μg/	L 1	12/3/2012 04:57 PM
Molybdenum	24	0.074	0.50	μg/	L 1	12/3/2012 04:57 PM
Selenium	1.6	0.084	0.50	μg/	L 1	12/3/2012 04:57 PM
Thallium	ND	0.075	0.50	μg/	L 1	12/3/2012 04:57 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 04-Dec-12

CLIENT: Truesdail Laboratories Client Sample ID: OW-90-028

N008954 Lab Order: Collection Date: 10/15/2012 7:10:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008954-005

Analyses	Result MDL PQL Q		Qual 1	Units	DF	Date Analyzed	
DISSOLVED METALS BY ICPMS							
			EP/	A 200.8			
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate	:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μο	g/L	1	12/3/2012 02:30 PM
Arsenic	3.4	0.035	0.10	μο	g/L	1	12/3/2012 02:30 PM
Chromium	ND	0.17	1.0	μο	g/L	1	12/3/2012 02:30 PM
Manganese	ND	0.16	0.50	μς	g/L	1	12/3/2012 02:30 PM
Molybdenum	11	0.074	0.50	μς	g/L	1	12/3/2012 02:30 PM
Selenium	3.2	0.084	0.50	μο	g/L	1	12/3/2012 02:30 PM
Thallium	ND	0.075	0.50	μς	g/L	1	12/3/2012 02:30 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Ε Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CLIENT: Truesdail Laboratories N008954

Work Order:

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_WDISS

Date: 04-Dec-12

Sample ID: N008954-001A-MS	SampType: MS	TestCo	de: 200.8_W D	ISS Units: µg/L		Prep Da	te: 11/21/2	012	RunNo: 865	523	
Client ID: ZZZZZZ	Batch ID: 41290	Testi	- No: EPA 200.8			Analysis Da	te: 12/3/20	12	SeqNo: 148	32299	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Antimony	9.027	0.50	10.00	0	90.3	75	125				
Arsenic	13.290	0.10	10.00	3.730	95.6	75	125				
Chromium	9.600	1.0	10.00	0.9373	86.6	75	125				
Manganese	85.410	0.50	100.0	0	85.4	75	125				
Molybdenum	21.980	0.50	10.00	11.55	104	75	125				
Selenium	11.724	0.50	10.00	3.009	87.1	75	125				
Thallium	10.098	0.50	10.00	0	101	75	125				
Sample ID: N008954-001A-MSD	SampType: MSD	TestCo	de: 200.8_W D	ISS Units: µg/L		Prep Da	te: 11/21/2	012	RunNo: 865	523	
Client ID: ZZZZZZ	Batch ID: 41290	Testi	No: EPA 200.8			Analysis Da	te: 12/3/20	12	SeqNo: 148	32300	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Antimony	9.102	0.50	10.00	0	91.0	75	125	9.027	0.823	20	
Arsenic	13.185	0.10	10.00	3.730	94.5	75	125	13.29	0.793	20	
Chromium	9.630	1.0	10.00	0.9373	86.9	75	125	9.600	0.314	20	
Manganese	85.048	0.50	100.0	0	85.0	75	125	85.41	0.424	20	
Molybdenum	21.762	0.50	10.00	11.55	102	75	125	21.98	0.999	20	
Selenium	11.482	0.50	10.00	3.009	84.7	75	125	11.72	2.09	20	
Thallium	10.204	0.50	10.00	0	102	75	125	10.10	1.04	20	
Sample ID: N008957-006A-MS	SampType: MS	TestCo	de: 200.8_W D	ISS Units: µg/L		Prep Da	te: 11/21/2	012	RunNo: 865	523	
Client ID: ZZZZZZ	Batch ID: 41290	Testi	No: EPA 200.8			Analysis Da	te: 12/3/20	12	SeqNo: 148	32314	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
	9.003	0.50	10.00	0	90.0	75	125				
Antimony											
Antimony Arsenic	11.684	0.10	10.00	1.683	100	75	125				
•	11.684 23.121	0.10 1.0	10.00 10.00	1.683 13.58	100 95.4	75 75	125 125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT: Truesdail Laboratories

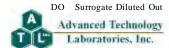
Work Order: N008954

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_WDISS

Sample ID: N008957-006A-MS	SampType: MS	TestCode: 200.8_WDISS Units: µg/L	Prep Date: 11/21/2012	RunNo: 86523		
Client ID: ZZZZZZ	Batch ID: 41290	TestNo: EPA 200.8	Analysis Date: 12/3/2012	SeqNo: 1482314		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Molybdenum	25.000	0.50 10.00 14.14	109 75 125			
Selenium	11.521	0.50 10.00 2.417	91.0 75 125			
Thallium	10.139	0.50 10.00 0	101 75 125			
Sample ID: MB-41290	SampType: MBLK	TestCode: 200.8_WDISS Units: µg/L	Prep Date: 11/21/2012	RunNo: 86523		
Client ID: PBW	Batch ID: 41290	TestNo: EPA 200.8	Analysis Date: 12/3/2012	SeqNo: 1482330		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Antimony	ND	0.50				
Arsenic	0.095	0.10				
Chromium	ND	1.0				
Manganese	ND	0.50				
Molybdenum	ND	0.50				
Selenium	ND	0.50				
Thallium	ND	0.50				
Sample ID: LCS-41290	SampType: LCS	TestCode: 200.8_WDISS Units: µg/L	Prep Date: 11/21/2012	RunNo: 86523		
Client ID: LCSW	Batch ID: 41290	TestNo: EPA 200.8	Analysis Date: 12/3/2012	SeqNo: 1482333		


Sample ID: LCS-41290	SampType: LCS	TestCod	de: 200.8_WD	ISS Units: μg/L	Prep Date: 11/21/2012			012	RunNo: 86523		
Client ID: LCSW	Batch ID: 41290	Test	No: EPA 200.8		Analysis Date: 12/3/2012			12	SeqNo: 1482333		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	9.084	0.50	10.00	0	90.8	85	115				
Arsenic	9.672	0.10	10.00	0	96.7	85	115				
Chromium	9.776	1.0	10.00	0	97.8	85	115				
Manganese	95.039	0.50	100.0	0	95.0	85	115				
Molybdenum	9.449	0.50	10.00	0	94.5	85	115				
Selenium	9.957	0.50	10.00	0	99.6	85	115				
Thallium	9.720	0.50	10.00	0	97.2	85	115				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CHAIN OF CUSTODY

TRUESDAIL LABORATORIES, INC.

14201 FRANKLIN AVENUE - TUSTIN, CA 92780-7008 (714) 730-6239 - FAX (714) 730-6462

X	TURNAROUND T	IME	Norm	al T	ΔΤ	•
DATE:	11/19/2012	PA	GE:	1	OF	1

METHODS

					IVII	יחום	UU.	3					
COMPANY Truesdail Labor	atories, Inc.			Sb,								CONTAINERS	COMMENTS
CONTACT Sean Condon	<u> </u>			Pb, (2						1 1		Z	
PHONE 714-730-6239 x	202	FAX		Dis Ba	İ	1						È	Level IV data package
ADDRESS 14201 Franklin	Ave.			8/2 8/2 1, N								8	w/ EDD
Tustin, CA 9278	30				1				ĺ	1 [ĺ	冶	
Project Name PGE Topock		Project # 423	575.MP.02.CM	als 7) F Ni, 9								낊	
Project <u>2012-CMP-028</u>				Diss. Metals (200.8/200.7) FF), As, Ba, Be, Cd, Co, C I, Pb, Mn, Mo, Ni, Se, <i>I</i>					İ		İ	MB	TLI Sample ID
SAMPLE I.D.	DATE	TIME	DESCRIPTION	Ag, C, ,								ž	TLI Sample ID
CW-02D-028	10/15/12	10:36	Water	X	1	YOU	ල්	754				_1	804408-1
CW-02M-028	10/15/12	12:04	Water	X			_ _		_ 2	- _		1	804408-2
CW-03D-028	10/15/12	14:26	Water	X					- 3			1	804408-3
CW-03M-028	10/15/12	15:34	Water	X					- 4			1	804408-4
OW-90-028	10/15/12	7:10	Water	X			T		- 5			1	804408-5
		ner Georgeen († 1925) 1930 - Johann Golden											
												-	
													2 march - 11 mar 200 mar
	Chain of C		Signature Reco										TOTAL NUMBER OF CONTAINERS
1 Br	Signature 1		Company/ Agency	-20-12 2:00		1						SAI	MPLE CONDITIONS:
0 000	ROL					1							RECEIVED
2. REC: Through	X~/\	<u> </u>	4TL INC 11/2	11/12 6 0937		-							Cool Warm
3						4						İ	
4		<u>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</u>											
5.													Yes No No
5. 6.						1						SPE	ECIAL REQUIREMENTS:
7.						1							
k ' ———						1							

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions o	r further ins	struction, pleas	e contact our F	Project Coord	dinator at (702)	307-2659.		
Cooler Received/Opened On:	11/21/2012	2			Workorder:	N008954		
Rep sample Temp (Deg C):	NA				IR Gun ID:	NA		
Temp Blank:	Yes	☑ No						
Carrier name:	Golden Sta	ate Overnight						
Last 4 digits of Tracking No.:	3580			Packing	Material Used:	None		
Cooling process:	lce	Ice Pack	Dry Ice	Other	✓ None			
		e.	ampla Bassir	ot Chaaklist				
Shipping container/cooler in	anod conditi		ample Receip	A CHECKIS	Yes 🗹	No 🗌	Not Present	
Custody seals intact, signed			er/cooler?		Yes 🗌	No 🗔	Not Present	
Custody seals intact on same		mppping contains	SI/ODDICITE		Yes \square	No 🗀	Not Present	reed.
4. Chain of custody present?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,	Yes 🗹	No 🗆	Hotel todalic	tongood .
5. Sampler's name present in 0	COC?				Yes 🗌	No 🗹		
6. Chain of custody signed who		ed and received	?		Yes 🗹	No 🗌		
7. Chain of custody agrees with	h sample lab	els?			Yes 🗹	No 🗌		
8. Samples in proper container	/bottle?				Yes 🗹	No 🗆		
9. Sample containers intact?					Yes 🗹	No 🗌		
10. Sufficient sample volume f	or indicated t	test?			Yes 🗹	No 🗌		
11. All samples received within	n holding time	e?			Yes 🗹	No 🗌		
12. Temperature of rep sample	or Temp Bl	ank within accep	otable limit?		Yes 🗌	No 🗌	NA	
13. Water - VOA vials have ze	ro headspac	e?			Yes 🗌	No 🗆	NA	V
14. Water - pH acceptable upon Example: pH > 12 for (C	er i de la Ferre de la	for Metals			Yes 🗹	No 🗆	NA	
15. Did the bottle labels indica	te correct pre	eservatives used	!?		Yes 🗹	No 🗌	NA	П.
16. Were there Non-Conforma	nce issues a las Client no				Yes ☐ Yes ☐	No 🗌 No 🗔	NA NA	V V
Comments:								
L v v								

Checklist Completed B

MBC / 11/1/12

Reviewed By:

Sample Calculation

METHOD: EPA 200.7

TEST NAME: Heavy Metals by ICP

MATRIX: Water

FORMULA:

Calculate the Barium concentration, in ug/L, in the original sample as follows:

where:

A = mg/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

CF = Conversion Factor

For Sample N008954-001A, the concentration in ug/L is calculated as follows:

Barium, ug/L = 0.01264340864 * 1 * (25/25) * 1000

= 12.64340864

Reporting results in two significant figures,

Barium, ug/L = 13

ps fn 12/3h

ICP-Metals in Water

Dilution Test Summary

Work Order No.: __ N008954 Test Method: EPA 200.7 Analysis Date: 11/27/12

Matrix: Water 41291 Batch No.:

Instrument ID:

ICP-02

Instrument Description: Perkin Elmer Optima DV Series

Comments:

Analyzed By: Mary Claire Ignacio

Dilution Test is not applicable for all the analytes. The calculated values were < 25X the RL. However the PS @2X passes the criteria.

Sample ID	Analyte	&Units	Calc Val	OQual	SAMPrefval	%DIFF	%DIFFlimit
N008954-001A 5X	Barium	ug/L	13.98	NA	12.64	10.56%	10
N008954-001A 5X	Beryllium	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Cadmium	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Cobalt	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Copper	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Lead	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Nickel	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Silver	ug/L	0.00	NA	1.50	100.00%	10
N008954-001A 5X	Vanadium	ug/L	5.04	NA	5.29	4.70%	10

Note: NA - Not Applicable

Date: 29-Nov-12

CLIENT:

Truesdail Laboratories

Work Order:

N008954

Project:

PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Sample ID: N008954-002A-PS Client ID: ZZZZZZ	SampType: PS Batch ID: 41291	TestCode: 200.7_WDPG Units: µg/L TestNo: EPA 200.7				Prep Da Analysis Da	te: 11/21/2 te: 11/27/2		RunNo: 86465 SeqNo: 1479879		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	273.475	6.0	250.0	71.45	80.8	75	125				
Beryllium	262,326	6.0	250,0	0	105	75	125				
Cadmium	262.665	6.0	250.0	0	105	75	125				
Cobalt	263.958	6.0	250.0	0	106	75	125				
Copper	255.232	10	250.0	.0	102	75	125				
Lead	246,578	20	250.0	0	98.6	75	125				
Nickel	266.116	10	250.0	0	106	75	125				
Silver	261.174	6.0	250.0	2.670	103	75	125				
Vanadium	259.426	6.0	250.0	4.218	102	75	125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 200.8

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic, ug/L = A * DF * PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N008954-001A, the concentration in ug/L is calculated as follows:

Arsenic, ug/L = 3.73021966997133 * 1 * (25/25)

= 3.73021966997133

Reporting result in two significant figures,

Arsenic, ug/L = 3.7

is fi inlyh

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N008954

Test Method: Analysis Date: EPA 200.8 12/03/12 Matrix: Batch No.:

Water 41290

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Agilent 7700x

Comments:

Analyzed By: Mary Claire Ignacio

Dilution is not applicable to Sb, Cr, Mn, Mo, Tl and Se. The calculated values were <25X RL. PS passed criteria.

Sample ID	Analyte	&Units	Calc Val	OQual	Calc Val	%DIFF	%DIFFlimit
N008954-001A-DT 5X	Antimony	μg/L	0	NA	0	0.00%	10
N008954-001A-DT 5X	Arsenic	μg/L	3.558883416	PASSED	3.73021967	4.59%	10
N008954-001A-DT 5X	Chromium	μg/L	0	NA	0.937268156	100.00%	10
N008954-001A-DT 5X	Manganese	μg/L	0	NA	0	0.00%	10
N008954-001A-DT 5X	Molybdenum	μg/L	10.78715319	NA	11.55112795	6.61%	10
N008954-001A-DT 5X	Thallium	μg/L	0	NA	0	0.00%	10
N008954-001A-DT 5X	Selenium	μg/L	2.856378064	NA	3.0093582	5.08%	10

Note: NA - Not applicable

Date: 03-Dec-12

CLIENT:

Truesdail Laboratories

Work Order:

N008954

Project:

PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_WDISS

ample ID: N008954-001A-PS SampType: PS lient ID: ZZZZZZ Batch ID: 41290			de: 200.8_WD No: EPA 200.8	ISS Units: µg/L		Prep Da Analysis Da	nte: nte: 12/3/2012	RunNo: 86523 SeqNo: 1482325
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	19.572	1.0	20.00	0	97.9	75	125	
Arsenic	24,825	0.20	20.00	3.730	105	75	125	
Chromium	19.984	2.0	20.00	0.9373	95.2	75	125	
Manganese	185.740	1.0	200.0	0	92.9	75	125	
Molybdenum	33.801	1.0	20.00	11.55	111	75	125	
Selenium	23.236	1.0	20.00	3.009	101	75	125	
Thallium	21.377	1.0	20.00	0	107	75	125	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

December 04, 2012

Sean Condon CA-ELAP No.: 2676

Truesdail Laboratories NV Cert. No.: NV-009222007A

14201 Franklin Ave. Tustin, CA 92780

TEL: (714) 730 6229

FAX: (714) 730-6462 Workorder No.: N008957

RE: PGE Topock, 423575.MP.02.CM

Attention: Sean Condon

Enclosed are the results for sample(s) received on November 21, 2012 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CLIENT: Truesdail Laboratories

Project: PGE Topock, 423575.MP.02.CM CASE NARRATIVE

Date: 04-Dec-12

Lab Order: N008957

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 200.8_Dissolved:

Because the results for total dissolved chromium (6.633 ug/L) and hexavalent chromium (8.2 ug/L as client result) for sample N008957-004 (CW-04M-028) are discrepant, undigested sample was analyzed for total dissolved chromium. The result from the undigested sample was 6.689 ug/L. Since this data confirmed the original result for total dissolved chromium, the original result is reported.

CLIENT: Truesdail Laboratories

Project: PGE Topock, 423575.MP.02.CM Work Order Sample Summary

Date: 04-Dec-12

Lab Order: N008957
Contract No: 2012-CMP-028

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N008957-001A	CW-01D-028	Water	10/16/2012 11:52:00 AM	11/21/2012	12/4/2012
N008957-002A	CW-01M-028	Water	10/16/2012 12:34:00 PM	11/21/2012	12/4/2012
N008957-003A	CW-04D-028	Water	10/16/2012 8:48:00 AM	11/21/2012	12/4/2012
N008957-004A	CW-04M-028	Water	10/16/2012 9:57:00 AM	11/21/2012	12/4/2012
N008957-005A	OW-01D-028	Water	10/16/2012 2:28:00 PM	11/21/2012	12/4/2012
N008957-006A	OW-01S-028	Water	10/16/2012 3:07:00 PM	11/21/2012	12/4/2012
N008957-007A	OW-01M-028	Water	10/18/2012 7:54:00 AM	11/21/2012	12/4/2012
N008957-008A	OW-02D-028	Water	10/18/2012 9:27:00 AM	11/21/2012	12/4/2012
N008957-009A	OW-02M-028	Water	10/18/2012 11:45:00 AM	11/21/2012	12/4/2012
N008957-010A	OW-02S-028	Water	10/18/2012 10:04:00 AM	11/21/2012	12/4/2012
N008957-011A	OW-05D-028	Water	10/18/2012 12:56:00 PM	11/21/2012	12/4/2012
N008957-012A	OW-05M-028	Water	10/18/2012 2:03:00 PM	11/21/2012	12/4/2012
N008957-014A	OW-91-028	Water	10/18/2012 7:05:00 AM	11/21/2012	12/4/2012

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-001

Client Sample ID: CW-01D-028

Collection Date: 10/16/2012 11:52:00 AM

Print Date: 04-Dec-12

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 412	91		PrepDate:	11/21/2012	Analyst: CEI
Barium	27	0.36	3.0	μg/L	1	11/27/2012 05:35 PM
Beryllium	ND	0.12	3.0	μg/L	1	11/27/2012 05:35 PM
Cadmium	ND	0.37	3.0	μg/L	1	11/27/2012 05:35 PM
Cobalt	ND	0.37	3.0	μg/L	1	11/27/2012 05:35 PM
Copper	ND	2.2	5.0	μg/L	1	11/27/2012 05:35 PM
Lead	ND	1.6	10	μg/L	1	11/27/2012 05:35 PM
Nickel	ND	0.70	5.0	μg/L	1	11/27/2012 05:35 PM
Silver	3.6	0.39	3.0	μg/L	1	11/27/2012 05:35 PM
Vanadium	ND	0.31	3.0	μg/L	1	11/27/2012 05:35 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-002

Client Sample ID: CW-01M-028

Collection Date: 10/16/2012 12:34:00 PM

Print Date: 04-Dec-12

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 41	291		PrepDate:	11/21/2012	Analyst: CEI
Barium	94	0.36	3.0	μg/L	1	11/27/2012 05:40 PM
Beryllium	ND	0.12	3.0	μg/L	1	11/27/2012 05:40 PM
Cadmium	ND	0.37	3.0	μg/L	1	11/27/2012 05:40 PM
Cobalt	ND	0.37	3.0	μg/L	1	11/27/2012 05:40 PM
Copper	ND	2.2	5.0	μg/L	1	11/27/2012 05:40 PM
Lead	ND	1.6	10	μg/L	1	11/27/2012 05:40 PM
Nickel	ND	0.70	5.0	μg/L	1	11/27/2012 05:40 PM
Silver	3.2	0.39	3.0	μg/L	1	11/27/2012 05:40 PM
Vanadium	3 4	0.31	3.0	ua/I	1	11/27/2012 05:40 PM

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-003

Client Sample ID: CW-04D-028

Collection Date: 10/16/2012 8:48:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 412	91		PrepDate:	11/21/2012	Analyst: CEI
Barium	20	0.36	3.0	μg/L	1	11/27/2012 05:46 PM
Beryllium	ND	0.12	3.0	μg/L	1	11/27/2012 05:46 PM
Cadmium	ND	0.37	3.0	μg/L	1	11/27/2012 05:46 PM
Cobalt	ND	0.37	3.0	μg/L	1	11/27/2012 05:46 PM
Copper	ND	2.2	5.0	μg/L	1	11/27/2012 05:46 PM
Lead	ND	1.6	10	μg/L	1	11/27/2012 05:46 PM
Nickel	ND	0.70	5.0	μg/L	1	11/27/2012 05:46 PM
Silver	ND	0.39	3.0	μg/L	1	11/27/2012 05:46 PM
Vanadium	4.5	0.31	3.0	ua/I	1	11/27/2012 05:46 PM

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-004

Client Sample ID: CW-04M-028

Collection Date: 10/16/2012 9:57:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	ts DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 412	291		PrepDate:	11/21/2012	Analyst: CEI
Barium	97	0.36	3.0	μg/L	1	11/27/2012 05:51 PM
Beryllium	ND	0.12	3.0	μg/L	1	11/27/2012 05:51 PM
Cadmium	ND	0.37	3.0	μg/L	1	11/27/2012 05:51 PM
Cobalt	ND	0.37	3.0	μg/L	1	11/27/2012 05:51 PM
Copper	ND	2.2	5.0	μg/L	1	11/27/2012 05:51 PM
Lead	ND	1.6	10	μg/L	1	11/27/2012 05:51 PM
Nickel	ND	0.70	5.0	μg/L	1	11/27/2012 05:51 PM
Silver	3.4	0.39	3.0	μg/L	1	11/27/2012 05:51 PM
Vanadium	4.0	0.31	3.0	μg/L	1	11/27/2012 05:51 PM

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-005

Client Sample ID: OW-01D-028

Collection Date: 10/16/2012 2:28:00 PM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Uni	ts DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 412	91		PrepDate:	11/21/2012	Analyst: CEI
Barium	34	0.36	3.0	μg/L	1	11/27/2012 05:57 PM
Beryllium	ND	0.12	3.0	μg/L	1	11/27/2012 05:57 PM
Cadmium	ND	0.37	3.0	μg/L	1	11/27/2012 05:57 PM
Cobalt	ND	0.37	3.0	μg/L	1	11/27/2012 05:57 PM
Copper	ND	2.2	5.0	μg/L	1	11/27/2012 05:57 PM
Lead	ND	1.6	10	μg/L	1	11/27/2012 05:57 PM
Nickel	ND	0.70	5.0	μg/L	1	11/27/2012 05:57 PM
Silver	3.3	0.39	3.0	μg/L	1	11/27/2012 05:57 PM
Vanadium	3.2	0.31	3.0	μg/L	1	11/27/2012 05:57 PM

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-007

Client Sample ID: OW-01M-028

Collection Date: 10/18/2012 7:54:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICP						
			EP	A 200.7		
RunID: ICP2_121127D	QC Batch: 412	291		PrepDate:	11/21/2012	Analyst: CEI
Barium	78	0.36	3.0	μg/L	1	11/27/2012 06:02 PM
Beryllium	ND	0.12	3.0	μg/L	1	11/27/2012 06:02 PM
Cadmium	ND	0.37	3.0	μg/L	1	11/27/2012 06:02 PM
Cobalt	ND	0.37	3.0	μg/L	1	11/27/2012 06:02 PM
Copper	ND	2.2	5.0	μg/L	1	11/27/2012 06:02 PM
Lead	ND	1.6	10	μg/L	1	11/27/2012 06:02 PM
Nickel	ND	0.70	5.0	μg/L	1	11/27/2012 06:02 PM
Silver	ND	0.39	3.0	μg/L	1	11/27/2012 06:02 PM
Vanadium	3.6	0.31	3.0	μg/L	1	11/27/2012 06:02 PM

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

CLIENT: Truesdail Laboratories

Work Order: N008957

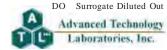
Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Date: 04-Dec-12

Sample ID: MB-41291 Client ID: PBW	SampType: MBLK Batch ID: 41291		de: 200.7_WDPG Units: µg/L	Prep Date: 11/21/2012 Analysis Date: 11/27/2012	RunNo: 86465 SeqNo: 1479863
CHOIL ID.	Daton 15. 41231	10011	10. El A 200.1	7 May 510 Bato. 1172172012	204No. 1473003
Analyte	Result	PQL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	ND	3.0			
Beryllium	ND	3.0			
Cadmium	ND	3.0			
Cobalt	ND	3.0			
Copper	ND	5.0			
Lead	ND	10			
Nickel	ND	5.0			
Silver	ND	3.0			
Vanadium	ND	3.0			


Sample ID: LCS-41291	SampType: LCS		de: 200.7_W D			·	te: 11/21/2		RunNo: 864		
Client ID: LCSW	Batch ID: 41291	Testi	No: EPA 200.7			Analysis Da	te: 11/27/2	012	SeqNo: 147	79864	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	48.351	3.0	50.00	0	96.7	85	115				•
Beryllium	9.304	3.0	10.00	0	93.0	85	115				
Cadmium	9.246	3.0	10.00	0	92.5	85	115				
Cobalt	9.993	3.0	10.00	0	99.9	85	115				
Copper	9.267	5.0	10.00	0	92.7	85	115				
Lead	46.416	10	50.00	0	92.8	85	115				
Nickel	50.401	5.0	50.00	0	101	85	115				
Silver	9.681	3.0	10.00	0	96.8	85	115				
Vanadium	9.926	3.0	10.00	0	99.3	85	115				

Sample ID: N008954-002A-MS SampType: MS TestCode: 200.7_WDPG Units: µg/L Prep Date: 11/21/2012 RunNo: 86465 Client ID: ZZZZZZ Batch ID: 41291 Analysis Date: 11/27/2012 SeqNo: 1479880 TestNo: EPA 200.7 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: Truesdail Laboratories

Work Order: N008957

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Sample ID: N008954-002A-MS	SampType: MS	TestCod	de: 200.7_W D	PG Units: μg/L		Prep Dat	te: 11/21/2	012	RunNo: 864	165	
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7	•		Analysis Da	te: 11/27/2	012	SeqNo: 147	79880	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	122.467	3.0	50.00	71.45	102	75	125				
Beryllium	9.830	3.0	10.00	0	98.3	75	125				
Cadmium	8.422	3.0	10.00	0	84.2	75	125				
Cobalt	9.430	3.0	10.00	0	94.3	75	125				
Copper	11.097	5.0	10.00	0	111	75	125				
Lead	43.466	10	50.00	0	86.9	75	125				
Nickel	48.990	5.0	50.00	0	98.0	75	125				
Silver	12.738	3.0	10.00	2.670	101	75	125				
Vanadium	14.875	3.0	10.00	4.218	107	75	125				
Sample ID: N008954-002A-MSI	D SampType: MSD	TestCod	de: 200.7_W D	PG Units: μg/L		Prep Dat	te: 11/21/2	012	RunNo: 864	165	
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7	•		Analysis Da	te: 11/27/2	012	SeqNo: 147	79886	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	123.413	3.0	50.00	71.45	104	75	125	122.5	0.769	20	
Beryllium	10.081	3.0	10.00	0	101	75	125	9.830	2.52	20	
Cadmium	8.812	3.0	10.00	0	88.1	75	125	8.422	4.53	20	
Cobalt	9.581	3.0	10.00	0	95.8	75	125	9.430	1.59	20	
Copper	11.017	5.0	10.00	0	110	75	125	11.10	0.721	20	
Lead	44.822	10	50.00	0	89.6	75	125	43.47	3.07	20	
Nickel	50.282	5.0	50.00	0	101	75	125	48.99	2.60	20	
Silver	12.835	3.0	10.00	2.670	102	75	125	12.74	0.757	20	
Vanadium	14.945	3.0	10.00	4.218	107	75	125	14.88	0.465	20	
Sample ID: N008957-007A-MS	SampType: MS	TestCod	de: 200.7_W D	PG Units: μg/L		Prep Dat	te: 11/21/2	012	RunNo: 864	165	
Client ID: ZZZZZZ	Batch ID: 41291	TestN	lo: EPA 200.7	,		Analysis Da	te: 11/27/2	012	SeqNo: 147	9887	

Beryllium Qualifiers:

Barium

B Analyte detected in the associated Method Blank

125.884

9.709

ND Not Detected at the Reporting Limit

E Value above quantitation range

50.00

10.00

R RPD outside accepted recovery limits

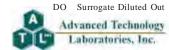
Calculations are based on raw values

78.07

0

95.6

97.1


75

75

125

125

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

3.0

3.0

CLIENT: Truesdail Laboratories

Work Order: N008957

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Sample ID: N008957-007A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 41291		TestCode: 200.7_WDPG Units: µg/L TestNo: EPA 200.7		Prep Date: 11/21/2012 Analysis Date: 11/27/2012			RunNo: 86465 SeqNo: 1479887			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	8.228	3.0	10.00	0	82.3	75	125				
Cobalt	9.328	3.0	10.00	0	93.3	75	125				
Copper	11.662	5.0	10.00	2.211	94.5	75	125				
Lead	42.618	10	50.00	0	85.2	75	125				
Nickel	48.380	5.0	50.00	0	96.8	75	125				
Silver	13.132	3.0	10.00	2.931	102	75	125				
Vanadium	13.820	3.0	10.00	3.626	102	75	125				

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: CW-01D-028

Lab Order: N008957 **Collection Date:** 10/16/2012 11:52:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-001

11000757 001						
Analyses	Result M	IDL	PQL	Qual Uni	ts DF	Date Analyzed
DISSOLVED METALS BY ICPM	IS					
			EP	A 200.8		
RunID: ICP7_121203A	QC Batch: 41290			PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/L	1	12/3/2012 02:48 PM
Arsenic	1.5	0.035	0.10	μg/L	1	12/3/2012 02:48 PM
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 02:48 PM
Manganese	ND	0.16	0.50	μg/L	1	12/3/2012 02:48 PM
Molybdenum	20	0.074	0.50	μg/L	1	12/3/2012 02:48 PM
Selenium	3.5	0.084	0.50	μg/L	1	12/3/2012 02:48 PM
Thallium	ND (0.075	0.50	μg/L	1	12/3/2012 02:48 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: CW-01M-028

Lab Order: N008957 **Collection Date:** 10/16/2012 12:34:00 PM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-002

Analyses	Result	MDL	PQL	Qual U	nits DF	Date Analyzed
DISSOLVED METALS BY ICPMS	S					
			EP/	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/l	_ 1	12/3/2012 02:53 PM
Arsenic	1.7	0.035	0.10	μg/l	_ 1	12/3/2012 02:53 PM
Chromium	1.3	0.17	1.0	μg/l	_ 1	12/3/2012 02:53 PM
Manganese	ND	0.16	0.50	μg/l	_ 1	12/3/2012 02:53 PM
Molybdenum	19	0.074	0.50	μg/l	_ 1	12/3/2012 02:53 PM
Selenium	3.5	0.084	0.50	μg/l	_ 1	12/3/2012 02:53 PM
Thallium	ND	0.075	0.50	μg/I	_ 1	12/3/2012 02:53 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-003

Client Sample ID: CW-04D-028

Collection Date: 10/16/2012 8:48:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPMS	3					
			EP/	A 200.8		
RunID: ICP7_121203A	QC Batch: 41	290		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/L	1	12/3/2012 03:20 PM
Arsenic	4.0	0.035	0.10	μg/L	1	12/3/2012 03:20 PM
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 03:20 PM
Manganese	ND	0.16	0.50	μg/L	1	12/3/2012 03:20 PM
Molybdenum	24	0.074	0.50	μg/L	1	12/3/2012 03:20 PM
Selenium	2.7	0.084	0.50	μg/L	1	12/3/2012 03:20 PM
Thallium	ND	0.075	0.50	μg/L	1	12/3/2012 03:20 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-004

Client Sample ID: CW-04M-028

Collection Date: 10/16/2012 9:57:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPMS						
			EP/	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/L	1	12/3/2012 03:25 PM
Arsenic	2.3	0.035	0.10	μg/L	1	12/3/2012 03:25 PM
Chromium	6.6	0.17	1.0	μg/L	1	12/3/2012 03:25 PM
Manganese	ND	0.16	0.50	μg/L	1	12/3/2012 03:25 PM
Molybdenum	10	0.074	0.50	μg/L	1	12/3/2012 03:25 PM
Selenium	1.9	0.084	0.50	μg/L	1	12/3/2012 03:25 PM
Thallium	ND	0.075	0.50	μg/L	1	12/3/2012 03:25 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-005

Client Sample ID: OW-01D-028

Collection Date: 10/16/2012 2:28:00 PM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	ts DF	Date Analyzed
DISSOLVED METALS BY ICPMS						
			EP#	200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/L	1	12/3/2012 05:02 PM
Arsenic	1.3	0.035	0.10	μg/L	1	12/3/2012 05:02 PM
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 05:02 PM
Manganese	ND	0.16	0.50	μg/L	1	12/3/2012 05:02 PM
Molybdenum	20	0.074	0.50	μg/L	1	12/3/2012 05:02 PM
Selenium	3.5	0.084	0.50	μg/L	1	12/3/2012 05:02 PM
Thallium	ND	0.075	0.50	μg/L	1	12/3/2012 05:02 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: OW-01S-028

Lab Order: N008957 **Collection Date:** 10/16/2012 3:07:00 PM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-006

Analyses	Result N	ADL P	PQL (Qual Units	DF	Date Analyzed			
DISSOLVED METALS BY ICPMS						_			
	EPA 200.8								
RunID: ICP7_121203A	QC Batch: 41290)		PrepDate:	11/21/2012	Analyst: CEI			
Chromium	14	0.17	1.0	μg/L	1	12/3/2012 05:08 PM			
Molybdenum	14	0.074	0.50	μg/L	1	12/3/2012 05:08 PM			

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-007

Client Sample ID: OW-01M-028

Collection Date: 10/18/2012 7:54:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPMS	3					
			EP/	A 200.8		
RunID: ICP7_121203A	QC Batch: 41	290		PrepDate:	11/21/2012	Analyst: CEI
Antimony	ND	0.084	0.50	μg/L	1	12/3/2012 03:51 PM
Arsenic	2.3	0.035	0.10	μg/L	1	12/3/2012 03:51 PM
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 03:51 PM
Manganese	ND	0.16	0.50	μg/L	1	12/3/2012 03:51 PM
Molybdenum	23	0.074	0.50	μg/L	1	12/3/2012 03:51 PM
Selenium	3.3	0.084	0.50	μg/L	1	12/3/2012 03:51 PM
Thallium	ND	0.075	0.50	μg/L	1	12/3/2012 03:51 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

 Results are wet unless otherwise specified

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: OW-02D-028

Lab Order: N008957 **Collection Date:** 10/18/2012 9:27:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-008

Analyses	Result	MDL	PQL	Qual Unit	ts DF	Date Analyzed
DISSOLVED METALS BY ICPMS						
			EPA	A 200.8		
RunID: ICP7_121203A	QC Batch: 41	290		PrepDate:	11/21/2012	Analyst: CEI
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 03:56 PM
Molybdenum	21	0.074	0.50	μg/L	1	12/3/2012 03:56 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: OW-02M-028

Lab Order: N008957 **Collection Date:** 10/18/2012 11:45:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-009

Edb 1D: 11000/37 007						
Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPM	/IS					
			EP	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 04:01 PM
Molybdenum	23	0.074	0.50	μg/L	1	12/3/2012 04:01 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: OW-02S-028

Lab Order: N008957 **Collection Date:** 10/18/2012 10:04:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-010

Analyses	Resul	t MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPMS	}					
			EP/	A 200.8		
RunID: ICP7_121203A	QC Batch: 4	11290		PrepDate:	11/21/2012	Analyst: CEI
Chromium	28	0.17	1.0	μg/L	1	12/3/2012 04:06 PM
Molybdenum	46	0.074	0.50	μg/L	1	12/3/2012 04:06 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Cli

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-011

Client Sample ID: OW-05D-028

Collection Date: 10/18/2012 12:56:00 PM

Print Date: 04-Dec-12

Matrix: WATER

Lab 15. 11000/37-011						
Analyses	Result N	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPM	S					
			EP/	A 200.8		
RunID: ICP7_121203A	QC Batch: 41290)		PrepDate:	11/21/2012	Analyst: CEI
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 04:27 PM
Molybdenum	22	0.074	0.50	μg/L	1	12/3/2012 04:27 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories

Lab Order: N008957

Project: PGE Topock, 423575.MP.02.CM

Lab ID: N008957-012

Client Sample ID: OW-05M-028

Print Date: 04-Dec-12

Collection Date: 10/18/2012 2:03:00 PM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Uni	ts DF	Date Analyzed
DISSOLVED METALS BY ICP	MS					
			EPA	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 04:32 PM
Molvbdenum	21	0.074	0.50	ua/L	1	12/3/2012 04:32 PM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: OW-05S-028

Lab Order: N008957 **Collection Date:** 10/18/2012 2:41:00 PM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-013

Edb 1D: 11000/37 013						
Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICPM	IS					
			EP	A 200.8		
RunID: ICP7_121203A	QC Batch: 41:	290		PrepDate:	11/21/2012	Analyst: CEI
Chromium	18	0.17	1.0	μg/L	1	12/3/2012 04:37 PM
Molybdenum	17	0.074	0.50	μg/L	1	12/3/2012 04:37 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Print Date: 04-Dec-12

Advanced Technology Laboratories, Inc.

CLIENT: Truesdail Laboratories Client Sample ID: OW-91-028

Lab Order: N008957 **Collection Date:** 10/18/2012 7:05:00 AM

Project: PGE Topock, 423575.MP.02.CM Matrix: WATER

Lab ID: N008957-014

Lab 1D: 11000/37-01	7					
Analyses	Result	MDL	PQL	Qual Unit	s DF	Date Analyzed
DISSOLVED METALS BY ICE	PMS					
			EPA	A 200.8		
RunID: ICP7_121203A	QC Batch: 412	90		PrepDate:	11/21/2012	Analyst: CEI
Chromium	ND	0.17	1.0	μg/L	1	12/3/2012 04:42 PM
Molybdenum	21	0.074	0.50	μg/L	1	12/3/2012 04:42 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

CLIENT: Truesdail Laboratories

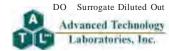
Work Order: N008957

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_WDISS

Date: 04-Dec-12


Sample ID: N008954-001A-MS	SampType: MS	TestCo	de: 200.8_W D	ISS Units: µg/L		Prep Dat	e: 11/21/2	012	RunNo: 865	523	
Client ID: ZZZZZZ	Batch ID: 41290	Testi	No: EPA 200.8	}		Analysis Dat	te: 12/3/20	12	SeqNo: 148	32299	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	9.027	0.50	10.00	0	90.3	75	125				
Arsenic	13.290	0.10	10.00	3.730	95.6	75	125				
Chromium	9.600	1.0	10.00	0.9373	86.6	75	125				
Manganese	85.410	0.50	100.0	0	85.4	75	125				
Molybdenum	21.980	0.50	10.00	11.55	104	75	125				
Selenium	11.724	0.50	10.00	3.009	87.1	75	125				
Thallium	10.098	0.50	10.00	0	101	75	125				
Sample ID: N008954-001A-MSD	SampType: MSD	TestCo	de: 200.8_W D	ISS Units: µg/L		Prep Dat	e: 11/21/2	012	RunNo: 865	523	
Client ID: ZZZZZZ	Batch ID: 41290	Test	No: EPA 200.8	1		Analysis Dat	te: 12/3/20	12	SeqNo: 148	32300	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Antimony	9.102	0.50	10.00	0	91.0	75	125	9.027	0.823	20	
Arsenic	13.185	0.10	10.00	3.730	94.5	75	125	13.29	0.793	20	
Chromium	9.630	1.0	10.00	0.9373	86.9	75	125	9.600	0.314	20	
Manganese	85.048	0.50	100.0	0	85.0	75	125	85.41	0.424	20	
Molybdenum	21.762	0.50	10.00	11.55	102	75	125	21.98	0.999	20	
Selenium	11.482	0.50	10.00	3.009	84.7	75	125	11.72	2.09	20	
Thallium	10.204	0.50	10.00	0	102	75	125	10.10	1.04	20	
Sample ID: N008957-006A-MS	SampType: MS	TestCo	de: 200.8_W D	ISS Units: µg/L		Prep Dat	e: 11/21/2	012	RunNo: 865	523	
Client ID: ZZZZZZ	Batch ID: 41290	Testi	No: EPA 200.8	•		Analysis Dat	te: 12/3/20	12	SeqNo: 148	32314	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Antimony	9.003	0.50	10.00	0	90.0	75	125				
Arsenic	11.684	0.10	10.00	1.683	100	75	125				
01 .	23.121	1.0	10.00	13.58	95.4	75	125				
Chromium	23.121	1.0	10.00	10.00	00.1		120				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: Truesdail Laboratories

Work Order: N008957

Project: PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_WDISS

Sample ID: N008957-006A-MS	SampType: MS	TestCode: 200.8_WDISS Units: µg/L	Prep Date: 11/21/2012	RunNo: 86523
Client ID: ZZZZZZ	Batch ID: 41290	TestNo: EPA 200.8	Analysis Date: 12/3/2012	SeqNo: 1482314
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Molybdenum	25.000	0.50 10.00 14.14	109 75 125	
Selenium	11.521	0.50 10.00 2.417	91.0 75 125	
Thallium	10.139	0.50 10.00 0	101 75 125	
Sample ID: MB-41290	SampType: MBLK	TestCode: 200.8_WDISS Units: μg/L	Prep Date: 11/21/2012	RunNo: 86523
Client ID: PBW	Batch ID: 41290	TestNo: EPA 200.8	Analysis Date: 12/3/2012	SeqNo: 1482330
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	ND	0.50		
Arsenic	0.095	0.10		
Chromium	ND	1.0		
Manganese	ND	0.50		
Molybdenum	ND	0.50		
Selenium	ND	0.50		
Thallium	ND	0.50		
Sample ID: LCS-41290	SampType: LCS	TestCode: 200.8_WDISS Units: µg/L	Prep Date: 11/21/2012	RunNo: 86523
Client ID: LCSW	Batch ID: 41290	TestNo: EPA 200.8	Analysis Date: 12/3/2012	SeqNo: 1482333
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Antimony	9.084	0.50 10.00 0	90.8 85 115	

Client ID: LCSW	Batch ID: 41290	Test	No: EPA 200.8	}		Analysis Da	te: 12/3/20	12	SeqNo: 148	32333	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	9.084	0.50	10.00	0	90.8	85	115				
Arsenic	9.672	0.10	10.00	0	96.7	85	115				
Chromium	9.776	1.0	10.00	0	97.8	85	115				
Manganese	95.039	0.50	100.0	0	95.0	85	115				
Molybdenum	9.449	0.50	10.00	0	94.5	85	115				
Selenium	9.957	0.50	10.00	0	99.6	85	115				
Thallium	9.720	0.50	10.00	0	97.2	85	115				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- R RPD outside accepted recovery limits

 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CHAIN OF CUSTODY

TRUESDAIL LABORATORIES, INC.

14201 FRANKLIN AVENUE - TUSTIN, CA 92780-7008 (714) 730-6239 - FAX (714) 730-6462

X	TURNAROUND	TIME	Normal	TAT	•
DATE:	11/19/2012	PA	GE: 1	OF	1

						ME	IH	JUS	<u>`</u>						
COMPANY	Truesdail Laborato	ries, Inc.			Sb, Cu,									CONTAINERS	COMMENTS
CONTACT	Sean Condon				Pb, 62	2							1	Į	
PHONE	714-730-6239 x20	2	FAX		Ba Ba			l						È	Level IV data package
	14201 Franklin Ave	e			s. N 8/20 , Be	s. N		l						8	w/ EDD
	Tustin, CA 92780				< 0.7 0.7 feeta	leta								占	
Project Name	PGE Topock		Project # <u>423</u>	575.MP.02.CM	Diss. Metals (200.8/200.7) FF , As, Ba, Be, Cd, Co, o , Pb, Mn, Mo, Ni, Se, o TI, V	Diss. Metals (200.8/200.7) FF Cr, Mo			i					ER	
Project	2012-CMP-028				, , , , ,			[ME	TLI Sample ID
	SAMPLE I.D.	DATE	TIME	DESCRIPTION	<u>\$</u> Ç;									ž	TLI Sample ID
CW-01D	-028	10/16/12	11:52	Water	X			N	204	39	7	-1		1	804461-1
CW-01M	-028	10/16/12	12:34	Water	X				1			2		1	804461-2
CW-04D	-028	10/16/12	08:48	Water	X						-	3		1	804461-3
CW-04M	I-028	10/16/12	09:57	Water	, x						-	4		1	804461-4
OW-01D	-028	10/16/12	14:28	Water	. X				$\perp \! \! \perp$	٠.	_	ک		1	804461-5
OW-01S	-028	10/16/12	15:07	Water		Х					_	6		1	804461-6
OW-01M	1-028	10/18/12	07:54	Water	X						_	7		1	804461-7
OW-02D	-028	10/18/12	09:27	Water		X					_	8		1	804461-8
OW-02N	1-028	10/18/12	11:45	Water		Х					_	9		1	804461-9
OW-02S	-028	10/18/12	10:04	Water		Х					-	10		1	804461-10
OW-05D	-028	10/18/12	12:56	Water		X					_	11		1	804461-11
OW-05N	1-028	10/18/12	14:03	Water		X					_	/2		1	804461-12
OW-05S	-028	10/18/12	14:41	Water		Х					1	/3		1	804461-13
OW-91-0)28	10/18/12	07:05	Water		X		•	1		•	14			804461-14
		Chain of	Custody	Signature Rec	ord				teres (*)						TOTAL NUMBER OF CONTAINERS
1.	But	ignature		Company/ Agency	Date/ Time 20-12 2:00										IPLE CONDITIONS:
2. PG	c: Thurst	12Ax		ATEINC 11/:											RECEIVED
	-/				4112 0 7,65										Cool Warm
3			<u> </u>												
4			 . , ;	· · · · · · · · · · · · · · · · · · ·											Yes No
5			+ 1.												
6			<u></u>											SPE	ECIAL REQUIREMENTS:
7.															
			<u> </u>		<u> </u>										

Advanced Technology Laboratories, Inc.

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

Cooler Received/Opened On:	11/21/2012	Workorder:	N008957		
Rep sample Temp (Deg C):	na	IR Gun ID:	na		
emp Blank:	☐ Yes ✓ No				
Carrier name:	Golden State Overnight				
ast 4 digits of Tracking No.:	3583	Packing Material Used:	None		
Cooling process:	☐ Ice ☐ Ice Pack ☐ Dr	y Ice 🗌 Other 🗹 None			
		Receipt Checklist			
Shipping container/cooler in		Yes V	No 🗌	Not Present	
	, dated on shippping container/cooler	하다 그리고 하는 때문에 됐다. 그	No 🔲	Not Present	
3. Custody seals intact on sam		Yes 🗍	No □	Not Present	
Chain of custody present?		Yes ☑	No 🗆		
5. Sampler's name present in	COC?	Yes	No ☑		
	en relinquished and received?	Yes ☑	No 🗔		
7. Chain of custody agrees wit		Yes ✓	No □		
3. Samples in proper containe		Yes ☑	No □		
3. Sample containers intact?		Yes ☑	No ∐		
10. Sufficient sample volume t	or indicated test?	Yes ☑	No 🗔		
11. All samples received within	n holding time?	Yes ☑	No □		
12. Temperature of rep sample	e or Temp Blank within acceptable lim	하는 보고 하는 보고 하고 있다면 해 <u>요</u> . 하고 모	No □	NA	V .
13. Water - VOA vials have ze		Yes 🗌	No []	NA	<u> </u>
14. Water - pH acceptable upo Example: pH > 12 for (0		Yes 🗹	No 🗀	NA	
	te correct preservatives used?	Yes ☑	No 🗔	NA	
16. Were there Non-Conforma	nnce issues at login?	Yes 🗌	No 🗔	NA	⊻
٧	las Client notified?	Yes 🗌	No 🗆	NA	Ø
Comments:					

Sample Calculation

METHOD: EPA 200.7

TEST NAME: Heavy Metals by ICP

MATRIX: Water

FORMULA:

Calculate the Barium concentration, in ug/L, in the original sample as follows:

where:

A = mg/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

CF = Conversion Factor

For Sample N008957-001A, the concentration in ug/L is calculated as follows:

Barium, ug/L = 0.02687859431 * 1 * (25/25) * 1000

= 26.87859431

Reporting results in two significant figures,

Barium, ug/L = 27

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work Order No.: N008957

Test Method: EPA 200.7

Analysis Date: 11/27/12

Matrix: Water
Batch No.: 41291

Instrument ID:

ICP-02

Instrument Description: Perkin Elmer Optima DV Series

Comments:

Analyzed By: _

Mary Claire Ignacio

Dilution Test is not applicable for all the analytes. The calculated values were < 25X the RL. However the PS @2X passes the criteria.

Sample ID	Analyte	&Units	Calc Val	OQual	SAMPrefval	%DIFF	%DIFFlimit
N008954-001A 5X	Barium	ug/L	13.98	NA	12.64	10.56%	10
N008954-001A 5X	Beryllium	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Cadmium	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Cobalt	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Copper	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Lead	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Nickel	ug/L	0.00	NA	0.00	0.00%	10
N008954-001A 5X	Silver	ug/L	0.00	NA	1.50	100.00%	10
N008954-001A 5X	Vanadium	ug/L	5.04	NA	5.29	4.70%	10

Note: NA - Not Applicable

Advanced Technology Laboratories, Inc.

Date: 29-Nov-12

CLIENT:

Truesdail Laboratories

Work Order:

N008957

Project:

PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.7_WDPGEPPB

Sample ID: N008954-002A-PS Client ID: ZZZZZZ	Samp⊺ype: PS Batch ID: 41291		TestCode: 200.7_WDPG Units: μg/L TestNo: EPA 200.7			Prep Da Analysis Da	te: 11/21/20 te: 11/27/20		RunNo: 86465 SeqNo: 1479879		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	273.475	6.0	250.0	71.45	80.8	75	125				
Beryllium	262.326	6.0	250.0	0	105	75	125				
Cadmium	262.665	6.0	250.0	0	105	75	125				
Cobalt	263.958	6.0	250.0	0	106	75	125				
Copper	255,232	10	250.0	0	102	75	125				
Lead	246.578	20	250.0	0	98.6	75	125				
Nickel	266.116	10	250.0	0	106	75	125				
Silver	261.174	6.0	250.0	2.670	103	75	125				
Vanadium	259.426	6.0	250.0	4.218	102	75	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 200.8

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic, ug/L = A * DF * PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N008957-001A, the concentration in ug/L is calculated as follows:

Arsenic, ug/L

1.45698788281173* 1 * (25/25)

=

1.45698788281173

Reporting result in two significant figures,

Arsenic, ug/L

1.5

12/4/2

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work Order No.: Test Method:

N008957 EPA 200.8 Matrix:

Analysis Date:

12/03/12

Water 41290 Batch No.:

Instrument ID:

ICP-MS #2

Instrument Description:

Agilent 7700x

Comments:

Analyzed By: Mary Claire Ignacio

Dilution is not applicable to Sb, Cr, Mn, Mo, Tl and Se. The calculated values were <25X RL. PS passed criteria.

Sample ID	Analyte	&Units	Calc Val	OQual	Calc Val	%DIFF	%DIFFlimit
N008954-001A-DT 5X	Antimony	µg/L	0	NA	0	0.00%	10
N008954-001A-DT 5X	Arsenic	μg/L	3.558883416	PASSED	3.73021967	4.59%	10
N008954-001A-DT 5X	Chromium	μg/L	0	NA	0.937268156	100.00%	10
N008954-001A-DT 5X	Manganese	μg/L	0	NA	0	0.00%	10
N008954-001A-DT 5X	Molybdenum	μg/L	10.78715319	NA	11.55112795	6.61%	10
N008954-001A-DT 5X	Thallium	μg/L	0	NA	0	0.00%	10
N008954-001A-DT 5X	Selenium	μg/L	2.856378064	NA	3.0093582	5.08%	10

Note: NA - Not applicable

Advanced Technology Laboratories, Inc.

CLIENT:

Truesdail Laboratories

Work Order:

N008957

Project:

PGE Topock, 423575.MP.02.CM

ANALYTICAL QC SUMMARY REPORT

TestCode: 200.8_WDISS

Date: 04-Dec-12

Sample ID: N008954-001A Client ID: ZZZZZZ	ıp⊺ype: PS atch ID: 41290		ode: 200.8_W E No: EPA 200. 8	DISS Units: µg/L 3		Prep Da Analysis Da)12	RunNo: 86 SeqNo: 14		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	19.572	1.0	20.00	0	97.9	75	125				
Arsenic	24.825	0.20	20.00	3.730	105	75	125				
Chromium	19.984	2.0	20.00	0.9373	95.2	75	125				
Manganese	185.740	1.0	200.0	0	92.9	75	125				
Molybdenum	33.801	1.0	20.00	11.55	111	75	125				
Selenium	23.236	1.0	20.00	3.009	101	75	125				
Thallium	21.377	1.0	20.00	0	107	75	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Appendix B Field Data Sheets, Second Half 2012 (provided on CD-ROM only)

Personnel: B. Collow/CHam WLI serial number: PGE 2011-61

	Depth to Water			
Loc ID	(ft BTOC)	Date	Time	Comments
CW-1M	108,21'	7-17-12	0757	
CW-1D	108.37		6759	
CW-2M	91.85		0803	
CW-2D	91.47		0804	
CW-3M	76.79		0808,	
CW-3D	76.20		0810	
CW-4M	60,63		0816	
CW-4D	60.53		0818	
OW-1S	92.72		0823	
OW-1M	92.52		0825	
OW-1D	92,30		0826	
OW-2S	91.35		0829	
OW-2M	90,66		0830	
OW-2D	90,74		0832	
OW-5S	94,20	,	0836	
OW-5M	93,27		0838	
OW-5D	93.95		0840	

IM-3 Staff confirm that <u>7-15-12</u>, <u>7-16-12</u>, and <u>7-17-12</u> were normal operation days with no backwashing or plant down time prior to snapshot collection.

PM Signature: QC Signature: TOPOCK PLANNED SAMPLE TABLE

Date: October 1-5, 2012

Event: 2012-CMP-028

CMP-028

Aqueous Sample Container	250 ml Poly	500 ml Poly	500 ml Poly	1x500 ml Poly	2x1 Liter Poly				
Aqueous Preservatives	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C
Filtered	Field	Field	NA	Field	NA	NA	NA	NA	NA
Lab	TLI	TLI	TLI	TLI	TLI	TLI	TLI	TLI	TLI
Analysis Holding Time	28	180	180	180	2	2	2	2	2

			_			Analy	sis Holdir	ng Time	28	180	180	180	2	2	2	2	2	28	28
Sample Location	Sample ID	Team	Approx DTW (feet TOC)	Target Purge Rate (gpm)	Est. Total Purge (gal)	Est. Total Purge Duration (min)	Previous CR (VI) µg/L	Sample Type	Cr6 (E218.6) FF	Metals (E200.7-E200.8) FF Cr,Mo,Na	Metals (6010B) Total Fe	Metals (E200series) FF AlSbAsBaBeBCaCdCoCrCuFePbMg MnHgMoNiSeAgTIVZnKNa	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Nitrate/Nitrite (SM4500NO3-E)	Ammonia (SM4500NH3)
CW-01D	CW-01D-028	1	108.93	3	98	32.7	0.41	N	10		10	10	10	10	10	10	10	12	10
CW-01M	CW-01M-028	1	108,91	2	42	21.0	2.00	N	10		10	10	10	10	10	10	10	12	10
CW-02D	CW-02D-028	1	91.74	3	135	45.0	0.82	N	10		10	10	10	10	10	10	10	12	10
CW-02D	OW-90-028	1	91.74	3	135	45.0	0.82	FD	10		10	10	10	10	10	10	10	12	10
CW-02M	CW-02M-028	1 -	92.32	2	56	28.0	2.40	N	10		10	10	10	10	10	10	10	12	10
CW-03D	CW-03D-028	1	76.45	3	135	45.0	0.69	N	10		10	10	10	10	10	10	10	12	10
CM-03M	CW-03M-028	1	77.16	2	74	37.0	7.90	N	10		10	10	10	10	10	10	10	12	10
CW-04D	CW-04D-028	1	61	3	124	41.3	1.00	N	10		10	10	10	10	10	10	10	12	10
CW-04M	CW-04M-028	1	61.1	2	56	28.0	8.70	N	.10		10	10	10.	10	10	10	10	12	10
OW-01D	OW-01D-028	1	92.86	3	102	34.0	1.00	N	10		10	10	10	10	10	10	10	12	10
OW-01M	OW-01M-028	1	93.12	3	50	16.7	1.50	·N	10		10	10	. 10	10	10	10	10	12	10
OW-01S	OW-01S-028	1	93.29	1	11	11.0	9.50	N	10	10			10	10	10	10		12	
OW-02D	OW-02D-028	1	91.15	3	120	40.0	ND (1.0)	N	10	10			10	10	10	10		12	
OW-02M	OW-02M-028	1	91.27	2	60	30.0	1.60	N	10	10			10	10	10	10		12	
OW-02S	OW-02S-028	1	91.85	. 1	6	6.00	26.8	N	10	10			10	10	10	10		12	
OW-05D	OW-05D-028	1	94.75	3	130	43.3	ND (1.0)	N	10	10			10	10	10	10		12	
OW-05M	OW-05M-028	1	94.13	3	80	26.7	ND (1.0)	N	10	10			10	10	10	10		12	
OW-05M	OW-91-028	1	94.13	3	80	26.7	ND (1.0)	FD	10	10			10	10	10	10		12	

1 Liter

Poly

H2SO4,

pH<2,

4°C NA

CHMC

1 Liter

Poly

H2SO4,

pH<2, 4°C

NA

TLI

PM Signature:		
QC Signature:		

TOPOCK PLANNED SAMPLE TABLE

Date: October 1-5, 2012

Event: 2012-CMP-028

QC Signatu	ıre:							Jale. Oc	tonei i-	5, 2012		Event.	20 1 Z-C1	VIF-U20					
		-		_	A	queous S	ample Co	ntainer	1 019	500 ml Poly	500 ml Poly	Poly	Poly	2x1 Liter Poly	Poly	2x1 Liter Poly	Poly	1 Liter Poly	1 Liter Poly
						Aqueo	us Presei	rvatives	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	H2SO4, pH<2, 4°C	H2SO4, pH<2, 4°C
							İ	Filtered	Field	Field	NA	Field	NA	NA	NA	NA	NA	NA	NA
								Lab	TLI	TLI	TLI	TLI	TLI	TLI	TLI	TLI	TLI	CHMC	TLI
						Analys	sis Holdir	ng Time	28	180	180	180	2	2	2	2	2	28	28
Sample Location	Sample ID	Team	DTW (feet	Target Purge Rate (gpm)	Est. Total Purge (gal)	Est. Total Purge Duration (min)	Previous CR (VI) µg/L	Sample Type	Cr6 (E218.6) FF	Metals (E200.7-E200.8) FF Cr,Mo,Na	Metals (6010B) Total Fe	Metals (E200series) FF AlSbAsBaBeBCaCdCoCrCuFePbMg MnHgMoNiSeAgTIVZnKNa	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Nitrate/Nitrite (SM4500NO3-E)	Ammonia (SM4500NH3)
OW-05S	OW-05S-028	1	94.77	1	9	9.00	20.2	N	10	10			10	10	10	10		12	
EB-CMP	OW-86-028	1						EB	10										
EB-CMP	OW-87-028	1						EB	10										
EB-CMP	OW-88-028	1.						EB	10										
EB-CMP	OW-89-028	1						EB	10										

- 1. Purge and sample in accordance with SOP A-1 "Purging and Sampling Monitoring Wells" and SOP A-6 "Sample Field Filtration and Preservation for Metals Analyses".
- 2. Record the water level and field parameters during purging. Compare parameters with previous. Note where anamalous data is suspected and investigate equipment problems. If unresolved, report to Barry Collom 541-740-3250.
- 3. Complete the entire field data form and note "NA" where data is not applicable
- 4. Sample when purge volume is greater than or equal to three casing volumes and stablization criteria have been met
- 5. Scan COCs, purge records, field notes and calibration forms at the end of the event following QC and email to Shawn Duffy, Aurora Abbott (aurora.abbott@ch2m.com), Jay Piper (jav.piper@ch2m.com). Tuesdai Powers (tuesdai.powers@critigen.com), and Priva Kumar (priva.kumar@ch2m.com).
- 6. Alkalinity will be collected in same bottle set as SC. Anions, Turbidity and TDS when collected.
- 7. Samples collected for SC. Anions. Turbidity and TDS should be shipped to ensure they do not exceed the minimum hold time, which is 2 days.
- 8. pH triggers contingency actions if pH <6.2 or pH >9.2. If pH out of that range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137). If J. Piper unavailable contact Christina Hong ((213) 228-8248 x35448 or (213) 228-8242).
- 9. TDS triggers contingency actions if TDS >10,800 mg/L (10.8g/L), If TDS is out of that range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137). If J. Piper unavailable contact Christina Hong ((213) 228-8248 x35448 or (213),228-8242).

-83-028, OW-84-028, + OW-85-028

CH2I	VI	H	ILI	L
------	----	---	-----	---

CHAIN OF CUSTODY RECORD

10/16/2012 3:17:52 PM

Page 1 OF 1

Project Name P	-	ck (Container	250 ml Poly	500 ml Poly	1x500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly	·		
Location Topod	ck			(NH4)2S	HNO3	HNO3,	4°C	4°C	4°C	4°C	4°C	H2SO4,	·		
Project Manager			servatives:	04/NH40 H, 4°C	4°C	4°C						pH<2, 4°C			
Sample Manager	Matt Ringi	er	Filtered:	Field	NA	Field	NA	NA	NA	NA	NA	NA			
		Hold	ding Time:	28	180	180	2	2	2	2	2	28			i
Project Number	423575.MF	2.02.CN	Л				(0								. {
Task Order				0		<u> </u>	pe	≥							l
	n 000			Cr6 (≤ e	Viet DAs	Specific	δį			⋗	Am		7	
Project 2012-CM				(E2	Metals	Ba	o O	าร (urk R	귱	Ka	mo		un l	į į
Turnaround Time	-	3		(E218.6)	6	Be F (E)	Conductance (E120.1	Anions (E300.0) · CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM23208)	Ammonia		Number	ŀ
Shipping Date: 1	10/16/2012			6) F	(6010B)	ilte 3Ca	duc	.6	₹	MS	6	(SM4500NH3)			
COC Number: 1				Field	8)	ser red	tan	9	S	25,	ZM.	146		of C	
COC Number.				Q	Ţ	Co	e Ce	₽.	213	1 00	32	8		Containers	l l
				Filtered	Total Fe	S 표	Ē	Ţ	õ	•	8)	Ξ		īta]	ļ
			į	ed	Fi e	eld F	20	SC			i	8	ľ	ine	
	DATE	TIME	Matrix			Metals (E200series) Field Filtered AISbAsBaBeBCaCdCoCrCuFePb		4						S	COMMENTS
CW-02D-028	10/15/2012	10:36	Water	x	х	х	х	х	х	х	х	х		6	
CW-02M-028	10/15/2012	12:04	Water	х	х	х	х	х	х	х	х	х		6	
CW-03D-028	10/15/2012	14:26	Water	х	х	х	х	х	х	х	х	х		6	
CW-03M-028	10/15/2012	15:24	Water	~					7/	.,		~		6	
	10/13/2012	13,34	veater	×	Х	X	X	Х	Х	X	Х	Х		<u> </u>	
OW-90-028	10/15/2012	7:10	Water	х	х	х	х	х	х	х	х	Х	· · · · · · · · · · · · · · · · · · ·	6	
OW-86-028	10/16/2012	7:10	Water	x										1	Hold
OW-87-028	10/16/2 01 2	7:15	Water	x										1	Hdo
			,										TOTAL NUMBER OF CONTAINERS	32	

Approved by Sampled by

Relinquished by

Received by

Received by

Relinquished by

Date/Time 10-16-12

Signatures

Shipping Details

Method of Shipment: courier

On Ice: yes / no

15:40 Airbill No:

Lab Name: Truesdail Laboratories, Inc.

Lab Phone: (714) 730-6239

ATTN;

Special Instructions:

October 1-5, 2012

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303

CHAIN OF CUSTODY RECORD

10/18/2012 3:21:06 PM

Page 1 OF 2

Project Name Po	3&E Topod	ck	Container:	250 ml Poly	500 ml Poly	500 ml Poly	1x500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly							
Location Topod	k .	_		(NH4)2S	HNO3,	HNO3,	HNO3,	4°C	4°C	4°C	4°C	4°C	H2SO4,							
Project Manager	Jay Piper	Pre	servatives:	Ò4/NH4O H, 4ºC	4°C	4°C	4°C						pH<2, 4°C							1
Sample Manager	Matt Ringi		Filtered:	Field	Field	NA	Field	NA	NA	NA	NA	NA	NA							
1		Hol	ding Time:	28	180	180	180	2	2	2	2	2	28							
Project Number	423575.MF	P.02.CI	V!		Z		AIS	Spe	Þ											
Task Order Project 2012-CM	D 020			Cr6 (etals	Metals	Meta	cific	nion			≥	Amr						z	
Turnaround Time		s		(E218.6)	Metals (E200. Filtered	ais (als (t 3aBe	င္ထ	s Œ	urbic	TDS	â	Ammonia	·	•	•			Number	
Shipping Date: 1	•	-			00.7	(6010B)	E200 Filte	onpr	300.	₽	(SM	₹ (%						ļ		
COC Number: 5				Field Filtered	.7-E200.8) Cr,Mo,Na)B)	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	(SM4500NH3)						()	
				Filt	00.8 0,Ne	Total	s) F	æ Œ	. ;: .:	130)	Ö	320B	- NOC						Contai	
				ered) Field	l Fe	ield CuF	120.	, so			ت	3)						ainers	1
	DATE	TIME	Matrix		<u>a</u>		еРь	3	4									ł	S	COMMENTS
CW-01D-028	10/16/2012	11:52	Water	x		х	х	х	х	x	х	х	х						6	
CW-01 M-028	10/16/2012	12:34	Water	x		x_	х	x	x	x	x	X	x						6	
CW-04D-028	10/16/2012	8:48	Water	х		х	х	X	х	х	х	X	х			*•			6	
CW-04M-028	10/16/2012	9:57	Water	х		X	x	x	X	х	x	х	х						6	
OW-01D-028	10/16/2012	14:28	Water	х	·	х	х	х	х	х	~ X	Х	х				9		6	
OW-01S-028	10/16/2012	15:07	Water	x	х			х	х	х	х								4	
OW-88-028	10/17/2012	8:25	Water	х															1	Hold
OW-89-028	10/17/2012	8:35	Water	х															1	Hold
OW-01 M-028	10/18/2012	7:54	Water	х		х	х	х	х	х	х	X	х					•	6	
OW-02D-028	10/18/2012	9:27	Water	х	х			х	х	х	х								4	
OW-02M-028	10/18/2012	11:45	Water	х	х			х	х	X	х							·	4	
OW-02S-028	10/18/2012	10:04	Water	X	х			х	х	х	x								4	
OW-05D-028	10/18/2012	12:56	Water	х	х			х	х	х	х								4	
OW-05M-028	10/18/2012	14:03	Water	. X	х			х	х	х	х								4	

Approved by Sampled by Relinquished by Received by Relinquished by

Received by

Signatures 6-18-12 15:46 Airbill No:

Shipping Details

Method of Shipment:

On Ice: yes / no

Lab Name: Truesdail Laboratories, Inc.

Lab Phone: (714) 730-6239

ATTN:

Special Instructions:

October 1-5, 2012

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303

CH2MHILL	_							CH	IAIN C	F CU	STOD	YRE	CORD	10/18/2012 3:21:07 PM Page 2	OF	_
Project Name PG8	&E Topo	ck	Container	r: 250 ml Poly	500 ml Poly	500 ml Poly	1x500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly			Ī
Location Topock Project Manager Ja		Pres	servatives	(NH4)2S O4/NH4O H, 4°C	HNO3,	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	H2SO4, pH<2, 4°C			I
Sample Manager M	latt Ringi	ier	Filtered	: Field	Field	NA	Field	NA	NA	NA	NA	NA	NA		İ	l
		Hole	ding Time:	: 28	180	180	180	2	2	2	2	2	28		1	ı
Project Number 42 Task Order Project 2012-CMP- Turnaround Time Shipping Date: 10/ COC Number: 5	-028 10 Day	s		Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Cr,Mo,Na	Metals (6010B) Total Fe	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)		Number of Containers	
OW-05S-028 1	10/18/20 1 2	14:41	Water	х	х			x	х	х	x				4	
OW-91-028 1	0/18/2012	7:05	Water	x	х			х	х	х	х				4	
OW-83-028 W	D-18-1.7	-		K				'			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	TOTAL NUMBER OF CONTAINERS	28	Γ
OW-84-028		1516	7	X												<u></u>

Date/Time /0-18-12 1540 Signatures **Shipping Details** Special Instructions: Approved by ATTN: October 1-5, 2012 Method of Shipment: courier Sampled by On Ice: yes / no Sample Custody Relinquished by 10-18-12 15:46 Airbill No: Received by Report Copy to Lab Name: Truesdail Laboratories, Inc. Relinquished by **Shawn Duffy** Received by Lab Phone: (714) 730-6239 (530) 229-3303

CH2MHILL		CHAIN OF CUSTODY RECORD 10/16/2012 3:13:08 PM Page 1	OF .	_1
Project Name PG&E Topock Container Location Topock Project Manager Jay Piper Preservatives:	H2SO4,			
Sample Manager Matt Ringier Filtered:	NA			
Project Number 423575.MP.02.CM Task Order Project 2012-CMP-028 Turnaround Time 12 Days Shipping Date: 10/16/2012 COC Number: 2 DATE TIME Matrix	Nitrate/Nitrite (SM4500NO3-E)		Number of Containers	COMMENTS
CW-02D-028 10/15/2012 10:36 Water	х		1	
CW-02M-028 10/15/2012 12:04 Water	х		1	
CW-03D-028 10/15/2012 14:26 Water	х		1	
CW-03M-028 10/15/2012 15:34 Water	х		1	
OW-90-028 10/15/2012 7:10 Water	х		1	
		TOTAL NUMBER OF CONTAINERS	5	

Signatures Date/Time Special Instructions: **Shipping Details** Approved by 15-16-12 ATTN: October 1-5, 2012 Method of Shipment: courier Sampled by On Ice: yes / no Sample Custody Relinquished by 5;40Airbill No: Received by and Report Copy to Lab Name: CH2M HILL Applied Sciences Lab Relinquished by Kathy McKinley Shawn Duffy Received by Lab Phone: (541) 752-4271 (530) 229-3303

СН2МН	LL					CHAIN	OF CUSTODY	Y RECORD	1	0/18/2012 3:20:36 PM	Page 1	OF	*
Project Name P Location Topo Project Manager	ck	_	Container	Poly H2SO4,							-		
Sample Manager	r Matt Ring	ier	Filtered	: NA						•		ĺ	
			lding Time	: 28					•				
Project Number Task Order	423575.MI	P.02.C	M	N itr									
Project 2012-CN	/P-028			ate/f								z	
Turnaround Time		's		l fr			•				•	Number	
Shipping Date:	10/18/2012			(8)								er of	
COC Number: 6	;			//450									,
				ONO O					·			ntai	
	DATE	TIME	Matrix	Nitrate/Nitrite (SM4500NO3-E)								Containers	COMMENTS
CW-01D-028	10/16/2012	11:52	Water	х								1	
CW-01M-028	10/16/2012	12:34	Water	х							,	1	
CW-04D-028	10/16/2012	8:48	Water	х								1	
CW-04M-028	10/16/2012	9:57	Water	х								1	
OW-01D-028	10/16/2012	14:28	Water	х					ë je	•		1	
OW-01S-028	10/16/2012	15:07	Water	х						-		1	
OW-01M-028	10/18/2012	7:54	Water	х								1	
OW-02D-028	10/18/2012	9:27	Water	х								1	
OW-02M-028	10/18/2012	11:45	Water	х				-				1	
OW-02S-028	10/18/2012	10:04	Water	х						•		1	
OW-05D-028	10/18/2012	12:56	Water	X						·		1	
OW-05M-028	10/18/2012	14:03	Water	х		1.						1	
OW-05S-028	10/18/2012	14:41	Water	х								1	
OW-91-028	10/18/2012	7:05	Water	х								1	
								<u> </u>					
Approved by		Signa	atures		Date/Time 10-18-12	Shippi Method of Shipment	ing Details		ATTN:	Special Instructions: October 1-5, 2012			

Sampled by Relinquished by Received by Relinquished by Received by

10-18-12 1540 Airbill No:

Method of Shipment: courier

On Ice: yes / no

Lab Name: CH2M HILL Applied Sciences Lab

Lab Phone: (541) 752-4271

October 1-5, 2012

Sample Custody

and

Kathy McKinley

Report Copy to

Shawn Duffy (530) 229-3303

				<u>'</u>						Topoon	ournping Log			
Project Na		Topock CMP					Sampling	_	2012-CM	P-028	·	061		
Job Nur	mber 423578	5.MP.02.CM			_		00-	Date _	191161	17		BEC	•	
Sampler		Field Team	1 Field	Conditions S	,	Breezy 90	7° F	Page	of					
Well/Samp		CW-01D-028	^>	· 	QC Sar	mple ID NA				QC Sample	Time	<u> </u>	_	
Purge Start Time	1115	Flow Ce	-ll(Ŷ)/ N	Purge Meth	10d: 21/N *	Ded. I	Pump <u>/</u>	M C	lin. Purge Vo	olume (gal)/(L)	<u>98</u> Purge F	Rate (gpm) (mLpm)	3	
Water Level	Time 7₩₩	Vel, Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		Comments escription below		
109.39	1 1122 21 7.6			7.250	0.4	6.59 79.20		3.97	4.723	67.6	626 Hz 349			
109.42	1129	42	7.78	7.283	0.2	7.86		3.98 4.						
109.42	1136	62	7.78	7.283	B.Z	7.87		1	4.734					
109.42	1143	63	7.78	7.283		7.88			4.735					
109.47	1150	105	7.77		0.2	7.97				66.6				
													<u></u>	
Parameter Co	mpliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td>٠</td><td>10.8</td><td></td><td></td><td></td><td></td></ph<9.2<>					٠	10.8					
**If pH or TDS is	s out of range c	heck calibration,	take to IM3 ar	i nd check pH, Si	ı C-get second pr	। obe. If still out o	រ f range imm	। iediately co	∎ ntact B. Coli	1 lom ((541) 740-	। -3250). If B. Collom ur	navailable contact S	S.	
Duffy ((530) 941	-9227). If S. Du	uffy unavailable co			02 x36602 or (7) +/- 10% NTU	02) 525-1137). If	f J. Piper un NA	1			s) 228-8248 x35448 or	(213) 228-8242).		
Parameter Stal	Parameter Stabilization Criteria +/- 0.1 +/- 3% pH units			+/- 3%	units when >10 NTUs	NA	NA NA +/- 10 mV							
	Did Parameters Stablize prior to sampling?			Y	Y	Y Y NA			19 1					
	Previous Field measurement (4/3/2012) Are measurements consistent with previous?			7314	1!	4.52	28.47	0.47	1	29.2				
		<i>?</i>	4	<u> </u>		higher	NA			4				
Sample Time	11500	Sample Location	pum	p tubing	well port	spigot		bailer	other					
Comments:										 				
Initial Depth to W	Vater (ft BTOC)	109.2	7						WQ ME	ETER MAKE ar	nd SERIAL NUMBER:	4312 SSL. I	20047	
Field measured	confirmation of	Well Depth (ft bto	oc):		Measure	e Point: Well	ΓOC Stee	el Casing	WATER	R LEVEL METE	R SERIAL NUMBER:	PGE-ZAM	27/5	
WD (Well Depth - from database) ft btoc (300.2)										lf Tr	ansducer			
SWH (Standing Water Height) = WD-Initial Depth 190, 98						Initial DTW / Before Removal Approx.				'	A_			
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)					Time Initial DTW Time			Final DTWTime of Reinstallation						
One Casing Volume = D*SWH 32.46					1100 100,00 NA									
Three Casing Vo	lumes =	97,39			Comments:				_					
Color: Glear, gre	y, yellow, brow	n, black, cloudy,	green		Odor: pone, s	ulphur, organic,	other	5	Solids: (Frac	e, Small Qu, M	led Qu, Large Qu, Pa			
NZintandeNPoWacificGas	sElectricCo\Topocki	Program\Database\Fiel	diFrontEnd2Kv34	4_PaperWorkMIST.	nicib\rptPurg sEur mCt	MP						Pag	ge 1 of 1	

Page 1 of 17

Project N	ame PG&E	Topock CMP					Sampling	Event	2012-CM	· · · · · · · · · · · · · · · · · · ·	sampling Log	✓
Job Nu	mber 423575	5.MP.02.CM		·				Date _	19/16/	1 <u>Z </u>		- BEC
Sampler _	<u> </u>	_Field Team	1 Field	Conditions	unny Bu	20249CSF	•	Page	of			
Well/Sam	ple Number 🛚	CW-01M-028			QC San					QC Sample	Time	NA
urge Start Tim	e 1211	Flow Ce	N V	Purge Meth	od: Dink	Z Ded. F		<u> </u>	iin. Purge Vo	lume (gal)(L)	42 P	urge Rate (ppm)/(mLpm)
Water Level	Time 4 mm	Vols Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	(\$	Comments See description below
109.11	1215	8	7.81	7.314	0.4	9.10	29.65	4.0	4.754	65.4	HC33	3
109.13	1219	10	7,80	7.313	0.5	9.18	29.68	4.0	4.753	(do.3		
109.13	1223	24	7,80	7.315	0.5	9.70	29.67		4.754	_		
109.13	1227	37	7.80	7.314	0.7	9.21	29.70		1 .	ldoig		
109.13	1231	40	7.80		0.7		29.70		4.755	117	_	
101.15	12-31	90	7-80	7.314	0. 6	1, 50	C1.10	7.0	7,13 3	60:1	_	
											_	
PRAME						- 				**	_	
Parameter Co	ompliance Crite	ria Pria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td>**********</td><td>-</td><td>· · · · · · · · · · · · · · · · · · ·</td></ph<9.2<>						10.8	**********	-	· · · · · · · · · · · · · · · · · · ·
uffy ((530) 94	s out of range of 1-9227). If S. Du abilization Crite	iffy unavailable c	take to IM3 ar ontact J. Pipe +/- 0.1 pH units	nd check pH, Si r ((702) 953-12 +/- 3%	C-get second pro 02 x36602 or (70 +/- 10% NTU units when >10 NTUs	obe. If still out o 02) 525-1137). If +/- 0.3 mg/L	f range imm f J. Piper una NA	ediately co available c	ontact B. Coll ontact Christ NA	om ((541) 740- ina Hong ((213 +/- 10 mV	3250). If B. Col) 228-8248 x35	lom unavailable contact S. 448 or (213) 228-8242).
Did Parameters 8	Stablize prior to sa	mpling?	i.l	· ·	7	u	NA		_	4		
Previous Field m	easurement (4/3/2012)	7.86	7294	1	5.04	29.38	0.47		19.3		
Are measuremer	its consistent with	previous?	U	U		h-aner	NA			4		
Sample Time Comments:	1234	Sample Location	: pun	np tubing	well port	spigot	t	pailer	other _		· · · · · · · · · · · · · · · · · · ·	
nitial Depth to \	Nater (ft BTOC)	169.07		_			\sim				d SERIAL NUM	33600 F
ield measured	confirmation of	Well Depth (ft bto	oc):		Measure	Point: Vell 1	TOC) Stee	el Casing	WATER		R SERIAL NU	MBER: 1475-7005-C
VD (Well Depth	ı - from databası	e) ft btoc(19			Initial DTM	/ Before Remov	<u></u>	•			ansducer	
, ,		WD-Initial Deptl			Time	Initial DTW		prox. 5 mi Time	n After Reins Fina	tallationT al DTW	ime of Remova	1 A
		0.17, 4"= 0.66,		in)	1205	109		11110	1 1116	"Т	ime of Reinstal	lation
-	ume = D*SWH	1.	3.7Co		Comments:	109					T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
hree Casing V		41,	C-1							<u> </u>		
olor: 🕅 ear	ey, yellov, brow	n, black, cloudy,	green	4 PaperWorkMIST.	/ Y	ulphur, organic,	other	;	Solids: Trad	, Small Qu, M	ied Qu, Large C	Qu, Particulate, Silt, Sand Page 2

Project N	Name PG&E	Topock CMP					Sampling		2012-CM		
Job N	umber 42357	5.MP.02.CM			0000	•		Date /	<i>0/15/1</i>	Z	Bec /
Sampler	<u>Ubh</u>	_ Field Team	1 Field	Conditions _	80 Su	nuy Cal	u	Page	of		<u> </u>
Well/San	nple Number	CW-02D-028	*******		QC Sar	nple 🕅 🛮 OW	-90-028			QC Sample	Time 07/01
Purge Start Tir	ne <u>094</u> -	7 Flow Ce	N (Purge Meth	10d: 2~6	ned ps Ded. I	Pump	A M	in. Purge Vo	lume(galy(L)_	Purge Rate (gpm)/(mLpm)
Water Level	Time	Vel. Purged	рН**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
9248	0956	27	7.94	7.497	0.4	7.38	30.71	4.10	4,880	61.4	Hz 301
9251	1005	54	8.02	7,501	00	7,27	3549	4.10	4875	525	
92.51	1014	81	8.05	7.503	0.3	7.29			41878		
a251	1023	108	8.06	7.5 We		7.29	30,49				
4251	1032	135	क्रज	7.567	0.2	99.58					
						7.28				.:	
											·
Parameter C	ompliance Crite	ı eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td></td></ph<9.2<>						10.8		
**If pH or TDS	is out of range o	heck calibration	l take to IM3 ar	ld check nH S(aet second bro	he Ifstillouto	f range imm	 ediately.co	l ntact B. Colle	om ((541) 740-	I 3250). If B. Collom unavailable contact S.
Duffy ((530) 94	11-9227). If S. Di	iffy unavailable co	ontact J. Piper	((702) 953-120	02 x36602 or (70	02) 525-1137). If	J. Piper una	available co	ntact B. Contact	na Hong ((213) 228-8248 x35448 or (213) 228-8242).
Parameter St	abilization Crite	ria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
Did Parameters	Stablize prior to sa	mpling?	4	Ψ	Ч	У	NA			φ	
Previous Field n		4/4/2012)	8.0 ¢	7465	2′	7.79	30.32	0.48		15.3	
	nts consistent with		4	4	4	<u> </u>	NA	<u></u>		4	
Sample Time	1034	Sample Location	pum	p tubing	well port	spigot	b	ailer	other		
Comments:							· · · · · · · · · · · · · · · · · · ·			.	
<u> </u>											
Initial Depth to	Water (ft BTOC)	92.39	<u> </u>				4				d SERIAL NUMBER: 45556 DIGOL
		Well Depth (ft bto	oc):		Measure	Point: Weil 7	O) Stee	I Casing	WATER		R SERIAL NUMBER: POLE \$605-03
	h - from databas				Initial DTM	/ Before Remova					ansducer
SWH (Standing	Water Height) =	WD-Initial Depth	262			Initial DTW	, 42		After Reins	tallation T	ime of Removal
		0.17, 4"= 0.66, 1	"=0.041 <u>(2</u>	in)	Time	92.38		Time P -	FIIIa	T	ime of Reinstallation
_	lume = D*SWH ₋	1220	·64		Comments:	16-08		[-			4
Three Casing V		153.4	11 MARK WAS AN ARCHITECTURE						~		
Color: clear gr	ey, yellow, brow	n, black, cloudy,	green	: D	Odor: none, si	ulphur, organic,	other	9	Solids: Trac	, Small Qu, M	led Qu, Large Qu, Particulate, Silt, Sand Page 3 of

Topock Sampling Log 2012-CMP-028 **Project Name** PG&E Topock CMP Sampling Event Job Number Date 15#5162 423575.MP.02.CM Page of Field Team Field Conditions Sampler QC Sample ID NA Well/Sample Number | CW-02M-028 QC Sample Time Purge Start Time 132 Min. Purge Volume (gall)(L) 5 Purge Rate (gpm)/(mLpm) Flow Cell: N Purge Method: 2, n grand Ded. Pump NO TDS** Water Time Vol. Purged pΗ** Conductivity Turbidity Diss. Oxygen Temp. Salinity Eh/ORP Comments gallon / liters (See description below mS/cm NTU Levei mg/L g/L mv 4.747 10.8 **Parameter Compliance Criteria** 6.2<pH<9.2 **If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137). If J. Piper unavailable contact Christina Hong ((213) 228-8248 x35448 or (213) 228-8242). +/- 10% NTU +/- 0.3 +/- 0.1 NA +/- 10 mV units Parameter Stabilization Criteria ma/L pH units when >10 NTUs NΑ Did Parameters Stablize prior to sampling? Previous Field measurement (4/4/2012) 29.55 0.47 Are measurements consistent with previous? NA Sample Time Sample Location: pump tubing bailer other Comments: WQ METER MAKE and SERIAL NUMBER: Initial Depth to Water (ft BTOC): Measure Point: Steel Casing WATER LEVEL METER SERIAL NUMBER: Field measured confirmation of Well Depth (ft btoc): If Transducer WD (Well Depth - from database) ft btoc Initial DTW / Before Removal Approx. 5 min After Reinstallation SWH (Standing Water Height) = WD-Initial Depth Time of Removal Initial DTW Time Time Final DTW Time of Reinstallation D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 One Casing Volume = D*SWH

Odor: none, sulphur, organic, other

Comments:

Three Casing Volumes =

Color: clear, grey, yellow, brown, black, cloudy, green

nicGasElectricCo\TopockProgram\Database\Field\FrontEnd2Kv344_PaperWorkMIST.mdb\rptPurgeFormCMP

Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand

\\\Zinfande\Proi\PachcGasElectricCo\TopockProgramDatabase\Field\FrontEnd2Kv344_Paper\VorkMIST.mdb\rptPurgeFormCMP

Page 5 of 17

Job Nu		5.MP.02.CM		·			Sampling	Date	10/15/1				Dis	
Sampler _	00	_ Field Team	1 Field	d Conditions	unnil. Mos	er, Breezy		Page	of					
Well/Sam	ple Number	CW-03M-028			QC Sar					QC Sample	Time	NA		
Purge Start Tim	e 1457	Flow Ce	ell�⁄ N	Purge Meth	nod: 2 in Gru	ndfos Ded. F	oump 1	M M	in. Purge Vo	plume (gal)/(L)			e (gpm)/(mLpm)	2
Water Level	Fime	Vol-Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv			nments ription below	
77.77	1500	16	7,78	9.030	0.7	2.51	30.18	4.82	5.664	-1.9	H	201		
71.17	1508	37	7.79	8.567	0.7	3.29	35.20	1		-1.3				
77.71	1516	48	7,79	8.517	0.4	3.39	1		5.535	-0.9				
77.77	1524	64	7.78	8.501	0.4	3.40			5.576	I .				
77.77	1532	80	7.78	8.495	0.2	3.43	1		5.573	-7.7				
						7.5								······································
														
Parameter Co	mpliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td></td><td></td><td></td><td></td></ph<9.2<>						10.8					
**If pH or TDS i	s out of range c	heck calibration, iffy unavailable c	take to IM3 ar	l nd check pH, St r ((702) 053 12	l C-get second pro	obe. If still out o	f range imm	l ediately co	I ntact B. Coli	om ((541) 740-	3250). If B.	Collom unav	ailable contact S.	
	bilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA .	NA	NA NA	+/- 10 mV) 220-0240	X33440 01 (2	(3) 220-0242).	,
Did Parameters S	Stablize prior to sa	mpling?	4	4	1/	U	NA	-	-	4			·	 -
Previous Field me	<u>`</u>	4/4/2012)	7.d6	8913	भ	2.54	29.89	0.58		76				
	ts consistent with		Ψ	4	- U -	higher	. NA			losiur				
Sample Time Comments:		Sample Location	P	10 tubing	well port	117@07		wwp '	other _					
		the !	~ ~ ~ 7	/ A)								(lersel Die	-M/17
Initial Depth to V	,		0077	·60	Magazira	e Point: Well 1	500	l Casing		TER MAKE ar		-	ISISSY DICE PGIE-COCS	
		Well Depth (ft bto			Measure	e Point. Veil 1	Siece	er Casing	VVATER	R LEVEL METE	ansduce		TUE 2000	<u> </u>
		e) ft btoc(22 = WD-Initial Depti	2) \	4 144.4	Initial DTW	/ Before Remova	al Ap	prox, 5 mir	After Reins	4-11-41	ime of Rem		-A	
_		0.17, 4 "= 0. <u>6</u> 6, 1		! in)	Time	Initial DTW	,	Time		al DTW	ime of Rein		<u> </u>	
One Casing Vol		824		1.55	1440	78.60		P -					- V	
Three Casing V		873	137	3,64	Comments:	·				· / 				
Color: clean gr	ey, yellow, brow	n, black, cloudy,	greer.	A Danadatows40T	Odor: none s	ulphur, organic,	other		Solids: Teac	e, Small Qu, M	led Qu, Lar	ge Qu, Partic	ulate, Silt, Sand Pagè (6 of 17

1	·					1				Topock S	Sampling Log		
Project N		Topock CMP		·	,	at .	Sampling	Event _	2012-ÇM				N.I
Job Nu	umber 423575	5.MP.02.CM		•				Date	3 0//6	11/2		<u> </u>	BEC
Sampler _	<u> </u>	_Field Team _	1 Field	Conditions	Sunny, C	ool, Calu	<u> </u>	Page) of				
	ple Number		7.5-2.15.33	*	QC Sar	nple ID NA	· · · · · · · · · · · · · · · · · · ·			QC Sample	Time		
Purge Start Tim	10 0801) Flow Ce	ell: 🙆 N	Purge Meth	nod: 2in gru	S Ded. F	Pump 1	⊘ _M	in. Purge Vo	olume (ga))/(L)	124	Purge Rate gpm	/(mLpm)
Water Level	Time &w.n	Vol Rurged gallors / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		Comments (See description b	pelow
61.75	0814	24	7.79	7.300	1	8.51	29.80	3,99	4.748	114.0	Hze	291	-
61.80	0822	48	7.94	7.391	2				4.831				
61.80	0830_	77_	7.96	7.655	0.5	8,71	35.41	119	4.978	885		_	
61.80	08-38	96	7.97	7.695	3.8	8.74	3042	4.22	5,004	83,6			
	0846	170	7.97	7717	0,7	I —				80,7			
1													
				-								-	
		····										-	
Parameter C	ompliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td>·</td><td>-</td><td></td></ph<9.2<>						10.8		·	-	
												ollom unavailable (5448 or (213) 228	
	abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA -	NA	+/- 10 mV	,,	011001(110)1110	02 12).
Did Parameters	Stablize prior to sa	mpling?	U	У	У	У	NA	_	-	Ч			
Previous Field m		(4/4/2012)	7.\$7	7641	1,	8.48	30.44	0.49		22.4			
Are measureme	nts consistent with	/	y	Y	Y	4	NA	_		4			
Sample Time	08481	Sample Location	ı: (pun	np tubing	well port	ι spigot	t	oailer	other _				- ,
Comments:													· · · · · · · · · · · · · · · · · · ·
Initial Donth to	Water (ft BTOC)	61,37	·	<u></u>					WQ ME	TER MAKE ar	nd SERIAL NU	IMBER: YSISST	6 NETURI
•		Well Depth (ft bt	uc).		Measure	Point: Well 1	TOC Stee	el Casing	WATER	R LEVEL METE	ER SERIAL NU	JMBER: \overrightarrow{PG}_{E}	ETOAS-A
	h - from databas						- 		····	Jf Tr	ansducer		200005
, ,		= WD-Initial Dept	' , a	.(08	Initial DTW	/ Before Remova	al Ar	prox. 5 mir	After Reins		ime of Remov	ral \mathcal{N}	1
	-	0.17, 4"= 0.66,	•	in)	Time	Initial DTW		Time	Fina	I DTWT	ime of Reinsta	allation	
	lume = D*SWH	41,0	8		0750	6152	_ / _	リナ —					
Three Casing \		173.0	<u> </u>		Comments:					\			
1 \		n, black, cloudy,	green		Odor: none,)s	ulphur, organic,	other	5	Solids: Trac	e) Small Qu, M	1эd Qu, Large	Qu, Particulate, S	Silt, Sand
\ / -		Program/Database\Fie	_	4 PaperWorkMIST.	1 /	t.				/	-		Page 7 of 1

1										Topock S	ampling Log	
Project N		Topock CMP					Sampling		2012-CMF			0.61
Job Nu	mber 42357	5.MP.02.CM		_					10/16/	<u> </u>		BEL
Sampler _	<u> </u>	_ Field Team	1 Field	Conditions S	inny Cl	oor, Calm	. Sec F	Page	of			
Well/Sam	ple Number	CW-04M-028			QC Sar	nple ID NA				QC Sample 1	Time 🕠	· ·
Purge Start Tim	0975	Flow Ce	N (Q)	Purge Meth	od 2. Kr	Z Ded. F	oump	M M	in. Purge Vo	lume (gal)/(L)	56_Purge	Rate (gpm)/(mLpm)
Water Level	Time Gunn	Vol. Purged gallons)/ liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		Comments description below
61.82	0931	17	7.77	6.940	0.3	5.92	29.71	3,71	4.502	69.9	Hz 280	<u> </u>
61.85	0937	74	7.76	6.824	0.8		29.77	3.71	4.436	67.9		
(01.85	0943	36	7.76	6.827	0,5	5.23	29.79	3.71	4.439	65.9		
Co1,85	0949	48	7.76	6.80	(),7		79.78	l		65.4		
61.85	0955	60		6.823	0.4	5.70	79.81		4.434			
								İ				1

Parameter C	ompliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td>•</td><td></td><td></td><td></td><td>10.8</td><td></td><td></td><td></td></ph<9.2<>		•				10.8			
•	•			od check nH S(net second nr	nhe Ifstillouto	 f range imm	 ediately.co	! !	nm ((541) 740-	 3250)	unavailable contact S.
					02 x36602 or (7) 228-8248 x35448	
Parameter Sta	bilization Crite	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		
Did Parameters	Stablize prior to sa	ampling?	Ч	У	У	4	NA	_ '		Ч		
Previous Field m	······	(4/4/2012)	7.78	6792	1′	4.02	29.48	0.44	-	15.5		
	its consistent with	previous?	U	<u> </u>	<u> </u>	φ	NA			<u> </u>		
Sample Time	0951	Sample Location	. (pum	np tubing	well port	spigot	·	oailer	other			
Comments:			 -		· · · · · · · · · · · · · · · · · · ·							
<u></u>						·						
Initial Depth to	Vater (ft BTOC)	: 61.50	١.						WQ ME	TER MAKE an	d SERIAL NUMBEF	E YSESSLO DICUY
Field measured	confirmation of	Well Depth (ft bto	oc):		Measure	e Point: Well 🦪	Stee	el Casing	WATER	LEVEL METE	R SERIAL NUMBE	R: PC/F-2005-03
WD (Well Depth	ı - from databas	se) ft btoc(16	9.8)								ansducer	
SWH (Standing	Water Height) =	= WD-Initial Deptl	1/08	`13		/ Before Remova	74	<u> </u>	n After Reins		ime of Removal	NA
D (Volume as p	er diameter) 2"=	= 0.17, 4"= 0.66, 1	i"=0.041 <u>(</u> 2	! in)	Time	Initial DTW		Time	Fina	I DTW	ime of Reinstallation	n
One Casing Vo	ume = D*SWH	18	.4_		0900	4,50		WH.				W
Three Casing V	olumes =	5_5	75_		Comments:							
Color: (lear, g	ey, yellow, brow	vn, black, cloudy,	green		Odor: none, s	ulphur, organic,	other	,	Solids: Trac	e) Small Qu, M	ed Qu, Large Qu, P	Particulate, Silt, Sand
\Zinfandel\Proj\PacificG	asElectricCo\Topock	: Program\Database\Fie	ld\FrontEnd2Kv34	4_PaperWorkMIST.i	mdb\rptPurgel	MP				/ 1		Page 8 of 17

										Topock S	Sampling Log		
Project N	lame PG&E	Topock CMP					Sampling	Event	2012-CM	P-028			-
Job Nu	mber 42357	5.MP.02.CM						Date	16/16	<u> </u>	·	- BEL	
Sampler		_ Field Team _	1 Field	Conditions	Sunny, F	Sheezo c		Page	of	<u></u>			
Well/Sam	ple Number	OW-01D-028			QC Sar					QC Sample	Time	M	
Purge Start Tim	ne <u>135</u>	Flow Ce	ıl⊘ N	Purge Meth	od: 2.~*	3 Ded. F	oump 0	О м	in. Purge Vo	olume (gal)/(L)		Purge Rate (gpm)/(mLpm)	3_
Water Level	Time	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	(Comments (See description below	
98.60	1401	18	7.72	7.220	0.3		28.0	345	4.693	39.1	itz	337	
98.62	1407	36	7.80	7.277	2	7.37	D7.81	3.99	4,730	50.1			
98.85	1413	54	7.82	7,277	1.5	7.51	27.83	3.99	4.730	54.1			
98,70		77	7.81	7.278	0.8					55.6		-	
98.70		90	7.81	7.277	0.9					56.4			
,													
			-		Series								
Parameter C	ompliance Crit	eria .	6,2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td></td><td></td><td></td></ph<9.2<>						10.8				
**If pH or TDS	is out of range of	heck calibration.	I take to IM3 ar	l nd check pH, S(l C-get second pr	I obe. If still out o	I If range imm	I [.] lediately co	I ntact B. Coll	l om ((541) 740	I -3250). If В. Со	ollom unavailable contact S	3.
Duffy ((530) 94	11-9227). If S. D	uffy unavailable c	ontact J. Pipe	r ((702) 953-12	02 x36602 or (7	02) 525-1137). It	f J. Piper un	available co	ontact Christ	ina Ĥong ((213	3) 228-8248 x3	5448 or (213) 228-8242).	
Parameter St	abilization Crite	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV			
Did Parameters	Stablize prior to sa	ampling?	P	4	Ч	4	NA		-	4			
Previous Field m		(10/5/2011)	7.77	7821	11	6.52	27.89	0.51		89.9			
	nts consistent with		- V -	<u> </u>	<u> </u>	· ·	NA			<u> </u>			
Sample Time	Λ	Sample Location	: GG pum	np tubing	well port	spigot		bailer	other _				
Comments:	Collocat	KR CO	2.2.1	028 60	SILLIC	0323							
		00.	س،		······································							IRT	
Initial Depth to	Water (ft BTOC)	: <u>93.C</u>	8				Q				nd SERIAL NU		5476
Field measured	d confirmation of	Well Depth (ft bto	oc):		Measure	e Point: Well	PÓC Stee	el Casing	WATER	R LEVEL METE	ER SERIAL NU	IMBER: POF-ZOOS	<u>:03</u>
WD (Well Dept	h - from databas	e) ft btoc(27	<u> </u>		Initial DTM	/ Before Remov	2				ansducer		
		= WD-Initial Dept			Time	Initial DTW		prox. 5 mir Time	n After Reins	stallation	Time of Remov	al UP	
		= 0.17, 4"= 0.66,	2)_ 0.041 (2 الما	! in)	1345	93.08		A	1 1110		Time of Reinsta	allation	
=	lume = D*SWH	02	117	- yet T	Comments:	1000		19				~	
^<_	/olumes =	75	45				· · · · · · · · · · · · · · · · · · ·						
Color:/clear.)g	rey, yellow, brov	vn, black, cloudy,	greer		Odor: none, s	ulphur, organic,	other	:	Eolids: Trac	cel Small Qu, N	/led Qu, Large	Qu, Particulate, Silt, Sand	

										Topock S	Sampling Lo	g	
Project N		Topock CMP			•	<u>.</u>	Sampling		2012-CM		,		V
Job Nu	mber 42357	5.MP.02.CM						Date _	15/18/1	<u> </u>			BEL
Sampler_	<u>Uer</u>	_ Field Team _	1Field	Conditions 1		ear, Coo		Page.	of				
Well/Sam	ple Number	OW-01M-028			o c Sar	mple ID NA				QC Sample	Time	NA	
Purge Start Tim	e 0735	Flow Ce	ell: 🔥 N	Purge Meth	od: 2, n 🕷	Ded. F	oump _4	<u>С</u> м	in. Purge Vo	olume (gal)/(L)	48	Purge Rate (9	pm)/(mLpm) 3
Water Level	Time	Vol. Rurged gallops / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv		Comme (See descripti	
93.86	0738	9	7.15	7.103	3	8-26			4.621		172	335	
93.88	0741	18	7,50	7.114	2	760	28:08	3.89	4.624	90.2			
93.88	0744	27	7.6	7.117		7.64	28.04	3.89	4.627	84.6			
93.88	0747	36	7.68	7.120		7.59	Z8 .08	3.89	4628	80.0			
93.88	0750	45	7,63	7.123	0.5	8.00				77.2			
		, ,											
													
Parameter C	ompliance Crit	ı eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td> </td><td></td><td></td></ph<9.2<>						10.8		 		
ţ	•	check calibration,	l take to IM3 ar	ndicheckinH Si	 net second nr	! ohe Ifstillouto	[f range imm	l ediately co	l ntact B. Coll	om ((541) 740	 -3250) f R	Collom unavaila	able contact S
Duffy ((530) 94	1-9227). If S. Di	uffy unavailable c	ontact J. Pipe	r ((702) 953-12	02 x36602 or (7	02) 525-1137). If	J. Piper una	available co	ntact Christ	ina Hong ((213	3) 228-8248	x35448 or (213)	228-8242).
Parameter Sta	abilization Crite	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV			
Did Parameters	Stablize prior to sa	ampling?	Ч	Ч	Ч	4	NA		J	У			
Previous Field m		(10/5/2011)	7.81	7553	1	7.05	28.42	0.49	_	83.1	*		
	nts consistent with	<u> </u>	4	4	<u> </u>	4	NA			<u> </u>			
Sample Time	0154	Sample Location	i: pun	np tubing 🗡	well port	spigot	k	ailer	other _				·
Comments:				· · · · · · · · · · · · · · · · · · ·					····				
	Water (ft BTOC)): 93.5 Well Depth (ft bt			Measure	e Point: Vell 1	VOD Stee	el Casing					E-7005-63
WD (Well Depti	h - from databas	se) ft btoc (18	5.8)					-			ansduce	r	. 4
SWH (Standing	Water Height)	= WD-Initial Dept	h 9717	75		/ Before Remova	۰, ۴		After Reins		Time of Rem	oval	M
D (Volume as p	er diameter) 2"=	= 0.17, 4"= 0.66,	1"=0.041(2	! in)	Time	Initial DTW		Time	Fina	al DTW7	Time of Rein	stallation	
One Casing Vo	lume = D*SWH	15.	<u>e</u> 8		0/0	93.55	1	# —					Ψ
Three Casing V	olumes =	47.0	>		Comments:								
Color: dear, g	rey, yellow, brov	vn, black, cloudy,	green		Odor: none, s	ulphur, organic,	other	8	Solids: Trac	Small Qu, N	/led Qu, Larç	ge Qu, Particulat	te, Silt, Sand

						<u> </u>				тороск 8	Sampling Log	
Project Na	me PG&E	Topock CMP					Sampling	Event _	2012-CM			V
Job Num	1ber 423575	5.MP.02.CM						Date	10/16	112		Ba
· Sampler		_Field Team _	1Field	d Conditions	inny, Ca	lu 950/		Page) of	<u></u>		• • • • • • • • • • • • • • • • • • •
Well/Samp	le Number 🛚	OW-01S-028			QC Sar	1				QC Sample	Time 15	
Purge Start Time	1450	Flow Ce	N / M	Purge Meth	od: 2'n *	2 Ded. I	Pump 10()M	lin. Purge Vo	•		te (gpm)((mLpm)
Water Level	Time	Val. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		nments cription below
93.50	1454	2	7:57	5.273	3	8.27	29.49	2.70	3291	62.0	Hz 255	-
43.50	1456	_4	7.59	4.666		8,35	2168	2.45	3.007	62.5		
93.50	1458	Ġ	7.60	4.550)	8.37	2964		2.895	623		
93.5D	1500	8	7.61	4.422	2	8.41	29.66	<i>7.3</i> 3	2.860	62.3		
93.50	1502	10	7.67	4.33(1	8.30	2964		_	622		
93.50	1504	17	7.64	4.295	7	8.26	29.66		2.744	61.9		
	1 3 - 1		1,4	1,0,5			1					
												-
Parameter Coi	mpliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td>10.8</td><td></td><td></td><td></td></ph<9.2<>			<u> </u>			10.8			
			take to IM3 a	l ndicheckipH S0	l. C-aet second no	l ohe Ifstillouta	l of range imm	! ediately co	I intact B. Coll	l om ((541) 740-	l -3250). If B. Collom unav	vailable contact S
											3) 228-8248 x35448 or (2	
Parameter Stab	oilization Crite	ria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		
Did Parameters St	ablize prior to sa	mpling?	Ų	4	4	4	NA	_	•	Y	· · · · · ·	-
Previous Field mea	_·`	4/5/2012)	7.47	5499	1,	6.77	28.74	0.35		75.6		
Are measurements	s consistent with	previous?	4	<u> </u>	<u> </u>	4	NA			<u> </u>		
Sample Time Comments:	glock E	Sample Location	n: -88-07	np tubing &	well port 7/17/12	USAS		pailer	other			
Initial Depth to W	/ater (ft BTOC)	93.46			•						nd SERIAL NUMBER:	yst Diarvy
Field measured of	confirmation of	Well Depth (ft bt	oc):		Measure	e Point: Well	TOC Stee	el Casing	WATER		ER SERIAL NUMBER:	HH-2005-03
WD (Well Depth	- from databas	e) ft btoc(11	3.5)		Initial DTM	/ Before Remov	,al				ansducer	- 1/1 -2 2-
SWH (Standing \	- ·	•		- 1	Time	Initial DTW		prox. 5 mil Time	n After Reins Fin:	T DTW	Time of Removal	1438
D (Volume as pe	•	0.17, 4"= 0,66,	1"=0.041 <u>(</u> 2	2 in)	1435	93.46		7 5	93.0	Т	Time of Reinstallation	1518
One Casing Volu			45	4	Comments:	17).40		-		Н		
Three Casing Vo		عاقب الما	-TC 10)·L						•		
Color: cear, gre	y, yellow, brcw	n, black, cloudy,	green		Odor: none, s	ulphur, organic,	other	;	Solids: (rad	e, Small Qu, M	اed Qu, Large Qu, Partioر	culate, Silt, Sand

<u></u>										Topoul	diriping Log		··/
Project N		Topock CMP					Sampling		2012-CM		***************************************	<u> </u>	
Job Nu	A A	5.MP.02.CM	4	_				Date	10/18/1	7			br
Sampler _	<u> (CG) </u>	_ Field Team	Tield	Conditions >	unny, C		4	Page	of of			- <u> </u>	
Well/Sam	ple Number		<u>-</u>		QC Sar	nple ID NA				QC Sample	Time	NH.	
Purge Start Tim	16 0816	Flow Ce	ell:Ø/N	Purge Meth	od: 2 n *	3Ded. I	oump 🗸	<u> </u>	in. Purge Vo	olume (gái)/(L)	127	Purge Rate (gp/h)/(m	Lpm) RZ
Water Level	Time	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		Comments (See description belo	ow
91.82	0829	22	7.91	7.175	0.2	6.09	29.58	3,92	4.664		17	397 323	
91.82	0840	44	7.96	7.179	6.2	6.29	79.58	3.92	4.666	56.8			
91.82	0851	66	799	7.180	0.2	6.25	29.56	3.92	4.66	55.3			
91.82	0902	88	800	7,181	0.2	6.33		·					
91.82	0913	110		7.181	0.2	6.43			1				
91.87	0924	137	8.01	7.181	0.2	1 .	Z9.56						······································
	0969	136	0.0	_ (V . 10	2 1.50	2:12	-1.46	70.7			
													· · · · · · · · · · · · · · · · · · ·
Doromotor C	amulianas Criti	<u> </u>	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td></td><td>.</td><td></td></ph<9.2<>						10.8			.	
	ompliance Crite		l .			l .	[. •	ļ				•
												ollom unavailable cor 35448 or (213) 228-82	
	abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV			
Did Parameters	Stablize prior to sa	ampling?	Ú	Ч	V	4	NA	_	_	4			
Previous Field m		(10/5/2011)	7.86	7616	1	6.63	29.46	0.49		73.3			~ · · · · · · · · · · · · · · · · · · ·
	nts consistent with	·	4	Y	<u> </u>	4	NA		Ų.	4			
• •		Sample Location	i: pum	np tubing	well port	spigot		pailer	other				
Comments:	umpa	t sgpm i	with 1/2	zin tubi	ng. Usi	13/8 Of	Zgpina	<u> </u>					
	·												
Initial Depth to	Water (ft BTOC)	: 9116	α				=		WQ ME	ETER MAKE an	nd SERIAL NU	JMBER: 4557 [2104-47
•	•	Well Depth (ft bt	oc):		Measure	e Point: Well	TOG Stee	el Casing	WATER	R LEVEL METE	R SERIAL N	UMBER: PAF	PM5-03
WD (Well Dept	h - from databas	se) ft btoc (34	0)						•	If Tra	ansducer		
,		= WD-Initial Dept	n 248	.31		/ Before Remov	7.4	•	n After Reins	t	ime of Remo	val	4
D (Volume as p	er diameter) 2"=	= 0.17, 4"= 0.66,	1"=0.041 (2	in)	Time	Initial DTV		Time .	Fina	al DTWT	ime of Reinst	allation	
One Casing Vo	olume = D*SWH	42.2			0810	91.69	N	+				W.	·
Three Casing \	/olumes =	176	.64		Comments:	* * * * * * * * * * * * * * * * * * *					· · · · · · · · · · · · · · · · · · ·		
Color: clear, g	rey, yellow, brov	vn, black, cloudy,	green		Odor:(none, s	ulphur, organic,	other	5	Solids: Trad	/∤ ce, Small Qu, M	led Qu, Large	Qu, Particulate, Silt,	Sand

\\Zinfande\ProilPacificGasElectricCo\TopockProgram\Database\Field\FrontEnd2Kv344_Paper\VirkMIST.mdb\rptPutger ormCMP

Page 13 of 17

Project N Job Nu Sampler	····· ——	Topock CMP 5.MP.02.CM _ Field Team	1 Field	Conditions \dot{C}	ON, Wino	ly 80°	Sampling	Event Date	2012-CM / <i>O</i> // <i>S</i> /		bic		
Well/Sam	ple Number	OW-02S-028			QC San	nple ID NA		***		QC Sample	Time VA		
Purge Start Tim	ne <u>0946</u>	Flow Ce	ell ⊘ /N	Purge Meth	od Chark	Ded. F	oump M	м	in. Purge Vo	olume(gal)/(L)	/5 Purge Rate (gpm)/(mLpm)		
Water Level	Time 3mn	Vol. Purged	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below		
92.73	0949	3	8.18	1.716	5	7.91	29.38	086	1.117	35.8	HZ257		
92.72	0952	6	8.13	1.714	3	7.90	29.62	0.86	1.114	<i>5</i> 8.7	Mamp 898A		
92.72	0955	9	8.10	1.714	2	7.91	29.50	0.86		40.9	Hz -> 751 (a little fist before)		
92.72	0958	12	809	1.717	1	7.91	29.57	086	1.116	42.4	U		
92.72	091001	15	808	1.716		7.92	29.55	0.86	1.115	43.2			
									·				
-													
L		,											
	ompliance Crite		6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td></td></ph<9.2<>						10.8				
											-3250). If B. Collom unavailable contact S. 3) 228-8248 x35448 or (213) 228-8242).		
Parameter St	abilization Crite	ria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV			
	Stablize prior to sa		4	<u> </u>	Ч	4	NA	U	-	4			
Previous Field n Are measureme	nts consistent with	(4/5/2012) previous?	8.04	1739	1	7.49	29.01 NA	0.11 <i>U</i>		38.2			
Sample Time	1004	Sample Location	i: num	np tubing \(\sqrt{\phi}\)	well port	spigot		pailer	other				
Comments:				ip tooming	won port								
	pump using non-port square sails												
WD (Well Dept	h - from databas	e) ft btoc (12	1)						,	If Tr	ansducer		
		= WD-Initial Dept				/ Before Remov			After Réins		Time of Removal 0939		
		= 0.17, 4"= 0.66,	1"=0.041 (2	! in)	Time 0935	92.4		Time		al DTW ・仏の	Fime of Reinstallation		
_	olume = D*SWH	4.86	2		Comments:	1-16-4	1 1	<u> </u>					
Three Casing \		-17.09					- #I)	And Out I ame Out Destinuted to Oil On I		
Color: clear, g	irey, yellow, trov	vn, black, cloudy,	green		Odor:/none, s	ulphur, organic,	otner	8	olias: (rad	ze, Small Qu, N	Med Qu, Large Qu, Particulate, Silt, Sand		

Project N	lame PG&E	Topock CMP					Sampling	Event _	2012-CM			001
Job Nu	72,007,	5.MP.02.CM		_				Date _	10/18	//Z	 	BEL
Sampler_	(G)	Field Team	1 Field	Conditions	unnef wi	udy 907		Page	of			
Well/Sam	ple Number	OW-05M-028			QC San	nple ID OW	/-91-028			QC Sample	Time 07	(Fut in MIST)
Purge Start Tim	ne <u>1321</u>	Flow Ce	il N	Purge Meth	od: 2in &	Ded. I	Pump 15	<u>М</u>	in. Purge Vo	olume (gan)/(L)		ge Rate (gpm)/(mLpm)
Water Level	Time Sw.;n	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	(Se	Comments e description below
94.69	1329	16	7.63	7.161	.]	7.84	2905	3.91	4.652	47.8	H2320	7
94.68	1337	32	7.82	7.180	1	8.97	28.98	1.199	4.66	48.6		
94.20	1345	48	7.84	7.182	Ì	9.09				50.2		
94.19	1353	64	7.84	7.182)					50.8		
94.65	4.0 - 4	80	7.84	7.183	- 	9.06	75.02	397	4 119	51.2		
19.65	1801	00	7.04	1.100		1.00	10042	3.14	1.001	712		Vi-thm
		· ·							· ·			,
 												
							<u> </u>					
Parameter C	ompliance Crit	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td>ļ</td><td>10.8</td><td></td><td></td><td></td></ph<9.2<>					ļ	10.8			
												n unavailable contact S.
Duffy ((530) 92	41-9227). If S. D	uπy unavailable c	ontact J. Pipe +/- 0.1	+/- 3%	10% NTU	+/- 0.3	NA NA	NA	NA NA	+/- 10 mV	5) 228-8248 X3 344	8 or (213) 228-8242).
Parameter St	abilization Crite	eria	pH units	17- 370	units when >10 NTUs	mg/L	NA	INA		77- 10 HIV		
Did Parameters	Stablize prior to sa	ampling?	7.83	Ÿ	4	У	NA	-	~	Ü		
Previous Field n		(10/5/2011)	7.83	7426	11	10.43	27.8	0.48		81.2		
	ents consistent with		<u> </u>	-\-		Y	NA			4		·
Sample Time	1403	Sample Location): pun	np tubing	well port	spigot		bailer	other			
Comments:	DA SO 3	934288-02	waine 1	zin tub	Ma.	ED CALL	-8U~0	25 60	5 15			
<u> </u>		ZJUJASTA			Cover.	ER Ow	- our	C - 20 -	3/5	<u></u>		YSI _
Initial Depth to	Water (ft BTOC): <u>94.1</u> 4	-	_			~)		WQ ME	ETER MAKE ar	nd SERIAL NUMB	ER: 556 DIOCY74
Field measured	d confirmation of	f Well Depth (ft bt	oc):		Measure	e Point: Vell	To Ste	el Casing	WATER	R LEVEL METE	ER SERIAL NUME	BER: PBE 2005-03
WD (Well Dept	th - from databas	se) ft btoc (25	0.25)					•.		If Tr	ansducer	
SWH (Standing	g Water Height)	= WD-Initial Dept	h <u>15(</u>	0.11		/ Before Remov	73		n After Rein	1	Time of Removal	1308
D (Volume as p	per diameter) 2":	= 0.17, 4"= 0.66,	1"=0.041 (2	2 in)	Time	Initial DTW		Time	Fin.		Time of Reinstalla	ion <u>1410</u>
One Casing Vo	olume = D*SWH		5		1300	94.14	1 10	04	99	15		
Three Casing \	Volumes =	79.6			Comments:					THE RESERVE OF THE LABOR TO SERVE OF THE LABOR.		NAME - 100 M TO THE REST OF TH
Color: clear, g	grey, yellow, brov	wn, black, cloudy,	green		Odor: none,	ulphur, organic,	other	:	Solids: Trad	ce, Small Qu, N	Med Qu, Large Qu	, Particulate, Silt, Sand
\\Zinfandel\Proji\Rac\ic	GasElectricCo\Topoci	kProgram/Database/Fis	eld\FrontEnd2Kv34	14_PaperWorkMIST.	nidb\rptPurgeFormCl	MP				1		Page 16 of 1

	G&E Topock CMP				•	Sampling		2012-CM		24
Job Number 42	3575.MP.02.CM			03 0 4			Date _	16/18	1/2	Bic
Sampler	Field Team _	1 Field	Conditions		1, windy	<u>45° _</u>	Page	of		
Well/Sample Numb			-	QC San	nple ID NA				QC Sample	Time 100
Purge Start Time	Flow C	e (∰/N ′	Purge Meth	od: 2in *	Ded. F	Pump 🙏	△	in. Purge Vo	lume@a)/(L)	Purge Rate (gpm)/(mLpm)
		<u> </u>			1	T _		Ī	<u> </u>	
Water Time Level Z~	Vol Purged gellons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
95.17 143	1 7	7.73	3.117	2	6.29	29.79	1.61	2005	46.7	H2261
95.17 143	3 4	7.72	3,095	3	6.23	30.03	1.60	200)	46.8	Hz -> 253
95.17 143	5 6	7.71	3.033		6.22	29.97	1.56	1.968	46.8	
95:17 142		7.71	7.989	1	6.29	30.00	1	1	46.8	
95.17 143	9 16	7.71	2.954	2	6.28	30.01	1.51		46.6	
11-1-1-1-4									14.4	·
	·									
Parameter Compliance	Criteria Criteria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>10.8</td><td></td><td></td></ph<9.2<>						10.8		
**If pH or TDS is out of rai	nge check calibration, S. Duffy unavailable o	I take to IM3.a contact J. Pine	I nd check pH, S r ((702) 953-12	I C-get second pr 02 x36602 or <i>(</i> 7)	I obe. If still out o n2) 525-1137) II	I If range imm I.J. Piner una	l ediately co available co	I ntact B. Coll ontact Christ	i om ((541) 740- ina Hong <i>((</i> 213	1 -3250). If B. Collom unavailable contact S. 3) 228-8248 x35448 or (213) 228-8242).
Parameter Stabilization		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	,
Did Parameters Stablize prior	to sampling?	4	Y	<u> </u>	4	NA	_		Y	
Previous Field measurement	(4/5/2012)	7.76	2742	7	6.39	28.78	0.18		21.8	
Are measurements consisten	t with previous?	4	11	0		NA	_	-	V	
Sample Time 1441 Comments: Colloc	Sample Location	n: ' pur -83- <i>0</i> 78	np tubing	well port	spigot	t	pailer	other _		
Initial Depth to Water (ft B	roc): 95.1	10						WQ ME	TER MAKE ar	nd SERIAL NUMBER: 55% DICO-474
Field measured confirmation	on of Well Depth (ft b	toc):		Measure	e Point: Well	TOG Stee	el Casing	WATER	R LEVEL METE	ER SERIAL NUMBER: PAF-1005-03
WD (Well Depth - from dat	abase) ft btoc (1	10.3)	,					•	lf Tr	ansducer
SWH (Standing Water Hei	ght) = WD-Initial Dep	th 15.7	7		/ Before Remov	, ,	•	n After Reins		Time of Removal
D (Volume as per diamete	r) 2"= 0.17, 4"= 0.66,	1"=0.041 (2	2 in)	Time	Initial DTW		Time		al DTW	Time of Reinstallation <u>1450</u>
One Casing Volume = D*S	wн <u>2,58</u>			1415	95.10	1 14	55	70	10	
Three Casing Volumes =	1.75)		Comments:						
Color: clear, grey, yellow,	ხrown, black, cloudy	, green		Odor: hone, s	ulphur, organic,	other	;	Solids: Tad	ce, Small Qu, M	/led Qu, Large Qu, Particulate, Silt, Sand

Personnel: B. Collow CHam WLI serial number: PGE 2011-92

10-23-12

	Depth to Water	70-		
Loc ID	(ft BTOC)	Date	Time	Comments
CW-1M	109.35	10-23-12	0943	
CW-1D	109.50		0946	
CW-2M	43.07		0935	
CW-2D	92.60		0938	
CW-3M	77.97		0932	
CW-3D	77.29		0929	<i></i>
CW-4M	61.77		0955	
CW-4D	61.63		0953	
OW-1S	43.43		1001	
OW-1M	93,67		1004	
OW-1D	93.40		1006	
OW-2S	93.60		1009	
OW-2M	91.81		1011	
OW-2D	91.78		1014	
OW-5S	95,37		ioit	
OW-5M	94.36		1019	
OW-5D	94.98		1023	

Appendix C ARAR Monitoring Information for Groundwater Samples, Second Half 2012

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

CW-01D CV		Name	Date	Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
	W-01D-028	Barry Collom	10/16/2012	11:52:50 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7180	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	3.60	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	27.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	0.918	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	190	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	14.0	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	17.0	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1410	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-028	Barry Collom	10/16/2012	11:52:50 AM	AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	1.50	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)	0.5	0.10
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	20.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.50	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	0.46	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2120	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.46	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	496	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.69	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/19/2012	Melissa Scharfe	mg/L	53.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/19/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/19/2012	Melissa Scharfe	mg/L	53.0	5.0	0.555
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	ND (0.1)J	0.1	0.014

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-028	Barry Collom	10/16/2012	11:52:50 AM	TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4270	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-01M	CW-01M-028	Barry Collom	10/16/2012	12:34:42 PM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7190	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	3.20	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	94.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	0.923	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	170	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	14.0	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	13.4	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1440	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01M	CW-01M-028	Barry Collom	10/16/2012	12:34:42 PM	AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	3.40	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	1.70	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	1.30	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)	0.5	0.10
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	19.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.50	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	1.50	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2130	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.01	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	492	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.86	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/19/2012	Melissa Scharfe	mg/L	58.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/19/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01M	CW-01M-028	Barry Collom	10/16/2012	12:34:42 PM	TLI	SM 2320B	ALKT	10/19/2012	Melissa Scharfe	mg/L	58.0	5.0	0.555
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.142 J	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4440	250	0.757
					TLI	SM4500NH3E	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-02D	OW-90-028	Barry Collom	10/15/2012	7:10:00 AM	TLI	EPA 120.1	SC	10/18/2012	Gautam Savani	μmhos/cm	7470	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	13.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	0.976	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	83.4	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	12.1	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	4.38	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1580	100	39.4

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	OW-90-028	Barry Collom	10/15/2012	7:10:00 AM	AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	5.20	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	3.40	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)J	0.5	0.06
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	11.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.20	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/24/2012	George Wahba	μg/L	0.79	0.2	0.0092
					TLI	EPA 300.0	CL	10/24/2012	Giawad Ghenniwa	mg/L	2120	100	17.4
					TLI	EPA 300.0	FL	10/20/2012	Giawad Ghenniwa	mg/L	2.90	0.5	0.104
					TLI	EPA 300.0	SO4	10/24/2012	Giawad Ghenniwa	mg/L	502	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/19/2012	Emily Clark	mg/L	2.79 J	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	OW-90-028	Barry Collom	10/15/2012	7:10:00 AM	TLI	SM 2320B	ALKB	10/18/2012	Melissa Scharfe	mg/L	62.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/18/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/18/2012	Melissa Scharfe	mg/L	62.0	5.0	0.555
					TLI	SM2130B	TRB	10/17/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/19/2012	Jenny Tankunakorn	mg/L	4180	250	0.757
					TLI	SM4500NH3E	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-02D	CW-02D-028	Barry Collom	10/15/2012	10:36:17 AM	TLI	EPA 120.1	SC	10/18/2012	Gautam Savani	μmhos/cm	7420	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	13.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	0.975	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	83.1	5.00	0.60
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	11.1	5.00	1.35

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-028	Barry Collom	10/15/2012	10:36:17 AM	TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	4.39	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1660	500	197
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	5.30	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	3.70	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)J	0.5	0.06
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	12.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.00	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/24/2012	George Wahba	μg/L	0.76	0.2	0.0092
					TLI	EPA 300.0	CL	10/24/2012	Giawad Ghenniwa	mg/L	2240	100	17.4
					TLI	EPA 300.0	FL	10/20/2012	Giawad Ghenniwa	mg/L	2.92	0.5	0.104
					TLI	EPA 300.0	SO4	10/24/2012	Giawad Ghenniwa	mg/L	503	25.0	1.54

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-028	Barry Collom	10/15/2012	10:36:17 AM	СНМС	EPA 353.2	NO3NO2N	10/19/2012	Emily Clark	mg/L	2.80 J	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/18/2012	Melissa Scharfe	mg/L	61.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/18/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/18/2012	Melissa Scharfe	mg/L	61.0	5.0	0.555
					TLI	SM2130B	TRB	10/17/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/18/2012	Jenny Tankunakorn	mg/L	4100	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-02M	CW-02M-028	Barry Collom	10/15/2012	12:04:16 PM	TLI	EPA 120.1	SC	10/18/2012	Gautam Savani	μmhos/cm	7250	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	71.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	1.08	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	143	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02M	CW-02M-028	Barry Collom	10/15/2012	12:04:16 PM	TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	13.1	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	10.6	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1470	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	4.20	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	2.10	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	2.10	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)J	0.5	0.06
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	19.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	2.40	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/24/2012	George Wahba	μg/L	2.40	0.2	0.0092
					TLI	EPA 300.0	CL	10/24/2012	Giawad Ghenniwa	mg/L	2080	100	17.4
					TLI	EPA 300.0	CL	10/24/2012	Giawad Ghenniwa	mg/L	2080	100	17.4

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02M	CW-02M-028	Barry Collom	10/15/2012	12:04:16 PM	TLI	EPA 300.0	FL	10/20/2012	Giawad Ghenniwa	mg/L	2.80	0.5	0.104
					TLI	EPA 300.0	SO4	10/24/2012	Giawad Ghenniwa	mg/L	479	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/19/2012	Emily Clark	mg/L	2.78 J	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/18/2012	Melissa Scharfe	mg/L	49.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/18/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/18/2012	Melissa Scharfe	mg/L	49.0	5.0	0.555
					TLI	SM2130B	TRB	10/17/2012	Gautam Savani	NTU	0.136	0.1	0.014
					TLI	SM2540C	TDS	10/18/2012	Jenny Tankunakorn	mg/L	4000	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-03D	CW-03D-028	Barry Collom	10/15/2012	2:26:01 PM	TLI	EPA 120.1	SC	10/18/2012	Gautam Savani	μmhos/cm	7440	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	14.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	1.11	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	78.2	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-028	Barry Collom	10/15/2012	2:26:01 PM	AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	12.5	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	5.74	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1570	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	32.2	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	1.70	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)J	0.5	0.06
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	17.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.30	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-028	Barry Collom	10/15/2012	2:26:01 PM	TLI	EPA 218.6	CR6	10/24/2012	George Wahba	μg/L	0.90	0.2	0.0092
					TLI	EPA 300.0	CL	10/24/2012	Giawad Ghenniwa	mg/L	2120	100	17.4
					TLI	EPA 300.0	FL	10/20/2012	Giawad Ghenniwa	mg/L	4.37	0.5	0.104
					TLI	EPA 300.0	SO4	10/24/2012	Giawad Ghenniwa	mg/L	499	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/19/2012	Emily Clark	mg/L	2.95 J	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/18/2012	Melissa Scharfe	mg/L	59.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/18/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/18/2012	Melissa Scharfe	mg/L	59.0	5.0	0.555
					TLI	SM2130B	TRB	10/17/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/18/2012	Jenny Tankunakorn	mg/L	4190	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-03M	CW-03M-028	Barry Collom	10/15/2012	3:34:34 PM	TLI	EPA 120.1	SC	10/18/2012	Gautam Savani	μmhos/cm	8440	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	3.80	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	49.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	1.03	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	CW-03M-028	Barry Collom	10/15/2012	3:34:34 PM	TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	209	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	16.2	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	16.6	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1640	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	1.40	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	6.50	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)J	0.5	0.06
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	24.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	CW-03M-028	Barry Collom	10/15/2012	3:34:34 PM	AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	1.60	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/24/2012	George Wahba	μg/L	6.40	1.0	0.046
					TLI	EPA 300.0	CL	10/24/2012	Giawad Ghenniwa	mg/L	2530	100	17.4
					TLI	EPA 300.0	FL	10/20/2012	Giawad Ghenniwa	mg/L	2.88	0.5	0.104
					TLI	EPA 300.0	SO4	10/24/2012	Giawad Ghenniwa	mg/L	458	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/19/2012	Emily Clark	mg/L	1.76 J	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/18/2012	Melissa Scharfe	mg/L	46.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/18/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/18/2012	Melissa Scharfe	mg/L	46.0	5.0	0.555
					TLI	SM2130B	TRB	10/17/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/19/2012	Jenny Tankunakorn	mg/L	4600	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-04D	CW-04D-028	Barry Collom	10/16/2012	8:48:36 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7620	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	20.0	3.0	0.36
					1								

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-028	Barry Collom	10/16/2012	8:48:36 AM	TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	1.11	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	117	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	12.6	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	7.23	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1590	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	4.50	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	4.00	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)	0.5	0.10
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-028	Barry Collom	10/16/2012	8:48:36 AM	AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	24.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	2.70	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	1.10	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2200	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	3.46	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	505	25.0	1.54
					CHMC	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.63	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/19/2012	Melissa Scharfe	mg/L	52.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/19/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/19/2012	Melissa Scharfe	mg/L	52.0	5.0	0.555
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.127 J	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4430	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
CW-04M	CW-04M-028	Barry Collom	10/16/2012	9:57:04 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	6720	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	3.40	3.0	0.39

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	CW-04M-028	Barry Collom	10/16/2012	9:57:04 AM	TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	97.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	0.845	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	179	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	12.8	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	14.2	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1300	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	4.00	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	2.30	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	6.60	1.0	0.17

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	CW-04M-028	Barry Collom	10/16/2012	9:57:04 AM	TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)	0.5	0.10
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	10.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	1.90	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	7.20	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	1970	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	1.86	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	419	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.33	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/19/2012	Melissa Scharfe	mg/L	51.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/19/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/19/2012	Melissa Scharfe	mg/L	51.0	5.0	0.555
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.12 J	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4170	250	0.757
					TLI	SM4500NH3E	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01D	OW-01D-028	Barry Collom	10/16/2012	2:28:08 PM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7200	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	3.30	3.0	0.39
					TLI	EPA 200.7	ALD	11/7/2012	Ethel Suico	μg/L	ND (50)	50.0	10.0
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	34.0	3.0	0.36
					TLI	EPA 200.7	BD	11/7/2012	Ethel Suico	mg/L	0.954	0.20	0.0027
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	11/6/2012	Ethel Suico	mg/L	184	10.0	1.20
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	11/7/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0095
					TLI	EPA 200.7	KD	11/6/2012	Ethel Suico	mg/L	13.4	2.00	0.54
					TLI	EPA 200.7	MGD	11/7/2012	Ethel Suico	mg/L	16.5	0.50	0.0554
					TLI	EPA 200.7	NAD	11/6/2012	Ethel Suico	mg/L	1440	100	39.4
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60
					AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	3.20	3.0	0.31
					TLI	EPA 200.7	ZND	11/7/2012	Ethel Suico	μg/L	ND (20)	20.0	7.00

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01D	OW-01D-028	Barry Collom	10/16/2012	2:28:08 PM	AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	1.30	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)	0.5	0.10
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	20.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.50	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	0.85	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2090	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.34	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	489	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.71	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	0.026	0.02	0.0009
					TLI	SM 2320B	ALKB	10/19/2012	Melissa Scharfe	mg/L	56.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/19/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555
					TLI	SM 2320B	ALKT	10/19/2012	Melissa Scharfe	mg/L	56.0	5.0	0.555
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.336 J	0.1	0.014

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01D	OW-01D-028	Barry Collom	10/16/2012	2:28:08 PM	TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4510	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
OW-01M	OW-01M-028	Barry Collom	10/18/2012	7:54:16 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7070	2.0	0.116
					AVTS	EPA 200.7	AGD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.39
					TLI	EPA 200.7	ALD	10/30/2012	Ethel Suico	μg/L	ND (50)	50.0	9.50
					AVTS	EPA 200.7	BAD	11/27/2012	Claire Ignacio	μg/L	78.0	3.0	0.36
					TLI	EPA 200.7	BD	10/30/2012	Ethel Suico	mg/L	0.823	0.20	0.0017
					AVTS	EPA 200.7	BED	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.12
					TLI	EPA 200.7	CAD	10/25/2012	Ethel Suico	mg/L	152	25.0	0.836
					AVTS	EPA 200.7	CDD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	COBD	11/27/2012	Claire Ignacio	μg/L	ND (3.0)	3.0	0.37
					AVTS	EPA 200.7	CUD	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	2.20
					TLI	EPA 200.7	FETD	10/30/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0051
					TLI	EPA 200.7	KD	10/29/2012	Ethel Suico	mg/L	16.2	1.00	0.36
					TLI	EPA 200.7	MGD	10/25/2012	Ethel Suico	mg/L	20.7	1.00	0.103
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	1360	100	22.6
					AVTS	EPA 200.7	NID	11/27/2012	Claire Ignacio	μg/L	ND (5.0)	5.0	0.70
					AVTS	EPA 200.7	PBD	11/27/2012	Claire Ignacio	μg/L	ND (10)	10.0	1.60

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01M	OW-01M-028	Barry Collom	10/18/2012	7:54:16 AM	AVTS	EPA 200.7	VD	11/27/2012	Claire Ignacio	μg/L	3.60	3.0	0.31
					TLI	EPA 200.7	ZND	10/30/2012	Ethel Suico	μg/L	ND (20)	20.0	1.60
					AVTS	EPA 200.8	ASD	12/3/2012	Claire Ignacio	μg/L	2.30	0.1	0.035
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					TLI	EPA 200.8	HGD	11/13/2012	Bita Emami	μg/L	ND (0.5)	0.5	0.10
					AVTS	EPA 200.8	MND	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.16
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	23.0	0.5	0.074
					AVTS	EPA 200.8	SBD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.084
					AVTS	EPA 200.8	SED	12/3/2012	Claire Ignacio	μg/L	3.30	0.5	0.084
					AVTS	EPA 200.8	TLD	12/3/2012	Claire Ignacio	μg/L	ND (0.5)	0.5	0.075
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	1.20	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2110	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.56	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	480	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.78	0.1	0.028
					TLI	EPA 6010B	FE	10/29/2012	Ethel Suico	mg/L	ND (0.02)	0.02	0.0009
					TLI	SM 2320B	ALKB	10/19/2012	Melissa Scharfe	mg/L	45.0	5.0	0.555
					TLI	SM 2320B	ALKC	10/19/2012	Melissa Scharfe	mg/L	ND (5.0)	5.0	0.555

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01M	OW-01M-028	Barry Collom	10/18/2012	7:54:16 AM	TLI	SM 2320B	ALKT	10/19/2012	Melissa Scharfe	mg/L	45.0	5.0	0.555
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.101	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4340	250	0.757
					TLI	SM4500NH3D	NH3N	10/22/2012	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0098
OW-01S	OW-01S-028	Barry Collom	10/16/2012	3:07:22 PM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	4100	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	515	25.0	5.65
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	14.0	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	14.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	14.0	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	1160	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.34	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	258	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	3.20	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.487 J	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	2690	125	0.757
OW-02D	OW-02D-028	Barry Collom	10/18/2012	9:27:57 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7150	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	1290	50.0	11.3
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02D	OW-02D-028	Barry Collom	10/18/2012	9:27:57 AM	AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	21.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	0.54	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2090	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.15	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	480	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.84	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4300	250	0.757
OW-02M	OW-02M-028	Barry Collom	10/18/2012	11:45:02 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7150	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	1250	50.0	11.3
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	23.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	1.20	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2060	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.58	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	482	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.73	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02M	OW-02M-028	Barry Collom	10/18/2012	11:45:02 AM	TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4360	250	0.757
OW-02S	OW-02S-028	Barry Collom	10/18/2012	10:04:42 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	1610	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	298	50.0	11.3
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	28.0	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	46.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	26.8	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	378	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	5.06	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	98.3	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	3.95	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.419	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	1030	50.0	0.757
OW-05D	OW-05D-028	Barry Collom	10/18/2012	12:56:01 PM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7120	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	1350	50.0	11.3
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	22.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	0.38	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2050	50.0	17.4

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05D	OW-05D-028	Barry Collom	10/18/2012	12:56:01 PM	TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.29	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	479	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.79	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4200	250	0.757
OW-05M	OW-91-028	Barry Collom	10/18/2012	7:05:00 AM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7170	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	1260	50.0	11.3
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	21.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	0.44	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2070	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.27	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	488	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.78	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4440	250	0.757
OW-05M	OW-05M-028	Barry Collom	10/18/2012	2:03:00 PM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	7170	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	1330	50.0	11.3

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05M	OW-05M-028	Barry Collom	10/18/2012	2:03:00 PM	AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	ND (1.0)	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	21.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	0.44	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	2040	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	2.42	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	488	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.74	0.1	0.028
					TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.145	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	4430	250	0.757
OW-05S	OW-05S-028	Barry Collom	10/18/2012	2:41:00 PM	TLI	EPA 120.1	SC	10/23/2012	Gautam Savani	μmhos/cm	2770	2.0	0.116
					TLI	EPA 200.7	NAD	10/25/2012	Ethel Suico	mg/L	364	50.0	11.3
					AVTS	EPA 200.8	CRTD	12/3/2012	Claire Ignacio	μg/L	18.0	1.0	0.17
					AVTS	EPA 200.8	MOD	12/3/2012	Claire Ignacio	μg/L	17.0	0.5	0.074
					TLI	EPA 218.6	CR6	10/29/2012	George Wahba	μg/L	17.0	0.2	0.0092
					TLI	EPA 300.0	CL	10/25/2012	Giawad Ghenniwa	mg/L	1140	50.0	17.4
					TLI	EPA 300.0	FL	10/25/2012	Giawad Ghenniwa	mg/L	1.85	0.5	0.104
					TLI	EPA 300.0	SO4	10/25/2012	Giawad Ghenniwa	mg/L	141	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/26/2012	Emily Clark	mg/L	2.62	0.1	0.028

TABLE C-1
ARAR Monitoring Information for Groundwater Samples, Second Half 2012
Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field
PG&E Topock Compressor Station, Needles, California

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05S	OW-05S-028	Barry Collom	10/18/2012	2:41:00 PM	TLI	SM2130B	TRB	10/19/2012	Gautam Savani	NTU	0.29	0.1	0.014
					TLI	SM2540C	TDS	10/22/2012	Jenny Tankunakorn	mg/L	1800	50.0	0.757

TABLE C-1

ARAR Monitoring Information for Groundwater Samples, Second Half 2012 Combined CMP Semiannual Groundwater Monitoring Report, Second Half 2012, and PAR, Interim Measures No. 3, Injection Well Field PG&E Topock Compressor Station, Needles, California

NOTES:

MDL method detection limit corrected for sample dilution

RL reporting limit corrected for sample dilution

ND parameter not detected at the listed reporting limit

μmhos/cm micro-mhos per centimeter NTU Nephelometric Turbidity Unit

 $\begin{array}{ll} \text{mg/L} & \text{milligrams per liter} \\ \mu\text{g/L} & \text{micrograms per liter} \end{array}$

Concentration estimated by laboratory or data validation

ARAR applicable or relevant and appropriate requirements

TLI Truesdail Laboratories, Inc.

AVTS Advanced Technology Laboratories CHMC Advanced Sciences, Corvallis, OR

ALKC	alkalinity, as carbonate	HGD	mercury, dissolved
ALKT	alkalinity, total as CaCO3	KD	potassium, dissolved
ALKB	alkalinity, bicarbonate as CaCO3	MGD	magnesium, dissolved
ALD	almunium, dissolved	MND	manganese, dissolved
AGD	silver, dissolved	MOD	molybdenum, dissolved
ASD	arsenic, dissolved	NAD	sodium, dissolved
BD	boron, dissolved	NID	nickel, dissolved
BAD	barium, dissolved	NH3N	ammonia (as Nitrogen)
BED	beryllium, dissolved	NO3NO2N	nitrate/nitrite (as Nitrogen)
CAD	calcium, dissolved	PBD	lead, dissolved
CDD	cadmium, dissolved	SBD	antimony, dissolved
CL	chloride	SC	specific conductance
COBD	cobalt, dissolved	SED	selenium, dissolved
CRTD	chromium, dissolved	SO4	sulfate
CR6	hexavalent chromium	TLD	thallium, dissolved
CUD	copper, dissolved	TDS	total dissolved solids
FE	iron	TRB	turbidity
FETD	iron, dissolved	VD	vanadium, dissolved
FL	fluoride	ZND	zinc, dissolved