
Topock Project I	Executive Abstract
Document Title:	Date of Document: January 14, 2011
Topock IM No. 3 WDR Combined Fourth Quarter 2010 Monitoring, Jul-Dec 2010 Semiannual, and Jan-Dec 2010 Annual Operation and Maintenance Report	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) PG&E Document ID: PGE20101014B
Submitting Agency/Authored by: RWQCB Final Document? Xes No	
Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document: Draft Report Letter Memo Other / Explain: Letter Memo What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:	Action Required: Information Only
What is the consequence of NOT doing this item? What is the consequence of DOING this item? Submittal of this report is a compliance requirement of Regional Water Board Waste Discharge Requirements/Order No. R7-2006-0060	Other Justification/s:
Brief Summary of attached document: This report covers the IM No. 3 groundwater treatment system The groundwater monitoring results for wells OW-1S/M/D, OW- CW-4M/D will be submitted under separate cover, as part of the operation and maintenance activities during the July - December Written by: PG&E Recommendations:	e Compliance Monitoring Program. This report also covers the IM3
This report is for your information only. How is this information related to the Final Remedy or Regulatory Requ	lirements.
The IM No. 3 WDR Fourth Quarter 2010 Monitoring, Jul-Dec 2010 Report is related to the Interim Measure, and is designed to monitor co 2006-0060.	Semiannual, and Jan-Dec 2010 Annual Operation and Maintenance
Other requirements of this information? None.	

Version 9

Curt Russell Topock Site Manager GT&D Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

January 14, 2011

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Board Order R7-2006-0060

PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System Discharge to Injection Wells Combined Fourth Quarter 2010 Monitoring and Semiannual July-December 2010/ Annual January-December 2010 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System (Document ID: PGE20101014B)

Dear Mr. Perdue:

Enclosed is the Combined Fourth Quarter 2010 Monitoring and Semiannual July-December 2010 / Annual January-December 2010 Operation and Maintenance Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Regional Water Board) under Order R7-2006-0060 and in compliance with the revised Monitoring and Reporting Program for Order R7-2006-0060, issued August 28, 2009. The WDRs apply to IM No. 3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell Topock Site Manager

Enclosures:

Combined Fourth Quarter 2010 Monitoring and Semiannual July-December 2010/ Annual January-December 2010 Operation and Maintenance Report for IM No. 3 Groundwater Treatment System

Robert Perdue January 14, 2011 Page 2

cc: Jose Cortez, Regional Water Board Tom Vandenberg, State Water Resources Control Board Aaron Yue, DTSC Combined Fourth Quarter 2010 Monitoring and Semiannual July – December 2010 / Annual January – December 2010 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System

Document ID: PGE20101014B

Waste Discharge Requirements Board Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

> On behalf of Pacific Gas and Electric Company

> > January 14, 2011

CH2MHILL 155 Grand Avenue, Suite 800 Oakland, CA 94612

Combined Fourth Quarter 2010 Monitoring and Semiannual July – December 2010 / Annual January – December 2010 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System

Waste Discharge Requirements Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

January 14, 2011

This report was prepared under the supervision of a California Certified Professional California

enne

Dennis Fink, P.E. Project Engineer

Contents

Acro	nyms a	nd Abbreviations	ix
1.0	Intro	duction	1-1
2.0	Samj	pling Station Locations	2-1
3.0	Desc	ription of Monitoring Activities	3-1
	3.1	Groundwater Treatment System	3-1
	3.2	Groundwater Treatment System Flow Rates for Fourth Quarter 2010	3-2
		3.2.1 Treatment System Influent	3-2
		3.2.2 Effluent Streams	3-3
	3.3	Sampling and Analytical Procedures	3-3
4.0	Anal	ytical Results	4-1
5.0	Semi	annual Operation and Maintenance	5-1
	5.1	Flowmeter Calibration Records	
	5.2	Volumes of Groundwater Treated	5-2
	5.3	Residual Solids Generated (Sludge)	5-2
	5.4	Reverse Osmosis Concentrate Generated	5-3
	5.5	Summary of WDR Compliance	5-3
	5.6	Operation and Maintenance - Required Shutdowns	5-3
	5.7	Treatment Plant Modifications	5-4
6.0	Conc	lusions	6-1
7.0	Certi	fication	7 - 1

Tables

- 1 Sampling Station Descriptions
- 2 Flow Monitoring Results
- 3 Sample Collection Dates
- 4 Board Order No. R7-2006-0060 Waste Discharge Requirements Influent Monitoring Results
- 5 Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent Monitoring Results
- 6 Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse Osmosis Concentrate Monitoring Results
- 7 Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge Monitoring Results

8 Board Order No. R7-2006-0060 Waste Discharge Requirements Monitoring Information

Figures

IM No. 3 Project Site Features
Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
Reverse Osmosis System Sampling and Metering Locations (1 of 2)
Reverse Osmosis System Sampling and Metering Locations (2 of 2)
Sludge Storage Tanks Sampling Locations
Extraction Wells - Influent Metering Locations
Injection Wells - Effluent Metering Locations

Appendixes

- A Semiannual Operations and Maintenance Log, July 1, 2010 through December 31, 2010
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D Fourth Quarter 2010 Laboratory Analytical Reports

Acronyms and Abbreviations

ATL	Advanced Technology Laboratories, Inc.
CIP	clean-in-place
gpm	gallons per minute
IM	Interim Measure
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
ppb	parts per billion
RCRA	Resource Conservation and Recovery Act
RO	reverse osmosis
Truesdail	Truesdail Laboratories, Inc.
Regional Water Board	California Regional Water Quality Control Board, Colorado River Basin Region
WDR	Waste Discharge Requirements

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area. All figures are located at the end of this report.

California Regional Water Quality Control Board, Colorado River Basin Region (Regional Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006 and is the successor to Order No. R7-2004-0103. The revised Monitoring and Reporting Program (MRP) under the Order, issued August 28, 2009, requires quarterly monitoring reports to be submitted by the fifteenth day of the month following the end of the quarter.

This report covers the IM No. 3 groundwater treatment system monitoring activities during the Fourth Quarter 2010; the operation and maintenance activities during the July 1, 2010 to December 31, 2010 semiannual period (Third and Fourth Quarters 2010); and (by reference; see Section 3.0) the operation and maintenance activities during the January 1, 2010 to June 30, 2010 semiannual period (First and Second Quarters 2010). The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. (Tables are located at the end of this report.) Sampling station locations are shown on the process and instrumentation diagrams provided at the end of this report:

- Figure TP-PR-10-10-04 Raw Water Storage and Treated Water Storage Tanks
- Figures PR-10-03 and PR-10-04 Reverse Osmosis System
- Figure TP-PR-10-10-06 Sludge Storage Tanks
- Figure TP-PR-10-10-03 Extraction Wells
- Figure TP-PR-10-10-11 Injection Wells

3.0 Description of Monitoring Activities

This report describes Fourth Quarter 2010 monitoring activities and the July 1, 2010 through December 31, 2010 (Third and Fourth Quarters) operation and maintenance activities related to the IM No. 3 groundwater treatment system. IM No. 3 monitoring activities from January 1, 2010 through September 30, 2010 (First, Second, and Third Quarter monitoring) were presented in the following monitoring reports:

- *IM No. 3 First Quarter 2010 Monitoring Report for Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060,* submitted to the Regional Water Board April 15, 2010.
- IM No. 3 Second Quarter 2010 Monitoring / Semiannual January 1- June 30, 2010 Operation and Maintenance Report for Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060, submitted to the Regional Water Board July 15, 2010.
- *IM No. 3 Third Quarter 2010 Monitoring Report for Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060,* submitted to the Regional Water Board October 15, 2010.

The IM No. 3 operation and maintenance activities from January 1, 2010 through June 30, 2010 (First and Second Quarter 2010 operation and maintenance) were reported in the Second Quarter 2010 Monitoring/Semiannual Operation and Maintenance Report listed above; these operation and maintenance data are incorporated in the present report by reference. The present report therefore also serves as the annual January through December 2010 Operation and Maintenance Report for IM No. 3.

3.1 Groundwater Treatment System

The treatment system was initially operated between July 25 and July 28, 2005 for the Waste Discharge Requirement (WDR)-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, permitted by Order R7-2006-0060 (successor to Order R7-2004-0103), includes:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

Operation of the groundwater treatment system results in the following three effluent streams:

- **Treated Effluent:** Treated water that is discharged to the injection well(s).
- **Reverse Osmosis (RO) Concentrate (brine):** Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first.

3.2 Groundwater Treatment System Flow Rates for Fourth Quarter 2010

Downtime is defined as any periods when all extraction wells are not operating so that no groundwater is being extracted and piped into IM No. 3 as influent. Periods of planned and unplanned extraction system downtime (that together resulted in approximately1.8 percent downtime during Fourth Quarter 2010) are summarized in the Semiannual Operations and Maintenance Log provided in Appendix A. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site. Periods of planned and unplanned extraction system downtime during the months July 2010 – September 2010 are reported in the *Third Quarter 2010 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060, PG&E Topock Compressor Station, Needles, CA, published October 15, 2010.*

Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

During the Fourth Quarter 2010, extraction wells TW-3D and PE-1 operated at a target pumping rate of 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D ran for a short period on December 10th and 15th for sampling activities during the Fourth Quarter 2010. The operational run time for the IM groundwater extraction system (combined or individual pumping), by month, was approximately:

- 96.5 percent during October 2010.
- 99.2 percent during November 2010.
- 99.8 percent during December 2010.

The Fourth Quarter 2010 treatment system monthly average flow rates (influent, effluent, and RO concentrate) are presented in Table 2. The system influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-PR-10-10-03).

The IM No. 3 facility treated approximately 17,489,747 gallons of extracted groundwater during Fourth Quarter 2010.

In addition to extracted groundwater, during Fourth Quarter 2010 the IM No. 3 facility treated 5,825 gallons of water generated from the groundwater monitoring program and 12,000 gallons of injection well development water.

3.2.2 Effluent Streams

The treatment system effluent flow rate was measured by flow meters in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11) and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM No. 3 facility injected 17,063,673 gallons of treatment system effluent during Fourth Quarter 2010. The monthly average flow rate to injection wells is shown in Table 2.

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from RO concentrate tank T-701 to the truck load-out station (Figure - PR-10-04). The IM No. 3 facility generated 281,174 gallons of RO concentrate during Fourth Quarter 2010. The monthly average RO concentrate flow rate is shown in Table 2.

The sludge flow rate is measured by the size and weight of containers shipped offsite. Five sludge containers were shipped offsite from the IM No. 3 facility during Fourth Quarter 2010. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

With the exception of samples for pH analyses, all samples collected at the designated sampling locations were placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail) or Advanced Technology Laboratories, Inc. (ATL). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to the laboratories via courier under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival.

Samples analysis for pH was conducted by field method pursuant to the Regional Water Board letter dated October 16, 2007 (subject: Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion (ppb), and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 ppb.

Truesdail and ATL are certified by the California Department of Health Services under the State of California's Environmental Laboratory Accreditation Program. California-certified laboratory analyses were performed in accordance with the latest edition of the *Guidelines Establishing Test Procedures for Analysis of Pollutants* (40 Code of Federal Regulations Part 136), promulgated by the United States Environmental Protection Agency.

Influent, effluent, reverse osmosis concentrate, and sludge sampling were conducted in accordance with the revised MRP, issued August 28, 2009. See Table 3 for sample collection dates and frequencies.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060 and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Regional Water Board on June 17, 2005. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

4.0 Analytical Results

The analytical results and laboratory reports for the IM No. 3 groundwater treatment system monitoring program between January 1, 2010 and September 30, 2010 were included in the First Quarter, Second Quarter, and Third Quarter Monitoring Reports submitted to the Regional Water Board (see Section 3.0 for a complete listing of reports).

Laboratory reports for samples collected in Fourth Quarter 2010 were prepared by certified analytical laboratories, and are presented in Appendix D. The Fourth Quarter 2010 analytical results are presented in Tables 4, 5, 6, and 7:

- Influent analytical results are presented in Table 4.
- Effluent analytical results are presented in Table 5. There were no exceedances of effluent limitations during the reporting period.
- Reverse osmosis concentrate analytical results are presented in Table 6.
- Sludge analytical results are presented in Table 7.

The sludge is required to have an aquatic bioassay test annually. The aquatic bioassay test was conducted on a September 2010 sample, and the results were presented in the Third Quarter Monitoring Report submitted to the Regional Water Board October 15, 2010.

Table 8 identifies the following information for each analysis:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

The onsite IM No. 3 lab did not analyze two samples for pH during the Fourth Quarter 2010. In both instances (plant influent in December 2010 and RO concentrate in the Fourth Quarter 2010) the Truesdail offsite laboratory completed sample analysis for pH and reported the results summarized in Tables 4 and 6.

The RO concentrate sample that was collected September 1, 2010 from the approved sampling station D per standard sampling schedule was considerably less salty than typical RO concentrate. The reason is that this grab sample was collected during an automatic back-flushing procedure (the RO unit runs on/off, with several cycles per day, and each time it stops there is a back-flush to avoid corrosive salty water sitting stagnant in the metal pipes of the RO unit). The back-flushing uses permeate (i.e., water that has had most of the salinity removed by the RO unit). The back-flushing water and the RO concentrate both go to tank T-701, then to the RO concentrate (brine) holding tanks for offsite disposal; therefore

the sample is representative of the RO concentrate waste stream at certain times. PG&E proposed, in an October 27, 2010 letter request to the Regional Water Board, to modify the sample collection location to ensure the sample is representative of what is shipped offsite (i.e., a mixture of the back-flush water and the RO concentrate). The modified RO concentrate sample location was installed in November 2010 and is available for sample collection.

5.0 Semiannual Operation and Maintenance

Pursuant to the WDR's Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Water Board Office twice annually.

This section includes the Semiannual Operation and Maintenance Report for the IM No. 3 groundwater treatment system for the period July 1, 2010 through December 31, 2010. The IM No. 3 operation and maintenance activities for January 1, 2010 through June 30, 2010 were reported in the Second Quarter 2010 Monitoring and Semiannual January 1- June 30, 2010 Operation and Maintenance Report, submitted July 15, 2010.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operations and maintenance records are also archived using maintenance software. The subsections below summarize the operations and maintenance activities during this semiannual reporting period.

5.1 Flowmeter Calibration Records

The IM No. 3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a timely manner consistent with the use, flow, material, and manufacturer recommendations. The following flowmeters are used at the plant to measure groundwater flow:

Location	Flowmeter Location ID	Current Flowmeter Serial No.	Date of Calibration	Date of Installation
Extraction well PE-1	FIT-103	7700F216000	11/30/06	2/25/09
Extraction well TW-3D	FIT-102	6C037016000	9/12/07	1/25/09
Extraction well TW-2D ^a	FIT-101	6A021F16000	11/29/04	7/28/05
Extraction well TW-2S ^b	FIT-100	6A022016000	11/29/04	7/28/05
Injection well IW-02	FIT-1202	6C036F16000	8/6/10	1/5/11
Injection well IW-03	FIT-1203	6A022116000	8/6/10	12/15/10
Combined IW-02 and IW-03	FIT-700	6A022416000	11/29/04	4/9/10
Reverse osmosis concentrate	FIT-701	6C037116000	1/31/05	2/25/09

Notes:

^a TW-2D is a backup extraction well only operated for brief testing and sampling periods since January 2006.

^b TW-2S is a backup extraction well only operated for brief testing and sampling periods since October 2005.

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated between July 1, 2010 and December 31, 2010 are provided in Appendix B. The daily volumes of groundwater treated from January 1, 2010 through June 30, 2010 were reported in the Second Quarter 2010 Monitoring and Semiannual January 1- June 30, 2010 Operation and Maintenance Report, submitted July 15, 2010.

Approximately 34,282,136 gallons of groundwater were extracted and treated between July 1, 2010 and December 31, 2010. Treatment of this water at the IM No. 3 facility is being performed in accordance with the conditions of Order No. R7-2006-0060.

Additionally, approximately 9,355 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 40,800 gallons of injection well re-development water were treated at the IM No. 3 facility during the July 1, 2010 through December 31, 2010 semiannual period.

A total of approximately 33,423,949 gallons of treated groundwater was injected back into the Alluvial Aquifer between July 1, 2010 and December 31, 2010.

5.3 Residual Solids Generated (Sludge)

During the July 1, 2010 through December 31, 2010 reporting period, seven containers of sludge were shipped offsite for disposal. The containers of sludge shipped offsite for disposal from January 1, 2010 through June 30, 2010 were reported in the Second Quarter 2010 Monitoring and Semiannual January 1- June 30, 2010 Operation and Maintenance Report, submitted July 15, 2010. The sludge was shipped to Chemical Waste Management at Kettleman Hills for disposal. A listing of each shipment during the July 1, 2010 through December 31, 2010 reporting period is provided below.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests (cubic yards)	Approximate Wet Weight (Ibs)	Type of Shipment
8/23/2010	8	29,800	non-RCRA hazardous waste
9/9/2010	8	39,560	non-RCRA hazardous waste
10/4/2010	8	29,480	non-RCRA hazardous waste
10/11/2010	9	30,300	non-RCRA hazardous waste
11/19/2010	8	39,640	non-RCRA hazardous waste
12/07/2010	8	16,120	non-RCRA hazardous waste
12/21/2010	9	14,100	non-RCRA hazardous waste

Notes:

The approximate wet weight is provided by the disposal facility based on full container weight less the empty container weight.

RCRA = Resource Conservation and Recovery Act.

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figures PR-10-03 and PR-10-04). From July 1, 2010 through December 31, 2010, approximately 664,152 gallons of RO concentrate were transported to Liquid Environmental Solutions in Phoenix, Arizona for disposal. The daily volumes of RO concentrate generated from January 1, 2010 through June 30, 2010 were reported in the Semiannual January 1- June 30, 2010 Operation and Maintenance Report, submitted July 15, 2010.

5.5 Summary of WDR Compliance

No WDR violations were identified during the July 1, 2010 through December 31, 2010 semiannual reporting period, nor during the January 1, 2010 through June 30, 2010 semiannual reporting period.

5.6 Operation and Maintenance – Required Shutdowns

Records of routine maintenance are kept onsite. The summary of operation or maintenance issues that required the groundwater extraction system to be shut down during the January 1, 2010 through June 30, 2010 period was reported in the Second Quarter 2010 Monitoring and Semiannual January 1- June 30, 2010 Operation and Maintenance Report, submitted July 15, 2010.

Appendix A contains a summary of the operation or maintenance issues that required the groundwater extraction system to be shut down during the July 1, 2010 through December 31, 2010 semiannual reporting period.

No extended shutdowns of the IM No. 3 extraction system occurred during the Fourth Quarter 2010. Activities during the Third Quarter 2010 included one extended shutdown. The extended shutdown occurred in August 2010, due primarily to planned maintenance and planned biannual plant outage.

August Extended Shutdown

The IM No. 3 extraction system was shut down for 75.6 hours during August 2010, for both planned and unplanned events. The causes of the extraction system downtime included:

- Unplanned reduced microfilter performance;
- Planned microfilter maintenance;
- Unplanned power supply imbalance; and
- Planned plant biannual outage.

5.7 Treatment Plant Modifications

No major IM No. 3 treatment plant modifications that affected the quality or quantity of treated effluent were performed during the January 1, 2010 through December 31, 2010 annual period.

6.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period. No events that caused an immediate or potential threat to human health or the environment, and no new releases of hazardous waste or hazardous waste constituents, or new solid waste management units, were identified during the reporting period.

7.0 Certification

On August 12, 2005, PG&E submitted a signature delegation letter to the Regional Water Board, delegating PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0060 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated December 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	behumn
Name:	Curt Russell
Company:	Pacific Gas and Electric Company
Title:	Topock Site Manager
Date:	January 14, 2011

Tables

Sampling Station Descriptions

Fourth Quarter 2010 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Sampling Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-PR-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700BWDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-PR-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure PR-10-04).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-PR-10-10-06).

Note:

= Sequential sample identification number at each sample station.

^a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

Flow Monitoring Results

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^{b,c} (gpm)	Reverse Osmosis Concentrate ^b (gpm)
October 2010 Average Monthly Flowrate	129.7	126.8	3.0
November 2010 Average Monthly Flowrate	133.7	130.3	2.3
December 2010 Average Monthly Flowrate	132.7	129.4	1.1

Fourth Quarter 2010 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Notes:

gpm: gallons per minute.

July, August, and September 2010 Average Monthly Flowrates were presented in the IM No. 3 Third Quarter 2010 Monitoring Report

^a Extraction wells TW-3D and PE-1 were operated during the Fourth Quarter 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S ran for a short period on December 10, 2010 and December 15, 2010 for sampling activities. The TW-2S flow meter is broken and did not record the TW-2S flow on December 10, 2010 and December 15, 2010.

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during the Fourth Quarter 2010 is approximately0.84 percent.

^c Effluent was discharged into injection well IW-02 and IW-03 during the Fourth Quarter 2010.

Parameter	Sample Collection Dates	Results
Influent ^a	October 5, 2010	See Table 4
	November 3, 2010	
	December 7, 2010	
Effluent ^b	October 5, 2010	See Table 5
	October 13, 2010	
	October 19, 2010	
	October 27, 2010	
	October 28, 2010	
	November 3, 2010	
	November 9, 2010	
	November 16, 2010	
	November 13, 2010	
	November 24, 2010	
	December 7, 2010	
	December 14, 2010	
	December 21, 2010	
	December 28, 2010	
Reverse Osmosis Concentrate ^c	December 7, 2010	See Table 6
Sludge ^d	December 7, 2010	See Table 7

 TABLE 3

 Sample Collection Dates

Fourth Quarter 2010 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Notes:

^a Influent sampling is required monthly.

^b Effluent sampling is required weekly.

^c Reverse Osmosis Concentrate sampling is required quarterly.

^d One composite sludge sample is required quarterly, see Table 7. Sludge bioassay analysis is required annually; the sludge bioassay analysis was conducted on the Third Quarter 2010 sludge composite sample and reported (pass at 95 percent survival rate) in the IM No. 3 Third Quarter 2010 Monitoring Report.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Influent Monitoring Results ^a *Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System*

Required Sampling Frequency	/										Мо	nthly												
Analytes Units ^b			Specific Conductance	Lab ^c pH	•	Chromium		Aluminium		Antimony	Arsenic	Barium	Boron			e Lead	Manganese	-		(as N)		Sulfate		Zinc
MDL	mg/L 0.434	NTU 0.0140	µmhos/cm 0.0380	pHunits 0.0250	pH units	μg/L 0.0950	μg/L 1.10	μg/L 1.00	mg/L 0.0020	μg/L 0.190	μg/L 0.260	μg/L 0.185	mg/L 0.0047	μg/L 0.305	mg/L 0.0250	μg/L 0.0950	μg/L 0.0600	μg/L 0.660	μg/L 0.240	mg/L 0.0550	mg/L 0.00020	mg/L 0.500	μg/L 3.00	μg/L 1.32
Sample ID Date	0.101	0.0110	0.0000	0.0200		0.0000		1.00	0.0020	0.100	0.200	0.100	0.0011	0.000	0.0200	0.0000	0.0000	0.000	0.210	0.0000	0.00020	0.000	0.00	1.02
SC-100B-WDR-277 10/5/2010	4300	ND (0.100)	7870		7.4	918	987	ND (50.0)	ND (0.500)	ND (10.0)	4.20	24.8	0.968	ND (5.00)	2.60	ND (10.0)	10.0	23.0	ND (10.0)	3.21 I	ND (0.0050)	549 1	√D (20.0)	ND (10.0)
RL	250	0.100	2.00			1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	0.500	0.0050	12.5	20.0	10.0
SC-100B-WDR-280 10/27/2010	5110	ND (0.100)	7870			890	1090										10.0							
RL	250	0.100	2.00			1.00	10.5										1.00							
SC-100B-WDR-281 11/3/2010	4940	ND (0.100)	7980		7.3	969	1020	ND (50.0)	ND (0.500)	ND (10.0)	8.10	25.4	1.01	ND (5.00)	2.45	ND (10.0)	9.80	20.4	24.1	3.26 I	ND (0.0050)	559 1	√D (20.0)	ND (10.0)
RL	250	0.100	2.00			10.0	10.5	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	50.0	20.0	10.0
SC-100B-WDR-286 12/7/2010	4780	0.103	8000	7.30 J		894	1080	ND (50.0)	ND (0.500)	ND (10.0)	3.50	24.9	0.980	ND (5.00)	2.63	ND (10.0)	10.2	22.4	ND (10.0)	3.20 I	ND (0.0050)	567 1	√D (20.0)	ND (10.0)
RL	250	0.100	2.00	4.00		1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	12.5	20.0	10.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

N = nitrogen

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units

RL = project reporting limit

 μ g/L = micrograms per liter

µmhos/cm = micromhos per centimeter

^a Sampling Location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

^b Units reported in this table are those units required in the WDRs.

^c pH result is J flagged because of the 2007 EPA requirements for pH analysis - pH has 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Effluent Monitoring Results ^a

Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

WDRs Effluent	Ave. Monthly	NA	NA	NA	6.5-8.4	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA	6.5-8.4	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Required Sampli	ing Frequency			Wee	kly												Monthly	y							
	Analytes	TDS	Turbidity	Specific Conductance	Lab ^e , pH		Chromium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
	Units ^c	mg/L	NTU	µmhos/cm	pHunits	pH units	µg/L	µg/L	µg/L	mg/L	μg/L	µg/L	µg/L	mg/L	µg/L	mg/L	µg/L	µg/L	μg/L	µg/L	mg/L	mg/L	mg/L	µg/L	µg/L
		0.434	0.0140	0.0380	0.0250		0.0950	0.0220	1.00	0.0020	0.190	0.260	0.185	0.0047	0.305	0.0250	0.0950	0.0600	0.660	0.240	0.0550	0.00020	0.500	3.00	1.32
Sample ID	Date																								
SC-700B-WDR-27	77 10/5/2010	4190	0.128	7110		7.10	ND (1.00)	0.310	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	10.4	0.871	ND (5.00)	2.05	ND (10.0)) 1.40	17.6	ND (10.0)	2.89	ND (0.0050)	497	ND (20.0)	ND (10.0
RL	10/0/2010	250	0.100	2.00			1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	、 ,	0.500	10.0	1.00	10.0	10.0	0.500	0.0050	12.5	20.0	10.0
SC-700B-WDR-27	78 10/13/2010	4410	0.115	7090		7.20	ND (1.00)	0.200										1.60							
RL	10 10/10/2010	250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-27	79 10/19/2010	4340	0.107	7160		7.30	ND (1.00)	ND (0.200)										2.60							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	80 10/27/2010					7.40																			
RL																									
SC-700B-WDR-280	0B10/28/2010	4450	0.162	7770		7.20	2.80	1.60										3.20							
RL		250	0.100	2.00			1.00	1.00										1.00							
SC-700B-WDR-28	81 11/3/2010	4590	0.127	7330		6.90	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	12.0	0.961	ND (5.00)	2.02	ND (10.0)) 1.80	16.2	ND (10.0)	3.14	ND (0.0050)	518	ND (20.0)	11.1
RL		250	0.100	2.00			1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-700B-WDR-28	82 11/9/2010	4430	0.140	7340		7.10	1.90	0.250										4.50							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	83 11/16/2010	4510	0.108	7500		7.10	ND (1.00)	ND (0.200)										2.10							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	84 11/23/2010	4600	ND (0.100)	7590		7.40	ND (1.00)	ND (0.200)										7.40							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	85 11/30/2010	4390	0.102	7310		7.30	ND (1.00)	0.310										2.10							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	86 12/7/2010	4620	ND (0.100)	7500	7.61 J	7.70	ND (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	15.4	0.967	ND (5.00)	2.29	ND (10.0)	17.0	17.8	ND (10.0)	2.94	ND (0.0050)	509	ND (20.0)	ND (10.0
RL		250	0.100	2.00	4.00		1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	10.0	10.0	10.0	1.00	0.0050	12.5	20.0	10.0
SC-700B-WDR-28	87 12/14/2010	4460	ND (0.100)	7400		7.10	ND (1.00)	ND (0.200)										4.80							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	88 12/21/2010	3550	ND (0.100)			6.90	ND (1.00)	0.430										ND (1.00)							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-28	89 12/28/2010	4250	ND (0.100)			6.90	ND (1.00)	0.350										ND (1.00)							
RL		250	0.100	2.00			1.00	0.200										1.00							

TABLE 5Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)Effluent Monitoring Results ^aFourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

 $\begin{array}{l} (---) = not required by the WDR Monitoring and Reporting Program \\ J = concentration or reporting limits estimated by laboratory or validation \\ MDL = method detection limit \\ mg/L = milligrams per liter \\ N = nitrogen \\ NA = not applicable \\ ND = parameter not detected at the listed value \\ NTU = nephelometric turbidity units \\ RL = project reporting limit \\ \mu g/L = micrograms per liter \\ \mu mhos/cm = micromhos per centimeter \end{array}$

^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).

^b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.

- ^c Units reported in this table are those units required in the WDRs.
- ^d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.
- e pH result is J flagged because of the 2007 EPA requirements for pH analysis pH has 15-minute holding time.
- f Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Reverse Osmosis Concentrate Monitoring Results ^a *Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System*

Required Sampling Frequency											Quarter	ly										
Analytes Units ^b MDL Sample ID Date	TDS mg/L 0.434	Specific Conductanc µmhos/cm 0.0380	-		Hexavalent Chromium mg/L 0.00022		mg/L	mg/L	Beryllium mg/L 0.00011	Cadmium mg/L 0.00013	Cobalt mg/L 0.00052	Copper mg/L 0.00031	Fluoride mg/L 0.0250	Lead mg/L 0.000095	Molybdenun mg/L 5 0.0013	n Mercury mg/L 0.00020	Nickel mg/L 0.00048	Selenium mg/L 0.00074	Silver mg/L 0.00020	Thallium mg/L 0.00018	Vanadium mg/L 0.00010	Zinc mg/L 0.0013
SC-701-WDR-286 12/7/2010 RL	39400 1000	44500 2.00	7.33 J 4.00	 0.0297 0.0020	0.00240 0.0021	ND (0.0100 0.0100			ND (0.0010) 0.0010	ND (0.0030) 0.0030	0.00690 0.0050	0.0612 0.0050	14.6 0.500	ND (0.010 0.0100	0) 0.122 0.0100	ND (0.0010) 0.0010	0.0267 0.0100	0.0301 0.0100	ND (0.0050 0.0050) ND (0.001 0.0010	0) ND (0.0050 0.0050) ND (0.0100 0.0100

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

J = concentration or reporting limits estimated by laboratory or validation

MDL = method detection limit

mg/L = milligrams per liter

ND = parameter not detected at the listed value

RL = project reporting limit

 μ g/L = micrograms per liter

µmhos/cm = micromhos per centimeter

^a Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08).

^b Units reported in this table are those units required in the WDRs.

^c pH result is J flagged because of the 2007 EPA requirements for pH analysis - pH has 15-minute holding time.

d Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling Frequency		Quarterly																	
Analytes	Chromium	Hexavalent Chromium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Fluoride	Lead	Molybdenum	Mercury	Nickel	Selenium	Silver			Zinc
Units ¹⁵ MDL Sample ID Date	mg/kg 0.0600	mg/kg 0.200	mg/kg 0.0010	mg/kg 0.0010	mg/kg 0.0010	mg/kg 0.00030	mg/kg 0.00010	mg/kg 0.00010	mg/kg 0.0010	mg/kg 0.0120	mg/kg 0.0010	mg/kg 0.00030	mg/kg 0.00040	mg/kg 0.00030	mg/kg 0.0020	mg/kg 0.0020	mg/kg 0.0010	mg/kg 0.00030	mg/kg 0.0020
SC-Sludge-WDR-286 12/7/2010	4670	56.5	45.4	10.7	58.2	1.62	ND (0.988)	7.11	28.9	32.3	4.20	8.31	ND (0.198)	21.2	ND (1.00)	4.51	2.32	117	32.2
RL	19.8	4.59	2.00	0.988	1.00	1.00	0.988	1.00	1.00	4.59	1.00	1.00	0.198	1.00	1.00	1.00	2.00	1.00	2.00

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program
 J = concentration or reporting limits estimated by laboratory or validation
 mg/kg = milligrams per killogram
 mg/L = milligrams per liter
 MDL = method detection limit

ND = parameter not detected at the listed reporting limit RL = project reporting limit

^a Sampling location for all sludge samples is the sludge collection bin (see attached P&ID TP-PR-10-10-06).

^b Units reported in this table are those units required in the WDRs.

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-277	C.Knight	10/5/2010	8:40:00 AM	TLI	EPA 120.1	SC	10/6/2010	lordan Stavrev
		-			TLI	EPA 200.7	В	10/25/2010	Ethel Suico
					TLI	EPA 200.7	FE	10/22/2010	Ethel Suico
					TLI	EPA 200.7	FETD	10/8/2010	Ethel Suico
					TLI	EPA 200.7	MND	10/8/2010	Ethel Suico
					TLI	EPA 200.8	AL	10/14/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	AS	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	BA	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	CR	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	CU	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	MN	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	MO	10/14/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	NI	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	PB	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	SB	10/14/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	ZN	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 218.6	CR6	10/11/2010	Sonya Bersudsky
					TLI	EPA 300.0	FL	10/6/2010	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	10/6/2010	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	10/6/2010	Giawad Ghenniwa
					FIELD	HACH	PH	10/5/2010	C.Knight
					TLI	SM 2320B	ALKB	10/12/2010	lordan Stavrev
					TLI	SM 2320B	ALKC	10/12/2010	lordan Stavrev
					TLI	SM2130B	TRB	10/6/2010	Gautam Savani
					TLI	SM2540C	TDS	10/7/2010	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	10/12/2010	lordan Stavrev
					TLI	SM4500NO2B	NO2N	10/6/2010	Jenny Tankunakorn
SC-100B	SC-100B-WDR-280	J.Aide	10/27/2010	8:06:00 AM	TLI	EPA 120.1	SC	10/28/2010	Iordan Stavrev
					TLI	EPA 200.8	CR	10/29/2010	Hope Trinidad/Katia Kiarashpo
					TLI	EPA 200.8	MN	10/29/2010	Hope Trinidad/Katia Kiarashpo
					TLI	EPA 218.6	CR6	10/28/2010	Sonya Bersudsky
					TLI	SM2130B	TRB	10/28/2010	Gautam Savani
					TLI	SM2540C	TDS	10/28/2010	Jenny Tankunakorn
SC-100B	SC-100B-WDR-281	Ron Phelps	11/3/2010	12:15:00 PM	TLI	EPA 120.1	SC	11/4/2010	lordan Stavrev
					TLI	EPA 200.7	AL	11/17/2010	Ethel Suico
					TLI	EPA 200.7	В	11/10/2010	Ethel Suico

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-281	Ron Phelps	11/3/2010	12:15:00 PM	TLI	EPA 200.7	CR	11/17/2010	Ethel Suico
					TLI	EPA 200.7	FE	11/17/2010	Ethel Suico
					TLI	EPA 200.7	FETD	11/12/2010	Ethel Suico
					TLI	EPA 200.8	AS	11/5/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	BA	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	CU	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	MN	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	MND	11/23/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	MO	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	NI	11/5/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	PB	11/5/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	SB	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	ZN	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 218.6	CR6	11/4/2010	Sonya Bersudsky
					TLI	EPA 300.0	FL	11/4/2010	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	11/4/2010	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	11/4/2010	Giawad Ghenniwa
					FIELD	HACH	PH	11/3/2010	Tim D
					TLI	SM 2320B	ALKB	11/10/2010	Iordan Stavrev
					TLI	SM 2320B	ALKC	11/10/2010	Iordan Stavrev
					TLI	SM2130B	TRB	11/4/2010	Gautam Savani
					TLI	SM2540C	TDS	11/8/2010	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	11/8/2010	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	11/4/2010	Jenny Tankunakorn
SC-100B	SC-100B-WDR-286	Ron Phelps	12/7/2010	1:30:00 PM	TLI	EPA 120.1	SC	12/9/2010	lordan Stavrev
					TLI	EPA 200.7	В	12/17/2010	Ethel Suico
					TLI	EPA 200.7	FE	12/17/2010	Ethel Suico
					TLI	EPA 200.8	AL	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	AS	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	BA	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CR	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CU	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MO	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	NI	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	PB	12/16/2010	Katia Kiarashpoor

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-286	Ron Phelps	12/7/2010	1:30:00 PM	TLI	EPA 200.8	SB	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	ZN	12/14/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	12/8/2010	Sonya Bersudsky
					TLI	EPA 300.0	FL	12/8/2010	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	12/8/2010	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	12/8/2010	Giawad Ghenniwa
					TLI	SM2130B	TRB	12/8/2010	Gautam Savani
					TLI	SM2540C	TDS	12/8/2010	Jenny Tankunakorn
					TLI	SM4500-HB	PH	12/8/2010	Iordan Stavrev
					TLI	SM4500NH3D	NH3N	12/9/2010	lordan Stavrev
					TLI	SM4500NO2B	NO2N	12/8/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-277	C.Knight	10/5/2010	8:40:00 AM	TLI	EPA 120.1	SC	10/6/2010	Iordan Stavrev
					TLI	EPA 200.7	В	10/25/2010	Ethel Suico
					TLI	EPA 200.7	FE	10/22/2010	Ethel Suico
					TLI	EPA 200.8	AL	10/14/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	AS	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	BA	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	CR	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	CU	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	MN	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	MO	10/14/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	NI	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	PB	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	SB	10/14/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 200.8	ZN	10/7/2010	Daniel Kang/Hope Trinidad
					TLI	EPA 218.6	CR6	10/11/2010	Sonya Bersudsky
					TLI	EPA 300.0	FL	10/6/2010	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	10/6/2010	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	10/6/2010	Giawad Ghenniwa
					FIELD	HACH	PH	10/5/2010	C.Knight
					TLI	SM2130B	TRB	10/6/2010	Gautam Savani
					TLI	SM2540C	TDS	10/7/2010	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	10/12/2010	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	10/6/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-278	J.Aide	10/13/2010	8:00:00 AM	TLI	EPA 120.1	SC	10/19/2010	Iordan Stavrev
					TLI	EPA 200.8	CR	10/19/2010	Hope Trinidad/Katia Kiarashpo

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-278	J.Aide	10/13/2010	8:00:00 AM	TLI	EPA 200.8	MN	10/19/2010	Hope Trinidad/Katia Kiarashpoor
					TLI	EPA 218.6	CR6	10/15/2010	Sonya Bersudsky
					FIELD	HACH	PH	10/13/2010	J.Aide
					TLI	SM2130B	TRB	10/14/2010	Gautam Savani
					TLI	SM2540C	TDS	10/14/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-279	C.Knight	10/19/2010	9:00:00 AM	TLI	EPA 120.1	SC	10/20/2010	lordan Stavrev
					TLI	EPA 200.8	CR	10/27/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	10/27/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	10/20/2010	Sonya Bersudsky
					FIELD	HACH	PH	10/19/2010	Ron Phelps
					TLI	SM2130B	TRB	10/20/2010	Gautam Savani
					TLI	SM2540C	TDS	10/21/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-280	J.Aide	10/27/2010	8:06:00 AM	FIELD	HACH	PH	10/27/2010	Tim D
SC-700B	SC-700B-WDR-280B	C.Knight	10/28/2010	1:35:00 PM	TLI	EPA 120.1	SC	11/1/2010	lordan Stavrev
					TLI	EPA 200.8	CR	11/2/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	11/2/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	10/29/2010	Sonya Bersudsky
					FIELD	HACH	PH	10/28/2010	Tim D
					TLI	SM2130B	TRB	10/29/2010	Gautam Savani
					TLI	SM2540C	TDS	10/29/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-281	Ron Phelps	11/3/2010	12:20:00 PM	TLI	EPA 120.1	SC	11/4/2010	lordan Stavrev
					TLI	EPA 200.7	AL	11/17/2010	Ethel Suico
					TLI	EPA 200.7	В	11/10/2010	Ethel Suico
					TLI	EPA 200.7	FE	11/17/2010	Ethel Suico
					TLI	EPA 200.8	AS	11/5/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	BA	11/12/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	EPA 200.8	CR	11/12/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	CU	11/12/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	MN	11/12/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	MO	11/12/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	NI	11/5/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	PB	11/5/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	SB	11/12/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 200.8	ZN	11/12/2010	Katia Kiarashpoor/Hope Trinida
					TLI	EPA 218.6	CR6	11/11/2010	Sonya Bersudsky

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-281	Ron Phelps	11/3/2010	12:20:00 PM	TLI	EPA 300.0	FL	11/4/2010	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	11/4/2010	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	11/4/2010	Giawad Ghenniwa
					FIELD	HACH	PH	11/3/2010	Tim D
					TLI	SM2130B	TRB	11/4/2010	Gautam Savani
					TLI	SM2540C	TDS	11/8/2010	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	11/8/2010	lordan Stavrev
					TLI	SM4500NO2B	NO2N	11/4/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-282	Ron Phelps	11/9/2010	12:00:00 PM	TLI	EPA 120.1	SC	11/10/2010	lordan Stavrev
					TLI	EPA 200.8	CR	11/18/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	11/18/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	11/11/2010	Sonya Bersudsky
					FIELD	HACH	PH	11/9/2010	Ron Phelps
					TLI	SM2130B	TRB	11/10/2010	Gautam Savani
					TLI	SM2540C	TDS	11/10/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-283	Ron Phelps	11/16/2010	1:00:00 PM	TLI	EPA 120.1	SC	11/17/2010	Iordan Stavrev
					TLI	EPA 200.8	CR	11/24/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	11/24/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	11/17/2010	Sonya Bersudsky
					FIELD	HACH	PH	11/16/2010	Tim D
					TLI	SM2130B	TRB	11/17/2010	Gautam Savani
					TLI	SM2540C	TDS	11/17/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-284	C.Knight	11/23/2010	2:25:00 PM	TLI	EPA 120.1	SC	11/29/2010	Iordan Stavrev
					TLI	EPA 200.8	CR	12/3/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	12/9/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	11/24/2010	Sonya Bersudsky
					FIELD	HACH	PH	11/23/2010	C. Knight
					TLI	SM2130B	TRB	11/24/2010	Gautam Savani/Iordan Stavrev
					TLI	SM2540C	TDS	11/29/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-285	C.Knight	11/30/2010	2:12:00 PM	TLI	EPA 120.1	SC	12/6/2010	Iordan Stavrev
					TLI	EPA 200.8	CR	12/7/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	12/9/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	12/1/2010	Sonya Bersudsky
					FIELD	HACH	PH	11/30/2010	C. Knight
					TLI	SM2130B	TRB	12/1/2010	Gautam Savani

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-285	C.Knight	11/30/2010	2:12:00 PM	TLI	SM2540C	TDS	12/2/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-286	Ron Phelps	12/7/2010	1:30:00 PM	TLI	EPA 120.1	SC	12/9/2010	lordan Stavrev
					TLI	EPA 200.7	В	12/17/2010	Ethel Suico
					TLI	EPA 200.7	FE	12/17/2010	Ethel Suico
					TLI	EPA 200.8	AL	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	AS	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	BA	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CR	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CU	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MN	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MO	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	NI	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	PB	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	SB	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	ZN	12/14/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	12/8/2010	Sonya Bersudsky
					TLI	EPA 300.0	FL	12/8/2010	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	12/8/2010	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	12/8/2010	Giawad Ghenniwa
					FIELD	HACH	PH	12/7/2010	Ron Phelps
					TLI	SM2130B	TRB	12/8/2010	Gautam Savani
					TLI	SM2540C	TDS	12/8/2010	Jenny Tankunakorn
					TLI	SM4500-HB	PH	12/8/2010	Iordan Stavrev
					TLI	SM4500NH3D	NH3N	12/9/2010	lordan Stavrev
					TLI	SM4500NO2B	NO2N	12/8/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-287	Ron Phelps	12/14/2010	12:45:00 PM	TLI	EPA 120.1	SC	12/17/2010	lordan Stavrev
					TLI	EPA 200.8	CR	1/6/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	1/6/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	12/15/2010	Sonya Bersudsky
					FIELD	HACH	PH	12/14/2010	Ron Phelps
					TLI	SM2130B	TRB	12/15/2010	Gautam Savani
					TLI	SM2540C	TDS	12/15/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-288	Chris Lentz	12/21/2010	1:25:00 PM	TLI	EPA 120.1	SC	1/3/2011	Mark Kotani
					TLI	EPA 200.8	CR	1/6/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	1/6/2011	Katia Kiarashpoor

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Monitoring Information

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-288	Chris Lentz	12/21/2010	1:25:00 PM	TLI	EPA 218.6	CR6	12/27/2010	Sonya Bersudsky
					FIELD	HACH	PH	12/21/2010	Chris Lentz
					TLI	SM2130B	TRB	12/22/2010	Gautam Savani/Iordan Stavrev
					TLI	SM2540C	TDS	12/27/2010	Jenny Tankunakorn
SC-700B	SC-700B-WDR-289	Ron Phelps	12/28/2010	11:30:00 AM	TLI	EPA 120.1	SC	1/4/2011	Mark Kotani
					TLI	EPA 200.8	CR	1/6/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	1/6/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	12/29/2010	Sonya Bersudsky
					FIELD	HACH	PH	12/28/2010	Ron Phelps
					TLI	SM2130B	TRB	12/29/2010	Gautam Savani
					TLI	SM2540C	TDS	12/29/2010	Jenny Tankunakorn
SC-701	SC-701-WDR-286	Ron Phelps	12/7/2010	1:30:00 PM	TLI	EPA 120.1	SC	12/9/2010	lordan Stavrev
					TLI	EPA 200.8	AG	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	AS	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	BA	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	BE	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CD	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	СО	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CR	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	CU	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	HG	12/27/2010	Katia Kiarashpoor
					TLI	EPA 200.8	MO	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	NI	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	PB	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	SB	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	SE	12/14/2010	Katia Kiarashpoor
					TLI	EPA 200.8	TL	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	V	12/16/2010	Katia Kiarashpoor
					TLI	EPA 200.8	ZN	12/14/2010	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	12/8/2010	Sonya Bersudsky
					TLI	EPA 300.0	FL	12/8/2010	Giawad Ghenniwa
					TLI	SM2540C	TDS	12/8/2010	Jenny Tankunakorn
					TLI	SM4500-HB	PH	12/8/2010	lordan Stavrev
hase Seperator	SC-Sludge-WDR-286	Ron Phelps	12/7/2010	1:30:00 PM	TLI	EPA 300.0	FL	12/9/2010	Giawad Ghenniwa
•	-	•			TLI	EPA 6010B	AG	12/22/2010	Ethel Suico

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

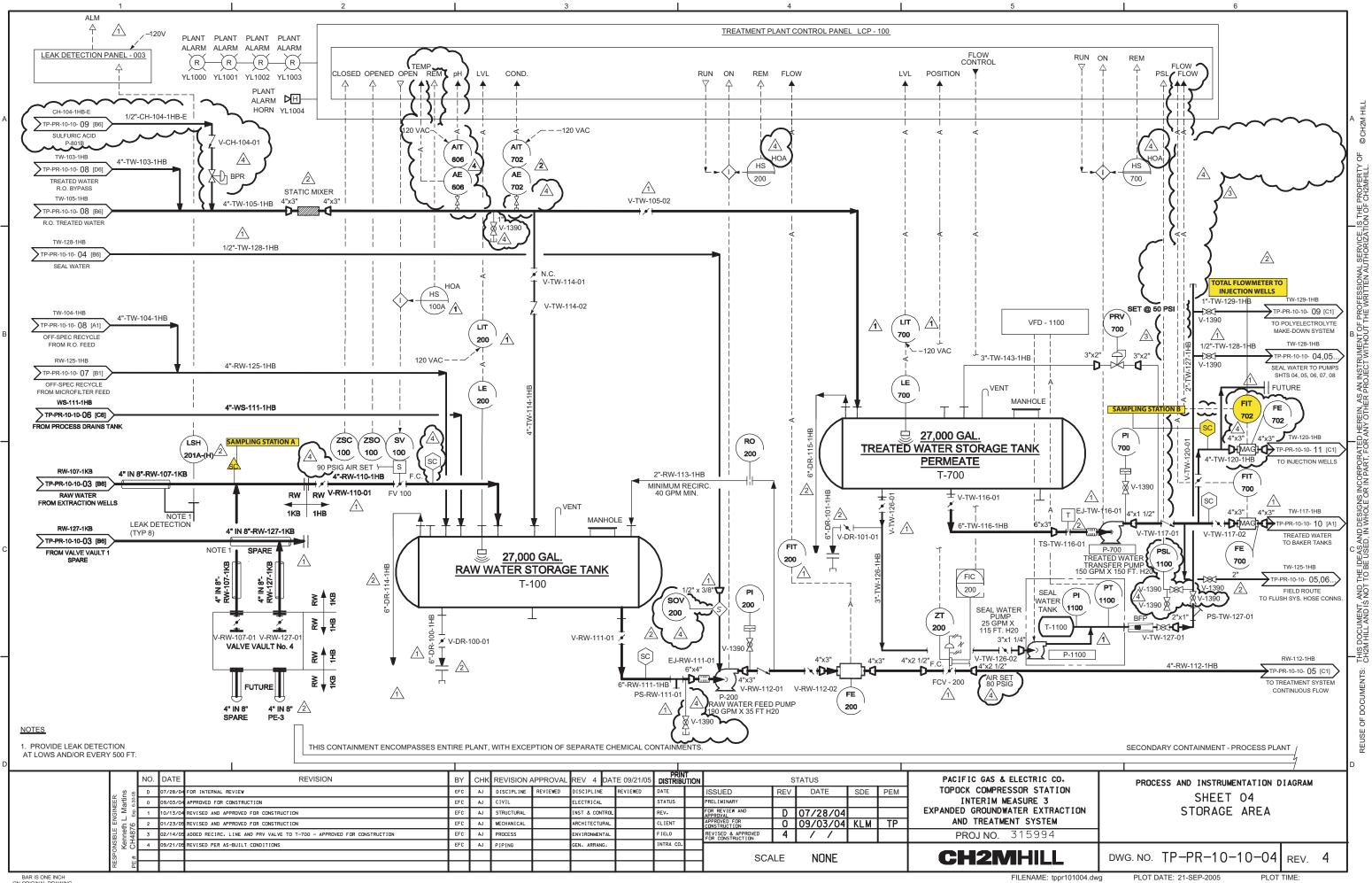
Monitoring Information

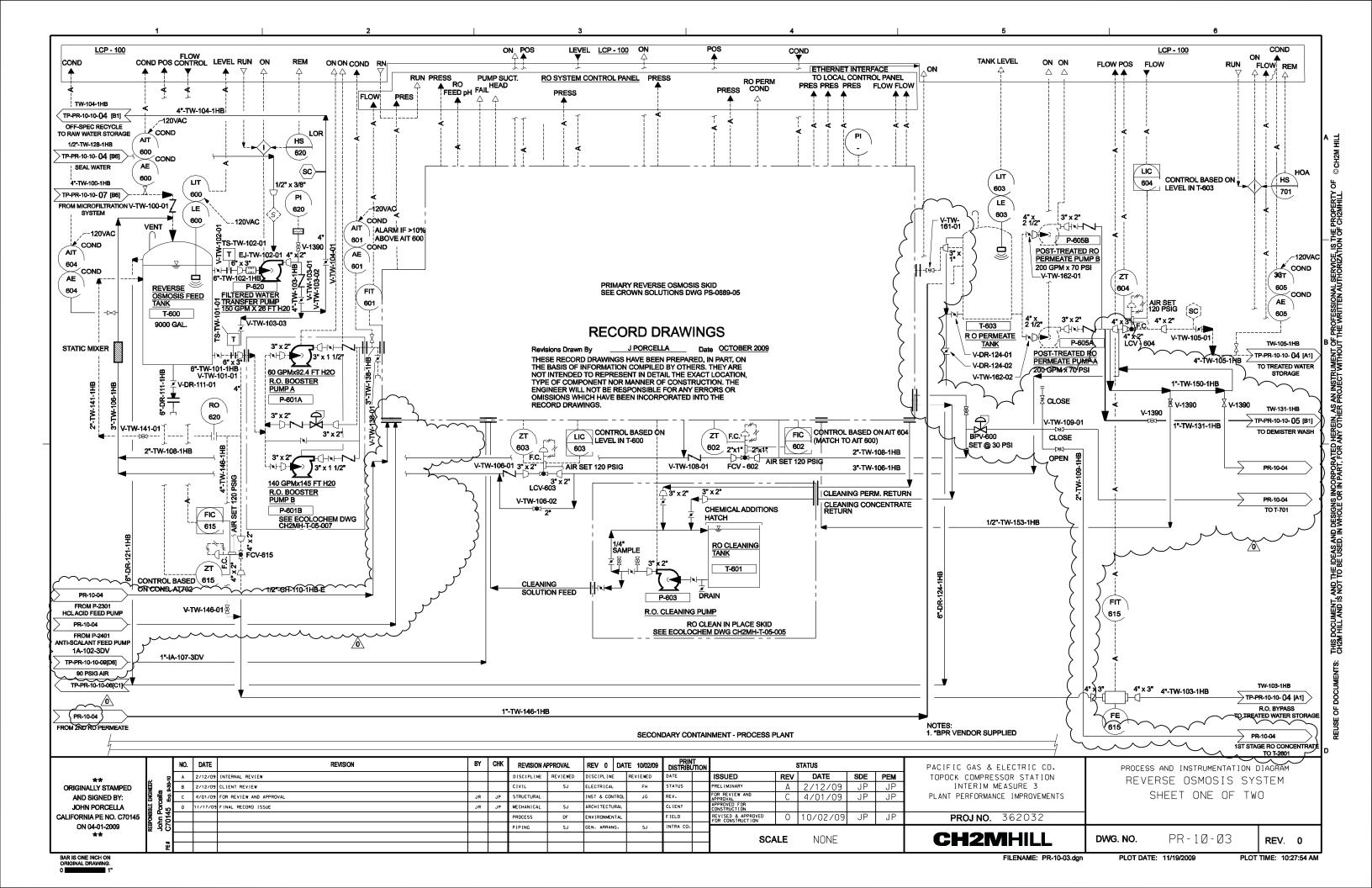
Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Seperator	SC-Sludge-WDR-286	Ron Phelps	12/7/2010	1:30:00 PM	TLI	EPA 6010B	AS	12/22/2010	Ethel Suico
					TLI	EPA 6010B	BA	12/22/2010	Ethel Suico
					TLI	EPA 6010B	BE	12/22/2010	Ethel Suico
					TLI	EPA 6010B	CD	12/22/2010	Ethel Suico
					TLI	EPA 6010B	СО	12/22/2010	Ethel Suico
					TLI	EPA 6010B	CR	12/16/2010	Ethel Suico
					TLI	EPA 6010B	CU	12/22/2010	Ethel Suico
					TLI	EPA 6010B	MO	12/22/2010	Ethel Suico
					TLI	EPA 6010B	NI	12/22/2010	Ethel Suico
					TLI	EPA 6010B	PB	12/22/2010	Ethel Suico
					TLI	EPA 6010B	SB	12/22/2010	Ethel Suico
					TLI	EPA 6010B	SE	12/22/2010	Ethel Suico
					TLI	EPA 6010B	TL	12/22/2010	Ethel Suico
					TLI	EPA 6010B	V	12/22/2010	Ethel Suico
					TLI	EPA 6010B	ZN	12/22/2010	Ethel Suico
					TLI	SM2540B	MOIST	12/9/2010	Gautam Savani
					TLI	SW 6020A	HG	12/21/2010	Katia Kiarashpoor/Hope Trinidad
					TLI	SW 7199	CR6	12/16/2010	Sonya Bersudsky

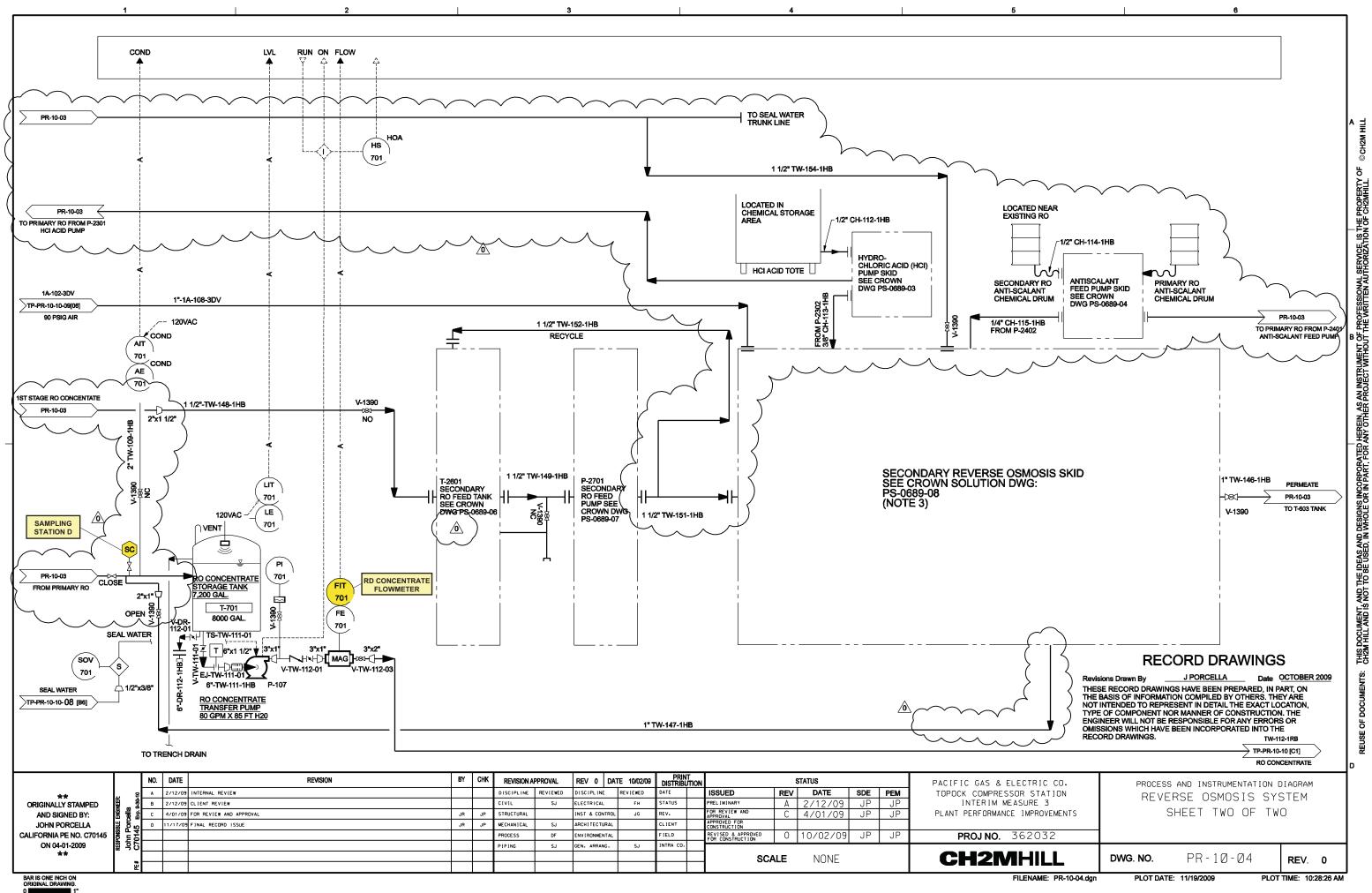
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Monitoring Information Fourth Quarter 2010 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

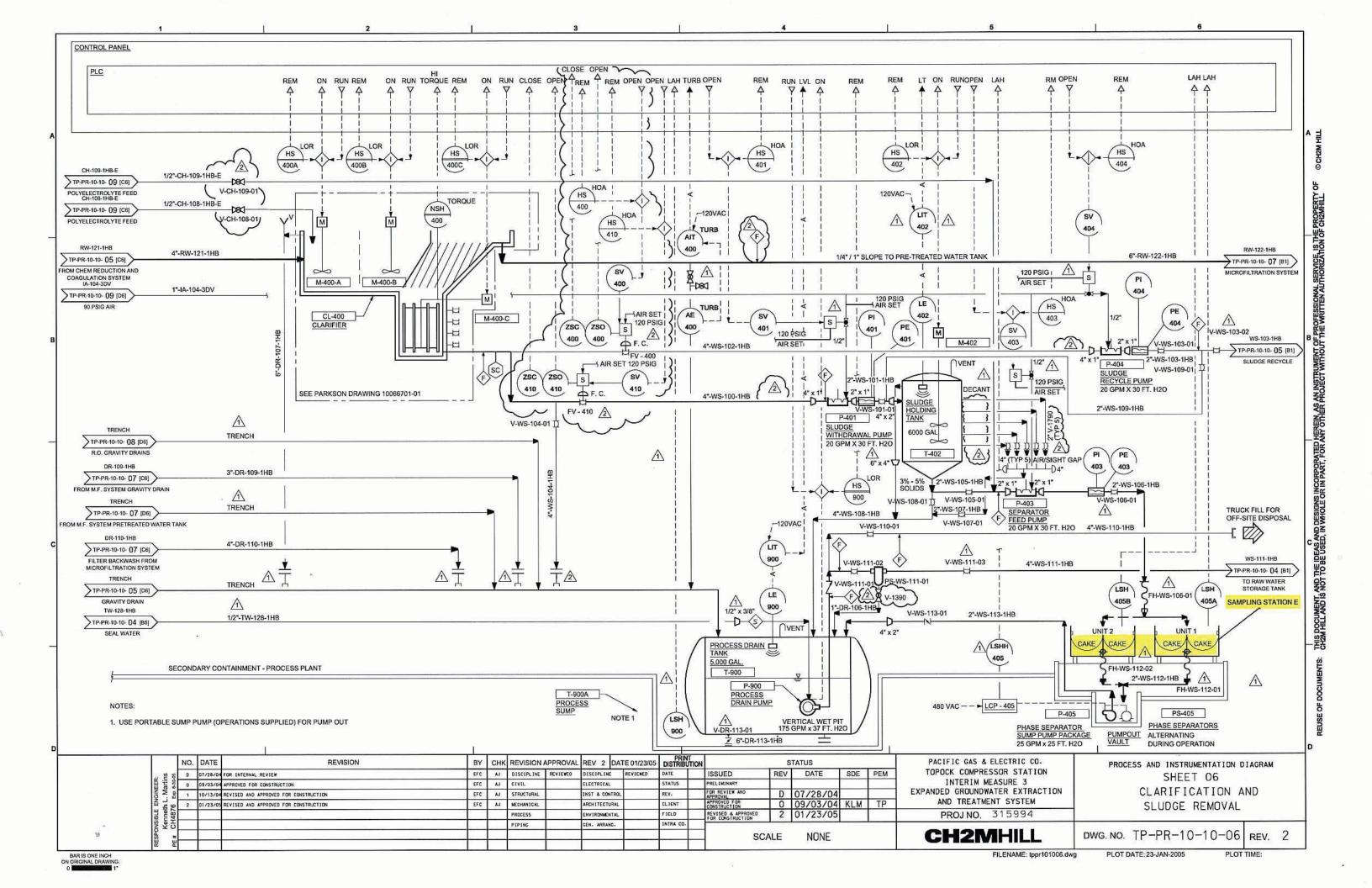
NOTES:

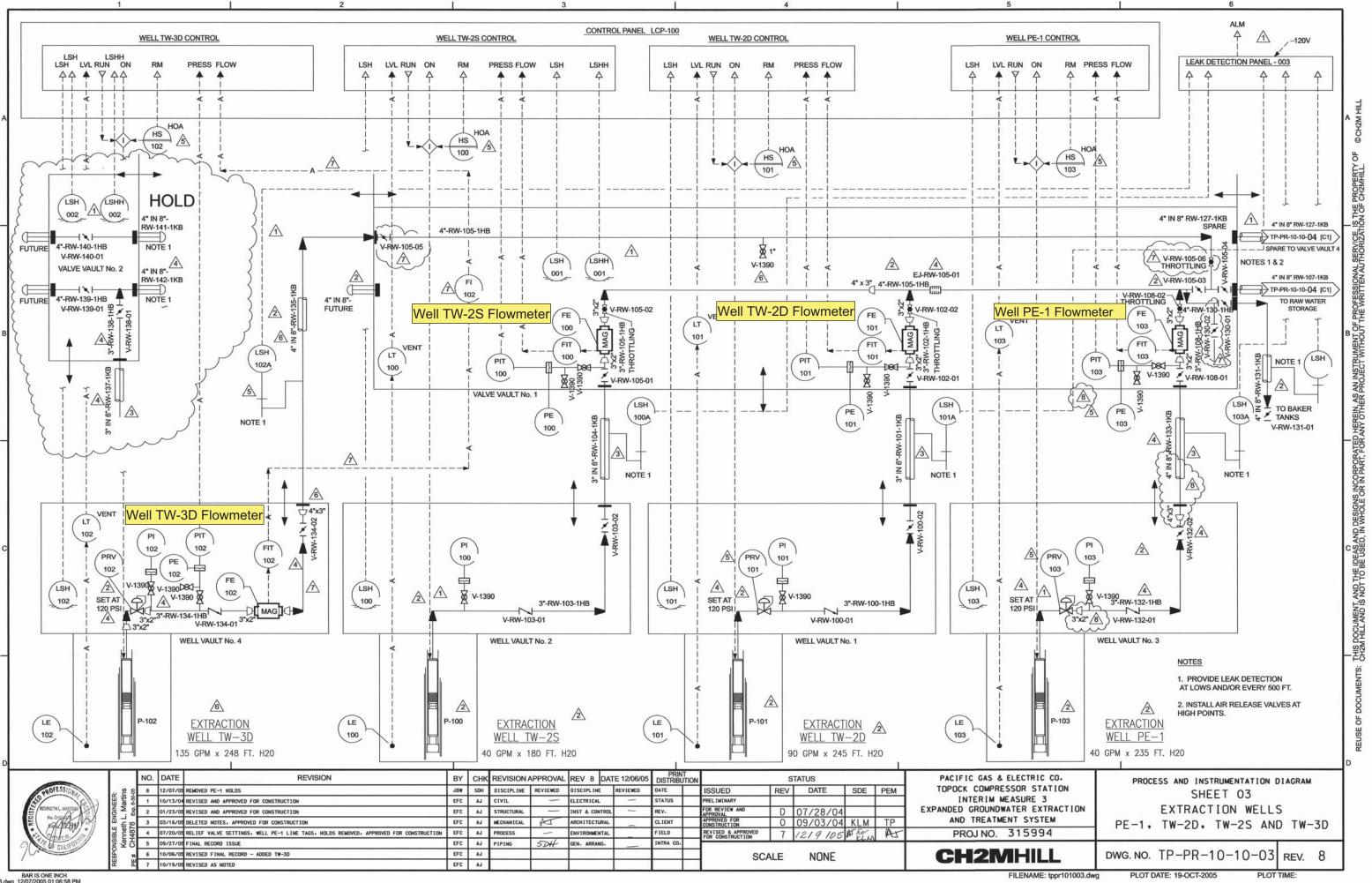
SC-700B = Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04).

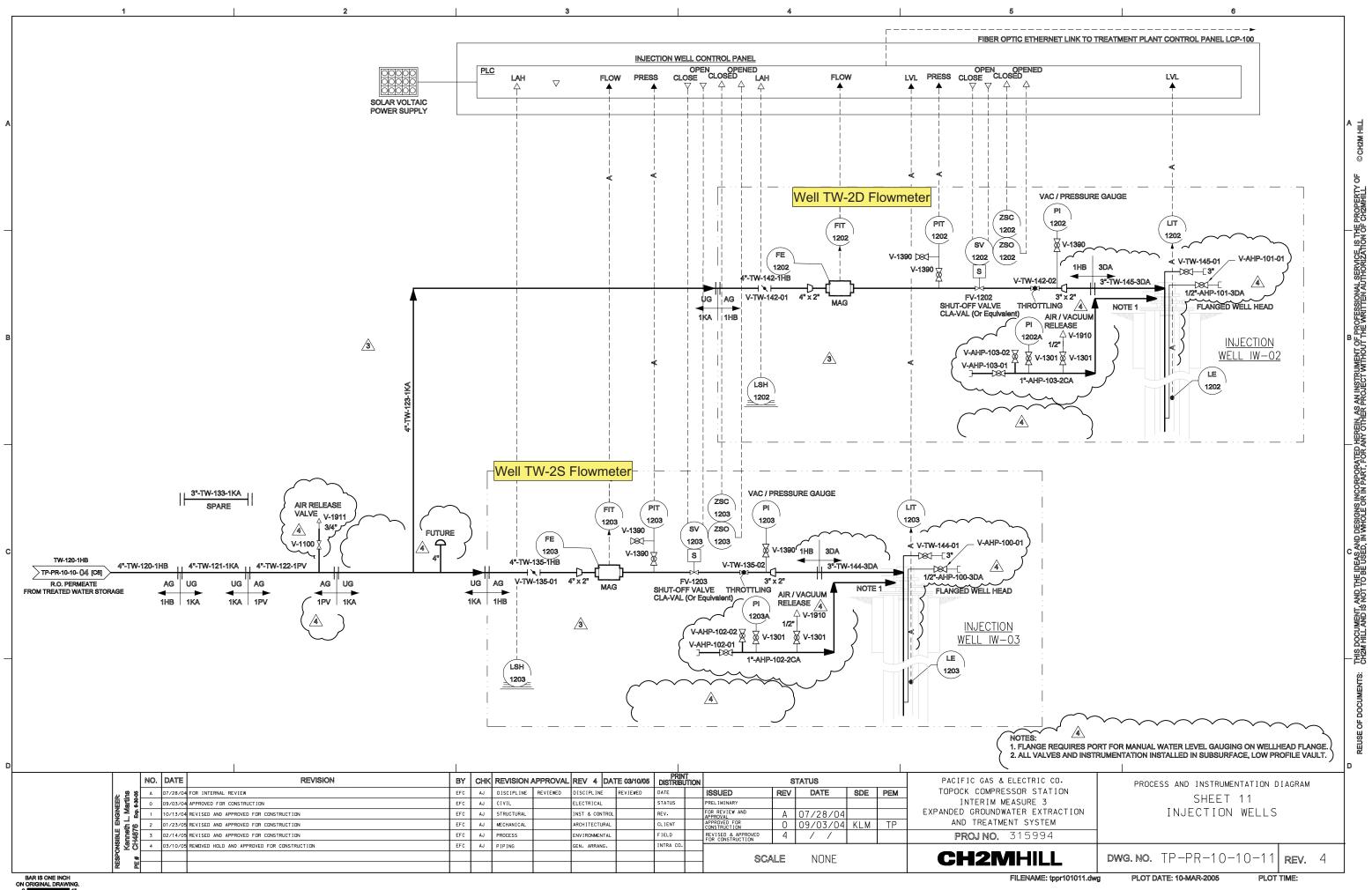

SC-100B = Sampling location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).


SC-701 = Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08).


Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.


Figures





Appendix A Semiannual Operations and Maintenance Log, July 1, 2010 through December 31, 2010

APPENDIX A

Semiannual Operations and Maintenance Log, July 1, 2010 through December 31, 2010

Downtime is defined as any periods when all extraction wells are not operating, so that no groundwater is being extracted and piped into IM No. 3 as influent. Periods of planned and unplanned extraction system downtime are summarized here. The times shown are in Pacific Standard Time to be consistent with other data collected at the site.

July 2010

- July 1, 2010 (planned): The extraction well system was offline from 9:40 a.m. to 1:04 p.m. and 1:24 p.m. to 7:12 p.m. for iron oxidation tank T301B maintenance. Extraction system downtime was 9 hours and 12 minutes.
- **July 1, 2010 (planned):** The extraction well system was offline from 11:00 p.m. to 11:54 p.m. for microfilter bank switch. Extraction system downtime 54 minutes.
- **July 6, 2010 (planned):** The extraction well system was offline from 1:44 p.m. to 3:16 p.m. for microfilter bank switch. Extraction system downtime was 1 hour and 32 minutes.
- July 7, 2010 (planned): The extraction well system was offline from 9:54 a.m. to 9:56 a.m., 10:18 a.m. to 10:22 a.m., 10:32 a.m. to 10:34 a.m., and 10:38 a.m. to 10:42 a.m. for testing of the pipeline leak detection alarm system. Extraction system downtime was 12 minutes.
- July 10, 2010 (unplanned): The extraction well system was offline from 12:16 a.m. to 12:18 a.m. due to reduced microfilter performance. Extraction system downtime was 2 minutes.
- **July 11, 2010 (unplanned):** The extraction well system was offline from 1:40 p.m. to 2:18 p.m. due to low ferrous chloride flow. Extraction system downtime was 38 minutes.
- July 13, 2010 (planned): The extraction well system was offline from 7:20 a.m. to 9:14 for microfilter bank switch and maintenance. Extraction system downtime was 1 hour and 54 minutes.
- July 14, 2010 (planned): The extraction well system was offline from 7:38 a.m. to 9:00 a.m. to replace a valve on clean-in-place (CIP) skid. Extraction system downtime was 1 hour and 22 minutes.
- July 14, 2010 (unplanned): The extraction well system was offline from 1:36 p.m. to 3:28 p.m. due to low ferrous chloride flow. Extraction system downtime was 1 hour and 52 minutes.

- **July 14, 2010 (planned):** The extraction well system was offline from 6:12 p.m. to 7:08 p.m. to replace valve on CIP skid. Extraction system downtime was 56 minutes.
- **July 15, 2010 (unplanned):** The extraction well system was offline from 5:40 p.m. to 5:44 p.m. due to reduced microfilter performance. Extraction system downtime was 4 minutes.
- July 21, 2010 (unplanned): The extraction well system was offline from 8:16 a.m. to 8:34 a.m. and 9:28 a.m. to 9:30 a.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 20 minutes.
- **July 23, 2010 (planned):** The extraction well system was offline from 10:04 a.m. to 2:16 p.m. for microfilter bank switch and maintenance. Extraction system downtime was 4 hours and 12 minutes.
- **July 23, 2010 (planned):** The extraction well system was offline from 7:56 p.m. to 10:00 p.m. to collect routine process control samples after microfilter bank switch. Extraction system downtime was 2 hours and 4 minutes.
- **July 31, 2010 (planned):** The extraction well system was offline from 5:30 a.m. to 5:50 p.m. for microfilter maintenance. Extraction system downtime was 20 minutes.

August 2010

- August 3, 2010 (unplanned): The extraction well system was offline from 4:18 p.m. to 5:46 p.m. due to reduced microfilter performance. Extraction system downtime was 1 hour and 28 minutes.
- August 5, 2010 (planned): The extraction well system was offline from 11:02 a.m. to 11:04 a.m. and 11:10 a.m. to 12:04 p.m. for microfilter maintenance and testing of the pipeline leak detection alarm system. Extraction system downtime 56 minutes.
- August 15, 2010 (planned): The extraction well system was offline from 10:46 a.m. to 10:58 a.m. and 11:00 a.m. to 11:02 a.m. for cleaning of the T-100 strainer. Extraction system downtime was 14 minutes.
- August 17, 2010 (unplanned): The extraction well system was offline from 3:10 p.m. to 3:28 p.m. when the City of Needles power supply imbalance alarmed and shut down the extraction wells. Extraction system downtime was 18 minutes.
- August 23 26, 2010 (planned): The extraction well system was offline from 11:48 a.m. to 1:44 p.m. on August 23rd, 2:48 p.m. on August 23rd to 12:40 p.m. on August 26th, and 12:48 p.m. to 3:34 p.m. on August 26th for biannual plant outage. Extraction system downtime was 3 days 2 hours and 24 minutes.
- August 31, 2010 (unplanned): The extraction well system was offline from 11:08 a.m. to 11:24 a.m. for service of the polymer system. Extraction system downtime was 16 minutes.

September 2010

- **September 2, 2010 (planned):** The extraction well system was offline from 4:20 p.m. to 4:21 p.m., 4:30 p.m. to 4:31 p.m., 4:34 p.m. to 4:35 p.m., 4:38 p.m. to 4:39 p.m., 4:43 p.m. to 4:44 p.m., and 4:47 p.m. to 4:48 p.m. due to testing of the pipeline leak detection alarm system. Extraction system downtime was 6 minutes.
- **September 16, 2010 (planned):** The extraction well system was offline from 12:44 p.m. to 6:39 p.m. for microfilter bank switch. Extraction system downtime was 5 hours and 55 minutes.
- September 18, 2010 (unplanned): The extraction well system was offline from 7:38 p.m. to 7:40 p.m. due to plant alarm that shut down extraction wells. Extraction system downtime was 2 minutes.
- **September 30, 2010 (unplanned):** The extraction well system was offline from 12:56 p.m. to 1:07 p.m. due to reduced microfilter performance. Extraction system downtime was 11 minutes.

October 2010

- October 3, 2010 (unplanned): The extraction well system was offline from 12:35 p.m. to 2:25 p.m. and 4:52 p.m. to 5:07 p.m. due to City of Needles power supply imbalance that shut down extraction wells. Extraction system downtime was 2 hours and 5 minutes.
- October 4, 2010 (unplanned): The extraction well system was offline from 5:03 p.m. to 7:45 p.m. due to plugging in the chemical loop and cleaning of the chemical loop. Extraction system downtime was 2 hours and 42 minutes.
- October 5, 2010 (planned): The extraction well system was offline from 1:05 p.m. to 6:02 p.m. for chemical loop cleaning. Extraction system downtime was 4 hours and 57 minutes.
- October 6, 2010 (planned): The extraction well system was offline from 11:14 a.m. to 12:12 p.m. when City of Needles power utility adjusted power feed to plant. Extraction system downtime was 58 minutes.
- October 6, 2010 (planned): The extraction well system was offline from 3:09 p.m. to 3:10 p.m., 3:13 p.m. to 3:14 p.m., 3:23 p.m. to 3:25 p.m., 3:27 p.m. to 3:28 p.m., 3:32 p.m. to 3:33 p.m., and 3:36 p.m. to 3:37 p.m. due to leak detection system testing. Extraction system downtime was 7 minutes.
- October 8, 2010 (planned): The extraction well system was offline from 12:22 p.m. to 2:10 p.m. to replace existing flow control valve, FCV602, with a new valve. Extraction system downtime was 1 hour and 48 minutes.
- October 8, 2010 (unplanned): The extraction well system was offline from 3:20 p.m. to 5:36 p.m. when polymer feed pump, P-805, to the clarifier failed. Extraction system downtime was 2 hours and 16 minutes.

- October 14, 2010 (unplanned): The extraction well system was offline from 12:14 p.m. to 12:18 p.m. due to City of Needles power supply imbalance that shut down extraction wells. Extraction system downtime was 4 minutes.
- October 15, 2010 (planned): The extraction well system was offline from 11:20 a.m. to 1:18 p.m. for scheduled monthly preventative maintenance. Extraction system downtime was 1 hour and 58 minutes.
- October 28, 2010 (unplanned): The extraction well system was offline from 10:18 a.m. to 7:10 p.m. The system was turned off due to concerns when an effluent sample was inadvertently collected from the influent sampling location. When the IM3 team was contacted by the laboratory with the unusual results, per IM3 operating procedures, injection and extraction were stopped, and were not started again until the effluent was confirmed to be in compliance. Extraction system downtime was 8 hours and 52 minutes.

November 2010

- November 1, 2010 (unplanned): The extraction well system was offline from 12:18 a.m. to 1:28 a.m. due to cleaning of a plugged line between T-300 and 301. Extraction system downtime was 1 hour and 10 minutes.
- November 4, 2010 (unplanned): The extraction well system was offline from 8:06 a.m. to 8:10 a.m. due to City of Needles power imbalance that shut down extraction wells. Extraction system downtime was 4 minutes.
- **November 4, 2010 (planned):** The extraction well system was offline from 12:14 p.m. to 12:16 p.m., 12:22 p.m. to 12:42 p.m. and 1:06 p.m. to 1:14 p.m. for critical alarm and extraction well specific capacity testing. Extraction system downtime was 30 minutes.
- November 10, 2010 (planned): The extraction well system was offline from 11:04 a.m. to 12:34 p.m. due to blower maintenance. Extraction system downtime was 1 hour and 30 minutes.
- November 12, 2010 (planned): The extraction well system was offline from 9:56 a.m. to 10:00 a.m. due to City of Needles power imbalance that shut down extraction wells. Extraction system downtime was 4 minutes.
- November 12, 2010 (unplanned): The extraction well system was offline from 2:06 p.m. to 4:02 p.m. due to reduced microfilter performance and microfilter maintenance. Extraction system downtime was 1 hour and 56 minutes.
- November 24, 2010 (unplanned): The extraction well system was offline from 11:00 p.m. to 11:02 p.m. due to a level sensor malfunction in the raw water storage tank. Extraction system downtime was 2 minutes.
- November 29, 2010 (unplanned): The extraction well system was offline from 1:00 p.m. to 1:02 p.m., 1:22 p.m. to 1:24 p.m., 2:22 p.m. to 2:24 p.m., 2:48 p.m. to 2:50 p.m., and 8:08 a.m. to 8:10 a.m. due to instrumentation and control engineers onsite making corrections

to the human-machine interface computer software monitoring and tracking system. Extraction system downtime was 10 minutes.

December 2010

- **December 1, 2010 (planned):** The extraction well system was offline from 9:50 a.m. to 11:44 a.m. due to replacement of primary reverse osmosis membranes. Extraction system downtime was 1 hour and 54 minutes.
- **December 1, 2010 (planned):** The extraction well system was offline from 11:50 a.m. to 11:56 a.m. for startup sampling. Extraction system downtime was 6 minutes.
- **December 1, 2010 (planned):** The extraction well system was offline from 3:02 p.m. to 5:28 p.m. due to microfilter maintenance. Extraction system downtime was 2 hours and 26 minutes.
- **December 8, 2010 (planned):** The extraction well system was offline from 12:36 p.m. to 12:38 p.m. and 1:20 p.m. to 1:22 p.m. due to critical alarm and leak detection system testing. Extraction system downtime was 4 minutes.
- December 9, 2010 (unplanned): The extraction well system was offline from 7:34 a.m. to 7:38 a.m., 10:48 a.m. to 10:52 a.m., 11:10 a.m. to 11:12 a.m. and 12:48 p.m. to 12:54 p.m. due to reduced microfilter performance. Extraction system downtime was 16 minutes.
- **December 10, 2010 (planned):** The extraction well system was offline from 4:14 p.m. to 4:44 p.m. and 4:52 p.m. to 7:36 p.m. due to polymer pump replacement. Extraction system downtime was 3 hours and 14 minutes.
- **December 19, 2010 (unplanned):** The extraction well system was offline from 2:29 p.m. to 3:21 p.m. due to City of Needles power imbalance that shut down extraction wells. Extraction system downtime was 52 minutes.
- **December 31, 2010 (unplanned):** The extraction well system was offline from 9:22 p.m. to 9:24 p.m. due to reduced microfilter performance. Extraction system downtime was 2 minutes.

Appendix B Daily Volumes of Groundwater Treated

July 2010 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
July	1	2010			89,313	23,602	112,916	106,125	48	106,172	3,035
July	2	2010			148,961	40,290	189,251	175,150	10	175,160	5,962
July	3	2010			134,934	40,136	175,070	183,511	80	183,591	4
July	4	2010			140,252	40,185	180,437	173,345	73	173,418	3,100
July	5	2010			143,230	40,552	183,782	175,748	77	175,825	2
July	6	2010			140,112	37,238	177,350	169,297	74	169,370	4,684
July	7	2010			135,113	38,119	173,232	176,927	1,764	178,691	131
July	8	2010			148,228	38,521	186,749	169,302	98	169,400	3,087
July	9	2010			122,454	38,794	161,247	165,734	98	165,832	3,215
July	10	2010			138,336	37,854	176,190	169,235	92	169,327	3,077
July	11	2010			114,262	37,259	151,521	153,562	102	153,663	3,220
July	12	2010			129,952	38,752	168,704	161,616	106	161,721	3,076
July	13	2010			135,071	35,728	170,798	160,730	123	160,853	3,063
July	14	2010			119,013	32,117	151,131	152,260	101	152,361	2,947
July	15	2010			135,711	37,624	173,335	163,211	93	163,304	3,083
July	16	2010			136,438	37,436	173,873	168,342	84	168,426	3,075
July	17	2010			150,383	37,986	188,369	183,693	65	183,758	3,055
July	18	2010			157,180	37,980	195,161	185,497	58	185,555	6,303
July	19	2010			157,402	37,668	195,071	188,696	60	188,757	3,067
July	20	2010			157,160	38,072	195,232	187,865	54	187,920	9,615
July	21	2010			153,814	36,877	190,691	108,260	74,140	182,400	6,302
July	22	2010			157,488	37,824	195,313	19	186,844	186,863	4,440
July	23	2010			115,143	28,336	143,479	12	132,478	132,490	9,526
July	24	2010			155,520	38,003	193,523	12	189,509	189,521	6,428
July	25	2010			157,134	38,153	195,288	10	185,267	185,278	6,336
July	26	2010			157,202	38,114	195,317	8	188,873	188,881	6,423
July	27	2010			157,076	38,413	195,490	18	183,842	183,860	6,446
July	28	2010			157,215	38,032	195,247	1,491	193,467	194,958	3,838
July	29	2010			157,367	37,892	195,259	4,366	186,195	190,562	5,774
July	30	2010			157,226	37,979	195,205	4,966	184,813	189,778	3,089
July	31	2010			154,759	37,365	192,124	2,397	190,806	193,202	3,096
otal Monthly	Volumes	s (gal)	0	0	4,413,450	1,152,902	5,566,352	3,491,404	1,899,494	5,390,898	128,500
•		n Rates (gpn	n) 0.0	0.0	98.9	25.8	124.7	78.2	42.6	120.8	2.9

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during July 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during July 2010.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during July 2010 is approximately 0.84 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

August 2010 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inj	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
August	1	2010			156,994	38,518	195,512	87	193,607	193,694	3,087
August	2	2010			157,146	38,352	195,498	8,780	178,348	187,128	3,080
August	3	2010			146,902	36,196	183,098	3,832	178,751	182,583	3,230
August	4	2010			156,687	38,857	195,544	1,213	188,718	189,932	3,091
August	5	2010			150,743	34,458	185,201	1,205	185,661	186,866	2
August	6	2010			156,783	38,545	195,328	16	182,835	182,852	3,136
August	7	2010			156,780	38,574	195,354	6	191,406	191,412	3,194
August	8	2010			156,502	39,079	195,581	10	197,969	197,979	6,338
August	9	2010			156,268	39,479	195,747	15	189,215	189,230	4
August	10	2010			156,629	38,918	195,548	13	189,753	189,766	2,969
August	11	2010			156,171	39,770	195,941	12	186,315	186,327	3,124
August	12	2010			156,884	38,758	195,642	9	189,774	189,784	3,404
August	13	2010			155,876	40,269	196,145	13	196,866	196,879	6,005
August	14	2010			156,047	39,995	196,042	16	196,434	196,450	2,958
August	15	2010			154,594	38,460	193,054	11	189,377	189,388	3,090
August	16	2010			157,375	37,933	195,309	14	191,514	191,529	3,096
August	17	2010			154,632	37,970	192,602	11	189,997	190,008	3,168
August	18	2010			157,030	38,511	195,541	1,603	188,405	190,008	3,103
August	19	2010			156,979	38,670	195,649	9	197,670	197,679	3,116
August	20	2010			157,426	38,007	195,434	11	186,013	186,024	3,239
August	21	2010			157,274	38,301	195,575	11	190,127	190,138	3,234
August	22	2010			157,194	38,485	195,679	10	185,496	185,505	1,898
August	23	2010			83,853	20,723	104,576	14	106,461	106,475	1,340
August	24	2010			8	6	14	10	224	233	4
August	25	2010			4	6	10	11	468	480	4,505
August	26	2010			56,334	14,216	70,550	69,231	1,560	70,790	4
August	27	2010			156,669	38,529	195,198	182,243	104	182,347	3,145
August	28	2010			155,648	39,970	195,617	195,120	67	195,187	3,247
August	29	2010			155,960	39,741	195,700	187,864	66	187,930	2,968
August	30	2010			155,846	39,933	195,779	193,041	65	193,107	3,240
August	31	2010			153,642	39,411	193,053	88,938	95,474	184,412	3,042
otal Monthly	Volumes	s (gal)	0	0	4,346,882	1,078,640	5,425,523	933,382	4,368,740	5,302,122	89,057
verage Pum		,	om) 0.0	0.0	97.4	24.2	121.5	20.9	97.9	118.8	2.0

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during August 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during August 2010.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during August 2010 is approximately 0.63 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

September 2010 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
September	1	2010			156,070	39,859	195,928	14	190,815	190,829	5,547
September	2	2010			154,306	38,810	193,116	1,670	191,848	193,519	5,462
September	3	2010			155,951	39,378	195,329	14	191,924	191,938	6,881
September	4	2010			156,473	38,527	195,000	14	188,702	188,716	3,522
September	5	2010			156,946	38,189	195,135	12	190,606	190,618	3,553
September	6	2010			156,233	39,242	195,474	14	189,061	189,075	3,924
September	7	2010			156,096	39,413	195,509	15	189,177	189,192	3,997
September	8	2010			144,434	39,426	183,860	99,598	91,520	191,118	3,744
September	9	2010			154,900	40,777	195,677	190,849	199	191,048	5,569
September	10	2010			154,945	40,728	195,673	186,842	79	186,921	10,088
September	11	2010			155,558	40,261	195,819	190,100	68	190,168	8,217
September	12	2010			156,287	39,131	195,418	191,491	80	191,570	5,932
September	13	2010			155,939	39,609	195,548	188,784	80	188,864	5,476
September	14	2010			155,394	40,219	195,613	187,581	71	187,651	9,881
September	15	2010			155,797	39,757	195,554	143,658	48,980	192,638	6,173
September	16	2010			116,740	30,115	146,855	17	145,313	145,330	2,791
September	17	2010			155,998	39,273	195,271	14	189,146	189,160	6,498
September	18	2010			156,037	38,977	195,014	13	190,284	190,297	6,539
September	19	2010			156,340	38,863	195,203	8	187,847	187,855	15,709
September	20	2010			155,550	40,075	195,625	7	191,296	191,303	5,386
September	21	2010			156,250	39,019	195,268	20	191,248	191,268	4,356
September	22	2010			156,048	39,473	195,521	4,208	185,447	189,656	4,123
September	23	2010			155,543	39,984	195,527	10	190,442	190,452	4,079
September	24	2010			155,228	40,330	195,558	17	190,440	190,457	3,721
September	25	2010			155,692	39,978	195,670	7	191,957	191,965	3,713
September	26	2010			155,778	39,859	195,637	13	192,252	192,265	7,261
September	27	2010			155,510	40,126	195,636	4	191,511	191,515	10,992
September	28	2010			155,793	39,957	195,749	319	186,801	187,120	324
September	29	2010			155,848	40,144	195,993	16	195,410	195,425	1,944
September	30	2010			154,283	39,052	193,335	7	189,314	189,321	18
tal Monthly	Volumes	s (gal)	0	0	4,621,965	1,178,548	5,800,514	1,385,336	4,281,918	5,667,255	165,42 ⁻
verage Pump	/Injectio	n Rates (gpr	n) 0.0	0.0	107.0	27.3	134.3	32.1	99.1	131.2	3.8

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during September 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during September 2010.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during September 2010 is approximately 0.55 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

October 2010 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
October	1	2010			155,893	38,934	194,827	18	193,965	193,983	3,256
October	2	2010			156,072	38,739	194,810	15	194,433	194,449	11,696
October	3	2010			141,497	35,156	176,653	10	179,089	179,099	13,233
October	4	2010			137,914	34,625	172,539	10	164,117	164,126	10,413
October	5	2010			122,554	31,559	154,112	12	147,074	147,086	3,666
October	6	2010			145,858	37,172	183,030	2,369	175,159	177,528	7,169
October	7	2010			155,972	38,508	194,480	18	193,264	193,282	3,373
October	8	2010			128,663	31,916	160,579	524	144,236	144,760	3,112
October	9	2010			156,798	37,239	194,037	9	193,734	193,743	3,277
October	10	2010			156,664	37,507	194,171	11	193,569	193,580	6,635
October	11	2010			156,863	37,275	194,138	12	192,464	192,476	3,254
October	12	2010			157,025	36,950	193,975	10	191,282	191,292	3,242
October	13	2010			157,154	36,821	193,976	14	190,693	190,707	3,109
October	14	2010			156,363	36,992	193,355	10	188,883	188,893	3,111
October	15	2010			143,220	34,498	177,718	29	171,692	171,721	3,117
October	16	2010			156,265	37,946	194,211	101,832	93,088	194,920	3,125
October	17	2010			156,427	37,839	194,266	186,749	107	186,857	3,222
October	18	2010			156,588	37,748	194,336	191,088	78	191,166	3,114
October	19	2010			156,266	38,214	194,480	188,971	13	188,984	3,251
October	20	2010			156,503	38,002	194,505	183,094	13	183,106	3,133
October	21	2010			139,648	34,004	173,652	177,848	16	177,863	3,125
October	22	2010			156,411	38,005	194,416	190,282	18	190,300	3,401
October	23	2010			156,758	37,534	194,292	188,209	11	188,220	3,241
October	24	2010			156,653	37,677	194,330	189,165	20	189,185	3,273
October	25	2010			156,768	37,633	194,401	191,608	17	191,625	3,853
October	26	2010			156,328	38,336	194,664	186,469	15	186,484	3,254
October	27	2010			156,482	38,057	194,539	190,961	15	190,976	3,385
October	28	2010			98,024	24,359	122,382	118,127	16	118,144	1,881
October	29	2010			156,264	37,931	194,195	186,614	20	186,634	3,241
October	30	2010			156,203	38,003	194,205	189,915	17	189,932	3,219
October	31	2010			156,320	37,988	194,308	187,652	21	187,673	3,256
otal Monthly	Volumes	s (gal)	0	0	4,656,417	1,133,164	5,789,581	2,851,656	2,807,138	5,658,794	132,630
		n Rates (gpi	m) 0.0	0.0	104.3	25.4	129.7	63.9	62.9	126.8	3.0

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during October 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during October 2010.

Extraction weils TW 2D and TW-2S were not operated during October
 Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during October 2010 is approximately 0.03 percent.

This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

 $G: Pacific Gas Electric Co \ Topock Program \ Database \ IM3_pump Data.mdb \ rpt Monthly Operational Data \ Database \ IM3_pump Data.mdb \ rpt Monthly Operational Data \ Database \ NM3_pump Data.mdb \ rpt Monthly \ Operational Data \ NM3_pump Data.mdb \ rpt \ NM3_pump \ Database \ NM3_pump \ NM3_pump \ NM3_pump \ Database \ Database \ NM3_pump \ Database \ NM3_pump \ Database \ NM3_pump \ Database \ Da$

November 2010 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
November	1	2010			147,974	36,468	184,442	185,227	16	185,243	3,101
November	2	2010			156,373	37,953	194,325	190,940	14	190,954	3,205
November	3	2010			156,606	37,575	194,181	183,230	15	183,245	3,232
November	4	2010			148,016	36,906	184,923	122,109	63,291	185,399	3,287
November	5	2010			156,539	37,642	194,182	12	190,367	190,379	2,547
November	6	2010			156,310	38,066	194,376	13	188,857	188,870	4,499
November	7	2010			156,805	37,281	194,086	16	183,385	183,401	3,130
November	8	2010			156,797	37,360	194,157	8	186,451	186,459	5
November	9	2010			156,176	38,440	194,616	11	189,385	189,396	3,127
November	10	2010			145,997	35,850	181,847	12	173,457	173,469	3,124
November	11	2010			156,526	37,969	194,495	15	193,293	193,308	3,229
November	12	2010			142,704	35,099	177,802	14	175,749	175,763	3,356
November	13	2010			156,380	38,221	194,601	15	189,625	189,639	6,221
November	14	2010			156,232	37,429	193,661	12	193,259	193,272	3,256
November	15	2010			157,143	37,176	194,319	18	188,796	188,814	3,252
November	16	2010			156,757	37,722	194,478	11	189,325	189,336	3,255
November	17	2010			156,877	37,325	194,202	14	191,357	191,371	3,256
November	18	2010			157,087	37,047	194,134	62,500	124,362	186,862	2,172
November	19	2010			157,199	36,958	194,157	187,454	1,703	189,157	1,076
November	20	2010			155,556	39,313	194,870	186,022	217	186,239	5,686
November	21	2010			155,695	39,031	194,727	191,806	166	191,972	3,403
November	22	2010			155,843	38,789	194,632	187,412	202	187,613	2,576
November	23	2010			155,882	38,802	194,684	190,377	185	190,562	4,423
November	24	2010			155,808	38,437	194,245	192,404	165	192,569	3,365
November	25	2010			156,820	37,189	194,009	187,378	209	187,587	3,238
November	26	2010			156,777	36,832	193,609	187,079	210	187,288	3,251
November	27	2010			157,191	36,614	193,805	190,369	197	190,566	3,380
November	28	2010			156,711	37,378	194,089	188,628	203	188,831	3,251
November	29	2010			156,117	36,546	192,663	182,950	198	183,148	3,237
November	30	2010			156,596	36,977	193,573	189,012	188	189,199	3,228
otal Monthly	Volumes	(gal)	0	0	4,653,493	1,124,399	5,777,892	3,005,067	2,624,845	5,629,913	97,366
verage Pump			n) 0.0	0.0	107.7	26.0	133.7	69.6	60.8	130.3	2.3

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during November 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during November 2010.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during November 2010 is approximately 0.88 percent.

This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

December 2010 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
December	1	2010			126,982	30,127	157,108	152,850	315	153,165	3,345
December	2	2010			156,875	37,273	194,149	183,054	230	183,284	1,672
December	3	2010			156,453	37,866	194,319	193,680	172	193,853	1,673
December	4	2010			156,375	37,874	194,249	190,075	189	190,264	1,609
December	5	2010			156,521	37,591	194,112	185,186	224	185,410	1,677
December	6	2010			156,252	37,999	194,251	190,999	182	191,181	1,673
December	7	2010			155,944	38,422	194,366	187,804	185	187,989	1,668
December	8	2010			154,092	37,532	191,623	185,364	3,178	188,542	1,673
December	9	2010			154,432	37,723	192,154	181,828	239	182,067	1,678
December	10	2010	*	2,075	130,659	32,869	165,603	165,797	140	165,936	1,611
December	11	2010			156,223	38,018	194,241	186,674	69	186,743	1,675
December	12	2010			156,378	37,727	194,105	192,300	82	192,381	1,628
December	13	2010			156,532	37,425	193,957	188,559	114	188,674	1,603
December	14	2010			155,364	37,900	193,264	187,087	132	187,219	1,602
December	15	2010	*	10,757	137,392	38,737	186,885	188,936	501	189,438	1,600
December	16	2010			155,312	38,859	194,171	107,900	84,548	192,448	1,608
December	17	2010			155,334	38,723	194,057	19	193,411	193,430	1,605
December	18	2010			155,954	37,851	193,805	19	187,207	187,226	1,599
December	19	2010			149,442	36,953	186,395	17	179,417	179,434	1
December	20	2010			155,581	37,872	193,453	12	188,312	188,324	2,224
December	21	2010			155,999	37,329	193,329	18	187,163	187,181	1,610
December	22	2010			156,024	37,227	193,251	17	185,471	185,488	1,672
December	23	2010			155,854	37,462	193,316	15	189,889	189,904	1,607
December	24	2010			156,104	37,021	193,125	19	189,075	189,094	1,615
December	25	2010			156,095	37,169	193,264	19	187,825	187,844	1,607
December	26	2010			156,303	36,796	193,098	23	191,421	191,444	1,610
December	27	2010			156,531	36,825	193,356	22	183,480	183,502	1,613
December	28	2010			156,483	36,884	193,367	14	189,647	189,661	1,617
December	29	2010			156,681	36,633	193,313	18	187,015	187,033	1,596
December	30	2010			156,411	37,080	193,491	18	184,418	184,436	1,603
December	31	2010			156,106	36,990	193,096	22	192,352	192,374	1,603
tal Monthly	Volumes	s (gal)	0	12,833	4,756,689	1,152,753	5,922,274	2,868,364	2,906,603	5,774,967	51,178
/erage Pump	/Injectio	n Rates (gp	om) 0.0	0.3	106.6	25.8	132.7	64.3	65.1	129.4	1.1

NOTES: gal: gallons gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during December 2010 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S ran for a short period on December 10, 2010 and December 15, 2010 for sampling activities. The TW-2S flow meter is broken and did not record the TW-2S flow on December 10, 2010 and December 15, 2010.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during December 2010 is approximately 1.62 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

G:\PacificGasElectricCo\TopockProgram\Database\IM3_pumpData.mdb\rptMonthlyOperationalData_12

Appendix C Flowmeter Calibration Records

Endress+Hauser

People for Process Automation

Flow Calibration with Adjustment

30092171-1385272

Putchase o	-0009 order numb	the state of the s	and the contractor of the second second				FCP-6.F Calibration rig
				-			5
			idress+Ha	auser Flov	vtec		155.6102 GPM (\triangleq 100%)
Order Nº/I	Manufactu	irer					Calibrated full scale
23P50-	AL1A1	AA022A	W				Current 4 - 20 mA
Order code							Calibrated output
PROM	AC 23	P 2"					0.9289
Fransmitte		12					Calibration factor
7700F2	210000)					0
Serial Nº				1922-1944 - 1944 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1			Zero point
- FI	T-1(23	P	E-1			74.9 °F
ſag №						to the rest is a little state.	Water temperature
Flow	Flow	Duration	V target	V meas.	A c.r.*	Outp.**	N
110 W	[GPM]	[sec]	US GAL	US CAL	[%]	[mA]	Measured error % o.r.
10.0	15.5	30.1	7.7642	7.7895	0.33	5.60	2
	62.9	30.1	31.549	31.556	0.02	10.47	Tolerance limit
40.5		00.1	31,546	31.541	-0.02	10.47	(±0.5% o.r.* ± z.s.*)
40.5	62.9	30.1			0.00	10.11	
	62.9 155.1	30.1 30.1	77.735	77.718	-0.02	19.95	
40.5							
40.5		30.1				19.95	•
40.5					-0.02 - -	19.95 - - -	•
40.5		30.1			-0.02	19.95 - -	

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-30-2006 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

ME. Till J.

Morris E. Trueblood Jr. Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

People for Process Automation

Flow Calibration with Adjustment

30107893-1304706

urchase o	order numb	er					Calibration rig
JS-19054161-10 / Endress+Hauser Flowtec					155.6102 GPM (100%)		
Order N°/Manufacturer						Calibrated full scale	
23P50-	-AL1A1	AA022A	W				Current 4 – 20 mA
Order code						Calibrated output	
PROMAG 23 P 2"						0.9154	
ransmitte	r/Sensor						Calibration factor
5C037	016000)					0
erial Nº							Zero point
FITAS	02 F:	IT-11	02	TW-	3 D		76.2 °F
Tag №							Water temperature
Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ 0.7.* [%]	Outp.** [mA]	Measured error % o.r.
9.9	15.5	30.1	7.7531	7.7537	0.01	5.59	1.5-
40.5	63.0	30.1	31.560	31.554	-0.02	10.47	Tolerance limit (±0.5% o.r.* ± z.s.*)
40.5	63.0	30.1	31.569	31.574	0.01	10.48	
99.5	154.8	30.1	77.589	77.448	-0.18	19.89	0.5 -
-	100		1		-		
-	-	_	-	-	-	_	-0.5 -
-	-	-	-	-	-	-	
-	1.7	-	1000	-	1000	- 1	
-	-	-	-			-	-1.5 - /

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA) and Aurangabad (IN).

09-12-2007 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

TimSwint

Tim Swick Operator

*z.s.: Zero stability

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Flow Calibration with Adjustment

30057866-1275190

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec Order N%Manufacturer

23P50-AL1A1RA022AW

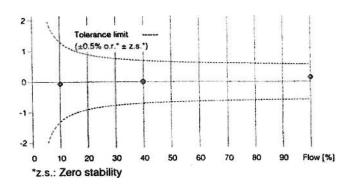
Order Code

PROMAG 23 P 2"

Transmitter/Sensor

6A021F16000

FIT-100 / TW-20 / installed 7/28/05


Tag Nº

	Flow	Flow	Duration	V target	V meas.	Δ o.r.*	Outp.**	
	(%)	(GPM)	[sec]	[US GAL]	(US GAL)	[%]	[mA]	
-	10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59	
	39.9	62.1	30.0	31.071	31.070	0.00	10.38	
-	39.9	62.1	30.0	31.073	31.078	0.02	10.38	
and the second	100.2	156.0	30.0	78.041	78.156	0.15	20.06	
-	-	+	-		-	-	-	
	-	•	-	1770	-	-	-	
	-	-	-	-	-	-	-	
	-	-	-	1.71	-	-	-	
	-	-	-	070	-	-	-	
	-	-	-	-	-	-	-	
	o.r.: of rate							

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	and the second
Current 4 - 20 mA	
Calibrated output	
0.9178	
Calibration factor	
0	
Zero point	
72.9 °F	

Water temperature

Measured error % o.r.

"Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004 Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Swint

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

People for Process Automation

Endress+Hauser

Flow Calibration with Adjustment

30057870-1275191

41724888

Purchase Order Number

USA-49310090-40 / Endress+Hauser Flowtec Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order Code

Flow

[%]

10.0

40.0

40.1

100.2

PROMAG 23 P 2"

Transmitter/Sensor

6A022016000

Flow

[GPM]

15.6

62.3

62.4

155.9

Serial Nº TW-25/ installed 7/28/05 FIT-101-Tag №

V target

US GAL

7.7910

31.157

31.229

78.017

Duration

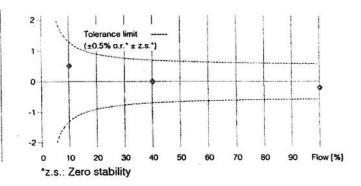
[sec]

30.0

30.0

30.0

30.0


4

a.

Calibration rig	
155.6102 GPM	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	

Water temperature

Measured error % o.r.

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

V meas.

[US GAL]

7.8318

31.160

31.229

77.856

Outp.**

[mA]

5.61

10.40

10.42

20.00

....

-

-

-

Δ o.r.*

[%]

0.52

0.01

0.00

-0.21

-

-

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143

Smit

Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Endress+Hauser

People for Process Automation

People for Process Automation

Flow Calibration with Adjustment

30171212-1304705

WWRA-006931-F

Purchase order number

US-19068473-30 / Endress+Hauser Flowtec Order Nº/Manufacturer

23P50-AL1A1AA022AW

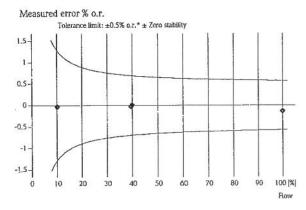
Order code

PROMAG 23 P 2"

Transmitter/Sensor

6C036F16000

Serial Nº


1W02/FIT-1202 FIF-1201

Tag N°

Flow (%)	Flow [us.gal/min]	Duration [8]	V target us.gal	V meas. [us.gal]	∆ o.r.* [%]	Outp.** [mA]
10.1	15.7	30.2	7.8942	7.8921	-0.03	5.61
39.5	61.5	30.2	30.956	30.950	-0.02	10.32
39.9	62.1	30.2	31.263	31.268	0.02	10.39
100.0	155.7	30.2	78.338	78.232	-0.14	19.98
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-		~		-
-	-	-	-	-	20	-
-	-	-	-	-	-	-
-	-		_	-	-	- 1

Calibration rig	
155.6102 us.gal/min	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9101	
Calibration factor	
-34	
Zero point	
78.7 °F	

Water temperature

**Calculated value (4 - 20 niA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

08-06-2010

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

,avis

John Davis Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Page 1/!

People for Process Automation

Flow Calibration with Adjustment

30171217-1275192

WWRA-006931-F

Purchase order number

US-19068473-20 / Endress+Hauser Flowtec

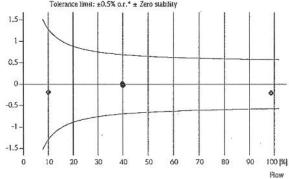
Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor


6A022116000

Serial Nº

1W-03/FIT1203 FIT-102 Tag Nº

Flow [%]	Flow (us.gal/min)	Duration [s]	V target [us.gal]	V meas. [us.gal]	∆ o.r.* [%]	Outp.** [mA]
10.0	15.5	30.2	7.8009	7.7865	-0.18	5.59
 39.9	62.0	30.2	31.203	31.209	0.02	10.38
 40.1	62.4	30.2	31.360	31.353	-0.02	10.41
98.8	153.8	30.2	77.402	77.243	-0.20	19.78
-	-	-	57	-	-	-
	-	-		2	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-		-	-	-	-
-	-	-		-		-

Calibration rig	
155.6102 us.gal/min	(≙ 100%)
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9092	
Calibration factor	
0	
Zero point	
79.6 °F	
Water temperature	

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

08-06-2010 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

John Davis Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Page 1/1

Flow Calibration with Adjustment

30057895-1275195

41724888

Purchase order number

US-49310090-60 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P80-AL1A1RA022AW

Order code

PROMAG 23 P 3"

Transmitter/Sensor

6A022416000

Serial N°

FIT-700

Tag N°

Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	Δ o.r.* [%]
8.2	32.7	118.7	64.737	64.920	0.28
38.0	151.4	61.1	154.130	154.217	0.06
40.1	159.6	61.2	162.718	162.822	0.06
94.3	375.8	62.5	391.212	389.911	-0.33
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-

*o.r.: of rate

Please note: This replacement document was established electronically, the most important data are extracted from the original document.

FCP-20 MEDIUM

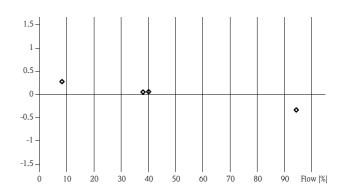
Ũ		
398.3621	GPM	(≙ 100%)

Current 4 - 20 mA

Calibrated output

Calibrated full scale

1.1430


Calibration factor

0

Zero point

73.1 °F

Water temperature

11-29-2004

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Tim Swick Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

People for Process Automation

Flow Calibration with Adjustment

30060319-1304707

41729921							FCP-20 SMALL			
urchase or	der number						Calibration rig			
US-49311914-10 / Endress+Hauser Flowtec						155.6102 GPM (≙ 100%)				
						Calibrated full scale				
23P50-	AL1A1	A022A	W				Current 4 – 20 mA			
Order code						Calibrate1 output				
PROM	AG 23 P	2"					0.9152			
Fransmitte		-					Calibration factor			
60037	116000						0			
Serial N°	110000						Zero point			
FIF-12 Tag Nº	03 FI	LT-70	21	RO Con	centri	ate	72.2 °F Water temperature			
Flow	Flow ICPM]	Duration	V target [US GAL]	V meas. [US GAL]	∆ o.r.* [%]	Outp.**	Measured error % o.r.			
10.0	15.5	61.2	15.818	15.853	0.22	5.60	2-1			
41.6	64.7	61.2	66.050	65.948	-0.15	10.64	Tolerance limit			
41.6	64.8	61.3	66.120	66.024	-0.14	10.65	1- (±0.5% o.r.* ± z.s.*)			
100.1	155.8	61.2	158.973	158.403	-0.36	19.96				
-	-	-	.	-	-		0			
-	-			-	-	-				
-	-	-	7 .	-	-	-	-1.			
-	-	100	-	-	-	-				
-	-	-	-	-	-	-	-2-1 ·			
V										

*o.r.; o' rate **Calculated value [4 - 20 mA]

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

01-31-2005 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

hin Basse

Jim Baase Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-Nº 030502.2

Appendix D Fourth Quarter 2010 Laboratory Analytical Reports

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 26, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-277 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 991454

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-277 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 5, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample result and associated matrix spike for sample SC-700B-WDR-277 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike result was within acceptable limits and the results from the analysis at a 5x dilution matched those of the straight run, the result from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

a (an

Kor Mona Nassimi Manager, Analytical Services

K. R. P. Sole

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 991454 Date: October 26, 2010 Collected: October 5, 2010 Received: October 5, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2320B	Total Alkalinity	lordan Stavrey
SM 4500-Si D	Soluble Silica	Jenny Tankunakorn
EPA 365.2	Total Phosphorus	Jenny Tankunakorn
EPA 415.2	Total Organic Carbon	Kim Luck
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Jenny Tankunakorn
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Daniel Kang / Hope Trinidad
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

EXCELLENCE IN INDEPENDENT TESTING	ENDENT LESTING				TÀ		Est	Established 1931	
						14201 F (714) 7	RANKLIN AVENUE '30-6239 · FAX {	4201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com	liA 92780-7006 w.truesdail.com
Client	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	ers, Inc. 1000				Lab Dat	Laboratory No.: 991454 Date Received: Octobe	-aboratory No.: 991454 Date Received: October 5, 2010	0
Attention	Attention: Shawn Duffy						Kevision 1;	Kevision 1; November 4, 2010	010
Project Name Project No. P.O. No.	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM								
		Ana	alytical	Results Summary	s Sun	ımary			
Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	R
991454-001	SC-700B-WDR-277	E120.1	NONE	10/5/2010	8:40	EC	7110	umhos/cm	2.00
991454-001	SC-700B-WDR-277	E200.7	NONE	10/5/2010	8:40	BORON	871	ug/L	200
991454-001	SC-700B-WDR-277	E200.7	NONE	10/5/2010	8:40	Iron	QN	ng/L	20.0
991454-001	SC-700B-WDR-277	E200.8	NONE	10/5/2010	8:40	Aluminum	QN	ng/L	50.0
991454-001	SC-700B-WDR-277	E200.8	NONE	10/5/2010	8:40	Antimony	QN	ug/L	10.0
991454-001	SC-700B-WDR-277	E200.8	NONE	10/5/2010	8:40	Arsenic	Q	ng/L	1,0
991454-001	SC-700B-WDR-277	E200.8		10/5/2010	8;40 2,0	Barium	10.4	ug/L	10.0
991454-001	SC-/00B-WDR-2/7	E200.8	NONE	10/5/2010	8:40	Chromium	Q II	ug/L	- 1 D 0
991454-001 001454 001	SC-/U0B-WUK-Z//	E200.8		10/5/2010	8:40	Copper		ug/L	0.0 0
991454-001 901454-001	SC-700B-WUR-277	E2008		10/5/2010	0.40 0.40	Mangapere		ug/L	2.4
991454-001	SC-700B-WDR-277	E200.8	NONE	10/5/2010	8:40	Molvbdenum	17.6	ug/L	10.0
991454-001	SC-700B-WDR-277	E200.8	NONE	10/5/2010	8:40	Nickel	Q	na/L	10.0
991454-001	SC-700B-WDR-277	E200.8	NONE	10/5/2010	8:40	Zinc	QN	ug/L	10.0
991454-001	SC-700B-WDR-277	E218.6	LABFLT	10/5/2010	8:40	Chromium, hexavalent	0.31	ug/L	0.20
991454-001	SC-700B-WDR-277	E300	NONE	10/5/2010	8:40	Fluoride	2.05	mg/L	0.500
991454-001	SC-700B-WDR-277	E300	NONE	10/5/2010	8:40	Nitrate as N	2.89	mg/L	0.500
991454-001	SC-700B-WDR-277	E300	NONE	10/5/2010	8:40	Sulfate	497	mg/L	12.5
991454-001	SC-700B-WDR-277	SM2130B	NONE	10/5/2010	8:40	Turbidity	0.128	NTU	0.100
991454-001	SC-700B-WDR-277	SM2540C	NONE	10/5/2010	8:40	Total Dissolved Solids	4190	mg/L	250
O 991454-001	SC-700B-WDR-277	SM4500NH3D	NONE	10/5/2010	8:40	Ammonia-N	QN	mg/L	0.500
991454-001	SC-700B-WDR-277	SM4500NO2B	NONE	10/5/2010	8:40	Nitrite as N	QN	ma/L	0.0050

and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Report Continued

Revision 2; November 9, 2010

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
991454-002	SC-100B-WDR-277	E120.1	NONE	10/5/2010	8:40	EC	7870	umhos/cm	2.00
991454-002	SC-100B-WDR-277	E200.7	NONE	10/5/2010	8:40	BORON	968	ng/L	200
991454-002	SC-100B-WDR-277	E200.7	NONE	10/5/2010	8:40	Iron	Q	ug/L	20.0
991454-002	SC-100B-WDR-277	E200.7	LABFLT	10/5/2010	8:40	tron	Q	ng/L	20.0
991454-002	SC-100B-WDR-277	E200.7	LABFLT	10/5/2010	8:40	Manganese	10.6	ug/L	10.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Aluminum	QN	ug/L	50.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Antimony	QN	ng/L	10.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Arsenic	4.2	ng/L	1.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Barium	24,8	ug/L	10.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Chromium	918	ug/L	1.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Copper	QN	ng/L	5.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Lead	QN	ng/L	10.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Manganese	10.0	ng/L	1.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Molybdenum	23.0	ug/L	10.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Nickel	QN	ng/L	10.0
991454-002	SC-100B-WDR-277	E200.8	NONE	10/5/2010	8:40	Zinc	QN	ng/L	10.0
991454-002	SC-100B-WDR-277	E218.6	LABFLT	10/5/2010	8:40	Chromium, hexavalent	987	ng/L	21.0
991454-002	SC-100B-WDR-277	E300	NONE	10/5/2010	8;40	Fluoride	2.6	mg/L	0.500
991454-002	SC-100B-WDR-277	E300	NON	10/5/2010	8:40	Nitrate as N	3.21	mg/L	0.500
991454-002	SC-100B-WDR-277	E300	NONE	10/5/2010	8:40	Sulfate	549	mg/L	12.5
991454-002	SC-100B-WDR-277	SM2130B	NONE	10/5/2010	8:40	Turbidity	Q	NTU	0.100
991454-002	SC-100B-WDR-277	SM2320B	NONE	10/5/2010	8:40	Alkalinity	142	mg/L	5.00
991454-002	SC-100B-WDR-277	SM2320B	NONE	10/5/2010	8:40	Bicarbonate	142	mg/L	5.00
991454-002	SC-100B-WDR-277	SM2320B	NONE	10/5/2010	8:40	Carbonate	Q	mg/L	5.00
991454-002	SC-100B-WDR-277	SM2540C	NONE	10/5/2010	8:40	Total Dissolved Solids	4300	mg/L	250
991454-002	SC-100B-WDR-277	SM4500NH3D	NONE	10/5/2010	8:40	Ammonia-N	QZ	mg/L	0.500
991454-002	SC-100B-WDR-277	SM4500NO2B	NONE	10/5/2010	8:40	Nitrite as N	Q	mg/L	0.0050
991454-002	SC-100B-WDR-277	SM4500-PB_E	NONE	10/5/2010	8:40	Total Phosphorous-P	Q	mg/L	0.0200
991454-002	SC-100B-WDR-277	SM4500SI	NONE	10/5/2010	8:40	Soluble Silica	20.5	mg/L	2.00
991454-002	SC-100B-WDR-277	SM5310C	NONE	10/5/2010	8:40	Total Organic Carbon	Q	mg/L	0.300

ND: Non Detected (below reporting limit) mg/L: Milligrams per liter. Note: The following "Significant Figures" rule has been applied to ell results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM Laboratory No. 991454 Page 1 of 29 Printed 10/26/2010

Samples Received on 10/5/2010 9:30:00 PM

Field ID				Lab ID	Colle	ected	Matr	ix
SC-700B-WDR-277				991454-001		2010 08:40	Wat	er
SC-100B-WDR-277				991454-002	10/05/:	2010 08:40	Wate	er
Anions By I.C EPA 3	00.0	Per la cestes	Batch	10AN10 D				
Parameter	an a	Unit	Ana	lyzed	DF	MDL	RL	Result
991454-001 Fluoride		mg/L	10/06	5/2010 22:49	5.00	0.0600	0.500	2.05
Nitrate as Nitr	ogen	mg/L	10/06	6/2010 22:49	5.00	0.0950	0.500	2.89
991454-002 Fluoride		mg/L	10/06	5/2010 23:01	5.00	0.0600	0.500	2.60
Nitrate as Nitr	ogen	mg/L	10/06	5/2010 23:01	5.00	0.0950	0.500	3.21
Method Blank				······	•• • • • • • • • • • • • • • • • • • • •			·········
Parameter	Unit	DF	Result					
Fluoride	mg/L	1.00	ND					
Nitrate as Nitrogen	mg/L	1.00	ND					
Duplicate							Lab ID =	991454-001
Parameter	Unit	DF	Result	Expected	RI	PD	Accepta	nce Range
Fluoride	mg/L	5.00	1.93	2.05		5.78	0 - 20	
Nitrate as Nitrogen	mg/L	5.00	2.85	2.89		1.50	0 - 20	
Lab Control Sample	3							
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	nce Range
Fluoride	mg/L	1.00	4.10	4.00		103	90 - 110	-
Nitrate as Nitrogen	mg/L	1.00	4.02	4.00		101	90 - 110	
Matrix Spike							Lab ID =	991454-001
Parameter	Unit	DF	Result	Expected/Add	ed Re	ecovery	Accepta	nce Range
Fluoride	mg/L	5.00	22.4	22.0(20.0)		102	85 - 115	-
Nitrate as Nitrogen	mg/L	5.00	23.9	22.9(20.0)		105	85 - 1 15	

Report Continued

Client: E2 Consulting E	ngineers, In	с.	Project Name: Project Numbe	PG&E Topock r: 408401.01.DN		Page 2 of 29 Printed 10/26/2010
MRCCS - Secondary	/					
Parameter Fluoride Nitrate as Nitrogen MRCVS - Primary	Unit mg/L mg/L	DF 1.00 1.00	Result 4.13 4.03	Expected 4.00 4.00	Recovery 103 101	Acceptance Range 90 - 110 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.6	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.7	Acceptance Range 90 - 110
Parameter Fluoride Nitrate as Nitrogen	Unit mg/L mg/L	DF 1.00 1.00	Result 3.16 3.00	Expected 3.00 3.00	Recovery 105 100	Acceptance Range 90 - 110 90 - 110

mg/L

Unit

mg/L

Sulfate

Sulfate

Parameter

MRCVS - Primary

1.00

DF

1.00

Report Continued

Client: E2 Consulting En	gineers, Inc		oject Name: oject Numbe	PG&E Topock er: 408401.01.DM	Project	t		age 3 of 29 0/26/2010
Anions By I.C EPA 300 Parameter	.0	Unit	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	10AN10 E	DF	MDL	RL	Result
991454-001 Sulfate		mg/L	10/06	6/2010 18:28	25.0	1.00	12.5	497
991454-002 Sulfate		mg/L	10/06	5/2010 18:4 1 2	25.0	1.00	12.5	549
Method Blank						······		
Parameter Sulfate	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	991410-003
Parameter Sulfate	Unit mg/L	DF 25.0	Result 30.5	Expected 31.3	RF 2	PD 2.34	Accepta 0 - 20	nce Range
Lab Control Sample								
Parameter Sulfate Matrix Spike	Unit mg/L	DF 1.00	Result 20.1	Expected 20.0		covery 101	90 - 110	nce Range 991410-003
Parameter Sulfate MRCCS - Secondary	Unit mg/L	DF 25.0	Result 138	Expected/Adde 131(100.)		covery 07		nce Range
Parameter	فلحال	DE	D "					
Sulfate	Unit mg/L	DF 1.00	Result 20.2	Expected 20.0		covery		nce Range
MRCVS - Primary		1.00	20.2	20.0	1	01	90 - 110	
Parameter	Unit	DF	Result	Expected	Re	coverv	Accenta	nce Range

15.1

Result

15.0

Expected

Expected

15.0

15.0

Recovery

Recovery

100

100

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Acceptance Range

Acceptance Range

90 - 110

90 - 110

Report Continued

Client: E2 Consulting Engi	neers, In	C.	Project Name: Project Number	PG&E Topo : 408401.01.[-	F	Pa Printed 10	ge 4 of 29 /26/2010
Nitrite SM 4500-NO2 B Parameter		Unit	Batch Analy	10NO210A /zed	DF	MDL	RL	Result
991454-001 Nitrite as Nitrogen		mg/L	10/06/	2010 14:23	1.00	0.000200	0.0050	ND
991454-002 Nitrite as Nitrogen		mg/L	10/06/	2010 14:24	1.00	0.000200	0.0050	ND
Method Blank								
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID = 9	91454-002
Parameter Nitrite as Nitrogen Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	RP 0		Acceptar 0 - 20	ice Range
Parameter Nitrite as Nitrogen Matrix Spike	Unit mg/L	DF 1.00	Result 0.0474	Expected 0.0450		covery 05	90 - 110	nce Range 191454-002
Parameter Nitrite as Nitrogen MRCCS - Secondary	Unit mg/L	DF 1.00	Result 0.0227	Expected/A 0.0200(0.		covery 14	Acceptar 75 - 125	ice Range
Parameter Nitrite as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 0.0292	Expected 0.0270		covery 08	Acceptar 90 - 110	ice Range
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0211	Expected 0.0200		covery 06	Acceptar 90 - 110	ice Range

Report Continued

Client: E2 Consulting I	Engineers, In		roject Name: roject Numbe	PG&E Topock I r: 408401.01.DM	Project			age 5 of 29 0/26/2010
Alkalinity by SM 23208 Parameter		Unit	말 가 있는 것 같아?	10ALK10B lyzed	DF	MDL	10/1 2/2 0 RL	10 Result
991454-002 Alkalinity as C	aCO3	mg/L	10/12	/2010 1	.00	1.68	5.00	142
Bicarbonate (0	Calculated)	mg/L	10/12	/2010 1	.00	0.153	5.00	142
Carbonate (Ca	alculated)	mg/L	10/12	/2010 1	.00	0.153	5.00	ND
Method Blank			******			<u></u>		
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID ≃	991456-006
Parameter Alkalinity as CaCO3 Lab Control Sample	Unit mg/L	DF 1.00	Result 53.0	Expected 54.0	RP 1	D .87	Accepta 0 - 0	ince Range
Parameter Alkalinity as CaCO3 Lab Control Sample	Unit mg/L • Duplicate	DF 1.00	Result 101.	Expected 100.		covery 01.	Accepta 90 - 110	nce Range
Parameter Alkalinity as CaCO3 Matrix Spike	Unit mg/L	DF 1.00	Result 100.	Expected 100.		covery 00.	90 - 110	nce Range 991456-006
Parameter Alkalinity as CaCO3 Matrix Spike Duplica	Unit mg/L ate	DF 1.00	Result 152.	Expected/Adde 154.(100.)		covery 8.0	75 - 125	nce Range 991456-006
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 151.	Expected/Adde 154.(100.)		covery 7.0	Accepta 75 - 125	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 6 of 29
	Project Number:	408401.01.DM	Printed 10/26/2010

Specific Conductivity - E	PA 120.1	las. Nationalis	Batch	10EC10C			10/6/201	D
Parameter	a an iste e a strikt	Unit	Ana	llyzed	DF	MDL	RL	Result
991454-001 Specific Conduct	ivity	umhos	/cm 10/06	5/2010	1.00	0.0380	2.00	7110
991454-002 Specific Conduct	ivity	umhos	/cm 10/06	6/2010	1.00	0.0380	2.00	7870
Method Blank								Ar a
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	991455-002
Parameter	Unit	DF	Result	Expected	RF	PD	Accepta	ince Range
Specific Conductivity	umhos	1.00	8580	8560	(0.233	0 - 10	· ·
Duplicate							Lab ID =	991456-009
Parameter	Unit	DF	Result	Expected	RF	۶D	Accepta	ince Range
Specific Conductivity	umhos	1.00	1710	1690		1.18	0 - 10	.
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	710.	706.		101	90 - 110	•
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	Re	ecovery	Acceptance Range	
Specific Conductivity	umhos	1.00	705.	706.		99.9	90 - 110	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	714.	706.		101	90 - 110	~
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	989.	999.		99.0	90 - 110	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	983.	999.		98.4	90 - 110	-

Report Continued

Client: E2 Consulting En	gineers, In		roject Name: roject Numbe	PG&E Topoc r: 408401.01.D	-	ject		Page 7 of 29 0/26/2010
Chrome VI by EPA 218.6	•		Batch	10CrH10E		e secondaria de la composición de la co Composición de la composición de la comp		n na sina sina si
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
991454-001 Chromium, Hexa	valent	ug/L	10/11	/2010 12:15	1.05	0.0210	0.20	0.31
991454-002 Chromium, Hexa	valent	ug/L	10/11	/2010 12:26	105	2.20	21.0	987
Method Blank							**************************************	
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND				Lab ID =	991454-002
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 105	Result 983	Expected 987		RPD 0.335	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.10	Expected 5.00		Recovery 102	90 - 110	ance Range) 991454-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 6.16	Expected/Ac 5.69(5.25)	lded	Recovery 109	90 - 110	ance Range) 991454-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.33	Expected/Ac 1.37(1.06)	lded	Recovery 95.9	90 - 110	ince Range) 991454-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 105	Result 2050	Expected/Ac 2040(1050		Recovery 101	90 - 110	ance Range) 991455-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.09	Result 30.9	Expected/Ac 29.6(16.4)	lded	Recovery 108	Accepta 90 - 110	ince Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.06	Expected 5.00		Recovery 101	Accepta 90 - 110	ince Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0		Recovery 102	Accepta 95 - 105	ince Range
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.3	Expected 10.0		Recovery 103	Accepta 95 - 105	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM		Page 8 of 29 Printed 10/26/2010	
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101	Acceptance Range 95 - 105

Report Continued

Client: E2 Consulting Engineers, In	•	ct Name: PG&E Topc ct Number: 408401.01.J	-	t		2age 9 of 29 0/26/2010
Metals by EPA 200.7, Total Parameter	Unit	Batch 102210A-Th Analvzed	DF	MDL	RL	Result
991454-001 Iron	ug/L	10/22/2010 14:37	1.00	3.00	20.0	ND

991454-002 Iron		ug/L	10/22	2/2010 14:53 1.0	0 3.00	20.0 ND
Method Blank						
Parameter Iron	Unit ug/L	DF 1.00	Result ND			
Duplicate						Lab ID = 991454-001
Parameter Iron	Unit ug/L	DF 1.00	Result ND	Expected 12.4	RPD 0	Acceptance Range 0 - 20
Lab Control Sample						
Parameter Iron Matrix Spike	Unit ug/L	DF 1.00	Result 5120	Expected 5000	Recovery 102	Acceptance Range 90 - 110
Parameter	11-14	05	B 11	-		Lab ID = 991454-001
Iron MRCCS - Secondary	Unit ug/L	DF 1.00	Result 2010	Expected/Added 2010(2000)	Recovery 99.7	Acceptance Range 75 - 125
Parameter	Unit		B 11	–		
Iron	ug/L	DF 1.00	Result 5090	Expected 5000	Recovery 102	Acceptance Range 90 - 110
MRCVS - Primary	-9/-	1.00	0000	0000	102	90-110
Parameter Iron	Unit ug/L	DF 1.00	Result 5020	Expected 5000	Recovery 100	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Iron	Unit ug/L	DF 1.00	Result 5060	Expected 5000	Recovery 101	Acceptance Range 90 - 110
Interference Check S	tandard A					
Parameter Iron	Unit ug/L	DF 1.00	Result 2060	Expected 2000	Recovery 103	Acceptance Range 80 - 120
Interference Check S	tandard A					
Parameter Iron	Unit ug/L	DF 1.00	Result 2160	Expected 2000	Recovery 108	Acceptance Range 80 - 120
Interference Check S	tandard AB					
Parameter Iron	Unit ug/L	DF 1.00	Result 2080	Expected 2000	Recovery 104	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: Project Number:	Page 10 of 29 Printed 10/26/2010		
Interference Check Stand	ard AB					
Parameter Iron	Unit ug/L	DF 1.00	Result 2180	Expected 2000	Recovery 109	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting) Engineers, In		roject Name: roject Numbe	PG&E Topock er: 408401.01.DM	-	ct		Page 11 of 29 0/26/2010
Metals by EPA 200.7, Parameter	Total	Unit	Batch 102510A-Th Analyzed			MDL	RL	Result
991454-001 Boron		ug/L	10/25	5/2010 18:40	5.00	4.70	200.	871
991454-002 Boron		ug/L	10/28	5/2010 18:45	5.00	4.70	200.	968
Method Blank								
Parameter	Unit	DF	Result					
Boron	ug/L	1.00	ND					
Duplicate							Lab ID =	991553-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Boron	ug/L	1.00	958	955		0.303	0 - 20	
Lab Control Samp	le							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Boron	ug/L	1.00	5370	5000		107	90 - 110	
Matrix Spike							Lab ID =	991553-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Boron	ug/L	1.00	2690	2960(2000)		86.7	75 - 125	5
MRCCS - Seconda	агу							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Boron	ug/L	1.00	5440	5000		109	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range
Boron	ug/L	1.00	4450	5000		89.0	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	lecovery	-	nce Range
Boron Interference Check	ug/L	1.00	4700	5000		93.9	90 - 110	
Parameter Boron	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Interference Check	ug/L	1,00	ND	0				
Parameter Boron	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Interference Check	ug/L	1.00	ND	0				
		55		_				
Parameter Boron	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Doron	ug/L	1.00	ND	0				

Report Continued

Client: E2 Consulting Engi	ineers, Inc		Project Name: Project Number:	PG&E Topock 408401.01.DN		Page 12 of 29 Printed 10/26/2010
Interference Check Sta	ndard AB					
Parameter Boron	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 13 of 29 Printed 11/4/2010 Revision 1

						11041310	ar i	
Metals by EPA 200.8, Total				Batch 100710B				
Paramete	er		Unit	Analyzed	DF	MDL	RL	Result
991454-0	01 Arsenic		ug/L	10/07/2010 19:21	5.00	0.260	1.0	ND
	Barium		ug/L	10/07/2010 19:21	5.00	0.185	10.0	10.4
	Chromium		ug/L	10/07/2010 19:21	5.00	0.0950	1.0	ND
	Copper		ug/L	10/07/2010 19:21	5.00	0.305	5.0	ND
	Lead		ug/L	10/07/2010 19:21	5.00	0.0950	10.0	ND
	Manganese		ug/L	10/07/2010 19:21	5.00	0.210	1.0	1.4
	Nickel		ug/L	10/07/2010 19:21	5.00	0.240	10.0	ND
	Zinc		ug/L	10/07/2010 19:21	5.00	1.32	10.0	ND
991454-0	02 Arsenic		ug/L	10/07/2010 19:41	5.00	0.260	1.0	4.2
	Barium		ug/L	10/07/2010 19:41	5.00	0.185	10.0	24.8
	Chromium		ug/L	10/07/2010 19:41	5.00	0.0950	1.0	918
	Copper		ug/L	10/07/2010 19:41	5.00	0.305	5.0	ND
	Lead		ug/L	10/07/2010 19:41	5.00	0.0950	10.0	ND
	Manganese		ug/L	10/07/2010 19:41	5.00	0.210	1.0	10.0
	Nickel		ug/L	10/07/2010 19:41	5.00	0.240	10.0	ND
	Zinc		ug/L	10/07/2010 19:4 1	5.00	1.32	10.0	ND
Me	ethod Blank						· · · · · · · · · · · · · · · · · · ·	
Paramet	ter	Unit	DF	Result				
Arsenic		ug/L	1.00	ND				
Barium		ug/L	1.00	ND				
Chromiu	IM	ug/L	1.00	ND				
Nickel		ug/L	1.00	ND				
Zinc		ug/L	1.00	ND				
Copper		ug/L	1.00	ND				
Lead		ug/L	1.00	ND				
Mangane	ese	ug/L	1.00	ND				

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: Project Number:	PG&E Topock Pro 408401.01.DM	oject	Page 14 of 29 Printed 10/26/2010
Duplicate						Lab ID = 991454-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Arsenic	ug/L	5.00	ND	0	0	0 - 20
Barium	ug/L	5.00	10.2	10.4	2.62	0 - 20
Chromium	ug/L	5.00	ND	0	0	0 - 20
Nickel	ug/L	5.00	1.08	0	0	0 - 20
Zinc	ug/L	5.00	ND	1.46	0	0 - 20
Copper	ug/L	5.00	1.06	1.17	10.6	0 - 20
Lead	ug/L	5.00	ND	0	0	0 - 20
Manganese	ug/L	5.00	1.45	1.45	0.275	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	50.3	50.0	101	90 - 110
Barium	ug/L	1.00	52.1	50.0	104	90 - 110
Chromium	ug/L	1.00	49.8	50.0	99.6	90 - 110
Nickel	ug/L	1.00	47.8	50.0	95.7	90 - 110
Zinc	ug/L	1.00	48.6	50.0	97.3	90 - 110
Copper	ug/L	1.00	48.8	50.0	97.6	90 - 110
Lead	ug/L	1.00	51.1	50.0	102	90 - 110
Manganese	ug/L	1.00	52.0	50.0	104	90 - 110
Matrix Spike						Lab ID = 991454-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	5.00	244.	250.(250.)	97.6	75 - 125
Barium	ug/L	5.00	244	260(250.)	93.5	75 - 125
Chromium	ug/L	5.00	240	250.(250.)	96.2	75 - 12 5
Nickel	ug/L	5.00	221	250.(250.)	88.6	75 - 1 25
Zinc	ug/L	5.00	218	251(250.)	86.7	75 - 125
Copper	ug/L	5.00	225	251(250.)	89.7	75 - 125
Lead	ug/L	5.00	221	250.(250.)	88.2	75 - 125
Manganese	ug/L	5.00	244	251(250.)	97.1	75 - 125

Report Continued

Client: E2 Consulting En	gineers, Ind		oject Name: oject Numbe	PG&E Topock r: 408401.01.DM		Page 15 of 29 Printed 10/26/2010
MRCCS - Secondary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 51.2	Expected 50.0	Recovery 102	Acceptance Range 90 - 110
Barium	ug/L	1.00	54.6	50.0	109	90 - 110
Chromium	ug/L	1.00	51.2	50.0	102	90 - 110
Nickel	ug/L	1.00	49.2	50.0	98.3	90 - 110
Zinc	ug/L	1.00	53.1	50.0	106	90 - 110
Copper	ug/L	1.00	49.8	50.0	99.6	90 - 110
Lead	ug/L	1.00	53.3	50.0	107	90 - 110
Manganese MRCVS - Primary	ug/L	1.00	53.0	50.0	106	90 - 110
Parameter Arsenic MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.2	Expected 50.0	Recovery 96.4	Acceptance Range 90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic MRCVS - Primary	ug/L	1.00	51.2	50.0	102	90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptones Dance
Barium	ug/L	1.00	49.6	50.0	99.2	Acceptance Range 90 - 110
MRCVS - Primary		1.00	10.0	00.0	50.L	00 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium MRCVS - Primary	ug/L	1.00	52.7	50.0	105	90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.3	Expected 50.0	Recovery 96.6	Acceptance Range 90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	50.3	50.0	101	90 - 110
Nickel MRCVS - Primary	ug/L	1.00	48.9	50.0	97.9	90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	46.8	50.0	93.6	90 - 110
Zinc	ug/L	1.00	47.2	50.0	94.3	90 - 110
MRCVS - Primary	5					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Zinc	ug/L	1.00	51.9	50.0	104	90 - 110

Report Continued

Client: E2 Consulting E	ngineers, Inc		Project Name: Project Number	PG&E Topock :: 408401.01.DM	-	Page 16 of 29 Printed 10/26/2010
MRCVS - Primary						
Parameter Copper MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.9	Acceptance Range 90 - 110
Parameter Copper MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.7	Expected 50.0	Recovery 99.4	Acceptance Range 90 - 110
Parameter Lead MRCVS - Primary	Unit ug/L	DF 1.00	Result 50.2	Expected 50.0	Recovery 100	Acceptance Range 90 - 110
Parameter Lead MRCVS - Primary	Unit ug/L	DF 1.00	Result 52.1	Expected 50.0	Recovery 104	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.6	Expected 50.0	Recovery 97.3	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 53.9	Expected 50.0	Recovery 108	Acceptance Range 90 - 110
Parameter Arsenic Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Arsenic Interference Check S	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Barium Interference Check S	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Barium Chromium	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Interference Check S Parameter Chromium Nickel	tandard A Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Engineers, Inc.			oject Name: oject Numbe	Project	Page 17 of 29 Printed 10/26/2010	
Interference Check S	Standard A					
Parameter Nickel	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	Standard A					
Parameter Zinc	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	Standard A					
Parameter Zinc	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Copper Interference Check S	ug/L Standard A	1.00	ND	0		
Parameter Copper Interference Check S	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter	Unit	DF	D#		_	
Lead	ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	Standard A					
Parameter Lead	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	Standard A					
Parameter Manganese	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	tandard A					
Parameter Manganese	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 45.9	Expected 50.0	Recovery 91.9	Acceptance Range 80 - 120
Interference Check S	standard AB					
Parameter Arsenic	Unit ug/L	DF 1.00	Result 46.0	Expected 50.0	Recovery 92.0	Acceptance Range 80 - 120
Interference Check S	itandard AB					
Parameter Barium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

=

Report Continued

Client: E2 Consulting Eng		oject Name: oject Numbe	Project	Page 18 of 29 Printed 10/26/2010		
Interference Check St	andard AB					
Parameter Barium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check Sta	Unit ug/L	DF 1.00	Result 46.7	Expected 50.0	Recovery 93.3	Acceptance Range 80 - 120
Parameter Chromium Nickel Interference Check Sta	Unit ug/L ug/L	DF 1.00 1.00	Result 46.2 44.6	Expected 50.0 50.0	Recovery 92.4 89.2	Acceptance Range 80 - 120 80 - 120
Parameter Nickel Zinc Interference Check Sta	Unit ug/L ug/L	DF 1.00 1.00	Result 44.7 45.2	Expected 50.0 50.0	Recovery 89.4 90.3	Acceptance Range 80 - 120 80 - 120
Parameter Zinc Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 45.0	Expected 50.0	Recovery 90.0	Acceptance Range 80 - 120
Parameter Copper Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 46.6	Expected 50.0	Recovery 93.1	Acceptance Range 80 - 120
Parameter Copper Lead Interference Check Sta	Unit ug/L ug/L	DF 1.00 1.00	Result 45.8 ND	Expected 50.0 0	Recovery 91.6	Acceptance Range 80 - 120
Parameter Lead Interference Check Sta	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 48.8	Expected 50.0	Recovery 97.6	Acceptance Range 80 - 120
Parameter Manganese Serial Dilution	Unit ug/L	DF 1.00	Result 48.5	Expected 50.0	Recovery 97.1	Acceptance Range 80 - 120 Lab ID = 991454-002
Parameter Chromium	Unit ug/L	DF 25.0	Result 885	Expected 918	RPD 3.66	Acceptance Range 0 - 10

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 19 of 29 Printed 10/26/2010

Metals by EPA 200.8, Tota	al	1	Batch 101410A					
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
991454-001 Aluminum		ug/L	10/14	1/2010 14:40	5.00	6.00	50.0	ND
Antimony		ug/L	10/14	/2010 14:40	5.00	0.190	10.0	ND
Molybdenum		ug/L	10/14	/2010 14:40	5.00	0.660	10.0	17.6
991454-002 Aluminum		ug/L	10/14	/2010 15:50	5.00	6.00	50.0	ND
Antimony		ug/L	10/14		5.00	0.190	10.0	ND
Molybdenum		ug/L	10/14		5.00	0.660	10.0	23.0
Method Blank								
Parameter	Unit	DF	Result					
Aluminum	ug/L	1.00	ND					
Antimony	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate							Lab ID =	991454-001
Parameter	Unit	DF	Result	Expected	RPD		Accenta	ince Range
Aluminum	ug/L	5.00	1.38	0		0	0 - 20	
Antimony	ug/L	5.00	ND	0		0	0 - 20	
Molybdenum	ug/L	5.00	16.5	17.6		6.28	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	ince Range
Aluminum	ug/L	1.00	52.8	50.0		106	90 - 110	
Antimony	ug/L	1.00	45.4	50.0		90.8	90 - 110)
Molybdenum	ug/L	1.00	48.7	50.0		97.4	90 - 110)
Matrix Spike							Lab ID =	991454-001
Parameter	Unit	DF	Result	Expected/Add	ed R	ecovery	Accepta	ince Range
Aluminum	ug/L	5.00	266	250.(250.)		106	75 - 125	•
Antimony	ug/L	5.00	231	250.(250.)		92.4	75 - 125	5
Molybdenum	ug/L	5.00	258	268(250.)		96.1	75 - 125	;
Matrix Spike Duplicate							Lab ID =	991454-001
Parameter	Unit	DF	Result	Expected/Add	ed R	ecovery	Accepta	nce Range
Aluminum	ug/L	5.00	273	250.(250.)		109	75 - 125	Ŭ
Antimony	ug/L	5.00	272	250.(250.)		109	75 - 125	i
Molybdenum	ug/L	5.00	269	268(250.)		101	75 - 125	i

Report Continued

Client: E2 Consulting En	igineers, In		roject Name: roject Numbe	PG&E Topock er: 408401.01.DM		Page 20 of 29 Printed 10/26/2010
MRCCS - Secondary						
Parameter Aluminum Antimony Molybdenum MRCVS - Primary	Unit ug/L ug/L ug/L	DF 1.00 1.00 1.00	Result 49.4 45.5 49.7	Expected 50.0 50.0 50.0	Recovery 98.7 91.0 99.5	Acceptance Range 90 - 110 90 - 110 90 - 110
Parameter Aluminum MRCVS - Primary	Unit ug/L	DF 1.00	Result 53.3	Expected 50.0	Recovery 107	Acceptance Range 90 - 110
Parameter Aluminum MRCVS - Primary	Unit ug/L	DF 1.00	Result 54.9	Expected 50.0	Recovery 110	Acceptance Range 90 - 110
Parameter Aluminum MRCVS - Primary	Unit ug/L	DF 1.00	Result 53.2	Expected 50.0	Recovery 106	Acceptance Range 90 - 110
Parameter Aluminum MRCVS - Primary	Unit ug/L	DF 1.00	Result 51.3	Expected 50.0	Recovery 103	Acceptance Range 90 - 110
Parameter Aluminum Antimony MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 54.5 51.5	Expected 50.0 50.0	Recovery 109 103	Acceptance Range 90 - 110 90 - 110
Parameter Antimony MRCVS - Primary	Unit ug/L	DF 1.00	Result 53.6	Expected 50.0	Recovery 107	Acceptance Range 90 - 110
Parameter Antimony MRCVS - Primary	Unit ug/L	DF 1.00	Result 53.4	Expected 50.0	Recovery 107	Acceptance Range 90 - 110
Parameter Antimony MRCVS - Primary	Unit ug/L	DF 1.00	Result 51.6	Expected 50.0	Recovery 103	Acceptance Range 90 - 110
Parameter Antimony MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.5	Expected 50.0	Recovery 95.1	Acceptance Range 90 - 110
Parameter Molybdenum	Unit ug/L	DF 1.00	Result 47.3	Expected 50.0	Recovery 94.6	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting E	ngineers, Inc		roject Name: roject Numbe	PG&E Topock r: 408401.01.DM		Page 21 of 29 Printed 10/26/2010
MRCVS - Primary						
Parameter Molybdenum MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.2	Expected 50.0	Recovery 96.3	Acceptance Range 90 - 110
Parameter Molybdenum MRCVS - Primary	Unit ug/Լ	DF 1.00	Result 45.8	Expected 50.0	Recovery 91.6	Acceptance Range 90 - 110
Parameter Molybdenum MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.7	Expected 50.0	Recovery 93.3	Acceptance Range 90 - 110
Parameter Molybdenum Interference Check S	Unit ug/L Standard A	DF 1.00	Result 48.2	Expected 50.0	Recovery 96.4	Acceptance Range 90 - 110
Parameter Aluminum Interference Check S	Unit ug/L Standard A	DF 1.00	Result 52.8	Expected 0	Recovery	Acceptance Range
Parameter Aluminum Interference Check S	Unit ug/L Standard A	DF 1.00	Result 59.6	Expected 0	Recovery	Acceptance Range
Parameter Antimony Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Antimony Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum Interference Check S	Unit ug/L standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Aluminum Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 53.4	Expected 50.0	Recovery 107	Acceptance Range 80 - 120
Parameter Aluminum	Unit ug/L	DF 1.00	Result 55.1	Expected 50.0	Recovery 110	Acceptance Range 80 - 120

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

028

Report Continued

Client: E2 Consulting Engineer	rs, Inc.	Project Name: Project Number:	PG&E Topock F 408401.01.DM	Project	Page 22 of 29 Printed 10/26/2010
Interference Check Standard	d AB				
Parameter Ur Antimony ug/ Interference Check Standard		Result ND	Expected 0	Recovery	Acceptance Range
Parameter Ur Antimony ug/ Interference Check Standard		Result ND	Expected 0	Recovery	Acceptance Range
Parameter Ur Molybdenum ug/ Interference Check Standard		Result ND	Expected 0	Recovery	Acceptance Range
Parameter Ur Molybdenum ug/		Result ND	Expected 0	Recovery	Acceptance Range
Reactive Silica by SM4500-Si I	David	Batch	0Si10A		10/11/2010

Batch 10Si10A 10/11/2010 Parameter Unit Analyzed DF MDL RL Result 991454-002 Silica mg/L 10/11/2010 50.0 0.700 2.00 20.5 Method Blank Parameter Unit DF Result Silica mg/L 1.00 ND Duplicate Lab ID = 991454-002 Parameter Unit DF Result Expected RPD Acceptance Range Silica mg/L 50.0 19.5 20.54.55 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Silica mg/L 1.00 0.491 0.464 106 90 - 110 Matrix Spike Lab ID = 991454-002 Parameter Unit DF Result Expected/Added Recovery Acceptance Range Silica mg/L 50.0 41.8 40.5(20.0) 107 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Range Silica mg/L 1.00 0.218 0.232 93.9 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Range Silica mg/L 1.00 0.391 0.400 97.7 90 - 110

Report Continued

Client: E2 Consulting E	Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM					
Total Dissolved Solids	by SM 254	0 C	Batch	10TDS10B			10/7/2010		
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result	
991454-001 Total Dissolved	1454-001 Total Dissolved Solids		10/07	7/2010	1.00	0.434	250.	4190	
991454-002 Total Dissolved	Solids	mg/L	10/07	7/2010	1.00	0.434	250.	4300	
Method Blank									
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND						
Duplicate							Lab ID =	991456-006	
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 4580	Expected 4380		PD 4.57	Acceptance Rang 0 - 5		
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 497.	Expected 500.		ecovery 99.4	Accepta 90 - 11	ance Range 0	
Lab Control Sample	•	. .		— • •	-		. .	_	
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 491.	Expected 500.		ecovery 98.2	Accepta 90 - 11	ance Range 0	

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 24 of 29
	Project Number:	408401.01.DM	Printed 10/26/2010

Total Organic Carbon (T/	DOC) SN	1 5310 C	Batch	10TOC10D				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
991454-002 Total Organic Ca	rbon	mg/L	10/19	9/2010 20:44	1.00	0.0250	0.300	ND
Method Blank								
Parameter	Unit	DF	Result					
Total Organic Carbon	mg/L	1.00	ND					
Duplicate							Lab ID =	991448-021
Parameter	Unit	DF	Result	Expected	RPD		Acceptance Range	
Total Organic Carbon	mg/L	1.00	2.23	2.24	0.582		0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Recovery		Accepta	nce Range
Total Organic Carbon	mg/L	1.00	18.6	20.0	ç	92.8	90 - 110	-
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	9.58	10.0	ę	95.8	90 - 110	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	9,24	10.0	ç	92.4	90 - 110	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	9.29	10.0	9	92.9	90 - 110	-

Report Continued

Client: E2 Consulting Eng	gineers, Ind		roject Name: roject Numbei	Page 25 of 29 Printed 10/26/2010				
Total Phosphate, SM 450	0-PB,E		Batch	10TP10A			10/11/2010) Sector (1995)
Parameter		Unit	Anal	yzed	DF N	IDL.	RL	Result
991454-002 Phosphate, Total	As P	mg/L	10/11/	/2010 1	.00 0.0	00300	0.0200	ND
Method Blank					·····			
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID = 9	91454-002
Parameter Phosphate, Total As P Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	RPD 0		Acceptar 0 - 20	ice Range
Parameter Phosphate, Total As P Matrix Spike	Unit mg/L	DF 1.00	Result 0.105	Expected 0.100	Recove 105	Recovery 105		ice Range 91454-002
Parameter Phosphate, Total As P MRCCS - Secondary	Unit mg/L	DF 1.00	Result 0.0664	Expected/Adde 0.0650(0.065		ry	Acceptar 75 - 125	ice Range
Parameter Phosphate, Total As P MRCVS - Primary	Unit mg/L	DF 1.00	Result 0.0648	Expected 0.0600	Recove 108.	ry	Acceptar 90 - 110	ice Range
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0684	Expected 0.0650	Recover 105	ry	Acceptar 90 - 110	ice Range

Report Continued

Client: E2 Consulting Engi		roject Name: roject Number	Page 26 of 29 Printed 10/26/2010					
Ammonia Nitrogen by SM Parameter	4500-NH	I3D Unit	Batch Analy	10NH3-E10B /zed	DF	MDL	10/12/201 RL	l0 Result
991454-001 Ammonia as N		mg/L	10/12/	2010	1.00	0.00200	0,500	ND
991454-002 Ammonia as N		mg/L	10/12/	2010	1.00	0.00200	0.500	ND
Method Blank	<u> </u>							
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	991553-002
Parameter Ammonia as N Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	I	RPD 0	Acceptance Rang 0 - 20	
Parameter Ammonia as N Matrix Spike	Unit mg/L	DF 1.00	Result 10.1	Expected 10.0	I	Recovery 101	Acceptance Range 90 - 110 Lab ID = 991553-002	
Parameter Ammonia as N Matrix Spike Duplicate	Unit mg/L	DF 1.00	Result 5.97	Expected/Ad 6.00(6.00)	ded	Recovery 99.5	Acceptance Range 75 - 125 Lab ID = 991553-002	
Parameter Ammonia as N MRCCS - Secondary	Unit mg/L	DF 1.00	Result 5.85	Expected/Ad 6.00(6.00)	ded I	Recovery 97.5	Accepta 75 - 125	nce Range
Parameter Ammonia as N MRCVS - Primary	Unit mg/L	DF 1.0 0	Result 6.01	Expected 6.00	I	Recovery 100	Accepta 90 - 110	nce Range
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 5.99	Expected 6.00	4,	Recovery 99.8	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 27 of 29 Printed 10/26/2010

Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
991454-002 Iron		ug/L	10/08	3/2010 13:39	1.00	0.542	20.0	ND
Manganese		ug/L	10/08		1.00	0.0420	10.0	10.6
Method Blank							10.0	10.0
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	991456-001
Parameter	Unit	DF	Result	Expected	R	D.		
Iron	ug/L	1.00	ND	0		0	0 - 20	ince Range
Manganese	ug/L	1.00	ND	0		0	0 - 20	
Lab Control Sample	_			_		•	0-20	
Parameter	Unit	DF	Result	Expected	D/		A	
Iron	ug/L	1.00	5000	5000	Recovery 99.9		Acceptance Rang 90 - 110	
Manganese	ug/L	1.00	5030	5000	101		90 - 110 90 - 110	
Matrix Spike	Ū							, 991456-001
Parameter	Unit	DF	Result	Expected/Adde	d Recovery			
Iron	ug/L	1,00	1820	2000(2000)		90.8	75 - 125	nce Range
Manganese	ug/L	1.00	1870	2000(2000)		93.6	75 - 125	
MRCCS - Secondary	Ū	_		2000(2000)	•	0.0	10-120	
Parameter	Unit	DF	Result	Expected	De	covery	Accente	
Iron	ug/L	1.00	4910	5000		98.2	90 - 110	nce Range
Manganese	ug/L	1.00	5010	5000		100	90 - 110	
MRCVS - Primary	Ū			0000		100	30 - 110	
Parameter	Unit	DF	Result	Expected	De		A 1	-
Iron	ug/L	1.00	5200	5000		covery 104	Accepta 90 - 110	nce Range
MRCVS - Primary	Ū			0000		104	30 - 110	
Parameter	Unit	DF	Result	Expected	Da	AB 1(CB 1)	A	-
Iron	ug/L	1.00	5120	5000		covery 102	Accepta 90 - 110	nce Range
MRCVS - Primary	5		0.20	0000		102	90 - 110	
Parameter	Unit	DF	Popult	Evented	P		. .	_
Iron	ug/L	1.00	Result 5060	Expected 5000				nce Range
MRCVS - Primary	~y, L	1.00	0000	5000		01	90 - 110	
Parameter	[]nit		Dervit		_			
Manganese	Unit ug/L	DF 1.00	Result 5130	Expected 5000		covery 03	Acceptal 90 - 110	nce Range

Report Continued

Client: E2 Consulting	Engineers, Inc		roject Name: roject Numbe	PG&E Topock r: 408401.01.DN		Page 28 of 29 Printed 10/26/2010
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese MRCVS - Primary	ug/L	1.00	5050	5000	101	90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	5200	5000	104	90 - 110
Interference Check	< Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	1930	2000	96.5	80 - 120
Interference Check	k Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	2100	2000	105	80 - 120
Interference Check	Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	ND	0	-	1 31
Interference Check	standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	ND	0	-	. 5
Interference Check	Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	2070	2000	103	80 - 120
Interference Check	Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	2090	2000	104	80 - 120
Interference Check	Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	2070	2000	103	80 - 120
Interference Check	Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	2120	2000	106	80 - 120

Report Continued

Client: E2 Consulting Eng		oject Name: oject Numbe	PG&E Topo r: 408401.01.E		Page 29 of 29 Printed 10/26/2010			
Turbidity by SM 2130 B			Batch	10TUC10E			10/6/2010	
Parameter	·.	Unit	Ana	lyzed	DF	MDL	RL	Result
991454-001 Turbidity		NTU	10/06	5/2010	1.00	0.0140	0.100	0.128
991454-002 Turbidity		NTU	10/06	/20 10	1.00	0.0140	0.100	ND
Method Blank								
Parameter Turbidity	Unit NTU	DF 1.00	Result ND					
Duplicate							Lab ID =	991459-004
Parameter Turbidity Lab Control Sample	Unit NTU	DF 1.00	Result ND	Expected 0	RF (•		nce Range
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.60	Expected 8.00	Recovery 95.0		Acceptance Range 90 - 110	
Lab Control Sample D	uplicate							
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.70	Expected 8.00		ecovery 96.2	Accepta 90 - 110	nce Range

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Su Cam

 f_{o} , Mona Nassimi Manager, Analytical Services

Er Sean

Total Dissolved Solids by SM 2540 C

Calculation

1st

Final

weight,g

Calcula	tions				Date	Batch: Calculated:	10TDS10B 10/11/10
 2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
109.2192	0.0000	No	0.0000	0,0	25.0	ND	1
67.2963	0.0000	No	0.0419	4190.0	250.0	4190.0	1
65.6798	0.0001	No	0.0430	4300.0	250.0	4300.0	1
74.8341	0.0002	No	0.0658	3290.0	125.0	3290.0	1

r

				I					2	1	
BLANK	100	109.2192	109.2192	109.2192	0.0000	No	0.0000	0,0	25.0	ND	1
991454-1	10	67.2544	67.2963	67.2963	0.0000	No	0.0419	4190.0	250.0	4190.0	1
991454-2	10	65.6368	65.6799	65.6798	0.0001	No	0.0430	4300.0	250.0	4300.0	1
991455-1	20	74,7683	74.8343	74.8341	0.0002	No	0.0658	3290.0	125.0	3290.0	1
991455-2	10	66.8223	66.8740	66.8739	0.0001	No	0.0516	5160.0	250.0	5160.0	1
991456-1	10	76.5716	76.6126	76.6125	0.0001	No	0.0409	4090.0	250.0	4090.0	1
991456-2	10	67.8037	67.8469	67.8467	0.0002	No	0.0430	4300.0	250.0	4300.0	1
991456-3	10	68,2350	68.2786	68.2786	0.0000	No	0.0436	4360.0	250.0	4360.0	1
991456-4	10	75.4565	75.5147	75.5147	0.0000	No	0.0582	5820.0	250,0	5820.0	1
991456-5	10	68.8017	68.8523	68.8523	0.0000	No	0.0506	5060.0	250.0	5060.0	1
991456-6	20	67.7380	67.8259	67.8257	0.0002	No	0.0877	4385.0	125.0	4385.0	1
991456-6D	20	69.2479	69.3400	69.3396	0.0004	No	0.0917	4585.0	125.0	4585.0	1
LCS	100	68.2935	-68.3432	68.3432	0.0000	No	0.0497	497.0	25.0	497.0	1
991456-7	10	49.4669	49.5120	49.5116	0.0004	No	0.0447	4470.0	250.0	4470.0	1
991456-8	10	47.6395	47.6862	47.6859	0.0003	No	0.0464	4640.0	250,0	4640.0	1
991456-9	50	105.2922	105.3388	105.3388	0.0000	No	0.0466	932.0	50.0	932.0	1
991456-10	10	68.5548	68.612	68.612	0.0000	No	0.0572	5720.0	250.0	5720.0	1
991435	864	160.2383	160.2429	160.2429	0.0000	No	0.0046	5.3	2.9	5.3	1
991486	100	68.9878	69.0360	69.0356	0.0004	No	0.0478	478.0	25.0	478.0	1
991486D	100	68.9060	68.9545	68.9541	0.0004	No	0.0481	481.0	25.0	481.0	1
LCSD	100	66.0720	66.1214	66.1211	0.0003	No	0.0491	491.0	25.0	491.0	1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) \times 10^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Sample

volume,

ml

Initial

weight,g

Laboratory

Number

nn st Printed Name

Analyst Signature

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS10B

Date Calculated: 10/11/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Caic TDS <1.3
991454-1	7110	0.59	4621.5	0.91
991454-2	7810	0.55	5076.5	0.85
991455-1	5350	0.61	3477.5	0.95
991455-2	8560	0.60	5564	0.93
991456-1	7190	0.57	4673.5	0.88
991456-2	7140	0.60	4641	0.93
991456-3	7220	0.60	4693	0.93
991456-4	8630	0.67	5609.5	1.04
991456-5	8190	0.62	5323.5	0.95
991456-6	6610	0.66	4296.5	1.02
991456-6D	6610	0.69	4296.5	1.07
LCS				
991456-7	7270	0.61	4725.5	0.95
991456-8	7260	0.64	4719	0.98
991456-9	1690	0.55	1098.5	0.85
991456-10	8540	0.67	5551	1,03
991435	8.07	0.66	5.2455	1.01
991486	794	0.60	516.1	0.93
991486D	794	0.61	516.1	0.93
		· · · · · · · · · · · · · · · · · · ·		·······

hp

 v_{0}

.

Date of Analysis: Start of Analysis: Date Sampled:		10/12/10				Calc		Calculations]		Analytical Batch: Matrix: Date Calculated:		10ALK10B Water 10/12/10	D
Lab ID	Sampie pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL titrant to reach pH 0.3 unit lower	Total Alkalinity as CaCO3	RL, ppm	Total Alkalinity Reported Value	HCO3 Alkalinity as CaCO ₃ (ppm)	CO3 Alkalinity as CaCO _s (ppm)	OH Alkalinity as CaCO, (ppm)	Low Alkalinity as CaCO ₃ (< ²⁰ ppm)
BLANK	7 05	50	0.02		0'0	0.05		1.0	5	QN	QN	QN	QN	
201496 / P	728	50	0.02	-	0'0	5.16		103.2	£	103.2	103.2	DN	QN	
99140520 FS	785	50	0.02		0.0	5.55		111.0	5	111.0	111.0	DN	QN	
991485.3	762	50	0.02		0,0	5.50		110.0	5	110.0	110.0	QN	QN	
<u>991454-2</u>	782	50	0.02		0.0	7.08		141.6	S	141.6	141.6	QN	ND	
991455-1	7 83	50	0.02		0,0	3.45		69.0	ŝ	69.0	69.0	GN	ð	
991455-2	177	50	0.02		0'0	2.60		52.0	5	52.0	52.0	QN	QN	
991456.3	7.95	50	0.02		0.0	3.25		65.0	5	65.0	65.0	DN	QN	
991456.4	770	50	0.02		0.0	2.40		48.0	5	48.0	48.0	ND	ND	
991456-5	7.77	50	0.02		0.0	3.05		61.0	£	61.0	61.0	QN	QN	
991456-6	7.75	50	0.02		0.0	2.70		54.0	5	54.0	54.0	DN	QN	
991456-7	02.2	50	0.02		0.0	2 20		44.0	5	44.0	44.0	QN	QN	
991456-8	763	50	0.02		0.0	2 50		50.0	S	50.0	50.0	QN	QN	
		50	800		0.0			0.0	ŝ	Q	QN	QN		
991456-10	1 763	50	0.02		0.0	2.50		50.0	ى م	50.0	50.0	QN	QN	
991553-1 	7.69	50	0.02		0.0	3.40		68.0	S	68.0	68.0	QN	QN	
991553.2	771	50	0 02		0.0	3.65		71.0	5	71.0	71.0	ND	QN	
991684-20	62.2	50	0,02		0.0	545		109.0	ŝ	109.0	109.0	DN	QN	
A 197450		- 20	9.02		0.0			0.0	S	ND	QN	CN		
991455-6 DUP	771	50	0.02		0.0	2.65		53.0	ى	53.0	53.0	QN	QN	
991456-6 MS	9.88	50	0.02	20	40.0	7.80		152.0	5	152.0	72.0	80	QN	
901456-6 MSD	9.83	50	0.02	20	40.0	7.55		151.0	ß	151.0	71.0	80	ŪΝ	
ICS1	10.10	50	0.02	2.4	47.0	5 05		101.0	5	101.0	7.0	94	ND	
LCS7	10.10	50	0.02	24	47.0	5.00		100.0	5	100.0	6.0	94	QN	
	Calcula	Calculations as follows:	follov	NS:	Tor P=	AXN	x 50000	(0		Low All	Low Alkalinity: =	() × H - C)	(2 x B - C) x N x 5000	
						mL	mL sample			as mg/L	~	THL ST	mL sample	
ND: Not Detected (below the reporting limit) LCS: Laboratory Control Standard LCSD: Laboratory Control Standard Duplicate MS: Matrix Spike	ow the repor I Standard Standard D	ting limit) Juplicate	Ϊ λ	Where:	T = Total Alkalinity, mg CaCO3/L P = Phenolphthalein Alkalinity, mg CaCO3/L A = mL standard acid used N = normality of standard acid	alinity, mg CaC00 thalein Alkalinity, lard acid used of standard acid	ML CaCO	3/L		Whare:	 B = mL titrant to first recorded C = total mL titrant to reach pH N = normality of standard acid 	 B = mL titrant to first recorded pH C = total mL titrant to reach pH 0.3 unit lower N = normality of standard acid 	t unit lower	
Analyst Printed Name			Ane	Analvst Signature	ure -			Reviewe	Reviewer Prinhed Name	a				
										J		עבאובאבו סואטשוח	D	

Alk_10b10/14/10, by HT

Alkalinity by SM 2320B

TRUESDAIL LABORATORIES, INC.

٠

0

,

COC Number TURNAROUND TIME 10 Days		COMMENTS	420054, 4W 'ə.	ATAINERS 263057) F 263057) F 263057) F 263057) F 263057) F 263057) F 263057) F 263057 2730577 2730577 273057 273057 2730577 2730577 2730577 27	0.00) C 45	10050 115 210 N pan 0155	10 10 00 00 00 00 00 00 00 00 00 00 00 0	×	X X X X 10 DU=2 / DU=7				A vality, interesting and the second se	14 TOTAL NUMBER OF CONTAINERS		SAMPLE CONDITIONS	RECEIVED COOL VARM C 4.4 C *	CUSTODY SEALED YES 🔲 NO 🗍	SPECIAL REQUIREMENTS:	The metals include: Cr, Al, Sb, As, Ba, B, Cu, Pb, Mn,	10	× 99	
991454 CHAIN OF CUSTODY RECORD [IM3Plant-WDR-277]		M07	1981 Sy	(EHN 7 885 (2)	200 ⁻¹ 2 (500 ⁻¹ 2 (500 ⁻¹	20.1) 2540 (2130) Metall		x x x x	x x x x x x x x x x x		(m)	7.100.12.12.12.12.12.12.12.12.12.12.12.12.12.	05 48 05 48 09 03	7,4 P.of 1.14	0852 0852 09:03	E RECORD	1 Oui Datei 10-5-10 Time 14: 43	T. L. T. Date/ O-S-7	1 - K. T Datel 10 - 5-10	T15	FOr Somningerondisin.		Jee Form Altachad
Rec'd 10/0 5 /10 s 9 9 1 4 5 4 2 LATORIES, INC. aue, Tustin, CA 92780-7008	COMPANY CH2M HILL /E2	NAME	PHONE 530-229-3303 FAX 530-339-3303	ADDRESS 155 Grand Ave Ste 1000 Oakland, CA 94612	P.O. NUMBER 408401.01.DM	SAMPLERS (SIGNATURE C. LLUEGUT	SAMPLE LD, DATE TIME DESCRIPTION	sc-700B-WDR-277 10/05/10 0540	*2 SC-100B-WDR-277 10/05/10 0140		Temp	5C-700B / DR.40 / 78.80F	Branner Corner	-	0852	CHAIN OF CUSTODY SIGNATURE	Signature Signature C. Kurght Company (Relinquished)	Kala Dur Rinted La Ful	Bignature (Relinquished) (Relinquished) (Relinquished) (Relinquished) (Relinquished) (Relinquished) (Relinquished)	duda	Printed Name	Signature Printed Company/ (Received) Name Agency	

,

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)		Time Buffered	Initials
083910	991359-7	9.5	NA	NA	N/A	SR
		l ·		(<i>T</i>	
	-9				,	T
	-10					ŀ
	-1(
	-13				·	-
	-14					
	-15					
	-16					
	-17				•	
₩	\$ -18	*	₩	4	₩.	÷.
10/04/10	991393-1	9.5	N/A	N/A	NA	ST
`	1-2		· •			
	-3					
4	¥ -Y -	V		J I	1	*
10/04/10	991394-1	9.5	N/A	N/A	N/A	SB
<u> </u>	1 2					1
	-4					
	-5	,				
	-6		· ·			
	-7-					
	-9					
	-11		:			
	-17					
	-18		·		· · · ·	
	-19 * -20					
*		↓.	~	¥	N/A	J.
0/01/10 0	19[373-1]	9.5	N/A	NA	NA	SB
. W	<u>+ -2</u>	L	1	<u>}</u>		Y
· · · · ·	191454-1	70	5.00	9.5	7:30 7:35	SB
· J	+-2	J.	6	1	7-35	*

Enviro\Ali\Cr6+ pH Log

d

112

Turbidity/pH Check

l urbidity/pH Check										
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)				
99 531 (1-3)	≤ 1	2	10/7/10	DK	No	Xes 17:00				
991516		[c2]		ſ	V					
991317	72				149	21010 A				
991518		ļ		 	· / /	· /				
991519(1-5)		ļ			\downarrow	V V				
991521	<u>↓</u>	4	\$	↓	<u> </u>					
49:1534	<u> </u>	<u>L2</u>	10/8/10	hr	No					
991513(40)	4	=2	10/8/10	DK	No					
4,5,6,8,9	-7!			DR DR	Yes					
11000		22	<u>, </u> , , , , , , , , , , , , , , , , , ,	VL	Yes		4			
991512		22	<u>↓</u>	Dk.	'No					
11010	,I		·		Yes					
991548	7	+								
547(1-2)	72	12	10/8/10	ES	NO					
991454 (1)	72	62	+{	1 admin	Yes	<u> </u>				
991455 (2)	*	72		h+/OK	No	115				
991562	<u> </u>	77	10/7/10 10/11/10	DK		YES 20:00 VES DO				
d91553(1-5)	2	6.2		DK-	No					
LE FR(F-2)	4	t b				No 1				
991554 112	Y		+							
991570 (2)	<u> </u>	62	10/12/10	he	No	V	a *			
1571	<u>{</u>	1	1		100	<u></u>	n digesfin			
1571			1							
1573			1		ļ	ļ				
991598(1-2)	<1	<2	0/10/10	Ľ	No					
991565(1-3)	L 1	72	16/14/10	ES	No	WI: NU p.M				
991586	71	42			7-45					
588 - 4	74	22	1							
591	44	47			NU					
597(1-7)	Z #	71		-	t	@ 1.70p.m				
621(1-4)	71	L2		l	Tes					
991575 (4)	Dig -	22	10/14/10	hr	KJa	~				
1623		72			No No Diss	4:00 pm Y				
1624(9)	-	12	(NO Diss	I N T				
1601	۲,	22	L L	J	K/O	-/				
0011.00	-									
991637	71	42 42	10/15/10	5	yes_					
478		<u> </u>				<				
643 (-1)	71	LV			<u> </u>					
645(1	<u> </u>	62		}	NO					
273	<u> </u>	72	<u> </u>	V		N4:0Vp.m				
911 (074(1-2)		72	10/15/10	ES	NU	yu a'timp	3			
441600 (3)	f	42	10/18/10	hr	NO	0 -				
160) (3) 1625 (24)										
1625 (24)	-V	↓	¥ 	-	<u> </u>					
108	·		10/19/10	KK_	Ves-TTU					
1691	<u> </u>	42			NÖ	N				
1092	4	L2	Y	V	¥	···•				

ALC: NO. OF ALC: NO.

Sample Integrity & Analysis Discrepancy Form

Cliei	nt: <u> </u>	Lab # <u>991454</u>
Date	e Delivered: <u>10</u> / <u>ℓS</u> /10 Time: <u>↓1:30</u> By: □Mail ØFie	Id Service □Client
1.	Was a Chain of Custody received and signed?	¤Yes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ¤(N/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ⊠N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ⊠N/A
5.	Were all requested analyses understood and acceptable?	⊠tYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? 4 <u>.4 ° C</u>	⊠Yes ⊡No ⊡N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes □No □N/A
8.	Were sample custody seals intact?	Yes DNO KIN/A
9.	Does the number of samples received agree with COSPC	Y¤(Yes □No □N/A
10.	Did sample labels correspond with the client ID's?	©lyes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ロTruesdail 為 Client	⊠Yes ⊡No ⊡N/A
12.	Were samples pH checked? pH = <u>See</u> C. O.C.	Ią́Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	₽Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH	₽Yes □No □N/A
15.	<u>Sample Matrix:</u> Liquid Drinking Water Ground W Sludge Soil Wipe Paint Solid DO	'ater □Waste Water ther <u>Waber</u>
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Shabunina

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 28, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-278 PROJECT, GROUNDWATER MONITORING, TLI NO.: 991623

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-278 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 13, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The result from the matrix spike for sample SC-700B-WDR-278 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the 5x dilution agree with those from the straight run, the data from the straight run is reported.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

K. R. P. Mr

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 991623 Date: October 28, 2010 Collected: October 13, 2010 Received: October 13, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Hope Trinidad / Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

Estabilished 1931	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Laboratory No.: 991623 Date Received: October 13, 2010		<u>ary</u>	Result Units RL	7090 umhos/cm 2.00 ND ug/L 1.0 ug/L 1.0 hexavalent 0.20 ug/L 0.20 hexavalent 0.20 ug/L 0.20 ved Solids 4410 mg/L 250			This report applies only to the samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.
			<u>ults Summary</u>	ipie ne Parameter	00 EC 00 Chromium 00 Manganese 00 Chromium, hexavalent 00 Turbidity 00 Total Dissolved Solids			lition of apparently ider sed and upon the cond
			<u>nalytical Results</u>	Sample Date Time	10/13/2010 8:00 10/13/2010 8:00 10/13/2010 8:00 10/13/2010 8:00 10/13/2010 8:00 10/13/2010 8:00			ative of the quality or conc lient to whorn it is addres
Ċ			Anal	Extraction Method S	NONE NONE LABFLT NONE NONE	plied to all results: figures.) significant figures. icant figures.		l is not necessarily indic: le exclusive use of the c boratories.
ORIES, IN	leers, Inc. le 1000	ţ		Analysis Method	E120.1 E200.8 E200.8 E218.6 SM2130B SM2540C	ig limit) ures" rule has been ap ave two (2) significant ppm will have three (3) signif ys have three (3) signif		es, investigated and and accepted for th in from Truesdail La
TRUESDAIL LABORATORIES, INC Excellence in independent Testing	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM		Field ID	SC-700B-WDR-278 SC-700B-WDR-278 SC-700B-WDR-278 SC-700B-WDR-278 SC-700B-WDR-278 SC-700B-WDR-278	ND: Non Detected (below reporting limit) mg/L: Milligrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.		niy to the sample, or sample es, this report is submitted ut prior written authorizatio
TRUESDAIL EXCELLENCE IN INDEPEN	Client	Project Name Project No. P.O. No.		Lab Sample ID	991623-001 991623-001 991623-001 991623-001 991623-001	NE mg/l	005	This report applies o and these laboratori publicity matter withc

,

•

\$

•

•

•

,

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Page 1 of 6

Printed 10/29/2010

Laboratory No. 991623

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800 Oakland, CA 94612

Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM

Samples Received on 10/13/2010 8:30:00 PM

Field ID				Lab ID	Colle	ected	Matri	x
SC-700B-WDR-278				991623-001	10/13/2	2010 08:00	Wate	er
Specific Conductivity - E Parameter	PA 120.1	Unit		10EC10H	DF	MDL	10/19/201 RL	0 Result
991623-001 Specific Conduct	livity	umhos/	/cm 10/19	9/2010	1.00	0.0380	2.00	7090
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID = 9	991625-003
Parameter Specific Conductivity Duplicate	Unit umhoร	DF 1.00	Result 923.	Expected 921.	RPD 0.217			
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 959.	Expected 958.		PD 0.104	Accepta 0 - 10	nce Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result 701.	Expected 706.		ecovery 99.3	Accepta 90 - 110	nce Range
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 707.	Expected 706.		ecovery 100	Acceptai 90 - 110	nce Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 688.	Expected 706.		ecovery 97.5	Acceptar 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 994.	Expected 999.		ecovery 99.5	Acceptar 90 - 110	nce Range

Report Continued

Client: E2 Consulting Eng	jineers, Inc		oject Name: oject Numbe	ect	Page 2 of 6 Printed 10/29/2010			
MRCVS - Primary								
Parameter Specific Conductivity	Unit umhos	DF 1,00	Result 998.	Expected 999.		Recovery 99.9	Accepta 90 - 110	ince Range
Chrome VI by EPA 218.6 Parameter		Unit	a di serie d	10CrH10H lyzed	DF	MDL	RL	Result
991623-001 Chromium, Hexa	valent	ug/L	10/15	6/2010 08:49	1.05	0.0210	0.20	0.20
Method Blank				· · · · · · · · · · · · · · · · · · ·				
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND					00/500 00/
Duplicate Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 105	Result 1760	Expected 1760		RPD 0.312		991598-001 Ince Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.32	Expected 5.00		Recovery 106	90 - 110	ance Range) 991623-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.97	Expected/Ad 5.57(5.25)	ded	Recovery 108	90 - 110	ince Range) 991623-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.27	Expected/Ad 1.26(1.06)	ded	Recovery 101	Accepta 90 - 11(ince Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.18	Expected 5.00		Recovery 104	Accepta 90 - 110	ince Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0		Recovery 102	Accepta 95 - 105	ince Range
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.97	Expected 10.0		Recovery 99.7	Accepta 95 - 105	ince Range
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.90	Expected 10.0		Recovery 99.0	Accepta 95 - 105	ince Range

Report Continued

Client: E2 Consulting		oject Name: oject Numbe	Page 3 of 6 Printed 10/29/2010					
Metals by EPA 200.8, Parameter	Total	Unit		101910A lyzed	DF	MDL	RL	Result
991623-001 Chromium		ug/L	10/19	/2010 13:06	5.00	0.0950	1.0	ND
Manganese		ug/L	10/19	/2010 13:06	5.00	0.210	1,0	1.6
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	991623-001
Parameter Chromium	Unit ug/L	DF 5.00	Result ND	Expected 0	RPD 0)	Accepta 0 - 20	ance Range

Manganese	ug/L	5.00	1.68	1.64	2.71	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	50.5	50.0	101	90 - 110
Manganese	ug/L	1.00	54.9	50.0	110	90 - 110
Matrix Spike						Lab ID = 991623-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Chromium	ug/L	5.00	242	250.(250.)	96.7	75 - 125
Manganese	ug/L	5.00	245	252(250.)	97.2	75 - 125
Matrix Spike Duplicate						Lab ID = 991623-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Chromium	ug/L	5.00	244.	250.(250.)	97.6	75 - 125
Manganese	ug/L	5.00	246	252(250.)	97.6	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	50.4	50.0	101	90 - 110
Manganese	ug/L	1.00	52.7	50.0	105	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	48.5	50.0	96.9	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	49.4	50.0	98.7	90 - 110

.

Report Continued

Client: E2 Consulting En	gineers, Inc		oject Name: oject Numbe	PG&E Topock r: 408401.01.DM	-	Page 4 of 6 Printed 10/29/2010
MRCVS - Primary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.0	Expected 50.0	Recovery 96.0	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1,00	Result 48.8	Expected 50.0	Recovery 97.6	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 50.9	Expected 50.0	Recovery 102	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 52.4	Expected 50.0	Recovery 105	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 50.9	Expected 50.0	Recovery 102	Acceptance Range 90 - 110
Parameter Manganese Interference Check Si	Unit ug/L tandard A	DF 1.00	Result 50.3	Expected 50.0	Recovery 101	Acceptance Range 90 - 110
Parameter Chromium Interference Check Si	Unit ug/L andard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check Si	Unit ug/L andard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result 49.1	Expected 50.0	Recovery 98.2	Acceptance Range 80 - 120
Parameter Chromium	Unit ug/L	DF 1.00	Result 48.3	Expected 50.0	Recovery 96.5	Acceptance Range 80 - 120

,

.

Report Continued

Client: E2 Consulting En	gineers, In		Project Name: Project Numbe	PG&E Topo er: 408401.01.1		t		Page 5 of 6 0/29/2010
Interference Check Si	tandard AB							
Parameter Manganese Interference Check St	Unit ug/L tandard AB	DF 1.00	Result 50.3	Expected 50.0	R	ecovery 101	Accepta 80 - 120	ance Range)
Parameter Manganese	Unit ug/L	DF 1.00	Result 47.1	Expected 50.0		ecovery 94.2	Accepta 80 - 120	ance Range
Total Dissolved Solids b Parameter	y SM 254	0 C Unit		10TDS10C	DF	MDL	10/14/20 ⁻ RL	10 Result
991623-001 Total Dissolved	Solids	mg/L	10/14	/2010	1.00	0.434	250.	4410
Method Blank Parameter	1 (05	D <i>u</i>					
Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND					
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 563.	Expected 565.	RPD 0.355			991627-002 ince Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 500.	Expected 500.		Recovery 100.		nce Range
Turbidity by SM 2130 B Parameter		Unit	영상 가슴을 들었다. 영	10TUC10H lyzed	DF	MDL	10/14/201 RL	0 Result
991623-001 Turbidity		NTU	10/14		1.00	0.0140	0.100	0.115
Method Blank		<u> </u>		······································				
Parameter Turbidity	Unit NTU	DF 1.00	Result ND					
Duplicate							Lab ID =	991623-001
Parameter Turbidity Lab Control Sample	Unit NTU	DF 1.00	Result 0.117	Expected 0.115	RPD 1.72		Accepta 0 - 20	nce Range
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.65	Expected 8.00		ecovery 95.6	Accepta 90 - 110	nce Range
Lab Control Sample Di Parameter Turbidity	Unit NTU	DF 1.00	Result 7.70	Expected 8.00		covery 96.2	Acceptar 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 6 of 6 Printed 10/29/2010

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

↓ Mona Nassimi Manager, Analytical Services

EZ GASultins Engineers

Nassimi

Total Dissolved Solids by SM 2540 C

Calculations

	Batch: 10TDS10C
Date C	alculated: 10/13/10
T	

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	110.2364	110,2368	110.2368	0.0000	No	0.0004	4.0	25.0	ND	1
991565-2	200	110.8005	110.8170	110.817	0.0000	No	0.0165	82.5	12.5	82.5	1
991565-3	100	72.5224	72.5378	72.5378	0.0000	No	0.0154	154.0	25.0	154.0	1
991592-2	100	78.3884	78.4500	78.45	0.0000	No	0.0616	616.0	25.0	616.0	1
991627-1	100	76.0050	76.0632	76.0632	0.0000	No	0.0582	582.0	25.0	582.0	1
991627-2	100	67.8128	67.8695	67.8693	0.0002	No	0.0565	565.0	25.0	565.0	1
991623	10	74.7477	74.7918	74.7918	0.0000	No	0.0441	4410.0	250.0	4410.0	1
991627-2D	100	76.2204	76.2767	76.2767	0.0000	No	0,0563	563.0	25.0	563.0	1
LCS	100	72.4781	72.5281	72.5281	0.0000	No	0.0500	500.0	25.0	500.0	1

Calculation as follows:

ş. .

. .

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Reviewer Printed Name

Reviewer Signature

d Name

Signature Analyst

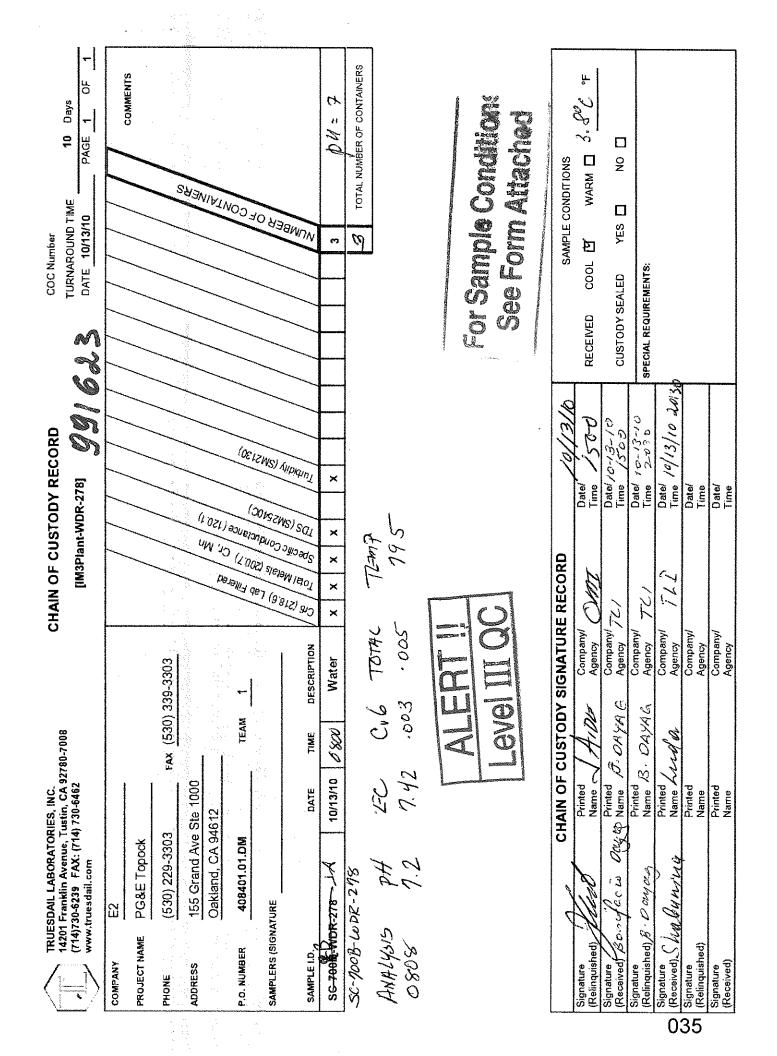
WetChem Tds_0810

016

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS10C


Date Calculated: 10/13/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
991565-2	162	0.51	105.3	0.78
991565-3	291	0.53	189.15	0.73
991592-2	998	0.62	648.7	0.95
991627-1	930	0.63	604.5	0.96
991627-2	935	0.60	607.75	0.93
991623	7050	0.63	4582.5	0.96
991627-2D	935	0.60	607.75	0.93
			.	
·				í !
arv			+	
		· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·			
	<u>, </u>		+	
			<u> </u>	
		••••		P
			+	
	<u> </u>			

L

x → 2 ≤ x

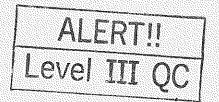
Buffer Added (mL) Lab Number Initial pH Final pH Time Buffered Date Initials 10/08/10 991554-1 9.5 NA N/A N/A ъB ۰Į 2 Y 10/12/10 991575-1 9.5 N/A NA NA SR -2 -3 -4 ų, ৢ 1 * 991598 2/A 15/A 10/3/10 9,5 N/A SB 9.5 NA 101310 991600-1 2ACN NA SR -2 -3 ¥ J. ₩ NA 6/3/10 991601-1 N/A 9.5 NA 3R -2 -3 -4 \mathbf{A} 10/14/10 991624-1 9.5 NA NA NA 35 -2 -3 -4 . -6 -7 -8 ÷ -9 ÷ ų \forall 091623 5.00 9.5 10/14/10 7-0 7:40 9B 99(625-1 NA 9.5 lory lo NA NA SB. -2 -3 -4 -5 -6 -7 45 4 2 Ű Y Y 4

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Enviro\Ali\Cr6+ pH Log

280

Turbidity/pH Check


		14	rbialty/pH				
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)	
99 531 (1-3)	< [22	10/7/10	DK	No	Xes 17:00	
991516	<i< td=""><td>22</td><td>(</td><td>[]</td><td>V</td><td></td><td></td></i<>	22	([]	V		
991517	72	j			445	21010 A	
991518						·	
991519(1-5)						V	
991521		4	<u> </u>	4	5		
191534	<u> </u>	42	10/8/10	hr	No	********	
991513(1-10)	2	=2	10/8/10		No		
4,5,6,8,9	7[2	<u>↓</u>	- BK	Yes		
991528	71	22	<u> </u>		Yes		
	<u> </u>	22	<u>↓</u>	DR	No		
	_7,1	22	ļ		Yes	<u>~</u>	
991533(1-6)		₽.	↓	<u> </u>			
991 548	<u> </u>	<u> 22</u>	10/8/16	ES	NO	Materia and a	
547(1-7)		42			445		
$\frac{qq}{454}$	<u> </u>	72	V later/	h+/OK	No No	Yes	
991455 (2) 991562	<u> </u>	<u>>2</u> フテ	10/7/10	DK	·····	Yes 20:00	
	<u> </u>		10/11/10	DK	No	Yes Da	
	<u> </u>	62	<u> </u>		[No	
991534 (1-2)		- T-					
991570 (2)		41	10/0/		No	∇	
1571	<u> </u>	<u> </u>	10/12/10	_hs		<u> </u>	n digesfin
1572							
1573						ļ	
991598(1-2)	<1	<2	0/10/10	Ľ	No		
991565(1-2)	21	72	16/14/10	ES	NO	@1:70 p.m	
991586	71	42	10114110		Y-es		
588 - 4	77	2 <u>2</u>		·	<u> </u>		
591	44	47			NU		
597(1-7)	Z2	71		_	<u> </u>	21.70pm	
1,21(1-4)	71	L2		1	7-4		
991575 (4)	Diex -	22	10/14/10	hr	Na	~	
1623	bier - Zl	72	Å	1	No	4:00 pm 7	
1623 1624(9)	-	- 22			NO DISC	N -	
1601	۲۱	22			No	/	
				-			
991637	71	42	10/15/10	5	Yes		
Un8	71	42			<u> </u>	<	
643 (-1)	71	LV			1		
645(1	41	62		}	NO		
9.73 9.91674(1-3)	<u> </u>	72	V	V	V	N4:0Vp.m yu a cinp	
1.1 : 674(1-3)	<u> </u>	72	10/14/10	ES	NU	us a'timp	;
(19160D (3)	- F	42	10/18/10	ta	NO	0 -	
1601 (3) 1625 (24)	 			1		-	
· 1625 (24)	√	<u>v</u>	¥	4	<u> </u>		
180	<u> </u>		10/19/10	KK_	Vrs-TTU		
'081 1691 1092	<u>اد</u> اک	42			No	· •••	
1042	<u> </u>	L2	Y	\mathbf{V}	¥	•	

Sample Integrity & Analysis Discrepancy Form

Clien	t: <u>E2</u>	Lab #	1623
Date	Delivered: 10/13/10 Time: 20:30 By: IMail ØField	Service	Client
1.	Was a Chain of Custody received and signed?	¥Yes □No	
2.	Does Customer require an acknowledgement of the COC?	□Yes □No	⊠ N/A
3.	Are there any special requirements or notes on the COC?	□Yes □No	ØNIA
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No	N IA
5.	Were all requested analyses understood and acceptable?	Yes 🗆 No	DN/A
6.	Were samples received in a chilled condition? Temperature (if yes)? 3<u>. &</u> C	¢Yes □No	□N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	∦2Yes □No	
8.	Were sample custody seals intact?	□Yes □No	ØN/A
9.	Does the number of samples received agree with COC?	ØYes □No	
10.	Did sample labels correspond with the client ID's?	∦Yes □No	
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes □No	⊠M/A
12.	Were samples pH checked? pH = <u>See</u> C.O.C.	⊠Yes □No	
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Ø(Yes □No	
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): I RUSH I Std	Ø Yes □No	<i>□N/A</i>
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid ØOth		
16.	Comments:		

17. Sample Check-In completed by Truesdail Log-In/Receiving: 1. Shakumuq

MATRIX/euv/Discrp.FormBlauk.doc

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 2, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-279 PROJECT, GROUNDWATER MONITORING, TLI NO.: 991721

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-279 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 19, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

40- Mona Nassimi Manager, Analytical Services

KIR. P. Gol

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 991721 Date: November 2, 2010 Collected: October 19, 2010 Received: October 19, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

	0(005
--	----	-----

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.DM Project Number: 408401.DM Laboratory No. 991721 Page 1 of 8 Printed 11/2/2010

Samples Received on 10/19/2010 9:30:00 PM

Field ID				Lab ID	Colle	ected	Mati	ix
SC-700B-WDR-279			······································	991721-001	10/19/2	2010 09:00	Wat	er
Specific Conductivity - E	PA 120.1		Batch	10EC10J			10/20/2010	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
991721-001 Specific Conduct	ivity	umhos/	cm 10/20	/2010	1.00	0.0380	2.00	7160
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND					004700 000
·								991722-003
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 72.4	Expected 72.2		PD).277	Accepta 0 - 20	ince Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 691.	Expected 706.		ecovery 97.9	Accepta 90 - 110	ince Range)
Lab Control Sample D	uplicate							
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 699.	Expected 706.		ecovery 99.0	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 692.	Expected 706.	Recovery 98.0		Acceptance Range 90 - 110	
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 990.	Expected 999.		ecovery 99.1	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 998.	Expected 999.		ecovery 99.9	Accepta 90 - 110	ince Range

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 2 of 8
	Project Number:	408401.DM	Printed 11/2/2010

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 3 of 8
	Project Number:	408401.DM	Printed 11/2/2010

Chrome VI by EPA 218.6	Chrome VI by EPA 218.6 Batch 10CrH10K							
Parameter		Unit	Jnit Analyzed D		DF	MDL	RL	Result
991721-001 Chromium, Hexa	ivalent	ug/L	10/20	/2010 16:35	1.05	0.0210	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent Duplicate	ug/L	1.00	ND				Lab ID =	991625-013
Parameter	Unit	DF	Result	Expected	1	RPD	Accepta	ince Range
Chromium, Hexavalent Lab Control Sample	ug/L	1.05	ND	0		0	0 - 20	-
Parameter	Unit	DF	Result	Expected	I	Recovery	Accepta	ince Range
Chromium, Hexavalent Matrix Spike	ug/L	1.00	5.04	5.00		101	90 - 110 Lab ID =) 991625-013
Parameter	Unit	DF	Result	Expected/Add	ed I	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.06	1.10	1.06(1.06)		104	90 - 110	-
Matrix Spike							Lab ID =	991625-014
Parameter	Unit	DF	Result	Expected/Add	ed I	Recovery		ince Range
Chromium, Hexavalent	ug/L	1.06	1.16	1.06(1.06)		109	90 - 110)
Matrix Spike							Lab ID =	991625-015
Parameter	Unit	DF	Result	Expected/Add	ed I	Recovery	-	nce Range
Chromium, Hexavalent	ug/L	1.06	1.11	1.06(1.06)		105	90 - 110	
Matrix Spike							Lab ID =	991625-016
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.12	Expected/Add 1.06(1.06)	ed f	Recovery 106	Accepta 90 - 110	nce Range
Matrix Spike							Lab ID =	991625-017
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.08	Expected/Add 1.06(1.06)	ed f	Recovery 102	Accepta 90 - 110	nce Range
Matrix Spike	-						Lab ID =	991625-018
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.06	1.11	1.06(1.06)		105.	90 - 110	-
Matrix Spike							Lab ID =	991625-019
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.06	1.11	1.06(1.06)		105	90 - 110	-

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.DM			Page 4 of 8 Printed 11/2/2010
Matrix Spike						Lab ID = 991625-020
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.11	Expected/Added 1.06(1.06)	Recovery 104	Acceptance Range 90 - 110
Matrix Spike			_			Lab ID = 991625-021
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.12	Expected/Added 1.06(1.06)	Recovery 106	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 991625-022
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.13	Expected/Added 1.06(1.06)	Recovery 107	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 991625-023
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.13	Expected/Added 1.06(1.06)	Recovery 107	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 991625-024
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.06	Expected/Added 1.06(1.06)	Recovery 100	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 991721-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.14	Expected/Added 1.06(1.06)	Recovery 107	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.93	Expected 5.00	Recovery 98.6	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.78	Expected 10.0	Recovery 97.8	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.88	Expected 10.0	Recovery 98.8	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.4	Expected 10.0	Recovery 104	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101	Acceptance Range 90 - 105

Unit

DF

Parameter

Report Continued

Client: E2 Consulting Engineers, Inc.		roject Name: P roject Number: 40	Page 5 of 8 Printed 11/2/2010				
Metals by EPA 200.8, Total		Batch 102	710A				e generale de la composition de la comp
Parameter	Unit	Analyzed	ł	DF	MDL	RL	Result
991721-001 Chromium	ug/L	10/27/201	0 13:16	5.00	0.0950	1.0	ND
Manganese	ug/L	10/27/201	0 13:16	5.00	0.210	1.0	2.6
Method Blank							

Result

Chromium	ug/L	1.00	ND			
Manganese	ug/L	1.00	ND			
Duplicate						Lab ID = 991721-001
Parameter Chromium	Unit ug/L	DF 5.00	Result ND	Expected 0	RPD 0	Acceptance Range 0 - 20
Manganese	ug/L	5.00	2.59	2.56	1.01	0 - 20
Lab Control Sample						
Parameter Chromium Manganese Matrix Spike	Unit ug/L ug/L	DF 1.00 1.00	Result 49.5 45.8	Expected 50.0 50.0	Recovery 99.0 91.5	Acceptance Range 90 - 110 90 - 110 Lab ID = 991721-001
Parameter Chromium	Unit ug/L	DF 5.00	Result 224	Expected/Added 250.(250.)	Recovery 89.5	Acceptance Range 75 - 125
Manganese	ug/L	5.00	243	253(250.)	96.1	75 - 125
Matrix Spike Duplicate						Lab ID = 991721-001
Parameter Chromium	Unit ug/L	DF 5.00	Result 227	Expected/Added 250.(250.)	Recovery 90.9	Acceptance Range 75 - 125
Manganese	ug/L	5.00	219	253(250.)	86.7	75 - 125
MRCCS - Secondary						
Parameter Chromium	Unit ug/L	DF 1.00	Result 46.0	Expected 50.0	Recovery 91.9	Acceptance Range 90 - 110
Manganese MRCVS - Primary	ug/L	1.00	46.7	50.0	93.4	90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.2	Expected 50.0	Recovery 94.5	Acceptance Range 90 - 110
Parameter Chromium	Unit ug/L	DF 1.00	Result 46.7	Expected 50.0	Recovery 93.5	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Er	ngineers, Inc		roject Name: roject Numbe	PG&E Topock r: 408401.DM	Project	Page 6 of 8 Printed 11/2/2010
MRCVS - Primary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.2	Expected 50.0	Recovery 92.5	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.2	Expected 50.0	Recovery 92.4	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 52.2	Expected 50.0	Recovery 104	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 54.6	Expected 50.0	Recovery 109	Acceptance Range 90 - 110
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 45.6	Expected 50.0	Recovery 91.2	Acceptance Range 80 - 120
Parameter Chromium Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 45.3	Expected 50.0	Recovery 90.6	Acceptance Range 80 - 120
Parameter Manganese Interference Check S	Unit ug/L	DF 1.00	Result 49.6	Expected 50.0	Recovery 99.3	Acceptance Range 80 - 120
Parameter Manganese	Unit ug/L	DF 1.00	Result 46.3	Expected 50.0	Recovery 92.7	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.DM

Page 7 of 8 Printed 11/2/2010

Total Dissolved Solids by SM 2540 C		Batch 10TDS10E				10/21/201	10	
Parameter		Unit	Ana	lyzed	DF MDL		RL	Result
991721-001 Total Dissolved	Solids	mg/L	10/21	1/2010	1.00	0.434	250.	4340
Method Blank					<u> </u>			
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	991721-001
Parameter	Unit	DF	Result	Expected	RF	PD	Accepta	nce Range
Total Dissolved Solids	mg/L	1.00	4160	4340	4	4.24	0-5	·····
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	ecovery	covery Acceptance Rai	
Total Dissolved Solids	mg/L	1.00	482.	500.		96.4	90 - 110	~
Parameter 991721-001 Turbidity		Unit NTU		lyzed)/2010	DF 1.00	MDL 0.0140	RL 0.100	Result
	· · · · · · · · · · · · · · · · · · ·	NTU	10/20)/2010	1.00	0.0140	0.100	0.107
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	991721-001
Parameter	Unit	DF	Result	Expected	RF		•	nce Range
Turbidity	NTU	1.00	0.109	0.107	1.85		0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Recovery		Acceptance Range	
Turbidity	NTU	1.00	7.83	8.00	97.9		90 - 110	I
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Turbidity	NTU	1.00	7.80	8.00	9	97.5	90 - 110	-

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.DM

Page 8 of 8 Printed 11/2/2010

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi
 Manager, Analytical Services

62

Nassim:

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS10E

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	69.2701	69.2704	69.2703	0.0001	No	0.0002	2.0	25.0	ND	1
991679-2	200	114.3478	114.3648	114.3644	0.0004	No	0.0166	83.0	12.5	83.0	1
991679-3	100	75.7777	75.7932	75.7932	0.0000	No	0.0155	155.0	25.0	155.0	. 1
991721	10	49.5572	49.6006	49.6006	0.0000	No	0.0434	4340.0	250.0	4340.0	1
991721D	10	50.6254	50.6670	50.6670	0.0000	No	0.0416	4160.0	250.0	4160.0	1
	· · · · · · · · · · · · · · · · · · ·						••••••••••••••••••••••••••••••••••••••				
			•				·····				
				· · ·							
						a a 					
				· · · · · · · · · · · · · · · · · · ·							
			um, mun-,	· · · · · · · · · · · · · · · · · · ·		+ · · · · · · · · · · · · · · · · · · ·					
LCS	100	73.1500	73.1982	73.1982	0.0000	No	0.0482	482.0	25.0	482.0	1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

[×]

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

MW Analyst Printed/Name

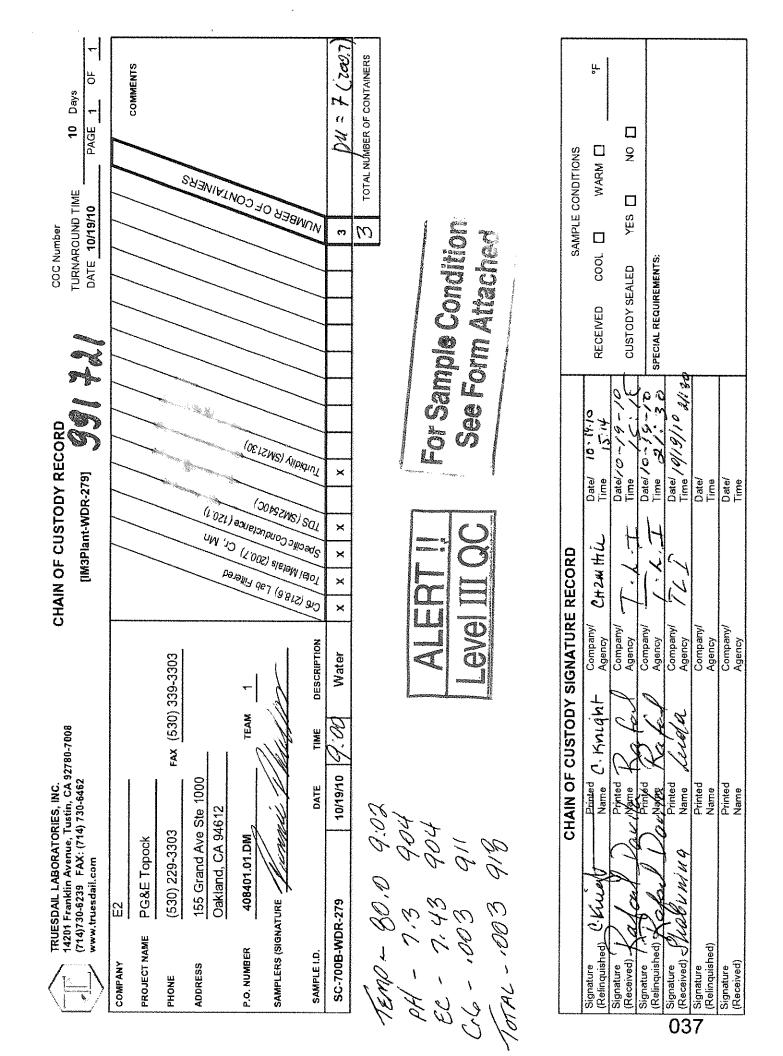
Analyst Signature

Reviewer Printed Name

Reviewer Signature

WelChem Tds_0810

Total Dissolved Solids by SM 2540 C


TDS/EC CHECK

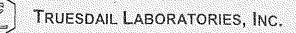
Batch: 10TDS10E

Date Calculated: 10/21/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Caiculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
004070.0			405.05	0.70
991679-2	163	0.51	105.95	0.78
991679-3	289	0.54	187.85	0.83
991721	7160	0.61	4654	0.93
991721D	7160	0.58	4654	0.89
			· · · · · · · · · · · · · · · · · · ·	
			·	
				[
				ł
			1	1
		-1		
L		1	. i	1

Lab Number Initial pH Buffer Added (mL) Final pH Date Time Buffered Initials 10/14/10 991625-8 95 NA A a 15 K SB -9 -10 --iu 3-12 -12 -14 -is -16 -17 -18 -19 . -20 -21 -22 -23 4 -24 \mathbf{v} \mathbf{A} 4 991646-1 9.5 10/15/10 NA NA A/4 SB -2 -3 J V Y V 10/20/10 991721 7.0 5.00 Q.5 7:45 SB •

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log


Enviro\Ali\Cr6+ pH Log

Turbidity/pH Check

		1 41	bidity/pH C			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
991703	14	42	10/19/10	KK	Yes	
1705	21	<u> </u>	10/19/10	¥		
	4	<u> </u>	10/19/10		NO	
1706	41	42			No	
1708	21				100	
	41	<u> </u>				
1709	<u>\</u>	< 2			yes	<u></u>
	$\overline{21}$	72	11/- 11		- ycs	@ 112: 30 Q. 12
0191772	61	22	10/20/10	ES_	'NU	a 10:30 a.n
174						2701014
720(1-5)		42			- fes	1
723	71	LN 22				<u> </u>
721	41	<u> </u>			NO	<u>A 010 m</u>
724		L2			Yes	3010 p
777	71	42				
991744		42	10/21/10	ES	Yes	3010 A
752-1	71	72		1	1	JIR: VUPM
991753-4	71	22	t.	<u>d</u>		3010A
991744(1-3)	21	72	10/22/10	ES.	NO	a 12:30 pm
766	41	22			100	
767			<u> </u>			
768-1	L.					
<u> </u>	71				Yes	
775(-4	41				'~r	
717	41				<u>↓</u>	
774(1-2) 71	ł			Yus	
767(1-2	71				14-45	
271	21	72	l	1	NO	al wp.m
991-89	21	42	10/25/10	KK	NO	
1791	14	L2			Ves	
1795	->1	42			Ves	
		- 2	10/25/10	W.	No	
		- 42-	1	1	1	
		-2-				
15:05-1	4	12				
- 1505-2	2-21-					,
-1565-3	the second se					
991776(1-3)) 21	4Z	10/29/0	KK	NO	
4914461-3	······································	< 2	1		1	
	+	22				@ 145 Pm
441805 (1-3)	/ / 1	72	10/20	ÉS	NU	Dil:ma.m
991813		· · ·	10/27	HT	V	TTLC
10 00	<1	72	+1012		No	9:32 g.m
1808 1809	41	42	+ +			
1810	- <u> </u> /					1
1810	- <u> </u>	+		<u> </u>	l	
1811						~1
1837	72		┼──╂───	<u> </u>	Yes No	
1838	$\frac{22}{110 - 1}$	12	10102	KK		
991721 1840		<u>L2</u> <u>L2</u>	10/27		NO	
111841 (1-6	$\frac{1}{2}$	<u> </u>	10/27		<u> </u>	

.

039

Sample Integrity & Analysis Discrepancy Form

Clien	nt: <u>E2</u>	Lab # <u>991 421</u>
Date	Delivered: <u>10</u> / <u>19</u> /10 Time: <u>21:'30</u> By: □Mail © Field	Service 🗆 Client
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No 😥N/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ¤ N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	¤¢Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4.5° C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubble Level III OC	ØYes □No □N/A
8.	Were sample custody seals intact?	□Yes □No ⊉N/A
9.	Does the number of samples received agree with COC?	Yes INO IN/A
10.	Did sample labels correspond with the client ID's?	₽Yes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes □No ⊠KN/A
12.	Were samples pH checked? pH = <u>See</u> C. C. C.	ØYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	AYes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): I RUSH 🛛 Std	RYes ONO ON/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid ØOth	
16.	Comments:	, P) a

17. Sample Check-In completed by Truesdail Log-In/Receiving: L. Suebuniua

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 11, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-280 PROJECT, GROUNDWATER MONITORING, TLI NO.: 991871

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-280 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 27, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

L., Mona Nassimi Manager, Analytical Services

K. R. P. 9mg

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 991871 Date: November 11, 2010 Collected: October 27, 2010 Received: October 27, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrey
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Hope Trinidad / Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

TRUESDAIL EXCELLENCE IN INDEPEN	FRUESDAIL LABORATORIES , Excellence in Independent Testing	dries, Inc.					Esta	Established 1931	
						14201 (714)	FRANKLIN AVENUE 730-6239 · FAX (7	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.fruesdail.com	A 92780-7008 /truesdail.com
Client: Attention:	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 ention: Shawn Duffy	ers, Inc. 1000					Laboratory No.: 991871 Date Received: Octobe	_aboratory No.: 991871 Date Received: October 27, 2010	10
Project Name: Project No.: P.O. No.:	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM								
			Ana	<u>Analytical Results</u>	<u>esults</u>	s Summary			
Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
991871-001 991871-001 991871-001 991871-001 991871-001 991871-001	SC-100B-WDR-280 SC-100B-WDR-280 SC-100B-WDR-280 SC-100B-WDR-280 SC-100B-WDR-280 SC-100B-WDR-280 SC-100B-WDR-280	E120.1 E200.8 E200.8 E218.6 SM2130B SM2540C	NONE NONE NONE LABFLT NONE NONE	10/27/2010 10/27/2010 10/27/2010 10/27/2010 10/27/2010	8:06 8:06 8:06 8:06 8:06 8:06	EC Chromium Manganese Chromium, hexavalent Turbidity Total Dissolved Solids	7870 890 10.0 1090 ND 5110	umhos/cm ug/L NTU MTU mg/L	2.00 1.0 1.0.5 0.100 250
	 ND: Non Detected (below reporting limit) mg/L: Miligrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures. 	g iimit) ures" rule has been applied t ave two (2) significant figures ppm wil have trree (3) significant fi /s have three (3) significant fi	o all resuits: s. ficant figures. igures.						
005									
This report applies o and these laboratori publicity matter with	nly to the sample, or sample es, this report is submitted a out prior written authorizatior	ss, investigated and is no and accepted for the exc n from Truesdail Laboratc	t necessarily in dusive use of th ories.	licative of the qualit e client to whom it is	y or condition o s addressed a	This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.	oducts. As a mutu to be used, in who	aal protection to clie ole or in part, in any	nts, the public, advertising or

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM

Project Number: 408401.01.DM

Laboratory No. 991871 Page 1 of 6 Printed 11/11/2010

Samples Received on 10/27/2010 9:30:00 PM

Field ID				Lab ID	Collected	Matrix
SC-100B-WDR-280				991871-001	10/27/2010 08:00	6 Water
Specific Conductivity - E Parameter	PA 120.1	Unit		10EC10M lyzed	DF MDL	10/28/2010 RL Result
991871-001 Specific Conduct	ivity	umhos/	cm 10/28	/2010	1.00 0.0380	2.00 7870
Method Blank						······································
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND			
Duplicate						Lab ID = 991871-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7850	Expected 7870	RPD 0.254	Acceptance Range 0 - 10
Lab Control Sample					_	
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 699.	Expected 706.	Recovery 99.0	Acceptance Range 90 - 110
Lab Control Sample D	uplicate					
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 704.	Expected 706.	Recovery 99.7	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 705.	Expected 706.	Recovery 99.9	Acceptance Range 90 - 110
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 983.	Expected 999.	Recovery 98.4	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 2 of 6 Printed 11/11/2010

Chrome VI by EPA 218.6 Parameter		Unit	Batch Anal	10CrH10N vzed F	F MDL	RL Result		
991871-001 Chromium, Hexa	valent	ug/L			2.5 1,10	10.5 1090		
Method Blank								
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND			Lab ID = 991845-00		
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.05	Result 42.6	Expected 42.4	RPD 0.480	Acceptance Range 0 - 20 Lab ID = 991871-001		
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 52.5	Result 1160	Expected 1090	RPD 6.42	Acceptance Range 0 - 20		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.00	Expected 5.00	Recovery 100	Acceptance Range 90 - 110 Lab ID = 991871-00		
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 52.5	Result 2510	Expected/Addeo 2400(1310)	d Recovery 109	Acceptance Range 90 - 110		
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.06	Expected 5.00	Recovery 101	Acceptance Range 90 - 110		
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101	Acceptance Rango 95 - 105		
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.98	Expected 10.0	Recovery 99.8	Acceptance Rango 95 - 105		
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.90	Expected 10.0	Recovery 99.0	Acceptance Range 95 - 105		

Report Continued

Client:	E2 Consulting	Engineers, Inc.
---------	---------------	-----------------

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 3 of 6 Printed 11/11/2010

Metals by EPA 200.8, Total	Maria - Maria Angelana Angelang - Angelang - Angelang Angelang - Angelang - A	Unit	Analy	zed	DF	MDL	RL	Result
Parameter					5.00	0.0950	1.0	890
991871-001 Chromium		ug/L			5.00	0.0600	1.0	10.0
Manganese		ug/L	10/29/2	2010 10:00				
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND				l ah ID a	- 991871-001
Duplicate								
Parameter	Unit	DF	Result	Expected		RPD		ance Range
Chromium	ug/L	5.00	924	890		3.81	0 - 20	
Manganese	ug/L	5.00	10.1	10.0		0.793	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	•	tance Range
Chromium	ug/L	1.00	49.8	50.0		99.6	90 - 11	
Manganese	ug/L	1,00	48.3	50.0		96.5	90 - 11	
Matrix Spike	- 0						Lab ID	= 991871-001
,	Unit	DF	Result	Expected/Add	ded	Recovery	Accep	tance Range
Parameter	ug/L	5.00	1160	1140(250.)		107	75 - 12	25
Chromium	ug/L ug/L	5.00	238	260(250.)		91.3	75 - 1	25
Manganese	_	0.00	200	, · ·			Lab ID	= 991871-001
Matrix Spike Duplicate		55	Deput	Expected/Ad	ded	Recovery	Accer	otance Range
Parameter	Unit	DF	Result 1160	1140(250.)		109	75 - 1	
Chromium	ug/L	5.00	241	260(250.)		92.5	75 - 1	25
Manganese	ug/L	5.00	241	200(200.)		• = • •		
MRCCS - Secondary				_ / \			٨٠٥٩	ptance Range
Parameter	Unit	DF	Result	Expected		Recovery 99.5	90 - 1	
Chromium	ug/L	1.00	49.8	50.0		99.5 95.5	90 - 1	
Manganese	ug/L	1.00	47.8	50.0		90.0	30 -	110
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery		ptance Range
Chromium	ug/L	1.00	50.0	50.0		100	90 - 1	110
MRCVS - Primary	-							
-	Unit	DF	Result	Expected		Recovery	Acce	ptance Range
Parameter	ug/L	1.00	49.3	50.0		98,6	90 -	110
Chromium	uy/L	1.00						

Report Continued

Client: E2 Consulting Eng	jineers, Inc.		ject Name: ject Number:	PG&E Topock P 408401.01.DM	roject	Page 4 of 6 Printed 11/11/2010
MRCVS - Primary						_
Parameter Chromium	Unit ug/L	DF 1.00	Result 49.0	Expected 50.0	Recovery 98.1	Acceptance Range 90 - 110
MRCVS - Primary Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.5	Expected 50.0	Recovery 99.0	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.4	Expected 50.0	Recovery 96.8	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.4	Expected 50.0	Recovery 94.8	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.9	Expected 50.0	Recovery 95.7	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 48.3	Expected 50.0	Recovery 96.6	Acceptance Range 90 - 110
Parameter Chromium Interference Check S	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S Parameter Manganese Interference Check S	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium	Unit ug/L	DF 1.00	Result 49.2	Expected 50.0	Recovery 98.3	Acceptance Range 80 - 120
Interference Check Parameter Chromium	Standard AB Unit ug/L	DF 1.00	Result 49.4	Expected 50.0	Recovery 98.8	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Er	ngineers, In		oject Name: oject Numbe	PG&E Topo r: 408401.01.D	-	Page 5 of 6 Printed 11/11/2010
Interference Check S	tandard AB					
Parameter Manganese Interference Check S	Unit ug/L itandard AB	DF 1.00	Result 47.2	Expected 50.0	Recovery 94.5	Acceptance Range 80 - 120
Parameter Manganese Serial Dilution	Unit ug/L	DF 1.00	Result 47.9	Expected 50.0	Recovery 95.8	Acceptance Range 80 - 120 Lab ID = 991871-001
Parameter Chromium	Unit ug/L	DF 25.0	Result 921	Expected 890	RPD 3.47	Acceptance Range 0 - 10
Total Dissolved Solids Parameter	e Tere o Re bobyer.	Unit	Ana	10TDS10G lyzed	DF MDL	10/28/2010 RL Result
991871-001 Total Dissolved Method Blank	Solids	mg/L	10/28	/2010	1.00 0.434	250. 5110
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND			Lab ID = 991876-007
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 299.	Expected 298.	RPD 0.335	Acceptance Range 0 - 5
Parameter Total Dissolved Solids Lab Control Sample I	Unit mg/L Duplicate	DF 1.00	Result 496.	Expected 500.	Recovery 99.2	Acceptance Range 90 - 110
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 502.	Expected 500.	Recovery 100	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 6 of 6 Printed 11/11/2010

Turbidity by SM 2130 B			Batch	10TUC10R			10/28/201	0
Parameter	· · · · · ·	Unit	Ana	lyzed	DF	MDL	RL	Result
991871-001 Turbidity		NTU	10/28	3/2010	1.00	0.0140	0.100	ND
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	991871-001
Parameter	Unit	DF	Result	Expected	I	RPD	Accepta	nce Range
Turbidity	NTU	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	í	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	7.53	8.00		94.1	90 - 110	l
Lab Control Sample E	Duplicate							
Parameter	Unit	DF	Result	Expected	1	Recovery	Accepta	nce Range
Turbidity	ΝΤυ	1.00	7.57	8.00		94.6	90 - 110)

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

For Mona Nassimi

Mona Nassimi Manager, Analytical Services

EZ Condon

$(\mathcal{O}$

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	10TDS10G
Date Calculated:	11/1/10

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2πd Final weight,g	Weight Difference, 9	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL , ppm	Reported Value, ppm	DF	
BLANK	100	68.4299	68.4304	68.4303	0.0001	No	0.0004	4.0	25.0	ND	. <u> </u>	~
991808-2	200	110.2288	110.2518	110.2514	0.0004	No	0.0226	113.0	12.5	113,0	1	
991808-3	100	72,8348	72.8487	72.8484	0.0003	No	0.0136	136.0	25.0	136.0	1	
991871	10	50.2379	50.2894	50.289	0.0004	No	0.0511	5110.0	250,0	5110.0	1	-
991972-2	50	68.9844	69.0818	69.0817	0.0001	No	0.0973	1946.0	50.0	1946.0	1	1
991873-1	100	73.8373	73.8977	73.8973	0,0004	No	0.0600	600.0	25.0	600.0	1	-
991873-2	50	74,7194	74.7750	74.7749	0.0001	No	0.0555	1110.0	50.0	1110.0	1	
991873-3	50	67.7377	67,7890	67.789	0.0000	No	0.0513	1026.0	50.0	1026.0	1	
991873-4	50	65.9954	66.0488	66.0484	0.0004	No	0.0530	1060.0	50.0	1060.0	1	3
991873-5	50	66.8204	66.8734	66.873	0.0004	No	0.0526	1052.0	50.0	1052.0	1	1
991873-6	50	74.7659	74.8163	74.8163	0.0000	No	0.0504	1008.0	50.0	1008.0	1	
991808-3D	100	72.4783	72.4925	72.4924	0.0001	No	0.0141	141.0	25.0	141.0	1	
LCS	100	110.3609	110.4109	110.4105	0.0004	No	0.0496	496.0	25,0	496.0	1	1
991873-7	50	70,3234	70.4553	70.4549	0.0004	No	0.1315	2630.0	50.0	2630.0	1	
991875-1	20	49.4661	49.5420	49.5416	0.0004	No	0.0755	3775.0	125.0	3775.0	1	1
991875-2	50	68.9027	69.0231	69.0228	0.0003	No	0.1201	2402.0	50.0	2402.0	1	1
991875-3	50	67.7886	67.8496	67.8496	0.0000	No	0.0610	1220.0	50.0	1220.0	1	1
991875-4	50	77.8372	77.8920	77,8916	0.0004	No	0.0544	1088.0	50.0	1088.0	1	
991875-5	50	76.0071	76.0621	76.0619	0.0002	No	0.0548	1096.0	50.0	1096.0	1	
991875-6	20	75.5470	75.6326	75.6322	0.0004	No	0.0852	4260.0	125.0	4260.0	1	
991875-8	100	68.8006	68,8376	68.8373	0.0003	No	0.0367	367.0	25.0	367.0	1]
991875-9	100	110.9669	111.0183	111.0183	0.0000	No	0.0514	514.0	25.0	514.0	1	
991876-7	100	108.6473	108.7710	108.6771	0.0939	Yes	0.0298	298.0	25.0	298.0	1	
991876-7D	100	112.1691	112,1994	112.199	0.0004	No	0.0299	299.0	25.0	299.0	1	
LCSD	100	110.3646	110.4148	110,4148	0.0000	No	0.0502	502.0	25.0	502.0	1	ļ

Calculation as follows:

9

Ņ

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

22m iyst Printed Name

Analyst Signature

Reviewer nted Name

Reviewer Signature

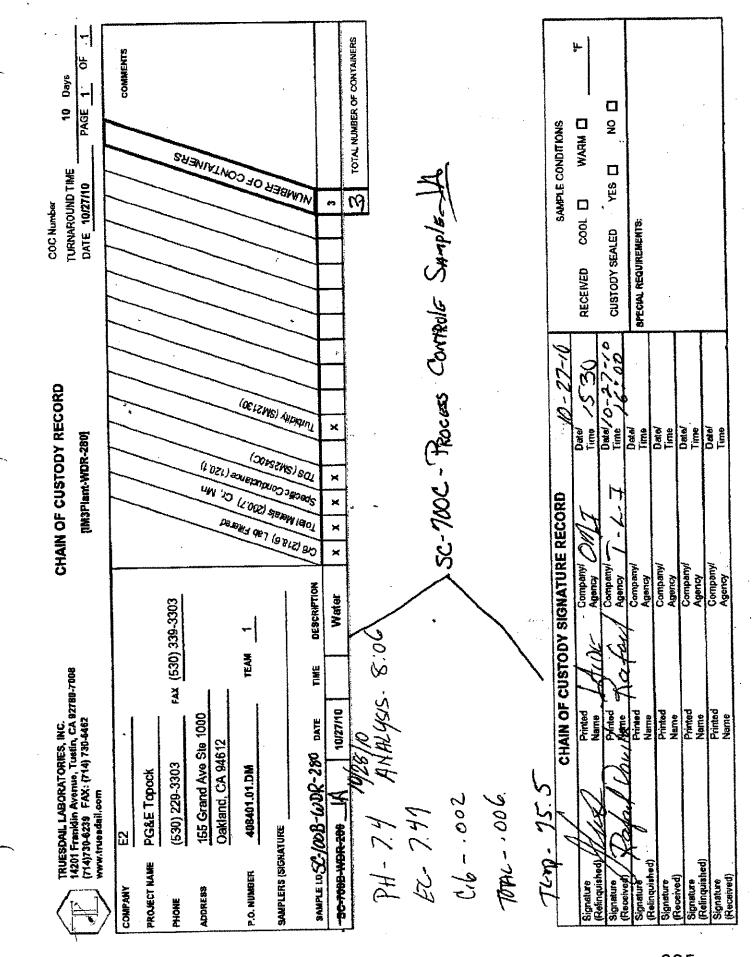
Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

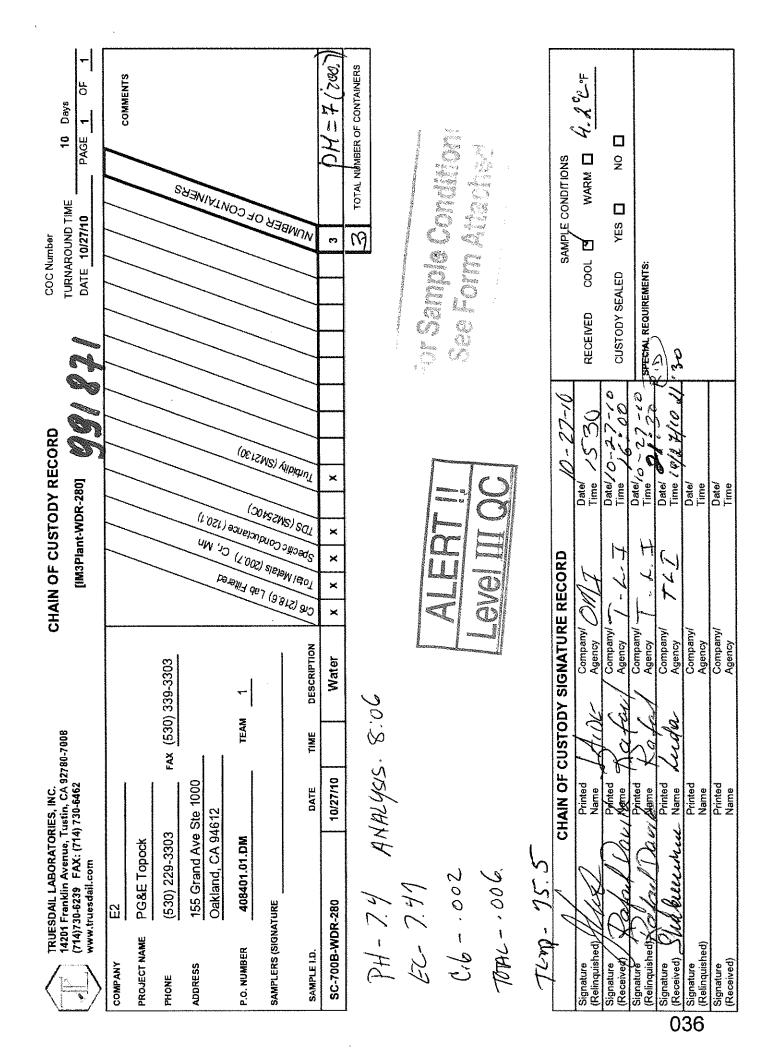
Batch: 10TDS10G

Date Calculated: 11/1/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
991808-2	161	0.70	104.65	1.08
991808-3	291	0.47	189.15	0.72
991871	7870	0.65	5115.5	1.00
991972-2	2820	0.69	1833	1.06
991873-1	952	0.63	618.8	0.97
991873-2	1670	0.66	1085.5	1.02
991873-3	1670	0.61	1085.5	0.95
991873-4	1600	0.66	1040	1.02
991873-5	1610	0.65	1046.5	1.01
991873-6	1870	0.54	1215.5	0.83
991808-3D	291	0.48	189.15	0.75
LCS				
991873-7	3610	0.73	2346.5	1,12
991875-1	5010	0.75	3256.5	1.16
991875-2	3400	0.71	2210	1.09
991875-3	1830	0.67	1189.5	1.03
991875-4	1650	0.66	1072.5	1.01
991875-5	1660	0.66	1079	1.02
991875-6	5250	0.81	3412.5	1.25
991875-8	595	0.62	386.75	0,95
991875-9	906	0.57	588,9	0.87
991876-7	484	0.62	314.6	0.95
991876-7D	484	0.62	314.6	0.95


.

WetChern Tds_0810


.

¥

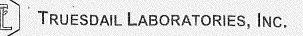
· .

1-760-326-3329

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
102810	991876-1	<i>9</i> .5	N/A	NA	w/A	5B
, <u>t</u>	1-2	i ·		1		
	-3					
	-4					
	-5					
	-6					
	-7					
	-8					
	g					
	-10 -11					
\checkmark	12	V	V	\checkmark	V	$\overline{\mathbf{v}}$
10/28/10	991877-1	9.5	NA	N/A	N/A	38
<u> </u>	1-2	1		1		1
	-3					
	-4					
	-5					
J	V -6	\mathbf{V}	\checkmark	V	V	V
10/28/10	991878-1	9.5	A/4	N/A	N/A	SB
	-2			1		1
	-3					
	-4					
<u> </u>	-5	\checkmark	V	\mathbf{V}	\checkmark	V
10/28/10	991871	7.0.	5.00	9.5	7:45	SB
[0] 29/10	991891	7.0	5100	9.5	7:40	SB
10/29/10	991892-1	95	N/A	A)CA	NA	SB
	-2		1			1
	-3					
	-4					
	-5					
*	+ -6	·1	J 1		V	V

Enviro\All\Cr6+ pH Log


al

037

Turbidity/pH Check

	Y	i u	irbialty/pH (Ineck		
Sample Number		pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
991805,	41	42	10/27	KK	No	MIT 26 (1 / N)
1846(1-6,89) ~1	42	į.	ł		@11:30 am 10/26/1
1245 (1-5)	<u> </u>	42			+	
- 1842 (1-7)) 41	42			+	
99144	21	12	10/28/11	ES	NU	
991882	61	72	1. 10.0100	<u> </u>		0 0:20 1.10
991 86 9	61	72	1		+	a 2: m p.m
991879(1-2)	61	22			+	
1871	4	24/2	10/00	- Ku		<u>A</u> .
1808(1-3)	41	22	10/28	KK	NO	0.10:00
1845(1-8)		<2	10/29	KK.	NO	
1873 (1-7	41		├\		NO	-
1872 (1-3)	4	<u>~2</u> ~2			NO	
	4	42			NO	
			1.1	\	No	
		<2	 	\\	No	-
1875(1-9)		42			NO	_
1876(1-11	61	22	↓		NO	
991891	41	72		_ht_	NO	@ 4:05 pm 10/29
991893(1-2)	<u> </u>	42	-KH 10/30	KK	NO	
9918978 (1-5)	~1	12			NO	
991894 (1-9)	1	42	1		NO	~~~~~
991897 (1-9)	4				No	
991895 (1-8		22			NO	
99 1896 (1-11)	/	-2			NO	
991898 (1-11) ~ 1	42			NO	-
991892 (1-10)	<1	- 42			NO	
991921 (1-68		42	11/1/10	KK	No	+
991922 (1-4)	41	- 22			NO	<u> </u>
991917 (1-5	121	- 22		1	No	
9919201-6	5-1	42		(LIA	
9919227994			11/2/10	hr.	Yes-Tri	8 -
991972-1998 991924(3)	4	72	1	1	NO Yes-TO NO	D 8:22am
991902651	- 71	62				- X. ADUM
991933	21	<u>L2</u> L2			Yes No	
1934	21	42			1	
991936 (1)	41	×2 72	11/2	KK	ND	a.9:50 am
941 944 (16,24)	161	72	ti/2	ES		DS: UV P.M
941945(1-3)	\mathcal{L}	L	J	.1	NU	L
991953 (3)	41	72	11/3	MA	No	a lin on
991959	61	62		YA-	NO	win pn
99 19 60	21	12				
991961	4	12				
991962	61	22				
991963	41	12				
	71	42	¥	V	YES	
991843(2)	· · · · ·	72				
991910 (2	$\frac{1}{5}$		11/3/10	ht	No - Filler	Y 2 11: or an 1/4
991918 (2 991998 (1,2)	21	72	11/6		10	6 . 20
991995 (1-2)		42	11/5	KK-	N9	@ 8:20 am 11/5
991966 (9)	<u>LI</u>	62		4	NO	<u> </u>
	~1	<u> </u>	· 1	v	v	-

038

Sample Integrity & Analysis Discrepancy Form

Clien	t:E2	991871
Date	Delivered: 10 /27/10 Time: 21:30 By: Mail DFiel	Id Service DClient
1.	Was a Chain of Custody received and signed?	GYes DNo DN/A
2.	Does Customer require an acknowledgement of the COC?	Yes INO UNA
З.	Are there any special requirements or notes on the COC?	Yes No DAN/A
4.	If a letter was sent with the COC, does it match the COC?	Yes INO DANIA
5.	Were all requested analyses understood and acceptable?	Tes INO IN/A
6.	Were samples received in a chilled condition? Temperature (if yes)? 4.2°C	Wes DNo DN/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Gryes ONO ON/A
8.	Were sample custody seals intact?	□Yes □No \$\N/A
9.	Does the number of samples received agree with COC?	PYes No N/A
10.	Did sample labels correspond with the client ID's?	Yes INO IN/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes □No IZHVIA
12.	Were samples pH checked? pH = <u>See</u> COC	Yes INO ENVA
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	DYes INO IN/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH 1 Std	DYes DNo DN/A
15.	Sample Matrix: Liquid Drinking Water Ground W	/ater _□Waste Water
	□Sludge □Soil □Wipe □Paint □Solid ₫0	ther Water
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Kapel Davila

\MATRIX\env\Discrp.FormBlank.doc

November 10, 2010

Shawn P. Duffy
CH2M HILL
155 Grand Avenue, Suite 1000
Oakland, CA 94612
TEL: (530) 229-3303
FAX: (530) 339-3303

CA-ELAP No.: 2676 NV Cert. No.: NV-009222007A

Workorder No.: N004823

RE: IM 3

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on October 28, 2010 by Advanced Technology Laboratories - Las Vegas. The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorig Jr. Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

Advanced Technology Laboratories, Inc Advanced Technology Laboratories - Las Vegas

CLIENT:CH2M HILLProject:IM 3Lab Order:N004823

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples are analyzed within method holding time.

Analytical Comments for EPA 6010B:

Dilution was necessary due to sample matrix. Plasma was extinguished when sample was run at no dilution.

Advanced Technology Laboratories, Inc

Advanced Technology Laboratories - Las Vega

Date: 10-Nov-10

CLIENT: Project: Lab Order: Contract No:	CH2M HILL IM 3 N004823		Work	Order Sample	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N004823-001A	SC-700B	Water	10/28/2010	10/28/2010	
N004823-001B	SC-700B	Water	10/28/2010	10/28/2010	

Advanced Technology Laboratories, Inc

3151 W. Post Road Las Vegas, NV 89118 Tel: 702 307-2659 Fax: 702 307-2691

Page 1 of 1

5

Advanced 'I	l'echnology Labor	ratories - La	is Vegas		Print Dat	te: 10-No	ov-10
CLIENT:	CH2M HILL			Client Sa	ample ID: SC-700)B	
Lab Order:	N004 8 23			Collect	tion Date: 10/28/2	2010	
Project:	IM 3				Matrix: WATE	R	
Lab ID:	N004823-001						
Analyses		Resul	t MDL	PQL Qua	l Units	DF	Date Analyzed
HEXAVALEN	T CHROMIUM BY IC						
				E	PA 218.6		
RunID: IC1_	101028B	QC Batch: F	R78199		PrepDate:		Analyst: QBM
Hexavalent C	Chromium	NE	0.14	1.0	μg/L	5	10/28/2010 06:57 PN

Qualifiers:

Analyte detected in the associated Method Blank

В

Н Holding times for preparation or analysis exceeded S Spike/Surrogate outside of limits due to matrix interference

- DO Surrogate Diluted Out

- Value above quantitation range Ε
- ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc

ANALYTICAL RESULTS

Advanced Technology Laboratories - Las	y Laboratories - I	as Vegas		лини (р. Ү. М. М. Силини на на н		Date: 10-Nov-10	Y
	L			ANA	ANALYTICAL QC SUMMARY REPORT	MMARY REPOR	L
Work Order: N004823 Project: IM 3					TestCode: 218.6_W	18.6_W	
Sample ID: MB-R78199 Client ID: PBW	SampType: MBLK Batch ID: R78199	TestCode: 218.6 W TestNo: EPA 218.6	Units: µg/L	Prep Date: Analysis Date:	Prep Date: Ilysis Date: 10/28/2010	RunNo: 78199 SeqNo: 1219977	
Analyte	Result	PQL SPK value SP	SPK Ref Val	%REC LowLimit	mit HighLimit RPD Ref Val	%RPD RPDLimit Qu	Qual
Hexavalent Chromium	QN	0.20					1
Sample ID: LCS-R78199	SampType: LCS	TestCode: 218.6_W	Units: µg/L	Prep		RunNo: 78199	
Client ID: LCSW	Batch ID: R78199	TestNo: EPA 218.6		Analysis Date:	: Date: 10/28/2010	SeqNo: 1219978	
Analyte	Result	PQL SPK value SP	SPK Ref Val	%REC LowLimit	mit HighLimit RPD Ref Val	%RPD RPDLimit QI	Qual
Hexavalent Chromium	5.049	0.20 5.000	0	101	90 110		
Samula ID: N004823-001AMS	SamoTvne: MS	TestCode: 218.6 W	Units: µg/L	Prep	Prep Date:	RunNo: 78199	
Client ID: ZZZZZ	Batch ID: R78199	TestNo: EPA 218.6		Analysis Date:	: Date: 10/28/2010	SeqNo: 1219980	
Analyte	Result	PQL SPK value SP	SPK Ref Val	%REC LowLimit	mit HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Hexavalent Chromium	5.940	1.0 5.000	0.9500	99.8	90 110		
Sample ID: N004823-001ADUP	SampType: DUP	TestCode: 218.6_W	Units: µg/L	Prep	Prep Date:	RunNo: 78199	
Client ID: ZZZZZ	Batch ID: R78199	TestNo: EPA 218.6		Analysis Date:	s Date: 10/28/2010	SeqNo: 1219981	
Analyte	Result	PQL SPK value SP	SPK Ref Val	%REC LowLimit	mit HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Hexavalent Chromium	0.935	1.0			0.9500	0 20	
Sample (D: N004823-001AMSD	SampType: MSD	TestCode: 218.6_W	Units: µg/L	Pre	Prep Date:	RunNo: 78199	
Client ID: ZZZZZ	Batch ID: R78199	TestNo; EPA 218.6		Analysi	Analysis Date: 10/28/2010	SeqNo: 1219982	
Analyte	Result	PQL SPK value SP	SPK Ref Val	%REC LowLimit	mit HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Hexavalent Chromium	5.930	1.0 5.000	0.9500	9 9 .6	90 110 5.940	0.168 20	
			A 1944 1947 1947 1947 1947 1947 1947 1947				
Qualifiers: B Analyte detected in the associated M ND Not Detected at the Reporting Limit	Analyte detected in the associated Method Blank Not Detected at the Renorting Limit	 E Value above quantitation range R RPD outside accepted recovery 	Value above quantitation range RPD outside accepted recovery limits	s	H Holding times for pre S Spike/Surrogate outsi	Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interference	nce
			Calculations are based on raw values				

Advanced Technology Laboratories, Inc

Tel: 702 307-2659 Fax: 702 307-2691 3151 W. Post Road Las Vegas, NV 89118

7

Advanced	l Technology Lab	oratories - La	s Vegas		Print Dat	te: 10-No	v-10
CLIENT:	CH2M HILL			Client San	nple ID: SC-700)B	
Lab Order:	N004823			Collectio	on Date: 10/28/2	2010	
Project:	IM 3				Matrix: WATE	R	
Lab ID:	N004823-001						
Analyses		Result	MDL	PQL Qual	Units	DF	Date Analyzed
METALS E	BY ICP						
		EPA 3010A		EPA	6010B		
RuniD: IC	P1_101028C	QC Batch: 3	5516		PrepDate:	10/28/2	010 Analyst: KAB
Chromium	n	ND	1.8	5.0	μg/L	5	10/28/2010 07:27 PN

Qualifiers:

Analyte detected in the associated Method Blank

В Holding times for preparation or analysis exceeded Н

Spike/Surrogate outside of limits due to matrix interference S

Surrogate Díluted Out DO

Value above quantitation range Е

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

8

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc

CLIENT:	CH2M HILL	L					V I V V	ANAL VTICAL OC SLIMMARV BEPORT		IMARV RI	EPO!	
Work Order:												i I
Project:	IM 3							TestLod	6: 001	lestcode: 0010_WFGEFFB	•	
Sample ID: N	Sample ID: N004823-001B-MS	SampType: MS	TestCode: 6	TestCode: 6010_WPGE	Units: µg/L		Prep Date:	10/28/2010		RunNo: 78103		
Client ID: Z	22222	Batch ID: 35516	TestNo: E	TestNo: EPA 6010B	EPA 3010A	-	Analysis Date:	10/28/2010		SeqNo: 1217418		
Analyte		Result	Pal SF	SPK value SPI	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Va	f Val	%RPD RPD	RPDLimit	Qual
Chromium		469.264	5.0	500.0	0	93.9	75	125				
Samole ID: N	Samule ID: N004823-001B-MSD	SampTvpe: MSD	TestCode: 6	TestCode: 6010 WPGE	Units: µg/L	1	Prep Date:	10/28/2010		RunNo: 78103		
Client ID: Z	22222	Batch ID: 35516	TestNo: E	TestNo: EPA 6010B	EPA 3010A		Analysis Date:	10/28/2010	-	SeqNo: 1217419		
Analyte		Result	PQL SF	SPK value SPI	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	f Val	%RPD RPD	RPDLimit	Qual
Chromium		482.697	5.0	500.0	0	96.5	75	125 4(469.3	2.82	20	
Sample ID: MB-35516	MB-35516	SampType: MBLK	TestCode: 6	TestCode: 6010_WPGE	Units: µg/L		Prep Date:	10/28/2010		RunNo: 78103		
Client ID: P	PBW	Batch ID: 35516	TestNo: E	TestNo: EPA 6010B	EPA 3010A		Analysis Date:	10/28/2010		SeqNo: 1217420		
Analyte		Result	PQL SF	SPK value SP	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	f Val	%RPD RPD	RPDLimit	Qual
Chromium		ND	1.0									1
Sample ID: LCS-35516	CS-35516	SampType: LCS	TestCode: 6	TestCode: 6010_WPGE	Units: µg/L		Prep Date:	10/28/2010		RunNo: 78103		
Client ID: L	LCSW	Batch ID: 35516	TestNo: E	TestNo: EPA 6010B	EPA 3010A		Analysis Date:	10/28/2010		SeqNo: 1217421		
Analyte		Result	PQL SI	SPK value SP	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	f Val	%RPD RPD	RPDLìmìt	Qual
Chromium		484.438	1.0	500.0	0	96,9	85	115				
Onalifiers.			, 1941 									
	Analyte detected in the associated M Not Detected at the Reporting Limit Surrogate Diluted Out	Analyte detected in the associated Method Blank Not Detected at the Reporting Limit Surrogate Diluted Out	н С К С К	Value above quantitation range RPD outside accepted recovery Calculations are based on raw v	Value above quantitation range RPD outside accepted recovery limits Calculations are based on raw values	uits cs		H Holding times S Spike/Surrogat	for prepar te outside	Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interference	ceeded rix interfe	,č
,												

Date: 10-Nov-10

Advanced Technology Laboratories - Las Vegas

Fax: 702 307-2691 Tel: 702 307-2659

9

CHAIN OF CUSTODY RECORD つのイ	Pro.#: FOR LABORATORY USE ONLY: P.O.#: Method of Transport P.O.#: 1. CHILLED 5.6	Logged By: NS for GAM Date: 10 M/ 4 FEDEX	$\frac{\text{Address} \mathcal{D}\mathcal{D}\mathcal{C}\mathcal{L} (\mathcal{B}\mathcal{A})\mathcal{D}\mathcal{C}\mathcal{L} (\mathcal{B}\mathcal{A})\mathcal{D}\mathcal{C}\mathcal{S} \partial \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{A}\mathcal{A}\mathcal{D}\mathcal{A} \partial \mathcal{A} \\ \text{City} \qquad \text{State} \qquad \text{Zip Code} \qquad \text{FAX:} ()$	Sampler: I attrast to the validity and authenticity of this sample, I am aware (Printed Name) date of the strangening with or intentionally mislabeling the sample location. (Signature) for the strangening action is considered fraud and may be grounds (Signature)	11/28-16 Time: 1220 Received by: (Signature and Printed Name) Security Signature and Printed Name) Security 28-16 Time: 1220	Date: 10-28-70 11me: 15 405 HOCEIVED DY: (Signature and Printed Name) MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	Send Report To: Bill To: Special Instructions/Comments: Attn: Attn: Control Co: Co: Control	Session of the second se		t disposed 45 days after Arady Aralysis(es) Analysis(es) Analysis(es						<u> </u>	2	TETUDE VEVOA LELILEI FETTIN VEVAI PETEURI (GEVIA) (GEV
	 	Logged By:	2117	Project #:		& seat adounell		Date Address	city	posal tt, all samples will be dispos 11 year after submittal of fina ge is requested): (after 45 days) ar / mo (after 1 year)	Sample Descrip	Sample I.D. / Location	- 700 B				2	Container Lypes: I=I
	Advanced Technology	3151 W. Post Road Las Vegas, NV 89118 (702) 307-2659 • Fax (702) 307-2691	Client: Attn: CH2101 11, 11	Project Name: B True 2	Relinquished by: (Signature and Printed Name)	Relinquished by: (Sunatury and Primed Name) (Relinquished by: (Signature and Primed Name)	I hereby authorize ATL to perform the work indicated below: Project Mgr /Submitter:	Print Name	Signature	 Sample/Records - Archival & Disposal Unless otherwise requested by client, all samples will be disposed 45 distributes otherwise requested by client, all samples will be disposed 45 distributes and records will be disposed 1 year after submittal of final report. Storage Fees (applies when storage is requested): Sample : \$2.00 / sample / mo (after 45 days) Records : \$1.00 / ATL workorder / mo (after 1 year) 	T LAB USE ONLY: T Batch #:		1 arb Sc-				 TAT starts 8 a.m. following day if samples received after 3 p.m. 	na kara kata muluka Mata Angara kan kara kan kara kan kara kara kara

Advanced Technology Laboratories - Las Vegas

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	10/28/201	10			Workorde	r: N004823		
Rep sample Temp (Deg C):					IR Gun ID): #1		
Temp Blank:	Yes	✓ No						
Carrier name:	Walk-In							
Last 4 digits of Tracking No.:				Packing	Material Used	i: None		
Cooling process:	V Ice	[]] Ice Pack	Dry Ice	Other	None			
1. Shipping container/cooler ir	i good condi	ition?			Yes 🖌	No	Not Present	
2. Custody seals intact, signed	d, dated on s	shippping contain	er/cooler?		Yes	Νο	Not Present	<
3. Custody seals intact on sar	nple bottles'	?			Yes	No	Not Present	✓
4. Chain of custody present?					Yes 🔽	No		
5. Sampler's name present in	COC?				Yes 🗹	No		
6. Chain of custody signed wh	ien relinquis	hed and received	?		Yes 🖌	No		
7. Chain of custody agrees wi	th sample la	bels?			Yes 🖌	No		
8. Samples in proper containe	er/bottle?				Yes 🖌	No		
9. Sample containers intact?					Yes 🗹	No		
10. Sufficient sample volume	for indicated	I test?			Yes 🗹	No		
11. All samples received within	n holding tin	ne?			Yes 🗹	No		
12. Temperature of rep sample	e or Temp E	Blank within accep	otable limit?		Yes 🗸	No 🗍	NA	
13. Water - VOA vials have ze	ero headspa	ce?			Yes	No 🗌	NA	✓
14. Water - pH acceptable up Example: pH > 12 for (0	,	for Metals			Yes	No 🗹	NA	
15. Did the bottle labels indica	ate correct p	reservatives used	l?		Yes	No 🗹	NA	
16. Were there Non-Conforma	ance issues Vas Client n	•			Yes	No No	NA NA	(112) (112)
Comments: Sample for met	als was rece	eived unpreserved	I. Sample was pr	eserved in-ho	use upon rece	ipt.		-,

1 1-1-9h

Sample Calculation

METHOD: EPA 218.6 TEST NAME: HEXAVALENT CHROMIUM BY IC MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in μ g/L, in the original sample as follows:

$$Cr^{+6}, \mu g/L = A \times 1000 * DF$$

where:

A = mg/L, IC Cr^{+6} calculated concentration DF = dilution factor

For N004823-001A, concentration in μ g/L is calculated as follows:

$$Cr^{+6}, \mu g/L = 0.000190 * 1000 * 5$$

= 0.95 $\mu g/L$

Since reporting limit is 1.0 μ g/L:

$$Cr^{+6}$$
, µg/L = ND

Auto

SAMPLE CALCULATION

METHOD: EPA 6010B TEST NAME: METALS BY ICP MATRIX: WATER

where:

FORMULA:

Calculate the individual metal concentration, in ug/L, in the original sample as follows:

M, mg/L = <u>A*C*DF*1000</u> B M= concentration of the metal in mg/L A= mg/L, ICP calculated concentration B= volume of sample, Liter C= final volume of digestate, Liter DF= dilution factor

For N004823-001B, concentration in ug/L are calculated as follows:

Cr, mg/L = -0.00009 <u>mg/L * 0.025 L * 5 *1000</u> 0.025 L

Cr = -0.45 ug/L

Reporting result in two significant figures, Result is below the reporting limit therefore,

Cr =ND

MS for KB Mish

Date: 10-Nov-10	ANALYTICAL QC SUMMARY REPORT	TestCode: 6010_WPGEPPB	g/L Prep Date: RunNo: 78103 DA Analysis Date: 10/28/2010 SeqNo: 1217422	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual	91.0 75 125	nge H Holding times for preparation or analysis exceeded
Vegas			TestCode: 6010_WPGEP Units: µg/L TestNo: EPA 6010B EPA 3010A	PQL SPK value SPK Ref Vai	25 12500 0	E Value above quantitation range
y Laboratories - Las	T		SampType: PS Batch ID: 35516	Result	12119.825	Analyte detected in the associated Method Blank
Advanced Technology Laboratories - Las Vegas		Work Order: NUU4825 Project: IM 3	Sample ID: N004823-001BPS Client ID: ZZZZZ	Analyte	Chromitum	Qualifiers: B Analyte detected in th

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 11, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-280B PROJECT, GROUNDWATER MONITORING, TLI NO.: 991891

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-280B project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 28, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

. Mona Nassimi Manager, Analytical Services

K. R. P. Jye

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 991891 Date: November 11, 2010 Collected: October 28, 2010 Received: October 28, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

TRUESDAIL EXCELLENCE IN INDEPEN		ABORATORIES, INC.					Esta	Established 1931	
Clie	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy	gineers, Inc. tuite 1000 12				14201 (714)	1 FRANKLIN AVENUE - TUSTIN. C/ 730-6239 - FAX (714) 730-64 Laboratory No.: 991891 Date Received: Octobe	14201 FRANKLIN AVENUE · TUSTIN. CALFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Laboratory No.: 991891 Date Received: October 28, 2010	A 92780-7008 vtruesdail.com 010
Project Nar Project N P.O. N	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	oject							
			And	alytical R	<u>tesults</u>	<u>Analytical Results Summary</u>			
Lab Sample ID	ID Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
991891-001 991891-001 991891-001 991891-001 991891-001 991891-001	SC-700B-WDR-280B E120.1 SC-700B-WDR-280B E200.8 SC-700B-WDR-280B E200.8 SC-700B-WDR-280B E218.6 SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2130B NON SC-700B-WDR-280B SM2130B NON SC-700B-WDR-280B SM2540C NON SC-700B-WDR-280B SM2540C NON SC-700B-WDR-280B SM2540C NON SC-700B-WDR-280B SM2130B SM2130B NON SC-700B-WDR-280B SM2130B SM2130B NON SC-700B-WDR-280B SM2130B SM2130B NON SC-700B-WDR-280B SM2130B SM2130B NON SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SM2130B SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2140C SC-700B-WDR-280B SM2140C SC-700B-20010C SC-700	SC-700B-WDR-280B E120.1 SC-700B-WDR-280B E200.8 SC-700B-WDR-280B E200.8 SC-700B-WDR-280B E218.6 SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2130B SC-700B-WDR-280B SM2540C Milligrams per liter. The following "Significant Figures" rule has been applied to The following "Significant Figures" rule has been applied to Results below 0.01ppm will have two (2) significant Figures	NONE NONE LABFLT NONE NONE NONE NONE NONE	10/28/2010 10/28/2010 10/28/2010 10/28/2010 10/28/2010	13:35 13:35 13:35 13:35 13:35	EC Chromium Manganese Chromium, hexavalent Turbidity Total Dissofved Solids	7770 2.8 3.2 1.6 0.162 4450	umhos/cm ug/L ug/L NTU mg/L	2.00 1.0 1.0 0.100 250
005	Result above or equal to ' Quality Control data will a	Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	figures.						
	ss only to the sample, or sam tories, this report is submittu #thout prior written authoriza	nples, investigated and is n ted and accepted for the ex ation from Truesdail Laboral	ot necessarily in clusive use of th tories.	dicative of the quality a client to whom it is	/ or condition c	This report applies only to the samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.	oducts. As a mutu to be used, in who	aal protection to clie ole or in part, in any	ints, the public, / advertising or

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM

Project Number: 408401.01.DM

Laboratory No. 991891 Page 1 of 6 Printed 11/11/2010

Samples Received on 10/28/2010 10:00:00 PM

Field ID				Lab ID	Coll	ected	Matr	x
SC-700B-WDR-280B	K, K			991891-001	10/28/	2010 13:35	Wate	er
Specific Conductivity - El Parameter	PA 120.1	Unit	말 같은 것 같아요.	11EC10A lyzed	DF	MDL	11/1/2010 RL	Result
991891-001 Specific Conducti	vity	umhos/	cm 11/01	/2010	1.00	0.0380	2.00	7770
Method Blank							,	
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	991891-001
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7810	Expected 7770		PD 0.513	Accepta 0 - 10	nce Range
Parameter Specific Conductivity Lab Control Sample Du	Unit umhos uplicate	DF 1.00	Result 691.	Expected 706.		ecovery 97.9	Accepta 90 - 110	nce Range
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 699.	Expected 706.		ecovery 99.0	Accepta 90 - 110	nce Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 703.	Expected 706.		ecovery 99.6	Accepta 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 992.	Expected 999.		ecovery 99.3	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 2 of 6 Printed 11/11/2010

Chrome VI by EPA 218.6			Batch	10CrH10Q			
Parameter	·	Unit	Ana	lyzed D	F ME	DL RL	Result
991891-001 Chromium, Hexa	valent	ug/L	10/29	/2010 12:37 5.	25 0.110	1.0	1.6
Method Blank						······································	
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND				
Duplicate						Lab ID =	991876-002
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 26.3	Expected 26.6	RPD 1.32	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.46	Expected 5.00	Recovery 109	90 - 110	ance Range) 991891-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 7.01	Expected/Added 6.84(5.25)	Recovery 103	90 - 110	ance Range) 991891-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 2.30	Expected/Added 2.22(1.06)	Recovery 107	90 - 110	ance Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.30	Expected 5.00	Recovery 106	90 - 110	ance Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.99	Expected 10.0	Recovery 99.9	Accepta 95 - 105	ance Range
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101	Accepta 95 - 105	ance Range
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.98	Expected 10.0	Recovery 99.8	Accepta 95 - 105	ince Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 3 of 6 Printed 11/11/2010

Parameter		Unit	Ana	lyzed E	DF MDL	RL	Result
991891-001 Chromium		ug/L	11/02	2/2010 19:51 5,	00 0.0950	1.0	2.8
Manganese		ug/L	11/02	./2010 19:51 5.	00 0.210	1.0	3.2
Method Blank							
Parameter Chromium	Unit ug/L	DF 1.00	Result ND				
Manganese Duplicate	ug/L	1.00	ND			Lab ID =	991625-021
Parameter Chromium	Unit ug/L	DF 5.00	Result ND	Expected 0	RPD 0	Accepta 0 - 20	ance Range
Manganese Lab Control Sample	ug/L	5.00	ND	0	0	0 - 20	
Parameter Chromium Manganese Matrix Spike	Unit ug/L ug/L	DF 1.00 1.00	Result 49.7 54.8	Expected 50.0 50.0	Recovery 99.4 110	90 - 110 90 - 110	
Parameter Chromium Manganese Matrix Spike Duplicate	Unit ug/L ug/L e	DF 5.00 5.00	Result 251 246	Expected/Addec 250.(250.) 250.(250.)	d Recovery 100 98.3	75 - 125 75 - 125	
Parameter Chromium Manganese MRCCS - Secondary	Unit ug/L ug/L	DF 5.00 5.00	Result 247 246	Expected/Addec 250.(250.) 250.(250.)	8 Recovery 98.6 98.2	Accepta 75 - 125 75 - 125	
Parameter Chromium Manganese MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 48.8 52.2	Expected 50.0 50.0	Recovery 97.5 104	Accepta 90 - 110 90 - 110	
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.7	Expected 50.0	Recovery 99.3	Accepta 90 - 110	nce Range
Parameter Chromium	Unit ug/L	DF 1.00	Result 46.7	Expected 50.0	Recovery 93.4	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting E	ngineers, Ind		Project Name: Project Numbe	PG&E Topock r: 408401.01.DN		Page 4 of 6 Printed 11/11/2010
MRCVS - Primary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.8	Expected 50.0	Recovery 93.6	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 45.7	Expected 50.0	Recovery 91.4	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 45.7	Expected 50.0	Recovery 91.4	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L Standard A	DF 1.00	Result 52.4	Expected 50.0	Recovery 105	Acceptance Range 90 - 110
Parameter Chromium Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L itandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 47.5	Expected 50.0	Recovery 95.0	Acceptance Range 80 - 120
Parameter Chromium Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 50.8	Expected 50.0	Recovery 102	Acceptance Range 80 - 120
Parameter Manganese Interference Check S	Unit ug/L	DF 1.00	Result 46.2	Expected 50.0	Recovery 92.4	Acceptance Range 80 - 120
Parameter Manganese	Unit ug/L	DF 1.00	Result 53.9	Expected 50.0	Recovery 108	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 5 of 6 Printed 11/11/2010

Total Dissolved Solids b	y Jini 204			10TD\$10H			10/29/201	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
991891-001 Total Dissolved S	Solids	mg/L	10/29	9/2010	1.00	0.434	250.	4450
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	991924-003
Parameter	Unit	DF	Result	Expected	RPD		Accepta	ince Range
Total Dissolved Solids	mg/L	1,00	188.	197.		4.68	0 - 5	Ũ
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	(Recovery	Accepta	ince Range
Total Dissolved Solids	mg/L	1.00	497.	500.		99.4	90 - 110	-
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Total Dissolved Solids	mg/L	1.00	507.	500.		101	90 - 110	•
Turbidity by SM 2130 B		elek elektrika	Batch	10TUC10S			10/29/201	0
Parameter	et : 1983년 1983년 19 	Unit	Ana	lyzed	DF	MDL	RL	Result
991891-001 Turbidity		NTU	10/29)/2010	1.00	0.0140	0.100	0.162
Method Blank		NIU	10/29	//2010	1.00	0.0140	0.100	0.162

Parameter Turbidity	Unit NTU	DF 1.00	Result ND			
Duplicate						Lab ID = 991891-001
Parameter Turbidity Lab Control Samp	Unit NTU le	DF 1.00	Result 0.163	Expected 0.162	RPD 0.615	Acceptance Range 0 - 20
Parameter Turbidity Lab Control Samp	Unit NTU le Duplicate	DF 1.00	Result 7.50	Expected 8.00	Recovery 93.8	Acceptance Range 90 - 110
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.62	Expected 8.00	Recovery 95.2	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 6 of 6 Printed 11/11/2010

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Jo- Mona Nassimi Manager, Analytical Services

EZ Condon

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS10H Date Calculated: 11/1/10

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Differance, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	78.4097	78,4099	78,4099	0.0000	No	0.0002	2.0	25.0	ND	1
991877-2	20	67.8762	67.9450	67.945	0.0000	No	0.0688	3440.0	125.0	3440.0	1
991878-1	20	73.6642	73.7560	73.756	0.0000	No	0.0918	4590.0	125.0	4590.0	1
991878-2	50	68.5539	68.6068	68.6065	0.0003	No	0.0526	1052,0	50.0	1052.0	1
991878-3	100	105.3622	105.3965	105.3963	0.0002	No	0.0341	341.0	25.0	341.0	1
991878-4	100	111.3938	111.4294	111.4294	0.0000	No	0.0356	356.0	25.0	356.0	1
991878-5	50	76.2214	76.2560	76.256	0.0000	No	0.0346	692.0	50.0	692.0	1
991945-1	50	69.2695	69.3211	69.3207	0.0004	No	0.0512	1024.0	50.0	1024.0	1
991945-2	100	68.2319	68.2895	68.2891	0.0004	No	0.0572	572.0	25.0	572.0	1
991945-3	100	110.6561	110.7107	110.7107	0.0000	No	0.0546	546.0	25.0	546.0	1
991945-4	100	111.5216	111.5824	111.582	0.0004	No	0.0604	604.0	25.0	604.0	1
LCS	100	111.1903	111.2400	111.24	0.0000	No	0.0497	497.0	25.0	497.0	1
991891	10	50.6233	50.6680	50.6678	0.0002	No	0.0445	4450.0	250.0	4450.0	1
991894-2	100	104.2449	104.2986	104,2982	0.0004	No	0.0533	533.0	25.0	533.0	1
991894-4	50	68.2437	68.3037	68.3035	0.0002	No	0.0598	1196.0	50.0	1196.0	1
991894-5	50.	67.2514	67.3124	67.312	0.0004	No	0.0606	1212.0	50,0	1212.0	1
991894-6	50	69.2441	69.3031	69.3029	0.0002	No	0.0588	1176.8	50.0	1176.8	1
991894-7	50	66.0726	66.1271	66.1269	0.0002	No	0.0543	1086.0	50.0	1086.0	1
991894-8	50	73.1479	73.2056	73.2053	0.0003	No	0.0574	1148.0	50.0	1148.0	1
991894-9	50	75.7774	75.8377	75.8373	0.0004	No	0.0599	1198.0	50.0	1198.0	1
991924-2	200	102.8522	102.8719	102.8717	0.0002	No	0.0195	97.5	12.5	97.5	1
991924-3	100	92.1028	92,1228	92.1225	0.0003	No	0.0197	197.0	25.0	197.0	1
991924-3D	100	103.7168	103.7356	103.7356	0.0000	No	0.0188	188.0	25.0	188.0	1
LCSD	100	112.9015	112.9526	112.9522	0.0004	No	0.0507	507.0	25.0	507.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =
$$\left(\frac{A-B}{C}\right)x^{-1}$$

$$=\left(\frac{A-B}{C}\right)x \ 1 \ 0^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

DANN st Printed M ате

Analyst Sig åture

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS10H

Date Calculated: 11/1/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Cak TDS <1.3
	4.50			
991877-2	4470	0.77	2905.5	1.18
991878-1	5700	0.81	3705	1.24
991878-2	1640	0.64	1066	0.99
991878-3	606	0,56	393.9	0.87
991878-4	535	0.67	347.75	1.02
991878-5	1100	0.63	715	0.97
991945-1	1810	0.57	1176.5	0.87
991945-2	999	0.57	649.35	0.88
991945-3	863	0.63	560.95	0.97
991945-4	1000	0.60	650	0.93
LCS				
991891	7770	0.57	5050.5	0.88
991894-2	910	0.59	591.5	0,90
991894-4	1750	0.68	1137.5	1.05
991894-5	1780	0.68	1157	1.05
991894-6	1710	0.69	1111.5	1.06
991894-7	1610	0.67	1046.5	1.04
991894-8	1650	0.70	1072.5	1.07
991894-9	1720	0.70	1118	1.07
991924-2	176	0.55	114.4	0.85
991924-3	321	0.61	208.65	0.94
991924-3D	321	0.59	208.65	0.90

F-

. . .

Date Analyzed: 10-29-10

T

Turbidity by EPA 180.1/SM 2130B, Color by SM 2120A and Odor by EPA 140.1

22

	L		• •							•		•	·					
Stock Standard (SS): Turbidity	v 8	•		Stoc	k S	td; [:] C(DLC	DR	15	Stop	:k Std:	Ľ	CS		LCS		12.5
Mfr:	Std Used:]	Mfr:	£			St	d Used:	R 186		Mfr:	$\overline{\mathbf{N}}$		Sto	d Used:	R	160
Cat No.: \$2.102	- I .		Cat			R	<i>21</i> ,	-	d Conc:	500	C	at NO:		RIGO	Sto	Conc:		500
Lot No.:	Amt Used:		Lot			7-			it Used:	30	· [.ot No.:	7		Am	t Üsed:		25
Exp Date: 7/12_	Fini Vol,mi	·	Exp.C		2	117			l Vol,ml	1000		p Date:	(1)	14	Finl	Vol,ml	. 1	1000
Conc.: 4000 ntu		10105 8			1010					10105 15		Conc:	<u></u>	500		TU ID:		\$ 12.
Conc., 4000 mil	1 iúin.		1 0.	/I.Q.,	1000		T	1		Å		•	L	1	4		L	A
·		Ţ					· .		······			•		L.	»			I
	•								•						•			
			-			F	nal	Γ	•	Color	lm	itial		inal)dor
Lab Number	Date	NTU	Final		ițial	lν	ol,		DF	Color			1		ן ן	DF		ON
	Sampid		NTU	٧٥	l, ml		mĺ			ĊŬ	VC	ol,ml	VC	ol, ml				UN
Dionic			0.087	2	<u> </u>		N		i ·			i		ŀ		1.		1 - 1
Blank		<u> </u>	7.50	í.		<u>~</u>		-	1			\mathbf{I}		+	†	<u> </u>		+
						 		┣—	<u> </u>			<u> </u>			<u> </u>	1	<u> </u>	1
	10-28-10		1 1 C 1			$\left - \right $			<u> </u>			1			<u> </u>			1
991891	10 * 28.14		0.162					<u> </u>					·	<u> </u>	<u> </u>	┼───		
								L				<u> </u>		<u> </u>	<u> </u>	<u> </u>		
	· .	·. · ·			:	$\mathbf{\dot{>}}$	<u> </u>	<u> </u>	<u> </u>			 		 	 	<u> </u>	┣──	<u> </u>
• •	•		- (/A					L.						ļ		<u> </u>		╂───
												_		ļ	·		 	_
· · ·			<u> </u>							· ·		ļ			·	<u> </u>	 	<u> </u>
								1						ļ		· ·	[ļ
				·			·		·		•							ļ-
					•										ļ	ļ		<u> </u>
	-										-	ŀ						
Spl dup491891	10-28-10		0-163											·				
Blank		·····	0.080						•	•								Ĺ
LCS NTU			7.62															Ĺ
LCSCU	· .										•							L
	·												-					
• • •													•					
		· · · · · · · · · · · · · · · · · · ·						F		-								1
			4			<i>~</i>									u -			
·		·`	12	М			[\square										
······································			- <u>y</u>					\vdash	<u> </u>	<u> </u>	÷							
			<u> </u>					$\left \cdot \right $							 			
	· .							$\left - \right $						·			-	
·										·					-			···· · · .
	<u> </u>											- 			 	· · · ·	-+	
Blank	;							⊢┨			.		• .					
LCS NTU	[Ļ	└-ੑੑੑੑੑ		,					f			$ \rightarrow $	<u>هــــــــــــــــــــــــــــــــــــ</u>		
LCS CU		ΈΞ.		Ŋ	\cup	9	۲	Σ	/		<u>\</u>	J		ļ	¥		Ľ	

GAUTAN Printed Name:

Signature

Reviewer

Jear

Batch #: 10 TUC105

020

Turbidity by EPA 180.1, SM 2130B Color by SM 2120B

Date: 10/29/10

A11

Batch#: 10TUC10S

Blank Summary

Analyte	Blank Value NTU CU	Acceptance Limits NTU CU	QC Within Control (Y/N)
Turbidity	0.087	0.1	Yes
Turbidity	0.080	0.1	Yes
Turbidity			
Color			
Color			
Color			

Laboratory Control Sample (LCS) Summary

Analyte	QC sampl es	Measured value NTU CU	Theoretical value NTU CU	Percent Recovery	Acceptan ce Limits	QC Within Control (Y/N)
Turbidity	LCS	7.50	8.00	94%	90 -110%	YES
Turbidity	LCS	7.62	8.00	95%	90 -110%	YES
Turbidity	LCS					
Color	LCS				1	
Color	LCS					
Color	LCS					

Analyte	Sample iD	Sample Results	Sample Duplicate Resuits	Relative Percent Differenc e	Acceptan ce Limits	QC Within Control (Y/N)
Turbidity	991891	0.16	0.16	1%	<20%	YES
Color						YES

QC Stor I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS/MSD Amount	Measured Conc. of spiked sample	Theoret, Conc. of spiked sample	MS/MSD% Recovery	Accept. Limits	QC in Control	Relative Percent Differenc e	Accept. Limits	QC Within Control
MS													
MSD													

Signature Analyst's

Holding Time: Sample maximum 48 hours: yes

Reviewer's Signature

WetChem , Tuc_0110

Wet Chemistry

Dept. Name:

Method Detection Limit Summary

Denartment No 4

14201 Franklin Ave. Tustin, CA 92780 Ph: (714) 730-6239 Fax:(714) 730-6462

Page 1

4	
t Zo.	
Departmen	والالتلاف المتركب المتكرين والمتحدث والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعاد

Analvte	Method	Date	Spike	וסר	TOW	70d	Date	Spike	Tai	TOW	PQL	Date	Spike	101	TOW	POL
		Analyzd	mg/L	mg/L	mg/L	mg/L	Analyzd	mg/L	mg/L	mg/L	mg/L	Analyzd	mg/L	mg/L	mg/L	mg/L
Alkalinity	SM 2320B	2/4/2008	5.00		1.188	5.00	3/16/2009	5.00		0.153	5.00	3/9/2010	5.00		1.68	5.00
Ammonia by Electrode	SM 4500-NH3 D	4/7/2008	0.05		0.005	0.05	3/24/2009	0,05		0.005	0.05	3/23/2010	0.05		0.002	0.05
Ammonia by Distillatn.	SM 4500-NH3 B,C											3/11/2010	0.50		0.063	0.50
Chem. Oxygen Demand	SM 5220D	3/3/2008	10.00		5.196	10.00	3/24/2009	10.00		2.6003	10.00	3/17/2010	10,00		3.3723	10.00
Chlorine Residual	SM 4500-CL- D	10/29/2007	0.10		0.025	0.10	2/2/2009	0.10		0.016	0.10	2/25/2010	0.10		0.018	0.10
Chromium VI	EPA 7196A, SM 3500-Cr B	7/22/2008	0.01		0.002	0.01	7/15/2009	0.01		0.0035	0.01					
Cyanide Total	SM4500-CN E	10/15/2007	0.01		0.001	0.01	11/17/2008	0.01		0,001	0.01	1/11/2010	0.01		0.002	0.01
Cyanide Amenable	SM4500-CN G	10/15/2007	0.01		0.001	0.01	11/17/2008	0.01		0.001	0.01	1/11/2010	0.01		0.002	0.01
Hardness Total	SM 2340C	3/10/2008	2.00		0.247	2.00	3/5/2009	2.00		0.000	2.00	3/11/2010	2.00		0,495	2.00
MBAS	SM 5540C	2/6/2008	0.05		0.011	0.05	3/26/2009	0.05		0.005	0.05	3/11/2010	0.05		0.005	0.05
Nitrate - Nitrite as N	SM 4500-NO3						5/30/2008	0.05		0.012	0.05					
Nitrite	SM 4500-NO2 B	12/10/2008	0.005		0.000	0.005	3/24/2009	0.005		0.0002	0.005	3/11/2010	0.005		0.0002	0.005
Oil and Grease	EPA 1664A / 5520	4/18/2008	5.00		0.283	5.00	4/8/2009	5.00		1.339	5.00	4/23/2010	5.00		0.4702	5.00
pH , units	SM 4500-H B	1/25/2008	4.00		0.070	4.00	1/21/2009	4.00		0.017	4.00	1/20/2010	4.00	*******	0.025	4.00
Phenois Total	SM 5530 D	3/23/2008	0.05		0.025	0.05	4/1/2009	0.05		0.0113	0.05					
Phosphate Ortho	SM 4500-P E	4/3/2008	0.02		0.001	0.02	4/30/2009	0.02		0.0009	0.02	4/24/2010	0.02	0	0.00304	0.02
Phosphate Total	SM 4500-P B,E	3/7/2008	0.02		0.003	0.02	3/24/2009	0.02		0.0014	0.02	3/18/2010	0.02		0:0030	0.02
Silica	SM 4500-Si D	3/25/2008	0.04		0.019	0.04	3/20/2009	0.04		0.0141	0.04	3/14/2010	0.04		0.014	0.04
Specific Conductivity	SM 2510 B	2/8/2008	2.00		0.099	2.00	2/5/2009	2.00		0,022	2.00	2/10/2010	2.00		0.038	2.00
Suffite	SM 4500-SO3 2- B	:					2/8/2008	2.00		0.570	2.00	3/16/2010	2.00		0.719	2.00
Suifide Total and Dissolved	SM 4500-S2-D	3/17/2008	0.05		0,007	0.05	5/19/2009	0.05		0.0046	0.05				1336	
Total Dissolved Solids	SM 2540 C	2/11/2008	2.50		0.070	2.50	2/10/2009	2.50		0.070	2.50	3/2/2010	2.50		0.434	2.50
Total Suspended Solids	SM 2540 D	3/11/2008	2.50		0.307	2.50	2/26/2009	2.50		0.350	2.50	3/15/2010	2.50		0.423	2.50
Total Solids	SM 2540 B	3/13/2008	10.0		2,990	10.0	2/27/2009	10.0		1.680	10.0	3/12/2010	2.5		0.363	2.50
Total Organic Carbon	SM 5310 C	9/26/2007	0:30		0.067	0.30	1/16/2009	0.30		0.048	0.30	3/10/2010	0.30		0.0248	0.30
TPHC SGT HEM	EPA 1664A/5520F	4/18/2008	5.00		0.307	5.00	4/15/2009	5.00		1.056	5,00	4/23/2010	5.00	<u> </u>	0.30673	5.00
TKN	SM 4500-Norg B	2/12/2008	0.50		0.084	0,50	3/4/2009	0.50		0.067	0.50	3/9/2010	0.50		0.067	0.50
Turbidity	EPA 180.1	11/26/2008	0.10		0.007	0,10	12/29/2009	0.10		0.014	0.10					

4/29/2010 2:56 PM

Analyzed: 10/29/10

	F	Result	Unit	DF,	RL		Analyzed Da	ate + Time
991874-006 Chromium, He	xavalent 2	.663	ug/L	5,25	1.05		10/29/10 ·	11:03:00 AM
Chromium, He	xavalent 2	.211	ug/L	1.05	0.200			10:53:00 AM
991876-001 Chromium, He		33.766	ug/L	10.5	2.10			11:14:00 AM
991876-002 Chromium, He		6.644	ug/L	1.05	0.200		10/29/10 1	11:24:00 AM
991876-003 Chromium, He		6.422	ug/L	1.05	0.200			11:45:00 AM
991876-004 Chromium, He		.656	ug/L	1.05	0.200		10/29/10 1	12:58:00 PM
991876-006 Chromium, He		.202	ug/L	1.05	0.200		10/29/10 1	1:09:00 PM
991876-007 Chromium, He:		441	ug/L	1.05	0,200		10/29/10 1	1:19:00 PM
991876-008 Chromium, He:		039	ug/L	1.05	0.200		10/29/10 1	1:30:00 PM
991876-009 Chromium, He:		257	ug/L	1.05	0.200		10/29/10 1	:40:00 PM
991876-010 Chromium, He:		768	ug/L	1.05	0.200		10/29/10 1	:50:00 PM
991876-011 Chromium, He:		820	ug/L	1.05	0.200		10/29/10 2	2:01:00 PM
991876-012 Chromium, He:			ug/L	1.05	0.200		10/29/10 2	2:11:00 PM
991877-001 Chromium, He		466	ug/L	1.05	0.200		10/29/10 2	2:53:00 PM
991877-002 Chromium, Hex		426	ug/L	1.05	0.200		10/29/10 3	8:03:00 PM
991877-003 Chromium, Hex		459	ug/L	1.05	0.200		10/29/10 3	:16:00 PM
991877-004 Chromium, He		612	ug/L	1.05	0,200		10/29/10 3	3:27:00 PM
991877-005 Chromium, Hex		868	ug/L	1.05	0.200		10/29/10 3	:37:00 PM
991877-006 Chromium, Hex			ug/L	1.05	0.200		10/29/10 3	:48:00 PM
	. 1 .1 4		7		4 00			
991891-001 Chromium, Hex		592	ug/L	5.25	1.05			2:37:00 PM
991891-001 Chromium, He Chromium, He		592 162	ug/L ug/L	5.25 1.05	0.200			2:37:00 PM 0:32:00 AM
			-			Upper		
Chromium, Hex Method Blank	kavalent 1. Result	162 Unit	ug/L DF	1.05 Added	0.200	Uррег	10/29/10 1	0:32:00 AM
Chromium, Hex Method Blank Chromium, Hexavalent	kavalent 1. Result	162 Unit	ug/L DF	1.05 Added	0.200	Upper Upper 20	10/29/10 1	0:32:00 AM
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002	Result Result ND Result	Unit ug/L Unit	Ug/L DF 1.00	1.05 Added 0 Added	0.200 Lower	Upper	10/29/10 1 Recovery	0:32:00 AM RPD
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002 Chromium, Hexavalent	Result Result ND Result	Unit ug/L Unit	Ug/L DF 1.00	1.05 Added 0 Added	0.200 Lower	Upper	10/29/10 1 Recovery	0:32:00 AM RPD
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002 Chromium, Hexavalent ab Control Sample	Result ND Result 26.295	Unit ug/L Unit ug/L Unit	ug/L DF 1.00 DF 1.05	Added 0 Added 0 Added	0.200 Lower Lower 0	Upper 20 Upper	10/29/10 1 Recovery Recovery Recovery	0:32:00 AM RPD RPD 1.32
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002 Chromium, Hexavalent ab Control Sample Chromium, Hexavalent Matrix Spike 991891-001	Result ND Result 26.295 Result 5.459 Result	Unit ug/L Unit ug/L Unit ug/L Unit	ug/L DF 1.00 DF 1.05 DF 1.00	1.05 Added 0 Added 5.00 Added	0.200 Lower 0 Lower 90	Upper 20 Upper 110 Upper	10/29/10 1 Recovery Recovery 109 Recovery	0:32:00 AM RPD RPD 1.32
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002 Chromium, Hexavalent ab Control Sample Chromium, Hexavalent Matrix Spike 991891-001 Chromium, Hexavalent	Result ND Result 26.295 Result 5.459 Result 7.010	Unit ug/L Unit ug/L Unit ug/L	ug/L DF 1.00 DF 1.05 DF 1.00 DF 5.25	1.05 Added 0 Added 5.00 Added 5.25	0.200 Lower 0 Lower 90	Upper 20 Upper 110 Upper 110	10/29/10 1 Recovery Recovery 109 Recovery 103	0:32:00 AM RPD 1.32 RPD
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002 Chromium, Hexavalent ab Control Sample Chromium, Hexavalent Matrix Spike 991891-001 Chromium, Hexavalent Chromium, Hexavalent	Result ND Result 26.295 Result 5.459 Result	Unit ug/L Unit ug/L Unit ug/L Unit	ug/L DF 1.00 DF 1.05 DF 1.00	1.05 Added 0 Added 5.00 Added	0.200 Lower 0 Lower 90	Upper 20 Upper 110 Upper	10/29/10 1 Recovery Recovery 109 Recovery	0:32:00 AM RPD 1.32 RPD
Chromium, Hex Method Blank Chromium, Hexavalent Duplicate 991876-002 Chromium, Hexavalent ab Control Sample Chromium, Hexavalent Matrix Spike 991891-001 Chromium, Hexavalent	Result ND Result 26.295 Result 5.459 Result 7.010	Unit ug/L Unit ug/L Unit ug/L	ug/L DF 1.00 DF 1.05 DF 1.00 DF 5.25	1.05 Added 0 Added 5.00 Added 5.25	0.200 Lower 0 Lower 90	Upper 20 Upper 110 Upper 110	10/29/10 1 Recovery Recovery 109 Recovery 103	0:32:00 AM RPD 1.32 RPD

ah

QCBatch 10CrH10Q

Chrome VI by EPA 218.6

Date: 11/4/10 Page 2 of 2

Analyzed: 10/29/10

\$

	Result		Unit DF		RL		Analyzed Date + Time		
MRCVS - Primary									
	Result	Unit	DF	Added	Lower	Upper	Recovery	RPD	
Chromium, Hexavalent	9.986	ug/L	1.00	10.0	95	105	99.9		
Chromium, Hexavalent	10.115	ug/L	1.00	10.0	95	105	101		
MRCVS - Primary 991891-00)1								
	Result	Unit	DF	Added	Lower	Upper	Recovery	RPD	
Chromium, Hexavalent	9.983	ug/L	1.00	10.0	95	105	99.8		

ah

• •

Ķ

EPA 218.6 Hexavalent Chrome

Batch: <u>10CrH10 Q</u> Date: <u>10/29/10</u>

Standard and Check Standards Preparation Logbook

STANDARD PREPARATION

Calibration Stock Standard (SSa)		Diluted	Stock Conc	. ppr	n: 10		Co	Fŕ,
Manufacturer: Absolute Stan	fards, Inc.]	Standard	Use	d: SSa 91908		Coe	eff.
Catalog Number: 5416	1] Sta	indard Conc.	(ppn	n): 1,000		0,999	9893
Lot Number/ TLI I.D.: 9190	8]▶	Amount Use	•	· · · · · · · · · · · · · · · · · · ·			
Expiration Date: 9/19/	11		Final Volun	ne(m	il): 100		Correl	1
Concentration (ppm): 100)		Т	LI I.C	D.: SC 1010 B 1	0	Coefficient	/
		4					mound	
	V	0.5	1.0	1	*			
· · · · · · · · · · · · · · · · · · ·	0.3 10 B 10	0.5 SC 1010 B 10	1.0 SC 1010 B	40	♥ 0.02 SC 1010 B 1			
		10	<u>зстото в</u> 10	10	1.0			
Amount Used (ml):	10 3		10		2			
	00	100	100		100			
				4				
TLI I.D.: PS 10		PS 1010 B 0.5	PS 1010 B		PS 1010 B 0.02			
			V		>			
-	0002	▶ 0.003	0.01		0.03	<i>6.</i> 0		
Standard Used: PS 101		PS 1010 B 0.3	PS 1010 B	1	PS 1010 B 0.3	PS 1010		
	.02	0,3			0.3	0.	f	
Amount Used (ml):	1	1	1		10	1(· · · · · · · · · · · · · · · · · · ·	
· · ·	00	100	100		100	10	<u>'0</u>	
TLLI.D.: WS_1010	B 0.0002	WS 1010 B 0.003	WS 1010 B	0.01	WS 1010 B 0.03	WS 1010	B 0.05	
MRCCS, MRCVS, LCS STANDARD PRE								
MIRCOS, MIRCOS, ECS STANDARD FRE								······································
		D000 0			RCCS Primary		MRCCS \	
Stock MRCCS Standard (SSb)		RCCS Conc. ppr			0.1		0.0	
Manufacturer: Inorganic Ventur	es /	Standard Use					MC 1010	
Catalog Number: CGCR(6)1-1	_/	Std Conc.(ppr		0	10	/	0.	
Lot Number/ TLI I.D.: C2-CR03026		Amount Used (m	· · · · · · · · · · · · · · · · · · ·		1	/	5	
Expiration Date: 5/1/11		Final Volume(m	· · · · · · · · · · · · · · · · · · ·		100	/	10	
Concentration (ppm): 1000		TLI I.C	D.: MC 1010	B 1	0 MC 1010 B C	1V	MC 1010	B 0.005
					<u>/S Primary</u>		MRCVS V	
Stock MRCVS Standard (SSa)		RCVS Conc. ppr			0.1		0.0	
Manufacturer: Absolute Standards, I	nc. /	Standard Use			MV 1010 B 1	의 🔺	MV 1010	
Catalog Number: 54161	_/	Std Conc.(ppn		0	<u>+ 10</u>		0.1	
Lot Number/ TLI I.D.: 91908		Amount Used (m			1	/	10	
Expiration Date: 9/19/11		Final Volume(m			100	/	10	0
Concentration (ppm): 1000		1L1 I.I	D.: MV 1010	B 1	0 MV 1010 B 0	.1 /	MV 1010 E	3 0.01
				LCS	<u>Primary</u>		LCS Wo	orking
Stock LCS Standard (SSb)		_⊀ LCS Conc. ppr	n: <u>10</u>		0.1		0,0	05
Manufacturer: Inorganic Ventur	es /	Standard Use	d: SSb C2-CI	R030:	26 LC 1010 B 1		LC 1010	0.1
Catalog Number: CGCR(6)1-1		Std Conc.(ppm		0	10		0.1	1
Lot Number/ TLI I.D.: C2-CR03026	- Y	Amount Used (m	I): 1		1		5	
Expiration Date: 5/1/11		Final Volume(m	1): 100)	100	-]/ [10	0
Concentration (ppm): 1000		TLI I.C	D.: LC 1010	B 1	0 LC 1010 B 0	1/	LC 1010 B	0.005
			······································	MS	Primary		Batch	MS
Stock MS Standard (SSa)		🖌 MS Conc. ppr	n: 10		0.1		0.0	
Manufacturer: Inorganic Ventur	es 🐪 /	Standard Use	d: SSa C2-Ci	2030		0 1	MS 1010	
Catalog Number: CGCR(6)1-1		Std Conc.(ppr			10		0.1	
Lot Number/ TLI I.D.: C2-CR03026	- / .	Amount Used (m	· · · · · · · · · · · · · · · · · · ·	····	1	-1 / t	0.5	
Expiration Date: 5/1/11		Final Volume(m)	100	- /	50	
Concentration (ppm): 1000	1	TLI Ì.C	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	<u></u> 1/ 1	MS 1010 Q	
······································						Lab #:	99189	and a straight sector to the sector
						Lab #:	991891 5	
							1 110	1
Sonya Bersudsky	A	2-7-	A	li Kh	arrazi	1AL	· jth	/
Analyst Printed Name Analyst 5	ignature		Reviewer Pr			Reviewer S	ignature /	<u> </u>
Ê. C							\bigcirc	025
							<u> </u>	

9 G
ne:
. Nar
Dept

General Chemistry

Method Detection Limit Summary

14201 Franklin Ave. Tustin, CA 92780 Ph: (714) 730-6239 Fax:(714) 730-6462

Page 1

Department No. 3

mg/L 0.20 0.20 0.20 0.40 mg/Ka 0.010 0.200 0.100 0.500 0.200 0.200 5.00 DOG **mg/L** 0.040 0.021 0.023 0.023 0.023 0.000 0.010 0.005 0.002 0.011 0.020 0.030 MDL mg/L ğ 0.2 mg/Kg 0.100 cm-1 0.100 mg/L 0.100 mg/L 0.050 mg/L 0.100 mg/L 0.025 mg/L 0.20 ug/L 0.10 ug/L 5 mg/L Spike mg/l_ 7/13/2010 7/8/2010 7/28/2010 7/13/2010 7/7/2010 7/7/2010 7/9/2010 7/25/2010 8/5/2010 7/7/2010 Analyzd Date mg/Kq 0.010 0.200 0.200 0.100 0.200 0.500 <u>uq/L</u> 0.40 5.00 0.20 <u>uq/L</u> 0.20 mg/L PQL **mg/L** 0.036 0.019 0.060 0.060 0.060 0.012 0.019 0.000 0,002 0.038 0.024 0.040 ğ ng/L DL 7/6/2009 0.320 mg/Kg 0.20 ug/L 8/5/2009 0.100 cm-1 6/29/2009 0.200 mg/L 6/29/2009 0.100 mg/L 6/29/2009 0.100 mg/L 6/29/2009 0.200 mg/L 6/29/2009 0.500 mg/L 0.10 ug/L 5 mg/L Spike mg/L 6/25/2009 7/26/2009 7/6/2009 Analyzd Date mg/Kg 0.200 0.020 0.200 0.100 0.500 0.200 <u>ug/L</u> 0.40 5.00 mg/L <u>ug/L</u> 0.20 0.20 <u>P</u>O ug/L 0.010 ug/L 0.059 mg/Kg 0,000 0.038 0.025 0.059 mg/L 0.035 0.003 0.026 0.017 ğ 10 10 4/24/2008 0.320 mg/Kg 4/29/2008 0.250 mg/L 7/18/2008 0.100 cm-1 4/28/2008 0.200 mg/L 4/29/2008 0.050 mg/L 4/29/2008 0.100 mg/L 4/29/2008 0.100 mg/L 0.20 ug/L 0.20 ug/L 5 mg/L Spike mg/L 7/30/2008 5/27/2008 7/21/2008 Analyzd Date 7199 EPA 218.6 & 7199 EPA 218.6 & 7199 7199 EPA 218.6 & EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 405.1 SM 5910 Method Chromium VI (mg/Kg) * Chromium VI (ug/L) ** Chromium VI (ug/L) * Inst. ID : ** DX 600 Inst. ID : * DX 100 Analyte Sulphate ** Chloride ** Fluoride ** Nitrate-N ** Bromide ** Soil Matrix UV254 BOD

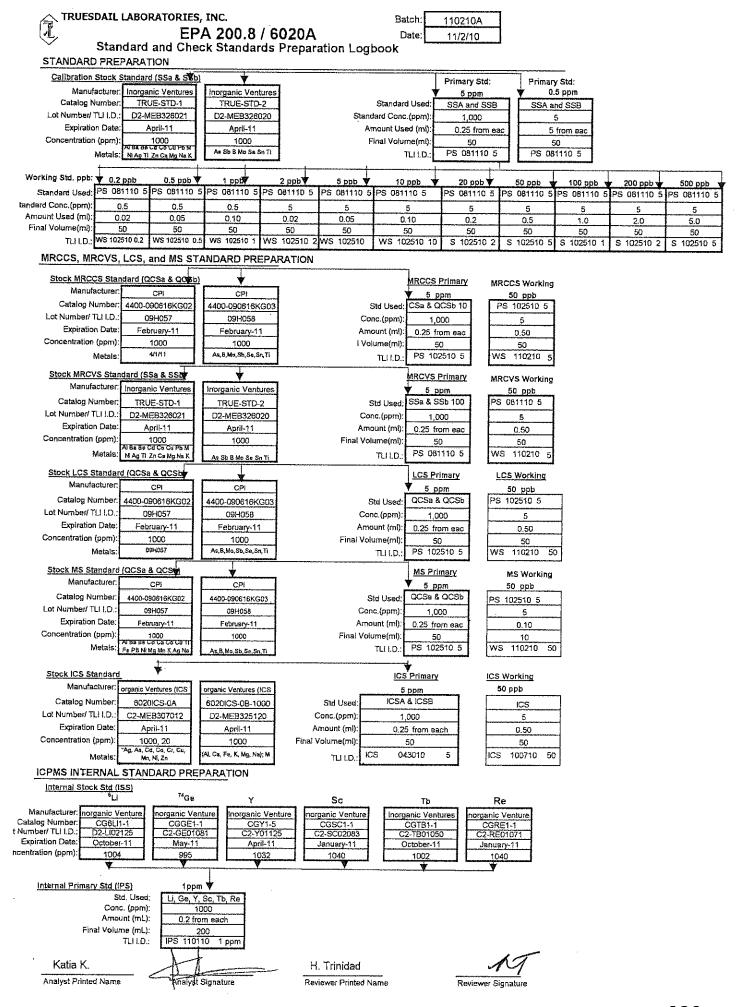
9/14/2010 3:29 PM

QCBatch 110210A

Metals by EPA 200.8, Total

Analyzed: 11/2/2010

	R	esult	Unit	DF	RL		Analyzed Da	te + Time
991625-021 Chromium Manganese 991891-001 Chromium Manganese			ug/L ug/L ug/L ug/L	5.00 5.00 5.00 5.00	1.00 1.00 1.00 1.00		11/2/2010 11/2/2010	4:44:00 PM 4:44:00 PM 7:51:00 PM 7:51:00 PM
Method Blank			, •,					
Chromium Manganese	Result ND ND	Unit ug/L ug/L	DF 1.00 1.00	Added 0 0	Lower	Upper	Recovery	RPD
Duplicate 991625-021								
Chromium Manganese	Result ND ND	Unit ug/L ug/L	DF 5.00 5.00	Added 0 0	Lower 0 0	Upper 20 20	Recovery	RPD 0 0
Lab Control Sample								•
Chromium Manganese	Result 49.7 54.79	Unit ug/L ug/L	DF 1.00 1.00	Added 50.0 50.0	Lower 90 90	Upper 110 110	Recovery 99.4 110	RPD
Matrix Spike 991625-021			······					
Chromium Manganese	Result 250.8 245.7	Unit ug/L ug/L	DF 5.00 5.00	Added 250. 250.	Lower 75 75	Upper 125 125	Recovery 100 98.3	RPD
Matrix Spike Duplicate 99162	25-021						<u></u>	······
Chromium Manganese	Result 246.6 245.6	Unit ug/L ug/L	DF 5.00 5.00	Added 250. 250.	Lower 75 75	Upper 125 125	Recovery 98.6 98.2	RPD 1.69 0.0407
MRCCS - Secondary			······································					
Chromium Manganese	Result 48.77 52.16	Unit ug/L ug/L	DF 1.00 1.00	Added 50.0 50.0	Lower 90 90	Upper 110 110	Recovery 97.5 104	RPD
MRCVS - Primary		······································		****				
Chromium Chromium Chromium Manganese Manganese	Result 49.67 46.68 46.78 45.72 45.72	Unit ug/L ug/L ug/L ug/L ug/L	DF 1.00 1.00 1.00 1.00 1.00	Added 50.0 50.0 50.0 50.0 50.0	Lower 90 90 90 90 90	Upper 110 110 110 110 110 110	Recovery 99.3 93.4 93.6 91.4 91.4	RPD
Manganese	52.35	ug/L	1.00	50.0	90 90	110	91.4 105	


5C

QCBatch 110210A Metals by EPA 200.8, Total

Analyzed: 11/2/2010 Date: 11/11/2010 Page 2 of 2

	Re	sult	Unit	DF	RL		Analyzed Dat	e + Time
nterference Check Sta	ndard A	<u> </u>						<u> </u>
	Result	Unit	DF	Added	Lower	Upper	Recovery	RPD
Manganese	ND	ug/L	1.00	0				
Manganese	ND	ug/L	1.00	0				
nterference Check Sta	ndard AB				<u>'n tein maen en er er ne en men in de</u>		<u></u>	
	Result	Unit	DF	Added	Lower	Upper	Recovery	RPD
Chromium	47.5	ug/L	1.00	50.0	80	120	95.0	
Chromium	50.85	ug/L	1.00	50.0	80	120	102	
Manganese	46.21	ug/L	1.00	50.0	80	120	92.4	
Manganese	53.9	ug/L	1.00	50.0	80	120	108	

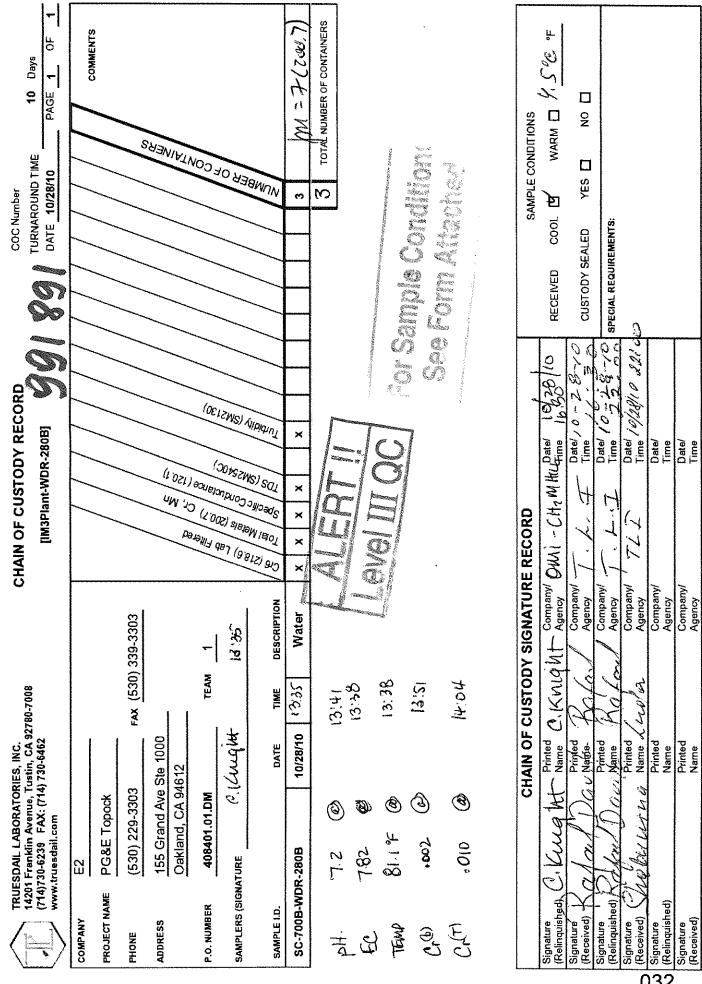
SL.

<u>Dept. Name:</u> Metals

<u>Matrix: Water</u>

.

Method Detection Limit Summary


Method: EPA 200.8 / 6020A Inst.: Agilent ICP/MS

14201 Franklin Ave. Tustin, CA 92780 Ph: (714) 730-6239 Fax:(714) 730-6462 Page No.: 1

Analyte	Date Analyzd	Spike ug/L	7/6n Tai	7/6n TQW	PQL ug/L	Date Analyzd	Spike ug/L	ng/L	NDL NDL	PQL ug/L	Date Analyzd	Spike ug/L	IDL ug/L	MDL MDL	PQL ug/L
Aluminum	1/10/2006	5.00		0.715644	5.0000	7/6/2009	10.00		0.472	10.00	6/15/2010	10.00		1.2049	10.00
Antimony	2/14/2006	0.50		0.13641	1.0000	5/20/2009	0.20		0.099	1.000	4/29/2010	0.20		0.0384	1,000
Arsenic	2/14/2006	0.50		0.30913	1.0000	5/20/2009	0.20		0.0283	1.000	6/15/2010	0.20		0.0518	1.000
Barium	2/14/2006	0.50		0.16329	1.0000	6/23/2009	0.20		0.042	1.000	4/29/2010	0.20	i	0.0374	1.000
Beryllium	2/14/2006	0.50		0.12008	1.0000	5/19/2009	0.20		0.030	1.000	4/29/2010	0.20		0.0223	1.000
Bismuth	2/14/2006	1.00		0.14063	1.0000	7/6/2009	10.00		0.674	10.00	6/15/2010	10.00		1.3466	10.00
Boron											8/4/2010	10.000		0.93905	10.000
Cadmium	2/14/2006	0.50		0.18604	1.0000	5/19/2009	0.20		0.012	1.000	4/29/2010	0.20		0.0250	1.000
Chromium	2/14/2006	0.50		0.06815	1.0000	5/20/2009	0.20		0.015	1.000	4/29/2010	0.20		0.0192	1.000
Cobalt	2/14/2006	0.50		0.07464	1.0000	5/20/2009	0.20		0.015	1.000	4/29/2010	0.20		0.0000	1.000
Copper	1/10/2006	1.00		0.45447	1.0000	6/23/2009	0.50		0.104	1.000	6/15/2010	0.20		0.0614	1.000
Iron						7/6/2009	10.00		3.065	10.000	7/8/2010	5.000		0.54157	5.000
Lead	2/14/2006	0.50		0.12481	1.0000	5/19/2009	0.20		0.015	1.000	4/29/2010	0.20		0.0192	1.000
Manganese	2/14/2006	0.50		0.08035	1.0000	5/20/2009	0.20		0.012	1.000	6/15/2010	0.20		0.0421	1.000
Molybdenum	2/14/2006	0.50		0.13214	1.0000	6/26/2009	2.00		0.145	2.000	6/15/2010	1.00		0.1323	1.000
Nickel	2/14/2006	0.50		0.37899	1.0000	5/20/2009	0.20		0.041	1.000	6/15/2010	0.20		0.0475	1.000
Selenium	2/14/2006	0.50		0.55717	1.0000	5/20/2009	0.20		0.049	1.000	6/15/2010	1.00		0.1477	1.000
Silver	2/14/2006	0.50		0.12420	1.0000	5/20/2009	0.20		0.038	1.000	6/15/2010	0.20		0.0395	1.000
Thalium	2/14/2006	0.50		0.05568	1.0000	5/19/2009	0.20		0.017	1.000	4/29/2010	0.20		0.0358	1.000
Tin											6/15/2010	10.00		1.3561	10.000
Titanium						9/8/2009	0.50		0.162	1.000	6/15/2010	10.00		0.5132	10.000
Vanadium	2/14/2006	0.50		0.11099	1.0000	5/20/2009	0.20		0.012	1.000	6/15/2010	0.20		0.0205	1.000
Zinc	1/10/2006	5.00		0.30087	5.0000	1/10/2006	5.00		0.30087	5.0000	1/12/2010	2.00		0.263	5.00
Uranium	2/14/2006	0.50		0.024647	1.0000	6/23/2009	0.20		0.0600	1.000	4/29/2010	0.20		0.0576	1.000
Mercury						7/23/2009	0.20		0.025	0.200	7/28/2010	0.20		0.03951	0.1185

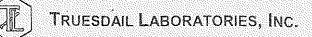
030

b Number:	991 89			ain of C				emperatur	e:	Yoc	
ent Name:	£2										
Bottle I.D.	Analysis Done	Date Out	Time Out	Date	Time In	Take	n	Printed N	ame	Signat	иге
	Done			10.28.10	22:30)		Am	γ	Sol	Γ.
<u> </u>	C16	10/29/10	8:30			100	2	Somp	\leq	\sum	<u> </u>
-		<u>(4)~51.0</u>							6		
,											<u>,</u>
										·	
Ĩ	Storage	Sheif No. I	1	Printed Name	Initials		Disc	harge Date	Prin	nted Name	Initial
	Date	Storage)	
			· _		 		int				
Bottie I.D.	Anaiysis Done	Date Out	Time Out	1 _	Time In				ame	Signal	ture
	Dolle			10.28.1	0 22:30	ANT CONTRACTOR DOT NOT THE OWNER OF THE OWNER OWNE		-tm	.ir	A	_
	(rimn	102910	8:0	20 R 8 07 A 80		10 m	1	Kati	λ	PK-	•••
۰.											
	······································									<u> </u>	
	Storage	Shelf No.		Printed Name	Initials	Γ	Disc	harge Date:	Pri	nted Name	Initia
	Date	Storage	P			.				<u></u>	1
			L.	Data	Time		unt	1			
Bottle I.D.	Analysis Done	Date Out	Time Out	t In	In	Take (n or	m()	Printed N	Name (Signa	iture
				10.28.1	0 22:3	0		-flm	ir		
	TDS	10/29/10	10:0	No Idza	16:30	- 10		Hop	J	k	<u>t</u>
	Turbidity	10/2/10	8:0	0 Idarla	16:30) 400		Į į			
• .	EC	11/01/10	08130		15:30	> 100		IORD	410	<u></u>	
,										<u></u>	
•	Storage Date	Shelf No. Storag		Printed Name	Initials		Dis	charge Date	Pr	inted Name	Initia
	Date								<u> </u>		
*	A	Date	Tim	e Date	Time	Amo		Printed	Namo	Signa	ature
Bottle I.D.	Analysis Done	Out	Out		<u>ln</u>	(g or		Frinced			
· ·					1						
						-				· · · ·	<u></u>
			1						υ		
	<u> </u>		K					·			
			<u> </u>					·			
Aler Maria Aler Maria Maria	Storage	Shelf No		Printed Name	Initials	\square	_Dis	charge Date	Рг	rinted Name	initi
	Date	Storag	!		3	4 [-	and the second se	1		

032

 \sim 5,

۰ ،


Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
10/28/10	991876-1	9.5	N/A	N/A	a)/A	5B
Ì	-2	·		1		
	-3					
	-4					
	-5					
	-6					
	7					
	-8					
	9					
	-10					
	-21					
V.	12	V	V	V	V	\checkmark
10/28/10	991877=1	9.5	NA	NA	N/A	2B
				1	·	
	-3					
	-4					
	-5					
J.	V -6	-V	V		¥	<u>v</u>
0/28/10	<u>991878-)</u>	9.5	N/A .	N/A	N/A	SB
	2					1
	-3					
	-4					
AL 201-	<u>v</u> -5		<u> </u>	V	V	<u>V</u>
0/28/10	991871	7.0.	5.00	9.5	7:45	SB
0/29/10	991891	7.0	5:00	9.5	7:40	SB
0/29/10	991892-1	95	N/A	A)CI	NA	SB
	-2					
	5					
	-5					·
·V	1 -6	1	1	1		\mathbf{V}

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Enviro\Ali\Cr6+ pH Log

Turbidity/pH Check

T T	1	, u	rbiaity/pH (neck	· ·	
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
991805,	41	42.	10/27	KK	NO	@11-30 am 10/26
1846(1-6,89	$) \neq 1$	<i>e</i> 2	j.	4	1	
124 (1-5)	<1	42			1	
1842 (1-7)	41	42				-
991808	ZI	12	10/28/4	ES	NU	
991882	61	72	1- 2010		1.	a 2: av p.m
991 86 9	41	72				
991879(1-2)	61	42				
1271	41			1/14		5
1808(1-3)		42	10/28	KK_	NO	00:00
18451-8	<u> ۲</u>	22	10/29	KK_	NO	
	and the second se	<2	\		NO	
1873 (1-7	21	<u> ~2</u>		\	NO	
1872 (1-3)	21	22			NO	,
1874 (1-11)	41	12			No	
1877 (1-6		< 2	l l		No	
1875(1-9)	<۱	42			NO	
1876(1-1	61	22			NO	
991891	41	72		ht	NO	@4:05 m 10/29
991893(1-2)	<u> </u>	42	-14 10/30	KK	No	/
9918978 (1-5)	~1	42		1	NO	
9918 94 (1-9)	41	42		- 1 ₁	No	
491897 (1-9)	41	42			No	
991895 (1-8	14	22			NO	
99 1894 (1-11	a second s	<u>~2</u>			NO	
991898 (1-11		42			1	
991892 (1-10		42		<u>t</u>	NO	
991921 (1-62			11/1/10		NO	
	<u> </u>	- 42	11/1/10	<u>KK</u>	No	
991917 (1-5		2_]		NO	
	$) \leq 1$		<u> </u>	[l	No	
9919201-0	$\frac{3}{2}$	<u> </u>			NO Yes-Tal NO	
$\frac{99977}{991924}$			11/2/10	ht.	Yes-TO	ę –
991924(3)		72			NO	2 8:22am
		<u> </u>			Yes	
991933	61	2			Yes	
1930	21	42			J	
991936 (1)	41	<u>よっ</u> フス	11/2	KK	NO	@ 9:50 am
941 944 (14,24) 61	フえ	11/2 ti/2	ES		25:00 p.m
941945(1-3)		L	1	L	NU	LV
991953 (3)	4	72	11/3	NA	No	a fin on
991959	4	62		- 174	1	- In m
99 19 60	21	.62				
991961	4	12				
991462	LI	62				
991963	41	42		<u> </u>	⊢_ √	
94/1464	71				Jer	
-119VI	- 1	42	V		YES	
991843(2)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	72	11/3/10	_hr_	No-Eilkn	1 Y 2 11: man 14
991918 (2	72	72		<u> </u>	•/	
991994 (1,2)		22	11/5	<u></u>	NO	@ 8:20 am 11/5
991945 (1-2)		42	<u> </u>	<u> </u>	NO	
991966 (9)	21	L2	1	\mathbf{V}	V	

\MATRIX\epv\Discrp.FormBlank.doc

Sample Integrity & Analysis Discrepancy Form

Client.	<u> </u>	Lab #	1891
Date L	Delivered: <u>10/28/10</u> Time: <u>22:0</u> 2 By: □Mail XFie	eld Service 🛛	Client
1.	Was a Chain of Custody received and signed?	Y Yes DNo	
2	Does Customer require an acknowledgement of the COC?	QYes QNo	X N/A
3.	Are there any special requirements or notes on the COC?	□Yes □No	ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No	ØN/A
5.	Were all requested analyses understood and acceptable?	ØYes □No	□N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? { <u>.5 ° C</u>	¥Yes □No	
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Xa(Yes ⊡No	<i>□N/A</i>
8.	Were sample custody seals intact?	□Yes 🖄No	
9.	Does the number of samples received agree with COC?	ØYes □No	
10.	Did sample labels correspond with the client ID's?	⊠Yes ⊡No	<i>□N/A</i>
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes XNo	<i>□N/A</i>
12.	Were samples pH checked? pH = <u>See C</u> .O.C	Xves ⊡No	
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	⊠Yes □No	
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH Ø Std	⊠Yes □No	
15.	<u>Sample Matrix:</u> Liquid Drinking Water Ground I Sludge Soil Wipe Paint Solid	Nater □Wast Other	e Water Ex
16.	Comments:		
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	<u> </u>	

Level III QC

WDK pH Kesuits Analytical Bench Log Book If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed. pH Meter Time Slope Date Time Date Time Date **Analyst Name** pН #1, #2, or #3 etc. pH meter of the pH meter Sa tiple Name of of of of (for the pH result) Result See cover Sheet Calibrated Calibrated Curve sampling sampling analysis analysis for Serial Number P. Wealt 7.1 -53.2 10-5-10 10-5-10 0890 METRICH ! 10.510 0848 0430 SC-700B Diotes: 10-5-10 0152 Cilcient 7.4 -55.2 METER #1 0430 0840 10-5-10 10-510 1 SC-100 B Notes: 1.2 10-13-10 0904 3 SC- 100B METED* -555 4,00 10-13-D 0430 10-13-10 0800 Notes: 10-19-10 900 10-19-10 904 METERHI 10-19-10 430 -55.8 1 1.3 \$ SC-100B totes: 10-27-10 806 METERATI 10-27-10 480 7.4 54.5 TIMD :5C-100B 10-27-10 600 notes: 4:35 7.Z Tim D MEREL #1 -54.4 D2810 13:41 1028-10 13:35 10-28 :SC-700Bhotes: 6.9 METER #1 -55.4 Tim D 11-3-10 12:36 11-3-10 04:30 : SC-100B 11-3-10 12:20 1 otes: Reminder: WDR Required pH Range for the Effluent (SC-700B) is: 6.5 - 8.4 31

LASERJET FAX

ΗР

. .

3329

760-326

-

Nov 03 2010 2:40PM

Analytical Bench Log Book

-760-326-3329

FАX

LASERJET

2:40PM

2010

Nov

_

i.

·	Sample Name	Date of	Time of	Date	Time	pH Meter #1, #2, or #3 etc.	Date	ction well sho	uld be shu	WDR pH Re	n is fixed.
15	C-100B	sampling	sampling	analysis //:3-/()	analysis	See cover Sheet for Serial Number	pH meter Calibrated	pH meter Calibrated	Slope of the Curve	Analyst Name (for the pH result)	рН
Aptes:		11-3-10	12:15		123/	METER*/	11-3-10	0/124			Resi
→. <u>.</u>	27							0430	-55.4	Tim D	7.3
2 Notes:			1								
totes:			i	<u>l</u>							1
*****									i		
3i											
nates.					i						
4								_			
wites:											
(· · · · · · · · · · · · · · · · · · ·	i				
5	1					·····					
otes:											
•							<u>i</u>				
6											
otes:											
·								i			
				1			·····				
ites:			<u> </u>					1			
								ii			
			Reminder	WDP Po	en al an	Range for the Effl					

۴

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 29, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-281 PROJECT, GROUNDWATER MONITORING, TLI NO: 991995

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-281 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 3, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample result and associated matrix spike for sample SC-700B-WDR-281 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike result was within acceptable limits and the results from the analysis at a 5x dilution matched those of the straight run, the result from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

✓ ✓ Mona Nassimi Manager, Analytical Services

K.R. P. gyer

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

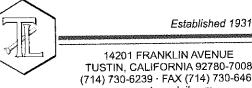
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 991995 Date: November 29, 2010 Collected: November 3, 2010 Received: November 3, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2320B	Total Alkalinity	Iordan Stavrev
SM 4500-Si D	Soluble Silica	Jenny Tankunakorn
EPA 365.2	Total Phosphorus	Jenny Tankunakorn
EPA 415.2	Total Organic Carbon	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Jenny Tankunakorn
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Katia Kiarashpoor / Hope Trinidad
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

				<i>></i>		14201 FR/	ANKLIN AVENUE	TUSTIN, CALIFORNI	A 92780-7008
				/	\mathbb{N}	(714) 73(0-6239 - FAX (71	(714) 730-6239 - FAX (714) 730-6462 · www.truesdail.com	utruesdail.com
Client	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	ars, Inc. 1000				Labo Date	Laboratory No.: 991995 Date Received: Novemi	Laboratory No.: 991995 Date Received: November 3, 2010	010
Attention	Attention: Shawn Duffy								
Project Name Project No. P.O. No.	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM		looitedo						
		A	Anaryucar	VIICAI RESUILS					
Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
991995-001	SC-700B-WDR-281	E120.1	NONE	11/2/2010	12:20	EC	7330	umhos/cm	2.00
991995-001	SC-700B-WDR-281	E200.7	NONE	11/2/2010	12:20	Aluminum	QN	ug/L	50.0
991995-001	SC-700B-WDR-281	E200.7	NONE	11/2/2010	12:20	BORON	961	ng/L	200
991995-001	SC-700B-WDR-281	E200.7	NONE	11/2/2010	12:20	Iron	Q I	ug/L	20.0
991995-001	SC-700B-WDR-281	E200.8	NONE	11/2/2010	12:20	Antimony	Q i	ug/L	10.0
991995-001	SC-700B-WDR-281	E200.8		11/2/2010	12:20	Arsenic		ug/L ug/l	0.1
991995-001	SC-700B-WDR-281			0102/2/11	12:20	Chromium		ug/г П0/I	2.0 2.0
991995-001 001005 001	SC-/ 00B-VUDR-281 SC-700B-WDR-281	E200.8		11/2/2010	12:20	Copper		ug/L	5.0
991995-001	SC-700B-WDR-281	E200.8	NONE	11/2/2010	12:20	Lead	QN	ug/L	10.0
991995-001	SC-700B-WDR-281	E200.8	NONE	11/2/2010	12:20	Manganese	1.8	ng/L	1.0
991995-001	SC-700B-WDR-281	E200.8	NONE	11/2/2010	12:20	Molybdenum	16.2	ug/L	10.0
991995-001	SC-700B-WDR-281	E200.8	NONE	11/2/2010	12:20	Nickel	oz ;	ug/L	10.0
991995-001	SC-700B-WDR-281	E200.8	NONE	11/2/2010	12:20	Zinc	11.1	ug/L	10.0
991995-001	SC-700B-WDR-281	E218.6	LABFLT	11/2/2010	12:20	Chromium, hexavalent	ON CO	ng/L	0.20
991995-001	SC-700B-WDR-281	E300	NONE	11/2/2010	12:20	Fluoride	2.02	mg/L	0.500
991995-001	SC-700B-WDR-281	E300	NONE	11/2/2010	12:20	Nitrate as N	3.14	mg/L "	1.00
991995-001	SC-700B-WDR-281	E300	NONE	11/2/2010	12:20	Sulfate	518 5,157	mg/L	0.02
991995-001	SC-700B-WDR-281	SM2130B		11/2/2010	12:20	Turbiaity Total Dissolved Solids	121.U 4590	0 N /Dm	0. LUU 2.50
991995-001				11/2/2010	12-20	Ammonia-N	ND	ma/L	0.500
					12.20	Nitrite as N	ŪN	ma/L	0.0050


NC
TORIES,
LABORA
TRUESDAIL

Report Continued

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
991995-002	SC-100B-WDR-281	E120.1	NONE	11/2/2010	12:15	EC	7980	umhos/cm	2.00
991995-002	SC-100B-WDR-281	E200.7	NONE	11/2/2010	12:15	Aluminum	Q	ug/L	50.0
991995-002	SC-100B-WDR-281	E200.7	NONE	11/2/2010	12:15	BORON	1010	ug/L	200
991995-002	SC-100B-WDR-281	E200.7	NONE	11/2/2010	12:15	Chromium	969	ng/L	10.0
991995-002	SC-100B-WDR-281	E200.7	NONE	11/2/2010	12:15	Iron	QZ	ng/L	20.0
991995-002	SC-100B-WDR-281	E200.7	LABFLT	11/2/2010	12:15	Iron	QZ	ng/L	20.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Antimony	QN	ng/L	10.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Arsenic	8.1	ng/L	1.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Barium	25.4	ng/L	10.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Copper	Q	ng/L	5.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Lead	QN	ng/L	10.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Manganese	9.8	ng/L	1.0
991995-002	SC-100B-WDR-281	E200.8	LABFLT	11/2/2010	12:15	Manganese	9.2	ug/L	1.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Molybdenum	20.4	ng/L	10.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Nickel	24.1	ug/L	10.0
991995-002	SC-100B-WDR-281	E200.8	NONE	11/2/2010	12:15	Zinc	Q	ng/L	10.0
991995-002	SC-100B-WDR-281	E218.6	LABFLT	11/2/2010	12:15	Chromium, hexavalent	1020	ug/L	10.5
991995-002	SC-100B-WDR-281	E300	NONE	11/2/2010	12:15	Fluoride	2.45	mg/L	0.500
991995-002	SC-100B-WDR-281	E300	NONE	11/2/2010	12:15	Nitrate as N	3.26	mg/L	1.00
991995-002	SC-100B-WDR-281	E300	NONE	11/2/2010	12:15	Sulfate	559	mg/L	50.0
991995-002	SC-100B-WDR-281	SM2130B	NONE	11/2/2010	12:15	Turbidity	QN	NTU	0.100
991995-002	SC-100B-WDR-281	SM2320B	NONE	11/2/2010	12:15	Alkalinity	131	mg/L	5.00
991995-002	SC-100B-WDR-281	SM2320B	NONE	11/2/2010	12:15	Bicarbonate	131	mg/L	5.00
991995-002	SC-100B-WDR-281	SM2320B	NONE	11/2/2010	12:15	Carbonate	QN	mg/L	5.00
991995-002	SC-100B-WDR-281	SM2540C	NONE	11/2/2010	12:15	Total Dissolved Solids	4940	mg/L	250
991995-002	SC-100B-WDR-281	SM4500NH3D	NONE	11/2/2010	12:15	Ammonia-N	QZ	mg/L	0.500
991995-002	SC-100B-WDR-281	SM4500NO2B	NONE	11/2/2010	12:15	Nitrite as N	QZ	mg/L	0.0050
991995-002	SC-100B-WDR-281	SM4500-PB_E	NONE	11/2/2010	12:15	Totai Phosphorous-P	Q	mg/L	0.0200
991995-002	SC-100B-WDR-281	SM4500SI	NONE	11/2/2010	12:15	Soluble Silica	25.5	mg/L	2.00
991995-002	SC-100B-WDR-281	SM5310C	NONE	11/2/2010	12:15	Total Organic Carbon	Q	mg/L	0.300

ND: Non Detected (below reporting fimit) mg/L: Milligrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 11/29/2010

Page 1 of 29

Laboratory No. 991995

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800

Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM

Samples Received on 11/3/2010 9:30:00 PM

Field ID SC-700B-WDR-281		<u>, ,</u>		Lab ID 991995-001	11/02	2/2010 12:20	Matr Wat	er
SC-100B-WDR-281				991995-002	11/02	2/2010 12:15	Wat	er
Anions By I.C EPA 3	00.0		Batch	11AN10E				
Parameter	신다는 것 같은 것은 다 가 ?	Unit	Anal	yzed	DF	MDL	RL	Result
991995-001 Nitrate as Nitro	ogen	mg/L	11/04	/2010 12:30	5.00	0.0550	1.00	3.14
Sulfate		mg/L	11/04	/2010 15:11	50.0	1.00	25.0	518
991995-002 Nitrate as Nitro	ogen	mg/L	11/04	/2010 12:42	5.00	0.0550	1.00	3.26
Sulfate		mg/L	11/04	/2010 14:34	100	2.00	50.0	559
Method Blank								
Parameter Sulfate	Unit mg/L	DF 1.00	Result ND					
Nitrate as Nitrogen Duplicate	mg/L	1.00	ND				Lab ID =	991995-002
Parameter Sulfate Nitrate as Nitrogen	Unit mg/L mg/L	DF 100 5.00	Result 559 3.14	Expected 559 3.26		RPD 0.00662 3.84	Accepta 0 - 20 0 - 20	ance Range
Lab Control Sample Parameter Sulfate Nitrate as Nitrogen Matrix Spike	e Unit mg/L mg/L	DF 1.00 1.00	Result 20.2 3.97	Expected 20.0 4.00		Recovery 101 99.3	90 - 11 90 - 11	
Parameter Sulfate Nitrate as Nitrogen	Unit mg/L mg/L	DF 100 5.00	Result 1620 24.3	Expected/A 1560(100 23.3(20.0	0)	Recovery 106 105	Accept 85 - 11 85 - 11	

Report Continued

Client: E2 Consulting Eng	jineers, Inc.		oject Name: oject Number	PG&E Topock I : 408401.01.DM	Project	Page 2 of 29 Printed 11/29/2010
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	19.9	20.0	99.4	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.00	4.00	100	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	15.3	15.0	102	90 - 110
Nitrate as Nitrogen	mg/L	1.00	2.98	3.00	99.2	90 - 110
MRCVS - Primary	-					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	15.2	15.0	1 01	90 - 110

Parameter	• •	Unit	Anal	yzed l	DF	MDL	RL	Result
991995-001 Fluoride		mg/L	11/04	/2010 12:30 5	.00	0.0600	0.500	2.02
991995-002 Fluoride		mg/L	11/04	/2010 12:42 5	5.00	0.0600	0.500	2.45
Method Blank								
Parameter	Unit	DF	Result					
Fluoride	mg/L	1.00	ND					
Duplicate							Lab ID =	991993-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Fluoride	mg/L	1.00	0.914	0.889		2.77	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	I	Recovery		ince Range
Fluoride	mg/L	1.00	4.13	4.00		103	90 - 110	
Matrix Spike							Lab ID =	991993-001
Parameter	Unit	DF	Result	Expected/Adde	ed I	Recovery	Accepta	ance Range
Fluoride	mg/L	1.00	2.80	2.89(2.00)		95.7	85 - 11	ō
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Fluoride	mg/L	1.00	4.09	4.00		102	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery		ance Range
Fluoride	mg/L	1.00	3.12	3.00		104	90 - 11)

Report Continued

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 3 of 29 Project Number: 408401.01.DM Printed 11/29/2010

Nitrite SM 4500-NO2 B			Batch	11NO210C				
Parameter	elenen eligin ili e	Unit	Anal	yzed l	DF	MDL	RL	Result
991995-001 Nitrite as Nitrogen		mg/L	11/04/	/2010 11:42 1	.00	0.000200	0.0050	ND
991995-002 Nitrite as Nitrogen		mg/L	11/04/	2010 11:43 1	.00	0.000200	0.0050	ND
Method Blank								
Parameter	Unit	DF	Result					
Nitrite as Nitrogen Duplicate	mg/L	1.00	ND				Lab ID = 9	91995-002
Parameter Nitrite as Nitrogen Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	F	RPD 0	Acceptar 0 - 20	nce Range
Parameter Nitrite as Nitrogen Matrix Spike	Unit mg/L	DF 1.00	Result 0.0401	Expected 0.0400	F	Recovery 100	90 - 110	nce Range 991995-002
Parameter Nitrite as Nitrogen MRCCS - Secondary	Unit mg/L	DF 1.00	Result 0.0230	Expected/Adde 0.0200(0.020		Recovery 115.	Acceptar 75 - 125	nce Range
Parameter Nitrite as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 0.0200	Expected 0.0200	F	Recovery 100.	Acceptar 90 - 110	nce Range
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0204	Expected 0.0200	F	Recovery 102.	Acceptai 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 4 of 29
	Project Number:	408401.01.DM	Printed 11/29/2010

Alkalinity by SM 2320B Parameter	ng ing sin 1999. T	Unit	Anal	yzed	DF	MDL	RL	Result
991995-002 Alkalinity as CaC	003	mg/L	11/10/	201 0	1.00	1.68	5.00	131.
Bicarbonate (Ca		mg/L	11/10/	2010 [,]	1.00	0.153	5.00	131.
Carbonate (Calc	-	mg/L	11/10/	2010	1.00	0.153	5.00	ND
Method Blank								
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	992017-001
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 136.	Expected 136.	F	RPD 0	Accepta 0 - 20	ance Range
Lab Control Sample								
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 98.0	Expected 100.	I	Recovery 98.0	Acceptance Range 90 - 110	
Lab Control Sample I	Duplicate					_		
Parameter Alkalinity as CaCO3 Matrix Spike	Unit mg/L	DF 1.00	Result 99.0	Expected 100.		Recovery 99.0	90 - 11	ance Range 0 • 992017-001
Parameter Alkalinity as CaCO3 Matrix Spike Duplica	Unit mg/L te	DF 1.00	Result 240.	Expected/Add 236.(100.)	led	Recovery 104.	75 - 12	ance Range 5 = 992017-001
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 239.	Expected/Add 236.(100.)	ded	Recovery 103.	Accept 75 - 12	ance Range 25

Report Continued

Client: E2 Consulting E	ngineers, Inc		t Name: PG&E To t Number: 408401.0	opock Projec 01.DM	t		age 5 of 29 1/29/2010
Specific Conductivity -	EPA 120.1		Batch 11EC10B			11/4/2010)
Parameter	ant its openså er i ert f	Unit	Analyzed	DF	MDL	RL	Result
991995-001 Specific Condu	uctivity	umhos/cm	11/04/2010	1.00	0.0380	2.00	7330
991995-002 Specific Condu	uctivity	umhos/cm	11/04/2010	1.00	0.0380	2.00	7980
Method Blank							
Parameter Specific Conductivity	Unit umbos	DF 1	Result ND				

Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 979.	Expected 999.	Recovery 98.0	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCVS - Primary	Unit umhoร	DF 1.00	Result 998.	Expected 999.	Recovery 99.9	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCVS - Primary	Unit umho៖	DF 1.00	Result 701.	Expected 706.	Recovery 99.3	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 704.	Expected 706.	Recovery 99.7	Acceptance Range 90 - 110
Lab Control Sample D	Ouplicate					
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 706.	Expected 706.	Recovery 100.	Acceptance Range 90 - 110
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 4980	Expected 4970	RPD 0.201	Acceptance Range 0 - 10
Specific Conductivity Duplicate	umhos	1.00	ND			Lab ID = 991966-007

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 6 of 29 Printed 11/29/2010

Parameter		Unit	Anal	yzed l	DF ME	DL RL	Result
991995-002 Chromium, Hexav	/alent	ug/L	11/04	/2010 13:20 5	2.5 1.10	10.5	1020
Method Blank							
Parameter	Unit	DF	Result				
Chromium, Hexavalent	ug/L	1.00	ND				
Duplicate						Lab ID = 9	991995-002
Parameter	Unit	DF	Result	Expected	RPD		nce Range
Chromium, Hexavalent	ug/L	52.5	1020	1020	0.0288	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	•	nce Range
Chromium, Hexavalent	ug/L	1.00	5.13	5.00	103	90 - 110	
Matrix Spike						Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected/Adde	ed Recover	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.25	5.82	5.51(5.25)	106	90 - 110	
Matrix Spike						Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected/Adde	ed Recover	y Accepta	nce Range
Chromium, Hexavalent	ug/L	52.5	2170	2070(1050)	109	90 - 110	l
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recover	y Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	5.01	5.00	100	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recover	y Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	9.71	10.0	97.1	95 - 105	5
MRCVS - Primary	-						
Parameter	Unit	DF	Result	Expected	Recover	y Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	10.1	10.0	101	95 - 105	5
MRCVS - Primary	_						
Parameter	Unit	DF	Result	Expected	Recover	y Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	9.88	10.0	98.8	95 - 105	5

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 7 of 29 Printed 11/29/2010

Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
91995-001 Chromium, Hexa	valent	ug/L	11/11	/2010 11:50 1	.05	0.0210	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	991994-001
Parameter	Unit	DF	Result	Expected		RPD		ance Range
Chromium, Hexavalent	ug/L	1.05	13.1	12 <i>.</i> 9		1.22	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	5.15	5.00		103	90 - 11()
Matrix Spike							Lab ID =	991994-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.09	28.4	29.3(16.4)		94.4	90 - 110	כ
Matrix Spike							Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.06	1.20	1.25(1.06)		95.9	90 - 11(C
Matrix Spike							Lab ID =	992097-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.06	1.30	1.35(1.06)		94.8	90 - 110	0
Matrix Spike							Lab ID =	992097-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	5.40	5.50(5.25)		98.2	90 - 11	0
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	5.06	5.00		101	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Chromium, Hexavalent	ug/L	1.00	9.94	10.0		99.4	95 - 10	5
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Chromium, Hexavalent	ug/L	1.00	10.3	10.0		103	95 - 10	5

Report Continued

Client: E2 Consulting Eng	ineers, Inc	-	Project Name: Project Number	PG&E Topock :: 408401.01.DN	~	Page 8 of 29 Printed 11/29/2010
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.3	Expected 10.0	Recovery 103	Acceptance Range 95 - 105

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 9 of 29
	Project Number:	408401.01.DM	Printed 11/29/2010

Parameter	arameter		Analyzed 11/10/2010 15:53 11/10/2010 15:58		DF 1.00		RL	Result
991995-001 Boron 991995-002 Boron		ug/L					200.	961 1010
		ug/L			1.00		200.	
Method Blank								
Parameter	Unit	DF	Result					
Boron	ug/L	1.00	ND					
Duplicate							Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Boron	ug/L	1.00	1030	1010		1.96	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Recovery		Acceptance Range	
Boron	ug/L	1.00	5030	5000		101	90 - 110)
Matrix Spike							Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected/Add	ected/Added Recovery		Acceptance Range	
Boron	ug/L	1.00	2900	3010(2000)		94.2	75 - 12	5
MRCCS - Secondary	у							
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Boron	ug/L	1.00	5100	5000		102	90 - 110	נ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Recovery		•	ance Range
Boron	ug/L	1.00	4660	5000		93.3	90 - 110	D
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery		ance Range
Boron	ug/L	1.00	5180	5000		104	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Boron	ug/L	1.00	5070	5000		101	90 - 11	0
Interference Check	Standard A							
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Boron	ug/L	1.00	ND	0				
Interference Check	Standard A							
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Boron	ug/L	1.00	ND	0				

Report Continued

Client: E2 Consulting Engin	·		Project Name: PG&E Topock Pro Project Number: 408401.01.DM		•	Page 10 of 29 Printed 11/29/2010
Parameter Boron Interference Check Stand	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Boron	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 11 of 29 Printed 11/29/2010

Metals by EPA 200.7, Total		Batch	111710A-Th				
Parameter	al Santan Arang	Unit	Analyzed		F MDL	RL	Result
991995-001 Aluminum		ug/L	11/17/2010 12:54		00 1.00	50.0	ND
Iron		ug/L	11/17/2010 12:54		00 3.00	20.0	ND
991995-002 Aluminum		ug/L	11/17/2010 13:10		00 1.00	50,0	ND
Chromium		ug/L	11/17/2010 13:10		00 3.00	10.0	969
Iron		ug/L	11/17/2010 13:10		00 3.00	20.0	ND
Method Blank							
Parameter	Unit	DF	Result				
Aluminum	ug/L	1.00	ND				
Chromium	ug/L	1.00	ND				
Iron	ug/L	1.00	ND				
Duplicate						Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range	
Aluminum	ug/L	1.00	ND	0	0	0 - 20	
Chromium	ug/L	1.00	ND	0	0	0 - 20	
Iron	ug/L	1.00	11.3	13.6	18.5	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Aluminum	ug/L	1.00	4940	5000	98.7	90 - 110	
Chromium	ug/L	1.00	5220	5000	104	90 - 110	
Iron	ug/L	1.00	5190	5000	104	90 - 110	
Matrix Spike						Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range	
Aluminum	ug/L	1.00	2330	2000(2000)	116	75 - 125	
Chromium	ug/L	1.00	2010	2000(2000)	101	75 - 125	
Iron	ug/L	1.00	1960	2010(2000)	97.1	75 - 128	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Aluminum	ug/L	1.00	4820	5000	96.4	90 - 110	
Chromium	ug/L	1.00	4860	5000	97.2	90 - 110)
Iron	ug/L	1.00	4920	5000	98.3	90 - 110)

Report Continued

TRUESDAIL LABORATORIES, INC.

Client: E2 Consulting I	Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM						
MRCVS - Primary										
Parameter Aluminum	Unit ug/L	DF 1.00	Result 4860	Expected 5000	Recovery 97.1	Acceptance Range 90 - 110				
Chromium	ug/L	1.00	5060	5000	101	90 - 110				
Iron Interference Check	ug/L Standard A	1.00	5030	5000	101	90 - 110				
Parameter Aluminum Interference Check	Unit ug/L	DF 1.00	Result 1820	Expected 2000	Recovery 91.2	Acceptance Range 80 - 120				
Parameter Aluminum Interference Check	Unit ug/L	DF 1.00	Result 1840	Expected 2000	Recovery 92.0	Acceptance Range 80 - 120				
Parameter Chromium Interference Check	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range				
Parameter Chromium Interference Check	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range				
Parameter Iron Interference Check	Unit ug/L Standard A	DF 1.00	Result 2040	Expected 2000	Recovery 102	Acceptance Range 80 - 120				
Parameter Iron	Unit ug/L	DF 1.00	Result 2030	Expected 2000	Recovery 102	Acceptance Range 80 - 120				
Interference Check		<u>-</u>	.		_					
Parameter Aluminum	Unit ug/L	DF 1.00	Result 1820	Expected 2000	Recovery 90.8	Acceptance Range 80 - 120				
Interference Check	Standard AB									
Parameter Aluminum	Unit ug/L	DF 1.00	Result 1810	Expected 2000	Recovery 90.4	Acceptance Range 80 - 120				
Interference Check										
Parameter Chromium Interference Check	Unit ug/L Standard AB	DF 1.00	Result 1980	Expected 2000	Recovery 98.9	Acceptance Range 80 - 120				
Parameter Chromium	Unit ug/L	DF 1.00	Result 2070	Expected 2000	Recovery 103	Acceptance Range 80 - 120				

Report Continued

Client: E2 Consulting E	- · ·		Project Name: Project Number	Page 13 of 29 Printed 11/29/2010		
Interference Check S	Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	1990	2000	99.3	80 - 120
Interference Check S	Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	2040	2000	102	80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 14 of 29 Printed 11/29/2010

Parameter		Unit	Anal	yzed [)F	MDL	RL	Result
991995-001 Arsenic		ug/L	11/05	/2010 12:53 5	.00	0.260	1.0	ND
Lead		ug/L	11/05	/2010 12:53 5	.00	0.0950	10.0	ND
Nickel		ug/L	11/05	/2010 12:53 5	.00	0.240	10.0	ND
991995-002 Arsenic		ug/L	11/05/2010 13:21		.00	0.260	1.0	8.1
Lead		ug/L	11/05/2010 13:21		.00	0.0950	10.0	ND
Nickel		ug/L	11/05/2010 13:21		.00	0.240	10.0	24.1
Method Blank		<u></u>						
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Nickel	ug/L	1.00	ND					
Lead	ug/L	1.00	ND					
Duplicate							Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected	R	PD	Accepta	ince Range
Arsenic	ug/L	5.00	ND	0		0	0 - 20	
Nickel	ug/L	5.00	1.40	1.30		7.48	0 - 20	
Lead	ug/L	5.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	ince Range
Arsenic	ug/L	1.00	48.7	50.0		97.3	90 - 110)
Nickel	ug/L	1.00	48.5	50.0		97.0	90 - 110)
Lead	ug/L	1.00	48.2	50.0		96.4	90 - 110)
Matrix Spike							Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected/Adde	d R	lecovery	Accepta	ance Range
Arsenic	ug/L	5.00	233	250.(250.)		93.3	75 - 128	5
Nickel	ug/L	5.00	207	251(250.)		82.2	75 - 128	5
Lead	ug/L	5.00	226	250.(250.)		90.5	75 - 125	5
Matrix Spike Duplicate							Lab ID =	991995-001
Parameter	Unit	DF	Result	Expected/Adde	d R	lecovery		ance Range
Arsenic	ug/L	5.00	241	250.(250.)		96.2	75 - 12	5
Nickel	ug/L	5.00	213	251(250.)		84.8	75 - 12	5
Lead	ug/L	5.00	226	250.(250.)		90.6	75 - 128	5

Report Continued

Client: E2 Consulting En	ient: E2 Consulting Engineers, Inc. Proj Proj			PG&E Topock I :: 408401.01.DM	Project	Page 15 of 29 Printed 11/29/2010	
MRCCS - Secondary							
Parameter	Unit	DF	Result 49.6	Expected 50.0	Recovery 99.2	Acceptance Range 90 - 110	
Arsenic	ug/L	1.00 1.00	49.0 52.0	50.0	99.2 104	90 - 110	
Nickel Lead	ug/L ug/L	1.00	48.6	50.0	97.1	90 - 110	
MRCVS - Primary	ug/L	1.00	40.0	00.0	0,.1	00 110	
	11-14	DE	Decult	Eveneted	Basavasi	Acceptance Range	
Parameter Arsenic	Unit ug/L	DF 1.00	Result 48.0	Expected 50.0	Recovery 96.1	90 - 110	
Nickel	ug/L	1.00	46.5	50.0	93.1	90 - 110	
Lead	ug/L	1.00	46.5	50.0	93.1	90 - 110	
Interference Check S	-						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Arsenic	ug/L	1.00	ND	0	(Coord)	7.000p.2.100 1.2.130	
Interference Check S	•						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Arsenic	ug/L	1.00	ND	o	3		
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Nickel	ug/L	1.00	ND	0	-		
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Nickel	ug/L	1.00	ND	0			
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Lead	ug/L	1.00	ND	0			
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Lead	ug/L	1.00	ND	0			
Interference Check S	Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Arsenic	ug/L	1.00	47.5	50.0	95.1	80 - 120	
Interference Check \$	Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Arsenic	ug/L	1.00	45.5	50.0	91.0	80 - 120	

Report Continued

Client: E2 Consulting	E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Project Number: 408401.01.DM		-	Page 16 of 29 Printed 11/29/2010		
Interference Cheo	ck Standard AB					
Parameter Nickel Interference Cheo	Unit ug/L ck Standard AB	DF 1.00	Result 48.2	Expected 50.0	Recovery 96.3	Acceptance Range 80 - 120
Parameter Nickel Interference Cheo	Unit ug/L ck Standard AB	DF 1.00	Result 45.8	Expected 50.0	Recovery 91.6	Acceptance Range 80 - 120
Parameter Lead Interference Cheo	Unit ug/L ck Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Lead	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 17 of 29 Printed 11/29/2010

Metals b	y EPA 200.8, T	otal		Batch	111210A				
Parameter	Roberts - Indonesia (Indonesia) M	e ha na shi ka shekar i k	Unit	Ana	lyzed	DF	MDL	RL	Result
991995-00	1 Antimony		ug/L	11/12	/2010 16:19	5.00	6.00	10.0	ND
	Barium		ug/L	11/12	/2010 16:19	5.00	0.185	10.0	12.0
	Chromium		ug/L	11/12	/2010 16:19	5.00	0.0950	1.0	ND
	Copper		ug/L	11/12	/2010 16:19	5.00	0.305	5.0	ND
	Manganese		ug/L	11/12	/2010 16:19	5.00	0.210	1.0	1.8
	Molybdenum		ug/L	11/12	/2010 16:19	5.00	0.660	10.0	16.2
	Zinc		ug/L	11/12	/2010 16:19	5.00	1.32	10.0	11.1
991995-00	2 Antimony		ug/L	11/12	/2010 17:24	5.00	6.00	10.0	ND
	Barium		ug/L	11/12	/2010 17:24	5.00	0.185	10.0	25.4
	Copper		ug/L	11/12	/2010 17:24	5.00	0.305	5.0	ND
	Manganese		ug/L	11/12	/2010 17:24	5.00	0.210	1.0	9.8
	Molybdenum		ug/L	11/12	/2010 17:24	5.00	0.660	10.0	20.4
	Zinc		ug/L	11/12	/2010 17:24	5.00	1.32	10.0	ND
Me	thod Blank								
Paramete	эг	Unit	DF	Result					
Barium		ug/L	1.00	ND					
Chromiur	n	ug/L	1.00	ND					
Zinc		ug/L	1.00	ND					
Antimony	·	ug/L	1.00	ND					
Copper		ug/L	1.00	ND					
Mangane	se	ug/L	1.00	ND					
Molybder	um	ug/L	1.00	ND					
Duj	olicate							Lab ID =	991995-001
Paramete	er	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Barium		ug/L	5.00	11.3	12.0		6.26	0 - 20	
Chromiu	n	ug/L	5.00	1.03	0.934		10.0	0 ~ 20	
Zinc		ug/L	5.00	11.4	11.1		1.96	0 - 20	
Antimony	,	ug/L	5.00	ND	0		0	0 - 20	
Copper		ug/L	5.00	ND	0		0	0 - 20	
Mangane	se	ug/L	5.00	1.52	1.81		17.7	0 - 20	
Molybder	ıum	ug/L	5.00	15.9	16.2		2.37	0 - 20	

Report Continued

Client: E2 Consulting Eng		oject Name: oject Number	ject	Page 18 of 29 Printed 11/29/2010		
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	47.4	50.0	94.7	90 - 110
Chromium	ug/L	1.00	48.0	50.0	96.0	90 - 110
Zinc	ug/L	1.00	50.0	50.0	99.9	90 - 110
Antimony	ug/L	1.00	46.4	50.0	92.8	90 - 110
Copper	ug/L	1.00	48.3	50.0	96.7	90 - 110
Manganese	ug/L	1.00	47,2	50.0	94.3	90 - 110
Molybdenum	ug/L	1.00	47.7	50.0	95.3	90 - 110
Matrix Spike						Lab ID = 991995-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Barium	ug/L	5.00	240	262(250.)	91.3	75 - 125
Chromium	ug/L	5.00	232	251(250.)	92.3	75 - 125
Zinc	ug/L	5.00	244	261(250.)	93.3	75 - 125
Antimony	ug/L	5.00	205	250.(250.)	82.0	75 - 125
Copper	ug/L	5.00	214	250.(250.)	85.6	75 - 125
Manganese	ug/L	5.00	226	252(250.)	89.9	75 - 125
Molybdenum	ug/L	5.00	253	266(250.)	94.5	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	49.3	50.0	98.5	90 - 110
Chromium	ug/L	1.00	47.8	50.0	95.7	90 - 110
Zinc	ug/L	1.00	51.6	50.0	103	90 - 110
Antimony	ug/L	1.00	48.6	50.0	97.2	90 - 110
Copper	ug/L	1.00	47.9	50.0	95.9	90 - 110
Manganese	ug/L	1.00	49.8	50.0	99.6	90 - 110
Molybdenum	ug/L	1.00	45.4	50.0	90.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	50.1	50.0	100	90 - 110
Chromium	ug/L	1.00	47.6	50.0	95.2	90 - 110
Zinc	ug/L	1.00	50.8	50.0	102	90 - 110
Antimony	ug/L	1.00	47.8	50.0	95.6	90 - 110
Copper	ug/L	1.00	47.4	50.0	94.8	90 - 110
Manganese	ug/L	1.00	50.1	50.0	100	90 - 110
Molybdenum	ug/L	1.00	48.6	50.0	97.2	90 - 110

Report Continued

Client: E2 Consulting	Engineers, Inc.		oject Name: oject Number	Project	Page 19 of 29 Printed 11/29/2010	
Interference Check	Standard A					
Parameter Barium Interference Check	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Barium Interference Check	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Zinc Interference Check	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Parameter Zinc Interference Check	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Antimony Interference Check	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Antimony Copper Interference Check	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Parameter Copper Interference Check	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Engineers, Inc.			oject Name: oject Number	Project	Page 20 of 29 Printed 11/29/2010	
Interference Check	Standard A					
Parameter Molybdenum	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check	Standard AB					
Parameter Barium Interference Check	Unit ug/L Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Barium Interference Check	Unit ug/L Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check	Unit ug/L Standard AB	DF 1.00	Result 48.3	Expected 50.0	Recovery 96.5	Acceptance Range 80 - 120
Parameter Chromium Zinc Interference Check	Unit ug/L ug/L Standard AB	DF 1.00 1.00	Result 46.9 49.5	Expected 50.0 50.0	Recovery 93.8 99.0	Acceptance Range 80 - 120 80 - 120
Parameter Zinc Antimony Interference Check	Unit ug/L ug/L	DF 1.00 1.00	Result 49.8 ND	Expected 50.0 0	Recovery 99.6	Acceptance Range 80 - 120
Parameter Antimony Interference Check	Unit ug/L Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Copper Interference Check	Unit ug/L Standard AB	DF 1.00	Result 48.2	Expected 50.0	Recovery 96.5	Acceptance Range 80 - 120
Parameter Copper Interference Check	Unit ug/L Standard AB	DF 1.00	Result 47.3	Expected 50.0	Recovery 94.5	Acceptance Range 80 - 120
Parameter Manganese Interference Check	Unit ug/L Standard AB	DF 1.00	Result 49.8	Expected 50.0	Recovery 99.7	Acceptance Range 80 - 120
Parameter Manganese Molybdenum	Unit ug/L ug/L	DF 1.00 1.00	Result 48.7 ND	Expected 50.0 0	Recovery 97.4	Acceptance Range 80 - 120

Report Continued

Client: E2 Consultin	g Engineers, Inc.		roject Name: roject Number:	PG&E Topock 408401.01.DM	•	Page 21 of 29 Printed 11/29/2010
Interference Che	eck Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Molybdenum	ug/L	1.00	ND	0	-	

Reactive Silica by SM450	10-SI D		Batch 11Si10A		11/5/2010)
Parameter		Unit	Analyzed		DF	MDL	RL	Result
991995-002 Silica		mg/L	11/05/2010		0.0	0.700	2.00	25.5
Method Blank								
Parameter	Unit	DF	Result					
Silica	mg/L	1.00	ND					
Duplicate							Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Silica	mg/L	50.0	25.9	25.5	1.77 0 - 20		Ū	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Silica	mg/L	1.00	0.500	0.464		108	90 - 110	-
Matrix Spike							Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected/Adde	d R	Recovery	Accepta	ince Range
Silica	mg/L	50.0	45.0	45.5(20.0)		97.8	75 - 125	-
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	R	Recovery	Accepta	ince Range
Silica	mg/L	1.00	0.227	0.232		97.8	90 - 110	•
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	ince Range
Silica	mg/L	1.00	0.391	0.400		97.7	90 - 110	-

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 22 of 29
	Project Number:	408401.01.DM	Printed 11/29/2010

Total Dissolved Solids b	oy SM 254	0 C	Batch	11TDS10C			11/8/201	0
Parameter	ya kana ku ku kata na kata	Unit	nit Analyzed		DF	MDL	RL	Result
991995-001 Total Dissolved	Solids	mg/L	11/08/2010		1.00	0.434	250.	4590
991995-002 Total Dissolved Solids		mg/L	11/08	/2010	1.00	0.434	250.	4940
Method Blank							<u></u>	
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID ≕	991995-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	5090	4940		2.99	0 - 5	5
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	512.	500.		102	90 - 110	0
Lab Control Sample E	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	500.	500.		100,	90 - 110	-

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 23 of 29
	Project Number	: 408401.01.DM	Printed 11/29/2010

Parameter		Unit	Апа	lyzed [)F	MDL	RL	Result
991995-002 Total Organic C	arbon	mg/L	11/05	5/2010 18:10 1	00	0.0250	0.300	ND
Method Blank				······································				
Parameter	Unit	DF	Result					
Total Organic Carbon	mg/L	1.00	ND					
Duplicate							Lab ID = 9	991923-007
Parameter	Unit	DF	Result	Expected	RP	D	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	ND	0	0		0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Red	covery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	19.2	20.0	90	6.0	90 - 110	
Matrix Spike							Lab ID = 9	991995-002
Parameter	Unit	DF	Result	Expected/Adde	d Red	covery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	10.2	10.0(10.0)		02.	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	Red	covery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	9.60	10.0		6.0	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Red	covery	Acceptar	nce Range
Total Organic Carbon	mg/L	1.00	9.45	10.0		4.5	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Rec	covery	Acceptar	ice Range
Total Organic Carbon	mg/L	1.00	9.28	10.0		2.8	90 - 110	3-

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 24 of 29
	Project Number:	408401.01.DM	Printed 11/29/2010

Total Phosphate, SM 450 Parameter	이상의 것 이번 소방을	Unit	Berk a gapta a hee∧	haan pintan parinaki. Meneel			11/4/2010	
			Ana	yzed	DF	MDL	RL	Result
991995-002 Phosphate, Tota	l As P	mg/L	11/04/2010		00.1	0.00300	0.0200	ND
Method Blank								
Parameter	Unit	DF	Result					
Phosphate, Total As P	mg/L	1.00	ND					
Duplicate							Lab ID = 9	91998-001
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptar	ice Range
Phosphate, Total As P	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Phosphate, Total As P	mg/L	1.00	0.110	0.100		110.	90 - 110	U
Matrix Spike							Lab ID = 9	91995-002
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Acceptar	ice Range
Phosphate, Total As P	mg/L	1.00	0.0691	0.0650(0.065		106	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	lecovery	Acceptar	ice Range
Phosphate, Total As P	mg/L	1.00	0.0641	0.0600		107	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Phosphate, Total As P	mg/L	1.00	0.0684	0.0650		105	90 - 110	

Report Continued

Client: E2 Consulting Engi	Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM				
Ammonia Nitrogen by SM Parameter	4500-NH	I3D Unit	Batch Anal	11NH3-E10A yzed	DF	MDL	11/8/2010 RL	Result
991995-001 Ammonia as N		mg/L	11/08/	/2010	1.00	0.00200	0.500	ND
991995-002 Ammonia as N		mg/L	11/08/	/2010	1.00	0.00200	0.500	ND
Method Blank								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	991995-001
Parameter Ammonia as N Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	F	RPD 0	Accepta 0 - 20	nce Range
Parameter Ammonia as N Matrix Spike	Unit mg/L	DF 1.00	Result 10.6	Expected 10.0	F	Recovery 106	90 - 110	nce Range 991995-001
Parameter Ammonia as N Matrix Spike Duplicate	Unit mg/L	DF 1.00	Result 5.96	Expected/Add 6.00(6.00)	ed F	Recovery 99.4	75 - 125	nce Range 991995-001
Parameter Ammonia as N MRCCS - Secondary	Unit mg/L	DF 1.00	Result 5.92	Expected/Add 6.00(6.00)	ed F	Recovery 98.7	Accepta 75 - 125	nce Range
Parameter Ammonia as N MRCVS - Primary	Unit mg/L	DF 1.00	Result 5.79	Expected 6.00	F	Recovery 96.5	Accepta 90 - 110	nce Range
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 5.77	Expected 6.00	F	Recovery 96.1	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.Project Name:PG&E Topock ProjectPage 26 of 29Project Number:408401.01.DMPrinted 11/29/2010

Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
991995-002 Manganese		ug/L	11/23/	2010 15:36	5.00	0.210	1.0	9.2
Method Blank								
Parameter Manganese Duplicate	Unit ug/L	DF 1.00	Result ND				Lab iD =	[;] 992184-001
Parameter Manganese Lab Control Sample	Unit ug/L	DF 1.00	Result 26.9	Expected 27.5	7	RPD 2.21	Accept 0 - 20	ance Range
Parameter Manganese Matrix Spike	Unit ug/L	DF 1.00	Result 48.8	Expected 50.0	F	Recovery 97.5	90 - 11	ance Range 0 • 992184-001
Parameter Manganese Matrix Spike Duplica	Unit ug/L te	DF 1.00	Result 73.1	Expected/Add 77.5(50.0)	ed F	Recovery 91.1	75 - 12	ance Range 5 = 992184-001
Parameter Manganese MRCCS - Secondar	Unit ug/L	DF 1.00	Result 71.2	Expected/Add 77.5(50.0)	ed F	Recovery 87.4	Accept 75 - 12	ance Range 5
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.0	Expected 50.0	F	Recovery 92.1	Accept 90 - 11	ance Range 0
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.8	Expected 50.0	F	Recovery 93.7	Accep 90 - 11	tance Range 0
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.8	Expected 50.0	F	Recovery 99.5	Accep 90 - 11	tance Range I0
Parameter Manganese Interference Check	Unit ug/L Standard A	DF 1.00	Result 51.9	Expected 50.0	I	Recovery 104	Ассер 90 - 11	tance Range 10
Parameter Manganese	Unit ug/L	DF 1.00	Result ND	Expected 0	ļ	Recovery	Ассер	tance Range

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM			Page 27 of 29 Printed 11/29/2010		
Interference Check	Standard A							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Manganese	ug/L	1.00	ND	0				
Interference Check	Standard AB							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Manganese	ug/L	1.00	48.1	50.0	96.2	80 - 120		
Interference Check	Standard AB							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Manganese	ug/L	1.00	48.6	50.0	97.1	80 - 120		

.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

.

.

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 28 of 29 Printed 11/29/2010

Metals by 200.7, Diss		(11-14) 11-14	이 이 것 같은 사람들은	111210A-Th			Result
Parameter		Unit			DF MDL	RL	
991995-002 Iron		ug/L	11/12	/2010 09:36 1	.00 3.00	20.0	ND
Method Blank							
Parameter	Unit	DF	Result				
Iron	ug/L	1.00	ND				
Duplicate						Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ance Range
Iron	ug/L	1.00	ND	0	0	0 - 20	
Lab Control Samp	le						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	4880	5000	97.7	90 - 110)
Matrix Spike						Lab ID =	991995-002
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accepta	ance Range
Iron	ug/L	1.00	2240	2000(2000)	112.	75 - 12	-
MRCCS - Second	ary						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
iron	ug/L	1.00	4980	5000	99.5	90 - 110)
MRCVS - Primary	,						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	5010	5000	100	90 - 110	כ
Interference Chec	k Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	2030	2000	101	80 - 120	כ
Interference Chec	k Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	1870	2000	93.4	80 - 120	ַר ני
Interference Chec	k Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	2110	2000	105	80 - 12	
Interference Chec	k Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	1940	2000	96.8	80 - 12	0

Report Continued

Client: E2 Consulting Engineers, Inc.	 PG&E Topock Project : 408401.01.DM	Page 29 of 29 Printed 11/29/2010

Turbidity by SM 2130 B			Batch	11TUC10D		11/4/2010				
Parameter	ling stand and stand stands	Unit	Апа	lyzed	DF	MDL	RL	Result		
991995-001 Turbidity		NTU	11/04	l/2010	1.00	0.0140	0.100	0.127		
991995-002 Turbidity		NTU	11/04	1/2010	1.00	0.0140	0.100	ND		
Method Blank										
Parameter	Unit	DF	Result							
Turbidity	NTU	1.00	ND							
Duplicate							Lab ID =	991995-002		
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range		
Turbidity	NTU	1.00	ND	0		0	0 - 20	Ū		
Lab Control Sample										
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range		
Turbidity	NTU	1.00	8.06	8.00		101	90 - 110	0		
Lab Control Sample Du	uplicate									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range		
Turbidity	NTU	1.00	8.02	8.00		100	90 - 110)		

Respectfully submitted, **TRUESDAIL LABORATORIES, INC.**

tar Mona Nassimi Manager, Analytical Services

Sean 9

Total Dissolved Solids by SM 2540 C

Calculations

.....

1st

a	tions	11TDS10C 11/11/10						
al	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF	
7	0.0002	No	0.0001	1.0	25.0	ND	1	
)	0.0000	No	0.0673	1346.0	50.0	1346.0	1	
1	0.0000	No	0.0348	696.0	50.0	696.0	1	
	0.0000	No	0.1212	2424.0	50.0	2424.0	1	

Laboratory Number	volume, ml	Initial weight,g	Final weight,g	2nd Final weight,g	Difference, g	0.5mg? Yes/No	Residue weight,g	residue, ppm	RL, ppm	Value, ppm	DF
BLANK	100	111.1446	111.1449	111.1447	0.0002	No	0.0001	1.0	25.0	ND	1
991917-1	50	110.3626	110,4299	110.4299	0.0000	No	0.0673	1346.0	50.0	1346.0	1
991917-2	50	108.6906	108.7254	108.7254	0.0000	No	0.0348	696.0	50.0	696.0	1
991979-5	50	73.0357	73,1569	73.1569	0.0000	No	0.1212	2424,0	50.0	2424.0	1
991979-6	50	75.1470	75.2717	75.2717	0.0000	No	0.1247	2494.0	50.0	2494.0	1
991979-7	50	74.2625	74.3249	74.3247	0.0002	No	0.0622	1244.0	50.0	1244.0	1
991979-8	50	110.6353	110.6969	110.6969	0.0000	No	0.0616	1232.0	50.0	1232.0	1
991994-1	20	76.2233	76.2896	76.2894	0.0002	No	0.0661	3305.0	125.0	3305.0	1
991994-2	10	74,7674	74.8210	74.821	10.0000	No	0.0536	5360.0	250.0	5360.0	1
991995-1	10	68.9868	69.0330	69.0327	0.0003	No	0.0459	4590.0	250.0	4590.0	1
991995-2	10	68.9000	68.9494	68.9494	0.0000	No	0.0494	4940.0	250.0	4940.0	1
991995-2D	10	66.8223	66.8732	66.8732	0.0000	No	0.0509	5090.0	250.0	5090.0	1
LCS	100	104.8934	104.9450	104.9446	0.0004	No	0.0512	512.0	25.0	512.0	1
992017-	100	112.9049	112.9360	112,9356	0.0004	No	0.0307	307.0	25.0	307.0	1
992010-4	100	112.3122	112.3584	112.3581	0.0003	No	0.0459	459.0	25.0	459.0	1
991944-16	50	66.7247	66.7570	66.7569	0.0001	No	0.0322	644.0	50.0	644.0	1
992055-1	100	109.4434	110.0572	110.0572	0.0000	No	0.6138	6138.0	25.0	6138.0	· 1
992055-2	100	76.0089	76.4980	76.4979	0.0001	No	0.4890	4890.0	25.0	4890.0	1
992055-3	100	74.7218	75.1297	75.1296	0.0001	No	0.4078	4078.0	25.0	4078.0	1
992059-2	200	110.9669	110.9839	110.9839	0.0000	No	0.0170	85.0	12.5	85,0	1
992059- ³	100	69.5146	69.5348	69.5348	0.0000	No	0.0202	202.0	25.0	202.0	
992068-1	2	49.8957	50.0769	50,0769	0.0000	No	0.1812	90600.0	1250.0	90600.0	1
992068-2	2	49.4141	49.5840	49.584	0.0000	No	0.1699	84950.0	1250.0	84950.0	1
LCSD	100	112.8494	112.8994	112.8994	0.0000	No	0.0500	500.0	25.0	500.0	1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Sample

.

d Name

Analyst Signature

Reviewer Printed Name

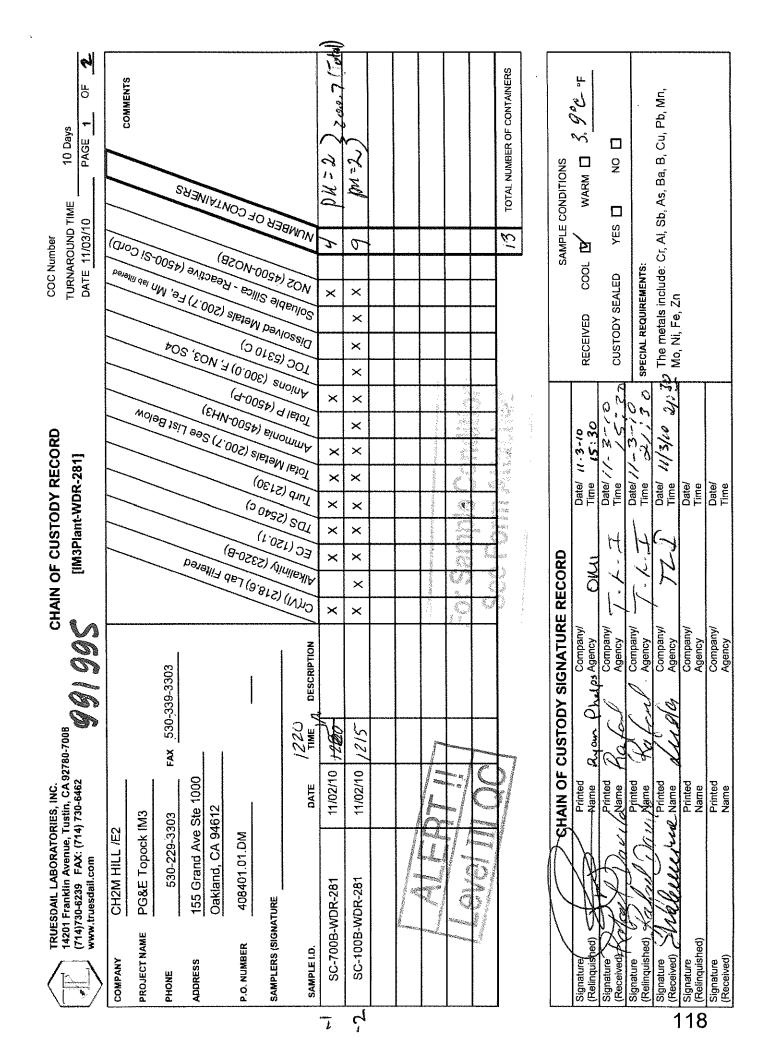
Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS10C

Date Calculated: 11/11/10


Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Caic TDS <1.3
991917-1	2160	0.62	1404	0.96
991917-2	1070	0.65	695.5	1.00
991979-5	3480	0.70	2262	1.07
991979-6	3490	0.71	2268.5	1.10
991979-7	1830	0.68	1189.5	1.05
991979-8	1880	0.66	1222	1.01
991994-1	5300	0.62	3445	0.96
991994-2	8550	0.63	5557.5	0.96
991995-1	7280	0.63	4732	0.97
991995-2	7970	0.62	5180.5	0.95
991995-2D	7970	0.64	5180.5	0.98
LCS				
992017	490	0.63	318.5	0.96
992010-4	790	0.58	513.5	0.89
991944-16	1060	0.61	689	0.93
992055-1	7820	0.78	5083	1.21
992055-2	6050	0.81	3932.5	1.24
992055-3	5230	0.78	3399.5	1.20
992059-2	169	0.50	109.85	0.77
992059-3	363	0.56	235.95	0.86
992068-1	138800	0.65	90220	1.00
992068-2	126600	0.67	82290	1.03
				-

H. L

<u> </u>	Low Alkalinity as CaCO ₃ (< ²⁰ ppm)					:		 		:		:									1000 (0,1 m) 4 Mail and			·	
(í [°]			1								-						 	ļ	ļ			 		I	
11ALK10B Water 11/10/10	OH Ałkalinity as CaCO ₃ (ppm)	QN	Q	DN	QN	QN	2675000	2375000	QN	QN	QN	ND	DN	- AAAAAAA MATTA AAAAAAAAAAAAAAAAAAAAAAAA			 					QN	ND	(2 x B - C) x N x 50000 mL sample recorded pH o reach pH 0.3 unit lower ndard acid	∦.
	CO3 Alkalinity as CaCO ₃ (ppm) as CaCO ₃ (ppm)	QN	Q	QN	ND	DN	450000	500000	20000	18000	0. 	29	90						3 Ar			84	36	alinity: = (2 x B - C) x N x 5(CaCO3 mL sample B = mL titrant to first recorded pH C = total mL titrant to reach pH 0.3 unit lower N = normality of standard acid	1 0.3 lower Reviewer Signature
Analytical Batch: Matrix: Date Calculated:	HCO3 Alkalinity as CaCO ₃ (ppm)	QN	131.0	136.0	1110	115.0	QN	QN	155000,0	137500 0	136.0	162.0	159.0	-								14.0	13.0	Low Alkalinity: = <u>(2 x B -</u> as mg/L CaCO3 n Where: B = mL titrant to first recorded .C = total mL titrant to reach pH N = normality of standard acid	S = titrant vol to reach pH 0.3 lower
	Totał Ałkalinity Reported Value	Ð	131.0	136.0	111.0	115.0	3125000.0	2875000.0	175000.0	155500.0	136.0	240.0	239.0	· · · · · · · · · · · · · · · · · · ·								98.0	0.66	Low Alt as mg/l Where:	
20B	RL, ppm	5	2	5	5	υn	125000	125000	25000	5000	5	5	5			,		- ANALASA - NATAANAN				- n	5		2642 (
Alkalinity by SM 2320B calculations	Total Alkalinity as CaCO3	1.0	131.0	136.0	111.0	115.0	3125000.0	2875000.0	175000.0	155500.0	136.0	240.0	239.0									98.0	0.66		
/ by v	Total mt. titrant to reach pH 0.3 unit iower							And a second	a company of the second se		and the second		in the second					and the second			and the second secon			<u>A x N x 50000</u> <i>mL sumple</i> mg CaCO3/L n Alkalinity, mg CaCO cid used indard acid	
alinity Calc	Titrant Volume to reach pH 4.5	0.05	6.55	6.80	5.55	5.75	6 25	5.75	1,75	7.78	6.80	12.00	11.95			and the second secon		a subsection of the second				4.90	495	T or $P = \left(\frac{A \times N \times 50000}{mL} \times x mple}\right)$ T = Total Alkalinity, mg CaCO3/L P = Phenolphthalein Alkalinity, mg CaCO3/L A = mL standard acid used N = normality of standard acid	
AIk	P Alkalinity as CaCO3	0.0	0.0		0.0	0.0	2900000.0	2625000.0	10000.0	0.0006	0.0	39.0	40.0									42.0	43.0	T or P = T = Total Alka P = Phenolph A = mL stand N = normality	
	Titrant Volume to reach pH 8.3						5.8	с, С	01	05		50	20					an she and the second second second second				2.1	2.2	i i	JA
IIV C	HCL HCL N	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02					10 States				0.02			
ATORIES, 11/10/10	Sample Volume (ml)	20	20	50	50	50	0.002	0.002	00	0.05	20	50	20			and brack and a second		a and a second secon				20	50	Calculations as follows: the reporting limit) Wher tandard tandard Duplicate te	
NBORAT	Sample pH	7.15	797	7.70	8.00	7.93	10.95	10.91	3,40	8.91	7 65	9.25	9.30					and the second second second second				10.25	10 25	Calcula Calcula Standard Standard D	2
Date of Analysis: Date Start of Analysis: Date Sampled:			A reaction of the second s		A Constraint of the second sec	A Contraction of the second		in community of the second										Angelongen (and an		1				Calculations a ND: Not Detected (below the reporting limit) LCS: Laboratory Control Standard LCSD: Laboratory Control Standard Duplicate MS: Matrix Spike Duplicate MSD: Matrix Spike Duplicate	X X X
Date of Date Start of Date Sta	D ID	RI ANIK	500 CONT	ct0017	592010-2	992077-20	920068-1	920066-2	692073-1	997075-2	892007 DUP	SE2017 MS	992017 MSD		a i Anna - Altri Will Anna Anna Air Ian					17 - 9 million and a substant strategy and		10S1	LCS2	ND: Not Detected LCS: Laboratory C CSD: Laboratory C MS: Matrix Spike MSD: Matrix Spike	TOPSAOT

AL X_03A x811/11/10, by HT

049

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log Date Lab Number Initial pH Buffer Added (mL) Final pH Time Buffered Initials 1 03 09 97 -1 9,5 N/A N/A N/A SB 1 -2 1 -2 1 -1 1 1 1

10/02/10	991376-1	9,5		NA	NA	25
1	_2	f				1
	-3			·		
	-3					
	-5					
	-6					
	-6 -7					
	-8					
	-9					
	-10					
Ą	1-11	\checkmark	J	~		
(03/10	991977-1	9,5	N/A	Nº/A	NA	23
	1 -2	1	i		Ī	
	-2	-				
	1 1 -4	S.	4		V	V
103/10	991978-1	9,5	N/A	N/A	N/A	SB
ĺ	-2 V -3 991979-1		1		<u> </u>	
	V-3	V	\mathbf{V}		J	J
103/10	991979-1	9.5	N/A	N/A	A\ Lo	SB
r i	1 -2		1	i		7
	-3					
	-3					
	-5					
	-6					
	-8					
V	1-9	ď		· _	. V	· J
000	991994-1	7.0	5.00	9.5	8:45	3B
104/10	991995-1	7.0	5.00	9.5 9.5 9.5	8:45 8:50 8:55	SB
Y	4-2	7.0	5.00	9.5	8:55	3B
R						

Enviro\Ali\Cr6+ pH Log

119

Turbidity/pH Check

ſ		1		urbiaity/pH (леск		•
	Sample Number		pH	Date	Analyst	Need Diges	Adjusted to pH<2 (Y/N)
	991805,	41	42	10/27	KK	No	@11-30 am 10/26/1
-	1846(1-6,89) ~1	42	į.	d	1	Jan Ar ann 1012611
•	124 (1-5)	(<u>~2</u>				
7	1842 (1-7)	4	22			á.	
ļ	99186X	21	42	10/28/11	ち	NU	
ŀ	941882	41	72			1	a 2: 30 p.m
-	991 86 9	61	72				
┝	991 879 (1-2)	<u>L1</u>	22		1		
ŀ	1871	<u> </u>	772 Millelly	10/28	KK	NO	0.10:00
┢	1208(1-3)	<u> </u>		10/29	KK.	NO.	
┝	1845(1-8)	<u> </u>	<2			NO	
-	1872 (1-7)	/	<u> ~2</u>			NO	
\vdash	1874 (1-11)	<u> </u>	22			NO	
╞	1877 (1-6) < 1	<u> </u>	+-1		No	
	1875/1-9)	<	42		<u>h</u>	No	
F	1876(1-11)	4	22			NO	
-	991891					I NG	
	991893(1-2)	41	<u>72</u> 42	- Kity 10/30	ht_	NO	@ 4:05 pm 10/29
	9918978 (1-5)	<1		10/20	KK	NO	
	9918 94 (1-9)	41				NO	
	491897 (1-9)	41	42		{	NO	
	991895 (1-8)	4	22	<u>├──</u>		No	
- 1	99 1896 (1-11)	·······	<2	++		NO	
Ľ	991898 (1-11)		42	++		NO	-
	991892 (1-18)	41	42	+		NO	
	991921 (1-68)		42	11/1/10	KK	No	
	991922 (1-4)	41	42	11110	<u>-p</u>	No	
L	491917 (1-5	1 < 1	42			NO	
L	9919201-6	521	<u> </u>			No	
{	991972,79914			11/2/10	ht.	NO Yes-Ta	A
1	191924(3)	41	72		[NO	2 0.12
	991932(3)	71	62				2 8:220am
	991933		<u> 22</u> 22			Yes No	······································
ļ	1934	21	42				
 	991936 (1)	41	<u>*2</u> フス	11/2	KK	NO	@ 9:50 am
	991 944 (16,24)	61		ti/2	ES	NU	asin P.n.
<u> </u>	941945(1-3)		<u> </u>		_1_	NU	DS: UV P.M.
F	491953 (3)	41	72	11/3	NA	No	a lizo on
	191959	21	62	<u> </u>			- yon
	91960	21	12				
<u>۲</u>	91961	<u>L</u>	12				
	91963		42				
8		21	42	- <u>Y</u>	V	V	
0	191843(2)	·····	<u><2</u>	V	V	YES	>
C	191918 (2	<u>-₹</u> ↓	72	11/3/10	AT	No - Filler	Y 2 11: man 1/4
q	191918 (2 191994 (1,2)	72	12	<u>_</u>	<u>↓</u>	<u> </u>	
a	91995(1-2)	~	71 22 42	11/5	KK-	NO	@ 8:20 am 11/5
(191966 (9)	<u> </u>	<u>22</u> 22		¥ V		<u> </u>
•	•••••••••••••••••••••••••••••••••••••••	<u>~ </u>	<u> </u>	τ	\checkmark	\checkmark	

ÎTQC 616 Sample Integrity & Analysis Discrepancy orm

A

Clier	nt: <u>E2</u>	Lab # 991995
Date	Delivered: 11 / 3 /10 Time: 21:30 By: DMail DField	Service Client
1.	Was a Chain of Custody received and signed?	tyes INO IN/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ŒN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No □N/A
4.	If a letter was sent with the COC, does it match the COC?	Yes No UN/A
5.	Were all requested analyses understood and acceptable?	QYes No N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>3</u>.9° C	QYYes INO IN/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Tyes INO IN/A
8 .	Were sample custody seals intact?	□Yes □No □N/A
9.	Does the number of samples received agree with COC?	₫Yes □No □N/A
10.	Did sample labels correspond with the client ID's?	ŻrYes □No □N/A.
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail	ØYes □No □N/A
12.	Were samples pH checked? pH = <u>Sec</u> C. D , C	ØYes-□No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	UYes INO IN/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH L Std	₫Yes □No □N/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid ⓓOti	
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Rafael Davila

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 23, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-282 PROJECT, GROUNDWATER MONITORING, TLI NO.: 992097

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-282 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

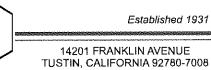
The samples were received and delivered with the chain of custody on November 9, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample result and associated matrix spike for sample SC-700B-WDR-282 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike result was within acceptable limits and the results from the analysis at a 5x dilution matched those of the straight run, the result from the straight run is reported.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.


Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Anager, Analytical Services

K.R.P. goza

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992097 Date: November 23, 2010 Collected: November 9, 2010 Received: November 9, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

Clinit: E. Conculting Explores Neuronality Explores Neuronalinteenneus Neuronality Explores Neuronality Explores Neuronality E	Excell	TRUESDAIL Excellence in Indepen	TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing	RIES, INC.					Estab	Established 1931	
a factarand xvei Sujie 1000 Oalshand CA 9612 Terker Froekk Projekt 5 Rawn Dufy 2 609401.01.DM 2 6004001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 13,9 undhol 2 60104001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 13,9 undhol 2 60104001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 13,9 undhol 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-222 E12018 MONE 119/2010 12:00 Monemium Freezondent 0.25 undhl 2 6-70084001R-228 MOS 400184 Moneme 10.20 Monemium Freezondent 0.25 undhl 2 6-70084001R-228 MOS 4018 Moneme 10.20 Mone 119/2010 12:00 Monemium Freezondent 0.25 moneme 10.25 moneme 1		Client	: E2 Consulting Engine	eers, Inc.				14201 FF (714) 7:	RANKLIN AVENUE - 30-6239 - FAX (71	TUSTIN, CALIFORNIA 4] 730-6462 · www.t	92780-7008 uesdail.com
Mater Funder, Funde		Attention	155 Grand Ave. Suite Oakland, CA 94612 : Shawn Duffy	e 1000					aboratory No. Date Received	: 992097 : November 9, 1	2010
Analysis Analysis <th>л Ч</th> <th>oject Name Project No. P.O. No.</th> <th>:: PG&E Topock Projec :: 408401.01.DM :: 408401.01.DM</th> <th>Ħ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	л Ч	oject Name Project No. P.O. No.	:: PG&E Topock Projec :: 408401.01.DM :: 408401.01.DM	Ħ							
Lab Sample IDFaild IDAnalysis MethodExhractionSample MethodSample ParanterManual Par					An		tesult:	s Summary			
992097-001 SC-700B-WDR-282 E120.1 NONE 11/9/2010 12:00 EC 7340 umhos/cm 992097-001 SC-700B-WDR-282 E200.8 NONE 11/9/2010 12:00 Chromium 1:9 ug/L 992097-001 SC-700B-WDR-282 E200.8 NONE 11/9/2010 12:00 Mangarrese 4.5 ug/L 992097-001 SC-700B-WDR-282 E2016 NONE 11/9/2010 12:00 Mangarrese 4.5 ug/L 992097-001 SC-700B-WDR-282 SM2130B NONE 11/9/2010 12:00 Turbidiy 0.14 NTU 992097-001 SC-700B-WDR-282 SM2540C NONE 11/9/2010 12:00 Turbidiy 0.14 NTU 992097-001 SC-700B-WDR-282 SM2540C NONE 11/9/2010 12:00 Turbidiy 0.14 NTU 992097-001 SC-700B-WDR-282 SM2540C NONE 11/9/2010 12:00 Turbidiy 0.14 NTU 992097-01 SC-700B-WDR-282 <	Lab	Sample ID		Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	R
992097-001 SC-700B-WDR-282 E218.6 LABFLT 119/2010 12:00 Chromium, hexavalent 0.25 ug/L 992097-001 SC-700B-WDR-282 SM2130B NONE 119/2010 12:00 Turbidity 0.14 NTU 992097-001 SC-700B-WDR-282 SM2540C NONE 11/9/2010 12:00 Turbidity 0.14 NTU NN: Nan Dateded (aetw reporting imi) NS: Ann Dateded (aetw reporting imi) 11/9/2010 12:00 Total Dissolved Solids 430 mg/L NG: Milgrims per file. Milgrims per file. 11/9/2010 12:00 Total Dissolved Solids 430 mg/L Rotal Eleving 'Splittent Figures Splittent figures Aatue 250 up/L 210 210 214 210 21430 21430 21430 Rotal Eleving 'Splittent figures Rotal Eleving 'Splittent figures Splittent figures 250 2014 210 214 210 214 210 214 210 214 210 214 210 214 210 214 210 214 210 214 210 214 210	992(992(9920	097-001 097-001 097-001	SC-700B-WDR-282 SC-700B-WDR-282 SC-700B-WDR-282	E120.1 E200.8 E200.8	NONE NONE NONE	11/9/2010 11/9/2010 11/9/2010	12:00 12:00 12:00	EC Chromium Manganese	7340 1.9 4.5	umhos/cm ug/L ua/L	2.00 1.0
99209/-001 SC-7009-WDR-282 SM2540C NONE 11/9/2010 12:00 Total Dissolved Solids 4430 mg/L ND: Non Detected (below reporting limit) mg/L Milligrams per filar. Nata: The rollowing "Significant Figures. Readits below 0.01ppm will have there (3) significant figures. Readits below 0.01ppm will have there (3) significant figures. Quality Cantral data will always have three (3) significant figures.	992(992(097-001 097-001	SC-700B-WDR-282 SC-700B-WDR-282	E218.6 SM2130B	LABFLT NONE	11/9/2010 11/9/2010	12:00 12:00	Chromium, hexavatent Turbidity	0.25 0.14	ug/L NTU	0.20 0.100
ND: Mg/L: Note:	<u>9</u> 92(097-001	SC-700B-WDR-282	SM2540C	NONE	11/9/2010	12:00	Total Dissolved Solids	4430	mg/L	250
005		Nets Nots	 Non Detected (below reporting Milligrams per liter. The following "Significant Figu Results below 0.01ppm will her Result above or equal to 0.01p Quality Control data will always 	g limit) rres" rule has been applied to ve two (2) significant figures. pm will have three (3) significant fig	all results: cant figures. jures.						
005											
	005										

EXCELLENCE IN INDEPENDENT TESTING

Laboratory No. 992097

Page 1 of 8

Printed 11/26/2010

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800

Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM

Samples Received on 11/9/2010 9:30:00 PM

Field ID				Lab ID	Col	lected	Matri	<
SC-700B-WDR-282				992097-001	11/09/	2010 12:00	Wate	٢
Specific Conductivity - E Parameter	EPA 120.1	Unit		11EC10C lyzed	DF	MDL	11/10/2010 RL) Result
992097-001 Specific Conduc	tivity	umhos/	cm 11/10)/2010	1.00	0.0380	2.00	7340
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID = 9	992026-012
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result 4900	Expected 4920	F	RPD 0.407	0 - 20	nce Range 992097-001
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7350	Expected 7340	F	₹PD 0.136	Acceptar 0 - 20	nce Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos Duplicate	DF 1.00	Result 697.	Expected 706.	F	Recovery 98.7	Acceptar 90 - 110	nce Range
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Resuit 703.	Expected 706.	F	Recovery 99.6	Acceptar 90 - 110	nce Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 704.	Expected 706.	F	Recovery 99.7	Acceptai 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 987.	Expected 999.	F	Recovery 98.8	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting En	ıgineers, Inc		Project Name: Project Number:	PG&E Topock 408401.01.DN		Page 2 of 8 Printed 11/26/2010
MRCVS - Primary						
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 991.	Expected 999.	Recovery 99.2	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Eng	gineers, Inc		roject Name: roject Numbe	Page 3 of 8 Printed 12/22/2010 Revision 1				
Chrome VI by EPA 218.6			Batch	11CrH10K				
Parameter		Unit	Ana	lyzed I	DF	MDL	RL	Result
992097-001 Chromium, Hexa	valent	ug/L	11/11	/2010 12:00 1	.05	0.0210	0.20	0.25
Method Blank				······································		· · · · · · · · · · · · · · · · · · ·		
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND				l ah 10 -	991994-001
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 13.1	Expected 12.9	RP 1.	D .22		nce Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.15	Expected 5.00		covery 03	90 - 110	nce Range 991994-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.09	Result 28.4	Expected/Adde 29.3(16.4)		covery 4.4	90 - 110	nce Range 991995-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.20	Expected/Adde 1.25(1.06)		covery 5.9	90 - 110	nce Range 992097-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.40	Expected/Adde 5.54(5.25)		covery 7.4	90 - 110	nce Range 992097-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.30	Expected/Adde 1.31(1.06)		covery 8.9	Accepta 90 - 110	nce Range
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.06	Expected 5.00		covery 01	Accepta 90 - 110	nce Range
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.94	Expected 10.0		covery 9.4	Accepta 95 - 105	nce Range
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.3	Expected 10.0		overy 03	Accepta 95 - 105	nce Range

=

Report Continued

Client: E2 Consulting En	gineers, Inc		Project Name: Project Number:	PG&E Topoci 408401.01.DN	•	Page 4 of 8 Printed 11/26/2010
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.3	Expected 10.0	Recovery 103	Acceptance Range 95 - 105

;

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM					Page 5 of 8 Printed 12/22/2010 Revision 1	
Metals by EPA 200.8, Tot	al	n Alexandra de la	Batch	111710C					
Parameter		Unit	Analyzed		DF	MDL	RL	Result	
992097-001 Chromium		ug/L	11/18/2010 15:52		5.00	0.0950	1.0	1,9	
Manganese		ug/L	11/18	/2010 15:52 8	5.00	0.210	1.0	4.5	
Method Blank									
Parameter	Unit	DF	Result						
Chromium	ug/L	1.00	ND						
Manganese	ug/L	1.00	ND						
Duplicate							Lab ID = !	992022-001	
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range	
Chromium	ug/L	5.00	2.02	2.02		0.0990	0 - 20	Ū	
Manganese	ug/L	5.00	483	466.		3.54	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	
Chromium	ug/L	1.00	46.9	50.0		93.8	90 - 110	-	
Manganese	ug/L	1.00	47.2	50.0		94.4	90 - 110		
Matrix Spike							Lab ID = !	992022-001	
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range	
Chromium	ug/L	5.00	235	252(250.)		93.2	75 - 125		
Manganese	ug/L	1.00	736	716.(250.)		108	75 - 125		
Matrix Spike Duplicate							Lab ID = 1	992022-001	
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range	
Chromium	ug/L	5.00	236	252(250.)		93.4	75 - 125		
Manganese	ug/L	5.00	721	716.(250.)		102	75 - 125		
MRCCS - Secondary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	
Chromium	ug/L	1.00	47.8	50.0		95.5	90 - 110		
Manganese	ug/L	1.00	48.5	50.0		97.0	90 - 110		
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	
Chromium	ug/L	1.00	46.4	50.0		92.8	90 - 110		
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	
Chromium	ug/L	1.00	46.7	50.0		93.4	90 - 110		

Report Continued

Client: E2 Consulting Engineers, Inc.			roject Name: roject Numbe	Page 6 of 8 Printed 11/26/2010		
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese MRCVS - Primary	ug/L	1.00	46.4	50.0	92.9	90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	47.8	50.0	95.5	90 - 110
Interference Check	c Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	ND	0		-
Interference Check	c Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	ND	0		
Interference Check	c Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	ND	0		
Interference Check	c Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	ND	0		
Interference Check	c Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	47.0	50.0	94.0	80 - 120
Interference Check	< Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	47.2	50.0	94.4	80 - 120
Interference Check	<pre>standard AB</pre>					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	47.6	50.0	95.2	80 - 120
Interference Check	< Standard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	46.6	50.0	93.1	80 - 120

è

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM					Page 7 of 8 Printed 12/22/2010 Revision 1	
Total Dissolved Solids	0 C	Batch 11TDS10D					11/10/2010		
Parameter 992097-001 Total Dissolved Solids		Unit Analyzed		DF	MDL	RL	Result		
		mg/L	11/10/2010		1.00	0.434	250.	4430	
Method Blank									
Parameter	Unit	DF	Result						
Total Dissolved Solids Duplicate	mg/L	1.00	ND				Lab ID =	992026-012	
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 3890	Expected 3950	RPD 1.53		Acceptance Range 0 - 5		
Parameter Total Dissolved Solids Lab Control Sample I	Unit mg/L Duplicate	DF 1.00	Result 496.	Expected 500.	Recovery 99.2		Acceptance Range 90 - 110		
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 493.	Expected 500.	Recovery 98.6		Acceptance Range 90 - 110		
Turbidity by SM 2130 B	en de la		Batch	11TUC10I			11/10/20-	10	
Parameter	[- 4 1 1 1 1 1 1 	Unit	Analyzed		DF	MDL	11/10/2010 RL Result		
992097-001 Turbidity		NTU	11/10/2010		1.00	0.0140	0,100	0.140	
Method Blank		····		· · · · · · · · · · · · · · · · · · ·					
Parameter	Unit	DF	Result						
Turbidity	NTU	1.00	ND						
Duplicate							Lab ID =	992097-001	
Parameter	Unit	DF	Result	Expected	RPD		Acceptance Range		
Turbidity	NTU	1.00	0.141	0.140	0.712		0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	Recovery		Acceptance Range		
Turbidity	NTU	1.00	7.79	8.00	97.4		90 - 110		
Lab Control Sample I	Duplicate								
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.83	Expected 8.00	F	Recovery Acceptance 97.9 90 - 110		-	

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 8 of 8 Printed 11/26/2010

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

f. – Mona Nassimi Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	11TDS10D
Date Calculated:	11/12/10

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, 9	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	122.0328	122.0328	122.0328	0.0000	No	0.0000	0,0	25.0	ND	1
992026-2	20	49.4669	49.5358	49.5354	0.0004	No	0.0685	3425.0	125.0	3425.0	1
992026-3	50	65.6368	65.7735	65.7734	0.0001	No	0.1366	2732.0	50.0	2732.0	1
992026-4	20	51.1420	51.2044	51.2041	0.0003	No	0.0621	3105.0	125.0	3105.0	1
992026-5	20	68.5553	68.6231	68.6231	0.0000	No	0.0678	3390.0	125.0	3390.0	1
992026-6	20	77.8372	77.9081	77.9077	0.0004	No	0.0705	3525.0	125.0	3525.0	1
992026-7	20	67.7902	67.8529	67.8529	0.0000	No	0.0627	3135.0	125.0	3135,0	1
992026-9	20	76.5244	76.5954	76.5953	0.0001	No	0.0709	3545.0	125.0	3545.0	1
992026-10	10	67.8036	67.8956 ¹	67.8956	0.0000	No	0.0920	9200.0	250.0	9200.0	1
992026-11	50	68.7750	68.8755	68.8751	0.0004	No	0.1001	2002.0	50.0	2002.0	1
992026-12	20	69.5835	69.6626	69.6625	0.0001	No	0.0790	3950.0	125.0	3950.0	1
992026-12D	20	68.7051	68.7833	68.7829	0.0004	No	0.0778	3890.0	125.0	3890.0	1
LCS	100	111.1881	111.2377	111.2377	0.0000	No	0.0496	496.0	25.0	496.0	1
992026-13	50	65.8315	65.9744	65.974	0.0004	No	0.1425	2850.0	50.0	2850.0	1
992029-1	50	76.5687	76.6037	76.6037	0.0000	No	0.0350	700.0	50.0	700.0	1
992097	10	75.4568	75.5015	75.5011	0.0004	No	0.0443	4430.0	250.0	4430.0	1
LCSD	100	112.1691	112.2187	112.2184	0.0003	No	0.0493	493,0	25.0	493.0	1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

yst Printed Name

Analyst Signature

ΠMI Reviewer Printed Name

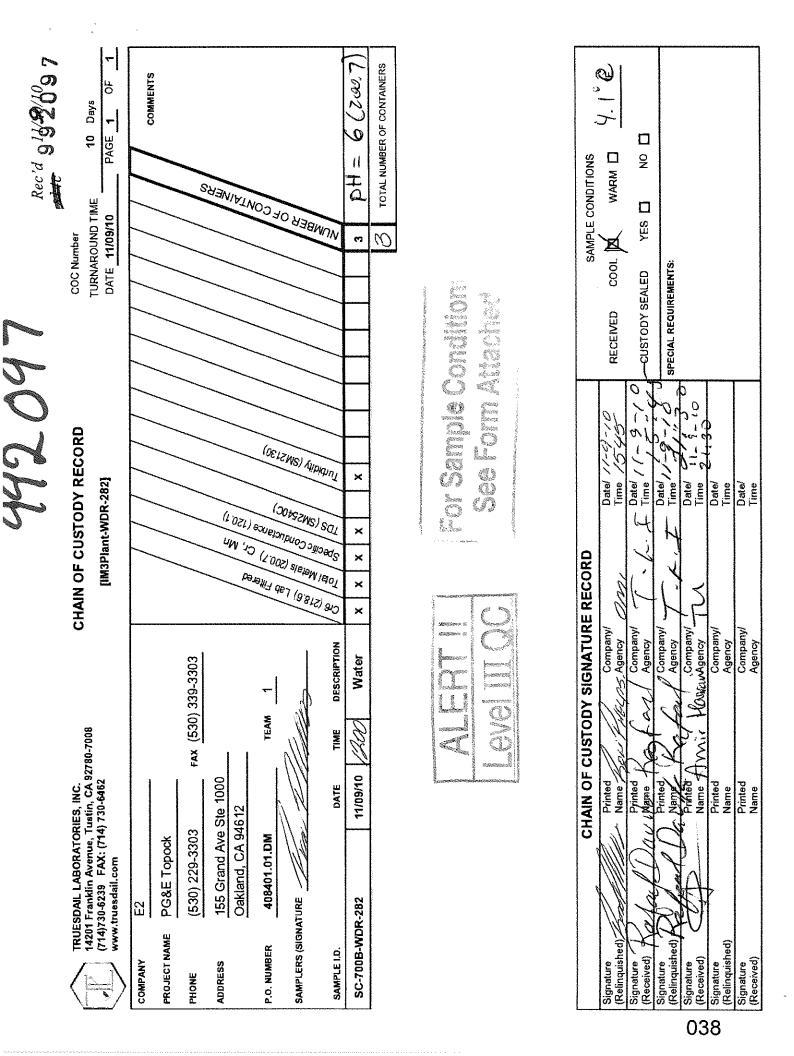
Reviewer Signature

WeiChem Tds_0810

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS10D


Date Calculated: 11/12/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
992026-2	4490	0.76	2918.5	1.17
992026-3	3670	0.74	2385.5	1.15
992026-4	4220	0.74	2743	1.13
992026-5	4420	0.77	2873	1.18
992026-6	4440	0.79	2886	1.22
992026-7	4140	0.76	2691	1.16
992026-9	4870	0.73	3165.5	1.12
992026-10	11240	0.82	7306	1.26
992026-11	2840	0.70	1846	1.08
992026-12	4920	0.80	3198	1.24
992026-12D	4920	0.79	3198	1.22
LCS				
992026-13	3580	0.80	2327	1.22
992029-1	1202	0.58	781.3	0.90
992097	7340	0.60	4771	0.93

A.

M

WetChern Tds_0810

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
11/05/0	992033-9		N/A	NA	N/A	SB
1/105/10	992034 -1	9.5	N/A	N/A	N/A	SB
۱. ۱	1 -2	5	1		1	1
. 1	+ -3		i de	J	J.	J.
11/05/0	992035	9.5	N/A	N/A	N/A	SB
11/10/10	992097	7.0	5.00	9,5	11:15	SB
					······································	
			· · · · · · · · · · · · · · · · · · ·			

		· · ·				
	······································					
					·····	
			+			
					· · · ·	
		_				
······	<u>`</u>		·····			
					-	
· .			*			
				·		

Enviro\Ali\Cr6+ pH Log

039

Turbidity/pH Check

ļ

I

l

Turbidity/pH Check								
Sample Number		рН 72	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N) 0 3:01 p.m @ 2:00 pm		
992374		72.	11/24	ES	No	DZinem		
992097	21	*2	11/10	FK	No	QIMMA		
		- 2			<u> </u>	C. C. Opm		
						<u> </u>		
			· · · · · · · · · · · · · · · · · · ·	······································		<u></u>		
	[
				[
····				[
·								
	ļ		ļ					
				1				
************				<u> </u>	·			
			1					
	1					 		
- 1		[
······································		<u> </u>						
·····			· · · ·					
······································								
			·····					
				ļ				
			1		1			
<u></u>	1		+					
······································	ļ		<u> </u>	<u> </u>				
	ļ	ļ						
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		-			
		<u> </u>	<u> </u>		<u> </u>			
	1	· · · · · ·		<u> </u>				
······································	<u> </u>	I	L	<u> </u>	<u> </u>			

Æ

3

Sample Integrity & Analysis Discrepancy Form

Clie	nt: <u> </u>	Lab # <u>99209</u> 7
Date	Delivered: 11_109/10 Time: 21:30 By: DMail AFie	eld Service
1.	l Was a Chain of Custody received and signed?	Yes INO IN/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No QN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No QN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ♀N/A
5.	Were all requested analyses understood and acceptable?	↓Yes □No □N/A
5.	Were samples received in a chilled condition? Temperature (if yes)? <u> ° C</u>	Qayes ⊡No ⊡N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	XYes INO IN/A
9.	Were sample custody seals intact?	□Yes ¤No □N/A
).	Does the number of samples received agree with COC?	QYes □No □N/A
10.	Did sample labels correspond with the client ID's?	⊠ AYes ⊡No ⊡N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes ¤No □N/A
12.	Were samples pH checked? pH = <u>Sea</u> C-O ·C	XYes □No □N/A
(3.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	XaYes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): I RUSH Std	⊠Yes ⊡No ⊡N/A
15.	Sample Matrix:	Vater DWaste Water
	□Sludge □Soil □Wipe □Paint □Solid 🍳	other Water
6.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	
	ALERTI	<u>9</u>
MATRIX		

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 7, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-283 PROJECT, GROUNDWATER MONIFORING, TLI NO.: 992202

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-283 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 16, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K. R. P. Ryen

K.R.P. Iyer Quality Assurance/Quality Control Officer

002

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992202 Date: December 7, 2010 Collected: November 16, 2010 Received: November 16, 2010

www.truesdail.com

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Card FrankLin AVENUE. TUSTIN, CALFORNIA 92700 1201 FrankLin AVENUE. TUSTIN, CALFORNIA 92700 Date Received: November 16, 2010 Date Received: November 16, 2010	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	<u>Analytical Results Summary</u>	Analysis Extraction Sample Sample ID Field ID Method Method Sample Date Time Parameter Result Units RL	202-001 SC-700B-WDR-283 E120.1 NONE 11/16/2010 13:00 EC 7500 umhos/cm 2.00 202-001 SC-700B-WDR-283 E200.8 NONE 11/16/2010 13:00 Chromium ND ug/L 1.0 202-001 SC-700B-WDR-283 E200.8 NONE 11/16/2010 13:00 Chromium ND ug/L 1.0 202-001 SC-700B-WDR-283 E200.8 NONE 11/16/2010 13:00 Chromium, hexavalent ND ug/L 1.0 202-001 SC-700B-WDR-283 E218.6 LABFLT 11/16/2010 13:00 Chromium, hexavalent ND ug/L 0.20 202-001 SC-700B-WDR-283 SM2130B NONE 11/16/2010 13:00 Turbidity 0.108 NTU 0.100 202-001 SC-700B-WDR-283 SM2540C NONE 11/16/2010 13:00 Turbidity 0.108 NTU 0.100 202-001 SC-700B-WDR-283 SM2540C NONE 11/16/2010 13:00 Turbidity 0.108 NTU 0.100 202-001 SC	ND: Non Detected (below reporting limit) mg/L: Milkgrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.		This report applies only to the samples investigated and is not necessarily indicative of the origitive of condition of annarently identical or similar moducts. As a mutual motention to cliente the original
TRUESDAIL Excellence in Indepen	Client: E 15 00 Attention: S	Project Name: P(Project No.: 40 P.O. No.: 40		Lab Sample ID Fi	992202-001 SC 992202-001 SC 992202-001 SC 992202-001 SC 992202-001 SC 992202-001 SC	ND: NO mg/L: Miii Note: The Res Que	005	This report applies only to

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2MHill 155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG & E Topock P.O. Number: 55685 Project Number: 184004.PS.02

Laboratory No. 992202 Page 1 of 6 Printed 12/7/2010

Samples Received on 11/16/2010 9:30:00 PM

Field ID				Lab ID	Colle	ected	Matr	ix
SC-700B-WDR-283				992202-001	11/16/2	2010 13:00	Water	
Specific Conductivity - El Parameter	PA 120.1	Unit		11EC10E lyzed	DF	MDL	11/17/20 ⁻ RL	I0 Result
992202-001 Specific Conducti	vity	umhos/	/cm 11/17	7/2010	1.00	0.0380	2.00	7500
Method Blank								······································
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	992202-001
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7500	Expected 7500		םי נ	Accepta 0 - 10	nce Range
Parameter Specific Conductivity Lab Control Sample Du	Unit umhos uplicate	DF 1.00	Result 689.	Expected 706.		ecovery 97.6	Accepta 90 - 110	nce Range
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 695.	Expected 706.		ecovery 98.4	Accepta 90 - 110	nce Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 698.	Expected 706.		ecovery 98.9	Accepta 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 991.	Expected 999.		ecovery 99.2	Accepta 90 - 110	nce Range

TRUESDAIL LABORATORIES, INC.

Report Continued

Client: CH2MHill	Project Name:	PG & E Topock	Page 2 of 6
	Project Number	: 184004.PS.02	Printed 12/7/2010

Chrome VI by EPA 218.6				11CrH10P			
Parameter		Unit	Ana	lyzed C	F MDL	RL	Result
992202-001 Chromium, Hexa	valent	ug/L	11/17	/2010 15:33 1.	05 0.0210	0.20	ND
Method Blank							
Parameter	Unit	DF	Result				
Chromium, Hexavalent	ug/L	1.00	ND				
Duplicate						Lab ID =	992028-010
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.05	16.7	17.1	2.47	0 - 20	-
Lab Control Sample		,					
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	5.16	5.00	103	90 - 110)
Matrix Spike						Lab ID =	992202-001
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.06	1.26	1.22(1.06)	104	90 - 110)
MRCCS - Secondary				·			
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	5.24	5.00	105	90 - 110) _
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	10.2	10.0	102	95 - 105	5
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	10.5	10.0	105	95 - 105	5

TRUESDAIL LABORATORIES, INC.

Report Continued

Client: CH2MHill	Project Name:	PG & E Topock	Page 3 of 6
	Project Number:	184004.PS.02	Printed 12/7/2010

Metals by EPA 200.8, Total Parameter		Unit Analyzed			DF	MDL RL Result			
992202-001 Chromium		ug/L			.00	0.0950	1.0	ND	
Manganese		ug/L			.00	0.210	1.0	2.1	
Method Blank		ug/L	11/24	12010 10,00 0	.00	0.210	1.0	Z. I	
Parameter Chromium	Unit	DF	Result						
	ug/L	1.00 1.00	ND ND						
Manganese	ug/L	1.00	NU					992132-003	
Duplicate									
Parameter	Unit	DF	Result	Expected	[RPD	-	ince Range	
Chromium	ug/L	5.00	ND	0		0	0 - 20		
Manganese	ug/L	5.00	593	594		0.168	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	I	Recovery	Accepta	ince Range	
Chromium	ug/L	1.00	46.5	50.0		93.1	90 - 110)	
Manganese	ug/L	1.00	46.8	50.0		93.5	90 - 110)	
Matrix Spike							Lab ID =	992132-003	
Parameter	Unit	DF	Result	Expected/Adde	d I	Recovery	Accepta	ince Range	
Chromium	ug/L	5.00	232	250.(250.)		92.7	75 - 125	-	
Manganese	ug/L	5.00	804	844(250.)		84.0	75 - 125	5	
Matrix Spike Duplicate							Lab ID =	992132-003	
Parameter	Unit	DF	Result	Expected/Adde	dl	Recovery	Accepta	ince Range	
Chromium	ug/L	5.00	227	250.(250.)		90.8	75 - 125	-	
Manganese	ug/L	5.00	822	844(250.)		90.9	75 - 128	5	
MRCCS - Secondary	•			× ,					
Parameter	Unit	DF	Result	Expected	1	Recovery	Accenta	ince Range	
Chromium	ug/L	1.00	48.3	50.0		96.6	90 - 110	-	
Manganese	ug/L	1.00	47.8	50.0		95.6	90 - 110)	
MRCVS - Primary	0								
Parameter	Unit	DF	Result	Expected	1	Recovery	Accenta	ince Range	
Chromium	ug/L	1.00	46.0	50.0		92.0	90 - 110	-	
MRCVS - Primary	-3								
Parameter	Unit	DF	Result	Expected	1	Recovery	Accenta	ince Range	
Chromium	ug/L	1.00	48.7	50.0		97.4	90 - 110	-	

Report Continued

Client: CH2MHill	ent: CH2MHIII		Project Name: Project Number	PG & E Topock 184004.PS.02		Page 4 of 6 Printed 12/7/2010		
MRCVS - Primary								
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.2	Expected 50.0	Recovery 92.5	Acceptance Range 90 - 110		
Parameter Manganese Interference Check St	Unit ug/L andard A	DF 1.00	Result 51.2	Expected 50.0	Recovery 102	Acceptance Range 90 - 110		
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range		
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range		
Parameter Manganese Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range		
Parameter Manganese Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range		
Parameter Chromium Interference Check Sta	Unit ug/L	DF 1.00	Result 46.8	Expected 50.0	Recovery 93.6	Acceptance Range 80 - 120		
Parameter Chromium Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 47.3	Expected 50.0	Recovery 94.6	Acceptance Range 80 - 120		
Parameter Manganese Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 44.5	Expected 50.0	Recovery 89.1	Acceptance Range 80 - 120		
Parameter Manganese	Unit ug/L	DF 1.00	Result 44.5	Expected 50.0	Recovery 89.0	Acceptance Range 80 - 120		

Report Continued

Client: CH2MHill	Project Name:	PG & E Topock	Page 5 of 6
	Project Number	184004.PS.02	Printed 12/7/2010

Total Dissolved Solids b	y SM 254	0 C	Batch	11TDS10F	na. Selata taga		11/17/2010		
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result	
992202-001 Total Dissolved Solids		mg/L	11/17/2010		1.00	0.434	250.	4510	
Method Blank									
Parameter	Unit	DF	Result						
Total Dissolved Solids	mg/L	1.00	ND						
Duplicate							Lab ID =	992202-001	
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptance Range		
Total Dissolved Solids	mg/L	1.00	4740	4510		4.97	0 - 5	0	
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range	
Total Dissolved Solids	mg/L	1.00	488.	500.		97.6	90 - 110	ז ני ני	

Turbidity by SM 2130 B Batch 11TUC10M 11/17/2010 Parameter Unit Analyzed DF MDL. RL Result 992202-001 Turbidity NTU 11/17/2010 1.00 0.0140 0.100 0.108 Method Blank Parameter Unit DF Result Turbidity NTU 1.00 ND Duplicate Lab ID = 992202-001 Parameter DF Unit Result Expected RPD Acceptance Range Turbidity NTU 1.00 0.109 0.108 0.922 0 - 20 Lab Control Sample Parameter Unit DF · Result Expected Recovery Acceptance Range Turbidity NTU 1.00 7.80 8.00 97.5 90 - 110 Lab Control Sample Duplicate Parameter Unit DF Result Expected Recovery Acceptance Range Turbidity NTU 1.00 7.70 8.00 96.2 90 - 110

Report Continued

Client: CH2MHill

Project Name: PG & E Topock Project Number: 184004.PS.02

Page 6 of 6 Printed 12/7/2010

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

↓, Mona Nassimi Manager, Analytical Services

E2 Condon

Total Dissolved Solids by SM 2540 C

Colculations

				Calcula	tions					Batch:	11TDS10F	:
									Date	Calculated:	11/18/10	
Laboratory Number	Sampie volume, mi	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, 9	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF	,
BLANK	100	68.2299	68.2299	68.2299	0.0000	No	0.0000	0.0	25.0	ND	1	1
992184-2	200	102.8522	102.8701	102.87	0.0001	No	0.0178	89.0	12.5	89.0	1	
992184-3	100	72.4766	72.4959	72.4955	0.0004	No	0.0189	189.0	25.0	189.0	1]
992205-1	50	49.5030	49.5645	49.5642	0.0003	No	0.0612	1224.0	50.0	1224.0	1]
992205-2	100	70.9031	70.9611	70.9611	0.0000	No	0.0580	580.0	25.0	580.0	1	
992202	10	47.6390	47.6841	47.6841	0.0000	Na	0.0451	4510.0	250.0	4510.0	1	
992202D	10	50,4994	50.5472	50.5468	0.0004	No	0.0474	4740.0	250.0	4740.0	1	
												_
												_
												-
			1									-
												-
												-
												-
												-
												-
												-
												-
												-
												-
												-
												4
				*****						·····		
											·····	1

Calculation as follows:

LCS

0.0003

78.4556 78.4553

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

No

0.0488

488.0

25.0

488.0

1

Where: A = weight of dish + residue in grams.

78.4065

100

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

James Analyst Printed Name

Analyst Signature

Reviewer Printed Name

r

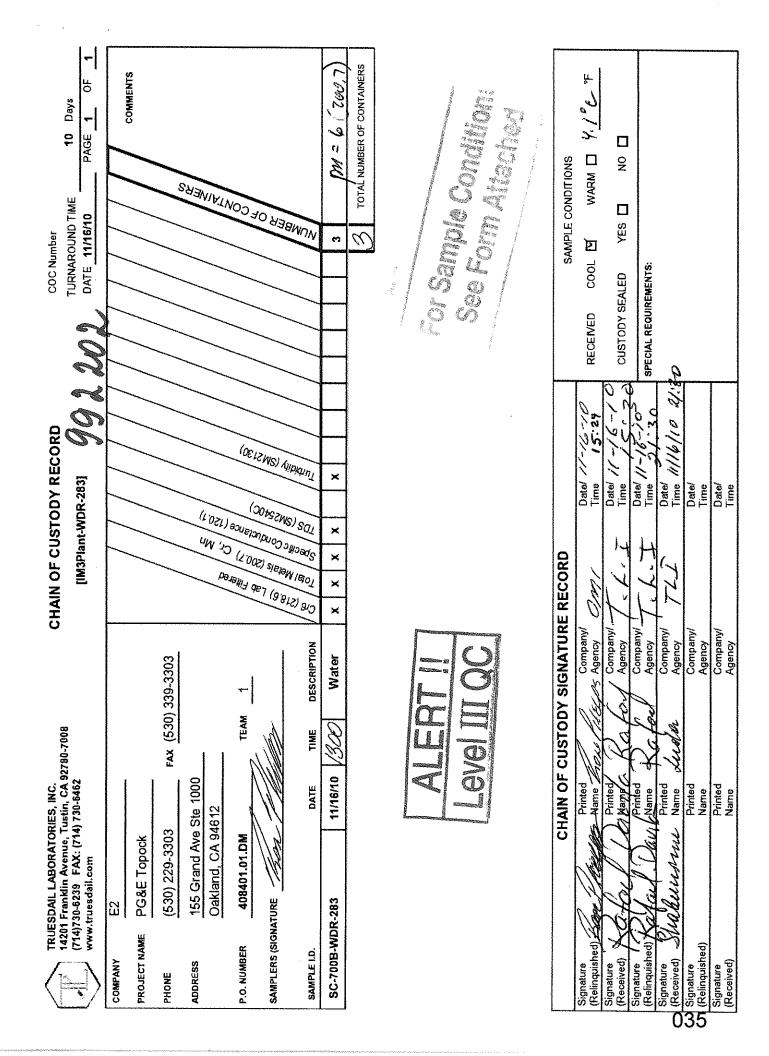
Reviewer Signature

WetChem Tds_0810

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS10F


Date Calculated: 11/18/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Gale TDS <1.3
	······································		ļ	
992184-2	183	0.49	118.95	0.75
992184-3	359	0.53	233.35	0.81
992205-1	1844	0.66	1198.6	1.02
992205-2	986	0.59	640.9	0.90
992202	7500	0.60	4875	0.93
992202D	7500	0,63	4875	0.97
	1		-	

,

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
11/05/0	992033-9	9.5	N/A	NA	N/A	SB
11/05/10	9992034-1	9.5	N/A	NA	N/A	SB
1	1 -2			ĺ		1
J.	+ -3	J.	Y	J	J.	J.
11/05/0	992035	9.5	N/A	N/A	N/A	SB
11/10/10	992097	J.0	5.00	9.5	11:15	SB
11/12/10	992132-1	9.5	N/A	N/A	A/A	SB
<u> </u>	1 -2	Ì		ł	1	1
	-3					
	4					
<u>.</u>	1 -5		ł	Ŷ	*	4
11/2/10	992133-1	9.5	N/A	N/A	N/A	SB
	1 -2			(1
<u></u>	1 -3	+	¥	Jan Star	V	1
11/12/10	992134 ×	9.5	N/A	N/A	N/A	SB
11/17/10	992201-1	7,0	5.00	95	7:20	SB
	-2	7.0			7:30	Í
	-3	8.5			7:45	
	-4	7.0			11:30	
	-5	7.0			10:15	
	-6 -7				00:00	
					9120	
	- 8				9:45	
	-9				8:00	
	-10				10:30	
	-11				9:30	
.4	-12	*	*		12:15	₩ ₩
11/17/10	992202	7.0	5.00	9.5	10130	SB
11/17/10	992205-1 9.5		NA	N/A	NA	58
	-2					1
	-3					J.

Enviro\Ali\Cr6+ pH Log

Turbidity/pH Check												
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to						
992374	41	72	11/24	ES	No No							
992097	21	*2	11/10	KK.		03:07 p.m						
392352 (1-6)	21	12	11/21	KK KK	No	0.2:00pm						
992355 (1-2)	4	12	11/24		NO	11/29@7am						
19238211-2	221	72		L KK	ho	1/29@7AM						
992 390(1-2)	41	72	11/129	5	1- NO	YUD3:00M						
992355(3-6)	<1	52	Mai									
992351	4	12	11/29	HER -	No	Yes jo am						
992422	41	22	1/01	Left-	NO	KOR Gam						
992416	41	42	12/2	1 <u>- F</u>	No	YESP Dan						
992433(1-3)	61	72	12/2	ES	No							
992424	61	12		<u>├───}</u>		yes a 10:30 q.						
992441(1-2	71	62	12/3									
9924454	2,	67	1217	ES	-1-13							
992 44 7	71			└ <u></u>	NO							
99240	71	42			Yes							
9424.52	Z1	42			<u> 40</u>							
Decon BIK					Att ye							
MB	MELI	72	12/3/10	ht	NO	Y @ 2:30 pm						
992400 (3)	MELI			l		1 1						
992461	- <u></u> - <u></u> - <u></u>		V		J							
992462		12	12/3	ES V	yes	·						
992466	<u> </u>	62			Yes							
1201 111.7	21	27	12/6	ES [No							
41×401	61	72			-	D2:WPM						
99717012		ZV			-							
-10773 [-3]			1217	KK.	No	@ 830 am						
992480	41	42			1							
191982	-21	42										
992486	$\frac{21}{41}$	72	12/7	ES- 1	1	D 10:00 Q.m						
992502(16,23)		72	J I			23:00 p.m						
992202	21	72	11/17	ES.	- U	2 10:00 a.m						
	<u> </u>					10.00 0.00						
		·····										
· · · · · · · · · · · · · · · · · · ·												
						· · · · · · · · · · · · · · · · · · ·						
					····							
		l										

Turbidity/pH Check

Sample Integrity & Analysis Discrepancy Form

Client: <u>F2</u>	Lab #992202
Date Delivered:///////// Time: 2/:30 By: □Mail ⊠Field	d Service
1. Was a Chain of Custody received and signed?	ŹiYes □No □N/A
2. Does Customer require an acknowledgement of the COC?	□Yes □No KᡬĺN/A
3. Are there any special requirements or notes on the COC?	□Yes □No ぬN/A
4. If a letter was sent with the COC, does it match the COC?	□Yes □No ᡚN/A
5. Were all requested analyses understood and acceptable?	⊠aYes ⊡No ⊡N/A
6. Were samples received in a chilled condition? Temperature (if yes)?4. <i>i °</i> C	XâYes ⊒No ⊒N/A
7. Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	⊄Yes □No □N/A
8. Were sample custody seals intact?	□Yes □No ☎N/A
9. Does the number of samples received agree with COC?	\$¢Yes □No □N/A
10. Did sample labels correspond with the client Ip's?	∯Yes □No □N/A
11. Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □ Client	□Yes □No ⊠N/A
12. Were samples pH checked? $pH = \underline{Sel} \ c \cdot \mathcal{O} \cdot c$	Types INO IN/A
13. Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Yes INO IN/A
14. Have Project due dates been checked and accepted? Turn Around Time (TAT): ❑ RUSH X Std	₽ Yes □No □N/A
15. <u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid 戱Ot	111 1
16. Comments:	
17. Sample Check-In completed by Truesdail Log-In/Receiving:	Shabucine

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 10, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-284 PROJECT, GROUNDWATER MONITORING, TLI NO.: 992351

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-284 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 23, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The matrix spike for sample SC-700B-WDR-284 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike result was within acceptable limits and the results from the analysis at a 5x dilution matched those of the straight run, the result from the straight run is reported.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K.R.P. Jop

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992351 Date: December 10, 2010 Collected: November 23, 2010 Received: November 23, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani / Iordan Stavrev
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

	90-7008 fail.com	0			R	0.20	2.00	1.0	100	
	FORNIA 927(2 · www.truesd	∍r 23, 201⊧								
Established 1931	TUSTIN, CALI 4) 730-6462	992351 Novembe			Units	ng/L	ug/L umhos/cm	ng/L	mg/L NTU	
Estab	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdeil.com	Laboratory No.: 992351 Date Received: November 23, 2010			Result	Q I	7590	7.4	4600 ND	
	14201 F (714) 7	Ę		<u>Analytical Results Summary</u>	Parameter	Chromium, hexavalent	Chromium EC	Manganese	l otal Dissolved Solids Turbidity	
				<u>esults</u>	Sample Time	14:25	14:25 14:25	14:25	14:25 14:25	
				Ilytical R	Sample Date	11/23/2010	11/23/2010 11/23/2010	11/23/2010	11/23/2010 11/23/2010	
				Ana	Extraction Method	LABFLT	NONE	NONE	NONE	id to all results: irres. ontificant figures. nt figures.
ories, Inc		eers, Inc. e 1000	Ħ		Analysis Method	E218.6	E200.8 F120.1	E200.8	SM2540C SM2130B	g limit) ares" rule has been applie are two (2) significant figu ppm will have three (3) significa s have three (3) significa
TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing		Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM		Field ID	SC-700B-WDR-284	SC-700B-WDR-284 SC-700B-WDR-284	SC-700B-WDR-284	SC-700B-WDR-284 SC-700B-WDR-284	ND: Non Detected (below reporting limit) mp/L: Miligrams per liter. Note: The following "Significant Figures' rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.
TRUESDA Excellence in In		Client Attention	Project Name Project No. P.O. No.		Lab Sample ID	992351-001	992351-001 992351-001	992351-001	992351-001 992351-001	

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineeers, Inc. 155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM

Project Number: 408401.01.DM

Laboratory No. 992351 Page 1 of 9 Printed 12/10/2010

Samples Received on 11/23/2010 9:30:00 PM

Field ID			Lab ID	Coll	ected	Matrix		
SC-700B-WDR-284				992351-001		2010 14:25	Wat	ег
Specific Conductivity - E	EPA 120.1	÷.	Batch	11EC10F		11/29/2010		
Parameter	- 4	Unit	Апа	lyzed	DF	MDL	RL	Result
992351-001 Specific Conductivity		umhos/	′cm 1 1 /29	/2010	1.00	0.0380	2.00	7590
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID =	992355-004
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	······································		RPD 0.238		Acceptance Range 0 - 10	
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result Expected 704. 706.		Recovery 99.7		Acceptance Range 90 - 110	
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 702.	Expected 706.	R	ecovery 99.4	Acceptance Range 90 - 110	
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 700.	Expected 706.	R	ecovery 99.2	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 999.	Expected 999.	R	ecovery 100.	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 1000	Expected 999.	R	ecovery 100	Accepta 90 - 110	ince Range)

Report Continued

Client: E2 Consulting Engineeers, Inc.	Project Name:	PG&E Topock Project	Page 2 of 9
	Project Number:	408401.01.DM	Printed 12/10/2010

Report Continued

Client: E2 Consulting Er	igineeers, li		roject Name: roject Numbe	PG&E Topo r: 408401.01.E	-	ect		age 3 of 9 2/10/2010
Chrome VI by EPA 218.6	6		Batch	11CrH10U				
ParameterUnitAnalyzedDFMDLRL992351-001 Chromium, Hexavalentug/L11/24/2010 09:191.050.02100.20Method BlankParameterUnitDFResultChromium, Hexavalentug/L1.00ND			Result					
992351-001 Chromium, Hex	avalent	ug/L	11/24	/2010 09:19	1.05	0.0210	0.20	ND
Method Blank								
							Lab ID =	992352-006
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 11.1	Expected 10.7		RPD 3.71	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.13	Expected 5.00		Recovery 103	90 - 110	ance Range) 991892-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1,06	Result 7.40	Expected/A 7.37(5.30)		Recovery 101	90 - 110	ance Range) 991892-010
Parameter	Unìt	DF	Result	Expected/A	dded	Recovery	Accepta	ince Range

Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.23	Expected/Added 7.22(5.30)	Recovery 100	Acceptance Range 90 - 110 Lab ID = 992351-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.87	Expected/Added 5.51(5.25)	Recovery 107	Acceptance Range 90 - 110 Lab ID = 992351-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.31	Expected/Added 1.21(1.06)	Recovery 109	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.09	Expected 5.00	Recovery 102	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	D F 1.00	Result 10.2	Expected 10.0	Recovery 102	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.87	Expected 10.0	Recovery 98.7	Acceptance Range 95 - 105

Report Continued

Client: E2 Consulting En	gineeers, Ir	10.	Project Name: Project Number	PG&E Topoc : 408401.01.DI	,	Page 4 of 9 Printed 12/10/2010
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102	Acceptance Range 95 - 105

Report Continued

Client: E2 Consulting E	ngineeers, li		oject Name: oject Numbe	PG&E Topock r: 408401.01.DM	Proje	ect		Page 5 of 9 2/10/2010
Metals by EPA 200.8, To	otal		Batch	120310A				
Parameter	Unit	Ana	lyzed	DF	MDL	RL	Result	
992351-001 Chromium		ug/L	12/03	0/2010 15:09 5	5.00	0.0950	1.0	ND
Method Blank	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			 				
Parameter	Unit	DF	Result					
Chromium	ug/L ·	1.00	ND					
Duplicate							Lab ID =	992352-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium	ug/L	5.00	ND	0		0	0 ~ 20	· ·
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	53.3	50.0		107	90 - 110) -
Matrix Spike							Lab ID =	992352-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	260	250.(250.)		104	75 - 12	5
Matrix Spike Duplica	te						Lab ID =	992352-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	259	250.(250.)		103	75 - 12	5
MRCCS - Secondary	1							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	53.9	50.0		108	90 - 11	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	51.4	50.0		103	90 - 11(כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	51.7	50.0		103	90 - 11(כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	51.7	50.0		103	90 - 11	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	50.6	50.0		101	90 - 11	-

Report Continued

Client: E2 Consulting	g Engineeers, Ir		Project Name: Project Numbe	PG&E Topock r: 408401.01.DM	-	Page 6 of 9 Printed 12/10/2010
Interference Cheo	ck Standard A					
Parameter Chromium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Cheo	ck Standard A					
Parameter Chromium Interference Chee	Unit ug/L ck Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Cheo	Unit ug/L	DF 1.00	Result 53.9	Expected 50.0	Recovery 108	Acceptance Range 80 - 120
Parameter Chromium	Unit ug/L	DF 1.00	Result 53.4	Expected 50.0	Recovery 107	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineeers, Inc. Project Name: PG&E Topock Project Page 7 of 9 Project Number: 408401.01.DM Printed 12/10/2010

Metals by EPA 200.8, Tot	al		Batch	120910A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992351-001 Manganese		ug/L	12/09)/2010 12:34	5.00	0.210	1.0	7.4
Method Blank								
Parameter	Unit	DF	Result					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	992351-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Manganese	ug/L	5.00	6.95	7,41		6.32	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Manganese	ug/L	1,00	50.6	50,0		101	90 - 110	כ
Matrix Spike							Lab ID =	992351-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Manganese	ug/L	5.00	241	257(250.)		93.5	75 - 12	5
Matrix Spike Duplicate							Lab ID =	992351-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Manganese	ug/L	5.00	243	257(250.)		94.3	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Manganese	ug/L	1.00	50.9	50.0		102	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	-	ance Range
Manganese	ug/L	1.00	48.5	50.0		96.9	90 - 110)
Interference Check Sta	andard A							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Manganese	ug/L	1.00	ND	0				
Interference Check Sta	andard A							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Manganese	ug/L	1.00	ND	0				
Interference Check Sta	andard AB							
Parameter	Unit	DF	Result	Expected	F	Recovery		ance Range
Manganese	ug/L	1,00	49.4	50.0		98.8	80 - 120)

Report Continued

Client: E2 Consulting En	gineeers, lı		roject Name: roject Numbe	PG&E Topod r: 408401.01.D		ct	Pa Printed 12	age 8 of 9 2/10/2010
Interference Check St	tandard AB							
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.0	Expected 50.0	F	Recovery 100	Accepta 80 - 120	nce Range
Total Dissolved Solids b	oy SM 2540	0 C	Batch	11TDS10H			11/29/201	0
Parameter	-	Unit	Ana	lyzed	DF	MDL	RL	Result
992351-001 Total Dissolved	Solids	mg/L	11/29	/2010	1.00	0.434	250.	4600
Method Blank								
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND				Lab ID =	992278-003
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 193.	Expected 190.	F	RPD 1.57	Accepta 0 - 5	nce Range
Parameter Total Dissolved Solids Lab Control Sample D	Unit mg/L Duplicate	DF 1.00	Result 499.	Expected 500.	F	Recovery 99.8	Accepta 90 - 110	nce Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 501.	Expected 500.	F	Recovery 100	Accepta 90 - 110	nce Range
Turbidity by SM 2130 B			Batch	11TUC10Q			11/24/201	0
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992351-001 Turbidity		NTU	11/24	/2010	1.00	0.0140	0.100	ND
Method Blank								
Parameter Turbidity	Unit NTU	DF 1.00	Result ND					
Duplicate	NTO	1.00	ne				Lab ID =	992351-001
Parameter Turbidity	Unit NTU	DF 1.00	Result ND	Expected 0	F	RPD 0	Accepta 0 - 20	nce Range
Lab Control Sample			_			-		_
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.75	Expected 8.00	f	Recovery 96.9	Accepta 90 - 110	nce Range
Lab Control Sample [•	6-	D "	.	-		A	
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.83	Expected 8.00		Recovery 97.9	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineeers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 9 of 9 Printed 12/10/2010

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi
 Manager, Analytical Services

22 Sea

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	11TDS10H
Date Calculated:	11/29/10

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	67.7335	67.7344	67.7344	0.0000	No	0.0009	9.0	25.0	ND	11
992262	493	112.1803	112.1817	112.1816	0.0001	No	0.0013	2.6	5.1	ND	1
992272-1	100	69.8137	69.8584	69.8584	0.0000	No	0.0447	447.0	25.0	447.0	1
992272-2	100	74.7203	74.7481	74.748	0.0001	No	0.0277	277.0	25.0	277.0	1
992272-3	100	68.9843	69.0117	69.0113	0.0004	No	0.0270	270.0	25.0	270.0	1
992272-4	100	76.2213	76.2532	76.2528	0.0004	No	0.0315	315.0	25.0	315.0	1
992273-1	1000	92.1026	92.1046	92.1046	0.0000	No	0.0020	2.0	2.5	ND	1
992273-2	100	74,7655	74.7930	74.7926	0.0004	No	0.0271	271.0	25.0	271.0	1
992273-3	100	73.0306	73.0604	73.0604	0.0000	No	0.0298	298.0	25.0	298.0	1
992273-4	100	68.8928	68.9722	68.9722	0.0000	No	0.0794	794.0	25.0	794.0	1
992273-5	100	66.7231	66.8029	66.8025	0.0004	No	0.0794	794.0	25.0	794.0	1
992273-3D	100	75,1456	75.1767	75.1765	0,0002	No	0.0309	309.0	25.0	309.0	1
LCS	100	67.8127	67.8629	67.8626	0.0003	No	0.0499	499.0	25.0	499.0	1
992273-6	100	66.8264	66.8556	66.8556	0.0000	No	0,0292	292.0	25.0	292.0	1
992278-2	200	110.6547	110.6754	110.6754	0.0000	No	0.0207	103.5	12.5	103.5	1
992278-3	100	74.2590	74.2780	74,278	0.0000	No	0.0190	190.0	25.0	190.0	1
992351	10	51.5114	51.5576	51.5574	0.0002	No	0.0460	4600.0	250.0	4600.0	1
992355-7	20	73.8438	73.9064	73.906	0.0004	No	0.0622	3110.0	125.0	3110.0	1
992334	1000	103.7163	103.7258	103.7258	0.0000	No	0.0095	9.5	2.5	9.5	11
992079-3	1	49.3608	49,4443	49.4443	0.0000	No	0.0835	83500.0	2500.0	83500.0	1
992079-3	2	49.5553	49.7254	49.7254	0.0000	No	0.1701	85050.0	1250.0	85050.0	1
992079-4	1	51,1335	51.3023	51.3023	0.0000	No	0.1688	168800.0	2500.0	168800.0	1
992079-4	2	51,2617	51.5852	51.5851	0.0001	No	0.3234	161700.0	1250.0	161700.0	11
992278-3D	100	70.3226	70.3419	70.3419	0.0000	No	0.0193	193.0	25.0	193.0	1
				1							
LCS	100	69.5108	69.5609	69.5609	0.0000	No	0.0501	501.0	25.0	501.0	1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

2 MV yst Printed Name

Analyst Signature

Reviewer Printed Name

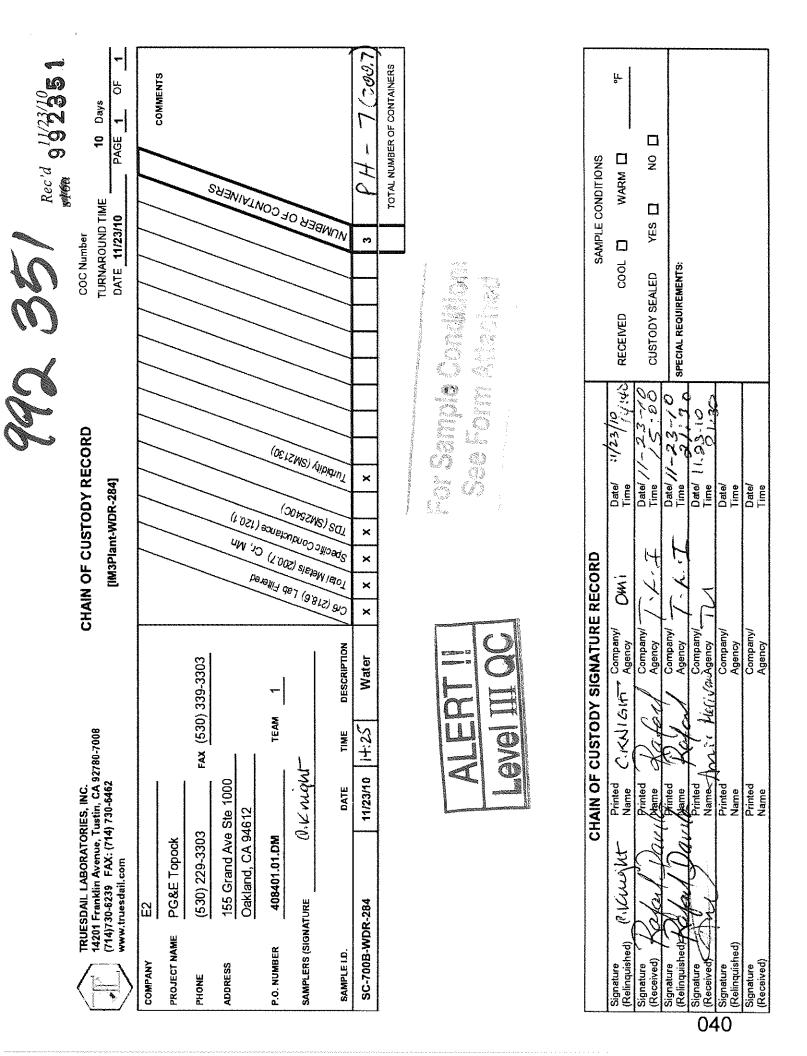
Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS10H

Date Calculated: 11/29/10


Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3	
992262	9.61	ND	6.2465	ND	
992272-1	. 712	0.63	462.8	0.97	
992272-2	451	0.61	293.15	0.94	
992272-3	437	0.62	284.05	0.95	
992272-4	414	0.76	269.1	1.17	
992273-1	1.3	ND	0.845	ND	
992273-2	445	0.61	289.25	0.94	
992273-3	384	0.78	249.6	1.19	
992273-4	384	2.07	249.6	3.18	
992273-5	384	2.07	249.6	3.18	
992273-3D	384	0.80	249.6	1.24	
LCS					
992273-6	462	0.63	300,3	0.97	
992278-2	174	0,59	113.1	0.92	
992278-3	359	0.53	233.35	0.81	
992351	7540	0.61	4901	0.94	
992355-7	4360	0.71	2834	1.10	
992334	16.7	0.57	10.855	0.88	
992079-3					
992079-3					
992079-4					
992079-4					
992278-3D	359	0.54	233.35	0.83	

Æ,

. . . ₽

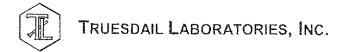
.

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
11/19/10 992252	9.5	NA	- N/A	N/A	5B
11/24/10 992 351	7.0	Sioml	9.5	8=30	ali
1/24/10 992 352-1	7.0	5.0 ml	9.5	8:40	al
-2		·	(8.42	1
-3				8:43 8:43	
-4	·			8:44	
				B-46	
× × -6	/	V al		8248	In
11124110 942355-1	-7.0	5.01	9.5	10:10	ali
<u> </u>				10:12	
-3				10:15	
-41				10:17	
				10:20	
V V -6		V		10:23	
				-	
			· · · · · · · · · · · · · · · · · · ·		

l					

Enviro\Ali\Cr6+ pH Log


Turbidity/pH Check

.

		1 41	Diuity/pri C	HEVN		
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
992374	41	72.	11/24	ES	No	D3:01 p.m
992097	21	*2	11/10	K/K_	No	C.2:00pm
392352 (1-6)	21	12	11/24	KK	NO	11/29@7am
492355 (1-2)	4)	22	11/24	1×L	NO	1/29 @ JAM
192382(1-2	121	72	11129	ES	NO	YUN 3:MPM
992 390(1-3)	21	72	1 - 4			7-13 00 5. (Vp m)
192355/3-6)	L1	52	1201	1 de	NO	Ves a io am
992351	4	22	11/29	臣	NO	JESC. Gam
1992422	<u> </u>	<u>عد</u>	1/01	KK_	No	URSP 100m
992416	61	42	12/2	ES	NO	- Are in
992433(1-3)	61	72	12-		1	UND 2010:30 q.n
992414	41	12				you w. no g. m
9924411-2		62	12/2	ES	-1-4	
9924454		67	/~_//	<u> </u>	NO	
1000 1119	71				Yes	· ·
9912941	71	22			1	
9924 JU 9424 J2	21	42		<u>ł</u>	JU DATO YE	
	1 1	*****	10/0/11			21 0 1/20
Decon BIK	HELI	72	12/3/10	hr	NO	Y @ 2:30 pm
MB	hred 1		ļ			
992400 (3)		*	V	<u> </u>	yes	V V
992461	71	12	12/3	ES	+ /	
992462	1	62	- L		Yes	**
992466	41	27	12/6	ES	No	
992467	'	72				D2:WPM
471	61	ZZ		L	'	
99273 (1-3	/	>2	12/7	KK.	No	@ 830 am
992480	21	42		<u>4</u>	·	
992482	27	42		1	<u> </u>	
992486	41	72	12/7	ES	·	D 10:00 Q.m
992502(16,28)) 41	72	J.			23:00 pm
992202	41	72	11/17	ES		2 10:00 a.m
902 506	<u> </u>	22	N/8	P4	No	
492567	21	66		1	/	
992508	1	<u> </u>				
$ \begin{array}{c} qq2.50 (g) \\ qq2.507 \\ qq2.508 \\ qq2.509 \\ qq2.510 \\ qq2.510 \\ qq2.520 \\ qq2.520 \\ $		42 62 42 22			_	
992510	6	22 22 22 22	4	<u>+</u>	<u> </u>	
192524(1-2)) ~ (75	12/8	KK.	No	@ 83° am
992525/1-3	14	22	1]]		6 230 ann 0 230 ann 1 TLC
492351	14	×2	+2-18 11/2	9 K/2	No	10830 an
992523	SLUD	(C"	12/8/10	ES	Yes	TTLC
992575	71	22	101	l	Yes NU NO	
992528	41	22	12/8/10	ES	NV	
992 539(1-3	21	72	12/9/10	ES	NO	allin Q.M
942 5 28 942 5 39 942 5 39 442 5 40	$\begin{array}{c c} 71 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \end{array}$	22 22 72 22	1	1	1	
541						Dilina.m
541 542	1					
543					· .	-
543 . 544 . 544		1				
JAK -			*		- V	
		1		1		

÷

Berry Street Witness

Sample Integrity & Analysis Discrepancy Form

Clier	nt:E2	Lab # 992351
Date	Delivered: 1/ / 23/10 Time: 21:30 By: DMail DFiel	d Service
1.	Was a Chain of Custody received and signed?	TYes No N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No @Ń/A
3.	Are there any special requirements or notes on the COC?	□Yes □No □N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No □N/A
5.	Were all requested analyses understood and acceptable?	OYes ONO ON/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4.3° C</u>	⊡¥es □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	GYes □No □N/A
8.	Were sample custody seals intact?	□Yes □No □N/A
9.	Does the number of samples received agree with COC?	Gryes □No □N/A
10.	Did sample labels correspond with the client ID's?	Wes INO IN/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: D Truesdail DClient	ØYes □No □N/A
12.	Were samples pH checked? pH = <u>See</u> C - o . C	ØYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	□Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): ロ RUSH	⊡r¥es □No □N/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground W □Sludge □Soil □Wipe □Paint □Solid 遠Oi	ater □Waste Water ther <u><i>(UA</i>TER</u>
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Kafael Davila

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 13, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-285 PROJECT, GROUNDWATER MONITORING, TLI NO.: 992422

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-285 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 30, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample and sample duplicate results for sample SC-700B-WDR-285 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike was within acceptable limits and the results from the analysis at a 5x dilution matched those of the straight run, the result from the straight run is reported.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

4. Mona Nassimi Manager, Analytical Services

K.R.P. goer

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992422 Date: December 13, 2010 Collected: November 30, 2010 Received: November 30, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

TRUESD/ Excellence in In	TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing	ories, Inc.					Estat	Established 1931	
						14201 F (714) 7	RANKLIN AVENUE - 730-6239 - FAX (71	14201 FRANKLIN AVENUE - TUSTIN. CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com	A 92780-7008 truesdail.com
Clien	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy	eers, Inc. e 1000					Laboratory No.: 992422 Date Received: Novem	-aboratory No.: 992422 Date Received: November 30, 2010	2010
Project Nam Project No P.O. No	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	ठ							
			Aná	alytical R	<u>tesult</u>	<u>Analytical Results Summary</u>			
Lab Sample ID	D Field ID	Analysis E Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
992422-001 992422-001	SC-700B-WDR-285 SC-700B-WDR-285		NONE	11/30/2010 11/30/2010	14:12 14:12	EC Chromium	7310 ND	umhos/cm ug/L	2.00 1.0
992422-001 992422-001	SC-700B-WDR-285 SC-700B-WDR-285	E200.8 E218 6	NONE LABELT	11/30/2010 11/30/2010	14:12 11:12	Manganese Chromium hexevalent	2.1 0.31	ng/L	1.0 0.20
992422-001 992422-001 992422-001	SC-700B-WDR-285 SC-700B-WDR-285	SM2130B SM2540C		11/30/2010 11/30/2010	14:12	Turbidity Total Dissolved Solids	0.102	NTU NTU NU	0.100
									2
Ζ È Έ Ε Έ	 ND: Non Detected (below reporting limit) mg/L: Milligrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures. 	Non Detected (below reporting limit) Milligrams per liter. The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Cuality Control data will always have three (3) significant figures.	alt results: ant figures. rres.						
005									
This report applies (only to the sample, or sample.	ss. investigated and is not r	recessarily ind	licative of the quality	/ or condition c	This report applies only to the sample. or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public	diicts. As a mithia	al nrafection to clien	ts the nublic.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM Laboratory No. 992422 Page 1 of 7 Printed 12/14/2010

Samples Received on 11/30/2010 9:30:00 PM

Field ID				Lab ID	Coll	lected	Matr	ix
SC-700B-WDR-285				992422-001	11/30/	2010 14:12	Wat	er
Specific Conductivity - E	PA 120.1		Batch	12EC10A			12/6/2010)
Parameter		Unit	Ana	llyzed	DF	MDL	RL	Result
992422-001 Specific Conduct	livity	umhos/	cm 12/06	6/2010	1.00	0.0380	2.00	7310
Method Blank						······································		
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	992422-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7360	Expected 7310	R	PD 0.682	Accepta 0 - 10	ince Range
Lab Control Sample								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 705.	Expected 706.	R	ecovery 99.9	Accepta 90 - 110	ince Range
Lab Control Sample D	uplicate							
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 703.	Expected 706.		ecovery 99.6	Accepta 90 - 110	ince Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 698.	Expected 706.		ecovery 98.9	Accepta 90 - 110	nce Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 995.	Expected 999 <i>.</i>		ecovery 99.6	Accepta 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 991.	Expected 999.		ecovery 99.2	Accepta 90 - 110	nce Range

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 2 of 7 Printed 12/14/2010

Chrome VI by EPA 218.6	in the last		Batch	12CrH10A				
Parameter	1. 1. 1. 1. 1. 	Unit	Ana	lyzed	DF	MDL	RL	Result
992422-001 Chromium, Hexa	valent	ug/L	12/01	/2010 10:46	1.05	0.0210	0.20	0.31
Method Blank								
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND					
Duplicate							Lab ID =	992422-001
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 0.301	Expected 0.309	I	R₽D 2.62	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 4.81	Expected 5.00	ł	Recovery 96.1	90 - 110	ance Range) 992422-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.70	Expected/Add 5.68(5.25)	ed F	Recovery 100	90 - 110	ance Range) 992422-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.37	Expected/Add 1.37(1.06)	ed I	Recovery 100.	Accepta 90 - 110	ance Range)
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.25	Expected 5.00	F	Recovery 105	Accepta 90 - 11(ance Range)
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.55	Expected 10.0]	Recovery 95.5	Accepta 95 - 108	ance Range 5

Report Continued

Client: E2 Consulting Engineers, Inc.Project Name:PG&E Topock ProjectPage 3 of 7Project Number:408401.01.DMPrinted 12/14/2010

Metals by EPA 200.8, Tota	al		Batch	120910A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992422-001 Manganese		ug/L	12/09	/2010 13:08	5.00	0.210	1.0	2.1
Method Blank								
Parameter	Unit	DF	Result					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	992351-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Manganese	ug/L	5.00	6.95	7.41		6.32	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	50.6	50.0		101	90 - 110)
Matrix Spike							Lab ID =	992351-001
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accepta	ance Range
Manganese	ug/L	5.00	241	257(250.)		93.5	75 - 12	5
Matrix Spike Duplicate							Lab ID =	992351-001
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accepta	ance Range
Manganese	ug/L	5.00	243	257(250.)		94.3	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	50.9	50.0		102	90 - 11()
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	48.5	50.0		96.9	90 - 110	C
Interference Check Sta	indard A							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	ND	0				
Interference Check Sta	indard A							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	ND	0				
Interference Check Sta	ndard AB							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	49.4	50.0		98.8	80 - 120	D

Report Continued

Client: E2 Consulting En	gineers, Inc		Project Name: Project Number:	PG&E Topock 408401.01.DM	Project	Page 4 of 7 Printed 12/14/2010
Interference Check St	andard AB					
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.0	Expected 50.0	Recovery 100	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.Project Name:PG&E Topock ProjectPage 5 of 7Project Number: 408401.01.DMPrinted 12/14/2010

Metals by EPA 200.8, To	otal		Batch	120710A				
Parameter		Unit	Ana	alyzed [DF	MDL	RL	Result
992422-001 Chromium		ug/L	12/0	7/2010 11:09 5	00	0.0950	1.0	ND
Method Blank				·····	· · · · · ·	······································		
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Duplicate							Lab ID =	992422-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Chromium	ug/L	5.00	ND	0		0	0 ~ 20	0
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	53.6	50.0		107	90 - 110)
Matrix Spike							Lab ID =	992422-001
Parameter	Unit	DF	Result	Expected/Addeo	J F	Recovery	Accepta	ince Range
Chromium	ug/L	5.00	212	250.(250.)		84.8	75 - 125	5
Matrix Spike Duplicate	e						Lab ID =	992422-001
Parameter	Unit	DF	Result	Expected/Addeo	d F	Recovery	Accepta	ince Range
Chromium	ug/L	5.00	219	250.(250.)		87.7	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	lecovery	Accepta	ince Range
Chromium	ug/L	1.00	54.4	50.0		109	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range
Chromium	ug/L	1.00	50.4	50.0		101	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium	ug/L	1.00	51.2	50.0		102	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium	ug/L	1.00	51.2	50.0		102	90 - 110	
Interference Check St	andard A							
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium	ug/L	1.00	ND	0				_

Report Continued

Client: E2 Consulting En	igineers, In		roject Name: roject Numbe	PG&E Topo r: 408401.01.E		ct		Page 6 of 7 2/14/2010
Interference Check S	tandard A							
Parameter Chromium	Unit ug/L	DF 1.00	Result ND	Expected 0	F	Recovery	Accepta	ance Range
Interference Check S								
Parameter Chromium	Unit ug/L	DF 1.00	Result 55.3	Expected 50.0	F	Recovery	Accepta 80 - 120	ance Range
Interference Check S	-						00 120	,
Parameter Chromium	Unit ug/L	DF 1.00	Result 55.1	Expected 50.0	F	Recovery	Accepta 80 - 120	ance Range)
Total Dissolved Solids I	oy SM 254	DC	Batch	12TDS10A		**************************************	12/2/2010)
Parameter	-	Unit	Ana	lyzed	DF	MDL	RL	Result
992422-001 Total Dissolved	Solids	mg/L	12/02	/2010	1.00	0.434	250,	4390
Method Blank		<u> </u>	······					
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	992422-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Total Dissolved Solids Lab Control Sample	mg/L	1.00	4380	4390		0.228	0 - 5	-
Parameter	Unit	DF	Result	Expected	F	lecovery	Accepta	ince Range
Total Dissolved Solids	mg/L	1.00	499.	500,		99.8	90 - 110	-

Report Continued

Client: E2 Consulting Er	ngineers, Ind		oject Name: oject Numbe	PG&E Topo er: 408401.01.[-	ct	P Printed 12	age 7 of 7 2/14/2010
Turbidity by SM 2130 B			Batch	12TUC10A			12/1/2010)
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992422-001 Turbidity		NTU	12/01	/2010	1.00	0.0140	0.100	0.102
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	992422-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Turbidity	NTU	1.00	0.103	0.102		0.976	0 - 20	Ū
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.17	8.00		102	90 - 110	-
Lab Control Sample I	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.03	8.00		100	90 - 110	

Respectfully submitted, **TRUESDAIL LABORATORIES, INC.**

far. Mona Nassimi Manager, Analytical Services

E2 - Sean

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	12TDS10A
Date Calculated:	12/6/10

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	68.8091	68.8091	68.8091	0.0000	No	0.0000	0.0	25.0	ND	1
992390-2	200	103.4226	103.4403	103,4403	0.0000	No	0.0177	88.5	12.5	88.5	1
992390-3	100	76.5669	76.5866	76.5866	0.0000	No	0.0197	197.0	25.0	197.0	1
992422	10	74.7476	74.7919	74.7915	0.0004	No	0.0439	4390.0	250.0	4390.0	1
992422D	10	48.1851	48.2289	48.2289	0.0000	No	0.0438	4380.0	250.0	4380.0	. 1
LCS	100	104.2455	104.2954	104.2954	0.0000	No	0.0499	499.0	25.0	499.0	1

Calculation as follows:

*

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

d Name

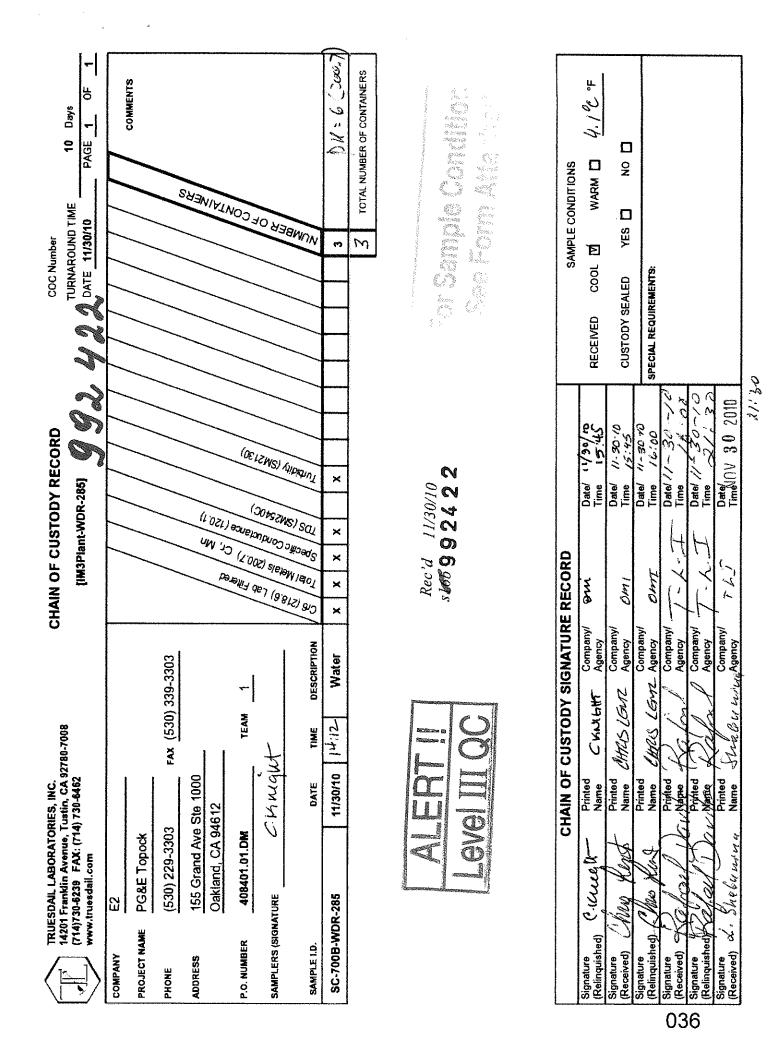
Analyst Signature

Reviewer Pri nted Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK


Batch: 12TDS10A

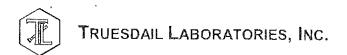
Date Calculated: 12/6/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
				[
992390-2	182	0.49	118.3	0.75
992390-3	373	0.53	242.45	0.81
992422	7400	0.59	4810	0.91
992422D	7400	0.59	4810	0.91
· · · · · · · · · · · · · · · · · · ·	······································			
		, , , , , , , , , , , , , , , , ,		
				· ·

J.

,

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log


Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
11/19/10	992252	9.5	N/A	- N/A	N/A	\$B
	992351	7.0		9.5	8=30	ali
11/24/10	992352-1	7.0	5.0ml	9.5	RUCO	al
	-2	, i	· ſ		8-42	- i
	-3				8:42 8:43 8:44	
	-4				8:44	
	-5				B-46	
L V	V -6		V	J	8248	10
11124/10	992 355-1	7.0	5.00	9.5	10:10	ali
	r -2			1	10:12	
	-3				10:15	
	-41				10:17	
	-5		۳		10:20	
V	V -6		$\overline{\mathbf{V}}$		10:23	,//
12/01/10	992422	7.0	5.00	g.5	9:30	SB
				· ·		
				ľ		
			<u></u>			
			·			
,			. •			
	······································				·····	
	·					·····
-						
					· ·	
	i					
	<u>_</u>	Į,	······································	<u> </u>		I

Enviro\Ali\Cr6+ pH Log

Turbidity/pH Check

		lur	bidity/pH C	neck		
						Adjusted to
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH<2 (Y/N)
992271U	61	72	11/24	<u> </u>	No	D3 GPM
99297	21	*2	11/10	KK_	No	@ 2:00pm
gq2352 (1-6)	21	12	11/21	KK_	NO	11/29@7am
492355 (1-2)	41	22	11/24	KK	NO	Nha @71m
		72	11/20	ES	NO	YUN 3:00 M
192382(1-3)		72		1.		
992 390(1-3)	4	52	Mai	1 st	No	Yes jo am
92355(3-6)		22	11/29	HE-	NO.	Jes R. gam
992351			the second se	EK-	No	Verit 100m
992422	<u> </u>	_2 <	12/2	ES	NO	- YANC I VAN
992416	4	47	1212	63	1	415 Q 10: 30 q.n
a92433(1-3)	61	72				
992414	61	62	- Via	<u> </u>		
9924411-2	71	62	12/7	ES	-Jus-	
9924454		62		 	NO	
092 44	71	L2			Yes	
992402	71	22			yes bitt y	
942452	ZI	41			Att 1	20 ·
Decon BIK	HELI	72	12/3/10	hr	NO	Y @ 2:30 pm
MB	MEL1		1	1		
					J	1 V
992400 (3)	+ 51-	12	12/1	ES	yes	
	71	62		V	Yes	Portugation of the local data
992462	41		1 11	ES	No	
492466	4	22	12/6	<u> </u>		D2:NPM
442461	<u> </u>	72		+		
47.4	41	22	1717	126	No	@ 83°am
992473/1.	3) <	>2	12/7	KK	100	
992480	141	42		<u> </u>		
997482	27	42				DOUDQM
992486	41	72	12 7	ES-		2322 4.44
992502(16,2	12 (8)	72				azin p.m
042212	21	72	11(17	E'S.		@ 10:00 a.m
am 50/a	- 21	42	NL/8	P4	No	
091507	41	62		1		
992508	4	22				
992 50 6 992 507 992 508 992 508 992 509		22 22				
002510	- 61	22 22 32 32 32 32 32 32 32 32		4	<u> </u>	
992510 192524(1- 992525(1-	2) 2	12	12/8	KK	NO	@ 8 3° am
1-15/461-	<u>-</u> (1) <u>-</u> (1)	27				@ 830 am @ 830 am TTLC
99/5/5/-	-3) -4		-12-18.11	128 14-	No	10830 m-
492351	4		10/01	U ES	Yes	TTLC
492523	510	UGE	12 811		Yes	
0792575	$- \frac{7}{2}$	22 22	101/11		NV	
992 528 992 539(1 992 539(1 992 540 541 542	41		12 11) ES	NO	Dilioam
992 539(1	-3) 41	72	12/9/1	TO ES	140	
492540	<u> </u>	42				
541						
542						
543						
. <u>544</u> 545						
				$\overline{\mathbf{v}}$		

protocologia

Sample Integrity & Analysis Discrepancy Form

Clien	t:	Lab #	2422
Date	Delivered:////30/10 Time:_2/:30 By: □Mail ⊠Fielo	I Service	Client
1.	Was a Chain of Custody received and signed?	∭Yes □No	□N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No	ØN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No	⊠ÍN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No	ØN/A
5.	Were all requested analyses understood and acceptable?	¢∐Yes ⊡No	$\Box N/A$
6.	Were samples received in a chilled condition? Temperature (if yes)? ⁴ .) ° C	Æ Yes □No	□ <i>N/A</i>
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	∯Yes □No	$\Box N/A$
8.	Were sample custody seals intact?	□Yes □No	ØN/A
9.	Does the number of samples received agree with COC?	ŔQYes ⊡No	□N/A
10.	Did sample labels correspond with the client ID's?	⊠Yes ⊡No	□N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes □No	хо́N/А
12.	Were samples pH checked? pH = <u>See C</u> . C. C.	₩Yes □No	□N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØLYes □No	$\Box N/A$
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): 🗅 RUSH 🛛 🖾 Std	ŹYes □No	$\Box N/A$
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid №Oth	111	
16.	Comments:		
17.	Sample Check_In_completed_by_Truesdail Log-In/Receiving: <u></u>	rabunin.	<u> </u>
%MATRIX\m	Discip.FormBlank.dnc		

Analytical Bench Log Book

WDR pH Results

i e

È

Į.

-

Ł

Sample Name	Date òf sampling	Time of sampling	Date of analysis //:3~/()	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Time pH meter Calibrated	Slope of the Curve	Analyst Name (for the pH result)	рН Result
1 SC-100B	11-3-10	12:15	12-31 K	1231	METER*1	11-3-10	0430	-55.4	Tim D	7.3
otes:			•							
: SC-700B	11-9-10	1200	11-9-10	1206	METER#1	11-9-10	4:30	-55.5	thors P.	7.1
otes.							y	<u></u>		
SC-700B	11-16-10	1300	11-16-10	1204	METER#1	11-16-10	4:30	-55.4	Tim 7	7.1
Netes:										
а <u>5</u> С-700-В	11-23-10	14:25	11-23-10	14:29	METER #1	11-23-10	04:30	-56.3	C King Ht	7.4
entes:										
56-700 3	11-30-10	14:12	11-3010	14:17	METER #/	11-30-10	04:30	-54.2	C. Knight	7.3
otes:							<u> </u>	<u>_</u>	••••••••••••••••••••••••••••••••••••••	<u> </u>
6										
otes:										<u></u>
/		\$ 0 1 1			·······					
otes:			i.			· 1	<u>_</u>	I		<u> </u>
		Remi	nder: WDR	Required	pH Range for the	F #1	7000	<u> </u>		

£.

FAX

LASERJET

ΗЬ

5:04PM

2010

30

Nov

K

ч. С ł.

32

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 5, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-286 PROJECT, SLUDGE MONIFORING, TLI NO.: 992523

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-286 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 7, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

The recovery for the digested matrix spike for Total Chromium, Beryllium, and Mercury were outside the acceptance limits. A post-digestion spike was analyzed for each and the recoveries were within acceptable limits.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K. R. P. gyer

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

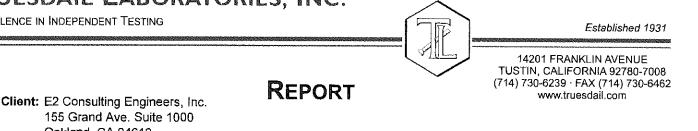
Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992523 Date: January 5, 2011 Collected: December 7, 2010 Received: December 7, 2010

ANALYST LIST


METHOD	PARAMETER	ANALYST
EPA 300.0	Fluoride	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Ethel Suico
SW 6020	Metals by ICP/MS	Katia Kiarashpoor / Hope Trinidad
SW 7199	Hexavalent Chromium	Sonya Bersudsky

Established 1931	14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com	Laboratory No.: 992523 Date Received: December 7, 2010			nary						This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.
					lts Sum	SM 2540 B % Moisture	%	56.5			idition of apparentl ssed and upon the
	\$				<u>Analytical Results Summary</u>	EPA 300.0 Fluoride	mg/kg	32.3			ve of the quality or cor ent to whorn it is addre
					Analy	<u>SW 7199</u> Hexavalent	Chromium mg/kg	56.5			ot necessarily indicati clusive use of the clie tories.
atories, Inc.		s, Inc. 000				Sample Time		-286 13:30	been applied to all results: significant figures. Je three (3) significant figures. e (3) significant figures.		amples, investigated and is n vitted and accepted for the ex ization from Truesdail Laboral
I RUESDAIL LABORATORIES, Excellence in Independent Testing		Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	awn Duffy	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM		<u>Sample I.D.</u>		SC-Sludge-WDR-286	ND: Non Detected (below reporting limit) mg/L: Milligrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Result below 0.01ppm with have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.		s only to the sample, or s ories, this report is subm thout prior written author
		Client: E2 15(Oal	Attention: Shawn Duffy	Project Name: PG&E Topock Project No.: 408401.01.DM P.O. No.: 408401.01.DM		<u>Lab I.D.</u>		992523	ND: Non Detected mg/L: Mitligrams pet Note: The following Result abo Quality Con	005	This report applies and these laboratc publicity matter wit

Client: E2 Consulting Engineers, Inc. 166 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Dufy Attention: Shawn Dufy Project Naxe: PG&E Topock Project Project Naxe: PG&E Topock Project Project Naxe: 964E Topock Project Naxe: 964E Topock Project Naxe: 974E Total Result Nation Project Naxe: 974E Total Result Nations Nation	EXCELLENCE IN INDEPENDENT TESTING						14201 FRA (714) 73C	Estab NKLIN AVENUE · J-6239 · FAX (71	Established 1931 14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com	NIA 92780-7008 WM.truesdail.com
AnALYSIS: Total Metal Analyses as Requested Antimony Arsenic Antimony Arsenic Ban'um Ban'um Ban'um Cobatt SW 6010B SW	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Project No.: 408401.01.DM P.O. No.: 408401.01.DM				р Га	boratory N ate Receive	o.: 992523 id: Decemb	er 7, 2010		
S MALYSIS: Total Metal Analyses as Requested Antimory Arsenic Barlum Beryllium Cadmium Chromium Cobatt Date of Analysis: 12/22/10 1/1 Sc-Sudge-WDR-286 13:30 45/4 10.7 58.2 1.62 ND 46/0 7/11 1/2/22/10 1/1 Sc-Sudge-WDR-286 13:30 45/9 mg/kg mg/kg mg/kg mg/kg 1/1 Sample ID Time Coll. Mercury Molybdenum Nickel Selenium Silver Thallium Vandium Sc-Sudge-WDR-286 13:30 ND 4.51 2.12/21 1/1/2/22/10 1/1/2/22/10 1/1/2/22/1		Analy	vtical R	<u>tesults</u>	Summ	<u>ary</u>				
$\label{eq:constant} \mbox{Arsenic} karlum $										
SC-Sludge-WDR-286 13:30 45.4 10.7 58.2 1.62 ND 4670 7.11 SC-Sludge-WDR-286 13:30 45.4 10.7 58.2 1.62 ND 4670 7.11 Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium 2 Sample ID Time Coll. 12/21/10 12/22/10 <	Sample [D	Antimony SW 6010B 12/22/10 πα/ka	Arsenic SW 6010B 12/22/10 ma/ka	Barium SW 6010B 12/22/10 mo/kg	Beryllium SW 6010B 12/22/10 malka	Cadmium SW 6010B 12/22/10 mc/kg	Chromium SW 6010B 12/16/10 mot/ro	Cobalt SW 6010B 12/22/10	Copper SW 6010B 12/22/10	Lead SW 6010B 12/22/10
Date of Analysis: Mercury Sw 6010B Molybdenum w 6010B Nickel Selenium Silver Thallium Action Action	SC-Sludae-WDR-286	45.4	₽. P.			Buß.	fy/fill	5y/fill	mg/Kg	mg/kg
Mercury Sw 6020 Molybdenum Sw 6010B Nickel Selenium Sw 6010B Silver Sw 6010B Thallium Sw 6010B Vanadium Sw 6010B Silver Sw 6010B Thallium Sw 6010B Vanadium Sw 6010B Sw 6010B <t< td=""><td></td><td>t</td><td>10.7</td><td>7.00</td><td>1,02</td><td>n</td><td>4670</td><td>7.11</td><td>28.9</td><td>4.20</td></t<>		t	10.7	7.00	1,02	n	4670	7.11	28.9	4.20
SC-Sludge-WDR-286 13:30 ND 8.31 21.2 ND 4.51 2.32 117 D: Not detected, or below limit of detection ND D: Not detected, or below limit of detection	Sample ID	Mercury SW 6020 12/21/10 mg/kg	Molybdenum SW 6010B 12/22/10 mg/kg	Nickel SW 6010B 12/22/10 mg/kg	Selenium SW 6010B 12/22/10 mg/kg	Silver SW 6010B 12/22/10 mg/kg	Thallium SW 6010B 12/22/10 mg/kg	Vanadium SW 6010B 12/22/10 mg/kg	Zinc SW 6010B 12/22/10 mg/kg	
D: Not detected, or below limit of detection	SC-Sludge-WDR-286	Q	8.31	21.2	Q	4.51	2.32	117	32.2	
	NOTES: ND: Not detected, or below limit of detection									

006

EXCELLENCE IN INDEPENDENT TESTING

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM Prep. Batch: 12CrH10I

Investigation:

Hexavalent Chromium by IC Using Method SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
992523	SC-Sludge-WDR-28	6 13:30	15:25	mġ/kg	5.00	4.59	56.5

					QA	/QC Su	mma	ry						
	QC STI) I.D.		boratory umber	Sampl Concentra		plicate		Relative Percent Difference		ceptance limits	G	C Within Control	
	Duplic	ate	9	92523	56.5		57.5		1.76%		< 20%		Yes	
QC Std 1.D.	Lab Number	Conc. unspik sampi	ed Di	lution Factor	Added Spike Conc.	MS Amount	Measur Conc. o spiked sample	of I	Theoretical Conc. of spiked sample		MS% covery	A	cceptance limits	QC Within Control
MS	992523	56.5		10.0	18.4	184	234	-	240		96.4%	 	75-125%	Yes
IMS	992523	56.5		50.0	41.9	2095	1990		2151		92.3%	1	75-125%	Yes
PDMS	992523	56.5	56.5	25.0	14.7	367	427	427 43		101%			85-115%	Yes
		QC	Std I.C	1. 4	sured ntration	Theoretic Concentrat			1					
		В	lank	1	٧D	<0.400			<0.40	0	Yes			
		MF	RCCS	1	.94	2.00	97.	0%	90% - 11	0%	Yes			
		MR	CVS#1	1	.96	2.00	98.	1%	90% - 11	0%	Yes			
		MR	CVS#2	2 1	.93	2.00	96.	6%	90% - 11	0%	Yes			
		ι	CS	2	.12	2.00	100	3%	80% - 12	0%	Yes			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

Respectfully submitted, **TRUESDAIL LABORATORIES, INC.**

Laboratory No.: 992523

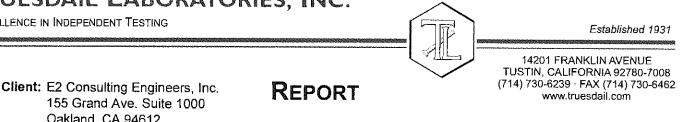
Prep/ Analyzed: December 16, 2010

Analytical Batch: 12CrH10I

Date: January 5, 2011

Collected: December 7, 2010

Received: December 7, 2010


Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

800

EXCELLENCE IN INDEPENDENT TESTING

Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM

Investigation:

Total Solids by SM 2540 B

Analytical Results % Moisture

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	<u>Results</u>
992523	SC-Sludge-WDR-286	13:30	%	56.5

QA/QC Summary

 QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relati∨e Percent Difference	Acceptance limits	QC Within Control
Duplicate	992523	56.5	57.8	2.31%	<u><</u> 20%	Yes

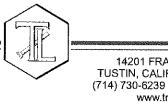
ND: Below the reporting limit (Not Detected), **DF:** Dilution Factor

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 992523

Date: January 5, 2011

Collected: December 7, 2010


Received: December 7, 2010

Prep/ Analyzed: December 9, 2011 Analytical Batch: 12SOLID10B

🛵 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM

Laboratory No.: 992523 Date: January 5, 2011 Collected: December 7, 2010 Received: December 7, 2010 Prep/ Analyzed: December 9, 2011 Analytical Batch: 12AN10D

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
992523	SC-Sludge-WDR-286	13:30	12:25	mg/kg	1.00	4.59	32.3

QA/QC Summary

	QC STE		1	abora Numb	-	Concentra	ation		olicate entration		Relative Percent ifference		eptance limits	1	QC Within Control	
	Duplic	ate	5	9253	1-5	ND		l	ND		0.00%		<u><</u> 20%		Yes	
QC Std I.D.	Lab Number	unsj	nc.of piked nple		ution Ictor	Added Spike Conc.	1	MS nount	Measure Conc. c spiked sample	f	Theoretical Conc. of spiked sample	t t	MS% covery	А	Cceptance limits	QC Within Control
MS	992531-5	0.4	111	1	.00	2.00	2	2.00	2.22	T	2.41	9	90.5%		85-115%	Yes
MSD	992531-5	0.4	11	1	.00	2.00	2	2.00	2.21		2.41	5	90.1%		85-115%	Yes
		Q	C Std	I.D.	1	asured		eoretical Icentratic			Acceptar Limits		QC With Contro			
			Blan	k		ND		<0.500			< 0.500	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Yes			
			MRCC	S		4.14		4.00	104	%	90% - 110	0%	Yes			
		Ν	IRCV	S#1		3.20		3.00	107	%	90% - 110	0%	Yes			
		N	IRCV	5#2		3.14	[3.00	105	%	90% - 11(0%	Yes	-1		
			LCS			4.16		4.00	104	%	90% - 110	0%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

✓ ✓ ✓ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 992523 Reported: January 5, 2011 Collected: December 7, 2010 Received: December 7, 2010 Analyzed: See Below

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM

Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID: SC-	Sludge-WDR-286	Time Coll	ected:	13:30		LAB ID	992523	
		Reported			·····		Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Anaiyzed	Analyzed
Antimony	SW 6010B	45.4	1.00	mg/kg	2.00	122210A-Th	12/22/10	16:34
Arsenic	SW 6010B	10.7	1.00	mg/kg	0.988	122210A-Th	12/22/10	16:34
Barium	SW 6010B	58.2	1.00	mg/kg	1.00	122210 A -Th	12/22/10	16:34
Beryllium	SW 6010B	1.62	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Cadmium	SW 6010B	ND	1.00	mg/kg	0.988	122210A-Th	12/22/10	16:34
Chromium	SW 6010B	4670	20.0	mg/kg	20.7	121610A-Th	12/16/10	17:55
Cobait	SW 6010B	7.11	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Copper	SW 6010B	28,9	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Lead	SW 6010B	4.20	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Mercury	SW 6020	ND	10.0	mg/kg	0.198	122110A-Hg	12/21/10	17:00
Molybdenum	SW 6010B	8.31	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Nickel	SW 6010B	21,2	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Selenium	SW 6010B	ND	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Silver	SW 6010B	4.51	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Thallium	SW 6010B	2.32	1.00	mg/kg	2.00	122210A-Th	12/22/10	16:34
Vanadium	SW 6010B	117	1.00	mg/kg	1.00	122210A-Th	12/22/10	16:34
Zinc	SW 6010B	32.2	1.00	mg/kg	2.00	122210A-Th	12/22/10	16:34

NOTES:

Sample results and reporting limits reported on a dry weight basis. ND: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

to __ Mona Nassimi, Manager Analytical Services

	Client: E2 C 155 (Oakl	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland. CA 94612	gineers, Ir tuite 1000	lo.						14201 FRAN (714) 730-	14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com	ISTIN, CALIFOI 130-6462 - w	RNJA 92780-700 Mw.truesdail.co
A S Projec Froj	Attention: Shawn Duffy Samples: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	Shawn Duffy One (1) Soil Samp PG&E Topock Pro 408401.01.DM 408401.01.DM	oject							Laboratory Reported: Collected: Received:	r No.: 99252 January 5, 20 December 7, December 7,	8 211 2010 2010	
			DIGES	Qualif DIGESTED BLANK	ty Coni	Quality Control/Quality Assurance Report BLANK MRCCS	ty Assur	ance R	eport	MRCVS			
Parameter	Method	Batch	Units	Blank	퉡	Observed Value	TRUE Value	% %	Control Limite	Observed	TRUE	%	Control
Antimony	SW 6010B	122210A-Th	mg/kg	QN	2.00	4.69	5.00	93,8%	90-110%	4.95	5 00	Rec QA Q%	GD-110%
Arsenic	SW 6010B	122210A-Th	mg/kg	QN	0.500	4.63	5.00	92.5%	90-110%	4.94	5.00	98.8%	90-110%
Barium	SW 6010B	122210A-Th	mg/kg	Ŷ	1.00	4.94	5.00	98.8%	90-110%	4.70	5.00	93.9%	90-110%
Beryllum	SW 6010B	122210A-Th	mg/kg	Q	1.00	4.87	5.00	97.5%	90-110%	4.50	5.00	80.0%	90-110%
Cadmium	SW 6010B	122210A-Th	mg/kg	Q	0.500	5.10	5.00	102%	90-110%	5.05	5.00	101%	90-110%
Chromium	SW 6010B	121610A-Th	mg/kg	Q	1.00	4.89	5.00	97.8%	90-110%	4.97	5.00	99.4%	90-110%
Cobalt	SW 6010B	122210A-Th	mg/kg	Q	1.00	4.98	5.00	9 9 .6%	90-110%	4.94	5.00	98.7%	90-110%
Copper	SW 6010B	122210A-Th	mg/kg	Q	1.00	5.05	5.00	101%	90-110%	4.92	5.00	98.4%	90-110%
Lead	SW 6010B	122210A-Th	mg/kg	ŊŊ	1.00	5.01	5.00	100%	90-110%	4.95	5.00	98.9%	90-110%
Mercury	SW 6020	122110A-Hg	mg/kg	QN	0.100	0.00204	0.00200	102%	90-110%	0.00210	0.00200	105%	90-110%
Malybdenum	SW 6010B	122210A-Th	mg/kg	Q	1.00	4.55	5.00	90°9%	90-110%	4.87	5.00	97.3%	90-110%
Nickel	SW 6010B	122210A-Th	mg/kg	Q	1.00	5.04	5,00	101%	90-110%	4.83	5.00	96.7%	90-110%
Setenium	SW 6010B	122210A-Th	mg/kg	QN	1.00	4.59	5.00	91.9%	90-110%	4.90	5.00	98.0%	90-110%
Silver	SW 6010B	122210A-Th	mg/kg	Q	1.00	5.14	5.00	103%	90-110%	5.00	5.00	99°9%	90-110%
Thallium	SW 6010B	122210A-Th	mg/kg	Q	2.00	5.10	5.00	102%	90-110%	5.08	5.00	102%	90-110%
Vanadium	SW 6010B	122210A-Th	mg/kg	Q	1.00	4.99	5.00	99.7%	90-110%	4.94	5.00	98,8%	90-110%
Zinc	SW 6010B	122210A-Th	mg/kg	9	2.00	5.01	5.00	100%	90-110%	4.93	5.00	98.6%	90-110%

Report Continued

Ø	Control	Limits	80-120%	80-120%	80-120%	80-120%	80-120%	80-120%	80-120%	80-120%	
STANDARD A	%	Rec.	11	103%	97.7%	102%	102%	90.9%	102%	102%	104%
INTERFERENCE CHECK STANDARD AB	ICS	Theo.	2,00	2.00	2.00	2.00	2.00	0.00200	2.00	2.00	2.00
INTERFERE	ICS	Obs.	1.90	2.05	1.95	2.04	2.03	0.00182	2.05	2.03	2.07
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Method		SW 6010B	SW 6020	SW 6010B	SW 6010B	SW 6010B				
	Parameter		Arsenic	Cadmium	Chromium	Cobatt	Copper	Mercury	Nickel	Silver	Zinc

								CALES			
Parameter	Method	Units	rcs	LCS	%	Control	SAMPLE	SAMPLE		70	Precision
			Obs.	Theo,	Rec.	Limits	D	RESULT	RESULT	" "	
Antimony	SW 6010B	mg/kg	98.4	100	98.4%	85-115%	992523	45.4		1040 c	
Arsenic	SW 6010B	mg/kg	97.3	100	97.3%	85-115%	007573	4.04		3.07% 	<u>~~70</u>
Barium	SW 6010B	ma/ka	100	100	100%	R5_115%			1.4	%15.0	≤20
Beryllium	SW 6010B	ma/ka	103		103%	85 445 %	070768	2,86	63.7	8.97%	<u><20</u>
Cadmium	SW 6010B	o you	106 106		10201			1.62	1.70	4.55%	\$20
Chromium	SW 6010B		201	00	10407	00-110%		ND	ND	0.00%	<u>5</u> 20
chait	CIAL COLOD		5	on!	0.4%	0.0-11.0.%	882523	4670	4770	2.12%	≤20
		mg/kg	104	100	104%	85-115%	992523	7.11	7.51	5.50%	<20
Copper	SW 6010B	mg/kg	104	100	104%	85-115%	992523	28.9	30.4	5 10%	
Lead	SW 6010B	mg/kg	99.4	100	99.4%	85-115%	992523	4 20	4 5.4	7,60%	0.70
Mercury	SW 6020	mg/kg	0.107	0.100	107%	85-115%	000503				075
Moivbdenum	SW 6010R	malka	05.0	100	20.00				UN	n.uu%	220
		Ru/Rill	מסית	Ont	%A'CA	85-115%	992523	8.31	8.78	5.46%	20
NICKEI	SW 6010B	mg/kg	102	100	102%	85-115%	992523	21.2	22.8	7.22%	0C>
Selenium	SW 6010B	mg/kg	95.7	100	95.7%	85-115%	992523	QN	DN	0 U0%	Î
Silver	SW 6010B	mg/kg	109	100	109%	85-115%	992523	4.51	FT A	/000 /	
Thallium	SW 6010B	mg/kg	109	100	109%	85-115%	007573	0.20		N 20.4	075
Vanadium	SW 6010B	mg/ka	103	100	103%	B5-11594	007533			%cl./	820
Zinc	SW 6010B	ma/ka	102	100	102%	85-115%			124	0.95%	220
01	and the second						02020	7.20	32.4	0.57%	<20

Report Continued

MATRIX SPIKE

Accuracy

!				Sample		Spike	Total Amt.	Theo.	MS	%	Control
nple ID	sample ID Parameter	Method	Units	Result	DF	Level	of Spike	Value	Obs.	Rec.	Limits %
92523	Antimony	SW 6010B	mg/kg	45.4	1.00	217	217	263	767	00 AV	75.4750
992523	Arsenic	SW 6010B	ma/ka	10.7	1.00	217		228	250	70755	N 071-01
992523	Barium	SW 6010B	ma/ka	58.2	1 ON	247	247	077	202		0/071-01
992523	Beryllium	SW 6010B	e e	1 8.0		007		0/7	707	9 CO 1	%c7l-c/
992523	Cadmium		Ry/Rin	70.1		20	190	188	221	111%	75-125%
			mg/kg	0.00	1.00	217	217	217	220	101%	75-125%
670766	Chromium	SW 6010B	mg/kg	4670	20.0	198	3952	8622	8670	101%	75-125%
992523	Cabalt	SW 6010B	mg/kg	7.11	1.00	217	217	225	224	89.6%	75-125%
992523	Copper	SW 6010B	mg/kg	28.9	1.00	217	217	246	268	110%	75-125%
992523	Lead	SW 6010B	mg/kg	4.20	1.00	217	217	222	103	AG AV	76 1750
992523	Mercury	SW 6020	mg/kg	0.156	10.0	0,198	198	2.13	07.0	11 802	78 1050
992523	Molybdenum	SW 6010B	ma/kn	A 31	100	247				801 S	8. CZ - C -
992523	Nickal						 717	077	2.34	104%	/2-125%
			mg/kg	21.2	1.00	217	217	239	233	97.5%	75-125%
6707RR	Selenum	SW 6010B	mg/kg	0.00	1.00	217	217	217	201	92.5%	75-125%
992523	Silver	SW 6010B	mg/kg	4.51	1.00	217	217	222	237	107%	75-125%
992523	Thallium	SW 6010B	mg/kg	2.32	1.00	217	217	220	187	700 78	76 1050
992523	Vanadium	SW 6010B	mg/ka	117	1.00	217	217	760 760	257	20011	N 121 121
992523	Zinc	SW 6010B	mg/kg	32.2	1.00	217	217	250	974	110%	76.1250/0

ND: Not detected, or below limit of detection. DF: Dilution Factor

TRUESDAIL LABORATORIES, INC. Respectfully submitted,

Mona Nassimi, Manager Analytical Services C

014

EXCELLENCE IN INDEPENDENT TESTING

142 TUSTIC (714) 73

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Established 1931

٦

www.truesdail.com

Date Calculated: 1/5/2011

						Sulouideou.	
	Sample Result Wet Weight mg/kg	Dilution Factor	% Moisture	Sample Result Dry* Weight mg/kg	Reported Value mg/kg	Reporting Limit Wet Weight mg/kg	Reporting Limit Dry Weight mg/kg
Fluoride	14.057		56.5	32.2853	32.3	2.00	4.59
Hexavalent Chromium	24.5877		56.5	56.4715	56.5	2.00	4 50
Hexavalent Chromium - Dup	25.0243	·····	56.5	57,4742	57.5	2.00	4.59
Hexavalent Chromium - MS	101.6967	ید د	56.5	233.571	234		4.59
Hexavalent Chromium - IMS	867,863		56.5	1993.256	234 1990	4.00 20.0	9,19
Hexavalent Chromium - PDMS	185.8161		56.5	426.771	427	10.0	45.9 23.0
Antimony	19.77	1.00	56.5	45,4065	45.4	0.430	2.00
Arsenic	4.678	1.00	56.5	10,7441	40.4	0.430	2.00
Barium	25.34	1.00	56.5	58.1994	58,2	0.430	0.988
Beryllium	0.7067	1.00	56,5	1.6231	1.62	0.430	1.00
Cadmium	ND	1.00	56,5	ND	ND	0.430	1.00
Chromium	2032	20.0	56.5	4666,97	4670	9,02	0.988
Cobalt	3.097	1.00	56.5	7.1130	7.11	0.430	20.7
Copper	12.58	1.00	56.5	28,8930	28.9	0.430	1.00
Lead	1.829	1.00	56.5	4.2007	4.20	0.430	1.00
Mercury	0.06781	10.0	56.5	0,15574	4.20 ND	0.0860	1.00
Molybdenum	3.619	1.00	56.5	8.3119	8.31	0.0880	0.198
Nickel	9.236	1.00	56.5	21,2127	21,2	0.430	1.00
Selenium	ND	1.00	56.5	ND	21.2 ND	0.430	1.00
Silver	1.964	1.00	56.5	4.5108	4.51	0.430	
Thallium	1.011	1.00	56.5	2.3220	2.32	0.430	1.00
Vanadium	50,91	1.00	56.5	116.927	2.32	0.430	2.00
Zinc	14.03	1.00	56.5	32.2232	32.2	0.430	1.00 2.00

Dry Weight Calculations

Sample Result in Dry Weight = [Sampleww / (100-%Moisture)]*100

where:

Sampleww = Sample result in wet weight

Æ

TOTAL SOLIDS BY SM 2540 B

E2 - Sean

12/09/10 Date of Analysis:

Lab No.	Dish Number	Weight of dish, g	Wt of wet sample, g	Wt of wet sample+ dish, g	Wt of dried residue+dish,g	Wt of dried residue, g	% Total Solids	% Moisture
992523	1	1.3122	2.0503	3.3625	2.2049	0.8927	43.540	56.460
992523D	2	1.3173	2.0042	3.3215	2.1635	0.8462	42.221	57.779
		T T						
		Ī						
····	1							
	1							
	1							
<u></u>	-							
	1	1						

	Relati	ve Percent Difference	
Sample ID	Sample	Sample Dup	RPD
992523	56.460	57.779	2.3

=

% Total Solids =

(A-B)*100 C-B

Weight of dried residue x 100 Weight of wet sample

Where:

A = Weight of dried Residue + Dish, g

Analyst

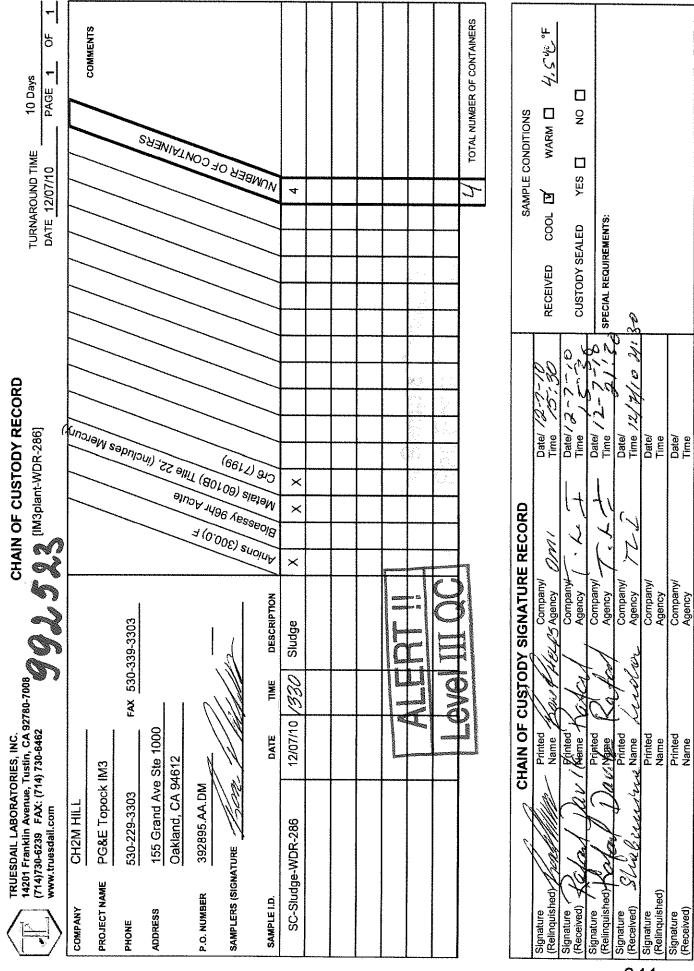
Signature

B = Weight of dish, g

C = Weight of wet sample + Dish, g

G. Savani

Analyst Name


Reviewer Signature

Analytical Batch: 12SOLID10B

105

Oven Temp, °C:

Reviewer Name

Turbidity/pH Check

	1	1				•	
Sample Number	Turbidity		Date	Analyst	Need Digest	Adjusted to	
992374	L1	72	11/24	ES	No		
192097	21	*2	11/10	FK.		03:01 p.m	
92352 (1-6)	21	12	11/24	FF -	No	@ 2:00pm	
192355 11-2	41	12	11/24	1.1	NO	11/29@7am	
69238211-2	121	72		KK.	NO	129 @7AM	
992 390(1-3)	21	72	11/29	ES	- Klu	YUNDINA	
192355(3-6)	<1	32		<u> </u>	l		
2351	4		1401	HK-	No	Yes a ig am	
992422	 	22	11/29		NO	1 188 @ Gama	
992416	<u> </u>	<u>2</u>	12/01	KK_	No	yes@ 100m	
	41	42	12/2	ES	NO	- the int	
<u>992433(1-3)</u>	21	72		4	1	yis a 10:30 1	
992414	41	62				yo www. No c	
992441(1-2	71	12	12/3	ES	-1-4		
992445.4	41	42	1	1	NO		
992447	71	22			Yes		
992450	71	42				· · · · · · · · · · · · · · · · · · ·	
942452	21	41		<u>f</u>	yes Htt ye		
Decon BIK	HELI	72	12/3/10	1.	- Pro 70		
MB	HERLI	····· <u>· / /</u>	1	ht_	NO	Y @ 2:30 pm	
992400 (3)	E F	<u> </u>	<u>├</u>			1	
992461	- <u></u>	12	12/4	<u>↓</u>	V	▼ ↓	
992462	71		12/3	ES	yes		
992466	41	62	- de		Yes	\$100	
092 1157	21	22	12/6	ES	No.	·	
11-401	61	72	├}			D2:00pm	
192473 (1-3)		22			1		
192473 (1-3)		≥ 2	12/7	KK	No	@ 830am	
192480 1	21	22					
192482	7	<u> ~2</u>					
192486	<u> </u>	72	12/7	ES-	1	D 10:00 Q.m	
192502(16,23)	41	72	<u> </u>			23:00 p.M	
192202	21	72	1117	E9.		2 10:00 a.M	
92506	<u> </u>	22 22 22 22	12/8	P.K-	No	- 10.00 0.00	
2508	21	62		Λ			
2508	<u> </u>	⁴ 2					
12509	<u> </u>	22					
2510	<u> </u>	22					
2524(1-2)	2	52	12/8	KR	N6	199	
2525/1-21	4	27	·		100	e o am	
123510 7	4	22 52 52 22	12/8.11/29	KI-		28 ³³ am (28 ³⁰ am (28 ³⁰ am (77LC)	
$\frac{12510}{12524(1-2)}$ $\frac{12525(1-3)}{12351}$ $\frac{12525}{12351}$ $\frac{12523}{12523}$	SLUDG	E E	10 4 14	Ktr	No	(08 30 an_	
92525	71	22	12 18/10	ES	425	TTLC	
92524	21	12			Yer	<u>~</u>	
9253961.2		<u>L2</u> 72 <u>L2</u>	12/110	ES	Yes Yes NV	Dilinam	
42528 42539(1-3) 42540 541 541	<u> </u>		12/9/10	ES	NO	NII:00 am	
		<u> </u>				<u> </u>	
542							
						<u> </u>	
543 544 545							

Sample Integrity & Analysis Discrepancy Form

Clie	nt: <u>_ULL_M_Hill</u>	Lab #	<u>992523</u>
Date	Delivered: <u>/2</u> / <u>0</u> 7/10 Time: <u>2/:30</u> By: □Mail ØField	Service	□ <i>Client</i>
1.	Was a Chain of Custody received and signed?	⊠áYes ⊡∧	lo 🗆 N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □Λ	lo 🖾 N/A
З.	Are there any special requirements or notes on the COC?		lo 🖾N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □∧	lo 🖾N/A
5.	Were all requested analyses understood and acceptable?	⊠áYes ⊡∧	lo 🗆 N/A
6.	Were samples received in a chilled condition? Temperature (if yes)?4 <u>. ऽ०C</u>	Ø.√Yes □Λ	lo 🗆 N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes ⊡∧	lo □N/A
8.	Were sample custody seals intact	□Yes □Λ	lo ØN/A
9.	Does the number of samples received agree with COC2	ØYes □Λ	lo □N/A
10.	Did sample labels correspond with the client ID's? QCT	⊠ IYes ⊡∧	lo □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes □N	o BIN/A
12.	Were samples pH checked? pH =	□Yes □N	b p_in/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Ø Yes ⊡N	o 🗆 N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): D RUSH 💋 Std	ØYes □N	o 🗆 N/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wat XSludge □Soil □Wipe □Paint □Solid □Oth		ste Water
16.	Comments:		
17.	Sample Check-In completed by Truesdail Log-In/Receiving: <u>S/</u>	habirm	ina

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 4, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-286 PROJECT, GROUNDWATER MONITORING,

TLI NO.: 992525

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-286 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 7, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Mr. Shawn Duffy of CH2M Hill requested the analysis for pH by SM 4500-H B on the three samples listed on the chain of custody.

The matrix spike for sample SC-700B-WDR-286 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the result from the 5x dilution agrees with that of the straight run, the data from the straight run is reported.

The Total Dissolved Solids by SM 2540 C ratio of measured TDS to calculated TDS for sample SC-701-WDR-286 exceeds the recommended limit of 1.3. The sample was analyzed using two different sample volumes (2.5 mL and 2 mL) and the results of the two have a relative percent difference of less than 5 percent. Therefore, the data is accepted and the result from the analysis using 2.5 mL of sample is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

Al. Klanst

(-O/K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Three (3) Groundwaters Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992525 Date: January 4, 2011 Collected: December 7, 2010 Received: December 7, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	lordan Stavrev
SM 4500-NO2 B	Nitrite as N	Jenny Tankunakorn
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

						14201 F (7) 14 (7) 14	FRANKLIN AVENUE 730-6239 · FAX (14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com	NIA 92780-700 ww.truesdail.con
Client:	nt: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	ers, Inc. • 1000				Lat Da	Laboratory No.: 992525 Date Received: Decem	-aboratory No.: 992525 Date Received: December 7, 2010	2010
Attentio	Attention: Shawn Duffy						Revision 1;	Revision 1; January 8, 2011	~
Project Nam Project No P.O. No	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	Ļ							
		An	<u>nalytical</u>	<u>ytical Results Summary</u>	s Sun	ımary			
Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
992525-001	SC-700B-WDR-286	E120.1	NONE	12/7/2010	13:30	EC	7500	umhos/cm	00 0
992525-001	SC-700B-WDR-286	E200,7	NONE	12/7/2010	13:30	BORON	967	ua/r	200
992525-001	SC-700B-WDR-286	E200.7	NONE	12 <i>1</i> 7/2010	13:30	Iron	QN	nd/L	20.0
100-626288	SC-/UUB-WDR-286	E200.8	NONE	12/7/2010	13:30	Aluminum	ÛN	ng/L	50.0
992525-001				12/7/2010	13:30	Antimony	ŊD	ng/L	10.0
992525-001 992525-001	SC.700B-WDR-286			12///2010	13:30	Arsenic	ND	ng/L	1.0
992525-001	SC-700B-WDR-286	E200.8		12///2010	13:30	Barlum Chromitum	15.4 MD	ng/L	10.0
992525-001	SC-700B-WDR-286	E200.8	NON	12/7/2010	13:30	Conner		ng/L	0.1
992525-001	SC-700B-WDR-286	E200.8	NONE	12/7/2010	13:30	Lead	2 Q	ug/L Lia/l	0 01 0 01
992525-001 007555 001	SC-700B-WDR-286	E200.8	NONE	12/7/2010	13:30	Manganese	17.0	ng/L	10.0
992525-UU1 007575 001	SC-/00B-WDR-286	E200.8	NONE	12/7/2010	13:30	Molybdenum	17.8	ng/L	10.0
992525-001			NONE	12/7/2010	13:30	Nicke	QN	ng/L	10.0
992525-001 992525-001				12///2010	13:30	Zinc	QN	ng/L	10.0
992525-001 992525-001	SC-700B-WDR-286			12///2010	13:30	Chromium, hexavalent	Q N	ng/L	0.20
992525-001	SC-700B-WDR-286	E300		0102///21	13:30	Fluoride	2.29	mg/L	0.500
992525-001	SC-700B-WDR-286	E300		12/7/2010		Nitrate as N	2.94	mg/L	1.00
992525-001	SC-700B-WDR-286	SM2130B	NONE	12/7/2010	13:30	Turhidity	ene ulv	mg/L	12.5
992525-001	SC-700B-WDR-286	SM2540C	NONE	12/7/2010	13:30	Total Dissolved Solids	4620		0. IUU
992525-001	SC-700B-WDR-286	SM4500HB	NONE	12/7/2010	13:30	Hd	7.61	J TC	
992525-001	SC-700B-WDR-286	SM4500NH3D	NONE	12/7/2010	13:30	Ammonia-N	QN	ma/i	0.500
007575.001							I		

publicity matter without prior written authorization from Truesdail Laboratories.

Report Continued

Þ

Revision 1; January 8, 2011

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
992525-002	SC-100B-WDR-286	E120.1	NONE	12/7/2010	13:30	EC	8000	umhos/cm	2.00
992525-002	SC-100B-WDR-286	E200.7	NONE	12/7/2010	13:30	BORON	980	ng/L	200
992525-002	SC-100B-WDR-286	E200.7	NONE	12/7/2010	13:30	Iron	QN	ng/L	20.0
992525-002	SC-100B-WDR-286	E200,8	NONE	12/7/2010	13:30	Aluminum	QN	ng/L	50.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Antimony	QN	ug/L	10,0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Arsenic	3.5	ug/L	1.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Barium	24.9	ug/L	10.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Chromium	894	ng/L	1.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Copper	QN	ug/L	5.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Lead	QN	ug/L	10.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Manganese	10.2	ug/L	10,0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Molybdenum	22.4	ug/L	10.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Nickel	QN	ug/L	10.0
992525-002	SC-100B-WDR-286	E200.8	NONE	12/7/2010	13:30	Zinc	QN	ng/L	10.0
992525-002	SC-100B-WDR-286	E218.6	LABFLT	12/7/2010	13:30	Chromium, hexavalent	1080	ug/L	21.0
992525-002	SC-100B-WDR-286	E300	NONE	12/7/2010	13:30	Fluoride	2.63	mg/L	0.500
992525-002	SC-100B-WDR-286	E300	NONE	12/7/2010	13:30	Nitrate as N	3.20	mg/L	1.00
992525-002	SC-100B-WDR-286	E300	NONE	12/7/2010	13:30	Sulfate	567	ma/L	12.5
992525-002	SC-100B-WDR-286	SM2130B	NONE	12/7/2010	13:30	Turbidity	0.103	NTU	0.100
992525-002	SC-100B-WDR-286	SM2540C	NONE	12/7/2010	13:30	Total Dissolved Solids	4780	mg/L	250
992525-002	SC-100B-WDR-286	SM4500HB	NONE	12/7/2010	13:30	Hd	7.30	Ha	4.00
992525-002	SC-100B-WDR-286	SM4500NH3D	NONE	12/7/2010	13:30	Ammonia-N	Q	mg/L	0.500
992525-002	SC-100B-WDR-286	SM4500NO2B	NONE	12/7/2010	13:30	Nitrite as N	QN	mg/L	0.0050

Report Continued

TRUESDAIL LABORATORIES, INC.

Revision 1; January 8, 2011

		Analysis	Extraction	Sample	Sample				
Lab Sample ID	Field ID	Method	Method	Date	Time	Parameter	Result	Units	RL
992525-003	SC-701-WDR-286	E120.1	NONE	12/7/2010	13:30	EC	44500	1.mhos/cm	00 0
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13:30	Antimony			
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13.30	Arsenic] a	ч <u>у</u> /г	0.0
992525-003	SC-701-WDR-286	E200.8	NONF	12/7/2010	13:30	Barium	o, f	ug/L	n.i
992525-003	SC-701-WDR-286	E200.8	ANCN	12/7/2010	12.20	Bendlinm		ug/L	0.01
992525-003	SC-701-WDR-286	E200.8	NONF	12/7/2010	12.20	Cedmine		ng/L	0.1 0
992525-003	SC-701-WDR-286	E200.8		10/02/2010	00.01			ng/L	3.0
992525-003	SC.701-W/DP.286				00.01		29.7	ng/L	2.0
007575 002			NONE	12///2010	13:30	Cobalt	6.9	ng/L	5.0
992323-UU3	SC-/U1-WDK-286	E200.8	NONE	12/7/2010	13:30	Copper	61.2	ua/L	5.0
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13:30	Lead	CZ		
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13:30	Mercury		- 1971 1071	2.0
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13.30	Molyhdanum	<u>;</u>	ng/L	
992525-003	SC-701-WDR-286	E200.8	UON	12/7/2010	13-30		77 C	ug/L	10.0
992525-003	SC-701-WDR-286	F200.8	NONE	12/7/2010			70.7	ug/L	10.0
992525-003	SC-701-WDR-286				10.00	Selenium	30.1	ng/L	10.0
007575,003				01.07/171	13:30	Silver	QN	ng/L	5.0
	00-101-000-100	EZ00.8	NONE	12/7/2010	13:30	Thallium	QN	na/L	10
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13:30	Vanadium			с : ц
992525-003	SC-701-WDR-286	E200.8	NONE	12/7/2010	13:30	Zinc		1,00	
992525-003	SC-701-WDR-286	E218.6	LABFLT	12/7/2010	13.30	Chromium bevalant) . . c	בער בייר	2.0
992525-003	SC-701-WDB-286	ERDO					t V	ng/L	Z.1
				NL07/1/71	13:30	Fluoride	14.6	mg/L	0.500
33232-UUS	SC-/U1-WDK-286	SM2540C	NONE	12/7/2010	13:30	Total Dissolved Solids	39400	ma/L	1000
892525-003	SC-701-WDR-286	SM4500HB	NONE	12/7/2010	13:30	ΡΗ	7.33	Hd	4.00

ND: Non Detected (below reporting limit) mg/L: Milligrams per fiter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 29

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No. 992525

Printed 1/4/2011

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800

Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM

Sulfate

Nitrate as Nitrogen

Samples Received on 12/7/2010 9:30:00 PM

Field ID	Lab ID	Collected	Matrix
SC-700B-WDR-286	992525-001	12/07/2010 13:30	Water
SC-100B-WDR-286	992525-002	12/07/2010 13:30	Water
SC-701-WDR-286	992525-003	12/07/2010 13:30	Water

Anions By I.C. - EPA 300.0 Batch 12AN10C

mg/L

mg/L

1.00

1.00

Parameter		Unit	Analyzed	DF	MDL	RL	Result
992525-001 Fluoride		mg/L	12/08/2010 11:53	5.00	0.0250	0.500	2.29
Nitrate as Nitroge	n	mg/L	12/08/2010 11:53	5.00	0.0550	1.00	2.94
Sulfate		mg/L	12/08/2010 14:34	25.0	0.500	12.5	509
992525-002 Fluoride		mg/L	12/08/2010 12:05	5.00	0.0250	0.500	2.63
Nitrate as Nitroge	n	mg/L	12/08/2010 12:05	5.00	0.0550	1.00	3.20
Sulfate		mg/L	12/08/2010 14:47	25.0	0.500	12.5	567
992525-003 Fluoride		mg/L	12/08/2010 12:30	5.00	0.0250	0.500	14.6
Method Blank							
Parameter	Unit	DF	Result				
Bromide	mg/L	1.00	ND				
Chloride	mg/L	1.00	ND				
Fluoride	mg/L	1.00	ND				

ND

ND

Report Continued

Client: E2 Consulting Eng	gineers, Inc		oject Name: oject Numbe	PG&E Topock Pro r: 408401.01.DM	ject	Page 2 of 29 Printed 1/4/2011
Duplicate						Lab ID = 992528-001
Parameter Bromide	Unit mg/L	DF 1.00	Result 0.399	Expected 0.409	RPD 2.48	Acceptance Range 0 - 20
Chloride	mg/L	25.0	61.5	62.0	0.742	0 - 20
Fluoride	mg/L	1.00	0.508	0.505	0.592	0 - 20
Sulfate	mg/L	25.0	89.0	88.1	0.961	0 - 20
Nitrate as Nitrogen	mg/L	1.00	1.89	1.91	0.842	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Bromide	mg/L	1.00	3.85	4.00	96.3	90 - 110
Chloride	mg/L	1.00	3.98	4.00	99.4	90 - 110
Fluoride	mg/L	1.00	4.14	4.00	103	90 - 110
Sulfate	mg/L	1.00	20.1	20.0	100	90 - 110
Nitrate as Nitrogen	mg/L	1.00	3.98	4.00	99.5	90 - 110
Matrix Spike						Lab ID = 992528-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Bromide	mg/L	1.00	2.52	2.41(2.00)	105	85 - 125
Chloride	mg/L	25.0	174	162(100.)	112	85 - 125
Fluoride	mg/L	1.00	2.48	2.50(2.00)	99.0	85 - 125
Sulfate	mg/L	25.0	196	188(100.)	108	85 - 125
Nitrate as Nitrogen	mg/L	1.00	3.91	3.91(2.00)	100.	85 - 125
Matrix Spike Duplicate	e					Lab ID = 992528-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Bromide	mg/L	1.00	2.61	2.41(2.00)	110	85 - 125
Fluoride	mg/L	1.00	2.52	2.50(2.00)	10 1	85 - 125
Nitrate as Nitrogen	mg/L	1.00	3.88	3.91(2.00)	98.4	85 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Bromide	mg/L	1.00	3.92	4.00	98.0	90 - 110
Chloride	mg/L	1.00	4.01	4.00	100	90 - 110
Fluoride	mg/L	1.00	4.18	4.00	104	90 - 110
Sulfate	mg/L	1.00	19.9	20.0	99.3	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.00	4.00	100	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Bromide	mg/L	1.00	2.86	3.00	95.5	90 - 110
	2					

Report Continued

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Number	PG&E Topock 408401.01.DM	-	Page 3 of 29 Printed 1/4/2011
MRCVS - Primary						
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.09	Expected 3.00	Recovery 103	Acceptance Range 90 - 110
Parameter Chloride Fluoride MRCVS - Primary	Unit mg/L mg/L	DF 1.00 1.00	Result 2.99 3.18	Expected 3.00 3.00	Recovery 99.8 106	Acceptance Range 90 - 110 90 - 110
Parameter Sulfate MRCVS - Primary	Unit mg/L	DF 1.00	Result 15.3	Expected 15.0	Recovery 102	Acceptance Range 90 - 110
Parameter Sulfate MRCVS - Primary	Unit mg/L	DF 1.00	Result 15.1	Expected 15.0	Recovery 101	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.00	Expected 3.00	Recovery 100	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.8	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.8	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen	Unit mg/L	DF 1.00	Result 2.94	Expected 3.00	Recovery 98.1	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 4 of 29 Printed 1/4/2011

Nitrite SM 4500-NO2 B			Batch	12NO210C				· .
Parameter	t de la la	Unit	Anal	yzed I	DF	MDL	RL	Result
992525-001 Nitrite as Nitrogen		mg/L	12/08/	2010 12:05 1	.00	0.000200	0.0050	ND
992525-002 Nitrite as Nitrogen		mg/L	12/08/	2010 12:06 1	.00	0.000200	0.0050	ND
Method Blank						·····		
Parameter	Unit	DF	Result					
Nitrite as Nitrogen	mg/L	1.00	ND					
Duplicate							Lab ID = 9	92528-001
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0397	0.0400		99.2	90 - 110	_
Matrix Spike							Lab ID = 9	92528-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0203	0.0200(0.020	0200 102		75 - 125	
Matrix Spike Duplicate							Lab ID = 9	92528-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0192	0.0200(0.020	C	96.0	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0194	0.0200		97.0	90 - 110	_
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0201	0.0200		100	90 - 110	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0199	0.0200		99.5	90 - 110	

Report Continued

Client: E2 Consulting En	gineers, Inc		oject Name: oject Numbe	PG&E Topo r: 408401.01.E	-	ot	P Printed 1	age 5 of 29 /4/2011
Specific Conductivity - E	PA 120.1		Batch	12EC10B			12/9/201)
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992525-001 Specific Conduct	ivity	umhos/	cm 12/09)/2010	1.00	0.0380	2.00	7500
992525-002 Specific Conduct	ivity	umhos/	cm 12/09	/2010	1.00	0.0380	2.00	8000
992525-003 Specific Conduct	ivity	umhos/	cm 12/09	/2010	1.00	0.0380	2.00	44500
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	992525-002
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 8000	Expected 8000	F	RPD 0	Accepta 0 - 10	ance Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result 694.	Expected 706.	F	ecovery 98.3	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 701.	Expected 706.	F	Recovery 99.3	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 692.	Expected 706.	F	lecovery 98.0	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 991.	Expected 999.	F	Recovery 99.2	Accepta 90 - 11(ance Range)
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 999.	Expected 999.	F	Recovery 100.	Accepta 90 - 110	ance Range)

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 6 of 29 Printed 1/4/2011

Chrome VI by EPA 218.6 Parameter		Unit		12CrH10C lyzed	DF	MDL	RL	Result
992525-001 Chromium, Hexa	avalent	ug/L	12/08		1.05	0.0210	0.20	ND
992525-002 Chromium, Hexa		ug/L	12/08	/2010 09:12	105	2.20	21.0	1080
992525-003 Chromium, Hexa		ug/L	12/08	/2010 12:01	10.5	0.220	2.1	2.4
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent Duplicate	ug/L	1.00	ND				Lab ID =	992524-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium, Hexavalent Lab Control Sample	ug/L	1.05	15.2	15.2		0.164	0 - 20	
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent Matrix Spike	ug/L	1.00	5.31	5.00		106	90 - 11(Lab ID =) 992524-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.08	38.3	36.8(21.6))	107	90 - 110	ר - כ
Matrix Spike							Lab ID =	992525-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	5.62	5.50(5.25))	102	90 - 110	כ
Matrix Spike							Lab ID =	992525-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.06	1.31	1.24(1.06))	106	90 - 110	0
Matrix Spike							Lab ID =	992525-002
Parameter	Unit	DF	Result	Expected/A		Recovery		ance Range
Chromium, Hexavalent	ug/L	105	2710	2660(158	0)	103	90 - 110	
Matrix Spike							Lab ID =	992525-003
Parameter	Unit	DF	Result	Expected/A		Recovery		ance Range
Chromium, Hexavalent	ug/L	10.5	13.2	12,9(10.5))	103	90 - 11	
Matrix Spike							Lab ID =	992525-003
Parameter	Unit	DF	Result	Expected/A		Recovery		ance Range
Chromium, Hexavalent	ug/L	5.25	7.05	6.99(5.25)	101	90 - 11	
Matrix Spike							Lab ID =	992525-003
Parameter	Unit	DF	Result	Expected/A		Recovery		ance Range
Chromium, Hexavalent	ug/L	1.06	ND	1.06(1.06)		90 - 11	0

Report Continued

Client: E2 Consulting En	gineers, Ind		Project Name: Project Numbe	PG&E Topock r: 408401.01.DN	-	Page 7 of 29 Printed 1/4/2011
MRCCS - Secondary						
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.22	Expected 5.00	Recovery 104	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.96	Expected 10.0	Recovery 99.6	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102	Acceptance Range 95 - 105

Report Continued

Client: E2 Consulting Er	ıgineers, Ind		oject Name: oject Numbe	ct	Page 8 of 29 Printed 1/4/2011			
Metals by EPA 200.7, To	otal		Batch	121710A-Th			· .	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992525-001 Boron		ug/L			1.00	5.00	200.	967
Iron		ug/L	12/17/2010 16:30		1.00	3.00	20.0	ND
992525-002 Boron		ug/L	12/17/2010 16:48		1.00	5.00	200.	980
Iron		ug/L	12/17	/2010 16:48	1.00	3.00	20.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Boron	ug/L	1.00	ND					
Duplicate	-						Lab ID =	992525-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Iron	ug/L	1.00	ND	0		0	0 - 20	
Boron	ug/L	1.00	940	967		2.85	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	4940	5000		98.7	90 - 11	D
Boron	ug/L	1.00	5010	5000		100	90 - 11	D
Matrix Spike							Lab ID =	992525-001
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accept	ance Range
Iron	ug/L	1.00	1810	2000(2000)		90.3	75 - 12	5
Boron	ug/L	1.00	2670	2970(2000)		85.2	75 - 12	5
MRCCS - Secondary	1							
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Iron	ug/L	1.00	4960	5000		99.1	90 - 11	0
Boron	ug/L	1.00	5100	5000		102	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Iron	ug/L	1.00	4960	5000		99.2	90 - 11	
Boron	ug/L	1.00	4990	5000		99.7	90 - 11	0
Interference Check S	Standard A							
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Iron	ug/L	1.00	2030	2000		101	80 - 12	0

Report Continued

Client: E2 Consulting Engineers, Inc.		Project Name: Project Number:		PG&E Topock Project 408401.01.DM		Page 9 of 29 Printed 1/4/2011	
Interference Check	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Iron	ug/L	1.00	2010	2000	100	80 - 120	
Boron	ug/L	1.00	ND	0			
Interference Check	k Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Boron	ug/L	1.00	ND	0			
Interference Check	k Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Iron	ug/L	1.00	2020	2000	101	80 - 120	
Interference Checl	k Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Iron	ug/L	1.00	2050	2000	103	80 - 120	
Boron	ug/L	1.00	ND	0			
Interference Chec	k Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Boron	ug/L	1.00	ND	0			

Report Continued

Client: E2 Consulting Engineers, Inc.

PG&E Topock Project Project Name: Project Number: 408401.01.DM

Page 10 of 29 Printed 1/4/2011

Parameter	ug esta travita y da da despeta. I	Unit	Anal	lyzed	DF	MDL	RL	Result
992525-001 Arsenic		ug/L	12/14	/2010 21:04	5.00	0.260	1.0	ND
Barium		ug/L	12/14	/2010 21:04	5.00	0.185	10.0	15.4
Copper		ug/L	12/14	/2010 21:04	5.00	0.305	5.0	ND
Zinc		ug/L	12/14	/2010 21:04	5.00	1.32	10.0	ND
992525-002 Arsenic		ug/L	12/14	/2010 21:31	5.00	0.260	1.0	3.5
Barium		ug/L	12/14	/2010 21:31	5.00	0.185	10.0	24.9
Copper		ug/L	12/14	/2010 21:31	5.00	0.305	5.0	ND
Zinc		ug/L		/2010 21:31	5.00	1.32	10.0	ND
992525-003 Arsenic		ug/L	12/14	/2010 21:38	5.00	0.260	1.0	1.8
Barium		ug/L	12/14	/2010 21:38	5.00	0.185	10.0	1 10
Cobalt		ug/L	12/14	/2010 21:38	5.00	0.515	5.0	6.9
Copper		ug/L	12/14	/2010 21:38	5.00	0,305	5.0	61.2
Selenium		ug/L		/2010 21:38	5.00	0.740	10.0	30.1
Zinc		ug/L	12/14	/2010 21:38	5.00	1.32	10.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Barium	ug/L	1.00	ND					
Cobalt	ug/L	1.00	ND					
Selenium	ug/L	1.00	ND					
Zinc	ug/L	1.00	ND					
Copper	ug/L	1.00	ND					
Duplicate							Lab ID =	992525-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Arsenic	ug/L	5.00	ND	0		0	0 - 20	
Barium	ug/L	5.00	15.5	15.4		0.907	0 - 20	
Cobalt	ug/L	5.00	ND	0		0	0 - 20	
Selenium	ug/L	5.00	3.83	3.74		2.19	0 - 20	
Zinc	ug/L	5.00	ND	0		0	0 - 20	
Copper	ug/L	5.00	ND	0		0	0 - 20	

Report Continued


Client: E2 Consulting Engineers, Inc.			oject Name: oject Number:	PG&E Topock Pro 408401.01.DM	ject	Page 11 of 29 Printed 1/4/2011
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	50.2	50.0	100	90 - 110
Barium	ug/L	1.00	46.4	50.0	92.8	90 - 110
Cobalt	ug/L	1.00	52.8	50.0	106	90 - 110
Selenium	ug/L	1.00	49.2	50.0	98.5	90 - 110
Zinc	ug/L	1.00	49.2	50.0	98.4	90 - 110
Copper	ug/L	1.00	50.8	50.0	102	90 - 110
Matrix Spike						Lab ID = 992525-001
Parameter Arsenic	Unit ug/L	DF 5.00	Result 249	Expected/Added 250.(250.)	Recovery 99.4	Acceptance Range 75 - 125
Barium	ug/L	5.00	236.	265(250.)	88.3	75 - 125
Cobalt	ug/L	5.00	252	250.(250.)	101	75 - 125
Selenium	ug/L	5.00	237	254(250.)	93.4	75 - 125
Zinc	ug/L	5.00	219	250.(250.)	87.6	75 - 125
Copper	ug/L	5.00	228	250.(250.)	91.2	75 - 125
Matrix Spike Duplicate	-			, ,		Lab ID = 992525-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	5.00	246	250.(250.)	98.3	75 - 125
Barium	ug/L	5.00	236	265(250.)	88.2	75 - 125
Cobalt	ug/L	5.00	253.	250.(250.)	101	75 - 125
Selenium	ug/L	5.00	237.	254(250.)	93.3	75 - 125
Zinc	ug/L	5.00	219	250.(250.)	87.6	75 - 125
Copper	ug/L	5.00	227	250.(250.)	90.6	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	49.9	50.0	99.8	90 - 110
Barium	ug/L	1.00	45.7	50.0	91.5	90 - 110
Cobalt	ug/L	1.00	52.3	50.0	105	90 - 110
Selenium	ug/L	1.00	48.9	50.0	97.7	90 - 110
Zinc	ug/L	1.00	48.4	50.0	96.9	90 - 110
Copper	ug/L	1.00	50.9	50.0	102	90 - 110

Report Continued

Client: E2 Consulting Er	Client: E2 Consulting Engineers, Inc.		oject Name: oject Number	PG&E Topock I :: 408401.01.DM	Project	Page 12 of 29 Printed 1/4/2011	
MRCVS - Primary							
Parameter Arsenic	Unit ug/L	DF 1.00	Result 47.6	Expected 50.0	Recovery 95.3	Acceptance Range 90 - 110	
Barium	ug/L	1.00	46.3	50.0	92.6	90 - 110	
Cobalt	ug/L	1.00	54.4	50.0	109	90 - 110	
Selenium	ug/L	1.00	46.4	50.0	92.8	90 - 110	
Zinc	ug/L	1.00	48.1	50.0	96.2	90 - 110	
Copper	ug/L	1.00	47.7	50.0	95.4	90 - 110	
Interference Check S	Standard A						
Parameter Arsenic	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Interference Check S	Standard A						
Parameter Arsenic	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Interference Check S		55			Descusar	Assentance Desce	
Parameter Barium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Interference Check S					_		
Parameter	Unit ug/l	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Barium Interference Check \$	ug/L Standard A	1.00	ND	U			
	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Parameter Cobalt	ug/L	1.00	ND	0	Recovery	Aboeptanoe Hange	
Interference Check	-						
Parameter Cobalt	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Interference Check					_		
Parameter Selenium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Interference Check	Standard A						
Parameter Selenium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	
Interference Check			<u> </u>		_		
Parameter Zinc	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range	

Report Continued

Client: E2 Consulting Engineers, Inc.			oject Name: oject Number	Project	Page 13 of 29 Printed 1/4/2011	
Interference Check SI	andard A					
Parameter Zinc Copper	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Interference Check S	andard A					
Parameter Copper Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Arsenic Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 49.8	Expected 50.0	Recovery 99.5	Acceptance Range 80 - 120
Parameter Arsenic Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 49.2	Expected 50.0	Recovery 98.4	Acceptance Range 80 - 120
Parameter Barium Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Barium Cobalt Interference Check S	Unit ug/L ug/L tandard AB	DF 1.00 1.00	Result ND 58.4	Expected 0 50.0	Recovery 117	Acceptance Range 80 - 120
Parameter Cobalt Selenium Interference Check S	Unit ug/L ug/L	DF 1.00 1.00	Result 53.3 ND	Expected 50.0 0	Recovery 107	Acceptance Range 80 - 120
Parameter Selenium Zinc	Unit ug/L ug/L	DF 1.00 1.00	Result ND 51.2	Expected 0 50.0	Recovery 102	Acceptance Range 80 - 120
Interference Check S	standard AB					
Parameter Zinc Interference Check S	Unit ug/L Standard AB	DF 1.00	Result 49.2	Expected 50.0	Recovery 98.4	Acceptance Range 80 - 120
Parameter Copper	Unit ug/L	DF 1.00	Result 49.3	Expected 50.0	Recovery 98.7	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topoc Project Number: 408401.01.D		-	Page 14 of 29 Printed 1/4/2011
Interference Check St	andard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Copper	ug/L	1.00	51.9	50.0	104	80 ~ 120
Serial Dilution						Lab ID = 992525-003
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Barium	ug/L	25.0	118	110	6.67	0 - 10
Selenium	ug/L	25.0	27.3	30.1	9.61	0 - 10
Copper	ug/L	25.0	65.0	61.2	5.99	0 - 10

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 15 of 29 Printed 1/4/2011

Metals by EPA 200.8, Total		agent SAAren in	Batch 121610A	. 35			
Parameter	andan (aj toto maraka ana no objeta) A	Unit	Analyzed	DF	MDL	RL	Result
992525-001	Aluminum	ug/L	12/16/2010 16:37	5.00	6.02	50.0	ND
	Antimony	ug/L	12/16/2010 16:37	5.00	0.190	10.0	ND
	Chromium	ug/L	12/16/2010 16:37	5.00	0.0950	1.0	ND
	Lead	ug/L	12/16/2010 16:37	5.00	0.0950	10.0	ND
	Manganese	ug/L	12/16/2010 16:37	5.00	0.210	10.0	17.0
	Molybdenum	ug/L	12/16/2010 16:37	5.00	0.660	10.0	17.8
	Nickel	ug/L	12/16/2010 16:37	5.00	0.240	10.0	ND
992525-002	2 Aluminum	ug/L	12/16/2010 17:09	5.00	6.02	50.0	ND
	Antimony	ug/L	12/16/2010 17:09	5.00	0.190	10.0	ND
	Chromium	ug/L	12/16/2010 17:09	5.00	0.0950	1.0	894
	Lead	ug/L	12/16/2010 17:09	5.00	0.0950	10.0	ND
	Manganese	ug/L	12/16/2010 17:09	5.00	0.210	10.0	10.2
	Molybdenum	ug/L	12/16/2010 17:09	5.00	0.660	10.0	22.4
	Nickel	ug/L	12/16/2010 17:09	5.00	0.240	10.0	ND
992525-003	3 Antimony	ug/L	12/16/2010 17:15	5.00	0.190	10.0	ND
	Beryllium	ug/L	12/16/2010 17:15	5,00	0.110	1.0	ND
	Cadmium	ug/L	12/16/2010 17:15	5.00	0.125	3.0	ND
	Chromium	ug/L	12/16/2010 17:22	10.0	0.190	2.0	29.7
	Lead	ug/L	12/16/2010 17:15	5.00	0.0950	10.0	ND
	Molybdenum	ug/L	12/16/2010 17:22	10.0	1.32	10.0	122.
	Nickel	ug/L	12/16/2010 17:22	10.0	0.480	10.0	26.7
	Silver	ug/L	12/16/2010 17:15	5.00	0.200	5.0	ND
	Thallium	ug/L	12/16/2010 17:15	5.00	0.180	1.0	ND
	Vanadium	ug/L	12/16/2010 17:15	5.00	0.100	5.0	ND

Report Continued

Client: E2 Consulting Engineers, Inc.		Project Name: Project Number:		PG&E Topock P 408401.01.DM	roject	Page 16 of 29 Printed 1/4/2011
Method Blank						
Parameter	Unit	DF	Result			
Aluminum	ug/L	1.00	ND			
Beryllium	ug/L	1.00	ND			
Cadmium	ug/L	1.00	ND			
Chromium	ug/L	1.00	ND			
Nickel	ug/L	1.00	ND			
Antimony	ug/L	1.00	ND			
Lead	ug/Լ	1.00	ND			
Silver	ug/L	1.00	ND			
Thallium	ug/L	1.00	ND			
Vanadium	ug/L	1.00	ND			
Manganese	ug/L	1.00	ND			
Molybdenum	ug/L	1.00	ND			
Duplicate						Lab ID = 992525-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Aluminum	ug/L	5.00	ND	0	0	0 - 20
Beryllium	ug/L	5.00	ND	0	0	0 - 20
Cadmium	ug/L	5.00	ND	0	0	0 - 20
Chromium	ug/L	5.00	ND	0	0	0 - 20
Nickel	ug/L	5.00	3.63	3.68	1.37	0 - 20
Antimony	ug/L	5.00	ND	0	0	0 - 20
Lead	ug/L	5.00	ND	0	0	0 - 20
Silver	ug/L	5.00	ND	0	0	0 - 20
Thallium	ug/L	5.00	1.01	1.08	6.70	0 - 20
Vanadium	ug/L	5.00	ND	0	0	0 - 20
Manganese	ug/L	5.00	16.4	17.0	3.42	0 - 20
Molybdenum	ug/L	5.00	16.3	17.8	8.45	0 - 20

Report Continued

Client: E2 Consulting Engineers, Inc.			oject Name: oject Number	Page 17 of 29 Printed 1/4/2011		
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	47,9	50.0	95. 9	90 - 110
Beryllium	ug/L	1.00	46.9	50.0	93.7	90 - 110
Cadmium	ug/L	1.00	51.5	50.0	103.	90 - 110
Chromium	ug/L	1.00	49.5	50.0	99.1	90 - 110
Nickel	ug/L	1.00	49.1	50.0	98.2	90 - 110
Antimony	ug/L	1.00	47.7	50.0	95.4	90 - 110
Lead	ug/L	1.00	48.0	50.0	96.1	90 - 110
Silver	ug/L	1.00	51.0	50.0	102	90 - 110
Thallium	ug/L	1.00	50.1	50.0	100	90 - 110
Vanadium	ug/L	1.00	48.0	50.0	95,9	90 - 110
Manganese	ug/L	1.00	51.9	50.0	104	90 - 110
Molybdenum	ug/L	1.00	52.7	50.0	105	90 - 110
Matrix Spike						Lab ID = 992525-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Aluminum	ug/L	5.00	244	250.(250.)	97.8	75 - 125
Beryllium	ug/L	5.00	244	250.(250.)	97.6	75 - 125
Cadmium	ug/L	5.00	220	250.(250.)	87.9	75 - 125
Chromium	ug/L	5.00	233	250.(250.)	93.1	75 - 125
Nickel	ug/L	5.00	229	254(250.)	90.0	75 - 125
Antimony	ug/L	5.00	234	250.(250.)	93.8	75 - 125
Lead	ug/L	5.00	212	250.(250.)	84.9	75 - 125
Silver	ug/L	5.00	193.	250.(250.)	77.2	75 - 125
Thallium	ug/L	5.00	210	251(250.)	83.5	75 - 125
Vanadium	ug/L	5.00	238	250.(250.)	95.0	75 - 125
Manganese	ug/L	5.00	254	267(250.)	94.6	75 - 125
Molybdenum	ug/L	5.00	264	268(250.)	98.7	75 - 125

Report Continued

Client: E2 Consulting Eng	Client: E2 Consulting Engineers, Inc.			PG&E Topock Pro r: 408401.01.DM	ject	Page 18 of 29 Printed 1/4/2011	
Matrix Spike Duplicate						Lab ID = 992525-001	
Parameter Aluminum	Unit ug/L	DF 5.00	Result 242	Expected/Added 250.(250.)	Recovery 97.0	Acceptance Range 75 - 125	
Beryllium	ug/L	5.00	251	250.(250.)	100	75 - 125	
Cadmium	ug/L	5.00	219.	250.(250.)	87.6	75 - 125	
Chromium	ug/L	5.00	232	250.(250.)	92.8	75 - 125	
Nickel	ug/L	5.00	228	254(250.)	89.6	75 - 125	
Antimony	ug/L	5.00	242	250.(250.)	96.6	75 - 125	
Lead	ug/L	5.00	212	250.(250.)	84.8	75 - 125	
Silver	ug/L	5.00	196	250.(250.)	78,6	75 - 125	
Thallium	ug/L	5.00	210	251(250.)	83.5	75 - 125	
Vanadium	ug/L	5.00	237	250.(250.)	95.0	75 - 125	
Manganese	ug/L	5.00	251	267(250.)	93.7	75 - 125	
Molybdenum	ug/L	5.00	263	268(250.)	98,2	75 - 125	
MRCCS - Secondary	49, L	0.00	200	200(200.)	00.2		
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Aluminum	ug/L	1.00	48.0	50.0	96.0	90 - 110	
Beryllium	ug/L	1.00	49.0	50.0	97.9	90 - 110	
Cadmium	ug/L	1.00	50.8	50.0	102	90 - 1 10	
Chromium	ug/L	1.00	49.5	50.0	99.0	90 - 110	
Nickel	ug/L	1.00	48.5	50.0	96.9	90 - 110	
Antimony	ug/L	1.00	48.5	50.0	97.0	90 - 110	
Lead	ug/L	1.00	48.7	50.0	97.5	90 - 110	
Silver	ug/L	1.00	51.0	50.0	102	90 - 110	
Thallium	ug/L	1.00	52.2	50.0	104	90 - 110	
Vanadium	ug/L	1.00	48.0	50.0	96.1	90 - 110	
Manganese	ug/L	1.00	51.9	50.0	104	90 - 110	
Molybdenum	ug/L	1.00	51.4	50.0	103	90 - 110	
MRCVS - Primary	0						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Aluminum	ug/L	1.00	50,9	50.0	102	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Aluminum	ug/L	1.00	49.5	50.0	99.0	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Beryllium	ug/L	1.00	47.6	50.0	95.3	90 - 110	

Report Continued

TRUESDAIL LABORATORIES, INC.

Client: E2 Consulting En		oject Name: oject Number	Project	Page 19 of 29 Printed 1/4/2011		
MRCVS - Primary						
Parameter Beryllium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.9	Expected 50.0	Recovery 99.8	Acceptance Range 90 - 110
Parameter Cadmium MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.9	Expected 50.0	Recovery 95.9	Acceptance Range 90 - 110
Parameter Cadmium Chromium MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 47.2 47.9	Expected 50.0 50.0	Recovery 94.3 95.7	Acceptance Range 90 - 110 90 - 110
Parameter Chromium Nickel MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 48.1 49.4	Expected 50.0 50.0	Recovery 96.2 98.7	Acceptance Range 90 - 110 90 - 110
Parameter Nickel MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.7	Expected 50.0	Recovery 95.4	Acceptance Range 90 - 110
Parameter Antimony MRCVS - Primary	Unit ug/L	DF 1.00	Result 53.8	Expected 50.0	Recovery 108	Acceptance Range 90 - 110
Parameter Antimony Lead MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 55.0 46.6	Expected 50.0 50.0	Recovery 110 93.1	Acceptance Range 90 - 110 90 - 110
Parameter Lead MRCVS - Primary	Unit ug/L	DF 1.00	Result 45.4	Expected 50.0	Recovery 90.9	Acceptance Range 90 - 110
Parameter Silver MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.2	Expected 50.0	Recovery 94.3	Acceptance Range 90 - 110
Parameter Silver Thallium	Unit ug/L ug/L	DF 1.00 1.00	Result 47.7 45.5	Expected 50.0 50.0	Recovery 95.3 91.0	Acceptance Range 90 - 110 90 - 110

Report Continued

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Number	PG&E Topock F : 408401.01.DM	Project	Page 20 of 29 Printed 1/4/2011
MRCVS - Primary						
Parameter Thallium	Unit ug/L	DF 1.00	Result 45.7	Expected 50.0	Recovery 91.4	Acceptance Range 90 - 110
Vanadium	ug/L	1.00	47.5	50.0	95.0	90 - 110
MRCVS - Primary					D	
Parameter	Unit	DF	Result	Expected	Recovery 97.0	Acceptance Range 90 - 110
Vanadium	ug/L	1.00	48.5	50.0	97.0 106	90 - 110
Manganese MRCVS - Primary	ug/L	1.00	52.9	50.0	100	30-110
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.6	Expected 50.0	Recovery 101	Acceptance Range 90 - 110
Molybdenum	ug/L	1.00	51.6	50.0	103	90 - 110
MRCVS - Primary	-9					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Molybdenum	ug/L	1.00	52.6	50.0	105	90 - 110
Interference Check S	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	50.0	50.0	99.9	80 - 120
Interference Check S	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Aluminum	ug/L	1.00	50.8	50.0	102	80 - 120
Interference Check S	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Beryllium	ug/L	1.00	ND	0		
Interference Check S	Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Beryllium	ug/L	1.00	ND	0		
Interference Check S	Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Cadmium	ug/L	1.00	ND	0		
Interference Check S	Standard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Cadmium	ug/L	1.00	ND	0		
Chromium	ug/L	1.00	ND	0		

Report Continued

Client: E2 Consulting Engi	neers, Inc.	-	ect Name: ect Number:	PG&E Topock Pr 408401.01.DM	oject	Page 21 of 29 Printed 1/4/2011
Interference Check Star	idard A					
Parameter Chromium Nickel	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Interference Check Star	•					
Parameter Nickel Interference Check Star	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Antimony Interference Check Star	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Antimony	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check Star		DE	Denville	Expected	Recovery	Acceptance Range
Parameter Lead	Unit ug/L	DF 1,00	Result ND	Expected 0	Recovery	Acceptance Mange
Interference Check Star	ndard A					
Parameter Lead Silver Interference Check Sta	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Silver	ug/L	1.00	ND	0	,	
Thallium Interference Check Sta	ug/L ndard A	1.00	ND	0		
Parameter Thallium Vanadium Interference Check Sta	Unit ug/L ug/L ndard A	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Parameter Vanadium Manganese Interference Check Sta	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Parameter Manganese Molybdenum	Unit ug/L ug/L	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Επgi	neers, Inc.		ject Name: ject Number	PG&E Topock 8 : 408401.01.DM	Project	Page 22 of 29 Printed 1/4/2011
Interference Check Star	ndard A					
Parameter Molybdenum Interference Check Star	Unit ug/L ndard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Aluminum Interference Check Star	Unit ug/L ndard AB	DF 1.00	Result 51.3	Expected 50.0	Recovery 103	Acceptance Range 80 - 120
Parameter Aluminum Interference Check Sta	Unit ug/L	DF 1.00	Result 45.8	Expected 50.0	Recovery 91.5	Acceptance Range 80 - 120
Parameter Beryllium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check Sta Parameter Beryllium Interference Check Sta	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Cadmium Interference Check Sta	Unit ug/L ndard AB	DF 1.00	Result 48.0	Expected 50.0	Recovery 96.0	Acceptance Range 80 - 120
Parameter Cadmium Interference Check Sta	Unit ug/L ndard AB	DF 1.00	Result 51.1	Expected 50.0	Recovery 102	Acceptance Range 80 - 120
Parameter Chromium Interference Check Sta	Unit ug/L Indard AB	DF 1.00	Result 48.1	Expected 50.0	Recovery 96.2	Acceptance Range 80 - 120
Parameter Chromium Nickel Interference Check Sta	Unit ug/L ug/L undard AB	DF 1.00 1.00	Result 49.4 49.4	Expected 50.0 50.0	Recovery 98.7 98.7	Acceptance Range 80 - 120 80 - 120
Parameter Nickel Interference Check Sta	Unit ug/L	DF 1.00	Result 48.4	Expected 50.0	Recovery 96.8	Acceptance Range 80 - 120
Parameter Antimony	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Eng	ineers, Inc.		ject Name: ject Number	PG&E Topock F : 408401.01.DM	Project	Page 23 of 29 Printed 1/4/2011
Interference Check Sta	andard AB					
Parameter Antimony Lead Interference Check Sta	Unit ug/L ug/L andard AB	DF 1.00 1.00	Result ND ND	Expected 0 0	Recovery	Acceptance Range
Parameter Lead Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Silver Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 48.0	Expected 50.0	Recovery 95.9	Acceptance Range 80 - 120
Parameter Silver Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 49.0	Expected 50.0	Recovery 98.0	Acceptance Range 80 - 120
Parameter Thallium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Thallium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Vanadium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Vanadium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check St	Unit ug/L andard AB	DF 1.00	Result 50.6	Expected 50.0	Recovery 101	Acceptance Range 80 - 120
Parameter Manganese Molybdenum Interference Check St	Unit ug/L ug/L andard AB	DF 1.00 1.00	Result 51.4 ND	Expected 50.0 0	Recovery 103	Acceptance Range 80 - 120
Parameter Molybdenum	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Report Continued

Client: E2 Consulting Engineers, Inc.			roject Name: roject Numbe	PG&E Topock r: 408401.01.DM	•	Page 24 of 29 Printed 1/4/2011	
Serial Dilution						Lab ID = 992525-003	
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range	
Chromium	ug/L	50.0	32.7	29.7	9.61	0 - 10	
Nickel	ug/L	50.0	29.2	26.7	9.02	0 - 10	
Molybdenum	ug/L	50.0	121	122.	0.740	0 - 10	

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 25 of 29
	Project Number:	408401.01.DM	Printed 1/4/2011

Parameter		Unit	Analy				······	
992525-003 Mercury		ug/L	12/27/	2010 17:26	5.00	0.200	1.0	ND
Method Blank								
Parameter Mercury	Unit ug/L	DF 1.00	Result ND					000505 000
Duplicate								992525-003
Parameter Mercury	Unit ug/L	DF 5.00	Result ND	Expected 0	I	RPD 0	Accepta 0 - 20	nce Range
Lab Control Sample						Deserver	Apporto	nco Ponde
Parameter Mercury Matrix Spike	Unit ug/L	DF 1.00	Result 1.84	Expected 2.00	:	Recovery 92.0	Acceptance Rang 90 - 110 Lab ID = 992525-00	
Parameter Mercury Matrix Spike Duplicat	Unit ug/L e	DF 5.00	Result 8.48	Expected/Add 10.0(10.0)	ded	Recovery 84.8	Acceptance Range 75 - 125 Lab ID = 992525-003	
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Rang
Mercury MRCCS - Secondary	ug/L	5.00	8.27	10.0(10.0)		82.7	75 - 125	;
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Rang
Mercury MRCVS - Primary	ug/L	1.00	1.92	2.00		96.0	90 - 110)
Parameter Mercury	Unit ug/L	DF 1.00	Result 1.86	Expected 2.00		Recovery 93.0	Accepta 90 - 11	ance Rang 0
Interference Check S	Standard A					_		
Parameter Mercury	Unit ug/L	DF 1.00	Result 1.70	Expected 2.00		Recovery 85.0	Accept 80 - 12	ance Rang 0
Interference Check S	Standard A							_
Parameter Mercury	Unit ug/L	DF 1.00	Result 1.60	Expected 2.00		Recovery 80.0	Accept 80 - 12	ance Rang 0
Interference Check S	Standard AB							
Parameter Mercury	Unit ug/L	DF 1.00	Result 1.78	Expected 2.00		Recovery 89.0	Accept 80 - 12	ance Rang 0

Report Continued

Client: E2 Consulting En	ent: E2 Consulting Engineers, Inc.		Project Name: PG&E Topock Project Project Number: 408401.01.DM					Page 26 of 29 Printed 1/4/2011	
Interference Check Si	tandard AB								
Parameter Mercury	Unit ug/L	DF 1.00	Result 1.68	Expected 2.00	R	ecovery 84.0	Acceptance Range 80 - 120		
pH by SM 4500-H B Parameter		Unit		12PH10F lyzed	DF	MDL	RL	Result	
992525-001 pH		pН	12/08/2010 11:15 1.00 0.0250		4.00	7.61			
992525-002 pH		pН	12/08/2010 11:18		1.00	0.0250	4.00	7.30	
992525-003 pH		pН	12/08	/2010 11:21	1.00	0.0250	4.00	7.33	
Duplicate							Lab ID =	992525-003	
Parameter pH	Unit pH	DF 1.00	Result 7.35	Expected 7.33	F	RPD 0.272	Acceptance Range 0 - 20		
Lab Control Sample									
Parameter pH	Unit pH	DF 1.00	Result 7.00	Expected 7.00	F	Recovery 100.	Acceptance Range 90 - 110		
Lab Control Sample	Duplicate								
Parameter pH	Unit pH	DF 1.00	Result 7.02	Expected 7.00	F	Recovery 100	Accepta 90 - 11	ance Range 0	
MRCVS - Primary									
Parameter pH	Unit pH	DF 1.00	Result 7.07	Expected 7.00	F	Recovery 101.	Accept 90 - 11	ance Range 0	

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name: Project Number:	PG&E Topock Projec 408401.01.DM	ct Page 27 of 29 Printed 1/4/2011	
Total Dissolved Solids by SM 2540 C		12TDS10B	12/8/2010	

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
992525-001 Total Dissolved	Solids	mg/L	12/08	8/2010	1.00 0.434		250.	4620
992525-002 Total Dissolved	Solids	mg/L	12/08/2010		1.00	0.434	250.	4780
992525-003 Total Dissolved	Solids	mg/L	12/08/2010		1.00	0.434	1000	39400
Method Blank								
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND				l ah ID	992503-010
Duplicate Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 575.	Expected 584.	F	RPD 1.55		ince Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 490.	Expected 500.	F	Recovery 98.0	Accepta 90 - 110	ince Range)

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 28 of 29
	Project Number:	; 408401.01.DM	Printed 1/4/2011

Ammonia Nitrogen by SM450		I3D	Batch	12NH3-E10A			12/9/2010		
Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result	
992525-001 Ammonia as N		mg/L	12/09	/2010 1	00.1	0.00200	0,500	ND	
992525-002 Ammonia as N		mg/L	12/09	/2010 1	1.00	0.00200	0.500	ND	
Method Blank									
Parameter	Unit	DF	Result						
Ammonia as N	mg/L	1.00	ND						
Duplicate							Lab ID =	992525-001	
Parameter	Unit	DF	Result	Expected	F	RPD		nce Range	
Ammonia as N	mg/L	1.00	ND	0		0	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	Recovery		Acceptance Range		
Ammonia as N	mg/L	1.00	10.7	10.0		107	90 - 110)	
Matrix Spike							Lab ID =	992525-001	
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ince Range	
Ammonia as N	mg/L	1.00	5,73	6.00(6.00)		95.4	75 - 125	5	
Matrix Spike Duplicate							Lab ID =	992525-001	
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery		ince Range	
Ammonia as N	mg/L	1.00	5.81	6.00(6.00)		96.8	75 - 125	5	
MRCCS - Secondary									
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range	
Ammonia as N	mg/L	1.00	5.81	6.00		96.8	90 - 110)	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	ł	Recovery		ance Range	
Ammonia as N	mg/L	1.00	5.79	6.00		96.5	90 - 110)	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	I	Recovery	•	ance Range	
Ammonia as N	mg/L	1.00	5.83	6.00		97.2	90 - 110)	

Report Continued

Client: E2 Consulting Engineers, Inc.			oject Name: oject Numbe	Page 29 of 29 Printed 1/4/2011				
Turbidity by SM 2130 B			Batch	12TUC10D			12/8/2010	
Parameter	an infinite inf	Unit	Anal	yzed	DF	MDL	RL	Result
992525-001 Turbidity		NTU	12/08/2010		1.00	0.0140	0.100	ND
992525-002 Turbidity		NTU	12/08/2010		1.00	0.0140	0.100	0.103
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID = 1	992525-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Turbidity	NTU	1.00	0.104	0.103		0.966	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Recovery		Acceptance Range	
Turbidity	NTU	1.00	7.80	8.00		97.5	90 - 110)
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	I	Recovery	Accepta	ince Range
Turbidity	NTU	1.00	7.70	8.00		96.2	90 - 110)

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

EZ Conton

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	12TDS10B
Date Calculated:	12/13/10

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	78.3882	78.3895	78.3895	0.0000	No	0.0013	13.0	25.0	ND	1
992466	50	72.8345	72.9004	72.9004	0.0000	No	0.0659	1318.0	50.0	1318.0	1
992467	850	68.1932	68.1988	68,1988	0.0000	No	0.0056	6.6	2.9	6.6	1
992473-2	200	111.3797	111.3967	111.3967	0.0000	No	0.0170	85.0	12.5	85.0	1
992473-3	100	74.5617	74.5799	74.5799	0.0000	No	0.0182	182.0	25.0	182.0	1
992503-10	100	67.8235	67.8819	67.8819	0.0000	No	0.0584	584.0	25.0	584.0	1
992502-16	50	75.5463	75.5878	75.5875	0.0003	No	0.0412	824.0	50.0	824.0	1
992524-1	20	75.7764	75.8398	75.8396	0.0002	No	0.0632	3160.0	125.0	3160.0	1
992524-2	10	50.2210	50.2763	50.2763	0.0000	No	0.0553	5530.0	250.0	5530.0	1
992525-1	10	49.4670	49.5134	49.5132	0.0002	No	0.0462	4620.0	250.0	4620.0	1
992525-2	10	47.9728	48.0208	48.0206	0.0002	No	0.0478	4780.0	250.0	4780.0	1
992503-10D	100	76.5557	76.6134	76.6132	0.0002	No	0.0575	575.0	25.0	575.0	1
992525-3	2.5	47.6400	47,7386	47.7384	0.0002	No	0.0984	39360.0	1000.0	39360.0	1
992528	100	72.5227	72.5600	72.5597	0.0003	No	0.0370	370.0	25.0	370.0	1
992525-3	2	49.5078	49.5902	49.5902	0.0000	No	0.0824	41200.0	1250.0	41200.0	1
						,					
LCS	100	68.1210	68.1700	68.17	0.0000	No	0.0490	490.0	25.0	490.0	1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) \times 10^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

st Printed Name

Analyst Signature

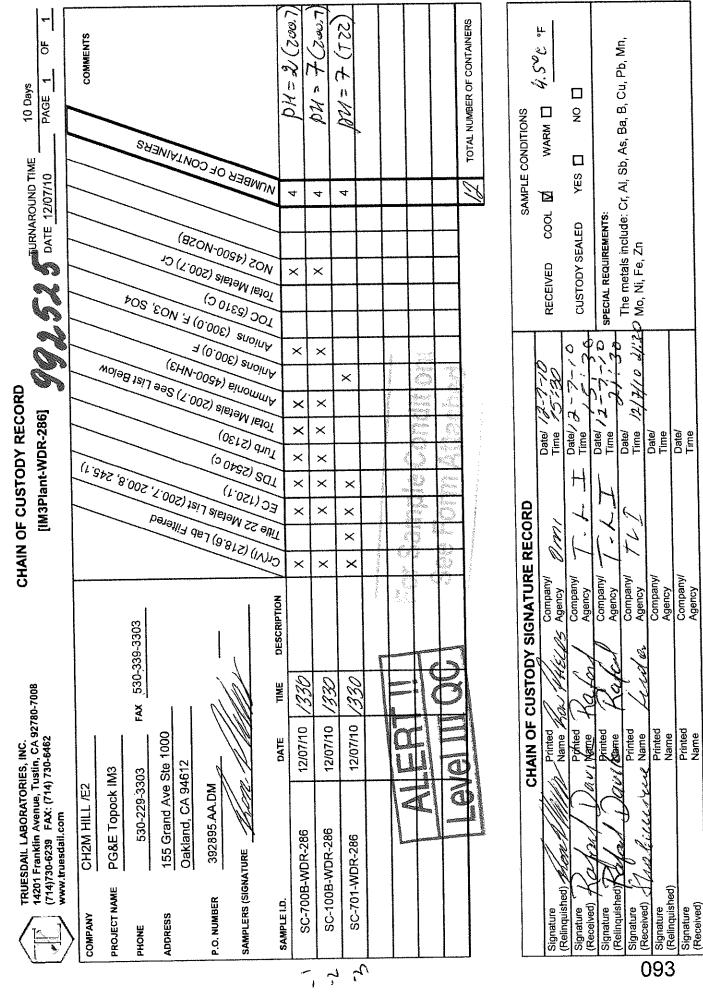
Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 12TDS10B


Date Calculated: 12/13/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
992466	2020	0.65	1313	1.00
992467	11	0.60	7.15	0.92
992473-2	176	0.48	114.4	0.74
992473-3	355	0.51	230.75	0.79
992503-10	932	0.63	605.8	0.96
992502-16	1432	0.58	930.8	0.89
992524-1	5260	0.60	3419	0,92
992524-2	8690	0.64	5648.5	0.98
992525-1	7400	0.62	4810	0,96
992525-2	8000	0.60	5200	0.92
992503-10D	932	0.62	605.8	0.95
992525-3	44500	0.88	28925	1.36
992528	651	D.57	423.15	0.87
992525-3	44500	0.93	28925	1.42

ſ,

.

Agency

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
11/19/10	992252	9.5	N/A	- N/A	N/A	5B
	992351	7.0	Firm	9.5	8=30	ali
	992 352-1	7.0	5.0 ml 5.0ml	9.5	8:40	al
1/20110	-2	110			8.42	.1
	-3			· ·	8:43	
	-4				8:43 8:44	
					B-46	
, F	y -6	1	Va	J	8248	VA
11124/10	942 355-1	7.0	5.00	9.5	10:10	ali
	1 -2			1	10:12	
	-3				10:15	
	-4				10:17	
	-5		۳		10:20	
V	V -6	V		V	10:23	
10/01/10	992422	7.0	5.00	g,5	9:30	<u>SB</u>
12/08/10	108/10 992524-1 7.0		5.00	9.5	8:15	SB
12/08/10			2.00	9.5	8:30	SB
1	+ -2	1			8:35	
4		4	4		8:40	*
12/08/10	992528	9.5	N/A	N/A	N/A-	<u>CB</u>
	-					
		-				
	· · · · · · · · · · · · · · · · · · ·					
					·	
						· · · · · · · · · · · · · · · · · · ·

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Enviro\Ali\Cr6+ pH Log

094

Turbidity/pH Check

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	10	rolaity/pH (JNECK	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample Number	Turbidity		Date	Analyst	Need Digest	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	992374	21	72	ilbu	民	No	DZ GOM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	992097	21	\$2				Qq.mma
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g92352 (1-6)	<1					IL LOOP T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	491355 71-27						MILLE Fam
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							11/29 @ IAN
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21			<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	LIU	1-11 a 3:10 pm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A \$	10				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	QQ0351				-14	NO	VESCU 10 AM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		}					YRSR. gam
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>012422</u>				<u>PK</u>		VESE Dan
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				12/2	ES_	No	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(192433(1-3)	1		1	f	1	WS @ 10:30 Q.n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				i i			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			62	12/7	ES	-1-4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9924454	21	42	1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	992447	71	62			Yes	· · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9924 12	71			1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21	41	 	f	Att VI	~
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14 4 /1		12/2/10	1.	Alp	V @ 1/20-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		HELI	1	i 1001 - 110		100	y 00 2.70 pm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9924A (2)	5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99241			12/4	<u> </u>		• •
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		71		12/1	<u> </u>		·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>Gazur</u>			w.			P-ramon and g
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1216	ES	NI	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	5					D2:NPM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	471				<u> </u>	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		f{		12/7	KK	<u>No</u>	@ 830 am
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					i		~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992486			12/7	ES-		D WW Q.m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992502(16,23)	7 F		J			azia en
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992202	21	72	11/17	ES.		2 Inin am
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992506	4	42	N/8		No	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992507		62			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992,508	41	42				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992509		27				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	992510		1.07				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1975744-21		12	iniv	14	116	<u>∧ ₹7.9%</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9025257 5		$\frac{-2}{2}$	140	1		(e) sigm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	402251(1=3)		<u>- 7</u>	1715.11/2			(X 30 ann
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	692572		<u></u>	7218 1/2	K12	<u>N0</u>	WS 20 an-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19925			12 8110	ES	<u> </u>	TTLC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	001 501		L			yes_	·
442	-1-12 J 28		<u>~</u> ~	12/8/10	ES	'NV	
442	442 3 34(1-3)		12	121910	ES	NO	NILIDAM
442	492540	~/	<u> </u>	i		<u> </u>	
442	541	<u> </u>					<u> </u>
442	- 42						\sim
	142						-
	544,						
	545	$\boldsymbol{\nu}$	\checkmark	*	\mathbf{v}	V	

Sample Integrity & Analysis Discrepancy Form

Clien	t: CULL M Mill /EL	Lab # <u>99252</u> 5
	Delivered:/ <u>2</u> /ℓ <u>7</u> /10 Time: <u>2/:3</u> € By: □Mail ÅFie	eld Service Client
1.	Was a Chain of Custody received and signed?	ŚuYes ⊡No □N/A
2.	Does Customer require an acknowledgement of the COC?	⊡Yes ⊡No ¤(IN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	∲Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4,5°C</u>	
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	p¢Yes ⊡No ⊡N/A
8.	Were sample custody seals intact?	□Yes □No ₽N/A
9.	Does the number of samples received agree with COC?	ØYes □No □N/A
10.	Did sample labels correspond with the client ID's?	₽Yes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail	ØYes □No □N/A
12.	Were samples pH checked? pH = <u>See</u> C.O.C	⊉Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	¤qYes ⊡No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): ロ RUSH	k¢qYes ⊡No ⊒N/A
15.	Sample Matrix:	
	□Sludge □Soil □Wipe □Paint □Solid 🖄	Other <u>IVater</u>
16.	Comments:	0.01 -
17.	Sample Check-In completed by Truesdail Log-In/Receiving: (F. Maburi
WMATRIX		

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 6, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-287 PROJECT, GROUNDWATER MONITORING, TLI NO.: 992656

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-287 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 14, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The matrix spike result for sample SC-700B-WDR-287 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits and the results from the analysis at a 5x dilution matched those of the straight run, the result from the straight run is reported.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

 f_o _Mona Nassimi

Mona Nassimi Manager, Analytical Services

K. R. P. gyen

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992656 Date: January 6, 2011 Collected: December 14, 2010 Received: December 14, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

		TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing	ORIES, INC.				14201 F	Estal RANKLIN AVENUE -	Established 1931 ULE - TUSTIN, CALIFORNIX	1 92780-7008
	Client: Attention:	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy	sers, Inc. 2 1000		-		D D D) 730-6239 · FAX (714) 730-64 Laboratory No.: 992656 Date Received: Decemi	(714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Laboratory No.: 992656 Date Received: December 14, 2010	2010
Ĕ	oject Name: Project No.: P.O. No.:	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	Ħ							
				<u>An</u> é	Ilytical R	<u>esults</u>	<u>Analytical Results Summary</u>			
Lab	Lab Sample ID Field ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
992	992656-001	SC-700B-WDR-287	E120.1		12/14/2010	12:45 42:45	EC	7400 UN	umhos/cm	2.00
7.66	992656-001 992656-001	SC-700B-WDR-287 SC-700B-WDR-287	E200.8 E200.8		12/14/2010	12:45	Manganese	4.8	ug/L ug/L	0.1
66Z	992656-001	SC-700B-WDR-287	E218.6 sw2130B	LABFLT NONE	12/14/2010	12:45 12:45	Chromium, hexavalent Turhiditv	OZ Z	ug/L NTU	0.20 0.100
266 662	992656-001	SC-700B-WDR-287	SM2540C	NONE	12/14/2010	12:45	Total Dissolved Solids	4460	mg/L	250
	ÜN	ND: Non Detected (below reporting limit)	t limit)							
	mg/L Note:	mg/L: Milligrams per liter. Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures.	tres" tule has been applied to ve two (2) significant figures.	alt results:						
		Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	ppm will have three (3) signific s have three (3) significant fig	cant figures. jures.						
005										

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project

P.O. Number: 408401.01.DM Project Number: 408401.01.DM Laboratory No. 992656 Page 1 of 8 Printed 1/6/2011

Samples Received on 12/14/2010 10:00:00 PM

Field ID				Lab ID	Col	lected	Matr	ix
SC-700B-WDR-287				992656-001	12/14	/2010 12:45	Wat	er
Specific Conductivity - E Parameter	PA 120.1	Unit		12EC10C lyzed	DF	MDL	12/17/201 RL	I0 Result
992656-001 Specific Conduct	ivity	umhos/		//2010	1.00	0.0380	2.00	7400
Method Blank	⁵							
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID =	992700-003
Parameter Specific Conductivity Lab Control Sample	Unit umhoร	DF 1.00	Result 34.0	Expected 33.6	F	₹PD 1.18	Accepta 0 - 10	nce Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result 699.	Expected 706.	F	Recovery 99.0	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 704.	Expected 706.	F	Recovery 99.7	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhoะ	DF 1.00	Result 704.	Expected 706.	F	Recovery 99.7	Accepta 90 - 110	nce Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 989.	Expected 999.	F	Recovery 99.0	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity	Unit umhoะ	DF 1.00	Result 985.	Expected 999.	F	Recovery 98.6	Accepta 90 - 110	ance Range)

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 2 of 8
	Project Number:	408401.01.DM	Printed 1/6/2011

Report Continued

Client: E2 Consulting Engineers, Inc.Project Name:PG&E Topock ProjectPage 3 of 8Project Number:408401.01.DMPrinted 1/6/2011

Parameter	ine në të	Unit	Ana	lyzed	DF	MDL	RL	Result
992656-001 Chromium, Hexa	avalent	ug/L	12/15	6/2010 12:11	1.05	0.0210	0.20	ND
Method Blank		······································		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND					
Duplicate							Lab ID =	992579-009
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 2.10	Result 22.4	Expected 22.1		RPD 1.09	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.08	Expected 5.00		Recovery 102	90 - 110	ance Range) 992579-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.04	Expected/Add 1.06(1.06)	ed	Recovery 98.3	90 - 110	ance Range) 992579-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 0.898	Expected/Add 1.06(1.06)	ed	Recovery 84.7	90 - 110	ance Range) 992579-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.10	Expected/Add 5.25(5.25)	led	Recovery 97.2	90 - 110	ance Range) 992579-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.00	Expected/Add 5.25(5.25)	led	Recovery 95.3	90 - 11	ance Range) 992579-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 0.843	Expected/Add 1.06(1.06)	led	Recovery 79.5	90 - 110	ance Range) 992579-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 6.46	Expected/Add 2.31(1.06)	led	Recovery 491	90 - 11	ance Range) 992579-008
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.06	Expected/Add 1.06(1.06)	led	Recovery 100	Accepta 90 - 110	ance Range D

Report Continued

Client: E2 Consulting Eng	ineers, Inc		oject Name: oject Numbe	PG&E Topock Pro r: 408401.01.DM	ject	Page 4 of 8 Printed 1/6/2011
Matrix Spike						Lab ID = 992579-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.04	Expected/Added 1.06(1.06)	Recovery 98.6	Acceptance Range 90 - 110 Lab ID = 992579-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 2.10	Result 52.2	Expected/Added 53.4(31.5)	Recovery 96.2	Acceptance Range 90 - 110 Lab ID = 992579-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 2.10	Result 51.6	Expected/Added 53.6(31.5)	Recovery 93.5	Acceptance Range 90 - 110 Lab ID = 992579-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.83	Expected/Added 1.87(1.06)	Recovery 96.1	Acceptance Range 90 - 110 Lab ID = 992656-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.11	Expected/Added 1.06(1.06)	Recovery 105	Acceptance Range 90 - 110 Lab ID = 992656-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 5.25	Result 5.35	Expected/Added 5.25(5.25)	Recovery 102	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.08	Expected 5.00	Recovery 102	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.90	Expected 10.0	Recovery 99.0	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.83	Expected 10.0	Recovery 98.3	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.63	Expected 10.0	Recovery 96.3	Acceptance Range 95 - 105

Report Continued

Client: E2 Consulting Engi	neers, In	•	ect Name: ect Numbe	PG&E Topock er: 408401.01.DN	-	ect	Page 5 of 8 Printed 1/6/2011		
Metals by EPA 200.8, Tota	al a contrat		Batch	010611A			·		
Parameter	· · · · · ·	Unit	Ana	lyzed	DF	MDL	RL	Result	
992656-001 Chromium		ug/L	01/06	5/2011 14:15	5.00	0.0950	1.0	ND	
Manganese		ug/L	01/06	5/2011 14:15	5.00	0.210	1.0	4.8	
Method Blank									
Parameter	Unit	DF	Result						
Chromium	ug/L	1.00	ND						
Manganese	ug/L	1.00	ND						
Duplicate							Lab ID =	992877-001	
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ince Range	
Chromium	ug/L	5.00	ND	0		0	0 - 20		
Manganese	ug/L	5.00	ND	0		0	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Range	
Chromium	ug/L	1.00	47.2	50.0		94.4	90 - 110)	
Manganese	ug/L	1.00	48.2	50.0		96.5	90 - 110)	
Matrix Spike							Lab ID =	992877-001	
Parameter	Unit	DF	Result	Expected/Add	led	Recovery	Accepta	ince Range	
Chromium	ug/L	5.00	235	250.(250.)		93.9	75 - 125	5	
Manganese	ug/L	5.00	243	250.(250.)		97.4	75 - 125	5	
Matrix Spike Duplicate							Lab ID =	992877-001	
Parameter	Unit	DF	Result	Expected/Add	led	Recovery	Accepta	ince Range	
Chromium	ug/L	5.00	233	250.(250.)		93.3	75 - 125	5	
Manganese	ug/L	5.00	238	250.(250.)		95.4	75 - 125	5	
MRCCS - Secondary									
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range	
Chromium	ug/L	1.00	46.4	50.0		92.7	90 - 110)	
Manganese	ug/L	1.00	47.3	50.0		94.6	90 - 110)	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range	
Chromium	ug/L	1.00	45.7	50.0		91.3	90 - 110)	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Range	
Chromium	ug/L	1.00	45.7	50.0		91,4	90 - 110)	

Report Continued

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Number	PG&E Topock F : 408401.01.DM	Project	Page 6 of 8 Printed 1/6/2011
MRCVS - Primary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 45.8	Expected 50.0	Recovery 91.5	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1,00	Result 46.9	Expected 50.0	Recovery 93.8	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.5	Expected 50.0	Recovery 94.9	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.7	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.5	Expected 50.0	Recovery 98.9	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 47.1	Expected 50.0	Recovery 94.3	Acceptance Range 90 - 110
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L itandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L	DF 1.00	Result 48.9	Expected 50.0	Recovery 97.8	Acceptance Range 80 - 120
Parameter Chromium	Unit ug/L	DF 1.00	Result 49.3	Expected 50.0	Recovery 98.6	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting E	ngineers, Ind		oject Name: oject Numbe	Page 7 of 8 Printed 1/6/2011		
Interference Check S	Standard AB					
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.9	Expected 50.0	Recovery 102	Acceptance Range 80 - 120
Interference Check S	Standard AB					
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.6	Expected 50.0	Recovery 101	Acceptance Range 80 - 120
Total Dissolved Solids Parameter	by SM 2540) C Unit		12TDS10C lyzed	DF MDL	12/15/2010 RL Result
992656-001 Total Dissolved	l Solids	mg/L	12/15	/2010	1.00 0.434	250. 4460
Method Blank						
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND			Lab ID = 992632-002
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 1240	Expected 1230	RPD 0.971	Acceptance Range 0 - 5
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L Duplicate	DF 1.00	Result 495.	Expected 500.	Recovery 99.0	Acceptance Range 90 - 110
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 504.	Expected 500.	Recovery 101	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Eng	jineers, Inc		Project Name: PG&E Topock Project Project Number: 408401.01.DM					Page 8 of 8 Printed 1/6/2011		
Turbidity by SM 2130 B			Batch	12TUC10J			12/15/201	0		
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result		
992656-001 Turbidity		NTU	12/15	5/2010	1.00	0.0140	0.100	ND		
Method Blank										
Parameter	Unit	DF	Result							
Turbidity	NTU	1.00	ND							
Duplicate							Lab ID =	992656-001		
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range		
Turbidity	NTU	1.00	ND	0		0	0 - 20			
Lab Control Sample										
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range		
Turbidity	NTU	1.00	8.14	8.00		102	90 - 110)		
Lab Control Sample D	uplicate									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range		
Turbidity	NTU	1.00	8.06	8.00		101	90 - 110)		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	12TDS10C
Date Calculated:	12/20/10

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	121.7206	121.7206	121.7206	0.0000	No	0.0000	0.0	25.0	ND	1
992574	50	68.5369	68,5800	68.5799	0.0001	No	0.0430	860.0	50.0	860.0	1
992597-1	50	70.9058	70.9443	70.9441	0.0002	No	0.0383	766.0	50.0	766.0	1
992597-2	50	78.4067	78.4467	78.4466	0.0001	No	0.0399	798.0	50.0	798.0	1
992597-3	50	65.6361	65.6763	65.6761	0.0002	No	0.0400	800.0	50.0	800.0	1
992597-4	50	49.3998	49.4748	49.4748	0.0000	No	0.0750	1500.0	50.0	1500.0	1
992597-5	50	50.6149	50.685	50.685	0.0000	No	0.0701	1402.0	50.0	1402.0	1
992601	100	110.8018	110.8205	110.8205	0.0000	No	0.0187	187.0	25.0	187.0	1
992642	100	114.3478	114.4905	114.4905	0.0000	No	0.1427	1427.0	25.0	1427.0	1
992632-1	50	69.5839	69.6416	69.6416	0.0000	No	0.0577	1154.0	50.0	1154.0	1
992632-2	50	75.4560	75.5177	75.5177	0.0000	No	0.0617	1234.0	50.0	1234.0	1
992632-2D	50	73.1504	73.2129	73.2125	0.0004	No	0.0621	1242.0	50.0	1242.0	1
LCS	100	102.8519	102.9014	102.9014	0.0000	No	0.0495	495.0	25.0	495.0	1
992632-3	50	77.8381	77.8724	77.8724	0.0000	No	0.0343	686.0	50.0	686.0	1
992654	K 100	102.7302	102.7870	102.7866	0.0004	No	0.0564	564.0	25.0	564.0	1
99265	10	50.5010	50.5459	50.5456	0.0003	No	0.0446	4460.0	250.0	4460.0	1
992684-1	50	75.0447	75.1400	75.14	0.0000	No	0.0953	1906.0	50.0	1906.0	1
992684-2	50	67.2510	67.3444	67.3444	0.0000	No	0.0934	1868.0	50.0	1868.0	1
992684-3	20	51.1416	51.2521	51.2517	0.0004	No	0.1101	5505.0	125.0	5505.0	1
LCS	100	112.3629	112.4133	112.4133	0.0000	No	0.0504	504.0	25.0	504.0	1

Calculation as follows:

4

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Analyst Printed Name

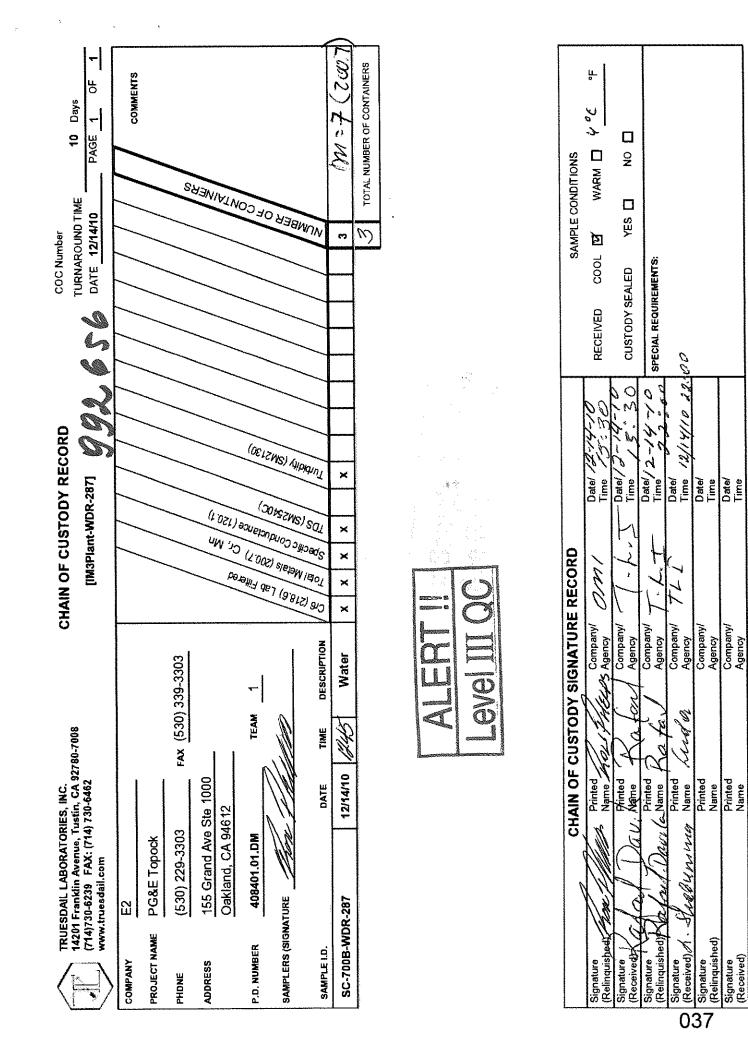
Analyst Signature

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK


Batch: 12TDS10C

Date Calculated: 12/20/10

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
	·····			
992574	1148	0.75	746.2	1.15
992597-1	1304	0.59	847.6	0.90
992597-2	1321	0.60	858.65	0.93
992597-3	1361	0.59	884.65	0.90
992597-4	2360	0.64	1534	0.98
992597-5	2330	0.60	1514.5	0.93
992601	325	0.58	211.25	0.89
992642	772	1.85	501.8	2.84
992632-1	1890	0.61	1228.5	0.94
992632-2	1980	0.62	1287	0.96
992632-2D	1980	0.63	1287	0.97
LCS				
992632-3	1223	0.56	794.95	0,86
992654	932	0.61	605.8	0.93
992658 6 9	7380	0.60	4797	0.93
992684-1	2680	0.71	1742	1.09
992684-2	2670	0.70	1735.5	1.08
992684-3	6890	0.80	4478.5	1.23

-

4 × *

Lab Number | Initial pH | Buffer Added (mL) Time Buffered Final pH Date Initials NA 992578-12 9.5 12/10/10 NA NA SB -B -14 -15 -16 -17 -18 -19 للد \$ <u>ل</u>لا 12/10/10 992579-1 9.5 NA N/A NA 53 -2 -3 -4 -5 -6 -8 -9 -10 -11 -13 -14 -15 -16 -17 -/8 -19 -20 -21 -22 -23 4 V. -121010 992579-1 NA NA 33 95 NTA \checkmark 6 4 Ł 30

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Enviro\Ali\Cr6+ pH Log

ah

Turbidity/pH Check

Turbidity/pH Check											
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)					
992725-7	71	22	12/20	ES	Yes						
992776(1-23-4)	71	72		1	Yes						
739(1-3)	21	72			NO						
992744(+-3)	41	77	12/21	していていていていていていていていていていていています。 していていていていていていていていていていていていていていていています。 していていていていていていていていていていていていていていていていていていてい	NU	yoa jor pm					
747	21	72 22		<u> </u>	NU	and the second of the second o					
748	21	42		<u> q </u>							
753(1-2)	71	22	 	t							
754(1-2	71	22	<u>├</u>		Y-15						
992755 (1-10			1010	1							
		-2	12/21	KK	yes						
Q9& 704(1-3)	Plant		12/21/10	EJ							
MB			4	1	4						
Decontermination B				$\underline{\vee}$							
992827 -1	4	-2	12-27.10		NO						
992758(1-4)	2	22	1227.10	<u>kk</u>	No	YESP 3pm					
992792	4	22]		4-1					
997793	41	42		T		****					
997794	<1	62		1		9 744					
997795	<1	42									
99279h	61	27									
QQ2797	41	27 22				~					
9977402(1-2)	4	22	12.27.10	KK	No	a hypertectorement and					
492791 (1-5)	<u>د ا</u>		12.27.10								
992769	71	22		_KK_	No.						
	71	22	12/2/2/10	Ę.	1 to						
992771(1-2)				/	<u> </u>						
992773	21			··· .	NO						
992774		<u> </u>			No						
992775	1		1		Yes						
992776					No						
992777	21			·	1						
778(1-2)	71				YU						
779 .	4			-	N'O						
779	71				Yes						
906	71				1						
992437(1-2)	71	V			V						
992837 (1-2) 79284 7 (1-3)	21	72			No	a) 5:30 p.m					
Q17	21 41 41	62			1						
CALV	E1	62									
(1. m	21	27.	<u> </u>		+/1						
\$69(1-3)			$\vdash \downarrow$			A DEAD A M					
267(1-3)	<u> </u>	1 4	1/2/11	ES	NO	05:90 p.M					
11284 2 (1-1) 847 867 867 869 (1-3) 992873 992873	41	$ \begin{array}{c} 72 \\ 42 \\ 42 \\ 42 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 42 \\ 42 \\ 42 \\ 42 \\ \end{array} $	1/3/11	<u> </u>	, vrv	yea 5:00 p.A					
992873	41	27	<u> </u>	 	·						
992876(1.3)	21		<u> </u>		┼──┦────						
\$37	E	66	ļ ļ	 							
888(1-4)	7(62	ļ ķ	·····	Ya No						
889	61		<u> </u>	ļ	NO						
992911(1-3)	41	72 >2	ļ., ļ.		<u> </u>	yea 5:00 p.m.					
4a2656(1)	21	>2	1/4/11	KK.	· No	YA 845 MM					
CA2701 (2)	121	22	L		No	No					
				7							
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										

۲

Ì

039

Í

Sample Integrity & Analysis Discrepancy Form

∕ice □ es □No	Client
∙s ⊡No	
	□ <i>N/A</i>
s ⊡No	
os ⊡No	¢n⁄a
es ⊡No	
es ⊡No	
es ⊡No	<i>□N/A</i>
es □No	DN/A
ns 🗖 No	<i>□N/A</i>
s ⊡No	DIN/A
es ⊡No	
∘s ⊡No	DN/A
s ⊡No	
∙s ⊡No	DN/A
s □No	□N/A
□Wasj	te Water
wat	<u>er</u>
A	<u> </u>
7	es INo IWas MC

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 6, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-288 PROJECT, GROUNDWATER MONITORING, TLI NO.: 992801

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-288 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 21, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

40 - Mona Nassimi Manager, Analytical Services

K. R. P. S.de

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM

Laboratory No.: 992801 Date: January 6, 2011 Collected: December 21, 2010 Received: December 21, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Mark Kotani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani / Iordan Stavrev
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

Established 1931 14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Date Received: December 21, 2010	Result Units RL	ug/L ug/L mg/L mg/L	This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public,
1420	Results Summary Sample Time Parameter		ndition of apparently identical or similar p
	Analytical Res Extraction Sample Date Ti	E 12/21/2010 E 12/21/2010 E 12/21/2010 E 12/21/2010 E 12/21/2010	necessarily indicative of the quality or col
TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing Excellence in Independent Testing Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Protect Name: PGRF Tonnck Protect	Analysis Method	SC-700B-WDR-288 E120.1 NONE SC-700B-WDR-288 E200.8 NONE SC-700B-WDR-288 E200.8 NONE SC-700B-WDR-288 E218.6 LABFL SC-700B-WDR-288 SM2130B NONE SC-700B-WDR-288 SM2540C NONE SC-700B-WDR-288 SM2540C NONE More The follow reporting limit) mg/L Miligrams per liter. ND: Non Detected (below reporting limit) MCL: Miligrams per liter. ND: Non Detected (below reporting limit) MCL: Miligrams per liter. ND: Non Detected (below reporting limit) Results below 0.01ppm will have three (3) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.	ple, or samples, investigated and is not n
TRUESDAIL LABORATO Excellence in INDEPENDENT TESTING Client: E2 Consulting Engine 155 Grand Ave. Suite Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&F Tonock Project	Project No.: 408401.01.DM P.O. No.: 408401.01.DM Lab Sample ID Field ID	992801-001 SC-700B-WI 992801-001 SC-700B-WI 992801-001 SC-700B-WI 992801-001 SC-700B-WI 992801-001 SC-700B-WI 992801-001 SC-700B-WI Recurs pelow a.01 Results below a.01 Result above or eq Quality Control date	This report applies only to the sam

meric and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Project Name: PG&E Topock Project

P.O. Number: 408401.01.DM

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800 Oakland, CA 94612 Attention: Shawn Duffy

Laboratory No. 992801 Page 1 of 8 Printed 1/6/2011

Project Number: 408401.01.DM

Samples Received on 12/21/2010 10:30:00 PM

Field ID				Lab ID	Colle	ected	Matr	ix
SC-700B-WDR-288				992801-001	12/21/2	010 13:25	Wat	er
Specific Conductivity - E Parameter	PA 120.1	Unit		n 01EC10D alyzed	DF	MDL	1/3/2011 RL	Result
992801-001 Specific Conduct	tivîty	umhos/cr	n 01/03	3/2011	1.00	0.0380	2.00	7320
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID =	992802-015
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 967.	Expected 974.	RF (PD).721	Accepta 0 - 10	ince Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result 688.	Expected 706.		ecovery 97.5	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 687.	Expected 706.		ecovery 97.3	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 687.	Expected 706.		ecovery 97.3	Accepta 90 - 11(ance Range)
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 995.	Expected 999.		ecovery 99.6	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity	Unit umho៖	DF 1.00	Result 1000	Expected 999.		ecovery 100	Accepta 90 - 110	ince Range)

Report Continued

Client: E2 Consulting Engineers, Inc.		PG&E Topock Project 408401.01.DM	Page 2 of 8 Printed 1/6/2011
	,		

Report Continued

Client: E2 Consulting En	gineers, Inc	-	ect Name: ect Numbei	PG&E Topock r: 408401.01.DM	-	ect	P Printed 1	age 3 of 8 /6/2011
Chrome VI by EPA 218.6 Parameter	nen Romannen er fan de fan Romannen er fan de fan Romannen er fan de fan	Unit	14	12CrH10O lyzed	DF	MDL	RL	Result
992801-001 Chromium, Hexa	avalent	ug/L	12/27	/2010 18:59	1.05	0.0210	0.20	0.43
Method Blank								
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND				l ah ID =	992801-001
Duplicate Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 0.400	Expected 0.426		RPD 6.30		ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.32	Expected 5.00		Recovery 106	90 - 11	ance Range 0 992801-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.54	Expected/Add 1.49(1.06)	led	Recovery 105.	90 - 11	ance Range 0 • 992824-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.00	Expected/Add 1.06(1.06)	ded	Recovery 94.4	90 - 11	ance Range 0 • 992824-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.12	Expected/Add 1.06(1.06)	ded	Recovery 106	90 - 11	ance Range 0 = 992824-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.07	Expected/Add 1.06(1.06)	ded	Recovery 101	90 - 11	ance Range 0 • 992824-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.12	Expected/Add 1.06(1.06)	ded	Recovery 106	90 - 11	ance Range 0 = 992824-005
Parameter Chromium, Hexavalent Matríx Spike	Unit ug/L	DF 1.06	Result 1.03	Expected/Add 1.06(1.06)	ded	Recovery 97.5	90 - 11	ance Range 0 = 992824-006
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 1.14	Expected/Ade 1.06(1.06)	ded	Recovery 108	Accept 90 - 11	ance Range 0

Report Continued

Client: E2 Consulting Eng		oject Name: oject Number	PG&E Topock Pro 408401.01.DM	ject	Page 4 of 8 Printed 1/6/2011	
Matrix Spike						Lab ID = 992824-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.02	Expected/Added 1.06(1.06)	Recovery 96.4	Acceptance Range 90 - 110 Lab ID = 992824-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.06	Expected/Added 1.06(1.06)	Recovery 100	Acceptance Range 90 - 110 Lab ID = 992824-009
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.06	Expected/Added 1.06(1.06)	Recovery 99.6	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.18	Expected 5.00	Recovery 104	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.0	Expected 10.0	Recovery 100	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.56	Expected 10.0	Recovery 95.6	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102	Acceptance Range 95 - 105

Report Continued

 Client: E2 Consulting Engineers, Inc.
 Project Name:
 PG&E Topock Project
 Page 5 of 8

 Project Number:
 408401.01.DM
 Printed 1/6/2011

 Metals by EPA 200.8, Total
 Batch 010611A

Parameter	Unit Analyzed		yzed	DF	MDL	RL	Result	
992801-001 Chromium Manganese		ug/L	01/06	/2011 14:06	5.00	0.0950	1.0	ND
		ug/L 01/06/2011 14:06		/2011 14:06	5.00	0.210	1.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	992877-00
Parameter	Unit	DF	Result	Expected		RPD	Accept	ance Rang
Chromium	ug/L	5.00	ND	0		0	0 - 20	
Manganese	ug/L	5.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Chromium	ug/L	1.00	47.2	50.0		94.4	90 - 11	0
Manganese	ug/L	1.00	48.2	50.0		96.5	90 - 11	0
Matrix Spike							Lab ID =	992877-00
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accept	ance Rang
Chromium	ug/L	5.00	235	250.(250.)		93.9	75 - 12	5
Manganese	ug/L	5.00	243	250.(250.)		97.4	75 - 12	5
Matrix Spike Duplicate	9						Lab ID =	992877-00
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accept	ance Rang
Chromium	ug/L	5.00	233	250.(250.)		93.3	75 - 12	5
Manganese	ug/L	5.00	238	250.(250.)		95.4	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Chromium	ug/L	1.00	46.4	50.0		92.7	90 - 11	0
Manganese	ug/L	1.00	47.3	50.0		94.6	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Chromium	ug/L	1.00	45.7	50,0		91.3	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	-	ance Rang
Chromium	ug/L	1.00	45.7	50.0		91.4	90 - 11	0

Report Continued

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Number	PG&E Topock : 408401.01.DM	Project	Page 6 of 8 Printed 1/6/2011
MRCVS - Primary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 45.8	Expected 50.0	Recovery 91.5	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.8	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.5	Expected 50.0	Recovery 94.9	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.7	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.5	Expected 50.0	Recovery 98.9	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 47.1	Expected 50.0	Recovery 94.3	Acceptance Range 90 - 110
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L tandard AB	DF 1.00	Result 48.9	Expected 50.0	Recovery 97.8	Acceptance Range 80 - 120
Parameter Chromium	Unit ug/L	DF 1.00	Result 49.3	Expected 50.0	Recovery 98.6	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: PG&E Topock Project Project Number: 408401.01.DM					Page 7 of 8 Printed 1/6/2011	
Interference Check St	tandard AB								
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.9	Expected 50.0	F	Recovery 102	Accepta 80 - 120	nce Range	
Interference Check S					-	_	A 1	-	
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.6	Expected 50.0	1	Recovery 101	80 - 120	nce Range	
Total Dissolved Solids t	oy SM 2540	I C	Batch	12TDS10E	. <u>.</u>		12/27/201	0	
Parameter	sono o se present	Unit	Anal	yzed	DF	MDL	RL	Result	
992801-001 Total Dissolved	Solids	mg/L	12/27	/2010	1.00	0.434	250,	3550	
Method Blank									
Parameter	Unit	DF	Result						
Total Dissolved Solids Duplicate	mg/L	1.00	ND				Lab ID =	992801-001	
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 3450	Expected 3550	i	RPD 2.86	Accepta 0 - 5	nce Range	
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 490.	Expected 500.		Recovery 98.0	Accepta 90 - 110	nce Range	
Turbidity by SM 2130 B Parameter		Unit		12TUC10R lyzed	DF	MDL	12/22/201 RL	l0 Result	
992801-001 Turbidity		NTU	12/22	/2010	1.00	0.0140	0.100	ND	
Method Blank									
Parameter	Unit	DF	Result						
Turbidity	NTU	1.00	ND						
Duplicate							Lab ID =	992801-001	
Parameter Turbidity	Unit NTU	DF 1.00	Result ND	Expected 0		RPD 0	Accepta 0 - 20	ince Range	
Lab Control Sample									
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.30	Expected 8.00		Recovery 91.2	Accepta 90 - 110	ince Range)	
Lab Control Sample I	•	55	D- "	F		De	A		
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.38	Expected 8.00		Recovery 92.2	Accepta 90 - 110	ince Range)	

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM

Page 8 of 8 Printed 1/6/2011

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

fir

Mona Nassimi Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	67.7356	67.7358	67.7358	0.0000	No	0.0002	2.0	25.0	ND	1
992755-1	100	112.1681	112.1890	112.1890	0.0000	No	0.0209	· 209.0	25.0	209.0	1
992755-2	100	72.4754	72.5012	72.5012	0.0000	No	0,0258	258.0	25.0	258.0	1
992755-3	100	76.5681	76.5908	76.5908	0.0000	No	0.0227	227.0	25.0	227.0	1
992755-4	100	65.8305	65.8564	65.8564	0.0000	No	0.0259	259.0	25.0	259.0	1
992755-5	100	76.5229	76.5447	76.5447	0.0000	No	0.0218	218.0	25.0	218.0	1
992755-6	100	69.2684	69.2971	69.2971	0.0000	No	0.0287	287.0	25.0	287.0	1
992755-7	200	105.3618	105.3938	105.3938	0.0000	No	0.0320	160.0	12.5	160.0	1
992755~8	100	65.9869	66.0122	66.0122	0.0000	No	0.0253	253.0	25.0	253.0	1
992755-9	100	68.7781	68.7988	68.7986	0.0002	No	0.0205	205.0	25.0	205.0	1
992755-10	100	67.7882	67.81	67.81	0.0000	No	0.0218	218.0	25.0	218.0	1
992755-10D	100	67.8788	67.901	67.901	0.0000	No	0.0222	222.0	25.0	222.0	1
LCS	100	72.4280	72.477	72.477	0.0000	No	0.0490	490.0	25.0	490.0	1
992731-1	765	92.1044	92.1064	92.1064	0.0000	No	0.0020	2.6	3.3	ND	1
992731-2	100	67.8051	67.8381	67.8381	0.0000	No	0.0330	330.0	25.0	330.0	1
992731-3MS	100	73.6636	73.7523	73.7523	0.0000	No	0.0887	887.0	25.0	887.0	1
992731-4MS	100	68.7039	68.7945	68.7945	0.0000	No	0.0906	906.0	25,0	906.0	1
992758-1	50	68.2452	68.2892	68.2892	0.0000	No	0.0440	880.0	50.0	880.0	1
992758-2	50	68.4329	68.4593	68.4593	0.0000	No_	0.0264	528.0	50.0	528.0	1
992758-3	100	74.2589	74.3131	74.3131	0.0000	No	0.0542	542.0	25.0	542.0	1
992758-4	100	74.7197	74.7695	74.7695	0.0000	No	0.0498	498.0	25.0	498.0	1
992801	10	49.7276	49.7631	49.7631	0.0000	No	0.0355	3550.0	250.0	3550.0	1
992802-12	100	69.8126	69.8728	69.8728	0.0000	No	0.0602	602.0	25.0	602.0	1
992801D	10	51.5105	51.545	51.545	0.0000	No	0.0345	3450.0	250.0	3450,0	1
LCSD											1

Calculation as follows:

5

$$\frac{A-B}{C}\right) x \ 1 \ 0^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Printed lame

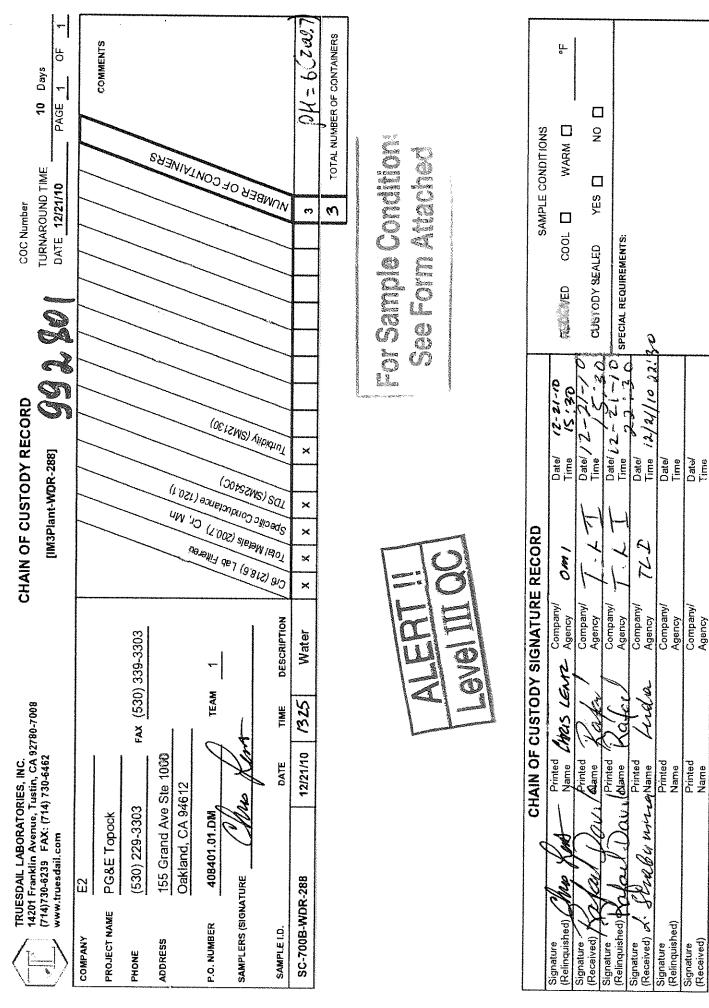
Analyst Signature

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK


Batch: 12TDS10E Date Calculated: 1/3/11

Laboratory Number	boratory Number EC		Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3	
992755-1	255	0.82	165.75	1.26	
992755-2	312	0.83	202.8	1.27	
992755-3	276	0.82	179.4	1.27	
992755-4	315	0.82	204.75	1.26	
992755-5	291	0.75	189.15	1.15	
992755-6	389	0.74	252.85	1,14	
992755-7	189	0.85	122.85	1.30	
992755-8	372	0.68	241.8	1.05	
992755-9	252	0.81	163.8	1.25	
992755-10	346	0.63	224.9	0.97	
992755-10D	346	0.64	224.9	0.99	
LCS					
992731-1	2.21	ND	1.4365	ND	
992731-2	420	0.79	273	1.21	
992731-3MS					
992731-4MS					
992758-1	1593	0.55	1035.45	0,85	
992758-2	1009	0.52	655.85	0.81	
992758-3	881	0.62	572.65	0.95	
992758-4	825	0.60	536.25	0.93	
992801	7410	0.48	4816.5	0.74	
992802-12	970	0.62	630.5	0.95	
992801D	7410	0.47	4816.5	0.72	
				· ·· · · · · · · · · · · · · · · · · ·	

K

ŝ,

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
12/17/10	992706-14	9.5	N/A	N/A	N/A	SB
8	1 -15	(1		Î
	-16					
	-17					
	-18					
	-19					
	-20					
	$ \begin{array}{c c} -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \\ -23 \\ -27 \\ -28 \\ -29 \\ -30 \\ -31 \\ \end{array} $					
	-27					
	-28					
	-29					
	-30					
	-31					
i la	1 -32		¥	y y	J	ŕ
12/22/10	992801	7.0	5.00	9.5	11:00 N/A	sВ
12/22/10	992802-1	9.5	5.00 N/A	N/A	N/A	SB
<u> </u>	1 -2	Ì		1		i
	-2					
	-4 5 -6 -7					
	-5					
	-6					
	_7					
	-8					<u>.</u>
	-9					
	-10					
	-11					
	-12					
	-13					
	-14					
	1-15		<u>↓</u>	↓ ↓	<u> </u>	V
]

C:\My Documents\Templates\Hexavalent Chromium\Cr6+ pH Log

Turbidity/pH Check

I

A true Spire

		<u> </u>	bidity/pH (леск	•	
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
792277	4	32	1-4-11	K K	NO	Yes @ 10 30 m
992657 (1-4)	41	22	1/4/11	1che		
992703(1-6)	4	27	1-4-11	KK	No	
997801 (1)	41	27	1-4-11	KK	NO	YONUTION
992658 (1-8,11		42	1-4-11	FK.	No	
99-2802 11-15	-17, w, aj-1		i - 5. j1			No
992802 (1-15)<′_	4.2	(~). []	KK	NO	
				·	·	
			<u> </u>			
	······································	· · · · · · · · · · · · · · · · · · ·				†
			· · · ·			
· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·		
1911	-					
······································						
·····			· · · · · ·		· · · · · · · · · · · · · · · · · · ·	
			l			
······						
	<u> </u>					
-						
					1	
·····	-					
				· · · · · · · · · · · · · · · · · · ·	·····	
••••	+	ļ <u></u>	•			
						· · · · · · · · · · · · · · · · · · ·
	<u> </u>	[
			<u> </u>			
	<u> </u>	ľ				

Sample Integrity & Analysis Discrepancy Form

Clien	it: <u>E 2</u>	Lab #
Date	Delivered: 12/21/10 Time: <u>22:3</u> 0 By: □Mail QField	Service Client
1.	Was a Chain of Custody received and signed?	XQYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ¤(N/A
З.	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	∲Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4 ° C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc.)?	AYes INO IN/A
8.	Were sample custody seals intact?	IYes □No ØN/A
9.	Does the number of samples received agree with COC?	Ø{Yes □No □N/A
10.	Did sample labels correspond with the client ID's?	ØYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client	□Yes □No ⊉N/A
12.	Were samples pH checked? $pH = \underline{SQL} C_{1} C_{1}$	∦ZiYes ⊡No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	¢QYes ⊡No ⊡N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): I RUSH Q Std	Yes DNO DN/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid ØOt	
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	habung

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 6, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-289 PROJECT, GROUNDWATER MONITORING, TLI NO.: 992877

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-289 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 28, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The sample result for sample SC-700B-WDR-289 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike was within the retention time window and the recovery was within acceptable limits, the data is accepted.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi سريخ Manager, Analytical Services

K. R. A. gope

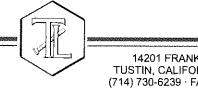
K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project Project No.: 408401.01.DM


Laboratory No.: 992877 Date: January 6, 2011 Collected: December 28, 2010 Received: December 28, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Mark Kotani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

TRL Excell	TRUESDAIL Excellence in Indepen	TRUESDAIL LABORATC EXCELLENCE IN INDEPENDENT TESTING	LABORATORIES, INC. Dent Testing		·			Esta	Esteblished 1931	
	Client	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy	eers, Inc. ∋ 1000				14201 (714)	FRANKLIN AVENUE · TUSTIN, CA 730-6239 · FAX (714) 730-64 Laboratory No.: 992877 Date Received: Decem	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Laboratory No.: 992877 Date Received: December 28, 2010	, 92780-7008 truesdail.com , 2010
Proje Pro	ect Name oject No P.O. No	Project Name: PG&E Topock Project Project No.: 408401.01.DM P.O. No.: 408401.01.DM	ک							
				And	Analytical R	<u>esult</u>	Results Summary			
Lab S _č	Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
992877-001 992877-001 992877-001 992877-001	7-001 7-001 7-001	SC-700B-WDR-289 SC-700B-WDR-289 SC-700B-WDR-289 SC-700B-WDR-289	E120.1 E200.8 E200.8 E2186	NONE NONE NONE ABFLT	12/28/2010 12/28/2010 12/28/2010	11:30 11:30 11:30 11:30	EC Chromium Manganese Chromium hexevalent	7250 ND ND	umhos/cm ug/L ug/L	2.00 1.0 2.0
992877-001 992877-001	7-001	SC-700B-WDR-289 SC-700B-WDR-289	SM2130B SM2540C	U N N N N N N N N N N N	12/28/2010	11:30	Turbidity Total Dissolved Solids	0.35 4250	ug/L mg/L	0.100 250
	ND: mg/L: Note:	 Nor Detected (below reporting limit) mg/L.: Miligrams per liter. Mote: The following "Significant Figures" rute has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures. 	; limit) res" rute has been applied to a ve two (2) significant figures. pm will have three (3) significant figu	W results: ant figures. Ires.						
005										

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 1/6/2011

Laboratory No. 992877

Established 1931

Page 1 of 8

Report

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800

Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project P.O. Number: 408401.01.DM Project Number: 408401.01.DM

Samples Received on 12/28/2010 9:30:00 PM

Field ID				Lab ID	Collected	Matrix
SC-700B-WDR-289				992877-001	12/28/2010 11:	30 Water
Specific Conductivity - E Parameter	EPA 120.1	Unit		01EC11F	DF MDI	1/4/2011 - RL Result
992877-001 Specific Conduc	tivity	umhos	/cm 01/04	l/2011	1.00 0.0380	2.00 7250
Method Blank				······································	- <u> </u>	
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND			Lab ID = 992877-001
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7240	Expected 7250	RPD 0.138	Acceptance Range 0 - 10
Parameter Specific Conductivity Lab Control Sample D	Unit umhos Juplicate	DF 1.00	Result 700.	Expected 706.	Recovery 99.2	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCCS - Secondary	Unit umhoะ	DF 1.00	Result 700.	Expected 706.	Recovery 99.2	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCVS - Primary	Unit umhoร	DF 1.00	Result 696.	Expected 706.	Recovery 98.6	Acceptance Range 90 - 110
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 965.	Expected 999.	Recovery 96.6	Acceptance Range 90 - 110
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 967.	Expected 999.	Recovery 96.8	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 2 of 8
	Project Number:	408401.01.DM	Printed 1/6/2011

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 3 of 8 Printed 1/6/2011

Parameter		Unit	Ana	lyzed	DF N	IDL RL	Result
992877-001 Chromium, Hexa	valent	ug/L	12/29	/2010 09:14	1.05 0.02	10 0.20	0.35
Method Blank							
Parameter	Unit	DF	Result				
Chromium, Hexavalent Duplicate	ug/L	1.00	ND			Lab ID =	- 992658-007
Parameter	Unit	DF	Result	Expected	RPD	Accept	ance Range
Chromium, Hexavalent Lab Control Sample	ug/L	1.05	19.1	18.9	1.18	0 - 20	-
Parameter	Unit	DF	Result	Expected	Recove	ry Accept	ance Range
Chromium, Hexavalent	ug/L	1.00	5.14	5.00	103	90 - 11	0
Matrix Spike						Lab ID =	= 992658-007
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Accept	ance Range
Chromium, Hexavalent	ug/L	1.08	38.4	40.5(21.6)	90.6	90 - 11	0
Matrix Spike						Lab ID =	= 992658-008
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Accept	ance Range
Chromium, Hexavalent	ug/L	5.25	5.38	5.25(5.25)	102	90 - 11	0
Matrix Spike						Lab ID =	= 992658-008
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Accept	ance Range
Chromium, Hexavalent	ug/L	1.06	ND	1.06(1.06)		90 - 11	0
Matrix Spike						Lab ID =	= 992658-009
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Accept	ance Range
Chromium, Hexavalent	ug/L	1.06	1.24	1.14(1.06)	109	90 - 11	0
Matrix Spike						Lab ID :	= 992658-010
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Accept	ance Range
Chromium, Hexavalent	ug/L	1.06	1.15	1.18(1.06)	97.9	90 - 1 1	0
Matrix Spike						Lab ID :	= 992877-00
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Accept	ance Range
Chromium, Hexavalent MRCCS - Secondary	ug/L	1.06	1.48	1.41(1.06)	107	90 - 11	0
Parameter	Unit	DF	Result	Expected	Recove	ry Accept	ance Rang
Chromium, Hexavalent	ug/L	1.00	5.13	5.00	103	90 - 11	-

Report Continued

Client: E2 Consulting En	gineers, Ind		Project Name: Project Number	PG&E Topock : 408401.01.DN	•	Page 4 of 8 Printed 1/6/2011
MRCVS - Primary						
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.3	Expected 10.0	Recovery 103	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102	Acceptance Range 95 - 105

Manganese

Parameter

Chromium

Parameter

Chromium

MRCVS - Primary

MRCVS - Primary

ug/L

Unit

ug/L

Unit

ug/L

1.00

DF

1.00

DF

1.00

47.3

Result

45.7

Result

45.7

50.0

Expected

Expected

50.0

50.0

Report Continued

Client: E2 Consulting Engi	neers, In		Project Name: Project Number	PG&E Topock : 408401.01.DN		ect	Pa Printed 1/	age 5 of 8 6/2011
Metals by EPA 200.8, Tota Parameter		Unit	Batch Anal	010611A yzed	DF	MDL	RL	Result
992877-001 Chromium		ug/L	01/06/	2011 13:24	5,00	0.0950	1.0	ND
Manganese		ug/L	01/06/	/2011 13:24	5.00	0.210	1.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	992877-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	nce Range
Chromium	ug/L	5.00	ND	0		0	0 - 20	
Manganese	ug/L	5.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Chromium	ug/L	1.00	47.2	50.0		94.4	90 - 110	
Manganese	ug/L	1.00	48.2	50.0		96.5	90 - 110	
Matrix Spike							Lab ID =	992877-001
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	nce Range
Chromium	ug/L	5.00	235	250.(250.)		93,9	75 - 125	, ,
Manganese	ug/L	5.00	243	250.(250.)		97.4	75 - 125	;
Matrix Spike Duplicate							Lab ID =	992877-001
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery		ince Range
Chromium	ug/L	5.00	233	250.(250.)		93.3	75 - 125	
Manganese	ug/L	5.00	238	250.(250.)		95.4	75 - 125)
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ince Range
Chromium	ug/L	1.00	46.4	50.0		92.7	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

90 - 110

90 - 110

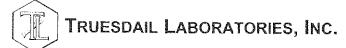
90 - 110

Acceptance Range

Acceptance Range

94.6

Recovery


Recovery

91.4

91,3

Report Continued

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Numbe	PG&E Topock :: 408401.01.DM	Project	Page 6 of 8 Printed 1/6/2011
MRCVS - Primary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 45.8	Expected 50.0	Recovery 91.5	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.8	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.5	Expected 50.0	Recovery 94.9	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.7	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.5	Expected 50.0	Recovery 98.9	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 47.1	Expected 50.0	Recovery 94.3	Acceptance Range 90 - 110
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Manganese Interference Check S	Unit ug/L tandard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L	DF 1.00	Result 48.9	Expected 50.0	Recovery 97.8	Acceptance Range 80 - 120
Parameter Chromium	Unit ug/L	DF 1.00	Result 49.3	Expected 50.0	Recovery 98.6	Acceptance Range 80 - 120

Report Continued

Client: E2 Consulting Eng	jineers, In		oject Name: oject Numbe	PG&E Topo r: 408401.01.E	•	Page 7 of 8 Printed 1/6/2011
Interference Check Sta	andard AB					
Parameter Manganese Interference Check Sta	Unit ug/L	DF 1.00	Result 50.9	Expected 50.0	Recovery 102	Acceptance Range 80 - 120
Parameter Manganese	Unit ug/L	DF 1.00	Result 50.6	Expected 50.0	Recovery 101	Acceptance Range 80 - 120
Total Dissolved Solids b	y SM 254	0 C Unit		12TDS10F	DF MDL	12/29/2010 RL Result
992877-001 Total Dissolved S	Solide	mg/L		/2010	1.00 0.434	<u>RL</u> Result 250. 4250
Method Blank	0003	ing/L	12/23	/2010	1.00 0.434	200. 4200
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND			Lab ID = 992894-004
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 772.	Expected 752.	RPD 2.62	Acceptance Range 0 - 5
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 501.	Expected 500.	Recovery 100	Acceptance Range 90 - 110
Turbidity by SM 2130 B Parameter		Unit		12TUC10T lyzed	DF MDL	12/29/2010 RL Result
992877-001 Turbidity		NTU	12/29	/2010	1.00 0.0140	0.100 ND
Method Blank						
Parameter	Unit	DF	Result			
Turbidity Duplicate	NTU	1.00	ND			Lab ID = 992877-001
Parameter Turbidity Lab Control Sample	Unit NTU	DF 1.00	Result ND	Expected 0	RPD 0	Acceptance Range 0 - 20
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.40	Expected 8.00	Recovery 92.5	Acceptance Range 90 - 110
Lab Control Sample D						
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.53	Expected 8.00	Recovery 94.1	Acceptance Range 90 - 110

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 408401.01.DM Page 8 of 8 Printed 1/6/2011

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch:	12TDS10F
Date Calculated:	1/5/11

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, 9	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	105.4163	105.4167	105.4163	0.0004	No	0.0000	0.0	25.0	ND	1
992843-2	200	111.6575	111.6746	111.6746	0.0000	No	0.0171	85.5	12.5	85.5	1
992843-3	100	72.9866	73.0047	73.0047	0.0000	No	0.0181	181.0	25.0	181.0	1
992870	100	110.6346	110.683	110.6828	0.0002	No	0.0482	482.0	25.0	482.0	1
992830-1	100	104.8952	104.9194	104.9193	0.0001	No	0.0241	241.0	25.0	241.0	1
992830-2	100	112.1783	112.2129	112.2127	0.0002	No	0.0344	344.0	25.0	344.0	1
992873	100	68,7940	68.8481	68.8481	0.0000	No	0.0541	541.0	25.0	541.0	1
992874	50	67.8136	67.8481	67.848	0.0001	No	0.0344	688.0	50.0	688.0	1
992876-8	100	69.5118	69.5585	69.5583	0.0002	No	0.0465	465.0	25.0	465.0	1
992877	10	51.2626	51.3054	51.3051	0.0003	No	0.0425	4250.0	250.0	4250.0	1
992894-1	50	48.1869	48.223	48.2229	0.0001	No	0.0360	720.0	50.0	720.0	1
992870D	100	104.2456	104.2944	104.2943	0.0001	No	0.0487	487.0	25.0	487.0	1
LCS	100	112.8458	112.8959	112.8959	0.0000	No	0.0501	501.0	25.0	501.0	1
992894-2	50	49.3633	49.4006	49.4003	0.0003	No	0.0370	740.0	50.0	740.0	1
992894-3	50	76.2178	76.2532	76.2528	0.0004	No	0.0350	700.0	50.0	700.0	1
992894-4	50	51.1371	51.1747	51,1747	0.0000	No	0.0376	752.0	50.0	752.0	1
992911-2	200	115.2452	115.2642	115.2642	0,0000	No	0.0190	95.0	12.5	95.0	1
992911-3	100	111.2915	111.3108	111.3108	0.0000	No	0.0193	193.0	25.0	193.0	1
992894-4D	50	68.8913	68.9303	68,9299	0.0004	No	0.0386	772.0	50.0	772.0	1
	1										
LCSD											1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

st Printed Name

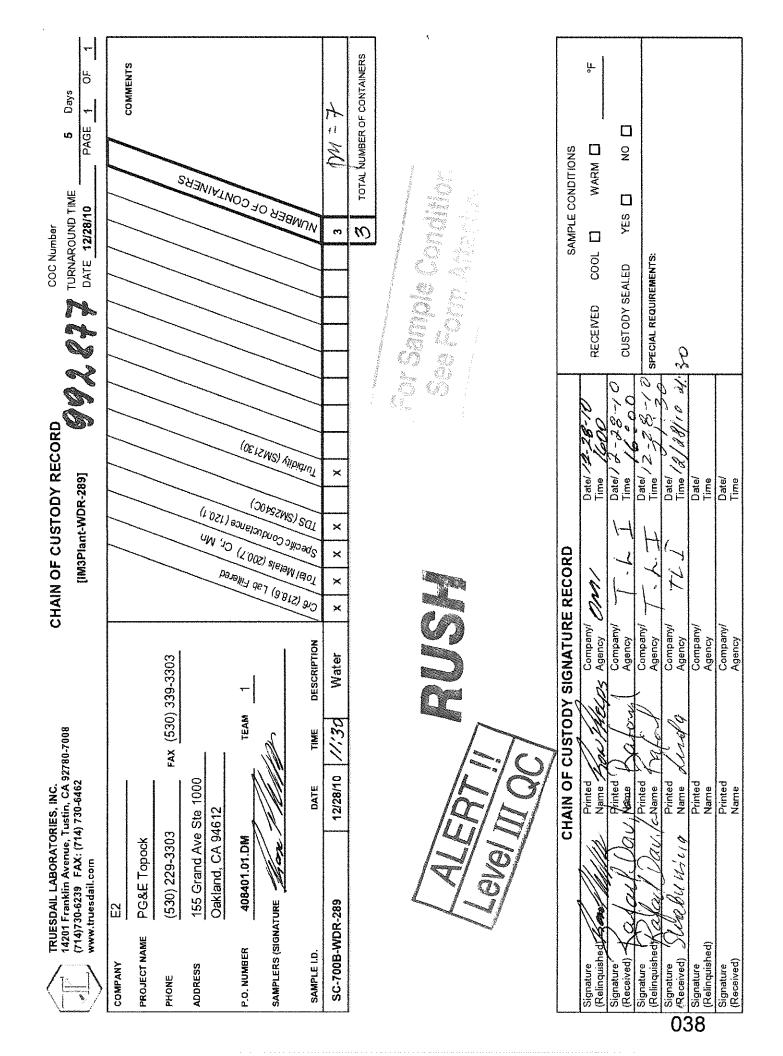
Analyst Signature

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK


Batch: 12TDS10F

Date Calculated: 1/5/11

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Cali TDS <1.3
000042.0	420			
992843-2	172	0.50	111.8	0.76
992843-3	360	0.50	234	0.77
992870	809	0.60	525.85	0.92
992830-1	390	0.62	253.5	0.95
992830-2	390	0.88	253.5	1.36
992873	905	0.60	588.25	0.92
992874	1171	0.59	761.15	0.90
992876-8	783	0.59	508.95	0.91
992877	7270	0.58	4725.5	0.90
992894-1	1185	0.61	770.25	0.93
992870D	809	0.60	525.85	0.93
LCS				
992894-2	1129	0.66	733.85	1.01
992894-3	1197	0.58	778.05	0.90
992894-4	1275	0.59	828.75	0.91
992911-2	168	0.57	109.2	0.87
992911-3	353	0.55	229.45	0.84
992894-4D	1275	0.61	828.75	0.93
	······································			
				toto a companyon o

j A

.

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH 9.5	Time Buffered	Initials
12/29/10	992877	70	5.00	9.5	Time Buffered 9:05	SB
	······					
				· · · · · · · · · · · · · · · · · · ·		
						······································
					1	
		·····				
	· · · · · · · · · · · · · · · · · · ·					
			·			
					· · · · ·	
			<u> </u>			<u> </u>
	†					
						·····

C:\My Documents\Templates\Hexavalent Chromium\Cr6+ pH Log

Turbidity/pH Check

Turbidity/pH Check								
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)		
192277	4	-22	1-4-11	KK	No	yes @ 1030 an		
992657 (1-4)	21	22	1/4/11	Kk	No			
992703(1-6)	2	22	1-4-11	KK	NO			
992801 (1)	41		i-4-11	KR	NS	Y P IN UI ON		
992658 (1-8,11		12	1-4-11	FR	No			
<u>4 100 28 (1-8, 11-</u>	<u>-17, Co, a)-1</u>		i - 5. []			No		
992802 (1-15) <Ľ	<u> </u>	1~ 3.11	- KK	No			
· · · · · · · · · · · · · · · · · · ·			••••					
					<u></u>			
					1			
					+			
a	l					1		
	<u> </u>							
·····			<u></u>					
		1						
		<u> </u>		·····				
				ļ				
interior, conservation interior in the second se								
······								
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					
				· · · · · ·				
			ļ					
<u></u>								
				· · · · · ·				
		1	-	1				
·····		+		-				
·			1					
		·						
				<u> </u>				
				1				
		1						
	-	1	1	1				
		-						
		-	+					
s								

I

F

Sample Integrity & Analysis Discrepancy Form

Clier	nt: <u> </u>	Lab # _ <u>99287</u> 7
Date	Delivered: <u>12/28</u> /10 Time: <u>2/30</u> By: □Mail ØField	d Service □Client
1.	Was a Chain of Custody received and signed?	₩Yes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ¤(N/A
З.	Are there any special requirements or notes on the COC?	□Yes □No ¤√N/A
4.	If a letter was sent with the COC, does it match the COC?	⊡Yes ⊡No ⊠(N/A
5.	Were all requested analyses understood and acceptable?	⊠Yes ⊡No ⊡N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? 4° C	K⊄Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes □No □N/A
8.	Were sample custody seals intact?	□Yes □No ¤ΩN/A
9.	Does the number of samples received agree with OPC?	⊠Yes □No □N/A
10.	Did sample labels correspond with the client ID CO	QYes DNO DN/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	QYes DNo DAN/A
12.	Were samples pH checked? $pH = \underline{SCCC}, O, C$.	□Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	⊠Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): A RUSH Std	∠Yes □No □N/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid ĎOti	ater □Waste Water her <u>Wæ+€R</u>
16.	Comments:	7
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	<u>habuning</u>

RUSH

MATRIX CovDiscrp.Form Black doc

Analytical Bench Log Book

WDR pH Results

If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

tample Name	Date of sampling	Time of sampling	Date of analysis	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Time pH meter Calibrated	Siope of the Curve	Analyst Name (for the pH result)	pH Result
SC-700 B	12-7+0	13:20	12-7-10	13:42	METER#1	12-7-10	04:30	-55.4	R. Phelps	7.7
o tes:			ju L	•			,×			
: 5C-700B	17-14-10	12:45	17-14-10	12:56	Meter# 1	12-14-10	5:00	-55.2	R. PHELDS	7.1
otes:										
5C-700B	12-21-10	13:25	12-21-10	13:29	METER #1	12-21-10	5:00	-55.3	CHAIS LENTZ	6.9
(fes.				•						
5C-700B	12-28-10	11:30	12-28-10	N:35	METER#1	12-28-10	5:10	-54.7	Han PHELPS	6.9
otes:				<u> </u>	· · · · · · · · · · · · · · · · · · ·	·				<u> </u>
					• •					
กไขร:		x		•	i i i					<u></u>
6										
otes:				1		· · · · · · · · · · · · · · · · · · ·		I		1
	-				<u>د</u> ۲.				······································	l l
otes:					ан алаан тараан тара 					ĥ
		Remi	inder: WDI	R Required	pH Range for the	Effluent (SC	-700B) is: 6.5	i - 8.4		·
· ····································										

62

е. -С

1-760-326-3329

4:09PM HP LASERJET

2010

8 5

Dec

FAX