

Curt Russell Topock Site Manager Chromium Remediation Gas Transmission & Distribution Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: <u>gcr4@pge.com</u>

June 28, 2013

Mr. Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: 2012 – 2013 Storm Water Annual Report PG&E Topock Interim Measure No. 3 I-40 & Park Moabi Road, Needles, California WDID No. 7 36I 019443

Dear Mr. Perdue:

Enclosed is the 2012 – 2013 Storm Water Annual Report for the Pacific Gas and Electric Company (PG&E) Topock Interim Measure (IM) No. 3 Groundwater Treatment System, Facility WDID No. 7 36I 019443. This report is being submitted in compliance with the National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000001 for Industrial Activities.

The IM No. 3 Notice of Intent (NOI) was submitted April 5, 2005. The Storm Water Pollution Prevention Plan (SWPPP) is available at the facility.

Seven locations at the treatment facility site have been identified as potential storm water discharge locations in the SWPPP. There was only one storm event that resulted in discharge of storm water from the site during the 2012 – 2013 wet season; that storm resulted in discharge from only one of the seven potential storm water discharge locations, and one storm water sample was collected. In general, discharge of storm water from the facility did not occur due to the arid climate during the wet season, drainage properties of soil at unpaved areas, and pumping of storm water collected on the concrete treatment pad into the treatment facility.

If you have any questions regarding this report, please call me at (760) 326-5582. Sincerely,

Curt Russell Topock Site Manager

Enclosures:

Mr. Robert Perdue June 28, 2013 Page 2

- Annual Report Form including Certification
- Form 1 Storm Water Sampling Analytical Results
- Form 2 Quarterly Visual Observations of Authorized Non-Storm Water Discharges
- Form 3 Quarterly Visual Observations of Unauthorized Non-Storm Water Discharges
- Form 4 Monthly Visual Observations of Storm Water Discharges
- Form 5 Annual Comprehensive Site Compliance Evaluation
- Attachment A Response Explanations to Annual Report Form
- Attachment B 2012 2013 Wet Season Storm Event Records
- Attachment C Response to Results of October 11, 2012 Storm Water Sampling
- Attachment D Laboratory Analyses Report for October 11, 2012 Storm Water Sampling
- cc: Suhas Chakraborty, Colorado River Basin Regional Water Quality Control Board Jose Cortez, Colorado River Basin Regional Water Quality Control Board Aaron Yue, California Department of Toxic Substances Control

State of California STATE WATER RESOURCES CONTROL BOARD

2012 – 2013 ANNUAL REPORT

FOR

STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Reporting Period July 1, 201Gthrough June 30, 201H

An annual report is required to be submitted to your local Regional Water Quality Control Board (Regional Board) by July 1 of each year. This document must be certified and signed, under penalty of perjury, by the appropriate official of your company. Many of the Annual Report questions require an explanation. Please provide explanations on a separate sheet as an attachment. Retain a copy of the completed Annual Report for your records.

Please circle or highlight any information contained in Items A, B, and C below that is new or revised so we can update our records. Please remember that a Notice of Termination and new Notice of Intent are required whenever a facility operation is relocated or changes ownership.

If you have any questions, please contact your Regional Board Industrial Storm Water Permit Contact. The names, telephone numbers and e-mail addresses of the Regional Board contacts, as well as the Regional Board office addresses can be found at http://www.waterboards.ca.gov/stormwtr/contact.html. To find your Regional Board information, match the first digit of your WDID number with the corresponding number that appears in parenthesis on the first line of each Regional Board office.

REGIONAL BOARD INFORMATION:

Colorado River Basin Region 73-720 Fred Waring Dr., Ste. 100 Palm Desert, CA 92260 Email: <u>r7_stormwater@waterboards.ca.gov</u> Contact: Suhas Chakraborty Tel: (760) 776-8961 Email: <u>schakraborty@waterboards.ca.gov</u>

GENERAL INFORMATION:

Α.	Facility Information:	Facility WDID No: <u>7 36I019443</u>				
	Facility Business Name: <u>PG&E Topock Interim Measure No 3</u>	Contact Person: Curt Russell				
	Physical Address: I-40 & Park Moabi Rd	e-mail: <u>GCR4@pge.com</u>				
	City: <u>Needles, CA</u>	Zip: <u>92363</u> Phone: <u>760-326-5582</u>				
Standard Industrial Classification (SIC) Code(s): 4953, Hazardous Waste Treatment						

B. Facility Operator Information:

Operator Name: Pacific Gas & Electric Co	Contact Person: Curt Russell					
Mailing Address: PO BOX 337	e-mail: <u>GCR4@pge.com</u>					
City: <u>Needles</u>	State: <u>CA</u> Zip: <u>92363</u> Phone: <u>760-326-5582</u>					

C. Facility Billing Information:

Operator Name: Pacific Gas & Electric Co.	Contact Person: Curt Russell
Mailing Address: <u>3301 Industrial Ave</u>	e-mail: <u>GCR4@pge.com</u>
City: <u>Rocklin</u>	State: CA Zip: 95765 Phone: 760-326-5582

SPECIFIC INFORMATION

MONITORING AND REPORTING PROGRAM

D.	<u>SAI</u>	MPLING	AND AN	ALYSIS EXEM	IPTIONS AND RE	DUCTIONS							
	1.	For the accorda	the reporting period, was your facility exempt from collecting ordance with sections B.12 or 15 of the General Permit?			ig and ar	nalyzing	samples f	rom tw	o stor	m events in		
			YES	Go to Item D	.2		\bowtie	NO	Go to S	ection	E		
	2.	Indicate the reason your facility is exempt from collecting and analyzing samples from two storm events. Attach a copy of the first page of the appropriate certification if you check boxes ii, iii, iv, or v.							ts. Attach a				
		i. 🗌	Participating in an Approved Group Monitoring Plan					Group	o Name:				
		ii. Submitted No Exposure Certification (NEC)						Date S	Submitted:		/	/	
			Re-eva	luation Date:	/ /								
			Does fa	acility continue	to satisfy NEC cor	nditions?		YES		NO			
		iii. 🗌	Submit	ted Sampling	Reduction Certifi	cation (SRC)		Date S	Submitted:		1	1	
			Re-eva	luation Date: _	/ /								
			Does fa	acility continue	to satisfy SRC cor	nditions?		YES		NO			
		iv. 🗌	Receive	ed Regional Bo	pard Certification			Certifi	cation Date	e:	1	/	
		v.	Receive	ed Local Agen	cy Certification			Certifi	cation Date	e:	1	/	
	3.	If you checked boxes i or iii above, were you scheduled to sample one storm event during the reporting year?											
			YES	Go to Sectio	n E			NO	Go to S	ection	F		
	4.	lf you ch	necked b	oxes ii, iv, or v	, go to Section F.								
E.	<u>SAI</u>	MPLING	AND AN	ALYSIS RESU	I <u>LTS</u>								
	1.	 How many storm events did you sample? <u>1</u> 					If less than 2, attach explanation (if you checked item D.2.i or iii. above, only attach explanation if you answer "0").					ou checked lanation if you	
	2.	 Did you collect storm water samples from the first storm of the we scheduled facility operating hours? (Section B.5 of the General Period) 						wet season that produced a discharge during Permit)					
		\square	YES					NO	attach ex you do not s are still req	planati sample t uired to	ion (Pl he first sample	lease note that if storm event, you e 2 storm events)	
	3.	How ma	any storm	n water dischar	ge locations are a	t your facility?	2_7						

4.	For san	each stor	m ever each of	t samp the fac	led, dio cility's' :	d you co storm w	ollect and ater disc	d analyz charge lo	e a ocations?		YES,	go to It	em E.6	\boxtimes	NO
5.	Wa with	s sample on Section E	collectio 3.7.d of	on or ar the Ge	nalysis eneral l	reduce Permit?	d in acco	ordance			YES	\square	NO, atta	ich exp	lanation
	lf "ነ that	YES", atta t two or mo	ch doc ore dra	ument a nage a	ation s reas a	supporti re subsi	ng your o tantially i	determir identical	ation						
	Dat	e facility's	draina	ge area	as were	e last ev	aluated	05/2	23/2013						
6.	We	re <u>all</u> sam	oles co	llected	during	the first	hour of	dischar	ge?	\boxtimes	YES		NO, atta	ich exp	lanation
7.	Wa wor	s <u>all</u> storm king days	water withou	samplir t a stori	ng prec m wate	ceded b er discha	y three (arge?	3)		\boxtimes	YES		NO, atta	ich exp	lanation
8.	We tem	re there ar	ny disc ored oi	narges contai	of stor ned?(m watei (such as	r that had s from a	d been pond)			YES	\square	NO, go t	o Item I	E.10
9.	Did con (or	you collec atained sto one storm	ct and a rm wat event	analyze er disch if you cl	sampl narges hecked	les of te from tw d item D	mporaril o storm .2.i or iii	y stored events? . above)	or		YES		NO, atta	ich exp	lanation
10. Section B.5. of the General Permit requires you to analyze storm wa (TSS), Specific Conductance (SC), Total Organic Carbon (TOC) or (be present in storm water discharges in significant quantities, and a General Permit					e storm wat (TOC) or C es, and ar	er san)il and nalytica	nples fo Grease al parar	or pH, ⁻ e (O&C meters	Total Sus 6), other p listed in	pended ollutant Fable D	Solids s likely to of the				
	a.	Does Tat related to	ole D c o your f	ontain a acility's	any ado SIC co	ditional ode(s)?	paramet	ers		\square	YES		NO, Go	to Item	E.11
	b.	Did you a applicabl	analyze e parai	all stor neters l	rm wat listed ii	er samp n Table	bles for tl D?	he		\square	YES		NO		
	C.	If you did applicabl following	not an e Table reasor	alyze a e D para is:	III storn ameter	n water s, chec	samples k one of	s for the the							
	In prior sampling years, the parameter(s) have not been detected in significant quantities from two consecutive sampling events. Attach explanation								om two						
			The p discha	aramet arges in	er(s) is n signifi	s not like icant qu	ely to be antities l	present based u	in storm w pon the fac	ater di ility op	scharg erator'	es and s evalu	authorize	ed non-s t tach e x	storm water cplanation
			Other	Attac	h exp	lanatio	า								
11.	For	each stor	m ever	t samp	led, att	tach a c	opy of th	ne labora	atory analy	tical re	ports a	nd rep	ort the sa	mpling	and analysis

- lysis iy results using **Form 1** or its equivalent. The following must be provided for each sample collected:
 - Date and time of sample collection ٠
 - Name and title of sampler ٠
 - Parameters tested ٠
 - Name of analytical testing laboratory Discharge location identification •
 - •

- Testing results ٠
- Test methods used ٠
- Test detection limits ٠
- Date of testing ٠
- Copies of the laboratory analytical results •

F. QUARTERLY VISUAL OBSERVATIONS

1. Authorized Non-Storm Water Discharges

Section B.3.b of the General Permit requires quarterly visual observations of all authorized non-storm water discharges and their sources.

a. Do authorized non-storm water discharges occur at your facility?

 \boxtimes

YES	
I IEO	

NO Go to Item F.2

b. Indicate whether you visually observed all authorized non-storm water discharges and their sources during the quarters when they were discharged. Attach an explanation for any "NO" answers. Indicate "N/A" for quarters without any authorized non-storm water discharges.

July-September	YES	NO	🖂 N/A	October-December	YES	NO	🔀 N/A
January-March	YES		🖂 N/A	April-June	YES		🛛 N/A

- c. Use **Form 2** to report quarterly visual observations of authorized non-storm water discharges or provide the following information:
 - i. name of each authorized non-storm water discharge
 - ii. date and time of observation
 - iii. source and location of each authorized non-storm water discharge
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location
 - v. name, title, and signature of observer
 - vi. **any** new or revised BMPs necessary to reduce or prevent pollutants in authorized non-storm water discharges. Provide new or revised BMP implementation date.

2. Unauthorized Non-Storm Water Discharges

Section B.3.a of the General Permit requires quarterly visual observations of all drainage areas to detect the presence of unauthorized non-storm water discharges and their sources.

a. Indicate whether you visually observed all drainage areas to detect the presence of unauthorized non- storm water discharges and their sources. Attach an explanation for any "NO" answers.

July-September	🛛 YES 🗌 NO	October-December	
January-March		April-June	

b. Based upon the quarterly visual observations, were any unauthorized non-storm water discharges detected?

NO Go to Item F.2.d

	YES
--	-----

c. Have each of the unauthorized non-storm water discharges been eliminated or permitted?

 $|\times|$

YES

NO Attach explanation

- d. Use **Form 3** to report quarterly unauthorized non-storm water discharge visual observations or provide the following information:
 - i. name of each unauthorized non-storm water discharge
 - ii. date and time of observation
 - iii. source and location of each unauthorized non-storm water discharge
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location
 - v. name, title, and signature of observer
 - vi. **any** corrective actions necessary to eliminate the source of each unauthorized non-storm water discharge and to clean impacted drainage areas. Provide date unauthorized non-storm water discharge(s) was eliminated or scheduled to be eliminated.

G. MONTHLY WET SEASON VISUAL OBSERVATIONS

Section B.4.a of the General Permit requires you to conduct monthly visual observations of storm water discharges at all storm water discharge locations during the wet season. These observations shall occur during the first hour of discharge or, in the case of temporarily stored or contained storm water, at the time of discharge.

 Indicate below whether monthly visual observations of storm water discharges occurred at <u>all</u> discharge locations. Attach an explanation for any "NO" answers. Include in this explanation whether any eligible storm events occurred during scheduled facility operating hours that did not result in a storm water discharge, and provide the date, time, name and title of the person who observed that there was no storm water discharge.

- 2. Report monthly wet season visual observations using **Form 4** or provide the following information:
 - a. date, time, and location of observation
 - b. name and title of observer
 - c. characteristics of the discharge (i.e., odor, color, etc.) and source of any pollutants observed
 - d. **any** new or revised BMPs necessary to reduce or prevent pollutants in storm water discharges. Provide new or revised BMP implementation date.

ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION (ACSCE)

H. ACSCE CHECKLIST

Section A.9 of the General Permit requires the facility operator to conduct one ACSCE in each reporting period (July 1-June 30). Evaluations must be conducted within 8-16 months of each other. The SWPPP and monitoring program shall be revised and implemented, as necessary, within 90 days of the evaluation. The checklist below includes the minimum steps necessary to complete a ACSCE. Indicate whether you have performed each step below. **Attach an explanation for any "NO" answers.**

- 1. Have you inspected all potential pollutant sources and industrial activities areas? XES NO The following areas should be inspected:
 - areas where spills and leaks have occurred during the last year
 - outdoor wash and rinse areas
 - process/manufacturing areas
 - loading, unloading, and transfer areas
 - waste storage/disposal areas
 - dust/particulate generating areas
 - erosion areas

- building repair, remodeling, and construction
- material storage areas
- vehicle/equipment storage areas
- truck parking and access areas
- rooftop equipment areas
- vehicle fueling/maintenance areas
- non-storm water discharge generating areas

2.	Have you reviewed your SWPPP to assure that its BMPs address existing potential pollutant sources and industrial activities areas?	YES	NO
3.	Have you inspected the entire facility to verify that the SWPPP's site map is up-to-date? The following site map items should be verified:	YES	

- facility boundaries
- outline of all storm water drainage areas
- areas impacted by run-on
- storm water discharges locations
- storm water collection and conveyance system
- structural control measures such as catch basins, berms, containment areas, oil/water separators, etc.

	4.	Have you reviewed all General Permit compliance records g since the last annual evaluation?	generat	ed	YES	NO
		The following records should be reviewed:			_	_
		 quarterly authorized non-storm water discharge visual observations monthly storm water discharge visual observation records of spills/leaks and associated clean-up/response activities 	• •	quarterly unauth visual observation Sampling and A preventative ma maintenance rec	norized non-stor ons nalysis records intenance inspe cords	m water discharge
	5.	Have you reviewed the major elements of the SWPPP to as compliance with the General Permit?	sure		YES	NO
		The following SWPPP items should be reviewed:				
		 pollution prevention team list of significant materials description of potential pollutant sources 	•	assessment of p identification and implemented for	ootential pollutar d description of each potential	nt sources the BMPs to be pollutant source
	6.	Have you reviewed your SWPPP to assure that a) the BMPs in reducing or preventing pollutants in storm water discharge non-storm water discharges, and b) the BMPs are being imp	s are a es and plemen	dequate authorized ted?	X YES	NO
		 good housekeeping practices spill response employee training erosion control quality assurance 	• • •	preventative ma material handlin waste handling/s structural BMPs	intenance g and storage p storage	ractices
	7.	Has all material handling equipment and equipment needed implement the SWPPP been inspected?	l to		YES	NO
I.	<u>AC:</u> The	SCE EVALUATION REPORT e facility operator is required to provide an evaluation report th	hat inclu	udes:		
	• •	identification of personnel performing the evaluation the date(s) of the evaluation necessary SWPPP revisions	•	schedule for imp any incidents of corrective actior	blementing SWF non-compliance ns taken	PPP revisions e and the
	Use	e Form 5 to report the results of your evaluation or develop a	n equiv	alent form.		
J.	AC	SCE CERTIFICATION				
	The con	e facility operator is required to certify compliance with the Ind npliance, both the SWPPP and Monitoring Program must be r	dustrial up to da	Activities Storm V ate and be fully in	Vater General P plemented.	ermit. To certify
	Bas Acti	sed upon your ACSCE, do you certify compliance with the Ind ivities Storm Water General Permit?	dustrial		YES	NO
	lf yo Indi	ou answered "NO" attach an explanation to the ACSCE Eva ustrial Activities Storm Water General Permit.	aluation	Report why you	are not in compl	liance with the

ATTACHMENT SUMMARY

Answer the questions below to help you determine what should be attached to this annual report. Answer NA (Not Applicable) to questions 2-4 if you are not required to provide those attachments.

1.	Have you attached Forms 1,2,3,4, and 5 or their equivalent?	YES (Mandatory)		
2.	If you conducted sampling and analysis, have you attached the laboratory analytical reports?	YES	NO	🗌 NA
3.	If you checked box II, III, IV, or V in item D.2 of this Annual Report, have you attached the first page of the appropriate certifications?	YES	NO	🛛 NA
4.	Have you attached an explanation for each "NO" answer in items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J?	YES	NO	🗌 NA

ANNUAL REPORT CERTIFICATION

I am duly authorized to sign reports required by the INDUSTRIAL ACTIVITIES STORM WATER GENERAL PERMIT (see Standard Provision C.9) and I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those person directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature:	bernn	Date: June 28, 2013	
	0		

Title: PG&E Topock Site Manager

Form 1 Storm Water Sampling Analytical Results

FORM 1-SAMPLING & ANALYSIS RESULTS

FIRST STORM EVENT

If analytical results a the numerical value o If you did not analyzo NAME OF PERSON COL	re less than the detec of the detection limit (e for a required param LECTING SAMPLE(tion limit (or non dete example: <.05) neter, do not report "0" S):Joe Aide	ctable), she	ow the value leave the a	e as less ti ppropriate I <u>M-3 Indu</u>	han • box blank strial Tecl	• (• hnician	When meters Make	analys s, etc.) additio S	is is do , indica nal co IGNAT	one us ate "PA pies of FURE:	ing po " in the this fo	ortable ne apr orm a	e analy propria s nece	ysis (s te tes essary	t meth	s porta od us	able p ed bo	H mete x.	ərs, S(С
	-											Û					ang an air	n an			
							P	NAL	YTIC First	AL R	ESU m Eve	LTS ent						Z			
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME			BASIC P	ARAMETE	ERS	Ę			от	HER	PARA	METI	ERS		ş	emán		2,	sel
Example: NW Out Fall	COLLECTION	STARTED	PH	TSS	SC	O&G	тос	2510	ua	Juic	Line	inn	~	2	ind.	4	lent miu	AL D	de	ani G	ä
SW-2 (IM-3 Treatment Facility	<u>10/11/2012</u> 07:00 X AM	06:00 X AM	8.66	769	112		9.46	I Mayo	H ND	E 13,2	F. Coli	0247 87.8	54.3	D Merce	2 Seler	e Silve	N Texas	1420 341	a Cyen	D Amm	N TPH
at entrance gate)																					
																				er- contract subscription (1999	
																				a post de se de se	
TEST REPORTING			pH Units	mg/l	umho/ cm	mg/l	mg/l	m 2/	119/1	Ng	Mg;	May	149/	m3/	M3/1	My	11/1	my	mo	m3/	43%
TEST METHOD DE	TECTION LIMIT:			10.0	2.00		0.300	0,50	30,0	1.0	1.0	1.0	1.0	1.0	5.0	5.0	0.20	10.0	0,010	0,50	500
TEST METHOD US	ED:		57M 4500HB	5M 2540D	E120.1		SM 5310C	E 200.7	E 200-7	E 200.8	E 201.8	E 200,8	E 200.8	E 200,3	E 201,8	E 200.8	E 218,6	E 410,4	4500 CN	4500 NH3D	3015 -M
ANALYZED BY (SE	LF/LAB):	LAB-									***			apple	Cark		hate.				2
TSS - Total Suspended S	Solida	SC - Spec	ific Conduc	ctance		0&G - C	n & Greas	e			101	J - 10	tal Ur	yanic	Carbo	111	NU-	- NGH	Vere	cter	п.,

(below reporting limit)

SIDE A

Form 2 Quarterly Visual Observations of Authorized Non-Storm Water Discharges

ANNUAL REPORT

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

Quarterly dry weather visual observations are required of each authorized NSWD.

.

 Observe each authorized NSWD source, impacted drainage area, and discharge location. Authorized NSWDs must meet the conditions provided In Section D (pages 5-6), of the General Permit.

SIDE A

Make additional copies of this form as necessary.

QUARTER: JULY-SEPT. DATE: <u>9 / 9 / 12</u>	Observers Name: CKnight Title: Supuvilsor Signature: CKuight	VES WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER? NO this form,	e
QUARTER: OCTDEC. DATE: <u>11 / 26/12.</u>	Observers Name: <u>C.tunq Ut</u> Title: <u>Supu viso</u> Signature: <u>C.tury</u> t	VES WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER? NO this form.	e
QUARTER: JANMARCH DATE: 3 125113	Observers Name: South aborned Title: Project Manager Signature: Scutt Rowned	VES WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER? NO this form.	e
QUARTER: APRIL-JUNE DATE: <u>5 130113</u>	Observers Name: Ryan Phelp3 Title: lead Op Signaturo:	WERE ANY AUTHORIZED NSWDs DISCHARGED DURING THIS QUARTER? NO	6

2.2

.

ANNUAL REPORT

2)

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

DATE /TIME OF OBSERVATION	SOURCE AND		DESCRIBE AL	UTHORIZED NSWD	DESCRIBE ANY REVISED OR NEW
OBOLINATION	AUTHORIZED	NSWD	Indicate whether authori	zed NSWD is clear, cloudy, or	BMPs AND PROVIDE THEIR IMPLEMENTATION DATE
	NSWD		or an oil sheen, has odors, etc.		
	EXAMPLE: Air conditioner Units	EXAMPLE:	At the NSWD	At the NSWD Drainage	
	on Building C	condensate	Source	Area and Discharge Location	
//					
AM					x
	r.				
//_					
: □AM □PM					
//_					
[] AM					
: □AM □ PM					
((ers	(

SIDE B

Form 3 Quarterly Visual Observations of Unauthorized Non-Storm Water Discharges

ANNUAL REPORT

FORM 3-QUARTERLY VISUAL OBSERVATIONS OF UNAUTHORIZED NON-STORM WATER DISCHARGES (NSWDs)

- Unauthorized NSWDs are discharges (such as wash or rinse waters) that do not meet the conditions provided in Section D (pages 5-6) of the General Permit.
- · Quarterly visual observations are required to observe current and detect prior unauthorized NSWDs.
- Quarterly visual observations are required during dry weather and at all facility drainage areas.
- · Each unauthorized NSWD source, impacted drainage area, and discharge location must be identified and observed.
- Unauthorized NSWDs that can not be eliminated within 90 days of observation must be reported to the Regional Board in accordance
 with Section A.10.e of the General Permit.
- Make additional copies of this form as necessary.

:

QUARTER: JULY-SEPT.	Observers Name: C. Kuight	WERE UNAUTHORIZED NSWDs OBSERVED?	TYES SNO	If YES to either question,
9/9/12 10:20 DAM	Signature: (*. KuegUt	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?		reverse side.
QUARTER: OCTDEC. DATE/TIME OF OBSERVATIONS	Observers Name: <u>C. Kuicht</u> Title: <u>Supuvisos</u>	WERE UNAUTHORIZED NSWDs OBSERVED?	TYES MO	If YES to either question, complete
11 /26/12 6:17 DAM	Signature:	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	TYES NO	reverse side.
QUARTER: JANMARCH DATE/TIME OF OBSERVATIONS	Observers Name: Scott OlDonnell Title: Project Manager	WERE UNAUTHORIZED NSWDs OBSERVED?	VES NO	If YES to either question, complete
3 125/13 1:30 DPM	Signature: Scerth Reddiccif	PRIOR UNAUTHORIZED NSWDs?	TINES ANO	reverse side.
QUARTER: APRIL-JUNE DATE/TIME OF OBSERVATIONS	Observers Name: Ryan Phelps	WERE UNAUTHORIZED NSWDs OBSERVED?	TYES NO	If YES to either question, complete
<u>5.130/13 14:40</u> Д РМ	Signature:	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?		reverse side.

ANNUAL REPORT

SIDE B

FORM 3 QUARTERLY VISUAL OBSERVATIONS OF <u>UNAUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDs)

):2

OBSERVATION	NAME OF	SOUDCE AND			
DATE	LINALITHOPIZED	SOURCE AND	DESCRIBEUNA	DESCRIBE CORRECTIVE	
(EDOM	UNAUTHORIZED	LOCATION	CHARAC	ACTIONS TO ELIMINATE	
	I NSWD	OF	Indicate whether unauthor	rized NSWD is clear, cloudy,	UNAUTHORIZED NSWD AND
REVERSE SIDE)		UNAUTHORIZED	discolored, causing stains; co	ontains floating objects or an oil	TO GLEAN IMPACTED
1		NSWD	sheen, ha	s odors: etc.	DRAINAGE AREAS
				1	PPOVIDE UNAUTUODIZED
	EXAMPLE:	EXAMPLE:	1		NOVIDE UNAUTION DATE
	Vehicle Wash	NW Corner of	AT THE UNAUTHORIZED	AT THE UNAUTHORIZED	NSWD ELIMINATION DATE.
	Water	Parking Lot	NSWD SOURCE	NSWD AREA AND	8
				DISCHARGELOCATION	
			and the second		
]	
		1			
: 🗆 AM					
				1	
11					
					21
					· · · · · · · · · · · · · · · · · · ·
: 🗆 🖂 🖂 🖂				1	
□ PM					
_					
11					
				1	
· □ Δ84		15		2	
		-		i i i	

Form 4 Monthly Visual Observations of Storm Water Discharges

ANNUAL REPORT FORM 4-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.
- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation.
 Make additional copies of this form as necessary.
- Visual observations must be conducted during the first hour of discharge at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed at the time of discharge.
- Until a monthly visual observation is made, record any eligible storm events that do not result in a storm
 water discharge and note the date, time, name, and title of who observed there was no storm water
 discharge.

			C. D.C.					1
Observation Date: October 11, 2012.	Drainage Location Description	SW4750+2	SW12 5W-1	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: JOE ADE	Observation Time	0615						· · · · ·
Title: ZNDUSTEINE TECH	Time Discharge Began	0630	NO DISENA	eges —				~~>
Signature	Were Pollutants Observed (If yes, reverse side)	ES/NO	YES I	YES/	YES /	YES /	YESI	YES / 0
Observation Date: November 26,2012	Drainage Location Description	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: C. Kught	Observation Time	N	CIANK	Aur	ich tu		1/	>
Title: Supervisor		No	Events		egn m	£		
Signature: Cilcuels-	Time Discharge Began Were Pollutants Observed (If yes, reverse side)	YES / NO	YES / NO	YES / NO	YES / NO	YES / NO	YES / NO	YES / NO
Observation Date: Docember 19,2012	Drainage Location Description	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: C.ILWQW	Observation Time	NO	Runoff	through	e the	mouth	-	>
Title: Super VISO-	Time Discharge Regard			1				
Signature: C. Kulleh-	Were Pollutants Observed (If yes, reverse side)	YES D	YES/NO	YES /	YES / 10	YES/	YES /	YES /
Observation Date: January 2 6, 203	Drainage Location Description	SW-1	SW-2	sw-3	SW-4	SW-5	SW-6	SW-7
Observers Name: George Glona	Observation Time	0100						
Title Frd. Tech	Time Discharge Began	Nodsch	ree				·	
Signature Satt 28 Jul	Were Pollutants Observed (If ves, reverse side)	YES NO)	YES	YES NO)	YES (NO)	YES INO	YES NO	YES NO

Note: See Annual Storm Water Report Attachment B for a summary of storm events including volumes: from the IM-3 onsite rain gauge. AR 6/13/13 SIDE A

ż

う うつうしつ うつしつ こ

ANNUAL REPORT

FORM 4-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

۲ ک

יוידיוייירר יכליליי

DATE/TIME OF OBSERVATION (From Reverse Side)	DRAINAGE AREA DESCRIPTION	DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS	IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS	DESCRIBE ANY REVISED OR NEW BMPs AND THEIR DATE OF IMPLEMENTATION
	EXAMPLE: Discharge from material storage Area #2	floating objects or an oil sheen, has odors, etc.	EXAMPLE: Oil sheen caused by oil dripped by trucks in vehicle maintenance area.	
10/11/12	SW-2 FRONTOATE	CLOUDY - FLOATING MATTERIA	NO ODER	BB 6/13/13
<u>∅63</u> 0 🕅 AM □ PM		GREY (BROWN	NO DIL SHEEN	Attachment C for Response to Sample Attachment C for Response to Sample Results The ham and withes at west promotor
_1_1_				were re-constructed May 27-31, 2013.
_: [] AM [] PM				
//_				
[] AM [] PM				
AM PM				
AM				
(((

SIDE B

ANNUAL REPORT FORM 4 (Continued)-MONTHLY VISUAL OBSERVATIONS OF

discharge.

STORM WATER DISCHARGES

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31. .
- Visual observations must be conducted during the first hour of discharge . at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed . at the time of discharge.

- Indicate "None" In the first column of this form if you did not conduct a monthly visual observation. ٠
- Make additional copies of this form as necessary. . Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water

SIDE A

Observation Date: February 28 2013	Drainage Location Description	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: Scott o Donnell	Observation Time	No	runoff	events				
Tille: Project Manager	Time Discharge Began	100	discha	rges-				\rightarrow
Signature. Saud 1/02.	Were Pollutants Observed (If yes, reverse side)	YES / NO						
Observation Date: March 26, 2013	Drainage Location Description	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: Soott Oconnel	Observation Time		NO RUN	hoff e	vents			
Tills/ rojact Nanager	Time Discharge Began	No	discha	rses -				\rightarrow
Signature ScattRould	Were Pollutants Observed (If yes, reverse side)	YES / NO						
Observation Date: April 23, 20/3	Drainage Location Description	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: Dcott-OlDonnel	Observation Time	1545	NOF	moff	events			
Title Toject Manager	Time Discharge Began		No discl	larges				
Signature: Scott RODull	Were Pollutants Observed (If yes, reverse side)	YES / NO						
Observation Date: May 30, 2013	Drainage Location Description	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW-7
Observers Name: Ryan Phelps	Observation Time	14:40	No	Run	IL EVEN	ts		
Tille: Lead Op.	Time Discharge Began		A	Disch	Arces			
Signature:	Were Pollutants Observed (If yes, reverse side)	YES / NO	YES/NO					
					2			

1.7

יויבויוי וירב י טעטע

ANNUAL REPORT

*с.*ч

งากก่กา าาเมเพรมง

FORM 4 (Continued)-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

SIDE B

DATE/TIME OF OBSERVATION (From Reverse Side)	DRAINAGE AREA DESCRIPTION	DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS	IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS	DESCRIBE ANY REVISED OR NEW BMPS AND THEIR DATE OF IMPLEMENTATION
	EXAMPLE: Discharge from material storage Area #2	Indicate whather storm water discharge is clear, cloudy, or discolored; causing staining; containing floating objects or an oil sheen, has odors, etc.	EXAMPLE: Oil sheen caused by oil dripped by trucks in vehicle maintenance area.	
//_				
AM PM				
AM PM			<i>A</i>	
//_				
AM PM				
//				
:[] AM PM				
_/				
AM PM		20		1
		(

Form 5 Annual Comprehensive Site Compliance Evaluation

FORM 5-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: 5/23/12

POTENTIAL POLLUTANT

(as identified in your SWPPP)

Good housekeeping

Observation while loading

Containment structures

POTENTIAL POLLUTANT

MW-20 Bench BMPs:

trucks

Inspections

.

.

.

INSPECTOR NAME: Andrew Redmond TITLE: Environmental Compliance Specialist SIGNATURE: Describe deficiencies in BMPs or BMP Describe additional/revised BMPs or If yes, to either corrective actions and their date(s) of implementation SOURCE/INDUSTRIAL ACTIVITY AREA YES HAVE ANY BMPs NOT BEEN question, complete implementation NO X FULLY IMPLEMENTED? the next two columns of this form ARE ADDITIONAL/REVISED BMPs NECESSARY? Describe additional/revised BMPs or Describe deficiencies in BMPs or BMP If yes to either corrective actions and their date(s) of implementation

(as identified in your SWPPP) Access Road Laydown Area BMPs:	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?		question, complete the next two columns of this form	mpenentation	implementation
 Good housekeeping Inspections Wattles to prevent run-on/ run-off 	ARE ADDITIONAL/REVISED BMPs NECESSARY?				
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	∏YES ★ NO	If yes, to either question, complete the next two columns of this	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
BMPs:			form		
 Good housekeeping Inspections No storage of potential pollutants 	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□ _{YES} ⊠ NO			
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) IM-3 Treatment Facility BMPs: • Good housekeeping • Inspections	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	∏YES ⊅NO	If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation The October 11, 2012 storm event caused flash-flood type storm water run-on at the	Describe additional/revised BMPs or corrective actions and their date(s) of implementation See Attachment C for a summary of responses to the results of the October
 Roof Containment Structures Berms/Wattles Portable drip prevention pads 	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□ _{YES} ☑ NO		west perimeter, overflowing the dirt berm and straw wattles.	11, 2012 storm water sampling results. The dirt berm and straw wattles at the west perimeter were re-constructed May 27- May 31, 2013.

SIDE B

FORM 5 (Continued)-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

EVALUATION DATE: / / INS	SPECTOR NAME:		TITLE:	:: SIGNATURE:			
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	∏YES NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
	ARE ADDITIONAL/REVISED BMPs NECESSARY?		form				
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	□YES □NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□ _{YES} □no	form				
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	□YES □NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
	ARE ADDITIONAL/REVISED BMPs NECESSARY?		form				
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	□YES □NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	□ _{YES} □NO	form				
			l				

Attachment A Response Explanations to Annual Report Form

PG&E Topock IM-3 Groundwater Treatment System WDID No. 7 36I 019443

Attachment A Response Explanations for "NO" Answers for Questions E.1, E.5, F.1.a, and G.1:

E.1 – Only one storm event occurred during the 2012 – 2013 wet season that resulted in discharge of storm water from the site, and that storm resulted in discharge from only one of the seven potential storm water discharge locations; therefore, only one storm water sample event occurred.

E.5 - Only one storm event occurred during the 2012 – 2013 wet season that resulted in discharge of storm water from the site, and that storm resulted in discharge from only one of the seven potential storm water discharge locations; therefore, only one storm water sample event occurred.

F.1.a – IM-3 has periodic discharge of air conditioning condensate to the ground surface, but visual observations confirm that it did not result in a discharge from the site.

G.1 - Monthly visual observations occurred at all discharge locations during the wet season (see Form 4); however, only one storm event occurred during the 2012 – 2013 wet season that resulted in discharge of storm water from the site, and that storm resulted in discharge from only one of the seven potential storm water discharge locations.

For rainfall totals from storm events that *did not* result in a storm water discharge see Attachment B.

Attachment B 2012 – 2013 Wet Season Storm Event Records

PG&E Topock Interim Measures No. 3 Groundwater Treatment System, WDID No. 7 36I 019443

Attachment B

Storm Events, During October 1, 2012 to May 31, 2013 Wet Season

		RAINFALL	Visual Observations	Discharge	
DATE	TIME	AMOUNT *(inches)	Conducted? (Yes/No)	Observed? (Yes/No)	NAME & TITLE
Oct. 11, 2012	6:30 AM	3.5	Yes	Yes	Joe Aide - Industrial Tech
November 2012 did not have					
any eligible storm water events			Yes	No	Chris Knight - Lead Operator
Dec. 14, 2012		1	Yes	No	George Gloria - Industrial Tech
Dec. 15, 2012		0.5	Yes	No	George Gloria - Industrial Tech
Jan. 26, 2013		0.25	Yes	No	George Gloria - Industrial Tech
Feb. 20, 2013		0.25	Yes	No	Joe Aide - Industrial Tech
Feb. 21, 2013		0.25	Yes	No	Kyle Villamor - Industrial Tech
Mar. 9, 2013		0.1	Yes	No	George Gloria - Industrial Tech
April 2013 did not have any					
eligible storm water events			Yes	No	Scott O'Donnell - Project Manager
May 2013 did not have any					
eligible storm water events			Yes	No	Ryan Phelps - Lead Operator

* Rainfall Amount from IM-3 onsite rain gauge recorded each day by plant personnel on IM-3 Facility Process Monitoring Checklist

Attachment C Response to Results of October 11, 2012 Storm Water Sampling

PG&E Topock IM-3 Groundwater Treatment System WDID No. 7 36I 019443

Attachment C Response to Results of October 11, 2012 Storm Water Sampling

Only one storm event occurred during the 2012 – 2013 wet season that resulted in discharge of storm water from the site, and that storm resulted in discharge from only one of the seven potential storm water discharge locations; therefore, only one storm water sample was collected.

The October 11, 2012 storm event was a large volume storm event in a short period of time that caused flash-flood type storm water to run onto the IM-3 pad from the west, overwhelming the berm and wattles best management practices (BMPs). Observations indicate this run-on then flowed northwest across the site gravel to the SW-2 discharge point.

Samples of the discharge from SW-2 collected on October 11, 2012 were analyzed for pH, total suspended solids (TSS), specific conductivity (EC), total organic carbon (TOC), magnesium, iron, arsenic, cadmium, chromium, hexavalent chromium, lead, mercury, selenium, silver, chemical oxygen demand (COD), cyanide, ammonia, and TPH-Diesel.

The analytical results from the SW-2 samples reported levels of magnesium (5.530 mg/L), COD (75.1 mg/L), and TSS (157 mg/L) that exceeded their respective numeric action levels (NALs) in the 2012 draft California Industrial General Storm Water Permit (IGP). The current 1997 IGP does not contain NALs or benchmark levels.

Review by the Storm Water Pollution Prevention Team identified the following potential reasons magnesium, COD, and TSS were elevated in the sample results:

- High velocity storm water run-on from the surrounding desert environment could result in elevated TSS by transporting suspended solids from offsite sources.
- Dust from the gravel area within the IM-3 footprint could add to the overall TSS values in the storm water results. Watering the access road and gravel area during the dry season is a site BMP for dust suppression.
- Magnesium is the eighth most abundant element in the Earth's crust, and native desert soils contain elevated concentrations of naturally occurring magnesium. The elevated concentration of suspended solids in the native desert soil includes high concentrations of cations (highly water soluble) including calcium, magnesium, potassium and iron.
- The COD result could indicate bacteria (organics). Organics could be present in storm water discharge from drips during the periodic unloading of the sewage holding tank by vacuum truck, if such drips occurred, or an anomalous source.
- Alternatively, the COD result could be an over-calculation of organics due to the potential inclusion of inorganics reported by the laboratory due to dichromate reduction:
 - In environmental chemistry, the COD test is commonly used to indirectly measure the amount of organic compounds in water. However, COD also measures oxygen demand from inorganics such as chloride, sulfide and ferrous iron. Therefore, detections of COD are not definitive indicators of organic compounds. The COD analysis is based on the

principles of the redox reaction (one reagent is oxidized and the other is reduced). The redox reaction analysis starts when an oxidant (e.g., potassium dichromate) of known concentration is added to a sample (enough to allow excess potassium dichromate after the reaction). After a refluxing digestion step (reaction step) in the process of oxidizing the organic and inorganic substances found in the water sample, potassium dichromate is reduced. The initial concentration of organic substances in the sample is calculated based on the remaining amount of potassium dichromate. However, because the COD analysis does not discriminate between organic and inorganic oxidizable materials, any oxidizable inorganic material in the sample can cause an over-calculation of organics. Among the most likely inorganic candidates are chloride, sulfide and ferrous iron. Because of the prevalence of chloride and the possible presence of both sulfide and ferrous iron the COD results may not be a reliable indicator of the presence of organic compounds.

• Naturally occurring fine soil particles or fines that may be associated with the gravel brought onsite could potentially contribute to TSS and magnesium.

The following actions were identified by the Storm Water Pollution Prevention Team to further evaluate and address potential sources of magnesium, TSS, and COD in storm water:

- To reduce the potential for run-on during heavy rainfall events the dirt berm and straw wattles at the west perimeter were re-constructed May 27- May 31, 2013.
- During a storm event large enough to create surface flows, a "background" storm water sample will be collected to evaluate whether some or all of the elevated concentrations are due to background conditions present in run-on to the site. A sample of IM-3 site run-on will be collected if a storm event causes run-on. If run-on does not occur, a sample will be collected from the best available off-site location as close as possible to the west side of the IM-3 facility.
- During storm water discharge sampling, in addition to unfiltered analysis, a filtered sample will also be analyzed for comparison to evaluate the potential contribution of TSS, magnesium and COD from particulate and non-particulate sources. The filtered sample will be analyzed for dissolved arsenic, cadmium, chromium, iron, lead, magnesium, mercury, selenium, silver, TSS and COD. Identification of the relative contributions from particulate and non-particulate sources will inform the selection of additional BMPs, if appropriate.

Attachment 8 Laboratory Analyses Report for October 11, 2012 Storm Water Sampling

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

October 26, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: REVISED CASE NARRATIVE PG&E TOPOCK IM3PLANT-SW-002, STORMWATER MONITORING PROJECT, TLI NO.: 804303

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-SW-002 stormwatermonitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody October 11, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the early sampling time and late arrival, the sample for pH analysis by SM 4500-H B was analyzed past the method specific holding time.

Due to matrix interference, the results for Total Mercury by EPA 200.8 were analyzed at a dilution of 5x and reported as non-detect with a report limit that exceeded the contract required detection limit.

On October 25, 2012, Mr. Shawn Duffy requested that the sample ID be updated from SC-IM3-SW-002 to SC-IM3-SW-2-002 and he provided a revised chain-of-custody.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Hora Nassimi Manager, Analytical Services

Michael Alg

Michael Ngo Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: October 24, 2012

Laboratory No.: 804303

Collected: October 11, 2012

Received: October 11, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project

Project No.: 379209.01.02

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540D	Total Suspended Solids	Jenny Tankunakorn
SM 4500-H B	рН	Gautam Savani
EPA 410.4	Chemical Oxygen Demand	Mellisa Scharfe
SM 4500-CN	Cyanide	Mellisa Scharfe
SM 4500-NH3 D	Ammonia	Mellisa Scharfe
EPA 8015M	TPH-Diesel	Lance Scott
SM 5310 C	Total Organic Carbon	Jenny Tankunakorn
EPA 200.8	Total Metals	Bita Emami
EPA 200.7	Total Metals	Ethel Suico
EPA 218.6	Hexavalent Chromium	George Wahba

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

> Laboratory No.: 804303 Date Received: October 11, 2012 Revision 2; October 26, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Analytical Results Summary

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
804303-001	SC-IM3-SW-2-002	E120.1	NONE	10/11/2012	7:00	EC	112	umhos/cm	2.00
804303-001	SC-IM3-SW-2-002	E200.7	LABFLT	10/11/2012	7:00	Iron	ND	ug/L	20.0
804303-001	SC-IM3-SW-2-002	E200.7	NONE	10/11/2012	7:00	Magnesium	1.17	mg/L	0.500
804303-001	SC-IM3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Arsenic	13.2	ug/L	1.0
804303-001	SC-IM3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Cadmium	1.4	ug/L	1.0
804303-001	SC-IM3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Chromium	37.8	ug/L	1.0
804303-001	SC-IM3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Lead	54.3	ug/L	1.0
804303-001	SC-IM3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Mercury	ND	ug/L	1.0
804303-001	SC-IM3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Selenium	ND	ug/L	5.0
804303-001	SC-1M3-SW-2-002	E200.8	NONE	10/11/2012	7:00	Silver	ND	ug/L	5.0
804303-001	SC-IM3-SW-2-002	E218.6	LABFLT	10/11/2012	7:00	Chromium, Hexa∨alent	ND	ug/L	0.20
804303-001	SC-IM3-SW-2-002	E410.4	NONE	10/11/2012	7:00	Chemical Oxygen Demand	341	mg/L	10.0
804303-001	SC-IM3-SW-2-002	SM2540D	NONE	10/11/2012	7:00	Suspended Solids (Residue, Non-Filterable)	769	mg/L	10.0
804303-001	SC-IM3-SW-2-002	SM4500CN	NONE	10/11/2012	7:00	Cyanide	ND	mg/L	0.0100
804303-001	SC-IM3-SW-2-002	SM4500HB	NONE	10/11/2012	7:00	PH	8.66 J	pН	4.00
804303-001	SC-IM3-SW-2-002	SM4500NH3D	NONE	10/11/2012	7:00	Ammonia-N	ND	mg/L	0.500
804303-001	SC-IM3-SW-2-002	SM5310C	NONE	10/11/2012	7:00	Total Organic Carbon	9.46	mg/L	0.300
804303-001	SC-IM3-SW-2-002	SW8015-M	NONE	10/11/2012	7:00	TPH-Diesel	ND	ug/L	500

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 ppm will have two (2) significant figures. Result above or equal to 0.01 ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 20

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 10/26/2012

Laboratory No. 804303

Revised

Client: E2 Consulting Engineers, Inc. 155 Grand Avenue, Suite 800

Oakland, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project Project Number: 379209.01.02 P.O. Number: 379209.01.02 Release Number:

Samples Received on 10/11/2012 7-30-00 PM

		oumpies ne	ceived off	10/11/2012 7.30	J.00 PIV			
Field ID				Lab ID	Co	llected	Mat	rix
SC-IM3-SW-2-002				804303-001	10/11	/2012 07:00	Wat	er
Specific Conductivity	- EPA 120.1		Batc	h 10EC12B				
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
804303-001 Specific Condu	uctivity	umhos/cr	n 10/1:	2/2012	1.00	0.116	2.00	112
Method Blank	in a starte di s		dhaattea.		ant in the second			al a succession and
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	804229-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7310	Expected 7310	RPD Acce 0.00 0 - 1		Accepta 0 - 10	ince Range
Lab Control Sample								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 703	Expected 706	F	Recovery 99.6	very Acceptance R	
Lab Control Sample	Duplicate							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 706	Expected 706	R	ecovery 100.	Accepta 90 - 110	nce Range
MRCCS - Secondar	y							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 678	Expected 706	R	ecovery 96.0	Accepta 90 - 110	nce Range
MRCVS - Primary								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 975	Expected 998	R	ecovery 97.7	Accepta 90 - 110	nce Range
MRCVS - Primary								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 979	Expected 998	R	ecovery 98.1	Acceptar 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02

Page 3 of 20 Printed 10/24/2012

Chrome VI by EPA 218.	6		Batcl	10CrH12G			
Parameter		Unit	Ana	alyzed D	F MDL	RL	Result
804303-001 Chromium, Hex	avalent	ug/L	10/12	2/2012 16:16 1.0	0 0.00920	0.20	ND
Method Blank			e la 20 de como			n Alexandrea	
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND				
Duplicate						Lab ID =	804233-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 14.8	Expected 14.8	RPD 0.311	Accepta 0 - 20	ince Range
Low Level Calibration	Nerification	n Alexandra					
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.187	Expected 0.200	Recovery 93.4	Accepta 70 - 130	ince Range
Lab Control Sample							
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.86	Expected 5.00	Recovery 97.1	Accepta 90 - 110	nce Range
Matrix Spike						Lab ID =	804232-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.73	Expected/Added 1.80(1.00)	Recovery 92.8	Accepta 90 - 110	nce Range
Matrix Spike						Lab ID =	804232-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.82	Expected/Added 1.90(1.00)	Recovery 92.6	Accepta 90 - 110	nce Range
Matrix Spike						Lab ID =	804232-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 6.75	Expected/Added 6.90(5.00)	Recovery 97.0	Accepta 90 - 110	nce Range
Matrix Spike						Lab ID = {	804232-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 6.73	Expected/Added 6.92(5.00)	Recovery 96.2	Accepta 90 - 110	nce Range
Matrix Spike						Lab ID = 8	304232-005
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.58	Expected/Added 1.62(1.00)	Recovery 95.8	Acceptance Range 90 - 110	
Matrix Spike						Lab ID = 8	304232-006
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.67	Expected/Added 1.69(1.00)	Recovery 98.4	Acceptar 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

Report Continued

Client: E2 Consulting Er	ngineers, Ind	с. Р Р	roject Name: roject Numbe	PG&E Topock Pro r: 379209.01.02	oject	Page 4 of 20 Printed 10/24/2012
Matrix Spike						Lab ID = 804232-007
Parameter Chromium, Hexavalent Matrix Snike	Unit ug/L	DF 1.00	Result 7.37	Expected/Added 7.63(5.00)	Recovery 94.8	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 5.79	Expected/Added 6.00(5.00)	Recovery 95.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804232-009
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.86	Expected/Added 1.89(1.00)	Recovery 97.4	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804232-010
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.951	Expected/Added 1.00(1.00)	Recovery 95.1	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804232-011
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.08	Expected/Added 1.09(1.00)	Recovery 98.5	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804233-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.84	Expected/Added 1.91(1.00)	Recovery 92.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804233-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 6.36	Expected/Added 6.44(5.00)	Recovery 98.4	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804233-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.965	Expected/Added 1.00(1.00)	Recovery 96.5	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804233-005
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 6.95	Expected/Added 7.11(5.00)	Recovery 96.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804303-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.02	Expected/Added 1.06(1.00)	Recovery 96.7	Acceptance Range 90 - 110
MRCCS - Secondary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.86	Expected 5.00	Recovery 97.1	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.90	Expected 10.0	Recovery 99.0	Acceptance Range 95 - 105

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without of apparently identical or similar authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02 Page 6 of 20 Printed 10/24/2012

Metals by EPA 200.7, To	otal		Batch 101812A						
Parameter	n en	Unit	Ana	lyzed	DF	MDL	RL	Result	
804303-001 Magnesium		mg/L	10/18	/2012 16:25	1.00	0.0516	0.500	1.17	
Method Blank									
Parameter Magnesium	Unit mg/L	DF 1.00	Result ND						
Duplicate							Lab ID =	804246-001	
Parameter Magnesium	Unit mg/L	DF 1.00	Result 0.667	Expected 0.692	RPD Accepta 3.71 0 - 20		Accepta 0 - 20	nce Range	
Lab Control Sample									
Parameter Magnesium	Unit mg/L	DF 1.00	Result 1.78	Expected 2.00	Recovery 89.2		Accepta 85 - 115	nce Range	
Matrix Spike							Lab ID = 804246-001		
Parameter Magnesium	Unit mg/L	DF 1.00	Result 2.55	Expected/Add 2.69(2.00)	ded Recovery 93.0		Acceptance Range 75 - 125		
MRCCS - Secondary									
Parameter Magnesium	Unit mg/L	DF 1.00	Result 5.14	Expected 5.00	F	Recovery 103.	Accepta 95 - 105	nce Range	
MRCVS - Primary									
Parameter Magnesium	Unit mg/L	DF 1.00	Result 4.80	Expected 5.00	ł	Recovery 96.1	Accepta 90 - 110	nce Range	
MRCVS - Primary									
Parameter Magnesium	Unit mg/L	DF 1.00	Result 4.79	Expected 5.00	ł	Recovery 95.8	Accepta 90 - 110	nce Range	
Interference Check S	tandard A								
Parameter Magnesium	Unit mg/L	DF 1.00	Result 2.10	Expected 2.00	F	Recovery 105	Acceptai 80 - 120	nce Range	
Interference Check St	tandard A								
Parameter Magnesium	Unit mg/L	DF 1.00	Result 2.03	Expected 2.00	F	Recovery 102.	Acceptar 80 - 120	nce Range	
Interference Check S	tandard AB								
Parameter Magnesium	Unit mg/L	DF 1.00	Result 2.10	Expected 2.00	F	Recovery 105.	Acceptar 80 - 120	nce Range	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proverties authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02 Page 8 of 20 Printed 10/24/2012

Metals by EPA 200.8, To	otal		Batch	101612A			
Parameter		Unit	Ana	lyzed D	F MDL	RL	Result
804303-001 Arsenic		ug/L	10/16	/2012 15:10 5.0	00 0.265	1.0	13.2
Cadmium		ug/L	10/16	/2012 15:10 5.0	00 0.135	1.0	1.4
Selenium		ug/L	10/16	/2012 15:10 5.0	00 0.355	5.0	ND
Method Blank		dela del del					
Parameter	Unit	DF	Result				
Arsenic	ug/L	1.00	ND				
Cadmium	ug/L	1.00	ND				
Selenium	ug/L	1.00	ND				
Low Level Calibration	n Verification						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Arsenic	ug/L	1.00	0.208	0.200	104.	70 - 130)
Cadmium	ug/L	1.00	0.253	0.200	126.	70 - 130)
Selenium	ug/L	1.00	1.07	1.00	107.	70 - 130)
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Arsenic	ug/L	5.00	88.7	100.	88.7	85 - 115	5
Cadmium	ug/L	5.00	106.	100.	106.	85 - 115	
Selenium	ug/L	5.00	91.4	100.	91.4	85 - 115	5
Matrix Spike						Lab ID =	804303-001
Parameter	Unit	DF	Result	Expected/Addec	Recovery	Accepta	ance Range
Arsenic	ug/L	5.00	111.	113.(100.)	97.4	75 - 125	5
Cadmium	ug/L	5.00	107.	101.(100.)	106.	75 - 125	5
Selenium	ug/L	5.00	93.8	100.(100.)	93.8	75 - 125	5
Matrix Spike Duplica	te					Lab ID =	804303-001
Parameter	Unit	DF	Result	Expected/Addec	Recovery	Accepta	ance Range
Arsenic	ug/L	5.00	107	113.(100.)	93.8	75 - 125	5
Cadmium	ug/L	5.00	110.	101.(100.)	109.	75 - 125	5
Selenium	ug/L	5.00	92.6	100.(100.)	92.6	75 - 125	5
MRCCS - Secondary	na an Carl Maradana						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Arsenic	ug/L	1.00	18.6	20.0	92.8	90 - 110)
Cadmium	ug/L	1.00	20.7	20.0	104.	90 - 110)
Selenium	ug/L	1.00	19.1	20.0	95.5	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proventies authorization from Truesdail Laboratories.

Report Continued

Client: E2 Consulting Er	igineers, Ind	с. Р Р	roject Name: roject Numbe	PG&E Topo r: 379209.01.0	ck Project 2	Page 10 of 20 Printed 10/24/2012
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Selenium	ug/L	1.00	ND	0.00		
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Selenium	ug/L	1.00	ND	0.00		
Serial Dilution						Lab ID = 804303-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Arsenic	ug/L	25.0	13.8	13.2	4.59	0 - 10

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02

Page 11 of 20 Printed 10/24/2012

Metals by EPA 200.8, T	iotal	Batch 101712B						
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804303-001 Chromium		ug/L	10/17	/2012 18:25 5	5.00	0.195	1.0	37.8
Lead		ug/L	10/17	/2012 18:25 5	5.00	0.265	1.0	54.3
Mercury		ug/L	10/17	/2012 18:25 5	5.00	0.120	1.0	ND
Silver		ug/L	10/17	/2012 18:25 5	5.00 0.125		5.0	ND
Method Blank				· · ·				. Stationer
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Mercury	ug/L	1.00	ND					
Lead	ug/L	1.00	ND					
Silver	ug/L	1.00	ND					
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	ance Range
Chromium	ug/L	1.00	0.208	0.200	1	04.	70 - 130)
Mercury	ug/L	1.00	0.197	0.200	9	8.6	70 - 130)
Lead	ug/L	1.00	0.888	1.00	8	8.8	70 - 130)
Silver	ug/L	1.00	1.01	1.00	1	01	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	ance Range
Chromium	ug/L	5.00	102	100.	1	02	85 - 115	5
Mercury	ug/L	5.00	9.90	10.0	9	9.0	85 - 115	5
Lead	ug/L	5.00	100.	100.	1	00.	85 - 115	5
Silver	ug/L	5.00	89.5	100.	8	9.5	85 - 115	5
Matrix Spike							Lab ID =	804303-001
Parameter	Unit	DF	Result	Expected/Adde	ed Re	covery	Accepta	ance Range
Chromium	ug/L	5.00	150.	138.(100.)	1	12.	75 - 125	5
Mercury	ug/L	5.00	10.2	10.0(10.0)	1	02.	75 - 125	5
Lead	ug/L	5.00	160.	154.(100.)	1	06	75 - 125	5
Silver	ug/L	5.00	85.2	100.(100.)	8	5.2	75 - 125	5
Matrix Spike Duplica	ate						Lab ID =	804303-001
Parameter	Unit	DF	Result	Expected/Adde	ed Re	covery	Accepta	ince Range
Chromium	ug/L	5.00	148.	138.(100.)	1	10.	75 - 125	5
Mercury	ug/L	5.00	10.2	10.0(10.0)	1	02	75 - 125	5
Lead	ug/L	5.00	160.	154.(100.)	1	06.	75 - 125	5
Silver	ug/L	5.00	85.6	100.(100.)	8	5.6	75 - 125	5

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without point authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.		Project Name: Project Number:		PG&E Topock Pr 379209.01.02	oject	Page 13 of 20 Printed 10/24/2012
Interference Check Stan	dard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	20.4	20.0	102.	80 - 120
Mercury	ug/L	1.00	2.06	2.00	103.	80 - 120
Interference Check Stan	dard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Mercury	ug/L	1.00	2.10	2.00	105.	80 - 120
Lead	ug/L	1.00	ND	0.00		
Interference Check Stan	dard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Lead	ug/L	1.00	ND	0.00		
Interference Check Stan	dard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Silver	ug/L	1.00	20.8	20.0	104	80 - 120
Interference Check Stan	dard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Silver	ug/L	1.00	20.4	20.0	102.	80 - 120
Serial Dilution						Lab ID = 804303-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Chromium	ug/L	25.0	41.7	37.8	9.79	0 - 10
Lead	ug/L	25.0	56.2	54.3	3.40	0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02

Page 14 of 20 Printed 10/24/2012

EPA 8015M			Batch	710143				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804303-001 TPH as Diesel		ug/L	10/17	/2012 2	2.00	47.4	500.	ND
Method Blank								
Parameter	Unit	DF	Result					
TPH as Diesel	ug/L	1.00	ND					
o-Terphenyl	ug/L	1.00	111.			111.	70 - 130	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	l	Recovery	Acceptar	ice Range
TPH as Diesel	ug/L	1.00	1910	2000		95.6	61 - 143	0
o-Terphenyl	ug/L	1.00	84.8	100.		84.8	70 - 130	
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	I	Recovery	Acceptar	ice Range
TPH as Diesel	ug/L	1.00	2280	2000		114.	61 - 143	0.1
o-Terphenyl	ug/L	1.00	106.	100.		106.	70 - 130	
Matrix Spike							Lab ID = 8	04303-001
Parameter	Unit	DF	Result	Expected/Adde	d I	Recovery	Acceptar	ce Range
TPH as Diesel	ug/L	2.00	3840	4330(4100)		88.2	61 - 143	0
o-Terphenyl	ug/L	2.00	98.1	97.8(-18.2)		98.2	70 - 130	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ce Range
TPH as Diesel	ug/L	1.00	967	1000		96.7	85 - 115	Ũ
o-Terphenyl	ug/L	1.00	103.	100.		103.	70 - 130	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
TPH as Diesel	ug/L	1.00	1060	1000		106.	85 - 115	0-
o-Terphenyl	ug/L	1.00	100.	100.		100.	70 - 130	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without poet authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02 Page 15 of 20 Printed 10/24/2012

pH by SM 4500-H B			Batc	h 10PH12L				
Parameter		Unit Analyzed DF MDL		RL	Result			
804303-001 pH		pН	10/1	10/12/2012 14:30		0.0784	4.00	8.66
Duplicate							Lab ID =	804299-003
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
рН	pН	1.00	7.22	7.22		0.00	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
рН	рН	1.00	7.02	7.00		100.	90 - 110	ט
Lab Control Sample I	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
рН	рН	1.00	7.06	7.00		101.	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
рН	рН	1.00	7.05	7.00		101.	90 - 11	0

Total Suspended Soli	ds by SM 2	Batc	h 10TSS12G					
Parameter		Unit	An	Analyzed		MD	L RL	Result
804303-001 Total Suspen	ded Solids	mg/L	10/1	10/15/2012		0.349	10.0	769.
Method Blank	usqu'Arthur							
Parameter Total Suspended Solids	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	804264-002
Parameter Total Suspended Solids	Unit mg/L	DF 1.00	Result 6940	Expected 6930	F	RPD 0.0865	Accept 0 - 10	ance Range
Lab Control Sampl	e							
Parameter Total Suspended Solids	Unit mg/L	DF 1.00	Result 97.0	Expected 100.	F	Recovery 97.0	Accept 90 - 11	ance Range 0
Lab Control Samp	le Duplicate							
Parameter Total Suspended Solids	Unit mg/L	DF 1.00	Result 101	Expected 100.	F	Recovery 101	Accept 90 - 11	ance Range 0

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without protection from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.Project Name:PG&E Topock ProjectPage 16 of 20Project Number:379209.01.02Printed 10/24/2012

Total Organic Carbon (1	r/doc) sm	5310 C	Batch	10TOC12D		
Parameter		Unit	Anal	lyzed [DF MDL	RL Result
804303-001 Total Organic C	arbon	mg/L	10/12	/2012 11:59 1	.00 0.0309	0.300 9.46
Method Blank						
Parameter Total Organic Carbon	Unit mg/L	DF 1.00	Result ND			
Duplicate						Lab ID = 804294-001
Parameter Total Organic Carbon	Unit mg/L	DF 10.0	Result 130.	Expected 128	RPD 1.70	Acceptance Range 0 - 20
Lab Control Sample						
Parameter Total Organic Carbon	Unit mg/L	DF 1.00	Result 2.97	Expected 3.22	Recovery 92.2	Acceptance Range 85 - 115
Matrix Spike						Lab ID = 804303-001
Parameter Total Organic Carbon	Unit mg/L	DF 1.00	Result 20.0	Expected/Adde 19.5(10.0)	d Recovery 105	Acceptance Range 75 - 125
MRCCS - Secondary						
Parameter Total Organic Carbon	Unit mg/L	DF 1.00	Result 2.96	Expected 3.22	Recovery 92.0	Acceptance Range 90 - 110
MRCVS - Primary		999 200 200 200 200 200 200 200 200 200	상학교 - 1941 	entra de la companya de la company	_	
Parameter Total Organic Carbon	Unit mg/L	DF 1.00	9.77	Expected 10.0	97.7	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Total Organic Carbon	Unit mg/L	DF 1.00	Result 9.01	Expected 10.0	Recovery 90.1	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without protection from Truesdail Laboratories.

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02 Page 17 of 20 Printed 10/24/2012

Ammonia Nitrogen by S	M4500-NH	I3D	Batch	10NH312C				
Parameter		Unit	Ana	lyzed D	١F	MDL	RL	Result
804303-001 Ammonia as N		mg/L	10/22	2/2012 1.	00	0.00120	0.500	ND
Method Blank								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID = t	804303-001
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result ND	Expected 0.00	R	PD 0	Accepta 0 - 20	nce Range
Lab Control Sample								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 7.96	Expected 8.00	R	ecovery 99.5	Accepta 90 - 110	nce Range
Lab Control Sample D	ouplicate							
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 8.24	Expected 8.00	R	ecovery 103.	Accepta 90 - 110	nce Range
Matrix Spike							Lab ID = 8	304408-001
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 7.22	Expected/Addec 8.00(8.00)	I R	ecovery 90.2	Acceptai 75 - 125	nce Range
MRCCS - Secondary								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 6.14	Expected 6.00	R	ecovery 102.	Acceptar 90 - 110	nce Range
MRCVS - Primary								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 5.99	Expected 6.00	R	ecovery 99.8	Acceptar 90 - 110	nce Range
MRCVS - Primary								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 5.46	Expected 6.00	Re	ecovery 90.9	Acceptar 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02 Page 18 of 20 Printed 10/24/2012

EPA 410.4 Chemical Oxy	gen Dema	and	Batc	h 10COD12E					
Parameter		Unit	An	alyzed	DF	MDL	RL	Result	
804303-001 Chemical Oxyger	n Demand	mg/L	10/1	6/2012	1.00	4.68	10.0	341.	
Method Blank									
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result ND						
Duplicate							Lab ID =	804303-001	
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result 339.	Expected 341	ł	RPD 0.540		Acceptance Range 0 - 20	
Lab Control Sample									
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result 137.	Expected 140.	F	Recovery 98.0	Accepta 90 - 110	ance Range)	
Lab Control Sample D	uplicate								
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result 133.	Expected 140.	Ŧ	Recovery 95.0	Accepta 90 - 110	ance Range)	
MRCCS - Secondary									
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result 135.	Expected 140.	ł	Recovery 96.5	Accepta 90 - 110	ance Range)	
MRCVS - Primary									
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result 104.	Expected 100.	F	Recovery 104.	Accepta 90 - 110	ance Range)	
MRCVS - Primary									
Parameter Chemical Oxygen Demand	Unit mg/L	DF 1.00	Result 104.	Expected 100.	I	Recovery 104.	Accepta 90 - 110	ance Range)	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proves authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project Number: 379209.01.02 Page 19 of 20 Printed 10/24/2012

Metals by 200.7, Dissol	ved		Batch	101912A-Th2			
Parameter		Unit	Ana	lyzed C	DF MDL	RL	Result
804303-001 Iron		ug/L	10/19)/2012 15:12 1.	00 0.900	20.0	ND
Method Blank							
Parameter Iron	Unit ua/L	DF 1.00	Result ND				
Duplicate						Lab ID =	804409-007
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ince Range
Iron	ug/L	1.00	ND	0.00	0	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Iron	ug/L	1.00	2280	2000	114.	85 - 115	5
Matrix Spike						Lab ID =	804409-007
Parameter	Unit	DF	Result	Expected/Addeo	d Recovery	Accepta	ince Range
Iron	ug/L	1.00	2160	2000(2000)	108.	75 - 125	5
MRCCS - Secondary	(1997) Alexander (1997)						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Iron	ug/L	1.00	5180	5000	104.	95 - 105	5
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Iron	ug/L	1.00	5490	5000	110.	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Iron	ug/L	1.00	5300	5000	106.	90 - 110	
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Iron	ug/L	1.00	2340	2000	117.	80 - 120)
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Iron	ug/L	1.00	2130	2000	107.	80 - 120	1
Interference Check S	Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Iron	ug/L	1.00	2310	2000	116.	80 - 120)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without protection from Truesdail Laboratories.

Report Continued

Client: E2 Consulting Engineers, Inc.			Project Name: Project Number	PG&E Topock r: 379209.01.02	ct Page 20 of 20 Printed 10/24/2012			
Interference Check St	andard AB							
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	nce Range
Iron	ug/L	1.00	2120	2000		106.	80 - 120	
Total Cyanide by SM450	0-CN E		Batch	10CN12D				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
804303-001 Cyanide, Total		mg/L	10/17/	′2012 [~]	1.00	0.00200	0.0100	ND
Method Blank							·	
Parameter	Unit	DF	Result					
Cyanide, Total	mg/L	1.00	ND					
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	nce Range
Cyanide, Total	mg/L	1.00	0.0777	0.0800		97.1	90 - 110	-
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	nce Range
Cyanide, Total	mg/L	1.00	0.0726	0.0800		90.8	90 - 110	
Matrix Spike							Lab ID = 8	04303-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Acceptar	ice Range
Cyanide, Total	mg/L	1.00	0.0365	0.0400(0.0400)	91.2	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ice Range
Cyanide, Total	mg/L	1.00	0.0753	0.0800		94.1	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	lecovery	Acceptan	ice Range
Cyanide, Total	mg/L	1.00	0.0787	0.0800		98.4	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	lecovery	Acceptan	ice Range
Cyanide, Total	mg/L	1.00	0.0787	0.0800		98.4	90 - 110	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without provide authorization from Truesdail Laboratories.

3 SC

Total Suspended Solids by SM 2540 D

Calculations

Batch:	10TSS12G
Date Analyzed:	10/15/12

Dish Number	Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference , g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm
L34	BLANK	1000	1.4251	1.4251	1.4251	0.0000	No	0.0000	0.0	2.5	
<u>L37</u>	804235-4	500	1.4316	1.4764	1.4764	0.0000	No	0.0448	89,6	5.0	89.6
<u>L38</u>	804236-1	300	1.4343	1.5390	1.539	0.0000	No	0.1047	349.0	8.3	349.0
L39	804236-2	200	1.4269	1.6044	1.6044	0.0000	No	0.1775	887.5	12.5	887.5
<u>L40</u>	804236-3	100	1.4286	1.6025	1.6025	0.0000	No	0.1739	1739.0	25.0	1739.0
L41	804236-4	200	1.4198	1.6094	1.6094	0.0000	No	0.1896	948.0	12.5	9/8.0
L42	804236-5	100	1.4288	1.6099	1.6099	0.0000	No	0.1811	1811.0	25.0	1811.0
L43	804236-6	100	1.4297	1.6018	1.6018	0.0000	No	0.1721	1721.0	25.0	1721.0
L44	804236-6D	100	1.4276	1.6001	1.6001	0.0000	No	0.1725	1725.0	25.0	1725.0
L45	804237-4	500	1.4292	1.4504	1,4504	0.0000	No	0.0212	42.4	5.0	1725.0
L46	804238-4	500	1.4230	1.4592	1.4592	0.0000	No	0.0362	72.4	5.0	72.4
L47	804242	900	1.4407	1.4411	1,4411	0.0000	No	0.0004	0.4	2.8	12.4 ND
<u> </u>	804244	1000	1.4294	1.4475	1.4475	0.0000	No	0.0181	18.1	2.0	18.1
L49	804257	1000	1.4270	1.4272	1.4272	0.0000	No	0.0002	0.2	2.5	ND
L50	804258	200	1.4340	1.4626	1.4626	0.0000	No	0.0286	143.0	12.5	142.0
L51	804264-1	100	1.4351	1.6274	1.6274	0.0000	No	0 1923	1923.0	25.0	1022.0
L52	804264-2	25	1.4334	1.6066	1.6066	0.0000	No	0.1732	6928.0	100.0	6028.0
L53	804264-2D	25	1.4319	1.6053	1.6053	0.0000	No	0.1734	6936.0	100.0	0920.0
L54	804272	1000	1,4288	1,4380	1.438	0.0000	No	0.0092	0300.0	2.5	6936,0
L55	804273	1000	1.4293	1.4309	1.4309	0.0000	No	0.0016	1.6	2.5	9.2
L33	804303	250	1,4272	1.6194	1 6194	0,0000	No	0.1022	769.9	2.5	
						0.0000		0.1022	/00.0	10,0	/68.8
L35	LCS-1	100	1.4221	1.4318	1,4318	0.0000	No	0.0097	97.0	25.0	
L36	LCS-2	100	1.4310	1.4411	1.4411	0.0000	No	0.0101	101.0	25.0	97.0

Calculation as follows:

Non-Filterable residue (TSS), mg/L = $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where: A = weight of dish + residue in grams. B = weight of dish in grams.

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	97	100	97.0%	90-110%	Yes
LCSD	101	100	101.0%	90-110%	Yes

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804236-6	0.1721	0.1725	0.1%	≤5%	Yes
804264-2	0.1732	0.1734	0.1%	5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \ 100$$

% Difference = $\frac{|A \text{ or } B - C|}{C} x \ 100$

where
$$C = \frac{A+B}{2}$$

RL= reporting limit.

ND = not detected (below the reporting limit)

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

Matsim G.

C = Average weight in (g).

Hope T. Reviewer Printed Name

Analyst Printed Name

Gautam S.

C = mL of sample filtered.

(714)730-6239 FAX: (7 www.truesdail.com	, Tustin, CA 92 14) 730-6462	780-7008			ĮıM	3Plan	it-SW-(02]						٦	URNA	10/11	/2012	PA	GE 1
COMPANY E2/CH2M HI	Ľ L			T		7	7	17	<u>.</u> ₹/	7	1	7	7	7	7	71	TT	\overline{T}	т —
PROJECT NAME PG&E Topocl	c IM3					f	I /	a/3	8/	1	1		1	/ .	[]	[]	1	/ /	CON
PHONE (530) 229-33)3	FAX (530) 339-3303			19	18		1	1	1	11	[]	1	1		11	'/	
ADDRESS 155 Grand Av	re Ste 1000					ğ/	18	15	/	1	1	1	1		/	11	1 1	\$	
Oakland, CA	94612				18	/ ,	13/	<u>.</u>	1	1	1	1	1	1	[]	1	1ª	/	
P.O. NUMBER 379209.01.0)2					5/	3/8	18	7	1_	1	151	[]	1	1	1	[§]		
and the second			Management of a	1 1	~ ~ ~	N 1 3	97.2	1 1 1	1	(\sim)	1	~ 1	1	1	1	1.1			
				/	\$15	8/3	813	121	ar/	81	1	21	1	1	1	1	61		
SAMPLERS (SIGNATURE							U Metals		§/		10		/		[]				
SAMPLERS (SIGNATURE	DATE	ТЖАЕ	DESCRIPTION	138 191	100 m	NHS (Shur	Total Molals	65 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1		Diene	Dissol	Part					10		
SAMPLERS (SIGNATURE SAMPLE LD. OC-IMD-CW-002-	DATE	TIME	DESCRIPTION Storm water	X 755 (21)	X TOC REAL	Economic State	X Total Metal	X ON REAL	North Contraction of the second secon	× Dient	× Dissol.		/	/	//	R			
SAMPLERS (SIGNATURE SAMPLE LD. CC-IM3-SW-2-002	DATE 10-11-12_	TIME 0760	DESCRIPTION Storm water	X	× 700 101	Equiles Ethy X	X 2011 Meilar	X	X Contraction	· × Dien (120	× Dissol		//	/	//	Se Marine			
SAMPLERS (SIGNATURE SAMPLE LD. CO-IMD-CW-002- SC-IM3-SW-2-002	DATE 10-11-12_	TIME O7000	DESCRIPTION Storm water	X	× 700 (800)	Sent Shirt X	X Dial Meial	X OV CON	X Control	· × Diec. (120	× Dissol	Deal .	///		//	S Mar	-		
SAMPLERS (SIGNATURE SAMPLE LD. CO-IMO-CW-002- SC-IM3-SW-2-002	DATE 10-11-12	TIME OXC	DESCRIPTION Storm water	X 138	× 100 001	Ecury Ethin X	X 10431 Metals	× CURPA	X Connect	120 × 100000	× Dissol	Penti	//		//	Se Aus			
SAMPLERS (SIGNATURE SAMPLE LD. OC-IM9-CW-992 SC-IM3-SW-2-002	DATE 10-11-12	TIME 0700	DESCRIPTION Storm water	× 138 m	× 700 (2011)	ECHINICS) ETHIN X	X 20'al Meral	X CN CAS	X	× Dien (120	× Dissol					A Miner			
SAMPLERS (SIGNATURE SAMPLE LD. CO-IMO-CW-002- SC-IM3-SW-2-002	DATE 10-11-12_	TIME	DESCRIPTION Storm water	X 128	X DC Diverse	EGUT EHN X	X 20 AMAGE	× CV (52)	Contraction of the second seco	X Dieco/120	× Dissol					Contraction of the second seco			
SAMPLERS (SIGNATURE SAMPLE LD. CO-IMO-CW-002- SC-IM3-SW-2-002	DATE 10-11-12	TIME	DESCRIPTION Storm water	X	× 100 001		X 10431 Meida	× CURPER	Conversion of the second secon	× 0.000	× Dissol					Num and Num			

1000	CHAIN OF CUSTODY SI	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed J Anda	Company CHZMH11	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	
Signature (Refinquished)	Printed Name	Company/ Agency	Dale/ Time	SPECIAL REQUIREMENTS:
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	Metals list: Mg, As, Cd, Pb, Hg, Se, Ag, Cr
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	Please change sample ID SC-IM3-SW-002 To SC-IM3-SW-2-002.
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	10/25/2012

		mnA	601	ndhoni																				
		ront		schod.							Rea S	c'd 8	10 04	v/11/ 43	03	3								
TRUESI 14201 F (714)730 www.tru	DAIL LABORATOR ranklin Avenue, T 1-6239 FAX: (714 lesdail.com	RIES, INC. Tustin, CA 927 I) 730-6462	80-7008	1	CHAI	IN OI [16	F CL A3Pia	JST(ant-Si)DY A/-00	RE(12]	FOR		Ŷ	30	3		COC TUR DAT	Num NARC	iber DUND D/1,1/1	TIME 2012		5 Da PAGE	1. _1_	DF 1
COMPANY PROJECT NAME PHONE ADDRESS P.O. NUMBER SAMPLERS (SIGNATU	E2 / CH2M HILI PG&E Topock 1 (530) 229-3303 155 Grand Ave Dakland, CA 94 379209.01.02 JRE	M3 Ste 1000 1612	Fax <u>(53</u>)) 339-3303	1	C. C. C. D. D. H. C.	(arosser) (0165000) 8	NILL MARSON MAGIN	VII. 200,7 COD (410.4)	(187 218.6) - 246.1) Sae In.	notes (Second	(1.00.1)		rived fron	/	7	//	///////////////////////////////////////		OF CONTAINED	7	7	CORP	TENTS
SAMPLEI.D.		DATE	TME	DESCRIPTION	18	12	12	18	15	18	<u>/</u> 8	18	/వ	\square		<u> </u>			<u>[₹</u>]	<u>L</u>			definition	
SC-IM3-SW-0	002	10-11-12_	0700	Storm water	X	X	X	×	X	X	<u>×</u>	Х	<u>x</u>						8	-			PH	= 6 letals
					1012						Å,											······		-
	US			Leve			C	Ŕ															**********	
																		I	8	тот	AL NUI	VIBER (XF CONT	AINERS

<u>`</u>	CHAIN OF CUSTODY SI	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed J AIDS	Company CH2MH11	Date Time	
Signature	Printed	Company/	Date/	
(Received)	Name	Agency	Time	
Signature	Printed	Company/	Dale/	SPECIAL REQUIREMENTS:
(Relinquished)	Name	Agency	Tíme	
Signature (Received) Judia	Printed Habellichug	Company TLI	Date' Time 10/11/12 7:30	Metals list: Mg, As, Cd, Pb, Hg, Se, Ag, Cr
Signature	Printed	Company/	Date/	erd .
(Relinquished)	Name	Agency	Time	
Signature	Printed	Company/	Date/	
(Received)	Name	Agency	Time	

TRUE 14201 (714)7 www.	SDAIL LABORATOF Franklin Avenue, T 730-6239 FAX: (714 truesdail.com	RIES, INC. Fustin, CA 927 4) 730-6462	780-7008		CHAI	N OI [IN	F CL //3Pla	JSTC ant-S\	YD(/V-002	REC 2]	COR	D 8	0	43	0	3	COC TURI DAT	Num NARC	ber NUND TIME	: 	5 Da PAGE	ys 1	OF	
COMPANY	E2 / CH2M HILI	L					1	1	1	1	है	1	/	*/	1	1	1		1 1	Γ	7			
PROJECT NAME	PG&E Topock	IM3					/			, its								/				COM	MENTS	
PHONE	(530) 229-3303	3	FAX (530)) 339-3303		/	(aHo		(410	See		/ /	/ /	/ /	/ /	/ /	/ /	/ /		6	/			
ADDRESS	155 Grand Ave	Ste 1000					M450		<u>8</u> /;	£2:1)					/	/				NEK.				
P.O. NUMBER	Oakland, CA 94	4612 2			ć	01/2540), PH (5)	(0145310)	(SM4500-NH3)	Metals (200.7. 2	15.04 218.6)	00:2)	(1:30:1)	, see		 				SER OF CONT.	11.				
SAMPLE I.D.		DATE	TIME	DESCRIPTION	155		M ²	Total	/ È	13		13	Ϋ,		/	/			No.					
SC-IM3-SV	V-002	10-11-12	0700	Storm water	Х	X	Х	х	Х	Х	х	\prec							ଞ			21	1=6	
																						1 'n	retal	15
									°	<u> (</u>	<u>Ar 1917, 1</u> 3	1- 		is.										
								- 11 				antes Secola												
						8 6	ړو.		200					andre av de Serie Land Serie Land		ana gana Landa Maria								
					[]		And and a state of the state of		<u>A</u>		1	7 @		7 ₍₂ .		n a sig	Stor 14							
				NO TT	TC						S			Ŋ										
				NAL II	16	10	And and a second second						NEW .						8 1	OTAL NI	JMBER (OF CON	TAINER	₹S

	C	HAIN OF CUSTODY SIG	GNATURE RECORD	11/12	SAMPLE CONDITIONS
	Signature (Relinquished)	Printed ADE	Company/ Agency	Date/ Time /350	RECEIVED COOL D WARM D 3.9°C
	Signature (Received)	Name Rafart	Agency I-L I	Date//0-//-/2 Time	CUSTODY SEALED YES 🗖 NO 🗹
	Signature (Relinquished) Refail Dav	Printed Rafael	Company/ T. K. I	Date/ 10 -12-12	SPECIAL REQUIREMENTS:
d	Signature (Received) Anda	Printed Junkering	Company/ Agency TCI	Date/ Time le/u/12 #:30	Metals list: Mg, As, Cd, Pb, Hg, Se, Ag, Cr, and Fe
92	Signature (Relinquished)	Printed Name	Company/ Agency	Date/ /	/may
	Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Subject: Storm water COC From: "Shawn.Duffy@CH2M.com" <Shawn.Duffy@CH2M.com> Date: Thu, 11 Oct 2012 16:30:03 -0400 To: Sean Condon <seanc@truesdail.com>

Hi Sean,

You should be receiving a Storm Water sample with today's samples, Please follow the attached COC (Diesel and dissolved Fe have been added). Please note the dissolved Fe will need to be taken from a non-preserved container.

Shawn Duffy Project Chemist CH2M HILL 2525 Airpark Dr. Redding, CA 96001 Office: (530) 229-3303 Home Office: (530) 243-1078 Fax: (530) 339-3303 Cell: (530) 941-9227

	Content-Description:	Storm Water Sample_10-11-2012_spd.pdf
Storm Water Sample_10-11-2012_spd.pdf	Content-Type:	application/pdf
	Content-Encoding:	base64

Sample Integrity & Analysis Discrepancy Form

C	lient: L &	_ Lab # <u>804303</u>
Da	ate Delivered: <u>///</u> / 12 Time: <u>/9: 30</u> By: □Mail &	Field Service DClier
1.	Was a Chain of Custody received and signed?	A Yes INO IN/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No 总N/A
3.	Are there any special requirements or notes on the COC?	⊡Yes ⊡No ZN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No QÍN/A
5.	Were all requested analyses understood and acceptable?	⊡a(Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)?3 <u>.4° ° C</u>	βΞiYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	daYes ⊡No ⊡N/A
8 .	Were sample custody seals intact?	Ves DNo dinia
9.	Does the number of samples received agree with COC?	
10.	Did sample labels correspond with the client ID's?	AYes DNo DN/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: A Truesdall Client	∕⊠Yes ⊡No ⊡N/A
12.	Were samples pH checked? pH = <u>Sel</u> C. O. C.	,⊈iYes ⊡No ⊡N/A
3.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Ares INO IN/A
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH AD Std	∕adiYes ⊡N∕o ⊡N⁄A
5.	Sample Matrix: Liquid Drinking Water Ground	Nater _ DWaste Water
	□Sludge □Soil □Wipe □Paint □Solid ⊠	Other <u>Storm Wa</u> t
5.	Comments:	
	Sample Check In completed by Truesdail Log In/Receiving	L. Sturberger

094