
Topock Project Executive Abstract				
Document Title:	Date of Document: July 15, 2011			
Topock IM3 WDR Combined Second Quarter 2011 Monitoring, Jan-Jun 2011 Semiannual Operation and Maintenance Report	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) PG&E			
Submitting Agency/Authored by: Regional Water Board	Document ID Number:			
Final Document? 🛛 Yes 🗌 No	PGE20110715B			
Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document: Draft Report Letter Memo Other / Explain:	Action Required: Information Only Review & Comment Return to: By Date: Other / Explain:			
What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:	Is this a Regulatory Requirement? Yes No If no, why is the document needed?			
What is the consequence of NOT doing this item? What is the consequence of DOING this item?	Other Justification/s: Permit Other / Explain:			
Submittal of this report is a compliance requirement of Regional Water Board Waste Discharge Requirements/Order No. R7-2006-0060				
Brief Summary of attached document:				
CW-3M/D, and CW-4M/D will be submitted under separate cov covers the IM3 operation and maintenance activities during the	vells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, ver, as part of the Compliance Monitoring Program. This report also			
Written by: PG&E Recommendations:				
This report is for your information only.				
How is this information related to the Final Remedy or Regulatory Req	uirements:			
Measure, and is designed to monitor compliance with Regional Water	emiannual Operation and Maintenance Report is related to the Interim Board Waste Discharge Requirements/Order No. R7-2006-0060.			
Other requirements of this information? None.				

Version 9

Curt Russell

Topock Site Manager GT&D Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

July 15, 2011

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Board Order R7-2006-0060

PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System Discharge to Injection Wells Combined Second Quarter 2011 Monitoring and Semiannual January-June 2011 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment

Degreen out ID: DCE

(Document ID: PGE20110715B)

Dear Mr. Perdue:

Enclosed is the Combined Second Quarter 2011 Monitoring and Semiannual January-June 2011 Operation and Maintenance Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure No. 3 (IM3) Groundwater Treatment System.

This report is being submitted in compliance with the Waste Discharge Requirements (WDRs) issued September 20, 2006 by the California Regional Water Quality Control Board, Colorado River Basin Region (Regional Water Board) under Order R7-2006-0060 and in compliance with the revised Monitoring and Reporting Program for Order R7-2006-0060, issued August 28, 2009. The WDRs apply to IM3 Treatment System discharge by subsurface injection.

The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell

Topock Site Manager

Enclosures:

Combined Second Quarter 2011 Monitoring and Semiannual January-June 2011 Operation and Maintenance Report for IM3 Groundwater Treatment System

cc: Jose Cortez, Regional Water Board

Tom Vandenberg, State Water Resources Control Board

Aaron Yue, California Department of Toxic Substances Control

Combined Second Quarter 2011
Monitoring and Semiannual January – July
2011 Operation and Maintenance Report
for Interim Measure No. 3
Groundwater Treatment System

Waste Discharge Requirements Board Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

July 15, 2011

CH2MHILL 155 Grand Avenue, Suite 800 Oakland, CA 94612

Combined Second Quarter 2011 Monitoring and Semiannual January – June 2011 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System

Document ID: PGE20110715B

Waste Discharge Requirements Order No. R7-2006-0060 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

July 15, 2011

This report was prepared under the supervision of a California Certified Professional Engineer

John Porcella, P.E. Project Engineer

Contents

		Page
Acro	nyms and Abbreviations	ix
1.0	Introduction	1-1
2.0	Sampling Station Locations	2-1
3.0	Description of Monitoring Activities	3-1
	3.1 Groundwater Treatment System	
	3.2 Groundwater Treatment System Flow Rates for Fourth Quarter 200	09 3-2
	3.2.1 Treatment System Influent	3-2
	3.2.2 Effluent Streams	3-2
	3.3 Sampling and Analytical Procedures	3-3
4.0	Analytical Results	4-1
5.0	Semiannual Operation and Maintenance	5-1
	5.1 Flowmeter Calibration Records	5 - 1
	5.2 Volumes of Groundwater Treated	5-2
	5.3 Residual Solids Generated (Sludge)	5-2
	5.4 Reverse Osmosis Concentrate Generated	
	5.5 Summary of WDR Compliance	
	5.6 Operation and Maintenance - Required Shutdowns	
	5.7 Treatment Plant Modifications	5-3
6.0	Conclusions	6-1
7.0	Certification	7 <i>-</i> 1
Tabl	es	
1	Sampling Station Descriptions	
2	Flow Monitoring Results	
3	Sample Collection Dates	
4	Board Order No. R7-2006-0060 Waste Discharge Requirements Influent M Results	onitoring
5	Board Order No. R7-2006-0060 Waste Discharge Requirements Effluent M Results	onitoring
6	Board Order No. R7-2006-0060 Waste Discharge Requirements Reverse Os Concentrate Monitoring Results	smosis
7	Board Order No. R7-2006-0060 Waste Discharge Requirements Sludge Mo Results	nitoring

ES071311093703BA0\\111950002 vi

8 Board Order No. R7-2006-0060 Waste Discharge Requirements Monitoring Information

Figures

1	IM3 Project Site Features
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
PR-10-03	Reverse Osmosis System Sampling and Metering Locations (1 of 2)
PR-10-04	Reverse Osmosis System Sampling and Metering Locations (2 of 2)
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations
TP-PR-10-10-03	Extraction Wells - Influent Metering Locations
TP-PR-10-10-11	Injection Wells - Effluent Metering Locations

Appendixes

- A Semiannual Operations and Maintenance Log, January 1, 2011 through June 30, 2011
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D Second Quarter 2011 Laboratory Analytical Reports

viii ES071311093703BA0\111950002

Acronyms and Abbreviations

gpm gallons per minute

IM Interim Measure

IM3 Interim Measure No. 3 Groundwater Treatment Plant

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

ppb parts per billion

RCRA Resource Conservation and Recovery Act

RO reverse osmosis

Regional Water Board California Regional Water Quality Control Board, Colorado

River Basin Region

Truesdail Laboratories, Inc.

WDR Waste Discharge Requirements

ES071311093703BAO\111950002 ix

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM3. Figure 1 provides a map of the project area. All figures are located at the end of this report.

California Regional Water Quality Control Board, Colorado River Basin Region (Regional Water Board) Board Order No. R7-2006-0060 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. Order No. R7-2006-0060 was issued September 20, 2006 and is the successor to Order No. R7-2004-0103. The revised Monitoring and Reporting Program (MRP) under the Order, issued August 28, 2009, requires quarterly monitoring reports to be submitted by the fifteenth day of the month following the end of the quarter.

This report covers the IM3 groundwater treatment system monitoring activities during the Second Quarter 2011 and the operation and maintenance activities during the January 1, 2011 to June 30, 2011 semiannual period (First and Second Quarters 2011). The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

ES071311093703BAO\111950002 1-1

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. (Tables are located at the end of this report.) Sampling station locations are shown on the process and instrumentation diagrams provided at the end of this report:

- Figure TP-PR-10-10-04 Raw Water Storage and Treated Water Storage Tanks;
- Figures PR-10-03 and PR-10-04 Reverse Osmosis System (diagrams 1 and 2 of 2);
- Figure TP-PR-10-10-06 Sludge Storage Tanks;
- Figure TP-PR-10-10-03 Extraction Wells; and
- Figure TP-PR-10-10-11 Injection Wells.

ES071311093703BAO\111950002 2-1

3.0 Description of Monitoring Activities

This report describes Second Quarter 2011 monitoring activities and the January1, 2011 through June 30, 2011 (First and Second Quarters) operation and maintenance activities related to the IM3 groundwater treatment system. IM3 monitoring activities from January 1, 2011 through March 31, 2011 (First Quarter monitoring) were presented in the following monitoring report:

• IM3 First Quarter 2011 Monitoring Report for Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060, submitted to the Water Board April 15, 2011.

The present report therefore also serves as the semiannual January through June 2011 Operation and Maintenance Report for IM3.

3.1 Groundwater Treatment System

The treatment system was initially operated between July 25 and July 28, 2005 for the Waste Discharge Requirement (WDR)-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, permitted by Order R7-2006-0060 (successor to Order R7-2004-0103), includes:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

Operation of the groundwater treatment system results in the following three effluent streams:

- Treated Effluent: Treated water that is discharged to the injection well(s).
- **Reverse Osmosis (RO) Concentrate (brine):** Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first.

ES071311093703BA0\\111950002 3-1

3.2 Groundwater Treatment System Flow Rates for Second Quarter 2011

Downtime is defined as any periods when all extraction wells are not operating so that no groundwater is being extracted and piped into IM3 as influent. Periods of planned and unplanned extraction system downtime (that together resulted in approximately 7.5 percent downtime during Second Quarter 2011) are summarized in the Semiannual Operations and Maintenance Log provided in Appendix A. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site. Periods of planned and unplanned extraction system downtime during the months January 2011 – March 2011 are reported in the First Quarter 2011 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2006-0060, PG&E Topock Compressor Station, Needles, CA, published April 15, 2011.

Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

During the Second Quarter 2011, extraction wells TW-3D and PE-1 operated at a target pumping rate of 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not pumped during Second Quarter 2011. The operational run time for the IM groundwater extraction system (combined or individual pumping), by month, was approximately:

- 86.3 percent during April 2011.
- 99.6 percent during May 2011.
- 92.4 percent during June 2011.

The Second Quarter 2011 treatment system monthly average flow rates (influent, effluent, and RO concentrate) are presented in Table 2. The system influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-PR-10-10-03).

The IM3 facility treated approximately 16,334,980 gallons of extracted groundwater during Second Quarter 2011.

In addition to extracted groundwater, during Second Quarter 2011 the IM3 facility treated 5,575 gallons of water generated from the groundwater monitoring program and 43,200 gallons of injection well rehabilitation (backwashing) water.

3.2.2 Effluent Streams

The treatment system effluent flow rate was measured by flow meters in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11) and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM3 facility injected 15,965,916 gallons of treatment system effluent during Second Quarter 2011. The monthly average flow rate to injection wells is shown in Table 2.

3-2 ES071311093703BAO\111950002

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from RO concentrate tank T-701 to the truck load-out station (Figures PR-10-03 and PR-10-04). The IM3 facility generated 260,521 gallons of RO concentrate during Second Quarter 2011. The monthly average RO concentrate flow rate is shown in Table 2.

The sludge flow rate is measured by the size and weight of containers shipped offsite. Six sludge containers were shipped offsite from the IM3 facility during Second Quarter 2011. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

With the exception of samples for pH analyses, all samples collected at the designated sampling locations were placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to the laboratories via courier under chain-of-custody documentation. The laboratories confirmed the samples were received in chilled condition upon arrival.

Samples analysis for pH was conducted by field method pursuant to the Regional Water Board letter dated October 16, 2007 (subject: Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion (ppb), and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 ppb.

Truesdail is certified by the California Department of Health Services under the State of California's Environmental Laboratory Accreditation Program. California-certified laboratory analyses were performed in accordance with the latest edition of the *Guidelines Establishing Test Procedures for Analysis of Pollutants* (40 Code of Federal Regulations Part 136), promulgated by the United States Environmental Protection Agency.

Influent, effluent, reverse osmosis concentrate, and sludge sampling was conducted in accordance with the revised MRP, issued August 28, 2009. See Table 3 for sample collection dates and frequencies.

Groundwater quality is being monitored in observation and compliance wells according to Order R7-2006-0060 and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Water Board on June 17, 2005. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

ES071311093703BA0\\111950002 3-3

4.0 Analytical Results

The analytical results and laboratory reports for the IM3 groundwater treatment system monitoring program between January 1, 2011 and March 31, 2011 were included in the First Quarter Monitoring Reports submitted to the Water Board (see Section 3.0 for a complete listing of report).

Laboratory reports for samples collected in Second Quarter 2011 were prepared by certified analytical laboratories, and are presented in Appendix D. The Second Quarter 2011 analytical results are presented in Tables 4, 5, 6, and 7:

- Influent analytical results are presented in Table 4.
- Effluent analytical results are presented in Table 5. There were no exceedances of effluent limitations during the reporting period.
- Reverse osmosis concentrate analytical results are presented in Table 6.
- Sludge analytical results are presented in Table 7.

The sludge is required to have an aquatic bioassay test annually. The aquatic bioassay test results were conducted on a September 2010 sample and were presented in the Third Quarter Monitoring Report submitted to the Water Board October 15, 2010. IM3 will conduct the 2011 sludge aquatic bioassay test in the second half of the year.

Table 8 identifies the following information for each analysis:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

ES071311093703BA0\111950002 4-1

5.0 Semiannual Operation and Maintenance

Pursuant to the WDR's Operations and Maintenance Section 1:

The discharger shall inspect and document any operation/maintenance problems by inspecting each unit process. In addition, calibration of flow meters and equipment shall be performed in a timely manner and documented. Operation and Maintenance reports shall be submitted to the Regional Water Board Office twice annually.

This section includes the Semiannual Operation and Maintenance Report for the IM3 groundwater treatment system for the period January 1, 2011 through June 30, 2011.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operations and maintenance records are also archived using maintenance software. The subsections below summarize the operations and maintenance activities during this semiannual reporting period.

5.1 Flowmeter Calibration Records

The IM3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a timely manner consistent with the use, flow, material, and manufacturer recommendations. The following flowmeters are used at the plant to measure groundwater flow.

Location	Flowmeter Location ID	Current Flowmeter Serial No.	Date of Calibration	Date of Installation
Extraction well PE-1	FIT-103	6A021F16000	11/29/04	7/6/11
Extraction well TW-3D	FIT-102	6C037016000	9/12/07	2/25/09
Extraction well TW-2D ^a	FIT-101	7700F216000	11/30/06	7/6/11
Extraction well TW-2S ^b	FIT-100	6A022016000	11/29/04	7/28/05
Injection well IW-02	FIT-1202	6C036F16000	8/6/10	1/5/11
Injection well IW-03	FIT-1203	6A022116000	8/6/10	12/15/10
Combined IW-02 and IW-03	FIT-702	7700F316000	12/7/06	4/9/10
Reverse osmosis concentrate	FIT-701	6C037116000	2/26/09	4/1/11

Notes:

ES071311093703BAO\111950002 5-1

^a TW-2D is a backup extraction well only operated for brief testing and sampling periods since January 2006.

^b TW-2S is a backup extraction well only operated for brief testing and sampling periods since October 2005.

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated between January 1, 2011 and June 30, 2011 are provided in Appendix B.

Approximately 33,435,048 gallons of groundwater were extracted and treated between January 1, 2011 and June 30, 2011. Treatment of this water at the IM3 facility is being performed in accordance with the conditions of Order No. R7-2006-0060.

Additionally, approximately 10,975 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 75,600 gallons of injection well rehabilitation (backwashing) water were treated at the IM3 facility during the January 1, 2011 through June 30, 2011 semiannual period.

A total of approximately 32,569,981 gallons of treated groundwater was injected back into the Alluvial Aquifer between January 1, 2011 and June 30, 2011.

5.3 Residual Solids Generated (Sludge)

During the January 1, 2011 through June 30, 2011 reporting period, ten containers of sludge were shipped offsite for disposal. The sludge was shipped to California certified disposal facilities for disposal. A listing of each shipment during the January 1, 2011 through June 30, 2011 reporting period is provided below.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests (cubic yards)	Approximate Wet Weight (lbs)	Type of Shipment
2/2/11	8	14,720	non-RCRA hazardous waste
2/2/11	8	15,400	non-RCRA hazardous waste
3/10/11	9	15,520	non-RCRA hazardous waste
3/10/11	9	14,480	non-RCRA hazardous waste
4/19/11	8	13,620	non-RCRA hazardous waste
4/19/11	8	14,960	non-RCRA hazardous waste
5/11/11	8	16,700	non-RCRA hazardous waste
5/11/11	8	15,880	non-RCRA hazardous waste
6/23/11	8	11,000	non-RCRA hazardous waste
6/23/11	8	12,720	non-RCRA hazardous waste

Notes:

The approximate wet weight is provided by the disposal facility based on full container weight less the empty container weight.

RCRA = Resource Conservation and Recovery Act.

5-2 ES071311093703BA0\111950002

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figures PR-10-03 and PR-10-04). From January 1, 2011 through June 30, 2011, approximately 545,019 gallons of RO concentrate were transported to Liquid Environmental Solutions in Phoenix, Arizona for disposal.

5.5 Summary of WDR Compliance

No WDR violations were identified during the January 1, 2011 through June 30, 2011 semiannual reporting period.

5.6 Operation and Maintenance – Required Shutdowns

Records of maintenance activities are kept onsite.

Appendix A contains a summary of the operation and maintenance issues that required the groundwater extraction system to be shut down during the January 1, 2011 through June 30, 2011 semiannual reporting period.

Activities during the Second Quarter 2011 included one planned extended shutdown in April, as discussed below. No extended shutdowns of the IM3 extraction system occurred during the First Quarter 2011.

April Extended Shutdown

The IM3 extraction system was shut down for 4 days, 1 hour and 46 minutes during April 2011, for both planned and unplanned events. See Appendix A for a summary of the operation and maintenance issues. The main cause of the extraction system downtime was:

The planned biannual plant outage for maintenance.

5.7 Treatment Plant Modifications

No major IM3 treatment plant modifications that affected the quality or quantity of treated effluent were performed during the January 1, 2011 through June 30, 2011 semiannual period.

ES071311093703BAO\111950002 5-3

6.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period. No events that caused an immediate or potential threat to human health or the environment, and no new releases of hazardous waste or hazardous waste constituents, or new solid waste management units, were identified during the reporting period.

ES071311093703BA0\111950002 6-1

7.0 Certification

On August 12, 2005, PG&E submitted a signature delegation letter to the Water Board, delegating PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103. Order R7-2006-0060 is the successor to Order R7-2004-0103; an additional signature authority delegation is not required, as confirmed in an email from Jose Cortez dated December 12, 2006.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	Schume
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Site Manager
Date:	July 15, 2011

ES071311093703BAO\111950002 7-1

TABLE 1
Sampling Station Descriptions
Second Quarter 2011 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Sampling Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-PR-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-PR-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figures PR-10-03 and PR-10-04).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-PR-10-10-06).

Notes:

= Sequential sample identification number at each sample station.

ES071311093703BAO\111950002 TABLES-1

^a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

TABLE 2
Flow Monitoring Results

Second Quarter 2011 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^{b,c} (gpm)	Reverse Osmosis Concentrate ^b (gpm)
April 2011 Average Monthly Flowrate	116.0	113.5	1.9
May 2011 Average Monthly Flowrate	133.3	130.5	2.1
June 2011 Average Monthly Flowrate	124.4	121.2	1.9

Notes:

gpm: gallons per minute.

January, February, and March 2011 Average Monthly Flowrates were presented in the IM3 First Quarter 2011 Monitoring Report.

- ^a Extraction wells TW-3D and PE-1 were operated during the Second Quarter 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during Second Quarter 2011.
- ^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during the Second Quarter 2011 is approximately 0.66 percent.
- ^c Effluent was discharged into injection wells IW-02 and IW-03 during the Second Quarter 2011.

TABLES-2 ES071311093703BAO\111950002

TABLE 3
Sample Collection Dates

Second Quarter 2011 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	Sample Collection Dates	Results
Influent ^a	April 5, 2011	See Table 4
	May 2, 2011	
	June 7, 2011	
Effluent ^b	April 5, 2011	See Table 5
	April 12, 2011	
	April 19, 2011	
	April 25, 2011	
	May 2, 2011	
	May 10, 2011	
	May 17, 2011	
	May 24, 2011	
	May 31, 2011	
	June 7, 2011	
	June 14, 2011	
	June 21, 2011	
	June 28, 2011	
Reverse Osmosis Concentrate ^c	April 5, 2011	See Table 6
Sludge ^d	April 19, 2011	See Table 7
	April 19, 2011	
	May 11, 2011	
	May 11, 2011	
	June 23, 2011	
	June 23, 2011	

Notes:

ES071311093703BAO\111950002 TABLES-3

^a Influent sampling is required monthly.

^b Effluent sampling is required weekly.

^c Reverse osmosis concentrate sampling is required quarterly.

One composite sludge sample is required quarterly. Six sludge bins were shipped off-site on April 19, 2011, May 11, 2011 and June 23, 2011, and all were sampled to add to the composite sample. Sludge bioassay analysis is required annually, and was conducted on the Third Quarter 2010 sludge composite sample, reported (pass at 95 percent survival rate) in the IM3 Third Quarter 2010 Monitoring Report. IM3 will conduct the 2011 sludge aquatic bioassay test in the second half of the year.

TABLE 4 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Influent Monitoring Results ^a Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling Free	quency										Мс	nthly												
	nalytes Jnits ^b	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic μg/L	Barium μg/L	Boron mg/L	Copper µg/L	Fluorid mg/L	le Lead μg/L	Manganese μg/L	Molybdenum μg/L	Nickel μg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc μg/L
Sample ID Date	MDL	0.434	0.0140	0.0380		0.110	2.20	2.80	0.0020	0.190	0.260	0.180	0.0050	0.120	0.0250	0.0950	0.190	0.840	0.150	0.0550	0.00020	0.500	1.30	1.30
SC-100B-WDR-303 4/5/	2011	4770	0.114	8080	7.4	894	912	ND (50.0)	ND (0.500)	ND (10.0)	3.20	27.5	1.13	ND (5.00)	2.49	ND (10.0)	10.1	22.9	ND (10.0)	3.22	ND (0.0050	ı) 570 l	ND (20.0)	ND (10.0)
RL		250	0.100	2.00		2.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	12.5	20.0	10.0
SC-100B-WDR-307 5/2/	2011	4720	ND (0.100)	7960	7.3	817	832	ND (50.0)	ND (0.500)	ND (10.0)	3.80	28.3	1.05	12.3	2.49	ND (10.0)	11.5	20.9	ND (10.0)	3.03	ND (0.0050)) 562	ND (20.0)	ND (10.0)
RL		125	0.100	2.00		2.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-100B-WDR-312 6/7/	2011	4680	0.120	7860	7.4	863	879	ND (50.0)	ND (0.500)	ND (10.0)	3.90	25.9	1.12	ND (5.00)	2.59	ND (10.0)	9.30	22.9	ND (10.0)	5.36	ND (0.0050)) 540	ND (20.0)	ND (10.0)
RL		125	0.100	2.00		1.00	21.0	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	25.0	20.0	10.0

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

MDL = method detection limit

mg/L = milligrams per liter
N = nitrogen

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units

RL = project reporting limit

μg/L = micrograms per liter

µmhos/cm = micromhos per centimeter

bfield pkumar2 07/14/2011 10:08:55

Date Printed 7/14/2011 Page 1 of 1

^a Sampling Location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

^b Units reported in this table are those units required in the WDRs.

c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 5
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Effluent Monitoring Results ^a
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

	Ave. Monthly	NA	NA	NA (6.5-8.4	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA (6.5-8.4	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Required Samplin	ng Frequency			Weekly	y												Monthly	<i>'</i>							
	Analytes	TDS	Turbidity	Specific Conductan	Field ce pH		omium	Hexavalent Chromium	Aluminium	Ammonia (as N)	Antimony	Arsenic	Barium	Boron	Copper	Fluoride	Lead I	Manganese	Molybdenum	Nickel	Nitrate (as N)	Nitrite (as N)	Sulfate	Iron	Zinc
	Units ^C	mg/L	NTU	µmhos/cm	pH un	its	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L	μg/L	μg/L
	MDLd	0.434	0.0140	0.0380		0	.0190	0.0220	14.2	0.0020	0.190	0.260	0.180	0.0050	0.120	0.0250	0.0950	0.0420	0.840	0.150	0.0550	0.00020	1.00	1.30	1.30
Sample ID	Date																								
SC-700B-WDR-303	3 4/5/2011	4150	ND (0.100)	7500	7.3	D N	D (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	14.0	1.05	ND (5.00)	2.01	ND (10.0)	5.50	17.3	ND (10.0)	2.88	ND (0.0050)	518	ND (20.0) ND (10.0)
RL		250	0.100	2.00			1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	` '	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	50.0	20.0	10.0
SC-700B-WDR-304	4 4/12/2011	4320	ND (0.100)	7460	7.0) N	D (1.00)	ND (0.200)										1.80							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-305	5 4/19/2011	4370	ND (0.100)	7550	7.2	D N	D (1.00)	ND (0.200)										2.70							
RL		250	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-306	6 4/25/2011	4260	0.168	7360	7.10	D N	D (1.00)	f ND (0.200)J										4.70							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-307	7 5/2/2011	4180	ND (0.100)	7420	7.2	D N	D (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	13.3	1.08	ND (5.00)	2.12	ND (10.0)	5.80	17.6	ND (10.0)	2.76	ND (0.0050)	502	ND (20.0) ND (10.0)
RL		125	0.100	2.00			1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	50.0	20.0	10.0
SC-700B-WDR-308	8 5/10/2011	4300	0.103	7330	7.0	D N	D (1.00)	ND (0.200)										7.60							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-309	9 5/17/2011	4400	0.103	7420	7.2	D N	D (1.00)	0.200										2.80							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-310	0 5/24/2011	4220	ND (0.100)	7350	7.10	D N	D (1.00)	ND (0.200)										1.60							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-311	1 5/31/2011	4330	ND (0.100)	7370	7.0	D N	D (1.00)	ND (0.200)										1.50							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-312	2 6/7/2011	4300	ND (0.100)	7270	7.10	D N	D (1.00)	ND (0.200)	ND (50.0)	ND (0.500)	ND (10.0)	ND (1.00)	15.4	1.08	ND (5.00)	2.34	ND (10.0)	3.40	19.5	ND (10.0)	3.32	ND (0.0050)	502	ND (20.0)) ND (10.0)
RL		2.50	0.100	2.00			1.00	0.200	50.0	0.500	10.0	1.00	10.0	0.200	5.00	0.500	10.0	1.00	10.0	10.0	1.00	0.0050	25.0	20.0	10.0
SC-700B-WDR-313	3 6/14/2011	4060	ND (0.100)	7080	7.0	D N	D (1.00)	ND (0.200)										6.30							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-314	4 6/21/2011	4120	0.113	7220	7.10) N	D (1.00)	ND (0.200)										10.6							
RL		125	0.100	2.00			1.00	0.200										1.00							
SC-700B-WDR-315	5 6/28/2011	4100	0.139	7090	6.9	0	1.10	ND (0.200)										ND (1.00)							
RL		125	0.100	2.00			1.00	0.200										1.00							

Page 1 of 2 Date Printed 7/14/2011

TABLE 5

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Effluent Monitoring Results a

Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program
J = concentration or reporting limits estimated by laboratory or validation
MDL = method detection limit
mg/L = milligrams per liter
N = nitrogen
NA = not applicable
ND = parameter not detected at the listed value
NTU = nephelometric turbidity units

RL = project reporting limit

 μ g/L = micrograms per liter

µmhos/cm = micromhos per centimeter

- ^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).
- b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.
- ^c Units reported in this table are those units required in the WDRs.
- d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.
- Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.
- f Results are flagged J because samples were analyzed outside the EPA recommended holding time of 7 days. TDS were positively identified; however, quantitation is considered an estimate. The results are considered valid for decision making purposes.

Infandel\Proj\PacificGasElectricCo\TopockProgram\Database\T

Date Printed 7/14/2011

Page 2 of 2

TABLE 6

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

Reverse Osmosis Concentrate Monitoring Results ^a

Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling Frequency											Quarter	ly										
Analytes Units ^b	TDS mg/L	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium mg/L	Hexavalent Chromium mg/L		Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Cobalt mg/L	Copper mg/L	Fluoride mg/L	Lead mg/L	Molybdenun mg/L	n Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
Sample ID Date	0.434	0.0380		0.000095	0.00022	0.00019	0.00026	0.00037	0.0020	0.00012	0.000075	0.00030	0.0250	0.00019	0.0040	0.00020	0.00024	0.00074	0.00040	0.00018	0.00010	0.0020
SC-701-WDR-303 4/5/2011	27600	41600	7.4	0.00400	0.00240	ND (0.0100)	ND (0.0010) 0.0932	ND (0.0100)	ND (0.0030)	ND (0.00	50) 0.00550	14.5	ND (0.010	0) 0.121	ND (0.0010)	0.0105	0.0227	ND (0.0050) ND (0.001	0) ND (0.0050) ND (0.0100)
RL	500	2.00		0.0010	0.0021	0.0100	0.0010	0.0100	0.0100	0.0030	0.0050	0.0050	0.500	0.0100	0.0100	0.0010	0.0100	0.0100	0.0050	0.0010	0.0050	0.0100

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

MDL = method detection limit

mg/L = milligrams per liter

ND = parameter not detected at the listed value

RL = project reporting limit

μg/L = micrograms per liter

µmhos/cm = micromhos per centimeter

Page 1 of 1

^a Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID PR-10-04).

b Units reported in this table are those units required in the WDRs.

c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 7 Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs) Sludge Monitoring Results^a Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Required Sampling F	requency										Qua	arterly								
	Analytes	Chromium	Hexavalent Chromium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Fluoride	Lead	Molybdenum	Mercury	Nickel	Selenium	Silver			Zinc
Sample ID	Units D MDL Date	mg/kg 0.0060	mg/kg 0.200	mg/kg 0.0059	mg/kg 0.0078	mg/kg 0.0045	mg/kg 0.0040	mg/kg 0.0055	mg/kg 0.0053	mg/kg 0.0055	mg/kg 0.0050	mg/kg 0.0010	mg/kg 0.0080	mg/kg 0.00020	mg/kg 0.0051	mg/kg 0.0040	mg/kg 0.0044	mg/kg 0.0020	mg/kg 0.0035	mg/kg 0.0040
SC-Sludge-WDR-303	4/5/2011	3240	34.5	32.1	ND (2.00)	52.2	3.52	ND (2.00)	3.36	18.6	23.3	5.58	5.86	ND (0.100)	14.6				38.7	17.7
RL		2.00	4.04	2.00	2.00	2.00	2.00	2.00	2.00	2.00	4.04	1.00	2.00	0.100	2.00	2.00	2.00	2.00	2.00	2.00

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program mg/kg = milligrams per killogram mg/L = milligrams per liter MDL = method detection limit

ND = parameter not detected at the listed reporting limit

RL = project reporting limit

^a Sampling location for all sludge samples is the sludge collection bin (see attached P&ID TP-PR-10-10-06).

b Units reported in this table are those units required in the WDRs.

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-303	C.Knight	4/5/2011	3:06:00 PM	TLI	EPA 120.1	SC	4/7/2011	lordan Stavrev
		_			TLI	EPA 200.7	AL	4/21/2011	Ethel Suico
					TLI	EPA 200.7	В	4/28/2011	Ethel Suico
					TLI	EPA 200.7	FE	4/21/2011	Ethel Suico
					TLI	EPA 200.7	MO	4/28/2011	Ethel Suico
					TLI	EPA 200.7	ZN	4/28/2011	Ethel Suico
					TLI	EPA 200.8	AS	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	ВА	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	CR	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	CU	4/28/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	MN	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	NI	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	PB	5/5/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	SB	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 218.6	CR6	4/6/2011	Sonya Bersudsky
					TLI	EPA 300.0	FL	4/6/2011	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	4/6/2011	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	4/7/2011	Giawad Ghenniwa
					FIELD	HACH	PH	4/5/2011	C.Knight
					TLI	SM2130B	TRB	4/6/2011	Gautam Savani
					TLI	SM2540C	TDS	4/8/2011	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	4/6/2011	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	4/6/2011	Jenny Tankunakorn
SC-100B	SC-100B-WDR-307	Chris Lentz	5/2/2011	2:20:00 PM	TLI	EPA 120.1	SC	5/5/2011	Gautam Savani
					TLI	EPA 200.7	AL	5/9/2011	Ethel Suico
					TLI	EPA 200.7	В	5/9/2011	Ethel Suico
					TLI	EPA 200.7	FE	5/9/2011	Ethel Suico
					TLI	EPA 200.7	FETD	5/9/2011	Ethel Suico
					TLI	EPA 200.8	AS	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	BA	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CR	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CU	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MND	5/11/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MO	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	NI	5/9/2011	Katia Kiarashpoor

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Location									
SC-100B	SC-100B-WDR-307	Chris Lentz	5/2/2011	2:20:00 PM	TLI	EPA 200.8	PB	5/9/2011	Katia Kiarashpoor
					TLI TLI	EPA 200.8	SB ZN	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8		5/9/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6 FL	5/3/2011	Sonya Bersudsky
					TLI	EPA 300.0 EPA 300.0	NO3N	5/3/2011 5/3/2011	Giawad Ghenniwa Giawad Ghenniwa
					TLI				
						EPA 300.0	SO4	5/4/2011	Giawad Ghenniwa
					FIELD	HACH	PH	5/2/2011	Ron Phelps
					TLI	SM 2320B	ALKB	5/6/2011	Kim Luck
					TLI	SM 2320B	ALKC	5/6/2011	Kim Luck
					TLI	SM2130B	TRB	5/3/2011	Gautam Savani
					TLI	SM2540C	TDS	5/5/2011	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	5/9/2011	Maria Mangarova
					TLI	SM4500NO2B	NO2N	5/3/2011	Jenny Tankunakorn
SC-100B	SC-100B-WDR-312	C.Knight	6/7/2011	2:08:00 PM	TLI	EPA 120.1	SC	6/10/2011	Gautam Savani
					TLI	EPA 200.7	AL	6/16/2011	Ethel Suico
					TLI	EPA 200.7	В	6/16/2011	Ethel Suico
					TLI	EPA 200.7	FE	6/16/2011	Ethel Suico
					TLI	EPA 200.7	FETD	6/16/2011	Ethel Suico
					TLI	EPA 200.8	AS	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	BA	6/22/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CR	6/16/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CU	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MND	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MO	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	NI	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	PB	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	SB	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	ZN	6/16/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	6/8/2011	Sonya Bersudsky
					TLI	EPA 300.0	FL	6/10/2011	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/8/2011	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/10/2011	Giawad Ghenniwa
					FIELD	HACH	PH	6/7/2011	C.Knight
					TLI	SM 2320B	ALKB	6/10/2011	Kim Luck

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Cample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Devemeter	Analysis Date	Lab Technician
Location	Sample ID				Lab		Parameter		
SC-100B	SC-100B-WDR-312	C.Knight	6/7/2011	2:08:00 PM	TLI	SM 2320B	ALKC	6/10/2011	Kim Luck
					TLI	SM2130B	TRB	6/8/2011	Gautam Savani
					TLI	SM2540C	TDS	6/8/2011	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	6/8/2011	Maria Mangarova
					TLI	SM4500NO2B	NO2N	6/9/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-303	C.Knight	4/5/2011	2:53:00 PM	TLI	EPA 120.1	SC	4/7/2011	Iordan Stavrev
					TLI	EPA 200.7	AL	4/21/2011	Ethel Suico
					TLI	EPA 200.7	В	4/28/2011	Ethel Suico
					TLI	EPA 200.7	FE	4/21/2011	Ethel Suico
					TLI	EPA 200.7	MO	4/28/2011	Ethel Suico
					TLI	EPA 200.7	ZN	4/28/2011	Ethel Suico
					TLI	EPA 200.8	AS	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	BA	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	CR	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	CU	4/28/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	MN	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	NI	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	PB	5/5/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 200.8	SB	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Go
					TLI	EPA 218.6	CR6	4/6/2011	Sonya Bersudsky
					TLI	EPA 300.0	FL	4/6/2011	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	4/6/2011	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	4/7/2011	Giawad Ghenniwa
					FIELD	HACH	PH	4/5/2011	C.Knight
					TLI	SM2130B	TRB	4/6/2011	Gautam Savani
					TLI	SM2540C	TDS	4/8/2011	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	4/6/2011	Iordan Stavrev
					TLI	SM4500NO2B	NO2N	4/6/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-304	Ron Phelps	4/12/2011	1:00:00 PM	TLI	EPA 120.1	SC	4/15/2011	Gautam Savani
30.003	11.0022001	. то			TLI	EPA 200.8	CR	4/19/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	4/19/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	4/13/2011	Sonya Bersudsky
					FIELD	HACH	PH	4/12/2011	Ron Phelps
					TLI	SM2130B	TRB	4/13/2011	Gautam Savani
					TLI	SM2540C	TDS	4/14/2011	Jenny Tankunakorn
					121	010120400	150	-1/17/2011	

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-305	Ron Phelps	4/19/2011	1:30:00 PM	TLI	EPA 120.1	SC	4/20/2011	Gautam Savani/Iordan Stavrev
					TLI	EPA 200.8	CR	4/28/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	4/28/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	4/21/2011	Sonya Bersudsky
					FIELD	HACH	PH	4/19/2011	Ron Phelps
					TLI	SM2130B	TRB	4/20/2011	Gautam Savani
					TLI	SM2540C	TDS	4/20/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-306	Ron Phelps	4/25/2011	7:50:00 AM	TLI	EPA 120.1	SC	4/26/2011	Gautam Savani
					TLI	EPA 200.8	CR	5/5/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	5/5/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	4/28/2011	Sonya Bersudsky
					FIELD	HACH	PH	4/25/2011	Ron Phelps
					TLI	SM2130B	TRB	4/27/2011	Gautam Savani
					TLI	SM2540C	TDS	4/26/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-307	Chris Lentz	5/2/2011	2:20:00 PM	TLI	EPA 120.1	SC	5/5/2011	Gautam Savani
					TLI	EPA 200.7	AL	5/9/2011	Ethel Suico
					TLI	EPA 200.7	В	5/9/2011	Ethel Suico
					TLI	EPA 200.7	FE	5/9/2011	Ethel Suico
					TLI	EPA 200.8	AS	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	BA	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CR	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CU	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MO	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	NI	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	PB	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	SB	5/9/2011	Katia Kiarashpoor
					TLI	EPA 200.8	ZN	5/9/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	5/3/2011	Sonya Bersudsky
					TLI	EPA 300.0	FL	5/3/2011	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	5/3/2011	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	5/4/2011	Giawad Ghenniwa
					FIELD	HACH	PH	5/2/2011	Ron Phelps
					TLI	SM2130B	TRB	5/3/2011	Gautam Savani
					TLI	SM2540C	TDS	5/5/2011	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	5/9/2011	Maria Mangarova

\\Zinfande\\Proj\\PacificGasElectricCo\TopockProgram\\Database\Tuesdai\\IM3WDR\\IM3_WDR_Qtrly.mdb\\rpt_qtrlySummary_Paramet ers pkumar2 07/14/2011 10:49:19

Page 4 of 9

Date Printed 7/14/2011

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-307	Chris Lentz	5/2/2011	2:20:00 PM	TLI	SM4500NO2B	NO2N	5/3/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-308	Ron Phelps	5/10/2011	10:00:00 AM	TLI	EPA 120.1	SC	5/11/2011	Gautam Savani
					TLI	EPA 200.8	CR	5/13/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	5/13/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	5/11/2011	Sonya Bersudsky
					FIELD	HACH	PH	5/10/2011	Ron Phelps
					TLI	SM2130B	TRB	5/11/2011	Gautam Savani
					TLI	SM2540C	TDS	5/12/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-309	Ron Phelps	5/17/2011	2:00:00 PM	TLI	EPA 120.1	SC	5/20/2011	Gautam Savani
					TLI	EPA 200.8	CR	6/7/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/7/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	5/18/2011	Sonya Bersudsky
					FIELD	HACH	PH	5/17/2011	Ron Phelps
					TLI	SM2130B	TRB	5/18/2011	Gautam Savani
					TLI	SM2540C	TDS	5/19/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-310	Ron phelps	5/24/2011	10:00:00 AM	TLI	EPA 120.1	SC	5/25/2011	Gautam Savani
					TLI	EPA 200.8	CR	6/7/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/7/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	5/26/2011	Sonya Bersudsky
					FIELD	HACH	PH	5/24/2011	Ron Phelps
					TLI	SM2130B	TRB	5/25/2011	Gautam Savani
					TLI	SM2540C	TDS	5/25/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-311	Ron Phelps	5/31/2011	10:00:00 AM	TLI	EPA 120.1	SC	6/1/2011	Gautam Savani
					TLI	EPA 200.8	CR	6/7/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/7/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	6/2/2011	Sonya Bersudsky
					FIELD	HACH	PH	5/31/2011	Ron Phelps
					TLI	SM2130B	TRB	6/1/2011	Gautam Savani
					TLI	SM2540C	TDS	6/2/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-312	C.Knight	6/7/2011	2:11:00 PM	TLI	EPA 120.1	SC	6/10/2011	Gautam Savani
					TLI	EPA 200.7	AL	6/16/2011	Ethel Suico
					TLI	EPA 200.7	В	6/16/2011	Ethel Suico
					TLI	EPA 200.7	FE	6/16/2011	Ethel Suico
					TLI	EPA 200.8	AS	6/14/2011	Katia Kiarashpoor

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-312	C.Knight	6/7/2011	2:11:00 PM	TLI	EPA 200.8	ВА	6/16/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CR	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	CU	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MO	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	NI	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	РВ	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	SB	6/14/2011	Katia Kiarashpoor
					TLI	EPA 200.8	ZN	6/16/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	6/8/2011	Sonya Bersudsky
					TLI	EPA 300.0	FL	6/10/2011	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	6/8/2011	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	6/10/2011	Giawad Ghenniwa
					FIELD	HACH	PH	6/7/2011	C.Knight
					TLI	SM2130B	TRB	6/8/2011	Gautam Savani
					TLI	SM2540C	TDS	6/8/2011	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	6/8/2011	Maria Mangarova
					TLI	SM4500NO2B	NO2N	6/9/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-313	Ron Phelps	6/14/2011	2:00:00 PM	TLI	EPA 120.1	SC	6/15/2011	Gautam Savani
					TLI	EPA 200.8	CR	6/22/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/22/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	6/16/2011	Sonya Bersudsky
					FIELD	HACH	PH	6/14/2011	Ron Phelps
					TLI	SM2130B	TRB	6/15/2011	Gautam Savani
					TLI	SM2540C	TDS	6/15/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-314	Ron Phelps	6/21/2011	2:00:00 PM	TLI	EPA 120.1	SC	6/22/2011	Gautam Savani
					TLI	EPA 200.8	CR	6/24/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	6/24/2011	Katia Kiarashpoor
					TLI	EPA 218.6	CR6	6/27/2011	Sonya Bersudsky
					FIELD	HACH	PH	6/21/2011	Ron Phelps
					TLI	SM2130B	TRB	6/22/2011	Gautam Savani
					TLI	SM2540C	TDS	6/23/2011	Jenny Tankunakorn
SC-700B	SC-700B-WDR-315	Ron Phelps	6/28/2011	6:00:00 AM	TLI	EPA 120.1	SC	6/29/2011	Gautam Savani
					TLI	EPA 200.8	CR	7/1/2011	Katia Kiarashpoor
					TLI	EPA 200.8	MN	7/1/2011	Katia Kiarashpoor

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

TLI			0			T				
FIELD	Location	Sample ID				Lab		Parameter		
T.I. SM/2100B TRB 6/28/2011 Gautam Savaria	SC-700B	SC-700B-WDR-315	Ron Phelps	6/28/2011	6:00:00 AM	TLI	EPA 218.6	CR6	6/30/2011	Sonya Bersudsky
TLI SM2540C TDS 6/28/2011 Jenny Tankunakorn						FIELD	HACH	PH	6/28/2011	Ron Phelps
SC-701 SC-701-WDR-303 C.Knight 4/5/2011 2-46:00 PM						TLI	SM2130B	TRB	6/29/2011	Gautam Savani
TLI						TLI	SM2540C	TDS	6/28/2011	Jenny Tankunakorn
Tul	SC-701	SC-701-WDR-303	C.Knight	4/5/2011	2:46:00 PM	TLI	EPA 120.1	SC	4/7/2011	lordan Stavrev
TLI						TLI	EPA 200.7	BE	4/28/2011	Ethel Suico
TLI						TLI	EPA 200.7	MO	4/28/2011	Ethel Suico
TLI						TLI	EPA 200.7	ZN	4/28/2011	Ethel Suico
TLI						TLI	EPA 200.8	AG	5/5/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8	AS	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8	BA	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8		4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8		4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8	CR	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8		4/28/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8		4/27/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI						TLI	EPA 200.8	MN	4/22/2011	Katia Kiarashpoor/Hope Trinidad/Maksim Gor
TLI							EPA 200.8		4/22/2011	·
TLI							EPA 200.8	РВ		·
TLI										·
TLI							EPA 200.8			·
TLI										•
TLI EPA 218.6 CR6 4/6/2011 Sonya Bersudsky TLI EPA 300.0 FL 4/6/2011 Giawad Ghenniwa FIELD HACH PH 4/5/2011 C.Knight TLI SM2540C TDS 4/8/2011 Jenny Tankunakorn Phase Separator SC-Sludge-WDR-303 C.Knight 4/5/2011 1:45:00 PM TLI EPA 300.0 FL 4/6/2011 Giawad Ghenniwa TLI EPA 300.0 NO3N 4/6/2011 Giawad Ghenniwa TLI EPA 6010B AG 4/13/2011 Ethel Suico TLI EPA 6010B AS 4/27/2011 Ethel Suico TLI EPA 6010B BA 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico										·
TLI EPA 300.0 FL 4/6/2011 Giawad Ghenniwa FIELD HACH PH 4/5/2011 C.Knight TLI SM2540C TDS 4/8/2011 Jenny Tankunakorn Phase Separator SC-Sludge-WDR-303 C.Knight 4/5/2011 1:45:00 PM TLI EPA 300.0 FL 4/6/2011 Giawad Ghenniwa TLI EPA 300.0 NO3N 4/6/2011 Giawad Ghenniwa TLI EPA 6010B AG 4/13/2011 Ethel Suico TLI EPA 6010B BA 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B BC 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico										
FIELD										
TLI SM2540C TDS 4/8/2011 Jenny Tankunakorn										
TLI EPA 300.0 NO3N 4/6/2011 Giawad Ghenniwa TLI EPA 6010B AG 4/13/2011 Ethel Suico TLI EPA 6010B BA 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico										_
TLI EPA 6010B AG 4/13/2011 Ethel Suico TLI EPA 6010B AS 4/27/2011 Ethel Suico TLI EPA 6010B BA 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico	Phase Separator	r SC-Sludge-WDR-303	C.Knight	4/5/2011	1:45:00 PM	TLI	EPA 300.0	FL	4/6/2011	Giawad Ghenniwa
TLI EPA 6010B AS 4/27/2011 Ethel Suico TLI EPA 6010B BA 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico						TLI	EPA 300.0	NO3N	4/6/2011	Giawad Ghenniwa
TLI EPA 6010B BA 4/13/2011 Ethel Suico TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico						TLI	EPA 6010B	AG	4/13/2011	Ethel Suico
TLI EPA 6010B BE 4/13/2011 Ethel Suico TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico						TLI	EPA 6010B	AS	4/27/2011	Ethel Suico
TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico						TLI	EPA 6010B		4/13/2011	Ethel Suico
TLI EPA 6010B CD 4/13/2011 Ethel Suico TLI EPA 6010B CO 4/13/2011 Ethel Suico						TLI	EPA 6010B		4/13/2011	Ethel Suico
TLI EPA 6010B CO 4/13/2011 Ethel Suico							EPA 6010B		4/13/2011	Ethel Suico
							EPA 6010B	CO	4/13/2011	Ethel Suico
						TLI	EPA 6010B	CR	4/13/2011	Ethel Suico

TABLE 8
Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)
Monitoring Information
Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Separator	SC-Sludge-WDR-303	C.Knight	4/5/2011	1:45:00 PM	TLI	EPA 6010B	CU	4/13/2011	Ethel Suico
					TLI	EPA 6010B	MN	4/13/2011	Ethel Suico
					TLI	EPA 6010B	MO	4/13/2011	Ethel Suico
					TLI	EPA 6010B	NI	4/27/2011	Ethel Suico
					TLI	EPA 6010B	PB	4/26/2011	Ethel Suico
					TLI	EPA 6010B	SB	4/27/2011	Ethel Suico
					TLI	EPA 6010B	SE	4/13/2011	Ethel Suico
					TLI	EPA 6010B	TL	4/13/2011	Ethel Suico
					TLI	EPA 6010B	V	4/13/2011	Ethel Suico
					TLI	EPA 6010B	ZN	4/13/2011	Ethel Suico
					TLI	SM2540B	MOIST	4/11/2011	Gautam Savani
					TLI	SW 6020A	HG	4/13/2011	Katia Kiarashpoor
					TLI	SW 7199	CR6	4/21/2011	Sonya Bersudsky

TABLE 8

Board Order No. R7-2006-0060 Waste Discharge Requirements (WDRs)

alkalinity, bicarb as CaCO3

Monitoring Information

Second Quarter 2011 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

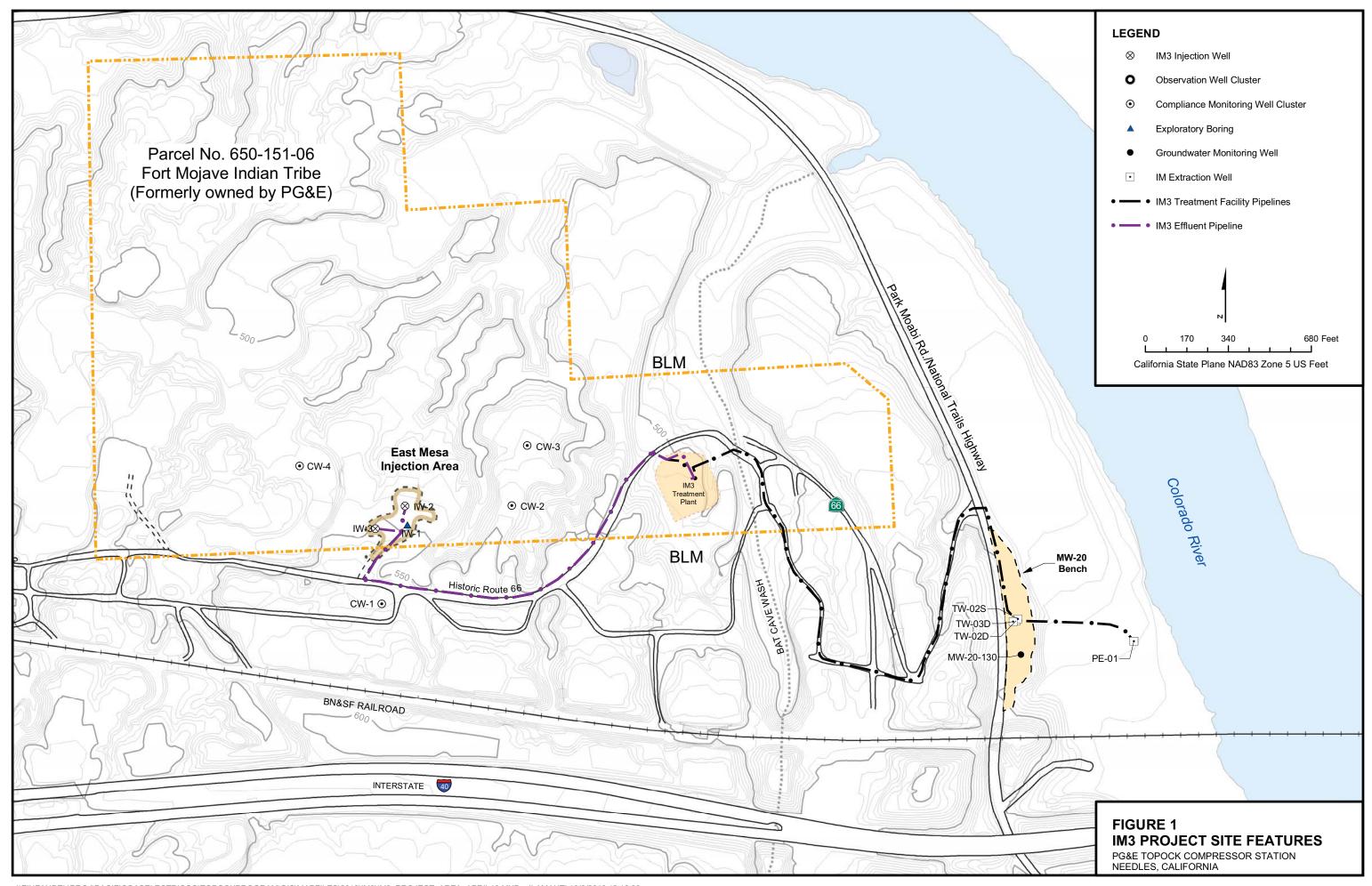
MO =

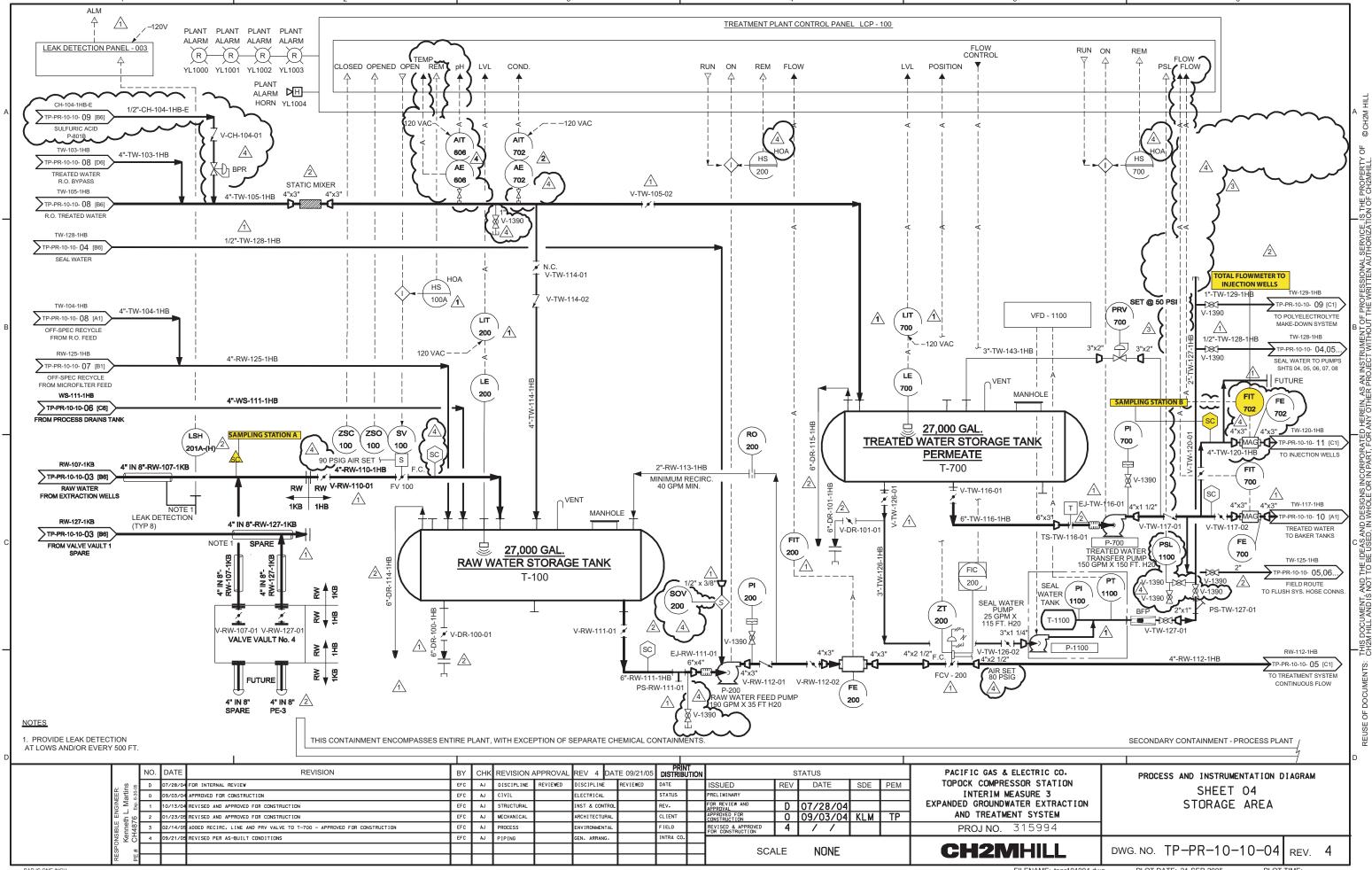
NOTES:

ALKB =

SC-700B = Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04).

SC-100B = Sampling location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).


SC-701 = Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID PR-10-04).

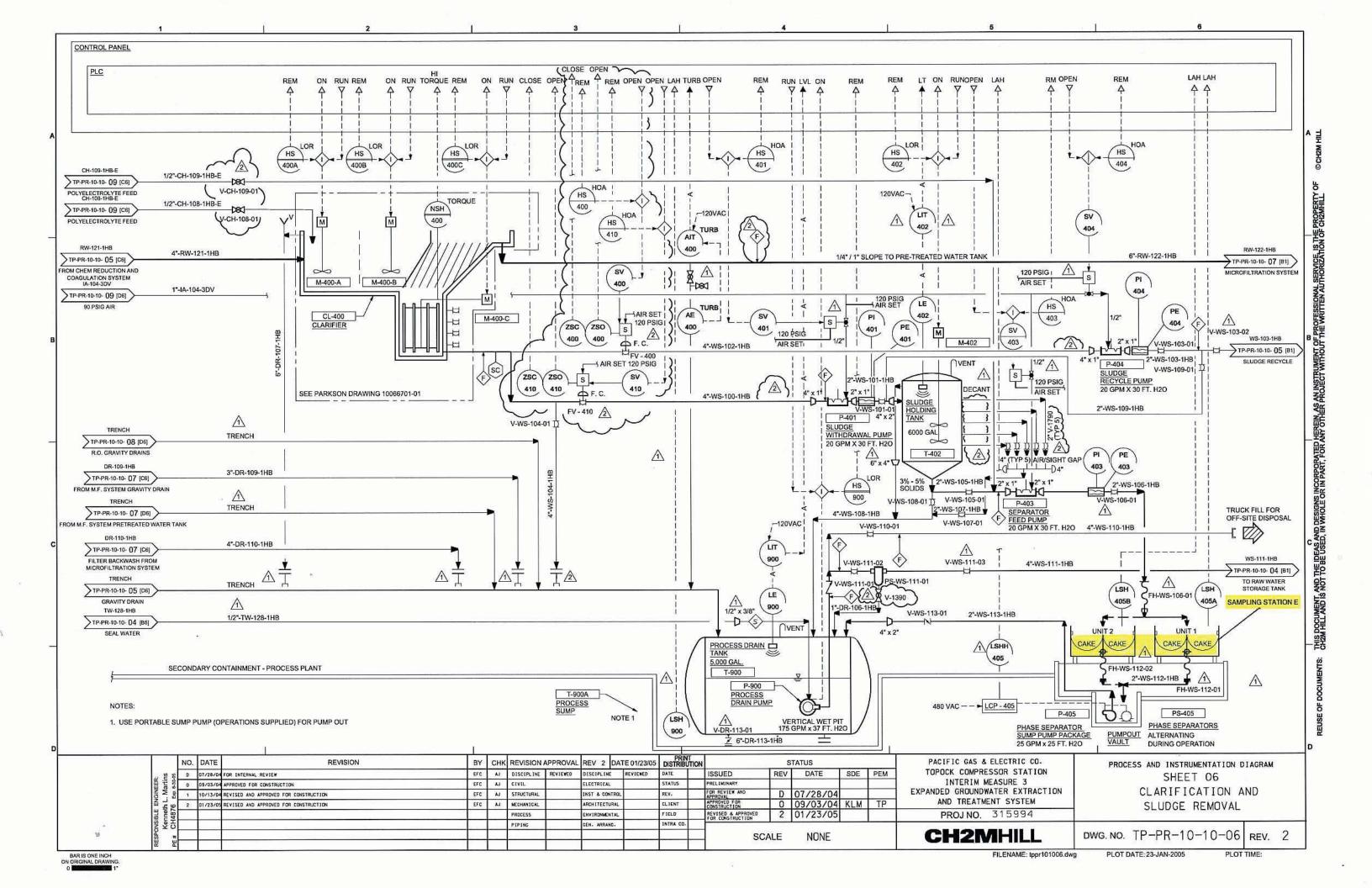

molvbdenum

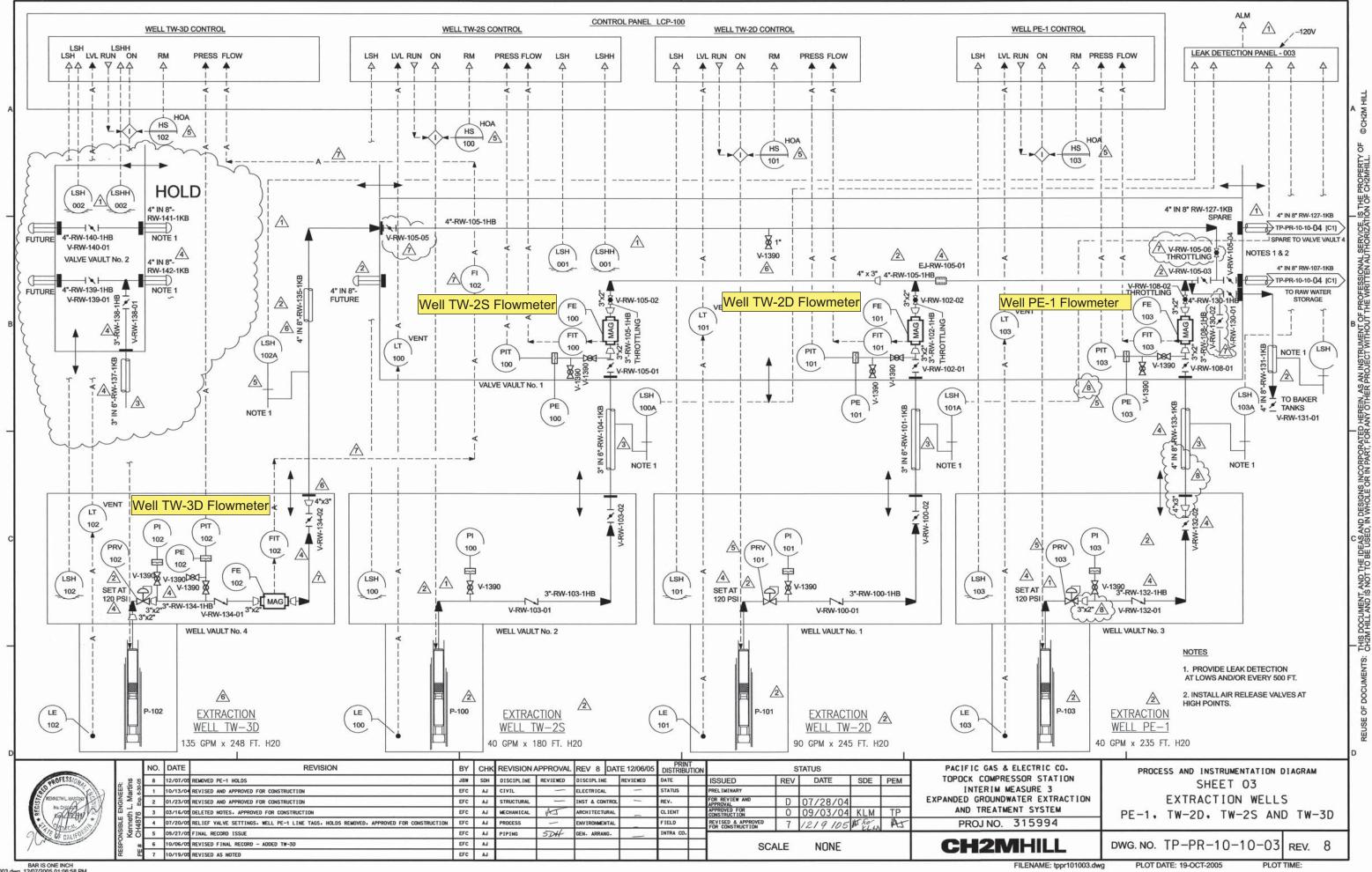
Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.

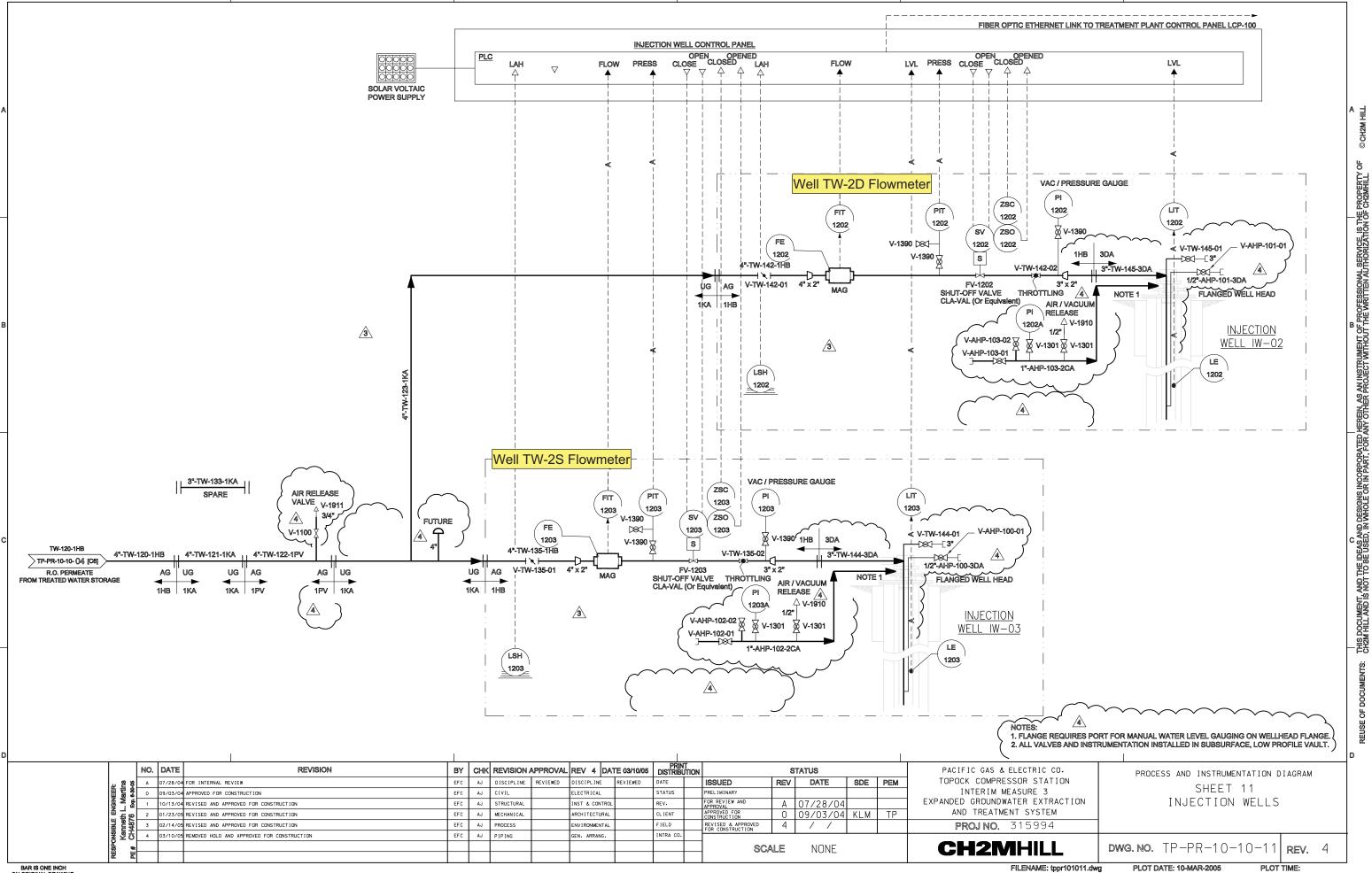
,	amammy, bloarb ac cacco		monybaomann
ALKC =	alkalinity, carb as CaCO3	MOIST =	moisture
AL =	aluminum	NH3N =	ammonia (as N)
Ag =	silver	NI =	nickel
AS =	arsenic	NO2N =	nitrite (as N)
B =	boron	NO3N =	nitrate (as N)
BA =	barium	PB =	lead
BE =	beryllium	PH =	pH
CD =	cadmium	SB =	antimony
CO =	cobalt	SC =	specific conductance
CR =	chromium	SE =	selenium
CR6 =	hexavalent chromium	SO4 =	sulfate
CU =	copper	TDS =	total dissolved solids
FE =	iron	TL =	thallium
FETD =	iron, dissolved	TLI =	Truesdail Laboratories, Inc.
FL =	fluoride	TRB =	turbidity
HG =	mercury	V =	vanadium
MN =	manganese	ZN =	zinc
MND =	manganese, dissolved		

FILENAME: PR-10-03.dgn PLOT DATE: 11/19/2009

PLOT TIME: 10:27:54 AM


BAR IS ONE INCH ON ORIGINAL DRAWING.


TO SEAL WATER TRUNK LINE PR-10-03 (HS 701 1 1/2" TW-154-1HB LOCATED IN CHEMICAL STORAGE AREA LOCATED NEAR EXISTING RO PR-10-03 -1/2" CH-112-1HB TO PRIMARY RO FROM P-2301 HCI ACID PUMP /-1/2" CH-114-1HB HYDRO-CHLORIC ACID (HCI) ☐ HCI ACID TOTE ☐ PUMP SKID SEE CROWN ANTISCALANT FEED PUMP SKID SEE CROWN SECONDARY RO PRIMARY RO ANTI-SCALANT CHEMICAL DRUM ANTI-SCALANT CHEMICAL DRUM 1A-102-3DV 1"-1A-108-3DV TP-PR-10-10-09(06) 90 PSIG AIR 1/4" CH-115-1HB FROM P-2402 120VAC 1 1/2" TW-152-1HB TO PRIMARY RO FROM P-2401 ANTI-SCALANT FEED PUMP RECYCLE COND COND 701 701 ST STAGE RO CONCENTATE V-1390 1 1/2"-TW-148-1HB PR-10-03 2"x1 1/2" NO SECONDARY REVERSE OSMOSIS SKID SEE CROWN SOLUTION DWG: PS-0689-08 1 1/2" TW-149-1HB T-2601 SECONDARY 1" TW-146-1HB SECONDAR RO FEED TANK SEE CROWN RO FEED PUMP SEE _x 701 (NOTE 3) TO T-603 TANK (LE) CROWN DWG PS-0689-07 V-1390 1 1/2" TW-151-1HB SAMPI ING 701 Ô ∩ VENT STATION D PR-10-03 O CONCENTRATE 701 CLOSE FROM PRIMARY RO FLOWMETER Oběv 5 T-701 FE 8000 GAL. 701 SEAL WATER TS-TW-111-01 र्केट्ट Т 6"x1 1/2" ▼ 3"x1" 3"x1" V-TW-112-01 V-TW-112-03 **RECORD DRAWINGS** SOV V-TW-112-03 701 J PORCELLA 6"-TW-111-1HB P-107 THESE RECORD DRAWINGS HAVE BEEN PREPARED, IN PART, ON THE BASIS OF INFORMATION COMPILED BY OTHERS, THEY ARE △ 1/2"x3/8" SEAL WATER RO CONCENTRATE TP-PR-10-10-08 [B6] NOT INTENDED TO REPRESENT IN DETAIL THE EXACT LOCATION, TRANSFER PUMP 80 GPM X 85 FT H20 TYPE OF COMPONENT NOR MANNER OF CONSTRUCTION. THE ENGINEER WILL NOT BE RESPONSIBLE FOR ANY ERRORS OR 1" TW-147-1HB OMISSIONS WHICH HAVE BEEN INCORPORATED INTO THE RECORD DRAWINGS. TW-112-1RB TP-PR-10-10 [C1] TO TRENCH DRAIN RO CONCENTRATE REVISION BY CHK PRINT DISTRIBUTION DATE REVISION APPROVAL REV 0 DATE 10/02/09 STATUS PACIFIC GAS & ELECTRIC CO. PROCESS AND INSTRUMENTATION DIAGRAM REV DATE TOPOCK COMPRESSOR STATION A 2/12/09 INTERNAL REVIEW DISCIPLINE REVIEWED DISCIPLINE REVIEWED ISSUED SDE PEM REVERSE OSMOSIS SYSTEM 2/12/09 JP INTERIM MEASURE 3 ORIGINALLY STAMPED /12/09 CLIENT REVIEW ELECTRICAL STATUS PREL [M] NARY R REVIEW AND SHEET TWO OF TWO 4/01/09 FOR REVIEW AND APPROVA PLANT PERFORMANCE IMPROVEMENTS 4/01/09 AND SIGNED BY: PPROVED FOR ONSTRUCTION JOHN PORCELLA 1/17/09 FINAL RECORD ISSUE JR MECHAN1CAL ARCH | TECTURAL LIENT CALIFORNIA PE NO. C70145 PROCESS FIELD **PROJ NO.** 362032 0 10/02/09 ON 04-01-2009 INTRA CO PIPING SJ GEN. ARRANG. **CH2M**HILL DWG. NO. PR-10-04 SCALE NONE REV. 0 BAR IS ONE INCH ON ORIGINAL DRAWING. FILENAME: PR-10-04.dgn PLOT DATE: 11/19/2009 PLOT TIME: 10:28:26 AM


COND

RUN ON FLOW

THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN AS AN INSTRUMENT OF PROFESSIONAL SERVICE. IS THE PROPERTY CHZM HILL AND IS NOT TO BE USED, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CHZMHILL.

BAR IS ONE INCH ON ORIGINAL DRAWING

Appendix A Semiannual Operations and Maintenance Log, January 1, 2011 through June 30, 2011

APPENDIX A

Semiannual Operations and Maintenance Log, January 1, 2011 through June 30, 2011

Downtime is defined as any periods when all extraction wells are not operating, so that no groundwater is being extracted and piped into IM3 as influent. Periods of planned and unplanned extraction system downtime are summarized here. The times shown are in Pacific Standard Time to be consistent with other data collected at the site.

January 2011

- **January 5, 2011 (planned):** The extraction well system was offline from 11:26 a.m. to 11:32 a.m., 11:36 a.m. to 11:38 a.m., 11:44 a.m. to 11:48 a.m., 11:52 a.m. to 11:56 a.m., and 2:08 p.m. to 2:12 p.m. due to critical alarm and leak detection system testing. Extraction system downtime was 20 minutes.
- **January 10, 2011 (unplanned):** The extraction well system was offline from 2:32 p.m. to 5:50 p.m. due to cleaning of blockage in T301 pipeline. Extraction system downtime was 3 hours and 18 minutes.
- **January 17, 2011 (unplanned):** The extraction well system was offline from 8:12 p.m. to 9:48 p.m. due to cleaning of blockages in the oxidation system. Extraction system downtime was 1 hour and 36 minutes.
- **January 18, 2011 (planned):** The extraction well system was offline from 6:22 a.m. to 3:58 p.m. and 5:34 p.m. to 6:56 p.m. due to monthly scheduled plant maintenance. Extraction system downtime was 10 hours and 58 minutes.
- **January 26, 2011 (unplanned):** The extraction well system was offline from 9:38 a.m. to 9:42 a.m. due to City of Needles Electric Department power imbalance that shut down extraction wells. Extraction system downtime was 4 minutes.

February 2011

- **February 4, 2011 (planned):** The extraction well system was offline from 10:56 a.m. to 11:14 a.m., 11:16 a.m. to 11:18 a.m., 12:04 p.m. to 12:06 p.m., 12:12 p.m. to 12:14 p.m. and 12:38 p.m. to 12:42 p.m. due to critical alarm and leak detection system testing. Extraction system downtime was 28 minutes.
- **February 9, 2011 (planned):** The extraction well system was offline from 10:38 a.m. to 12:58 p.m. due to monthly scheduled maintenance. Extraction system downtime was 2 hours and 20 minutes.
- **February 11, 2011 (unplanned):** The extraction well system was offline from 2:26 p.m. to 2:28 p.m. due replacement of meter AIT 201. Extraction system downtime was 2 minutes.

ES071311093703BAO\111950002 A-1

- **February 15, 2011 (planned):** The extraction well system was offline from 12:58 p.m. to 1:04 p.m. due to shut-off of the circuit breaker to vault alarms during infrared testing. Extraction system downtime was 6 minutes.
- **February 23, 2011 (unplanned):** The extraction well system was offline from 2:36 a.m. to 7:02 a.m. due to polymer pump repair. Extraction system downtime was 4 hours and 26 minutes.

March 2011

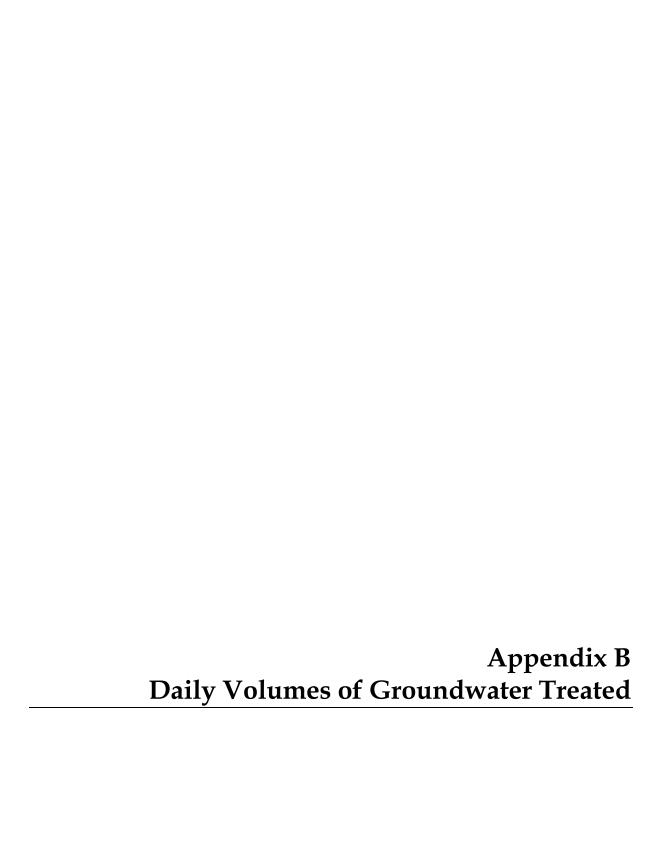
- March 2, 2011 (planned): The extraction well system was offline from 12:58 p.m. to 1:32 p.m. and 2:00 p.m. to 3:06 p.m. due to microfilter maintenance. Extraction system downtime was 1 hour and 40 minutes.
- March 7, 2011 (planned): The extraction well system was offline from 7:56 a.m. to 7:58 a.m., 8:06 a.m. to 8:08 a.m., 8:12 a.m. to 8:18 a.m., 8:20 a.m. 8:22 a.m. and 8:24 a.m. to 8:26 a.m. due to critical alarm and leak detection system testing. Extraction system downtime was 14 minutes.
- March 30, 2011 (planned): The extraction well system was offline from 7:16 a.m. to 2:50 p.m. due to monthly scheduled maintenance. Extraction system downtime was 7 hours and 34 minutes.
- March 31, 2011 (planned): The extraction well system was offline from 10:22 a.m. to 11:56 a.m. due to blower and microfilter maintenance. Extraction system downtime was 1 hour and 34 minutes.
- March 31, 2011 (planned): The extraction well system was offline from 12:14 p.m. to 12:56 p.m. due to start up compliance sampling. Extraction system downtime was 42 minutes.

April 2011

- **April 13, 2011 (planned):** The extraction well system was offline from 4:10 p.m. to 4:44 p.m. due to microfilter maintenance. Extraction system downtime was 34 minutes.
- April 25-29, 2011 (planned): The extraction well system was offline from 5:46 a.m. on April 25, 2011 to 12:54 p.m. on April 28, 2011, from 1:24 p.m. on April 28, 2011 to 5:30 a.m. on April 29, 2011, and from 6:04 a.m. to 8:36 a.m. on April 29, 2011 for the biannual plant maintenance outage. Extraction system downtime was 4 days, 1 hour and 46 minutes.

May 2011

• May 3, 2011 (planned): The extraction well system was offline from 1:44 p.m. to 3:10 p.m. due to microfilter maintenance. Extraction system downtime was 1 hour and 26 minutes.


A-2 ES071311093703BAO\111950002

- May 27, 2011 (planned): The extraction well system was offline from 9:06 a.m. to 9:16 a.m. due to City of Needles Electric Department personnel on-site to change taps on power system. Extraction system downtime was 10 minutes.
- May 28, 2011 (unplanned): The extraction well system was offline from 12:20 p.m. to 12:56 p.m. due to City of Needles Electric Department power imbalance that shut down extraction wells. Extraction system downtime was 36 minutes.
- May 28, 2011 (planned): The extraction well system was offline from 4:54 p.m. to 5:14 p.m. due to generator refueling. Extraction system downtime was 20 minutes.
- May 29, 2011 (planned): The extraction well system was offline from 5:40 a.m. to 5:46 a.m. and 6:00 a.m. to 6:02 a.m. due to an unsuccessful attempt from City of Needles Electric Department to switch to city power from generator power. Extraction system downtime was 8 minutes.
- May 30, 2011 (planned): The extraction well system was offline from 8:04 a.m. to 8:08 a.m. due to City of Needles Electric Department personnel on-site to switch to city power from generator power. Extraction system downtime was 4 minutes.

June 2011

- **June 2, 2011 (planned):** The extraction well system was offline from 10:04 a.m. to 10:06 a.m. due to permanent alarm and leak detection system testing. Extraction system downtime was 2 minutes.
- **June 4, 2011 (unplanned):** The extraction well system was offline from 12:40 p.m. to 12:46 p.m. due to City of Needles Electric Department power imbalance that shut down extraction wells. Extraction system downtime was 6 minutes.
- June 8, 2011 (planned): The extraction well system was offline from 10:00 a.m. to 12:12 p.m. due to microfilter maintenance. Extraction system downtime was 2 hours and 12 minutes.
- **June 22, 2011 (unplanned):** The extraction well system was offline from 2:32 p.m. to 2:42 p.m. due to City of Needles Electric Department power imbalance that shut down extraction wells. Extraction system downtime was 10 minutes.
- **June 23, 2011 (unplanned):** The extraction well system was offline from 8:54 p.m. to 8:56 a.m. The cause is unknown. Extraction system downtime was 2 minutes.
- **June 28-30, 2011 (planned):** The extraction well system was offline from 8:42 a.m. on June 28, 2011 to 1:10 p.m. on June 30, 2011 due to monthly scheduled plant maintenance. Extraction system downtime was 2 days, 4 hours and 28 minutes.

ES071311093703BA0\111950002 A-3

January 2011 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
January	1	2011			156,450	36,895	193,344	24	186,565	186,589	1,606
January	2	2011			156,315	37,229	193,544	21	189,484	189,505	1,598
January	3	2011			156,030	37,550	193,580	19	185,310	185,329	1,602
January	4	2011			156,212	37,453	193,665	21	186,558	186,579	2,377
January	5	2011			151,958	36,330	188,288	15,712	172,023	187,735	1,601
January	6	2011			156,688	36,419	193,107	15	182,201	182,215	1,596
January	7	2011			156,608	36,449	193,056	4	188,494	188,498	1,668
January	8	2011			155,907	37,446	193,353	10	188,762	188,772	1,716
January	9	2011			156,582	36,368	192,951	3	188,754	188,757	1,601
January	10	2011			134,022	31,050	165,072	30	154,293	154,324	1,668
January	11	2011			156,839	36,917	193,756	15	183,912	183,927	2,616
January	12	2011			157,884	36,764	194,647	67,473	122,152	189,625	1,601
January	13	2011			151,643	36,055	187,698	82,226	104,895	187,121	3,404
January	14	2011			155,814	36,130	191,944	1	185,398	185,398	1,669
January	15	2011			155,481	36,536	192,016	1	182,325	182,325	2,588
January	16	2011			155,876	36,090	191,966	5	184,647	184,653	2,267
January	17	2011			144,496	34,269	178,765	28	179,072	179,100	1,660
January	18	2011			83,137	20,209	103,346	11	95,237	95,247	1,662
January	19	2011			154,763	37,161	191,924	17	179,892	179,909	1,587
January	20	2011			155,007	36,851	191,859	2,180	188,619	190,799	1,880
January	21	2011			155,643	37,306	192,950	32	190,774	190,806	3,174
January	22	2011			156,294	37,175	193,470	12	188,745	188,757	6,640
January	23	2011			156,246	37,114	193,360	14	185,646	185,660	3,315
January	24	2011			156,425	36,965	193,390	4	184,994	184,998	3,313
January	25	2011			146,374	37,352	183,726	25	179,817	179,842	3,330
January	26	2011			155,526	37,207	192,733	70,826	115,168	185,995	3,226
January	27	2011			156,391	36,914	193,305	186,696	225	186,921	3,446
January	28	2011			156,539	36,709	193,248	184,463	252	184,715	6,482
January	29	2011			156,366	37,084	193,449	186,289	216	186,506	3,324
January	30	2011			156,248	37,269	193,517	184,560	229	184,790	3,320
January	31	2011			156,351	37,033	193,385	192,357	195	192,551	6,432
otal Monthly	Volumes	s (gal)	0	0	4,716,116	1,118,297	5,834,413	1,173,092	4,474,855	5,647,947	83,969
-		n Rates (gpm	n) 0.0	0.0	105.6	25.1	130.7	26.3	100.2	126.5	1.9

a. Extraction wells TW 3D and PE 1 were operated during January 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during January 2011.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during January 2011 is approximately 1.76 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

February 2011 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
February	1	2011			156,557	36,807	193,364	189,639	221	189,860	3,314
February	2	2011			156,947	36,661	193,608	178,586	265	178,851	3,453
February	3	2011			157,060	36,575	193,636	191,832	124	191,956	6,633
February	4	2011			151,921	35,968	187,889	182,388	2,328	184,716	3,182
February	5	2011			156,846	36,659	193,505	182,401	302	182,702	6,663
February	6	2011			156,821	36,611	193,432	185,990	269	186,259	3,317
February	7	2011			156,863	36,559	193,421	187,685	263	187,948	3,326
February	8	2011			156,671	36,826	193,497	187,600	255	187,855	3,185
February	9	2011			140,870	33,352	174,223	161,112	2,777	163,888	3,329
February	10	2011			156,248	37,381	193,630	106,639	84,112	190,751	3,304
February	11	2011			155,796	37,211	193,007	277	191,515	191,792	6,352
February	12	2011			156,339	37,308	193,647	21	185,670	185,691	3,045
February	13	2011			156,493	37,077	193,570	11	187,883	187,894	3,043
February	14	2011			156,467	37,171	193,638	9	189,486	189,494	3,041
February	15	2011			155,557	37,072	192,629	20	187,781	187,801	3,173
February	16	2011			156,388	37,247	193,636	2,155	177,282	179,436	2,970
February	17	2011			156,448	37,227	193,675	4	193,458	193,462	3,047
February	18	2011			156,582	37,061	193,643	26	193,056	193,082	3,176
February	19	2011			156,682	37,061	193,744	7	187,291	187,299	6,206
February	20	2011			156,770	36,747	193,517	11	190,834	190,846	3,049
February	21	2011			156,669	36,909	193,578	17	188,449	188,466	3,188
February	22	2011			156,181	36,981	193,161	7	187,009	187,015	3,036
February	23	2011			126,530	30,813	157,343	78,306	73,547	151,853	3,039
February	24	2011			155,853	37,608	193,461	189,966	897	190,862	3,169
February	25	2011			155,893	37,564	193,457	190,207	494	190,701	2,998
February	26	2011			155,962	37,589	193,551	188,743	475	189,217	3,190
February	27	2011			155,754	38,011	193,766	189,260	456	189,716	3,065
February	28	2011			155,986	37,642	193,628	188,747	544	189,291	3,059
otal Monthly	Volumes	(gal)	0	0	4,329,155	1,027,699	5,356,854	2,781,667	2,427,040	5,208,707	101,549
verage Pum	p/Injectio	n Rates (gpm	0.0	0.0	107.4	25.5	132.9	69.0	60.2	129.2	2.5

a. Extraction wells TW 3D and PE 1 were operated during February 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during February 2011.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during February 2011 is approximately 0.87 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

March 2011 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extraction Well System					Injection Well System			
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons	
March	1	2011			155,860	37,889	193,749	187,141	485	187,626	6,082	
March	2	2011			143,583	35,633	179,216	172,465	3,795	176,260	3,039	
March	3	2011			156,033	37,618	193,651	193,335	12	193,347	3,033	
March	4	2011			156,053	37,637	193,690	186,039	12	186,051	3,160	
March	5	2011			155,475	38,492	193,966	187,404	12	187,416	3,153	
March	6	2011			155,849	37,901	193,750	191,416	15	191,430	3,018	
March	7	2011			153,169	36,717	189,886	112,548	74,793	187,341	3,019	
March	8	2011			156,231	37,393	193,624	22	184,545	184,566	3,036	
March	9	2011			155,761	38,080	193,841	18	186,946	186,964	3,023	
March	10	2011			156,121	37,499	193,620	10	187,201	187,211	3,017	
March	11	2011			156,350	37,106	193,456	1	187,260	187,261	3,016	
March	12	2011			155,556	38,241	193,797	2	187,267	187,268	3,018	
March	13	2011			156,278	37,399	193,677	12,931	180,103	193,035	2,906	
March	14	2011			156,257	37,422	193,678	5,458	174,455	179,914	3,165	
March	15	2011			156,325	37,225	193,549	5,745	184,085	189,831	3,159	
March	16	2011			156,487	36,940	193,427	11,044	180,332	191,376	3,174	
March	17	2011			156,642	36,771	193,413	23	190,613	190,636	3,168	
March	18	2011			156,139	37,617	193,755	21	185,867	185,888	3,165	
March	19	2011			156,164	37,586	193,749	54,863	134,152	189,015	6,204	
March	20	2011			156,144	37,655	193,799	9,497	177,361	186,859	3,155	
March	21	2011			155,965	38,146	194,111	14	186,444	186,457	3,156	
March	22	2011			155,948	38,121	194,068	17	188,958	188,976	3,039	
March	23	2011			155,847	38,233	194,080	14	186,796	186,811	3,154	
March	24	2011			155,921	37,962	193,883	8	190,699	190,707	3,151	
March	25	2011			155,807	38,179	193,986	34	190,501	190,534	3,303	
March	26	2011			155,682	38,436	194,118	3	185,162	185,166	3,017	
March	27	2011			155,850	38,168	194,018	19	190,187	190,206	3,161	
March	28	2011			155,552	38,494	194,046	25	184,561	184,586	3,003	
March	29	2011			155,203	39,218	194,420	76,581	112,442	189,023	3,113	
March	30	2011			105,897	26,528	132,425	133,427	14	133,441	4	
March	31	2011			139,804	34,544	174,348	172,198	13	172,211	3,170	
tal Monthly	Volumes	s (gal)	0	0	4,753,953	1,154,848	5,908,801	1,712,322	4,035,089	5,747,411	98,980	
-		n Rates (gpm	0.0	0.0	106.5	25.9	132.4	38.4	90.4	128.8	2.2	

a. Extraction wells TW 3D and PE 1 were operated during March 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during March 2011.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during March 2011 is approximately 1.06 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

April 2011 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
April	1	2011			153,785	37,784	191,569	186,275	1,568	187,842	3,147
April	2	2011			155,421	38,241	193,662	188,536	12	188,548	3,038
April	3	2011			155,813	37,631	193,444	189,908	16	189,924	3,174
April	4	2011			155,806	37,713	193,519	188,223	13	188,236	3,044
April	5	2011			155,684	37,912	193,596	189,610	20	189,629	3,125
April	6	2011			154,991	38,937	193,928	195,057	15	195,072	3,263
April	7	2011			155,317	38,378	193,695	191,541	1,038	192,579	3,312
April	8	2011			155,671	38,062	193,733	192,703	8	192,710	3,184
April	9	2011			155,818	38,011	193,829	189,681	9	189,690	3,319
April	10	2011			155,662	38,211	193,873	189,727	20	189,747	3,319
April	11	2011			155,183	38,876	194,059	188,626	20	188,646	3,179
April	12	2011			155,513	38,343	193,856	107,424	83,989	191,413	3,154
April	13	2011			151,038	37,499	188,537	83,341	98,629	181,970	3,172
April	14	2011			155,296	38,374	193,669	191,231	11	191,242	3,295
April	15	2011			155,400	38,101	193,501	191,663	15	191,679	3,130
April	16	2011			155,352	38,133	193,486	184,943	12	184,955	3,165
April	17	2011			155,485	37,892	193,378	194,747	23	194,770	3,039
April	18	2011			155,454	37,967	193,422	187,224	24	187,248	3,129
April	19	2011			155,236	38,325	193,560	188,194	28	188,221	3,290
April	20	2011			155,472	37,983	193,454	108,800	80,669	189,469	3,259
April	21	2011			155,475	37,914	193,389	14	192,855	192,868	3,182
April	22	2011			155,202	38,303	193,505	9	186,003	186,012	3,153
April	23	2011			155,419	38,000	193,420	5	182,728	182,733	3,235
April	24	2011			155,353	38,119	193,472	19	185,798	185,817	3,160
April	25	2011			37,151	9,460	46,611	19	52,927	52,945	5
April	26	2011			8	6	15	3	18	21	6
April	27	2011			4	3	7	3	17	20	7
April	28	2011			2,871	821	3,692	2	23	25	4
April	29	2011			102,065	25,545	127,611	11	118,103	118,114	3,169
April	30	2011			154,748	38,402	193,150	5	191,283	191,288	2,927
otal Monthly	Volumes	s (gal)	0	0	4,021,693	988,946	5,010,639	3,527,543	1,375,891	4,903,434	82,585
-		n Rates (gpm) 0.0	0.0	93.1	22.9	116.0	81.7	31.8	113.5	1.9

a. Extraction wells TW 3D and PE 1 were operated during April 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during April 2011.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during April 2011 is approximately 0.49 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

May 2011 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
May	1	2011			154,552	38,813	193,365	7	194,911	194,918	3,195
May	2	2011			154,810	38,478	193,288	8	184,427	184,436	3,269
May	3	2011			144,670	36,669	181,339	15	172,871	172,886	3,184
May	4	2011			151,619	38,031	189,650	11	190,751	190,762	2,975
May	5	2011			155,178	37,831	193,009	88,442	97,185	185,627	3,156
May	6	2011			154,509	38,814	193,322	192,725	22	192,747	3,161
May	7	2011			155,202	37,881	193,083	192,356	23	192,379	6,208
May	8	2011			155,262	37,821	193,083	186,832	19	186,851	3,176
May	9	2011			154,862	38,366	193,228	188,009	23	188,032	1,466
May	10	2011			155,058	38,124	193,182	188,389	11	188,400	1,714
May	11	2011			154,078	39,384	193,462	186,839	20	186,859	3,123
May	12	2011			154,139	39,210	193,349	189,385	15	189,400	3,232
May	13	2011			154,367	38,850	193,217	189,350	29	189,379	3,307
May	14	2011			154,524	38,594	193,118	190,252	24	190,276	3,165
May	15	2011			154,863	38,155	193,017	187,776	17	187,793	3,121
May	16	2011			154,935	38,027	192,962	186,869	18	186,887	3,152
May	17	2011			154,783	38,227	193,010	188,798	19	188,817	3,185
May	18	2011			154,803	38,105	192,907	110,002	80,856	190,857	3,157
May	19	2011			155,017	37,526	192,543	30	191,763	191,794	3,145
May	20	2011			155,332	37,082	192,414	134,629	51,622	186,251	3,143
May	21	2011			154,915	37,719	192,634	191,278	20	191,297	3,069
May	22	2011			155,228	37,290	192,519	186,910	21	186,931	3,043
May	23	2011			155,302	37,242	192,544	189,461	16	189,477	3,160
May	24	2011			154,323	38,604	192,927	189,769	19	189,788	5
May	25	2011			154,494	38,286	192,780	149,729	32,354	182,084	3,026
May	26	2011			154,603	38,099	192,702	190,723	24	190,748	3,610
May	27	2011			153,481	37,007	190,488	191,151	32	191,183	3,012
May	28	2011			147,583	36,354	183,937	171,013	19	171,032	3,148
May	29	2011			153,228	37,465	190,693	191,704	28	191,732	3,189
May	30	2011			153,806	37,860	191,666	188,456	22	188,479	2,885
May	31	2011			153,777	38,806	192,583	187,462	16	187,478	3,033
tal Monthly	Volumes	s (gal)	0	0	4,773,302	1,178,718	5,952,020	4,628,381	1,197,197	5,825,578	94,413
-		n Rates (gpm	0.0	0.0	106.9	26.4	133.3	103.7	26.8	130.5	2.1

a. Extraction wells TW 3D and PE 1 were operated during May 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during May 2011.

b. Effluent was discharged into injection wells IW-02 and IW-03.

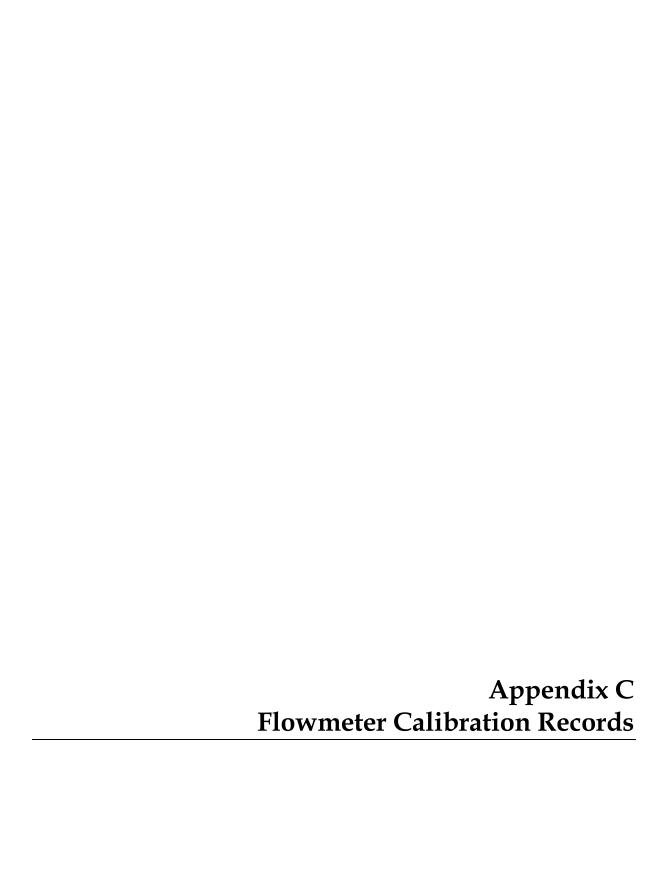
c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during May 2011 is approximately 0.54 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

June 2011 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	Inje	ection Well Sys	stem	RO Brine		
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
June	1	2011			154,239	38,212	192,451	189,591	31	189,622	3,020
June	2	2011			151,528	38,453	189,981	186,394	1,818	188,212	3
June	3	2011			154,680	38,470	193,150	189,679	20	189,700	2,903
June	4	2011			154,103	37,875	191,978	188,567	17	188,584	2,131
June	5	2011			155,213	37,835	193,048	189,309	30	189,339	1,182
June	6	2011			154,196	39,258	193,454	188,441	17	188,459	3,024
June	7	2011			154,187	39,304	193,491	188,689	27	188,717	7
June	8	2011			140,019	35,283	175,302	77,490	99,191	176,681	2,991
June	9	2011			155,061	38,165	193,226	29	188,025	188,055	3,283
June	10	2011			154,765	38,538	193,302	2	185,006	185,008	3,058
June	11	2011			155,072	38,028	193,100	24	187,667	187,691	3,031
June	12	2011			154,617	38,718	193,335	36	189,608	189,644	6,176
June	13	2011			154,883	38,323	193,207	7	183,558	183,565	3,015
June	14	2011			155,098	37,885	192,983	22	190,327	190,349	3,150
June	15	2011			154,547	38,640	193,186	89,720	102,931	192,651	2,914
June	16	2011			155,712	37,213	192,925	87,982	98,429	186,411	3,031
June	17	2011			157,311	38,086	195,397	9	190,470	190,479	3,038
June	18	2011			157,694	37,581	195,275	13	189,880	189,893	3,184
June	19	2011			157,247	38,312	195,558	16	190,923	190,940	6,237
June	20	2011			156,896	38,606	195,502	10	191,801	191,811	3,151
June	21	2011			156,999	38,384	195,383	4	188,556	188,560	3,146
June	22	2011			155,493	38,058	193,551	108,482	78,928	187,410	3,131
June	23	2011			157,025	37,790	194,814	191,895	29	191,924	3,258
June	24	2011			157,527	37,484	195,011	191,313	23	191,337	3,143
June	25	2011			157,399	37,678	195,077	191,110	22	191,132	3,011
June	26	2011			157,210	37,950	195,160	190,889	25	190,914	3,148
June	27	2011			157,598	37,437	195,036	190,345	23	190,368	3,018
June	28	2011			56,789	14,064	70,853	59,736	34	59,771	3,134
June	29	2011			4	3	7	2	33	34	2
June	30	2011			69,748	17,829	87,578	7,805	71,839	79,644	3
otal Monthly	Volumes	s (gal)	0	0	4,312,859	1,059,462	5,372,321	2,707,614	2,529,291	5,236,904	83,523
		n Rates (gpm)	0.0	0.0	99.8	24.5	124.4	62.7	58.5	121.2	1.9

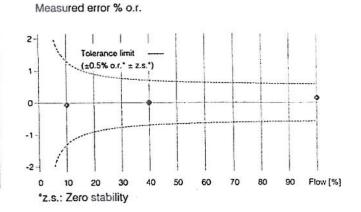

NOTES: gal: gallons

gpm: gallons per minute RO: Reverse Osmosis

a. Extraction wells TW 3D and PE 1 were operated during June 2011 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW 2D and TW-2S were not operated during June 2011.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during June 2011 is approximately 0.97 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.


People for Process Automation

30057866-1275190

41724888	
Purchase Order Number	
USA-49310090-40 / Endress+Haus	ser Flowtec
Order Nº/Manufacturer	
23P50-AL1A1RA022AW	
Order Code	
PROMAG 23 P 2"	
Transmitter/Sensor	
6A021F16000	
Serial Nº	
FIT-100 Installed at PE-1 7	16/2011
Tag № AR	

FCP-6.C	
Calibration rig	
155.6102 GPM	$(\triangleq 100\%)$
Calibrated full scale	and the second s
Current 4 - 20 mA	
Calibrated output	
0.9178	
Calibration factor	
0	
Zero point	
72.9 °F	
Water temperature	

Flow	Flow	Duration	V target	V meas.	Δ o.r.*	Outp.	
[%]	[GPM]	[sec]	[US GAL]	[US GAL]	[%]	[mA]	
10.0	15.5	30.0	7.7502	7.7457	-0.06	5.59	
39.9	62.1	30.0	31.071	31.070	0.00	10.38	
39.9	62.1	30.0	31.073	31.078	0.02	10.38	
100.2	156.0	30.0	78.041	78.156	0.15	20.06	
-	-	- 1	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-	-	-	-	-	_	-	
-	-	-	-	-	-	-	
-	-	-	-	-	2 5	-	-
1			•	1.7			

*o.r.; of rate
**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004

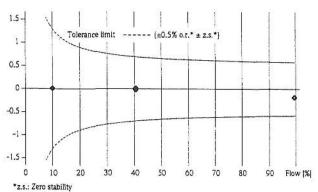
Date of calibration

Endress+Hauser 2350 Endress Place Greenwood, IN 46143 Tim Swick

Operator

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2



30107893-1304706

WWRA-002048-F	FCP-6.F					
Purchase order number	Calibration rig					
US-19054161-10 / Endress+Hauser Flowtec	155.6102 GPM (100%)					
Order N°/Manufacturer	Calibrated full scale					
23P50-AL1A1AA022AW	Current 4 – 20 mA					
Order code	Calibrated output					
PROMAG 23 P 2"	0.9154					
Transmitter/Sensor	Calibration factor					
6C037016000	0					
Serial N°	Zero point					
FIT-1202 FIT-102 TW-3D	76.2 °F					
Tag N°	Water temperature					
3						

Flow [%]	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	∆ о.т.* %]	Outp.**
9.9	15.5	30.1	7.7531	7.7537	0.01	5.59
40.5	63.0	30.1	31.560	31.554	-0.02	10.47
40.5	63.0	30.1	31.569	31.574	0.01	10.48
99.5	154.8	30.1	77.589	77.448	-0.18	19.89
**	1-	-	-	-	-	-
	9. 4	- 1	-	-	170	-
-	-	-	-	- 1	-	-
-	5. -	- 1	-	- 1	(7)	-
-	1.7	-	1.5	-	150	-
-	187	-	-	-	-	-

Measured error % o.r.

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA) and Aurangabad (IN).

09-12-2007

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Tim Swick

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

TimSwint

30092171-1385272

WWRA	A-00092	23-F				FCP-6.F					
Purchase o	order numb	er		12.11			Calibration rig				
			ndress+Ha	auser Flow	155.6102 GPM (\triangleq 100%)						
Order Nº/	Manufactu	гег			Calibrated full scale						
23P50-	-ALIA1	AA022A	W				Current 4 - 20 mA				
Order code	e						Calibrated output				
PROM	AG 23	P 2"					0.9289				
Transmitte	er/Sensor						Calibration factor				
7700F	216000)					0				
Serial Nº	1	Install	ed at	TW-2	D 7/	6/11	Zero point				
-FI	T-11	73	P	E-+	AR)	27 11	74.9 °F				
Tag Nº		*					Water temperature				
Flow	Flow	Duration	V target	$V_{\text{ threas}},\\$	A c.r.	Outp. * *	Measured error % o.r.				
图	[CFM]	[sec]	US GALI	[US CAL]	[5]	InA)					
10.0 40.5	15.5 62.9	30.1 30.1	7.7642 31.549	7.7895 31.556	0.33	5.60 10.47	2				
40.5	62.9	30.1	31.546	31.541	-0.02	10.47	Tolerance tmit [±0.5% o.c.* ± 2.5.*]				
99.7	155.1	30.1	77.735	77.718	-0.02	19.95	The state of the s				
-	-	-	-	-	-	-	C				
_	-		-	_	-	_					
-	-	-	-	-	*		-1 -				
-	-	-	100	-	-	_ *					
-	-	- 1	-	-	-		-2 - /				
-	-	-	-	-	=	- :	0 10 20 30 40 50 60 70 80 90 Few 5				
*e.r.: of rate							*z.s.: Zero stability				
**Calculated	value (4 - 2)	0 mA)									

For detailed data concerning output specifications of the unit under test, see technical informations (Tt), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

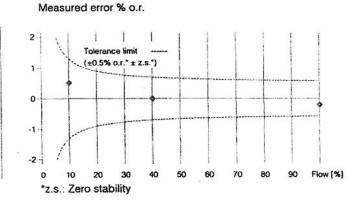
11-30-2006 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 ME. Tilly.

Morris E. Trueblood Jr.

Operator

Certified acc. to MIL-STD-45002A ISO 9001, Reg.-Nº 030502.2



30057870-1275191

11724888	
rurchase Order Number	
JSA-49310090-40 / Endress+Hauser Flowte	ЭС
Order Nº/Manufacturer	AMOUNT MATERIAL
23P50-AL1A1RA022AW	
Order Code	
PROMAG 23 P 2"	
ransmitter/Sensor	
6A02201 6000	
Serial No. -IT-101 / TW-25/installed 7/28	105
「ag №	903-0400-11117

FCP-6.C	
Calibration rig	Company of the Compan
155.6102 GPM	(
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	
Water temperature	Control of the second of the s

Flow	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	Δ o.r.* [%]	Outp.**
10.0	15.6	30.0	7.7910	7.8318	0.52	5.61
40.0	62.3	30.0	31.157	31.160	0.01	10.40
40.1	62.4	30.0	31.229	31.229	0.00	10.42
100.2	155.9	30.0	78.017	77.856	-0.21	20.00
-	-	-	-		-	-
-	•	-	-	-		-
-	-	-	-	-	-	-
-	-	-	-		-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004 Date of calibration

Endress+Hauser 2350 Endress Place

Greenwood, IN 46143

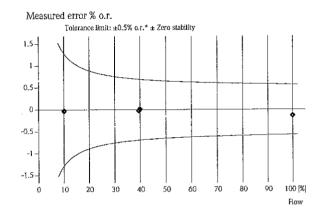
Tim Swick

Operator

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2

Flow Calibration with Adjustment


30171212-1304705

Tag N°

WWRA-006931-F
Purchase order number
US-19068473-30 / Endress+Hauser Flowtec
Order N°/Manufacturer
23P50-AL1A1AA022AW
Order code
PROMAG 23 P 2"
Transmitter/Sensor
6C036F16000
Serial N°
FIT-1201

FCP-6.F	
Calibration rig	
155.6102 us.gal/min Calibrated full scale	(△ 100%)
Current 4 - 20 mA	
Calibrated output	
0.9101	
Calibration factor	
-34	
Zero point	
78.7 °F	

	Flow	Flow [us.gal/min]	Duration	V target [us.gal]	V meas. [us.gal]	∆ o.r.* [%]	Outp.**
	10.1	15.7	30.2	7.8942	7.8921	-0.03	5.61
	39.5	61.5	30.2	30.956	30.950	-0.02	10.32
ļ	39.9	62.1	30.2	31.263	31.268	0.02	10.39
İ	100.0	155.7	30.2	78.338	78.232	-0.14	19.98
	-	-		-	-	-	-
	-	_	-	-	-	-	-
	_	-	-	-		-	-
1	_	_	-	-	-	-	
	_	_		-	-	-	-
	-	_	_	_	-	-	[- :
ì		I	į.	1	(ı	r

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Réinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

08-06-2010


Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 John Davis Operator

Water temperature

Certified acc. to

MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

Flow Calibration with Adjustment

30171217-1275192

WW	'RA-0	0693	1-F
----	-------	------	-----

Purchase order number

US-19068473-20 / Endress+Hauser Flowtec

Order Nº/Manufacturer

23P50-AL1A1RA022AW

Order code

PROMAG 23 P 2"

Transmitter/Sensor

6A022116000

Serial Nº

FIT-102

Tag Nº

FCP-6.F

Calibration rig

155.6102 us.gal/min

 $(\triangleq 100\%)$

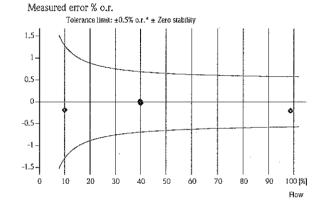
Calibrated full scale

Current 4-20 mA

Calibrated output

0.9092

Calibration factor


0

Zero point

79.6 °F

Water temperature

Flow [%]	Flow [us.gal/min]	Duration [s]	V target [us.gal]	V meas. [us.gal]	∆ o.r.* [%]	Outp.** [mA]
10.0	15.5 62.0	30.2 30.2	7.8009 31.203	7.7865	-0.18 0.02	5.59 10.38
40.1 98.8	62.4 153.8	30.2 30.2	31.360 77.402	31.353 77.243	-0.02 -0.20	10.41 19.78
-	-	_		-	-	-
_	_	_	-	-	=	_
-	_	- -		-	_	- -
-	_	-	- `	- '	-	-

*o.r.: of rate

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

08-06-2010 Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 John Davis

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

^{**}Calculated value (4 - 20 mA)

Flow Calibration with Adjustment

30092564-1385273

WWRA	-00092	3-F			FCP-20 MEDIUM					
Purchase o	rder numbe	er	*****	(0) / * * (4) *******************************	Calibration rig					
US-190	50353	-40 / En	dress+Ha	user Flow	398.3621 GPM (\triangleq 100%)					
Order Nº/1	Manufactur	er		or an end was some or a section of			Calibrated full scale			
23P80-	AL1A1	AA022A	W		Current 4-20 mA					
Order code	2			***********			Calibrated output			
PROM	AG 23 1	P 3"					1.1873			
Transmitte							Calibration factor			
7700F	316000	E					0			
			1:	: celle	1 6	AR 04/9/1	Zero point			
E 7	T-7/	2/0	moines to	クルナルシ	Pirstal	ad 12/19/0	76.7 °F Water temperature			
Tag Nº	1 1	11	000 70 10	24203						
10611							Tracher dependent • Experiment of			
Flow	Flow	Duration	V target	V meas. [US GAL]	Δ o.r.*	Outp.**	Measured error % o.r.			
9.9	39.6	60.8	40.120	40.199	0.20	5.59	2			
38.5	153.2	60.8	155.374	155.417	0.03	10.16	Tolerance limit			
38.5	153.3	60.9	155.578	155.582	0.00	10.16	1 (±0.5% o.f.* ± 2.5.*)			
99.1	394.9	60.9	400.783	399.816	-0.24	19.82				
-	-	-	-	-	-	-	0			
-	-	-	-	-	-	-				
-	-	-	-	-	-	-	1)			
-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-2 '			
i -	-	-	-	-	-	- 1	0 10 20 30 40 50 60 70 80 90 Flow X			
*o.r.: of rate							*z.s.: Zero stability			

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

12-07-2006 Date of calibration

**Calculated value (4 - 20 mA)

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 TimSwint

Tim Swick

Operator

Certified acc. to MIL-STD-45662A ISO 9001, Reg.-N° 030502.2

Flow Calibration with Adjustment

20138467-136470

WWRA-004329-F						FCP-6.C		
Furchase order nur	ber			Calibration rig				
US-1906145	3-10 / E1	ndress+H	auser Flov	155.6102 GPM (
Order Nº/Manufact	urer			Calibrated full scale				
23P50-AL1A	1AA022A	W		Current 4-20 mA				
Order code						Calibrated output		
PROMAG 23	P 2"					0.9146		
Transmitter/Sensor	1000					Calibration factor		
6C03731600	O					0		
		dat Ri	Concen	trato	4/1/2011	Zero poin:		
Secial N° I	TT-	1202	TI	1-0	7170011	76.2 °F		
Tag N°		1000		<u> </u>	(AR)	Water temperature		
Flow Flow	Duration N	V target (US CAL)	V ness JUS GALI	Δ o.t.*	Outp.**	Measured error % o.r. Toterance that: ±0.5% o.r.* ± Zero stability		
10.0 15.5	30.1	7.7933	7.7939	C.01	5.60	ا ا ا ا ا ا ا		
40.2 62.5	30.1	31.394	3:.422	0.09	10.43	14		
40.2 62.5	30.1	3:.416	31.448	0.10	10.44	05		
99.8 155.3	30.1	78.006	77.928	-0.10	19.95	051		
- ! -	-	·-	_	-	-	0. 0		
- -	-	10.5	- i	i	-	-0.54		
					! [
	i -		_	_		14		
				8		1154 / 1 1		
	1 -	7	1 1			0 to 20 30 40 50 60 70 80 co 100		
"o.r.: of rate								

For detailed data concerning output specifications of the unit uncer test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress-Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

02-26-2009

Date of calibration.

Endress-Hauser Flowter, Division USA 2330 Endress Place Greenwood, IN 46143 William Darnell

Operato:

Certified acc. to MIL-STD-45562A ISO 9001, Reg.-N° 030502.2

Appendix D Second Quarter 2011 Laboratory Analytical Reports