

Curt Russell

Topock Site Manager GT&D Remediation Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

January 15, 2013

Pamela S. Innis
Topock Remedial Project Manager
U.S. Department of the Interior
Office of Environmental Policy and Compliance
P.O Box 2507 (D-108)
Denver Federal Center, Building 56
Denver, CO 80225-0007

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Topock IM-3 Combined Fourth Quarter 2012 Monitoring and

Semiannual July - December 2012 / Annual January - December 2012

Operation and Maintenance Report

PG&E Topock Compressor Station, Needles, California Interim Measure No. 3 Groundwater Treatment System

(Document ID: PGE20130115A)

Dear Ms. Innis and Mr. Perdue:

Enclosed is the Combined Fourth Quarter 2012 Monitoring and Semiannual July – December 2012/ Annual January – December 2012 Operation and Maintenance Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System.

From July 2005 through September 2011 PG&E was operating the IM-3 groundwater treatment system as authorized by the Colorado River Basin Regional Water Quality Control Board (Regional Water Board) Order No. R7-2004-0103 (issued October 13, 2004); Order No. R7-2006-0060 (issued September 20, 2006); and the revised Monitoring and Reporting Program under Order No. R7-2006-0060 (issued August 28, 2008). Order No. R7-2006-0060 expired on September 20, 2011.

PG&E is currently operating the IM-3 groundwater treatment system as authorized by the U.S. Department of the Interior (DOI) Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) as documented in Attachment A to the Letter Agreement issued July 26, 2011 from the Regional Water Board to DOI, and the subsequent Letter of Concurrence issued

Ms. Pamela S. Innis/DOI and Mr. Robert Perdue/Regional Water Board January 15, 2013
Page 2

August 18, 2011 from DOI to the Regional Water Board. Quarterly monitoring reports are required to be submitted by the fifteenth day of the month following the end of the quarter.

The IM-3 groundwater extraction and treatment system has extracted and treated approximately 490,349,587 gallons of water and removed approximately 2,550 kilograms (5,610 pounds) of total chromium from August 1, 2005 through December 31, 2012.¹

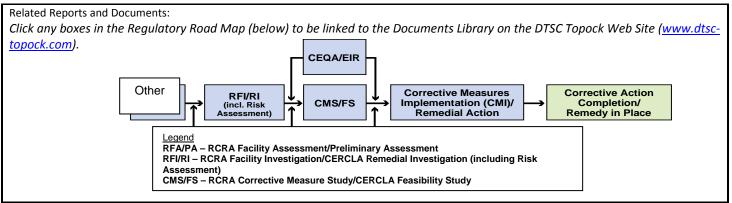
The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell

Topock Site Manager


Enclosures:

Topock IM-3 Combined Fourth Quarter 2012 Monitoring and Semiannual July - December 2012 / Annual January - December 2012 Operation and Maintenance Report

cc: Jose Cortez, Colorado River Basin Regional Water Board Thomas Vandenberg, Colorado River Basin Regional Water Board Aaron Yue, California Department of Toxic Substances Control

¹ See footnote in Section 5.2, page 5-2.

Topock Project I	Executive Abstract
Document Title: Topock IM-3 Combined Fourth Quarter 2012 Monitoring Report, Jul-Dec 2012 Semiannual, and Jan-Dec 2012 Annual Operation and Maintenance Report Submitting Agency/Authored by: U.S. Department of the Interior and Regional Water Quality Control Board Final Document? Yes No	Date of Document: January 15, 2013 Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) PG&E Document ID Number: PGE20130115A
Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document:	Action Required: Information Only Review & Comment Return to:
☐ Draft ☐ Report ☐ Letter ☐ Memo ☐ Other / Explain:	By Date: Other / Explain:
What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:	Is this a Regulatory Requirement? Yes No If no, why is the document needed?
What is the consequence of NOT doing this item? What is the consequence of DOING this item?	Other Justification/s: Permit Other / Explain:
Submittal of this report is a compliance requirement of the waste discharge ARARs as documented in Attachment A to the Letter Agreement issued July 26, 2011.	
Brief Summary of attached document:	
CW-3M/D, and CW-4M/D will be submitted under separate cov covers the IM-3 operation and maintenance activities during the annual periods.	ter treatment system monitoring activities during the Fourth vells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, er, as part of the Compliance Monitoring Program. This report also e July – December 2012 semiannual and January – December 2012
Written by: PG&E Recommendations:	
This report is for your information only.	wirements?
authorized by the U.S. Department of the Interior (DOI) Waste I (ARARs) as documented in Attachment A to the Letter Agreeme Water Quality Control Board (Regional Water Board) to DOI, an from DOI to the Regional Water Board.	ec 2012 Semiannual, and Jan-Dec 2012 Annual Operation and currently operating the IM-3 groundwater treatment system as Discharge Applicable or Relevant and Appropriate Requirements
Other requirements of this information? None.	

Version 9

Combined Fourth Quarter 2012 Monitoring and Semiannual July - December 2012 / Annual January - December 2012 Operation and Maintenance Report

Interim Measure No. 3 Groundwater Treatment System

Document ID: PGE20130115A

PG&E Topock Compressor Station Needles, California

Prepared for

Colorado River Basin Regional Water Quality Control Board and

United States Department of the Interior

on behalf of

Pacific Gas and Electric Company

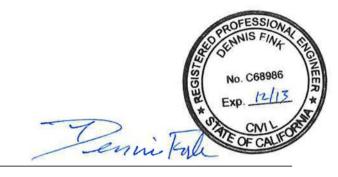
January 15, 2013

CH2MHILL 155 Grand Avenue, Suite 800 Oakland, CA 94612

Combined Fourth Quarter 2012 Monitoring and Semiannual July - December 2012/ Annual January - December 2012 Operation and Maintenance Report for Interim Measure No. 3 Groundwater Treatment System

PG&E Topock Compressor Station Needles, California

Prepared for


United States Department of the Interior and Colorado River Basin Regional Water Quality Control Board

on behalf of

Pacific Gas and Electric Company

January 15, 2013

This report was prepared under the supervision of a California Certified Professional Engineer

Dennis Fink, P.E. Project Engineer

Contents

			Page
1.0	Intro	duction	1-1
2.0	Samp	oling Station Locations	2-1
3.0	Desci	ription of Activities	3-1
	3.1	Groundwater Treatment System	
	3.2	Groundwater Treatment System Flow Rates for Fourth Quarter 2012	
	3.3	Sampling and Analytical Procedures	
4.0	Analy	ytical Results	4-1
5.0	Semi	annual Operation and Maintenance	5-1
	5.1	Flowmeter Calibration Records	
	5.2	Volumes of Groundwater Treated	
	5.3	Residual Solids Generated (Sludge)	
	5.4	Reverse Osmosis Concentrate Generated	
	5.5	Summary of ARARs Compliance	
	5.6	Operation and Maintenance - Required Shutdowns	
	5.7	Treatment Plant Modifications	5-4
6.0	Conc	lusions	6-1
7.0	Certi	fication	7 - 1
Tabl	es		
1	Samp	oling Station Descriptions	
2	Flow	Monitoring Results	
3	Samp	ele Collection Dates	
4	Topo	ck IM-3 Waste Discharge ARARs Influent Monitoring Results	
5	Торо	ck IM-3 Waste Discharge ARARs Effluent Monitoring Results	
6	Topo Resul	ck IM-3 Waste Discharge ARARs Reverse Osmosis Concentrate Monitori Its	ng
7	Торо	ck IM-3 Waste Discharge ARARs Sludge Monitoring Results	
8	Торо	ck IM-3 Waste Discharge ARARs Monitoring Information	

Figures

1	IM-3 Project Site Features
TP-PR-10-10-04	Raw Water Storage and Treated Water Storage Tanks and Sampling Locations
PR-10-03	Reverse Osmosis System Sampling and Metering Locations (1 of 2)
PR-10-04	Reverse Osmosis System Sampling and Metering Locations (2 of 2)
TP-PR-10-10-06	Sludge Storage Tanks Sampling Locations
TP-PR-10-10-03	Extraction Wells - Influent Metering Locations
TP-PR-10-10-11	Injection Wells - Effluent Metering Locations

Appendixes

- A Semiannual Operations and Maintenance Log, July 1, 2012 through December 31, 2012
- B Daily Volumes of Groundwater Treated
- C Flowmeter Calibration Records
- D Fourth Quarter 2012 Laboratory Analytical Reports

Acronyms and Abbreviations

ARARs Applicable or Relevant and Appropriate Requirements

DOI United States Department of the Interior

gpm gallons per minute

IM Interim Measure

IW injection well

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

PST Pacific Standard Time

Regional Water Board Colorado River Basin Regional Water Quality Control Board

RO reverse osmosis

Truesdail Laboratories, Inc.

WDR Waste Discharge Requirements

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM-3). Currently, the IM-3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM-3 extraction, conveyance, treatment, and injection facilities. (All figures and tables are provided at the end of this report.)

From July 2005 through September 2011, PG&E was operating the IM-3 groundwater treatment system as authorized by the California Regional Water Quality Control Board, Colorado River Basin (Regional Water Board) Waste Discharge Requirements (WDR) Order No. R7-2004-0103 (issued October 13, 2004), Order No. R7-2006-0060 (issued September 20, 2006), and the revised Monitoring and Reporting Program (MRP) under Order No. R7-2006-0060 (issued August 28, 2008).

PG&E is currently operating the IM-3 groundwater treatment system as authorized by the U.S. Department of the Interior (DOI) Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs). The WDR Order No. R7-2006-0060 expired on September 20, 2011 and was replaced by DOI enforcement of the ARARs, as documented in Attachment A to the Letter Agreement issued July 26, 2011 from the Regional Water Board to DOI, and the subsequent Letter of Concurrence issued August 18, 2011 from DOI to the Regional Water Board. Quarterly monitoring reports are required to be submitted by the fifteenth day of the month following the end of the quarter.

This report covers the IM-3 groundwater treatment system monitoring activities during the Fourth Quarter 2012; the operation and maintenance activities during the July 1, 2012 to December 31, 2012 semiannual period (Third and Fourth Quarters 2012); and (by reference; see Section 3.0) the operation and maintenance activities during the January 1, 2012 to June 30, 2012 semiannual period (First and Second Quarters 2012). The groundwater monitoring results for wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D will be submitted under separate cover, as part of the Compliance Monitoring Program.

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. Sampling station locations are shown on the process and instrumentation diagrams (Figures TP-PR-10-10-04, PR-10-03, PR-10-04 and TP-PR-10-10-06) provided at the end of this report.

3.0 Description of Activities

The treatment system was initially operated between July 25 and July 28, 2005 for the WDR-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order No. R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

This report describes Fourth Quarter 2012 monitoring activities and the July 1, 2012 through December 31, 2012 (Third and Fourth Quarters) operation and maintenance activities related to the IM-3 groundwater treatment system. IM-3 monitoring activities from January 1, 2012 through September 30, 2012 (First, Second, and Third Quarter monitoring) were presented in the following monitoring reports:

- *IM-3 First Quarter 2012 Monitoring Report,* submitted to the DOI and Regional Water Board April 13, 2012.
- *IM No. 3 Second Quarter 2012 Monitoring / Semiannual January 1- June 30, 2012 Operation and Maintenance Report,* submitted to the Regional Water Board July 13, 2012.
- *IM-3 Third Quarter 2012 Monitoring Report*, submitted to the DOI and Regional Water Board October 15, 2012.

The IM-3 operation and maintenance activities from January 1, 2012 through June 30, 2012 (First and Second Quarter 2012 operation and maintenance) were reported in the Second Quarter 2012 Monitoring/Semiannual Operation and Maintenance Report listed above; these operation and maintenance data are incorporated in the present report by reference. The present report therefore also serves as the annual January through December 2012 Operation and Maintenance Report for IM-3.

3.1 Groundwater Treatment System

The treatment system was initially operated between July 25 and July 28, 2005 for the WDR-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with Order R7-2004-0103. Full-time operation of the treatment system commenced in August 2005.

Influent to the treatment facility, as listed in Attachment A, Waste Discharge ARARs, to the Letter Agreement issued July 26, 2011, includes:

- Groundwater from extraction wells TW-2S, TW-2D, TW-3D, and PE-1.
- Purged groundwater and water generated from rinsing field equipment during monitoring events.
- Groundwater generated during well installation, well development, and aquifer testing.

Operation of the groundwater treatment system results in the following three effluent streams:

- **Treated Effluent:** Treated water that is discharged to the injection well(s).
- **Reverse Osmosis (RO) Concentrate (brine):** Treatment byproduct that is transported and disposed of offsite at a permitted facility.
- **Sludge:** Treatment byproduct that is transported offsite for disposal at a permitted facility, which occurs either when a sludge waste storage bin reaches capacity, or within 90 days of the start date for accumulation in the storage container, whichever occurs first.

3.2 Groundwater Treatment System Flow Rates for Fourth Quarter 2012

Downtime is defined as any periods when all extraction wells are not operating so that no groundwater is being extracted and piped into IM-3 as influent. Periods of planned and unplanned extraction system downtime (that together resulted in approximately 2.5 percent downtime during Fourth Quarter 2012) are summarized in the Semiannual Operations and Maintenance Log provided in Appendix A. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site. Periods of planned and unplanned extraction system downtime during the months July 2012 – September 2012 are reported in the IM-3 Third Quarter 2012 Monitoring Report, PG&E Topock Compressor Station, Needles, CA, published October 15, 2012 and are provided in Appendix A of this report.

Data regarding daily volumes of groundwater treated and discharged are provided in Appendix B. The IM-3 groundwater treatment system flowmeter calibration records are included in Appendix C.

3.2.1 Treatment System Influent

During the Fourth Quarter 2012, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gallons per minute (gpm), excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were only operated for short periods during December 2012 for groundwater sampling. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping), by month, was approximately:

- 98.9 percent during October 2012
- 98.7 percent during November 2012
- 98.0 percent during December 2012

The Fourth Quarter 2012 treatment system monthly average flow rates (influent, effluent, and RO concentrate) are presented in Table 2. The system influent flow rate was measured by flow meters at groundwater extraction wells TW-2S, TW-2D, TW-3D, and PE-1 (Figure TP-PR-10-10-03).

3-2

The IM-3 facility treated approximately 17,435,633 gallons of extracted groundwater during Fourth Quarter 2012.

In addition to extracted groundwater, during Fourth Quarter 2012 the IM-3 facility treated approximately 8,770 gallons of water generated from the groundwater monitoring program and approximately 16,200 gallons of injection well development water.

3.2.2 Effluent Streams

The treatment system effluent flow rate was measured by flow meters in the piping leading to injection wells IW-2 and IW-3 (Figure TP-PR-10-10-11) and in the piping running from the treated water tank T-700 to the injection wells (Figure TP-PR-10-10-04). The IM-3 facility injected approximately 17,425,015 gallons of treatment system effluent during Fourth Quarter 2012. The monthly average flow rate to injection wells is shown in Table 2.

The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from RO concentrate tank T-701 to the truck load-out station (Figure PR-10-04). The IM-3 facility generated approximately 170,185 gallons of RO concentrate during Fourth Quarter 2012. The monthly average RO concentrate flow rate is shown in Table 2.

The sludge flow rate is measured by the size and weight of containers shipped offsite. Ten sludge containers were shipped offsite from the IM-3 facility during Fourth Quarter 2012. The shipment dates and approximate weights are provided in Section 5.3.

3.3 Sampling and Analytical Procedures

With the exception of pH, all samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a sealed container chilled with ice and transported to Truesdail via courier under chain-of-custody documentation. The laboratory confirmed the samples were received in chilled condition upon arrival.

Truesdail is certified by the California Department of Health Services (Certification No. 1237) under the State of California's Environmental Laboratory Accreditation Program. California-certified laboratory analyses were performed in accordance with the latest edition of the *Guidelines Establishing Test Procedures for Analysis of Pollutants* (40 Code of Federal Regulations Part 136), promulgated by the U.S. Environmental Protection Agency.

During the Fourth Quarter 2012, analysis of pH was conducted by field method pursuant to the Regional Water Board letter dated October 16, 2007 (subject: Clarification of Monitoring and Reporting Program Requirements) authorizing pH measurements to be conducted in the field. The field method pH samples were collected at the designated sampling locations and field tested within 15 minutes of sampling.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, RO concentrate, and sludge sampling frequency were in accordance with the MRP. The Fourth Quarter 2012sample collection schedule is shown in Table 3.

Groundwater quality is being monitored in observation and compliance wells according to Attachment A, Waste Discharge ARARs, to the Letter Agreement issued July 26, 2011, and the procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* submitted to the Regional Water Board on June 17, 2005. Quarterly groundwater monitoring analytical results for the injection area (wells OW-1S/M/D, OW-2S/M/D, OW-5S/M/D, CW-1M/D, CW-2M/D, CW-3M/D, and CW-4M/D) are reported in a separate document, in conjunction with groundwater level maps of the same monitoring wells.

3-4

4.0 Analytical Results

The analytical results and laboratory reports for the IM-3 groundwater treatment system monitoring program between January 1, 2012 and June 30, 2012 were included in the First Quarter and Second Quarter Monitoring Reports submitted to the Regional Water Board. The analytical results and laboratory report between July 1, 2012 and September 30, 2012 were included in Third Quarter Monitoring Reports submitted to the DOI and Regional Water Board (see Section 3.0 for a complete listing of reports).

Laboratory reports for samples collected in Fourth Quarter 2012 were prepared by certified analytical laboratories, and are presented in Appendix D. The Fourth Quarter 2012 analytical results are presented in Tables 4, 5, 6, and 7:

- Influent analytical results are presented in Table 4.
- Effluent analytical results are presented in Table 5. There were no exceedances of effluent limitations during the reporting period.
- Reverse osmosis concentrate analytical results are presented in Table 6.
- Sludge analytical results are presented in Table 7.

The sludge is required to have an aquatic bioassay test annually. The aquatic bioassay test was conducted on a July 2012 sample, and the results were presented in the Third Quarter Monitoring Report submitted to the DOI and the Regional Water Board on October 15, 2012.

Table 8 identifies the following information for each analysis:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

5.0 Semiannual Operation and Maintenance

This section includes the Semiannual Operation and Maintenance Report for the IM-3 groundwater treatment system for the period July 1, 2012 through December 31, 2012. The IM-3 operation and maintenance activities for January 1, 2012 through June 30, 2012 were reported in the Second Quarter 2012 Monitoring and Semiannual January 1- June 30, 2012 Operation and Maintenance Report, submitted July 13, 2012.

All operations and maintenance records are maintained at the facility, including site inspection forms, process monitoring records, hazardous waste generator records (i.e., waste manifests), and self-monitoring reports. These records will be maintained onsite for a period of at least 5 years. Operational programmable logic controller data (flow rates, system alarms, process monitoring data, etc.) are maintained electronically via data historian software. Operations and maintenance records are also archived using maintenance software. The subsections below summarize the operations and maintenance activities during this semiannual reporting period.

5.1 Flowmeter Calibration Records

The IM-3 groundwater treatment system flowmeter calibration records are included in Appendix C. Flowmeter calibrations are performed in a manner consistent with the use, flow, material, and manufacturer recommendations. The following flowmeters are in service at the plant to measure water flow:

Location	Flowmeter Location ID	Current Flowmeter Serial No.	Date of Calibration	Date of Installation
Extraction well PE-1	FIT-103	6C037216000	7/15/11	12/13/11
Extraction well TW-3D	FIT-102	6C037116000	7/15/11	12/13/11
Extraction well TW-2D ^a	FIT-101	7700F216000	11/30/06	7/6/11
Extraction well TW-2S ^b	FIT-100	6A022016000	11/29/04	7/28/05
Injection well IW-02	FIT-1202	6C036F16000	8/6/10	1/5/11
Injection well IW-03	FIT-1203	6A037016000	6/19/12	7/12/12
Combined IW-02 and IW-03	FIT-700	7700C616000	7/25/11	12/13/11
Reverse osmosis concentrate	FIT-701	6A021F16000	6/19/12	7/14/12

Notes:

^a TW-2D is a backup extraction well only operated for brief testing and sampling periods since January 2006.

^b TW-2S is a backup extraction well only operated for brief testing and sampling periods since October 2005.

5.2 Volumes of Groundwater Treated

Data regarding daily volumes of groundwater treated between July 1, 2012 and December 31, 2012 are provided in Appendix B. The daily volumes of groundwater treated from January 1, 2012 through June 30, 2012 were reported in the Second Quarter 2012 Monitoring and Semiannual January 1- June 30, 2012 Operation and Maintenance Report, submitted July 13, 2012.

Approximately 34,165,045 gallons of groundwater were extracted and treated between July 1, 2012 and December 31, 2012. Treatment of this water at the IM-3 facility is being performed in accordance with the conditions of ARARs.

Additionally, approximately 13,070 gallons of well purge water (generated during well development, monitoring well sampling, and/or aquifer testing) and 41,400 gallons of injection well re-development water were treated at the IM-3 facility during the July 1, 2012 through December 31, 2012 semiannual period.

A total of approximately 34,124,850 gallons of treated groundwater was injected back into the Alluvial Aquifer between July 1, 2012 and December 31, 2012.

The IM-3 groundwater extraction and treatment system has extracted and treated approximately 490,349,587 gallons of water and removed approximately 2,550 kilograms (5,610 pounds) of total chromium from August 1, 2005 through December 31, 2012.¹

5.3 Residual Solids Generated (Sludge)

During the July 1, 2012 through December 31, 2012 reporting period, 17 containers of sludge were shipped offsite for disposal. The containers of sludge shipped offsite for disposal from January 1, 2012 through June 30, 2012 were reported in the Second Quarter 2012 Monitoring and Semiannual January 1- June 30, 2012 Operation and Maintenance Report, submitted July 13, 2012. The sludge was shipped to U.S. Ecology in Beatty, Nevada for disposal. A listing of each shipment during the July 1, 2012 through December 31, 2012 reporting period is provided below.

Other interim measures efforts that pre-date IM-3 were conducted at the MW-20 Bench before IM-3 commissioning. Those prior actions were concluded in mid-July 2005 upon startup of the IM-3 system. The total volume of groundwater extracted and treated and the total chromium removed by IM-1, IM-2, and IM-3 startup from March 2004 through July 31, 2005 are 36,583,666 gallons and 823 kg (1,810 pounds), respectively. Of the total volume of groundwater extracted and treated during this period, 35,055,942 gallons of water were extracted from extraction wells TW-2D and TW-2S, and 1,527,724 gallons were extracted from monitoring wells MW-20-70, MW-20-100, and MW-20-130. The total groundwater extracted and treated as recorded in the Third Quarter 2011 through Third Quarter 2012 ARARs reports erroneously included the 35,055,942 gallons from TW-2S and TW-2D in the summation calculations. Future ARARs reports will exclude this volume of groundwater since it was treated prior to August 1, 2005. The total chromium amount removed prior to August 1, 2005 has not previously and will not be included in cumulative reporting under IM-3 ARARs. Therefore, the cumulative chromium removal for the project to date reported with PMR-GMP reporting in the future will be approximately 823 kg greater for any given month than the total chromium removal by IM-3 reported under IM-3 ARARs.

5-2

SFO\130080004 ES010813024129BAO

¹ The total volume of groundwater extracted and treated and mass of chromium removed reported for IM-3 under ARARs (the Monitoring and Reporting Program originally established under Board Order No. R7-2004-0103 issued October 13, 2004) is the amount of water extracted and treated and chromium removed by the IM-3 system beginning with the first full month following the start-up and commissioning of the IM-3 system in mid-July 2005 through the end of the current reporting period. The total volume of groundwater extracted and treated is rounded to the nearest gallon. Because laboratory data are reported to three significant figures, the last digit of the chromium removed total (currently calculated at 2,546 kg) is rounded for this reporting period to 2,550 kg.

Date Sludge Bin Removed from Site	Approximate Quantity from Waste Manifests (cubic yards)	Type of Shipment
July 12, 2012	8	Non-RCRA hazardous waste
July 12, 2012	8	Non-RCRA hazardous waste
July 30, 2012	8	Non-RCRA hazardous waste
July 30, 2012	8	Non-RCRA hazardous waste
September 10, 2012	8	Non-RCRA hazardous waste
September 10, 2012	8	Non-RCRA hazardous waste
September 11, 2012	8	Non-RCRA hazardous waste
October 1, 2012	8	Non-RCRA hazardous waste
October 1, 2012	8	Non-RCRA hazardous waste
October 15, 2012	8	Non-RCRA hazardous waste
October 15, 2012	8	Non-RCRA hazardous waste
November 2, 2012	8	Non-RCRA hazardous waste
November 4, 2012	8	Non-RCRA hazardous waste
November 26, 2012	8	Non-RCRA hazardous waste
November 26, 2012	8	Non-RCRA hazardous waste
December 13, 2012	8	Non-RCRA hazardous waste
December 13, 2012	8	Non-RCRA hazardous waste

Notes:

RCRA = Resource Conservation and Recovery Act.

5.4 Reverse Osmosis Concentrate Generated

Data regarding daily volumes of reverse osmosis concentrate generated are provided in Appendix B, as measured by flowmeter FIT-701 (Figures PR-10-03 and PR-10-04). From July 1, 2012 through December 31, 2012, approximately 409,756 gallons of RO concentrate were transported to Liquid Environmental Solutions in Phoenix, Arizona for disposal. The daily volumes of RO concentrate generated from January 1, 2012 through June 30, 2012 were reported in the Semiannual January 1- June 30, 2012 Operation and Maintenance Report, submitted July 13, 2012.

5.5 Summary of ARARs Compliance

No ARARs violations were identified during the July 1, 2012 through December 31, 2012 semiannual reporting period, nor during the January 1, 2012 through December 31, 2012 annual reporting period.

5.6 Operation and Maintenance - Required Shutdowns

Records of routine maintenance are kept onsite. The summary of operation or maintenance issues that required the groundwater extraction system to be shut down during the January 1, 2012 through June 30, 2012 period was reported in the Second Quarter 2012 Monitoring

and Semiannual January 1- June 30, 2012 Operation and Maintenance Report, submitted July 13, 2012.

Appendix A contains a summary of the operation or maintenance issues that required the groundwater extraction system to be shut down during the July 1, 2012 through December 31, 2012 semiannual reporting period.

Activities during the Third Quarter 2012 included one extended shutdown. The extraction system downtime occurred August 13 – 17, 2012, for a total of 4 days, 2 hours and 36 minutes, due to a planned plant outage for maintenance.

No extended shutdowns of the IM-3 extraction system occurred during the Fourth Quarter 2012.

5.7 Treatment Plant Modifications

No major IM-3 treatment plant modifications that affected the quality or quantity of treated effluent were performed during the January 1, 2012 through December 31, 2012 annual period.

6.0 Conclusions

There were no exceedances of effluent limitations during the reporting period.

In addition, no incidents of non-compliance were identified during the reporting period. No events that caused an immediate or potential threat to human health or the environment, or new releases of hazardous waste or hazardous waste constituents, or new solid waste management units were identified during the reporting period.

7.0 Certification

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	behume
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Site Manager
Date:	January 15, 2013

TABLE 1
Sampling Station Descriptions
Fourth Quarter 2012 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-RP-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-RP-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure PR-10-03 and PR-10-04).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-RP-10-10-06).

Note:

= Sequential sample identification number at each sample station.

^a The sample event number is included at the end of the sample ID (e.g., SC-100B-WDR-015).

TABLE 2
Flow Monitoring Results
Fourth Quarter 2012 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,b} (gpm)	System Effluent ^b (gpm)	Reverse Osmosis Concentrate ^b (gpm)
October 2012 Average Monthly Flowrate	132.1	132.1	1.2
November 2012 Average Monthly Flowrate	131.8	131.6	1.3
December 2012 Average Monthly Flowrate	131.0	130.9	1.4

Notes:

gpm: gallons per minute

^a Extraction wells TW-3D and PE-1 were operated during the Fourth Quarter 2012. Extraction wells TW-2D and TW-2S were operated for a short period of time during the Fourth Quarter 2012.

^b The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during the Fourth Quarter 2012 is approximately 0.91 percent.

TABLE 3
Sample Collection Dates
Fourth Quarter 2012 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System

Parameter	Sample Collection Dates	Results
Influent	October 2, 2012	See Table 4
	November 7, 2012	
	December 4, 2012	
Effluent	October 2, 2012	See Table 5
	October 9, 2012	
	October 16, 2012	
	October 23, 2012	
	October 30, 2012	
	November 7, 2012	
	November 14, 2012	
	November 21, 2012	
	November 27, 2012	
	December 4, 2012	
	December 11, 2012	
	December 18, 2012	
	December 26, 2012	
Reverse Osmosis Concentrate	October 2, 2012	See Table 6
Sludge ^a	October 2, 2012	See Table 7

Notes:

^a Sludge samples analysis is required quarterly by composite.

TABLE 4 Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Influent Monitoring Results ^a Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Sampling Free	quency										Мс	nthly												
	nalytes Jnits ^b	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Field ^c pH pH units	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic µg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	e Lead µg/L	Manganese µg/L	Molybdenum µg/L	Nickel µg/L	Nitrate (as N) mg/L		Sulfate mg/L	e Iron µg/L	Zinc µg/L
Sample ID Date	MDL	0.757	0.0140	0.116		0.390	0.460	10.0	0.0098	0.210	0.250	0.200	0.0023	0.240	0.104	0.180	0.220	0.150	0.360	0.0415	0.00054	1.54	0.900	4.60
																						1		
SC-100B-WDR-381 10/2/	/2012	4620	0.106	7520	7.3	735	791	ND (10.0)	ND (0.500)	ND (2.00)	3.30	24.9	0.977 I	ND (5.00)	2.60	ND (1.00)	3.90	22.2	ND (2.00)	3.16 N	ID (0.0050) 520	ND (20.0)	ND (10.0)
RL		250	0.100	2.00		2.00	10.0	10.0	0.500	2.00	1.00	5.00	0.200	5.00	0.500	1.00	1.00	5.00	2.00	0.500	0.0050	25.0	20.0	10.0
SC-100B-WDR-386 11/6/	/2012	4550	ND (0.100)	7740	7.4	716	758	ND (50.0)	ND (0.500)	ND (2.00)	3.40	25.0	0.977 I	ND (5.00)	2.61	ND (1.00)	3.70	22.0	ND (2.00)	3.34 N	ID (0.0050) 522	ND (20.0)	ND (20.0)
RL		250	0.100	2.00		1.00	10.0	50.0	0.500	2.00	0.500	5.00	0.200	5.00	0.500	1.00	0.500	2.00	2.00	0.500	0.0050	25.0	20.0	20.0
SC-100B-WDR-390 12/4/	/2012	4660	0.166	7810	7.4	746	746	ND (50.0)	ND (0.500)	2.00	3.30	26.1	1.09 I	ND (5.00)	2.38	ND (1.00)	3.60	21.2	ND (5.00)	3.25 N	ID (0.0050) 532	ND (20.0)	ND (20.0)
RL		250	0.100	2.00		2.00	10.0	50.0	0.500	2.00	0.500	5.00	0.200	5.00	0.500	1.00	0.500	5.00	5.00	0.500	0.0050	25.0	20.0	20.0

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program

MDL = method detection limit mg/L = milligrams per liter N = nitrogen

ND = parameter not detected at the listed value

NTU = nephelometric turbidity units

RL = project reporting limit

μg/L = micrograms per liter

µmhos/cm = micromhos per centimeter

\\Zinfandel\Proj\PacificGasElectricCo\TopockProgram\Database\Tu esdai\IM3WDR\IM3_WDR_Qtrly.mdb\rtp_qtrlyInfluentResults_PHIa bfield pkumar2 01/09/2013 12:51:13

Page 1 of 1 Date Printed 1/9/2013

^a Sampling Location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

b Units reported in this table are those units required in the ARARs.

c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 5
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Effluent Monitoring Results ^a
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Effluent	Ave. Monthly	NA	NA	NA	6.5-8.4	25	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Limits ^b	Max Daily	NA	NA	NA	6.5-8.4	50	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Samp	ling Frequency			Weekly												Monthly	,							
	Analytes Units ^C	TDS mg/L	Turbidity NTU	Specific Conductance µmhos/cm	Field ^e pH pH units	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic µg/L	Barium µg/L	mg/L	μg/L	Fluoride mg/L	μg/L	μg/L	Molybdenum μg/L	Nickel μg/L	Nitrate (as N) mg/L	mg/L	Sulfate mg/L	Iron µg/L	Zinc μg/L
	MDLd	0.757	0.0140	0.116		0.200	0.0058	10.0	0.0098	0.210	0.250	0.200	0.0023	0.240	0.104	0.180	0.220	0.150	0.360	0.0415	0.00054	1.54	0.900	4.60
Sample ID	Date																							
SC-700B-WDR-3	881 10/2/2012	4350	ND (0.100)	7230	7.10	ND (1.00)	0.210	ND (10.0)	ND (0.500)	ND (2.00)	, ,	12.3	0.926	` ,	2.10	ND (1.00)		20.4	ND (2.00)	3.00	ND (0.0050)) ND (10.0)
RL		250	0.100	2.00		1.00	0.200	10.0	0.500	2.00	1.00	5.00	0.200	5.00	0.500	1.00	1.00	5.00	2.00	0.500	0.0050	50.0	20.0	10.0
SC-700B-WDR-3 RL	882 10/9/2012	4360 250	ND (0.100) 0.100	7310 2.00	7.00 	ND (1.00) 1.00	ND (0.200) 0.200										1.10 0.500							
SC-700B-WDR-3	883 10/16/2012	4330	ND (0.100)	7370	6.90	ND (1.00)	0.250										0.820							
RL		250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	384 10/23/2012	4210	0.110	7320	7.10	ND (1.00)	0.210										0.810							
RL		250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	385 10/30/2012	4700	0.189	7380	7.00	ND (1.00)	ND (0.200)										2.40							
RL SC-700B-WDR-3	996 11/6/2012	250 4480	0.100	2.00 7250	7.00	1.00	0.200 ND (0.200)	 ND (50.0)	 ND (0 500)	ND (2.00)	ND (0.500) 11.2	0.940	ND (5.00)	1.97	ND (1.00)	0.500 1.10	21.8	 ND (2.00)	3.15	ND (0.0050)	486	ND (20.0)) ND (20.0)
RL	000 11/0/2012	250	ND (0.100) 0.100	2.00	7.00	ND (1.00) 1.00	ND (0.200) 0.200	ND (50.0) 50.0	ND (0.500) 0.500	2.00	0.500	5.00	0.200	` ,	0.500	1.00	0.500	2.00	ND (2.00) 2.00	0.500	0.0050	25.0	20.0	20.0
SC-700B-WDR-3	387 11/13/2012	4050	ND (0.100)	7400	7.00	ND (1.00)	ND (0.200)		0.500		0.500	J.00	0.200	J.00	0.500		1.30	2.00	2.00	0.500	0.0000			20.0
RL	701 1171072012	250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	388 11/20/2012	4170 J	ND (0.100)J	7390 J	7.00	ND (1.00)	ND (0.200)J										1.20							
RL		250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	889 11/27/2012	4300	0.102	7440	7.70	ND (1.00)	ND (0.200)										3.10							
RL		250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	390 12/4/2012	4380	0.102	7380	6.80	ND (1.00)	0.210	ND (50.0)	ND (0.500)	ND (2.00)	ND (0.500) 10.2	1.04	ND (5.00)	2.00	ND (1.00)	0.520	21.9	ND (5.00)	3.14	ND (0.0050)	498	ND (20.0)) ND (20.0)
RL		250	0.100	2.00		1.00	0.200	50.0	0.500	2.00	0.500	5.00	0.200	5.00	0.500	1.00	0.500	5.00	5.00	0.500	0.0050	25.0	20.0	20.0
SC-700B-WDR-3	391 12/11/2012	4190	ND (0.100)	7030	7.00	ND (1.00)	ND (0.200)										0.980							
RL		250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	392 12/18/2012	4280	ND (0.100)	7100	7.10	ND (1.00)	ND (0.200)										1.50							
RL		250	0.100	2.00		1.00	0.200										0.500							
SC-700B-WDR-3	393 12/26/2012	4680	ND (0.100)	7080	7.10	ND (1.00)	ND (0.200)										5.40							
RL		250	0.100	2.00		1.00	0.200										0.500							

Page 1 of 2 Date Printed 1/9/2013

TABLE 5

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)

Effluent Monitoring Results a

Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program J = concentration or reporting limits estimated by laboratory or validation MDL = method detection limit mg/L = milligrams per liter N = nitrogen NA = not applicable ND = parameter not detected at the listed value

NTU = nephelometric turbidity units RL = project reporting limit

μg/L = micrograms per liter

µmhos/cm = micromhos per centimeter

- ^a Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection wells (see attached P&ID TP-PR-10-10-04).
- b In addition to the listed effluent limits, the ARARs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.
- ^c Units reported in this table are those units required in the ARARs.
- d MDL listed is the target MDL by analysis method; however, the MDL may change for each sample analysis due to the dilution required by the matrix to meet the method QC requirements. The target MDL for each method/analyte combination is calculated annually.
- e Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

Date Printed 1/9/2013 Page 2 of 2

TABLE 6

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)

Reverse Osmosis Concentrate Monitoring Results ^a

Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Sampling	Frequency											Quarter	ly										
	Analytes	TDS	Specific Conductance	Field ^c pH		Hexavalent Chromium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Fluoride	Lead	Molybdenum	n Mercury	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Units ^D	mg/L	µmhos/cm	pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample ID D	MDL Date	0.757	0.116		0.00020	0.000092	0.00021	0.00026	0.00020	0.00014	0.00014	0.00027	0.00024	0.104	0.00026	0.00015	0.00012	0.00036	0.00036	0.00012	0.00026	0.00032	0.0046
SC-701-WDR-381	10/2/2012	32000	43500	6.9	0.00790	ND (0.0020)	ND (0.0020)	0.00110	0.0828	ND (0.00050)	ND (0.0010	ND (0.005	0) ND (0.005	0) 15.4	ND (0.001	0) 0.144	ND (0.0010)	0.00820	0.0223	ND (0.0050) ND (0.001	0) ND (0.0050) ND (0.0100
RL		1250	2.00		0.0010	0.0020	0.0020	0.0010	0.0050	0.00050	0.0010	0.0050	0.0050	0.500	0.0010	0.0020	0.0010	0.0020	0.0050	0.0050	0.0010	0.0050	0.0100

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program

MDL = method detection limit

mg/L = milligrams per liter

ND = parameter not detected at the listed value

RL = project reporting limit

μg/L = micrograms per liter

µmhos/cm = micromhos per centimeter

\\\Zinfande\\Proj\\PacificGasElectricCo\\TopockProgram\\Database\\Tuesdai\\M3WDR\\M3_\WDR_\Qtrly.mdb\\rpt_qtrly\\ReverseOsmosis pkumar2 01/10/2013 09:43:27

Page 1 of 1 Date Printed 1/10/2013

^a Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID PR-10-04).

b Units reported in this table are those units required in the ARARs.

c Starting 11/20/2007, analysis of pH was switched from California certified laboratory analysis to field method pursuant to the Water Board letter dated October 16, 2007 – Clarification of Monitoring and Reporting Program Requirements, stating that pH measurements may be conducted in the field.

TABLE 7

Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)

Sludge Monitoring Results^a

Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Sampling	Frequency										Qu	arterly									
Sample ID	Analytes Units ^b MDL Date	Chromium mg/kg 0.0040	Hexavalent Chromium mg/kg 0.310	Antimony mg/kg 0.0290	Arsenic mg/kg 0.0100	Barium mg/kg 0.0240	Beryllium mg/kg 0.0016	Cadmium mg/kg 0.0070	Cobalt mg/kg 0.0050	Copper mg/kg 0.0140	Fluoride mg/kg 0.0209	Lead mg/kg 0.0050	Molybdenum mg/kg 0.0350	Mercury mg/kg 0.00012	Nickel mg/kg 0.0055	Selenium mg/kg 0.0190	Silver mg/kg 0.0094	Thallium mg/kg 0.0118	Vanadium mg/kg 0.0100	Zinc mg/kg 0.0230	
SC-Sludge-WDR-381	10/2/2012	2370 8.53	20.8 6.93	32.8 5.00	ND (5.00) 5.00	39.7 10.0	ND (1.71) 1.71	4.54 1.71	ND (10.0) 10.0	14.2 5.00	20.6 3.46	ND (5.00) 5.00	ND (10.0) 10.0	ND (0.100) 0.100	23.2 5.00	ND (5.00) 5.00	ND (5.00) 5.00	ND (5.00) 5.00	28.7 8.53	29.1 10.0	

NOTES:

(---) = not required by the ARARs Monitoring and Reporting Program mg/kg = milligrams per killogram mg/L = milligrams per liter MDL = method detection limit

ND = parameter not detected at the listed reporting limit RL = project reporting limit

^a Sampling location for all sludge samples is the sludge collection bin (see attached P&ID TP-PR-10-10-06).

 $^{^{\}mbox{\it b}}$ Units reported in this table are those units required in the ARARs.

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-381	C.Knight	10/2/2012	1:36:00 PM	TLI	EPA 120.1	SC	10/5/2012	Gautam Savani
					TLI	EPA 200.7	AL	10/10/2012	Ethel Suico
					TLI	EPA 200.7	В	10/9/2012	Ethel Suico
					TLI	EPA 200.7	FE	10/9/2012	Ethel Suico
					TLI	EPA 200.7	ZN	10/10/2012	Ethel Suico
					TLI	EPA 200.8	AS	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	BA	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CR	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CU	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MN	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MO	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	NI	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	PB	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	SB	10/30/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 218.6	CR6	10/8/2012	Himani Vaishnav
					TLI	EPA 300.0	FL	10/3/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	10/3/2012	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	10/3/2012	Giawad Ghenniwa
					FIELD	HACH	PH	10/2/2012	C.Knight
					TLI	SM2130B	TRB	10/3/2012	Gautam Savani
					TLI	SM2540C	TDS	10/4/2012	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	10/4/2012	Maksin Gorbunov
					TLI	SM4500NO2B	NO2N	10/3/2012	Jenny Tankunakorn
SC-100B	SC-100B-WDR-386	C.Knight	11/6/2012	1:47:00 PM	TLI	EPA 120.1	SC	11/8/2012	Gautam Savani
					TLI	EPA 200.7	AL	11/30/2012	Ethel Suico
					TLI	EPA 200.7	В	11/30/2012	Ethel Suico
					TLI	EPA 200.7	FE	11/30/2012	Ethel Suico
					TLI	EPA 200.7	FETD	11/30/2012	Ethel Suico
					TLI	EPA 200.7	ZN	11/30/2012	Ethel Suico
					TLI	EPA 200.8	AS	11/29/2012	Bita Emami
					TLI	EPA 200.8	BA	11/29/2012	Bita Emami
					TLI	EPA 200.8	CR	11/29/2012	Bita Emami
					TLI	EPA 200.8	CU	11/29/2012	Bita Emami
					TLI	EPA 200.8	MN	11/29/2012	Bita Emami
					TLI	EPA 200.8	MND	12/8/2012	Bita Emami
					TLI	EPA 200.8	MO	11/29/2012	Bita Emami

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-386	C.Knight	11/6/2012	1:47:00 PM	TLI	EPA 200.8	NI	12/4/2012	Bita Emami
					TLI	EPA 200.8	РВ	11/29/2012	Bita Emami
					TLI	EPA 200.8	SB	11/29/2012	Bita Emami
					TLI	EPA 218.6	CR6	11/8/2012	George Wahba
					TLI	EPA 300.0	FL	11/7/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	11/7/2012	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	11/7/2012	Giawad Ghenniwa
					FIELD	HACH	PH	11/6/2012	C.Knight
					TLI	SM 2320B	ALKB	11/12/2012	Melissa Scharfe
					TLI	SM 2320B	ALKC	11/12/2012	Melissa Scharfe
					TLI	SM2130B	TRB	11/7/2012	Gautam Savani
					TLI	SM2540C	TDS	11/7/2012	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	11/14/2012	Melissa Scharfe
					TLI	SM4500NO2B	NO2N	11/7/2012	Jenny Tankunakorn
SC-100B	SC-100B-WDR-390	C.Knight	12/4/2012	2:41:00 PM	TLI	EPA 120.1	SC	12/6/2012	Gautam Savani
					TLI	EPA 200.7	AL	12/14/2012	Ethel Suico
					TLI	EPA 200.7	В	12/13/2012	Ethel Suico
					TLI	EPA 200.7	FE	12/13/2012	Ethel Suico
					TLI	EPA 200.7	FETD	12/13/2012	Ethel Suico
					TLI	EPA 200.7	ZN	12/14/2012	Ethel Suico
					TLI	EPA 200.8	AS	1/2/2013	Bita Emami
					TLI	EPA 200.8	BA	12/17/2012	Bita Emami
					TLI	EPA 200.8	CR	12/17/2012	Bita Emami
					TLI	EPA 200.8	CU	12/17/2012	Bita Emami
					TLI	EPA 200.8	MN	12/17/2012	Bita Emami
					TLI	EPA 200.8	MND	12/17/2012	Bita Emami
					TLI	EPA 200.8	MO	12/17/2012	Bita Emami
					TLI	EPA 200.8	NI	1/2/2013	Bita Emami
					TLI	EPA 200.8	PB	12/17/2012	Bita Emami
					TLI	EPA 200.8	SB	1/2/2013	Bita Emami
					TLI	EPA 218.6	CR6	12/10/2012	Himani Vaishnav
					TLI	EPA 300.0	FL	12/5/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	12/5/2012	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	12/5/2012	Giawad Ghenniwa
					FIELD	HACH	PH	12/4/2012	C.Knight
					TLI	SM 2320B	ALKB	12/6/2012	Melissa Scharfe

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-390	C.Knight	12/4/2012	2:41:00 PM	TLI	SM 2320B	ALKC	12/6/2012	Melissa Scharfe
					TLI	SM2130B	TRB	12/5/2012	Gautam Savani
					TLI	SM2540C	TDS	12/6/2012	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	12/19/2012	Melissa Scharfe
					TLI	SM4500NO2B	NO2N	12/5/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-381	C.Knight	10/2/2012	1:52:00 PM	TLI	EPA 120.1	SC	10/5/2012	Gautam Savani
					TLI	EPA 200.7	AL	10/10/2012	Ethel Suico
					TLI	EPA 200.7	В	10/9/2012	Ethel Suico
					TLI	EPA 200.7	FE	10/9/2012	Ethel Suico
					TLI	EPA 200.7	ZN	10/10/2012	Ethel Suico
					TLI	EPA 200.8	AS	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	BA	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CR	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CU	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MN	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MO	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	NI	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	PB	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	SB	10/30/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 218.6	CR6	10/8/2012	Himani Vaishnav
					TLI	EPA 300.0	FL	10/3/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	10/3/2012	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	10/3/2012	Giawad Ghenniwa
					FIELD	HACH	PH	10/2/2012	C.Knight
					TLI	SM2130B	TRB	10/3/2012	Gautam Savani
					TLI	SM2540C	TDS	10/4/2012	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	10/4/2012	Maksin Gorbunov
					TLI	SM4500NO2B	NO2N	10/3/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-382	Josh Rosenberg	10/9/2012	1:18:00 PM	TLI	EPA 120.1	SC	10/12/2012	Gautam Savani
					TLI	EPA 200.8	CR	10/23/2012	Bita Emami
					TLI	EPA 200.8	MN	10/23/2012	Bita Emami
					TLI	EPA 218.6	CR6	10/10/2012	Himani Vaishnav/George Wahba
					FIELD	HACH	PH	10/9/2012	Josh R.
					TLI	SM2130B	TRB	10/10/2012	Gautam Savani
					TLI	SM2540C	TDS	10/10/2012	Jenny Tankunakorn

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-383	C.Knight	10/16/2012	2:09:00 PM	TLI	EPA 120.1	SC	10/18/2012	Gautam Savani
					TLI	EPA 200.8	CR	11/27/2012	Bita Emami
					TLI	EPA 200.8	MN	11/27/2012	Bita Emami
					TLI	EPA 218.6	CR6	10/18/2012	Himani Vaishnav
					FIELD	HACH	PH	10/16/2012	C.Knight
					TLI	SM2130B	TRB	10/17/2012	Gautam Savani
					TLI	SM2540C	TDS	10/18/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-384	C.Knight	10/23/2012	2:00:00 PM	TLI	EPA 120.1	SC	10/25/2012	Gautam Savani
					TLI	EPA 200.8	CR	11/27/2012	Bita Emami
					TLI	EPA 200.8	MN	11/27/2012	Bita Emami
					TLI	EPA 218.6	CR6	10/24/2012	George Wahba
					FIELD	HACH	PH	10/23/2012	C.Knight
					TLI	SM2130B	TRB	10/24/2012	Gautam Savani
					TLI	SM2540C	TDS	10/24/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-385	C.Knight	10/30/2012	1:15:00 PM	TLI	EPA 120.1	SC	10/31/2012	Gautam Savani
					TLI	EPA 200.8	CR	11/27/2012	Bita Emami
					TLI	EPA 200.8	MN	11/27/2012	Bita Emami
					TLI	EPA 218.6	CR6	11/2/2012	Himani Vaishnav
					FIELD	HACH	PH	10/30/2012	C.Knight
					TLI	SM2130B	TRB	10/31/2012	Gautam Savani
					TLI	SM2540C	TDS	11/5/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-386	C.Knight	11/6/2012	1:32:00 PM	TLI	EPA 120.1	SC	11/8/2012	Gautam Savani
					TLI	EPA 200.7	AL	11/30/2012	Ethel Suico
					TLI	EPA 200.7	В	11/30/2012	Ethel Suico
					TLI	EPA 200.7	FE	11/30/2012	Ethel Suico
					TLI	EPA 200.7	ZN	11/30/2012	Ethel Suico
					TLI	EPA 200.8	AS	11/29/2012	Bita Emami
					TLI	EPA 200.8	BA	11/29/2012	Bita Emami
					TLI	EPA 200.8	CR	11/29/2012	Bita Emami
					TLI	EPA 200.8	CU	11/29/2012	Bita Emami
					TLI	EPA 200.8	MN	11/29/2012	Bita Emami
					TLI	EPA 200.8	MO	11/29/2012	Bita Emami
					TLI	EPA 200.8	NI	12/4/2012	Bita Emami
					TLI	EPA 200.8	PB	11/29/2012	Bita Emami
					TLI	EPA 200.8	SB	11/29/2012	Bita Emami

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-386	C.Knight	11/6/2012	1:32:00 PM	TLI	EPA 218.6	CR6	11/8/2012	George Wahba
					TLI	EPA 300.0	FL	11/7/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	11/7/2012	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	11/7/2012	Giawad Ghenniwa
					FIELD	HACH	PH	11/6/2012	C.Knight
					TLI	SM2130B	TRB	11/7/2012	Gautam Savani
					TLI	SM2540C	TDS	11/7/2012	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	11/14/2012	Melissa Scharfe
					TLI	SM4500NO2B	NO2N	11/7/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-387	C.Knight	11/13/2012	1:44:00 PM	TLI	EPA 120.1	SC	11/16/2012	Gautam Savani
					TLI	EPA 200.8	CR	12/4/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MN	12/3/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 218.6	CR6	11/16/2012	George Wahba
					FIELD	HACH	PH	11/13/2012	C.Knight
					TLI	SM2130B	TRB	11/15/2012	Gautam Savani
					TLI	SM2540C	TDS	11/15/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-388	Ron Phelps	11/20/2012	11:30:00 AM	TLI	EPA 120.1	SC	11/23/2012	Gautam Savani
					TLI	EPA 200.8	CR	12/8/2012	Bita Emami
					TLI	EPA 200.8	MN	12/8/2012	Bita Emami
					TLI	EPA 218.6	CR6	11/23/2012	George Wahba
					FIELD	HACH	PH	11/20/2012	Ron Phelps
					TLI	SM2130B	TRB	11/21/2012	Gautam Savani
					TLI	SM2540C	TDS	11/27/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-389	C.Knight	11/27/2012	2:10:00 PM	TLI	EPA 120.1	SC	11/28/2012	Gautam Savani
					TLI	EPA 200.8	CR	12/8/2012	Bita Emami
					TLI	EPA 200.8	MN	12/8/2012	Bita Emami
					TLI	EPA 218.6	CR6	12/1/2012	Himani Vaishnav
					FIELD	HACH	PH	11/27/2012	C.Knight
					TLI	SM2130B	TRB	11/28/2012	Gautam Savani
					TLI	SM2540C	TDS	11/29/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-390	C.Knight	12/4/2012	2:33:00 PM	TLI	EPA 120.1	SC	12/6/2012	Gautam Savani
					TLI	EPA 200.7	AL	12/14/2012	Ethel Suico
					TLI	EPA 200.7	В	12/13/2012	Ethel Suico
					TLI	EPA 200.7	FE	12/13/2012	Ethel Suico
					TLI	EPA 200.7	ZN	12/14/2012	Ethel Suico

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-390	C.Knight	12/4/2012	2:33:00 PM	TLI	EPA 200.8	AS	1/2/2013	Bita Emami
					TLI	EPA 200.8	BA	12/17/2012	Bita Emami
					TLI	EPA 200.8	CR	12/17/2012	Bita Emami
					TLI	EPA 200.8	CU	12/17/2012	Bita Emami
					TLI	EPA 200.8	MN	12/17/2012	Bita Emami
					TLI	EPA 200.8	MO	12/17/2012	Bita Emami
					TLI	EPA 200.8	NI	1/2/2013	Bita Emami
					TLI	EPA 200.8	PB	12/17/2012	Bita Emami
					TLI	EPA 200.8	SB	1/2/2013	Bita Emami
					TLI	EPA 218.6	CR6	12/10/2012	Himani Vaishnav
					TLI	EPA 300.0	FL	12/5/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	12/5/2012	Giawad Ghenniwa
					TLI	EPA 300.0	SO4	12/5/2012	Giawad Ghenniwa
					FIELD	HACH	PH	12/4/2012	C.Knight
					TLI	SM2130B	TRB	12/5/2012	Gautam Savani
					TLI	SM2540C	TDS	12/6/2012	Jenny Tankunakorn
					TLI	SM4500NH3D	NH3N	12/19/2012	Melissa Scharfe
					TLI	SM4500NO2B	NO2N	12/5/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-391	C.Knight	12/11/2012	3:09:00 PM	TLI	EPA 120.1	SC	12/14/2012	Melissa Scharfe
					TLI	EPA 200.8	CR	12/18/2012	Bita Emami
					TLI	EPA 200.8	MN	12/18/2012	Bita Emami
					TLI	EPA 218.6	CR6	12/17/2012	Himani Vaishnav
					FIELD	HACH	PH	12/11/2012	C.Knight
					TLI	SM2130B	TRB	12/12/2012	Gautam Savani
					TLI	SM2540C	TDS	12/13/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-392	Scott O Donnell	12/18/2012	10:30:00 AM	TLI	EPA 120.1	SC	1/2/2013	Gautam Savani
					TLI	EPA 200.8	CR	1/8/2013	Bita Emami
					TLI	EPA 200.8	MN	1/8/2013	Bita Emami
					TLI	EPA 218.6	CR6	12/20/2012	Himani Vaishnav
					FIELD	HACH	PH	12/18/2012	Ron Phelps
					TLI	SM2130B	TRB	12/19/2012	Gautam Savani
					TLI	SM2540C	TDS	12/20/2012	Jenny Tankunakorn
SC-700B	SC-700B-WDR-393	Ryan Phelps	12/26/2012	6:53:00 AM	TLI	EPA 120.1	SC	1/2/2013	Gautam Savani
					TLI	EPA 200.8	CR	1/5/2013	Bita Emami
					TLI	EPA 200.8	MN	1/5/2013	Bita Emami

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-393	Ryan Phelps	12/26/2012	6:53:00 AM	TLI	EPA 218.6	CR6	1/2/2013	Himani Vaishnav
					FIELD	HACH	PH	12/26/2012	Ron Phelps
					TLI	SM2130B	TRB	12/27/2012	Maksim Gorbunov
					TLI	SM2540C	TDS	12/31/2012	Maksim Gorbunov
SC-701	SC-701-WDR-381	C.Knight	10/2/2012	1:19:00 PM	TLI	EPA 120.1	SC	10/5/2012	Gautam Savani
					TLI	EPA 200.7	ZN	10/10/2012	Ethel Suico
					TLI	EPA 200.8	AG	10/19/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	AS	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	BA	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	BE	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CD	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CO	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CR	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	CU	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	HG	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MN	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	MO	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	NI	10/15/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	PB	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	SB	10/30/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	SE	10/10/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	TL	10/6/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 200.8	V	10/9/2012	Katia Kiarashpoor/Bita Emami
					TLI	EPA 218.6	CR6	10/8/2012	Himani Vaishnav
					TLI	EPA 300.0	FL	10/3/2012	Giawad Ghenniwa
					TLI	SM2540C	TDS	10/4/2012	Jenny Tankunakorn
hase Separator	SC-Sludge-WDR-381	C.Knight	10/2/2012	10:10:00 AM	TLI	EPA 300.0	FL	10/3/2012	Giawad Ghenniwa
					TLI	EPA 300.0	NO3N	10/3/2012	Giawad Ghenniwa
					TLI	EPA 6010B	AG	10/30/2012	Ethel Suico
					TLI	EPA 6010B	AS	10/17/2012	Ethel Suico
					TLI	EPA 6010B	BA	10/16/2012	Ethel Suico
					TLI	EPA 6010B	BE	10/30/2012	Ethel Suico
					TLI	EPA 6010B	CD	10/30/2012	Ethel Suico
					TLI	EPA 6010B	CO	10/16/2012	Ethel Suico
					TLI	EPA 6010B	CR	10/16/2012	Ethel Suico
					TLI	EPA 6010B	CU	10/30/2012	Ethel Suico

\\Zinfandel\\Proj\\PacificGasElectricCo\TopockProgram\\Database\Tuesdai\\M3WDR\\M3_WDR_\Qtrly.mdb\\rpt_qtrlySummary_Paramet ers pkumar2 01/09/2013 13:41:31

Page 7 of 9

Date Printed 1/9/2013

TABLE 8
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs)
Monitoring Information
Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
Phase Separator	SC-Sludge-WDR-381	C.Knight	10/2/2012	10:10:00 AM	TLI	EPA 6010B	MN	10/16/2012	Ethel Suico
					TLI	EPA 6010B	MO	10/16/2012	Ethel Suico
					TLI	EPA 6010B	NI	10/17/2012	Ethel Suico
					TLI	EPA 6010B	PB	10/30/2012	Ethel Suico
					TLI	EPA 6010B	SB	10/17/2012	Ethel Suico
					TLI	EPA 6010B	SE	10/17/2012	Ethel Suico
					TLI	EPA 6010B	TL	10/30/2012	Ethel Suico
					TLI	EPA 6010B	V	10/16/2012	Ethel Suico
					TLI	EPA 6010B	ZN	10/17/2012	Ethel Suico
					TLI	SM2540B	MOIST	10/4/2012	Gautam Savani
					TLI	SW 6020A	HG	10/29/2012	Bita Emami
					TLI	SW 7199	CR6	10/16/2012	George Wahba

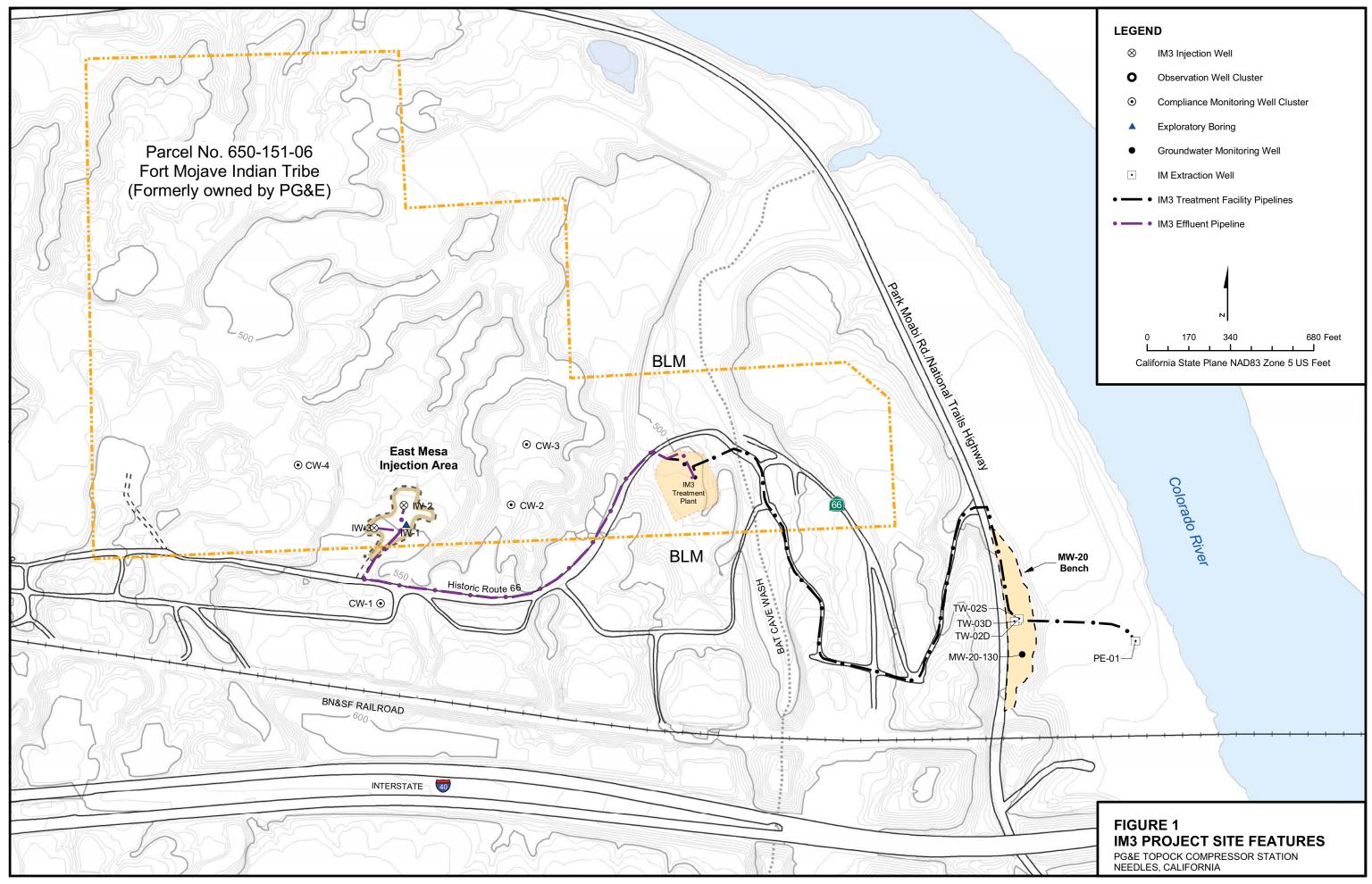
TABLE 8

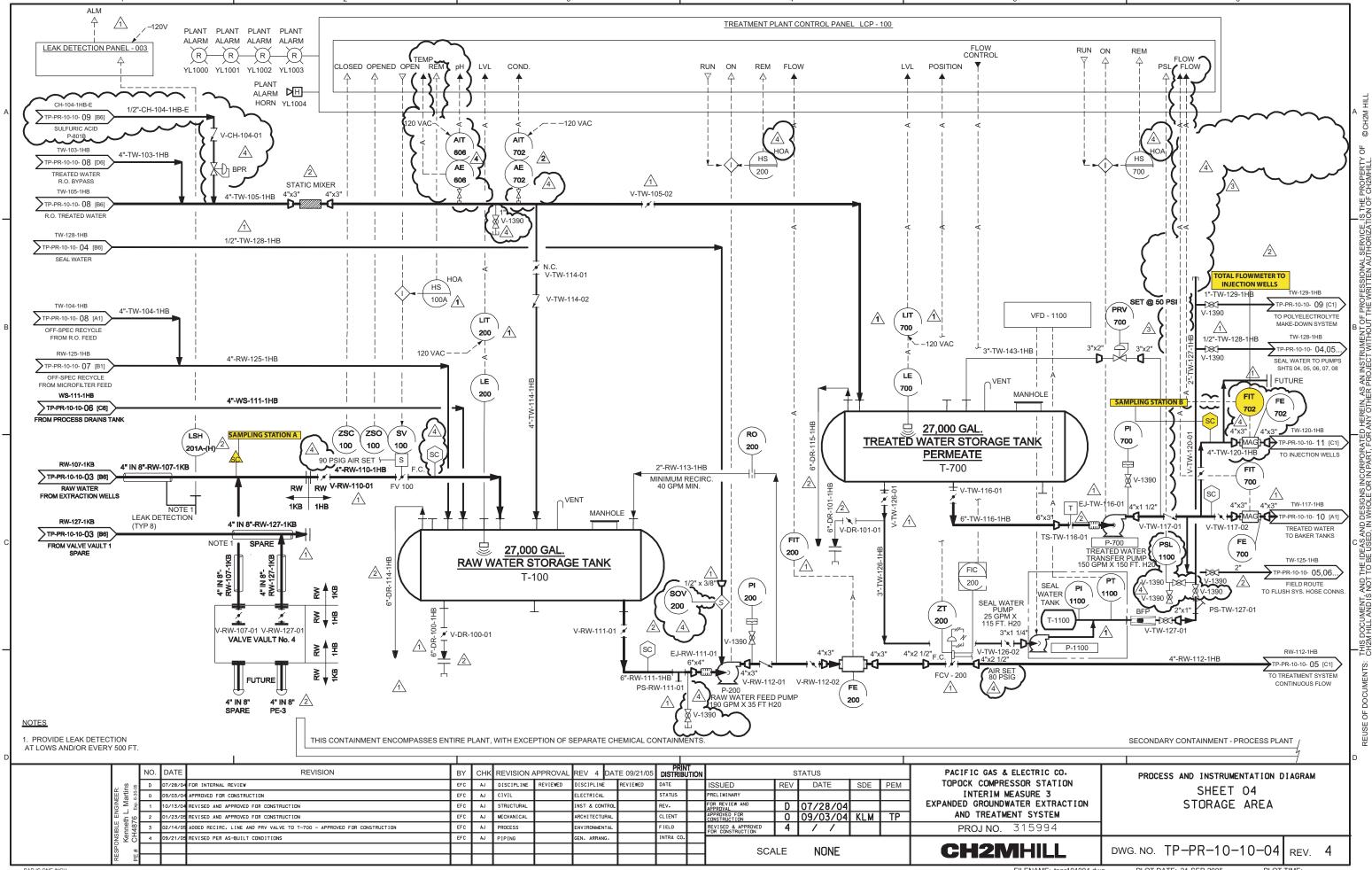
Topock IM-3 Waste Discharge Applicable or Relevant and Appropriate Requirements (ARARs) Monitoring Information

Fourth Quarter 2012 Monitoring Report for Interim Measure No.3 Groundwater Treatment System

NOTES:

SC-700B = Sampling location for all effluent samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04).


SC-100B = Sampling location for all influent samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04).

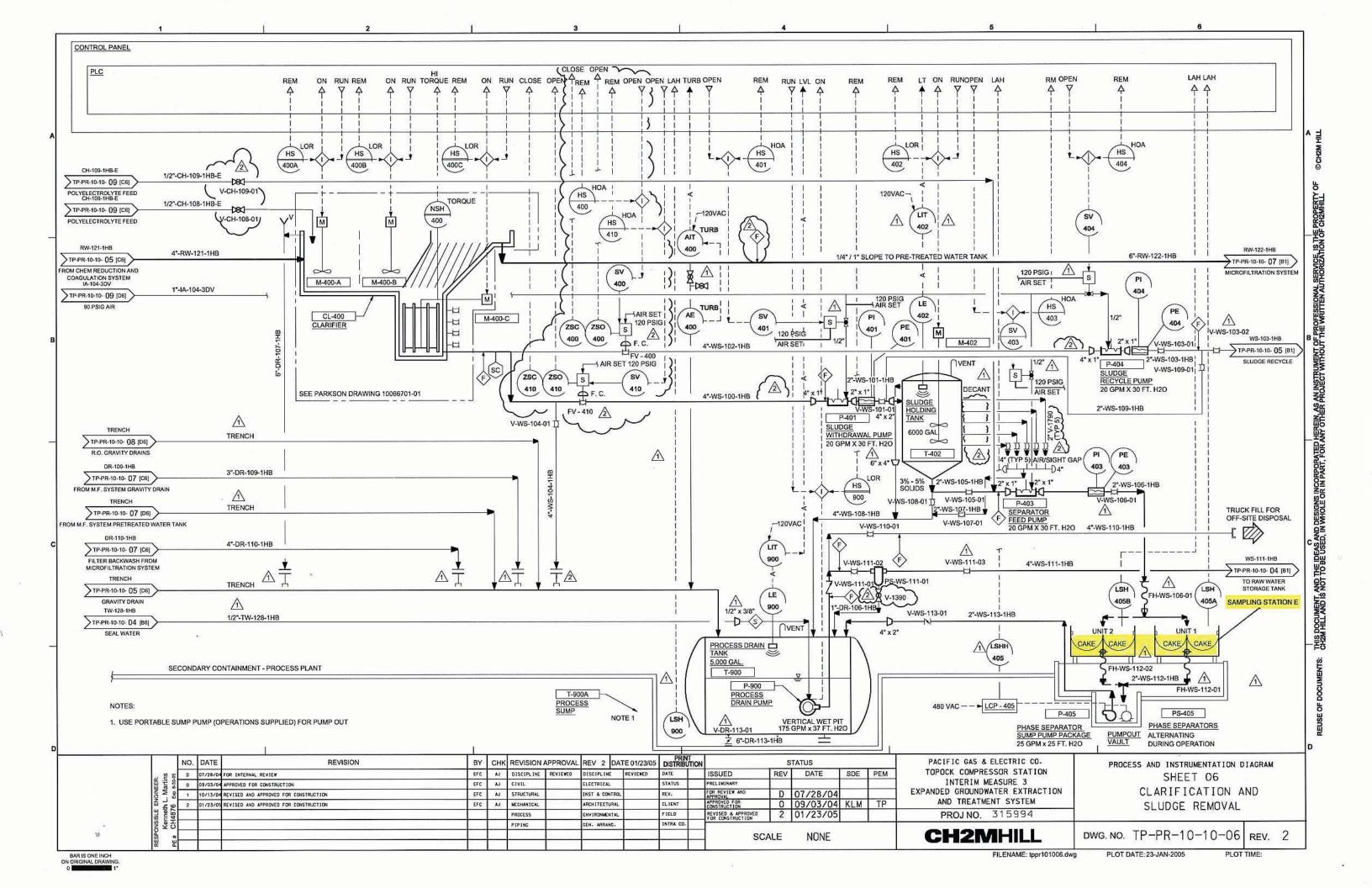

SC-701 = Sampling location for all reverse osmosis samples is tap on pipe T-701 (see attached P&ID PR-10-04).

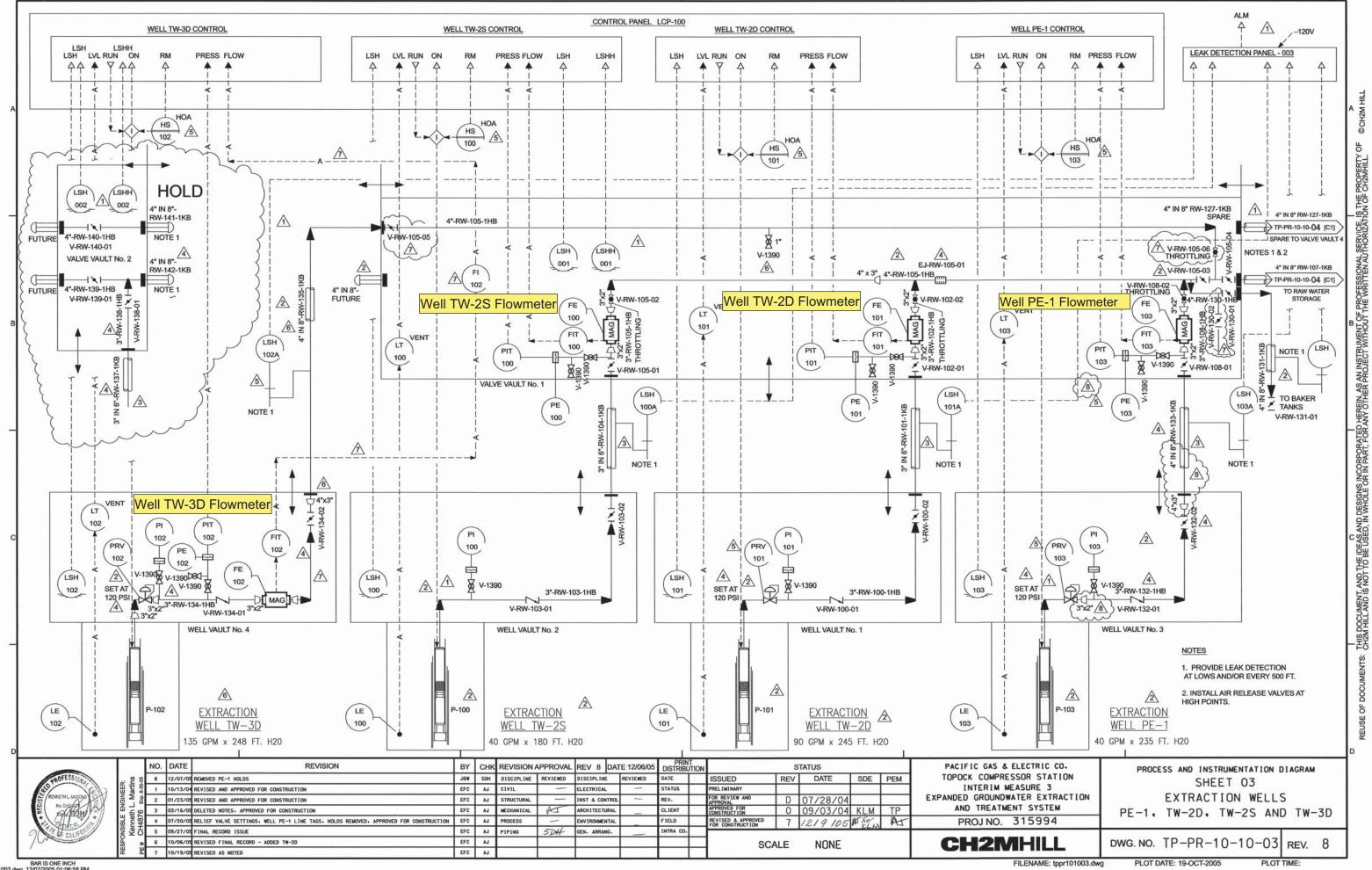
Prior to April 11, 2007 the analytical methods listed in the 40 CFR Part 136 for pH and TDS were E150.1 and E160.1, respectively. Per EPA and Department of Health Services guidelines, the analytical methods listed in the current 40 CFR Part 136 have changed to SM4500-H B and SM2540C as shown on the table.

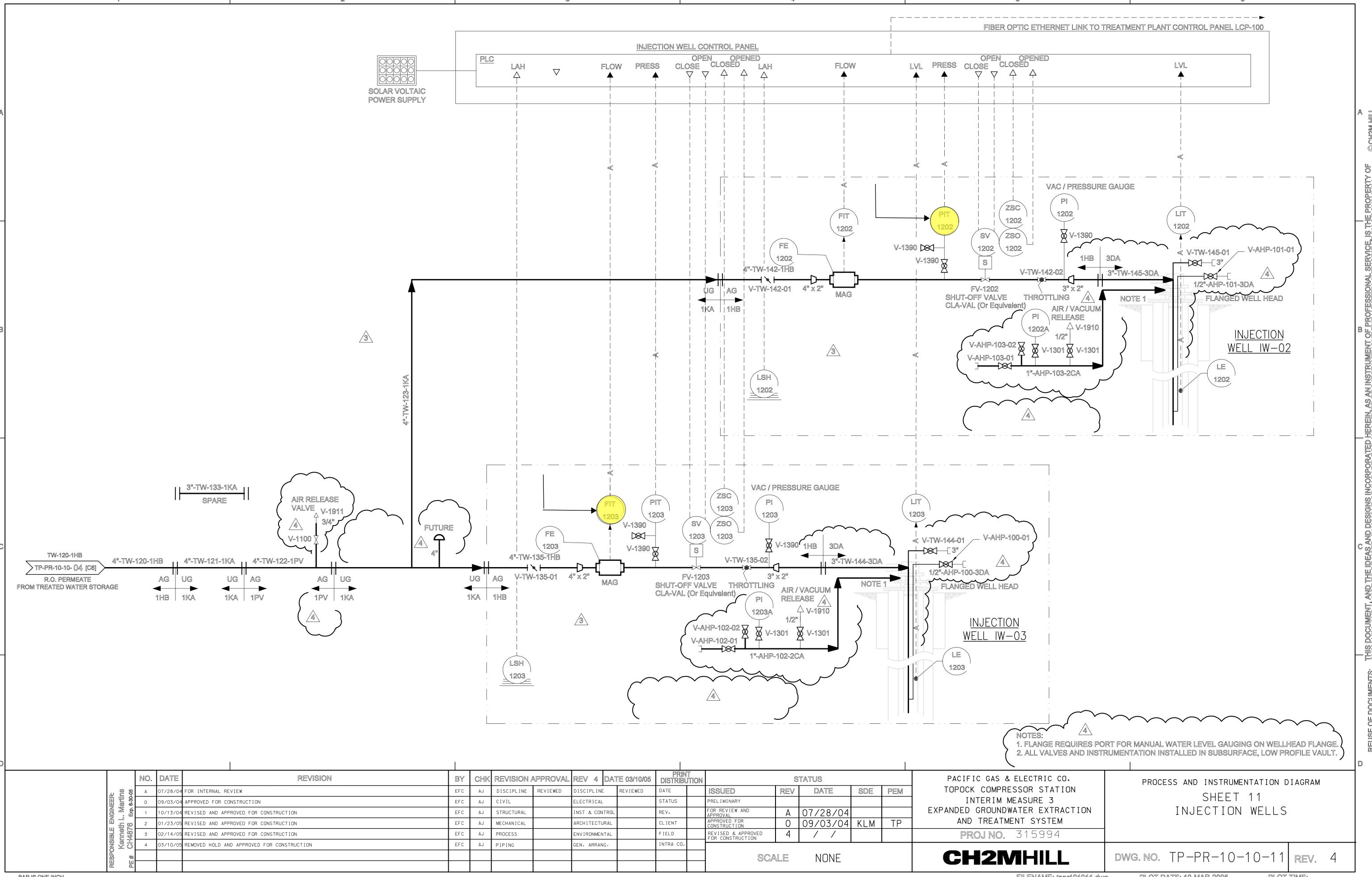
ALKB = ALKC = AL = Ag = AS =	alkalinity, bicarb as CaCO3 alkalinity, carb as CaCO3 aluminum silver arsenic	MO = MOIST = NH3N = NI = NO2N =	nickel
B =	boron	NO3N =	nitrate (as N)
BA =	barium	PB =	lead
BE =	beryllium	PH =	рН
CD =	cadmium	SB =	antimony
CO =	cobalt	SC =	specific conductance
CR =	chromium	SE =	selenium
CR6 =	hexavalent chromium	SO4 =	sulfate
CU =	copper	TDS =	total dissolved solids
FE =	iron	TL =	thallium
FETD =	iron, dissolved	TLI =	Truesdail Laboratories, Inc.
FL =	fluoride	TRB =	turbidity
HG =	mercury	V =	vanadium
MN =	manganese	ZN =	zinc
MND =	manganese, dissolved		

FILENAME: PR-10-03.dgn

PLOT DATE: 11/19/2009


PLOT TIME: 10:27:54 AM


BAR IS ONE INCH ON ORIGINAL DRAWING.


TO SEAL WATER TRUNK LINE PR-10-03 (HS 701 1 1/2" TW-154-1HB THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN AS AN INSTRUMENT OF PROFESSIONAL SERVICE. IS THE PROPERTY CHZM HILL AND IS NOT TO BE USED, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CHZMHILL. LOCATED IN CHEMICAL STORAGE AREA LOCATED NEAR EXISTING RO PR-10-03 -1/2" CH-112-1HB TO PRIMARY RO FROM P-2301 HCI ACID PUMP /-1/2" CH-114-1HB HYDRO-CHLORIC ACID (HCI) HCI ACID TOTE PUMP SKID SEE CROWN ANTISCALANT FEED PUMP SKID SEE CROWN SECONDARY RO PRIMARY RO ANTI-SCALANT CHEMICAL DRUM ANTI-SCALANT CHEMICAL DRUM 1A-102-3DV 1"-1A-108-3DV TP-PR-10-10-09(06) 90 PSIG AIR 1/4" CH-115-1HB FROM P-2402 120VAC 1 1/2" TW-152-1HB TO PRIMARY RO FROM P-2401 ANTI-SCALANT FEED PUMP RECYCLE COND COND 701 701 ST STAGE RO CONCENTATE V-1390 1 1/2"-TW-148-1HB PR-10-03 2"x1 1/2" NO SECONDARY REVERSE OSMOSIS SKID SEE CROWN SOLUTION DWG: PS-0689-08 1 1/2" TW-149-1HB T-2601 SECONDARY 1" TW-146-1HB SECONDAR RO FEED TANK SEE CROWN RO FEED PUMP SEE _x 701 (NOTE 3) TO T-603 TANK (LE) CROWN DWG PS-0689-07 V-1390 1 1/2" TW-151-1HB SAMPI ING 701 <u></u> ∩ VENT STATION D PR-10-03 O CONCENTRATE 701 CLOSE FROM PRIMARY RO FLOWMETER Oběv 5 T-701 FE 8000 GAL. 701 SEAL WATER TS-TW-111-01 5 र T 6"x1 1/2" ▼ 3"x1" 3"x1" V-TW-112-01 V-TW-112-03 **RECORD DRAWINGS** SOV V-TW-112-03 701 J PORCELLA 6"-TW-111-1HB P-107 THESE RECORD DRAWINGS HAVE BEEN PREPARED, IN PART, ON THE BASIS OF INFORMATION COMPILED BY OTHERS, THEY ARE △ 1/2"x3/8" SEAL WATER RO CONCENTRATE TP-PR-10-10-08 [B6] NOT INTENDED TO REPRESENT IN DETAIL THE EXACT LOCATION, TRANSFER PUMP 80 GPM X 85 FT H20 TYPE OF COMPONENT NOR MANNER OF CONSTRUCTION. THE ENGINEER WILL NOT BE RESPONSIBLE FOR ANY ERRORS OR 1" TW-147-1HB OMISSIONS WHICH HAVE BEEN INCORPORATED INTO THE RECORD DRAWINGS. TW-112-1RB TP-PR-10-10 [C1] TO TRENCH DRAIN RO CONCENTRATE REVISION BY CHK PRINT DISTRIBUTION DATE REVISION APPROVAL REV 0 DATE 10/02/09 STATUS PACIFIC GAS & ELECTRIC CO. PROCESS AND INSTRUMENTATION DIAGRAM REV DATE TOPOCK COMPRESSOR STATION A 2/12/09 INTERNAL REVIEW DISCIPLINE REVIEWED DISCIPLINE REVIEWED ISSUED SDE PEM REVERSE OSMOSIS SYSTEM 2/12/09 JP INTERIM MEASURE 3 ORIGINALLY STAMPED /12/09 CLIENT REVIEW ELECTRICAL STATUS PREL [M] NARY R REVIEW AND SHEET TWO OF TWO 4/01/09 FOR REVIEW AND APPROVA PLANT PERFORMANCE IMPROVEMENTS 4/01/09 AND SIGNED BY: PPROVED FOR ONSTRUCTION JOHN PORCELLA 1/17/09 FINAL RECORD ISSUE JR MECHAN1CAL ARCH | TECTURAL LIENT CALIFORNIA PE NO. C70145 PROCESS FIELD **PROJ NO.** 362032 0 10/02/09 ON 04-01-2009 INTRA CO PIPING SJ GEN. ARRANG. **CH2M**HILL DWG. NO. PR-10-04 SCALE NONE REV. 0 BAR IS ONE INCH ON ORIGINAL DRAWING. FILENAME: PR-10-04.dgn PLOT DATE: 11/19/2009 PLOT TIME: 10:28:26 AM

COND

RUN ON FLOW

Appendix A Semiannual Operations and Maintenance Log, July 1, 2012 through December 31, 2012

APPENDIX A

Semiannual Operations and Maintenance Log, July 1, 2012 through December 31, 2012

Downtime is defined as any periods when all extraction wells are not operating, so that no groundwater is being extracted and piped into IM-3 as influent. Periods of planned and unplanned extraction system downtime are summarized here. The times shown are in Pacific Standard Time to be consistent with other data collected at the site.

July 2012

During July 2012, extraction wells TW-3D and PE-1 operated at a target pumping rate of 135 gallons per minute (gpm) excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during July 2012. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 99.0 percent during the July 2012 reporting period.

The IM-3 facility treated approximately 5,955,686 gallons of extracted groundwater during July 2012. The IM-3 facility treated 460 gallons of water generated from the groundwater monitoring program and 9,000 gallons of injection well backwashing water. Four containers of solids from the IM-3 facility were transported offsite during July 2012.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 1.0 percent downtime during July 2012) are summarized below.

- July 2, 2012 (planned): The extraction well system was offline from 2:10 p.m. to 2:56 p.m. due to permanent alarm and leak detection system testing that shut down extraction wells. Extraction system downtime was 46 minutes.
- **July 5, 2012 (unplanned):** The extraction well system was offline from 9:40 p.m. to 10:06 p.m. due to a loss of power from Needles Power. Extraction system downtime was 26 minutes.
- **July 8, 2012 (unplanned):** The extraction well system was offline from 9:00 p.m. to 9:06 p.m. due to loss of power from Needles Power. Extraction system downtime was 6 minutes.
- July 9, 2012 (unplanned): The extraction well system was offline from 5:42 a.m. to 6:12 a.m. due to loss of power from Needles Power. Extraction system downtime was 30 minutes.
- **July 11, 2012 (planned):** The extraction well system was offline from 6:50 a.m. to 12:08 p.m. due to planned maintenance to clear a blockage between the 301 tanks. Extraction system downtime was 5 hours, 18 minutes.

- **July 14, 2012 (unplanned):** The extraction well system was offline from 4:00 p.m. to 4:04 p.m. and from 6:34 p.m. to 6:38 p.m. due to loss of power from Needles Power. Extraction system downtime was 8 minutes.
- **July 21, 2012 (unplanned):** The extraction well system was offline from 1:54 a.m. to 2:08 a.m. due to loss of power from Needles Power. Extraction system downtime was 14 minutes.

August 2012

During August 2012, extraction wells TW-3D and PE-1 operated at a target pumping rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during August 2012. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 85.7 percent during the August 2012 reporting period.

The IM No. 3 facility treated approximately 5,095,995 gallons of extracted groundwater during August 2012. The IM-3 facility treated 1,300 gallons of water generated from the groundwater monitoring program and 11,700 gallons of injection well backwashing/redevelopment water. No containers of solids from the IM-3 facility were transported offsite during August 2012.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 14.3 percent downtime during August 2012) are summarized below.

- August 2, 2012 (planned): The extraction well system was offline from 10:54 a.m. to 10:56 a.m., 11:04 a.m. to 11:06 a.m., 11:08 a.m. to 11:10 a.m., and 11:16 a.m. to 11:18 a.m. due to testing of critical alarms and leak detection system. Extraction system downtime was 8 minutes.
- August 9, 2012 (unplanned): The extraction well system was offline from 5:58 p.m. to 6:00 p.m. due to a loss of power from Needles Power. Extraction system downtime was 2 minutes.
- August 13-17, 2012 (planned): The extraction well system was offline from 4:26 a.m. on August 13th to 2:16 p.m. on August 16th, from 2:58 p.m. on August 16th to 6:46 a.m. on August 17th, and from 9:40 a.m. to 10:38 a.m. on August 17th for semiannual scheduled maintenance. Extraction system downtime was 4 days, 2 hours and 36 minutes.
- August 21, 2012 (unplanned): The extraction well system was offline from 6:56 p.m. to 7:02 p.m. due to a loss of power from Needles Power. Extraction system downtime was 6 minutes.
- August 23, 2012 (unplanned): The extraction well system was offline from 4:00 a.m. to 4:10 a.m. and 9:14 a.m. to 9:18 a.m. due to a loss of power from Needles Power. Extraction system downtime was 14 minutes.
- August 30, 2012 (unplanned): The extraction well system was offline from 4:06 p.m. to 4:20 p.m. and 4:36 p.m. to 11:48 p.m. due to a ferrous feed pump malfunction. Plant was in recirculation mode until pump was repaired and all parameters were within specifications. Extraction system downtime was 7 hours, 26 minutes.

A-2

September 2012

During September 2012, extraction wells TW-3D and PE-1 operated at a target pumping rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during September 2012. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 98.2 percent during the September 2012 reporting period.

The IM-3 facility treated approximately 5,678,133 gallons of extracted groundwater during September 2012. The IM-3 facility treated 2,540 gallons of water generated from the groundwater monitoring program and 4,500 gallons of injection well backwashing/redevelopment water. Three containers of solids from the IM-3 facility were transported offsite during September 2012.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 1.8 percent downtime during September 2012) are summarized below.

- **September 4, 2012 (planned):** The extraction well system was offline from 12:46 p.m. to 12:48 p.m., from 1:06 p.m. to 1:08 p.m., from 1:16 p.m. to 1:18 p.m., and from 1:34 p.m. to 1:44 p.m. due to testing of critical alarms and leak detection system. Extraction system downtime was 16 minutes.
- **September 4, 2012 (unplanned):** The extraction well system was offline from 4:42 p.m. to 5:02 p.m. due to a loss of power from Needles Power. Extraction system downtime was 20 minutes.
- **September 5, 2012 (unplanned):** The extraction well system was offline from 12:08 a.m. to 12:12 a.m. due to a loss of power from Needles Power. Extraction system downtime was 4 minutes.
- **September 5, 2012 (unplanned):** The extraction well system was offline from 7:54 a.m. to 9:48 a.m. for maintenance of electrical bucket for extraction well pump (PE-1) motor. Extraction system downtime was 1 hour and 54 minutes.
- September 5, 2012 (unplanned): The extraction well system was offline from 10:08 a.m. to 2:08 p.m., from 2:10 p.m. to 2:12 p.m., 2:14 p.m. to 2:18 p.m., from 2:20 p.m. to 2:22 p.m., from 2:28 p.m. to 2:34 p.m., from 2:40 p.m. to 3:00 p.m., from 3:06 p.m. to 3:14 p.m., from 3:16 p.m. to 3:26 p.m., from 3:28 p.m. to 3:32 p.m., from 3:34 p.m. to 4:00 p.m., from 4:46 p.m. to 4:50 p.m., from 5:08 p.m. to 5:12 p.m., and from 5:14 p.m. to 5:16 p.m. for maintenance of the variable frequency drive on the primary reverse osmosis pump (P-2501). Extraction system downtime was 5 hours and 32 minutes.
- **September 6, 2012 (unplanned):** The extraction well system was offline from 2:12 p.m. to 2:18 p.m. and from 2:42 p.m. to 2:46 p.m. due to a loss of power from Needles Power. Extraction system downtime was 10 minutes.
- **September 8, 2012 (unplanned):** The extraction well system was offline from 1:08 p.m. to 1:14 p.m. and 2:36 p.m. to 2:40 p.m. due to a loss of power from Needles Power. Extraction system downtime was 10 minutes.

- **September 11, 2012 (planned):** The extraction well system was offline from 3:54 a.m.to 4:16 a.m., from 7:04 a.m.to 7:06 a.m., and from 7:08 a.m.to 7:10 a.m. due to a planned loss of power from Needles Power. Extraction system downtime was 26 minutes.
- **September 12, 2012 (unplanned):** The extraction well system was offline from 12:14 p.m. to 12:56 p.m. for maintenance of the blower. Extraction system downtime was 42 minutes.
- **September 14, 2012 (unplanned):** The extraction well system was offline from 2:10 a.m. to 2:16 a.m. and 4:04 a.m. to 4:10 a.m. due to a loss of power from Needles Power. Extraction system downtime was 12 minutes.
- **September 21, 2012 (unplanned):** The extraction well system was offline from 11:14 a.m. to 1:08 p.m. and from 1:12 p.m. to 2:00 p.m. for replacement of the microfilter feed pump (P-500). Extraction system downtime was 2 hours and 42 minutes.
- **September 23, 2012 (unplanned):** The extraction well system was offline from 9:46 p.m. to 9:48 p.m. due to a loss of power from Needles Power. Extraction system downtime was 2 minutes.
- **September 26, 2012 (unplanned):** The extraction well system was offline from 2:24 a.m. to 2:26 a.m. and 2:28 a.m. to 2:30 a.m. because the incoming power to the plant from the City of Needles was too high, so plant power supply needed to be switched to generator power. Extraction system downtime was 4 minutes.
- **September 23, 2012 (unplanned):** The extraction well system was offline from 6:16 a.m.to 6:28 a.m. and 10:30 a.m.to 10:52 a.m. when Needles Power adjusted power feed to plant. Extraction system downtime was 34 minutes.

October 2012

During October 2012, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during October 2012. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 98.9 percent during the October 2012 reporting period.

The IM-3 facility treated approximately 5,895,301 gallons of extracted groundwater during October 2012. The IM-3 facility treated 2,230 gallons of water generated from the groundwater monitoring program and 12,600 gallons of injection well backwashing/redevelopment water. Four containers of solids from the IM-3 facility were transported offsite during October 2012.

Periods of planned and unplanned extraction system down time (that together resulted in approximately 1.1 percent of downtime during October 2012) are summarized below.

• October 1, 2012 (unplanned): The extraction well system was offline from 2:12 a.m. to 3:48 a.m., 3:50 a.m. to 5:06 a.m., and 5:48 a.m. to 6:04 a.m. due to a low pH alarm in the treated water that shut down the extraction well system. The low pH alarm was a false alarm due to a malfunction of the installed pH probe. Extraction system downtime was 3 hours and 8 minutes.

- October 3, 2012 (planned): The extraction well system was offline from 9:26 a.m. to 10:02 a.m. and 10:06 a.m. to 10:08 a.m. due to testing of critical alarms and leak detection system. Extraction system downtime was 38 minutes.
- October 10, 2012 (unplanned): The extraction well system was offline from 6:48 p.m. to 6:54 p.m. due to a loss of power from Needles Power. Extraction system downtime was 6 minutes.
- October 11, 2012 (unplanned): The extraction well system was offline from 7:18 a.m. to 7:20 a.m., 9:40 a.m. to 9:44 a.m., and 11:20 a.m. to 11:22 a.m. due to a loss of power from Needles Power. Extraction system downtime was 8 minutes.
- October 13, 2012 (unplanned): The extraction well system was offline from 9:40 a.m. to 9:44 a.m. due to a loss of power from Needles Power. Extraction system downtime was 4 minutes.
- October 24, 2012 (unplanned): The extraction well system was offline from 9:18 a.m. to 1:26 p.m. due to microfilter maintenance. Extraction system downtime was 4 hours and 8 minutes.

November 2012

During November 2012, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2S and TW-2D were not operated during November 2012. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 98.7 percent during the November 2012 reporting period.

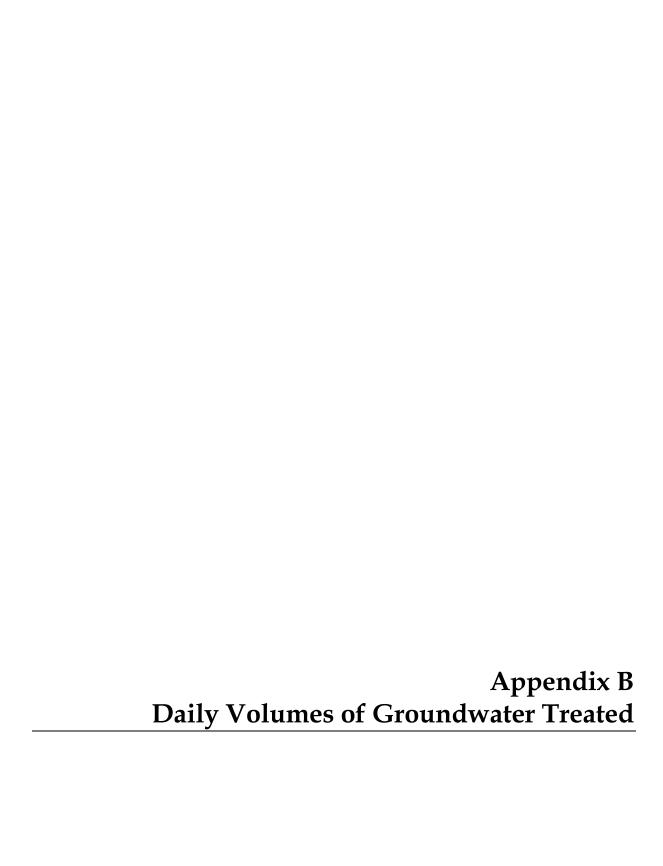
The IM-3 facility treated approximately 5,693,802 gallons of extracted groundwater during November 2012. The IM-3 facility treated 2,870 gallons of water generated from the groundwater monitoring program. Four containers of solids from the IM-3 facility were transported offsite during November 2012.

Periods of planned and unplanned extraction system down time (that together resulted in approximately 1.3 percent of downtime during November 2012) are summarized below.

- November 3, 2012 (unplanned): The extraction well system was offline from 5:20 p.m. to 5:30 p.m. due to a loss of power from Needles Power. Extraction system downtime was 10 minutes.
- November 4, 2012 (unplanned): The extraction well system was offline from 1:40 p.m. to 1:44 p.m. due to a loss of power from Needles Power. Extraction system downtime was 4 minutes.
- November 7, 2012 (planned): The extraction well system was offline from 8:06 a.m. to 8:30 a.m. and 8:36 a.m. to 8:40 a.m. due to testing of critical alarms and leak detection system. Extraction system downtime was 28 minutes.
- **November 14, 2012 (planned):** The extraction well system was offline from 8:26 a.m. to 4:06 p.m. and 4:46 p.m. to 5:06 p.m. due to scheduled plant maintenance activities. Extraction system downtime was 8 hours.

• November 27, 2012 (unplanned): The extraction well system was offline from 6:24 a.m. to 7:10 a.m. and 7:24 a.m. to 7:30 a.m. due to a loss of power from Needles Power. Extraction system downtime was 52 minutes.

December 2012


During December 2012, extraction wells TW-3D and PE-1 operated at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S ran for a short period of time on December 13, 2012 for the fourth quarter GMP sampling event. The operational run time for the IM-3 groundwater extraction system (combined or individual pumping) was 98.0 percent during the December 2012 reporting period.

The IM-3 facility treated approximately 5,846,530 gallons of extracted groundwater during December 2012. The IM-3 facility treated 3,670 gallons of water generated from the groundwater monitoring program and 3,600 gallons of injection well backwashing/redevelopment water. Two containers of solids from the IM-3 facility were transported offsite during December 2012.

Periods of planned and unplanned extraction system down time (that together resulted in approximately 2.0 percent of downtime during December 2012) are summarized below.

- **December 2, 2012 (unplanned):** The extraction well system was offline from 7:04 a.m. to 7:54 a.m. due to the need to clean a buildup of solids in the pipe between Iron Oxidation Tank T-301A and the next iron oxidation tank in series. Extraction system downtime was 50 minutes.
- **December 5, 2012 (planned):** The extraction well system was offline from 10:26 a.m. to 10:28 a.m., 10:32 a.m. to 10:34 a.m., 10:58 a.m. to 11:42 a.m., and 12:10 a.m. to 12:12 a.m. due to testing of critical alarms and leak detection system. Extraction system downtime was 50 minutes.
- **December 8, 2012 (unplanned):** The extraction well system was offline from 10:44 p.m. to 11:10 p.m. due to solids buildup on the flow switch located in the chemical injection loop. Extraction system downtime was 26 minutes.
- **December 12, 2012 (unplanned):** The extraction well system was offline from 9:46 a.m. to 2:36 p.m. for clarifier feed pump P-400 maintenance. Extraction system downtime was 4 hours, 50 minutes.
- **December 12, 2012 (unplanned):** The extraction well system was offline from 10:32 p.m. to 10:36 p.m. due to a loss of power from Needles Power. Extraction system downtime was 4 minutes.
- December 13, 2012 (unplanned): The extraction well system was offline from 11:08 a.m. to 11:10 a.m. due to a loss of power from Needles Power. Extraction system downtime was 2 minutes.
- **December 19, 2012 (unplanned):** The extraction well system was offline from 6:32 p.m. to 6:46 p.m. due to a loss of power from Needles Power. Extraction system downtime was 14 minutes.

- December 20, 2012 (unplanned): The extraction well system was offline from 5:54 a.m. to 6:24 a.m. and 10:00 a.m. to 10:26 a.m. due to maintenance on the RO system. Extraction system downtime was 56 minutes.
- **December 20, 2012 (unplanned):** The extraction well system was offline from 7:10 p.m. to 7:12 p.m. due to a loss of power from Needles Power. Extraction system downtime was 2 minutes.
- December 23, 2012 (unplanned): The extraction well system was offline from 10:48 a.m. to 12:10 p.m. due to reduced performance of clarifier feed pump P-400. Extraction system downtime was 1 hour, 22 minutes.
- December 26, 2012 (unplanned): The extraction well system was offline from 9:44 a.m. to 10:24 a.m. to replace clarifier feed pump P-400 with a new pump in kind. Extraction system downtime was 40 minutes.
- **December 28, 2012 (unplanned):** The extraction well system was offline from 6:26 a.m. to 6:38 a.m. and 6:56 a.m. to 11:04 a.m. due to reduced chemical mixing loop pump performance. Extraction system downtime was 4 hours, 20 minutes.

				Extrac	tion Well Sys	tem		Inje	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
July	1	2012			157,428	37,446	194,874	42	196,110	196,153	8,920
July	2	2012			152,320	36,474	188,794	3	190,354	190,357	9,189
July	3	2012			157,229	37,905	195,134	13	193,110	193,123	8,539
July	4	2012			157,468	37,449	194,917	37	196,166	196,202	8,563
July	5	2012			154,357	36,806	191,162	4	195,790	195,794	8,947
July	6	2012			156,999	37,484	194,483	10	183,924	183,934	8,207
July	7	2012			157,011	37,174	194,185	3	194,431	194,434	8,699
July	8	2012			156,650	37,117	193,767	6	194,577	194,583	9,803
July	9	2012			154,420	36,500	190,919	24	192,438	192,462	9,388
July	10	2012			157,185	37,238	194,423	3	192,127	192,129	9,785
July	11	2012			122,320	29,086	151,406	15	149,870	149,885	9,076
July	12	2012			157,039	37,124	194,163	12,374	181,945	194,319	9,449
July	13	2012			156,911	36,847	193,758	7	194,391	194,398	7,069
July	14	2012			156,267	36,981	193,248	2	192,901	192,902	4,465
July	15	2012			156,963	38,026	194,989	1	193,795	193,796	2
July	16	2012			156,922	37,532	194,454	2	195,246	195,248	1,568
July	17	2012			156,881	37,410	194,291	13	195,689	195,702	2
July	18	2012			157,115	36,827	193,941	114,853	79,810	194,663	1,573
July	19	2012			156,999	36,704	193,703	191,250	475	191,724	2
July	20	2012			156,978	36,614	193,592	191,075	434	191,509	1,614
July	21	2012			155,460	35,941	191,402	188,323	479	188,803	2
July	22	2012			157,229	36,222	193,451	194,643	399	195,041	1,563
July	23	2012			157,285	36,222	193,507	195,682	366	196,047	1,506
July	24	2012			157,233	36,192	193,425	194,628	317	194,945	
July	25	2012			157,470	36,298	193,767	113,916	77,939	191,855	305
July	26	2012			157,321	36,076	193,396	26	194,075	194,101	3,404
July	27	2012			157,249	35,739	192,988	5	196,503	196,508	18
July	28	2012			157,398	35,821	193,220	18	193,979	193,997	2,882
July	29	2012			157,482	35,622	193,104	6	193,668	193,674	54
July	30	2012			157,641	35,690	193,331	28	196,363	196,392	3,284
July	31	2012			157,811	35,677	193,488	12	189,770	189,782	4
otal Monthly	Volumes	s (gal)	0	0	4,825,040	1,130,244	5,955,284	1,397,020	4,557,441	5,954,462	137,883
-		n Rates (gpm)	0.0	0.0	108.1	25.3	133.4	31.3	102.1	133.4	3.1

a. Extraction wells TW-3D and PE-1 were operated during July 2012 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during July 2012.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during July 2012 is approximately 2.3 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

	Extraction Well System							Inj	Injection Well System			
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)	
August	1	2012			157,642	35,620	193,263	123,994	72,017	196,011	6	
August	2	2012			155,372	36,407	191,779	197,474	744	198,219	2,891	
August	3	2012			156,850	37,127	193,977	192,934	938	193,872	4	
August	4	2012			156,786	36,935	193,720	186,936	1,038	187,974	3,233	
August	5	2012			156,973	36,560	193,533	181,455	1,207	182,662	4	
August	6	2012			156,980	36,345	193,325	192,801	807	193,608	2,977	
August	7	2012			157,037	36,236	193,273	193,196	744	193,940	4	
August	8	2012			156,973	36,169	193,142	160,834	30,126	190,959	3,156	
August	9	2012			156,686	36,422	193,108	198,799	1,361	200,160	4	
August	10	2012			156,812	36,946	193,758	188,894	1,810	190,705	3,002	
August	11	2012			154,662	36,963	191,625	187,382	1,961	189,343	4	
August	12	2012			148,982	37,451	186,433	179,508	2,306	181,814	3	
August	13	2012			29,019	6,967	35,985	62,691	984	63,675	3,105	
August	14	2012			11	1	11	6	1,220	1,226	6	
August	15	2012			19	0	19	4	375	380	3	
August	16	2012			4,505	1,103	5,608	5	642	647	4	
August	17	2012			105,950	25,900	131,850	109,278	833	110,112	3	
August	18	2012			156,550	38,056	194,606	189,638	1,185	190,823	2	
August	19	2012			156,644	37,893	194,536	193,370	1,114	194,484	3,001	
August	20	2012			156,794	37,775	194,569	190,338	1,207	191,544	3	
August	21	2012			156,201	37,633	193,834	196,641	989	197,629	3,139	
August	22	2012			157,148	37,598	194,746	156,727	35,729	192,456	1	
August	23	2012			155,990	37,493	193,483	33,960	154,596	188,556	2,875	
August	24	2012			156,970	37,341	194,311	4	198,323	198,327	3	
August	25	2012			156,863	37,107	193,969	10	196,760	196,770	3,124	
August	26	2012			156,953	37,072	194,025	5	194,710	194,715	1	
August	27	2012			157,105	36,957	194,062	9	196,133	196,142	3,214	
August	28	2012			153,151	36,887	190,038	3	193,000	193,003	3,251	
August	29	2012			157,471	36,690	194,161	1	196,124	196,125	2	
August	30	2012			73,524	17,104	90,628	36,538	50,670	87,207	3,140	
August	31	2012			157,173	37,444	194,617	196,437	1,578	198,015	2	
otal Monthly	Volumes	s (gal)	0	0	4,119,794	976,201	5,095,995	3,549,872	1,541,232	5,091,104	40,169	
-		n Rates (gpm	n) 0.0	0.0	92.3	21.9	114.2	79.5	34.5	114.0	0.9	

a. Extraction wells TW-3D and PE-1 were operated during August 2012 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during August 2012.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during August 2012 is approximately 0.69 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

September 2012 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inje	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
September	1	2012			157,094	37,234	194,328	196,498	1,542	198,039	3,245
September	2	2012			157,207	37,209	194,416	190,429	1,775	192,203	2
September	3	2012			157,400	37,196	194,595	192,670	1,739	194,409	3,144
September	4	2012			151,762	37,006	188,768	187,943	1,915	189,858	2
September	5	2012			98,133	25,242	123,374	112,270	2,286	114,555	1
September	6	2012			136,837	41,362	178,199	178,266	1,940	180,206	2
September	7	2012			152,701	40,446	193,147	190,703	1,712	192,415	3,096
September	8	2012			156,633	36,349	192,982	194,400	1,486	195,886	3,275
September	9	2012			157,589	36,307	193,896	190,408	1,836	192,244	2,973
September	10	2012			157,718	36,046	193,764	191,678	1,737	193,415	2
September	11	2012			154,840	35,787	190,628	187,055	1,903	188,958	3,097
September	12	2012			153,082	35,398	188,480	181,469	1,915	183,384	4
September	13	2012			157,598	36,612	194,210	194,325	1,565	195,890	3,158
September	14	2012			156,227	36,118	192,345	191,868	1,363	193,232	3,121
September	15	2012			157,589	35,968	193,557	187,126	1,989	189,115	2,629
September	16	2012			157,612	35,788	193,399	191,096	1,867	192,963	521
September	17	2012			157,660	35,705	193,365	190,487	1,859	192,346	3,141
September	18	2012			157,640	35,609	193,249	191,568	1,832	193,400	2,847
September	19	2012			157,738	35,540	193,277	194,421	1,748	196,169	2,499
September	20	2012			157,731	35,497	193,227	194,397	1,688	196,086	649
September	21	2012			139,638	32,073	171,711	160,187	1,506	161,693	3,129
September	22	2012			157,286	36,464	193,750	188,142	1,555	189,697	3,013
September	23	2012			157,214	36,047	193,261	190,530	1,637	192,168	2
September	24	2012			157,503	35,944	193,448	192,298	1,631	193,929	3,128
September	25	2012			157,652	35,760	193,412	191,627	1,715	193,341	3,003
September	26	2012			152,678	35,484	188,162	102,124	86,900	189,024	1
September	27	2012			157,197	35,809	193,006	4	197,794	197,798	2,999
September	28	2012			157,190	35,632	192,822	41,778	139,574	181,352	3,010
September	29	2012			157,152	35,523	192,675	193,363	2,539	195,902	2,844
September	30	2012			157,198	35,482	192,679	192,637	1,956	194,593	2,981
otal Monthly	Volumes	s (gal)	0	0	4,601,500	1,076,633	5,678,133	5,181,767	472,503	5,654,269	61,519
-		n Rates (gpm) 0.0	0.0	106.5	24.9	131.4	119.9	10.9	130.9	1.4

a. Extraction wells TW-3D and PE-1 were operated during September 2012 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during September 2012.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during September 2012 is approximately 0.66 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

October 2012 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		Inj	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
October	1	2012			135,970	31,203	167,172	154,370	3,604	157,974	2
October	2	2012			157,317	35,632	192,949	192,296	3,287	195,582	3,014
October	3	2012			152,848	35,149	187,997	193,244	3,303	196,548	3,262
October	4	2012			157,107	36,026	193,133	183,126	5,927	189,052	1
October	5	2012			156,959	35,773	192,731	185,153	5,627	190,780	2,453
October	6	2012			156,963	35,615	192,578	185,946	5,500	191,446	2
October	7	2012			156,949	35,508	192,457	188,395	5,191	193,586	3,068
October	8	2012			156,936	35,495	192,431	192,139	4,214	196,353	2
October	9	2012			156,923	35,521	192,444	186,339	5,296	191,635	3,011
October	10	2012			156,233	35,284	191,517	73,494	116,864	190,357	3,074
October	11	2012			155,797	35,735	191,532	143	194,193	194,337	4
October	12	2012			157,027	35,726	192,753	8	195,567	195,575	3,202
October	13	2012			156,925	35,737	192,662	16	194,740	194,756	4
October	14	2012			157,098	35,364	192,462	13	193,943	193,956	3,113
October	15	2012			157,131	35,267	192,397	18	190,998	191,015	1
October	16	2012			157,106	35,028	192,134	2	192,151	192,153	2,988
October	17	2012			157,076	34,923	191,999	27	194,571	194,598	3,001
October	18	2012			157,105	34,735	191,840	22	190,586	190,608	3
October	19	2012			157,137	34,630	191,767	1	188,937	188,938	2,699
October	20	2012			157,077	34,560	191,637	23	189,213	189,237	3
October	21	2012			157,065	34,531	191,595	32	194,741	194,773	3,223
October	22	2012			157,058	34,474	191,532	47	191,808	191,855	4
October	23	2012			157,114	34,486	191,600	14	190,757	190,771	2,989
October	24	2012			129,639	28,980	158,619	7	153,177	153,184	3,177
October	25	2012			156,818	35,504	192,323	32,763	153,304	186,067	3
October	26	2012			156,852	35,406	192,258	4	195,688	195,692	3,075
October	27	2012			157,011	34,888	191,898	12	197,031	197,043	2,992
October	28	2012			156,970	34,903	191,873	32	193,958	193,990	132
October	29	2012			157,055	34,915	191,970	21	193,818	193,840	3,032
October	30	2012			157,237	34,943	192,181	25,500	164,762	190,261	3
October	31	2012			156,569	36,291	192,860	48	190,413	190,461	2,611
tal Monthly	Volumes	s (gal)	0	0	4,813,068	1,082,232	5,895,301	1,793,257	4,103,168	5,896,425	54,148
		n Rates (gpm) 0.0	0.0	107.8	24.2	132.1	40.2	91.9	132.1	1.2

a. Extraction wells TW-3D and PE-1 were operated during October 2012 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during October 2012.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during October 2012 is approximately 0.94 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

November 2012 Operational Data

IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

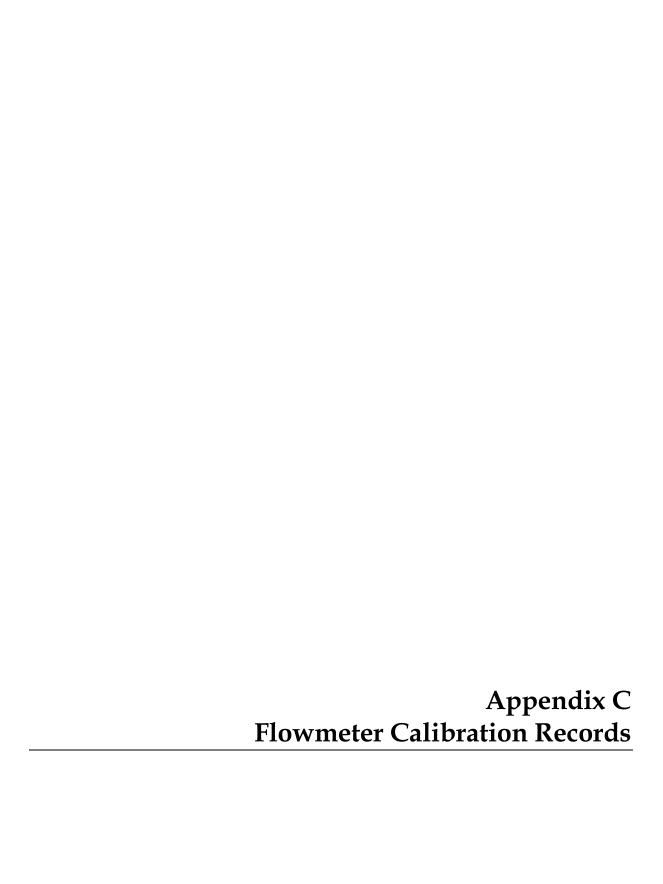
				Extrac	tion Well Sys	tem		lnj	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
November	1	2012			154,652	36,098	190,750	18	194,220	194,238	2,865
November	2	2012			156,422	35,644	192,066	10	189,456	189,465	3
November	3	2012			155,282	35,127	190,409	18	192,769	192,787	2,998
November	4	2012			155,658	35,733	191,391	7	191,261	191,269	3,141
November	5	2012			155,912	36,329	192,241	6	194,259	194,264	2
November	6	2012			155,890	36,078	191,968	23	190,682	190,705	3,357
November	7	2012			151,011	34,271	185,282	1,629	188,218	189,847	4
November	8	2012			156,242	36,041	192,282	0	187,663	187,663	2,992
November	9	2012			156,631	38,085	194,716	18	189,590	189,608	7
November	10	2012			156,735	38,008	194,743	8	194,005	194,013	2,993
November	11	2012			156,782	37,921	194,704	27	195,040	195,067	3,108
November	12	2012			156,839	37,848	194,687	6	196,439	196,445	3
November	13	2012			156,428	37,767	194,195	10	192,618	192,628	2,299
November	14	2012			103,859	24,850	128,709	46	126,469	126,515	5
November	15	2012			156,381	36,302	192,682	20	194,881	194,901	3,108
November	16	2012			156,436	36,136	192,572	2	194,742	194,744	3,239
November	17	2012			156,368	36,088	192,456	2	193,920	193,922	5
November	18	2012			156,455	35,958	192,413	9	193,631	193,639	3,123
November	19	2012			156,447	35,867	192,314	16	188,957	188,973	5
November	20	2012			156,393	35,790	192,184	13	189,476	189,489	3,127
November	21	2012			156,424	35,574	191,998	2	192,904	192,907	3
November	22	2012			156,526	35,338	191,864	6	189,721	189,726	3,227
November	23	2012			156,537	35,274	191,811	37	190,952	190,989	2,995
November	24	2012			156,596	35,264	191,860	5	191,914	191,919	3
November	25	2012			156,714	35,176	191,890	1	192,170	192,171	3,121
November	26	2012			156,591	35,137	191,727	3	191,536	191,538	5
November	27	2012			150,764	34,162	184,926	3	182,843	182,846	2,669
November	28	2012			156,614	35,150	191,765	10	193,297	193,307	3,124
November	29	2012			156,592	35,010	191,602	26	189,420	189,445	5
November	30	2012			156,564	35,033	191,597	7	191,570	191,577	2,986
tal Monthly			0	0	4,626,744	1,067,058	5,693,802	1,987	5,684,622	5,686,609	54,521
verage Pump	/Injectio	n Rates (gpm)	0.0	0.0	107.1	24.7	131.8	0.0	131.6	131.6	1.3

a. Extraction wells TW-3D and PE-1 were operated during November 2012 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during November 2012.

b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during November 2012 is approximately 0.83 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

December 2012 Operational Data


IM-3 Groundwater Extraction and Treatment System

PG&E Topock Compressor Station, Needles, California

				Extrac	tion Well Sys	tem		lnj	ection Well Sys	stem	RO Brine
Month	Day	Year	TW-2S (gallons)	TW-2D (gallons)	TW-3D (gallons)	PE-1 (gallons)	Total (gallons)	IW-02 (gallons)	IW-03 (gallons)	Total (gallons)	(gallons)
December	1	2012		12	156,528	34,933	191,473	9	191,675	191,684	2
December	2	2012		13	150,751	34,557	185,320	35	187,465	187,500	3,120
December	3	2012		13	156,132	36,048	192,193	5	184,456	184,461	3,123
December	4	2012		10	156,101	35,752	191,863	47	196,957	197,004	3
December	5	2012		13	148,861	34,763	183,637	2,714	187,230	189,944	3,205
December	6	2012		7	155,917	36,387	192,311	4	186,559	186,563	5
December	7	2012		7	155,927	36,398	192,332	5	193,397	193,402	2,859
December	8	2012		7	152,792	35,692	188,492	5	190,209	190,214	5
December	9	2012		11	156,046	36,017	192,073	2	191,673	191,674	3,877
December	10	2012		11	156,086	35,674	191,771	12	191,513	191,525	2,976
December	11	2012		14	156,057	35,585	191,656	2	190,464	190,466	129
December	12	2012		23	123,634	29,345	153,001	9	153,561	153,570	2,864
December	13	2012	4,649	8,084	141,545	34,502	188,780	1	192,351	192,352	2,977
December	14	2012		6	155,468	37,589	193,063	7	190,534	190,541	5
December	15	2012		9	155,475	37,457	192,941	10	192,103	192,113	3,225
December	16	2012		7	155,395	37,364	192,766	27	193,647	193,674	6
December	17	2012		9	155,480	37,153	192,642	24	193,407	193,431	2,962
December	18	2012		5	155,384	37,034	192,424	17	192,494	192,511	2,980
December	19	2012		5	153,880	36,657	190,542	12	188,083	188,095	2,969
December	20	2012		10	148,665	36,348	185,023	10	181,656	181,666	6
December	21	2012		6	155,142	37,963	193,110	1	187,839	187,840	3,021
December	22	2012		6	155,123	37,789	192,918	6	188,563	188,569	2,977
December	23	2012		8	146,083	36,055	182,145	34	188,620	188,654	3,084
December	24	2012		10	154,870	38,448	193,327	22	194,466	194,487	3
December	25	2012		2	154,830	38,223	193,055	18	192,069	192,087	3,106
December	26	2012		15	150,175	37,771	187,960	27	181,863	181,890	2,965
December	27	2012		9	154,539	39,106	193,654	26,084	169,776	195,860	7
December	28	2012		9	126,404	31,478	157,890	23	156,576	156,599	3,108
December	29	2012		10	154,877	38,100	192,987	20	198,421	198,441	2,970
December	30	2012		6	154,829	37,925	192,760	28	193,256	193,284	2,972
December	31	2012		6	154,788	37,627	192,421	21	191,859	191,879	3
otal Monthly	Volumes	(gal)	4,649	8,361	4,707,780	1,125,739	5,846,530	29,240	5,812,741	5,841,981	61,516
-		n Rates (gpm)	0.1	0.2	105.5	25.2	131.0	0.7	130.2	130.9	1.4

a. Extraction wells TW-3D and PE-1 were operated during December 2012 at a target pump rate of 135 gpm excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were operated for a short period of time on December 13, 2012 for the fourth quarter GMP sampling event. The flow element in the TW-2S discharge pipe did not transmit its signal to the IM-3 Data Historian, so the total volume extracted by this pump and subsequently treated by the IM-3 plant was calculated by multiplying the average extraction well pump rate (36.9 gpm) by the documented pump run time minutes (126 minutes) to get 4,649 gallons. b. Effluent was discharged into injection wells IW-02 and IW-03.

c. The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates during December 2012 is approximately 0.97 percent. This percentage difference includes instrument noise in the system, but is within the accuracy of the flow meters. A well is considered to be offline if the daily reported flow is 140 gallons per day or less.

People for Process Automation

Flow Calibration with Adjustment

WWRA-008929F
Furchase order number
US-465002381-20 / Endress+Hauser Flowtec
Order N°/Manufacturer
23P50-AL1A1AA022AW
Order code
PROMAG 23 P 2"
Transmitter/Sensor
6C037216000
Serial N°
FIT-1204

F	C	P.	-6	.F

Calibration rig

155.6102 us.gal/min

 $(\triangleq 100\%)$

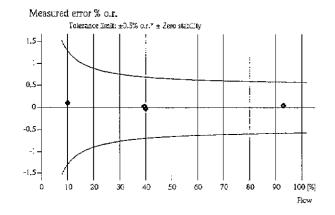
Calibrated full scale

Current 4-20 mA

Calibrated output

0.9184

Calibration factor


20

Zeto point

76.8 °F

Water temperature

	Flow [%]	Flow [as.gal/min]	Duration [s]	V target [us.gal]	V mezs. (us.gal]	Δ o.r.* [%]	Outp.**
	9.9	15.4	30.2	7.7528	7.7611	0.11	5.59
	39.5	61.4	30.2	30.907	30.917	0.03	10.32
	39.9	62.1	30.2	31.246	31.239	-0.02	10.38
	93.0	144.7	30.2	72.803	72.836	0.05	18.88
	-	_	-	-	_	-	-
	-	-	_	i -	-	-	-
	_	. –	-	-	-	-	-
	-	-		-	-	-	-
;	-	-	-	-	- !	-	-
-	-	-	-	-	-	-	-
* 0.	r.: of rate						

Tag N°

**Calculated value (4-20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad [IN] and Suztou (CN).

07-15-2011

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143

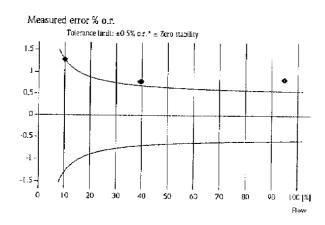
Leonard McGee

Operator

Certified acc. to ISO 9001, Reg.-№ 030502.2 ISO 14001, Reg.-N° EMS561046

People for Process Automation

Flow Calibration without Adjustment


30201330-130470

Tag Nº

WWRA-008929F	
Purchase order number	
US-465002381-20 / E	ndress+Hauser Flowtec
Order N°/Manufacturer	
23P50-AL1A1AA022A	W
Order code	
PROMAG 23 P 2"	!
Transmitter/Sensor	
6C037216000	
Serial N°	: '
FIT-1204	•

FCP-6.F	
Calibration rig	
155.6102 us.gal/min	(≙ 100%)
Current 4 - 20 mA Calibrated output	-
0.9258	
Calibration factor	
20	
Zeto point	
75.9 °F	
Water temperature	

	Flow	Flow [us.gal/min]	Duration [sj	V target [us.gal]	V meas. [us.gal]	Δ o.r.* [%]	Outp.**
:	9.9	15.4	30.2	7.7490	7.8501	1.31	5.60
i	39.3	1.16	30.2	30.760	31.006	0.80	10.34
	39.7	61.8	30.2	31,109	31.358	0.80	10.41
1	94.9	[47.7	30.2	74.312	74.944	0.85	19.31
	-	- '	-	-	-	_	-
İ	-		-	-		_	i -
		-	- !	-	-	-	-
!	-	-	-	-	_	-	-
i		-	-	-	-	-	- '
	-	-	-	-	-	-	_

*o.r.: of rate
**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood [USA), Aurangabad (IN) and Suzhou (CN).

07-15-2011

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Leonard McGee

Operator

Certified acc. to ISO 9001, Reg.-N° 030502.2 ISO 14001, Reg.-N° EMS561046

Flow Calibration with Adjustment

30201529-1304700

WWRA008929F
Furchase order number
US-465002380-10 / Endress+Hauser Flowtec
Order N°/Manufacturer
23P50-AL1A1AA022AW
Order code
PROMAG 23 P 2"
Transmitter/Sensor
6C037116000
Serial N°
FIT-1203
Tag N°

	Flow	Flow [us.gal/min]	Duration.	V target [us.gal]	V meas. (us.gal)	Δ o.r.* %	Outp.**
İ	9.9 39.4	15.4 61.4	30.2 30.2	7.7531 3 0.874	7.7639	0.14	5.59 10.31
	39.9 94.1	62.1	30.2 30.2	31.207 73.642	31.206 73.601	0.00 -0.05	10.38 19.04
	-	-	-	-	-	-	-
i	-	-	- -	-	-	-	-
	- -		-	- -	-	- '	-
		_	'	. –	_	_	_

(≙ 100%)
(≙ 100%)

Meası	red err	or % o	.г,							
	Tale	rance lim	it: ±0.5%	t or. ±	Zerc sta	bility				
1.5	$\sqrt{}$						ı			
1-		\downarrow		i	İ					
0.5						+			+-	
0	+	_		-	-	<u>-</u>		<u> </u>		
-0.5										_
-1		_	1							
-1.5	1					ļ				
. 0	10	20	30	40	50	60	70	80	90	100 [%]
										Flow

o.r.: of rate

** Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

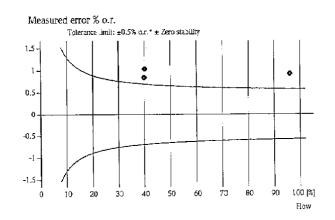
07-15-2011 Date of calibration

Endress+Hauser Howtec, Division USA 2330 Endress Place Greenwood, IN 46143 Leonard McGee

Cperator

Certified acc. to ISO 9001, Reg.-N° 030502.2 ISO 14001, Reg.-N° EMS561046

People for Process Automation


Flow Calibration without Adjustment

30201327-1304707

WWRA008929F
Purchase order number
US-465002380-10 / Endress+Hauser Flowtec
Orde: N°/Manufacturer
23P50-AL1A1AA022AW
Order code
PROMAG 23 P 2"
T:ansmitter/Sensor
6C037116000
Serial N°
FIT-1203
Tag N°

FCP-6.F	
Calibration rig	
155.6102 us.gal/min Calibrated full scale	(≙ 100%)
Current 4 - 20 mA	
0.9195 Calibration factor	
0	
Zero point	
74.9 °F	
Water temperature	 -

Flow M	Flow [us.gal/min]	Duration s	V target [us.gal]	V meas. [us.gal]	∆ o.i.* [%]	Outp.** mAi
10.0	15.5	30.2	7.7934	7.9184	1.60	5.62
i 39.8	61.9	30.2	31.146	31.410	0.85	10.42
40.0	62.2	30.2	31.325	31.654	1.05	10.47
96.0	149.4	30.2	75.197	75.894	0.93	19.51
! -	-	-	-	-	-	-
-	-	_ !	-	-	-	-
<u> </u>	-	-	-	-	-	! <u>-</u>
-	-	-	-	- !	-	-
_	-	-	→	-	-	-
-	-	-	-	-		- '

*out: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad [IN] and Suzhou (CN).

07-15-2011

Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Leonard McGee

Cperator

Certified acc. to ISO 9001, Reg.-N° 030502.2 ISO 14001, Reg.-N° EMS561046

Flow Calibration with Adjustment

30092171-1385272

WWRA	A-00092	23-F					FCP-6.F
Purchase o	order numb	er		12.11.			Calibration rig
			ndress+Ha	auser Flov	rtec		155.6102 GPM ((
Order Nº/	Manufactu	гег					Calibrated full scale
23P50-	-ALIA1	AA022A	W				Current 4 - 20 mA
Order code	e						Calibrated output
PROM	AG 23	P 2"					0.9289
Transmitte	er/Sensor						Calibration factor
7700F	216000)					0
Serial Nº]	Install	ed at	TW-2	D 7/	6/11	Zero point
-FI	T-11	73	P	E-+	AR)	V / 1.	74.9 °F
Tag Nº							Water temperature
Flow	Flow	Duration	V target	$V_{\text{ totals},}$	A c.r.	Outp.**	Measured error % o.r.
[8]	[CFM]	(sec)	[US GAL]	(US GAL)	[5]	(nA)	
10.0	15.5	30.1	7.7642	7.7895	0.33	5.60	2
40.5	62.9	30.1	31.549	31.556	0.02	10.47	Tolerance tmit [#0.5% o.n.* # 2.5.*]
40.5	02.9	30.1	31.546	31.541	-0.02	10.47	Table Sec. T. C.S.
99.7	155.1	30.1	77.735	77.718	-0.02	19.95	•
5 5	-		7		Ē	5	C
_	-		-	1 -	-	-	
-	-	- 1	-	-	*	n - 1	-1 -
-		-	-	-	*	-	
-	-	- 1	2.7			5	-2- '
-	_	•	7: - -	-	_	- :	0 10 20 30 40 50 60 70 80 90 Few 5
*e.r.: of rate							*2.5.: Zero stability
**Calculated	value (4 - 2)	o mA)					

For detailed data concerning output specifications of the unit under test, see technical informations (Tt), chapter Performance characteristics. The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-30-2006 Date of calibration

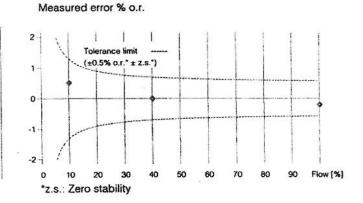
Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 ME. Tilly.

Morris E. Trueblood Jr.

Operator

Certified acc. to MIL-STD-45002A ISO 9001, Reg.-Nº 030502.2

Flow Calibration with Adjustment



30057870-1275191

41724888	
Purchase Order Number	
USA-49310090-40 / Endress+Hauser Fl	owtec
Order №/Manufacturer	
23P50-AL1A1RA022AW	
Order Code	
PROMAG 23 P 2"	
Transmitter/Sensor	
6A022016000	
Serial No FIT-101 / TW-25/installed 7/	28/05
Tag №	

FCP-6.C	
Calibration rig	Company of the Compan
155.6102 GPM	(
Calibrated full scale	
Current 4 - 20 mA	
Calibrated output	
0.9207	
Calibration factor	
0	
Zero point	
74.1 °F	
Water temperature	Control of the second of the s

Flow (%)	Flow [GPM]	Duration [sec]	V target [US GAL]	V meas. [US GAL]	Δ o.r.* [%]	Outp.**
10.0	15.6	30.0	7.7910	7.8318	0.52	5.61
40.0	62.3	30.0	31.157	31.160	0.01	10.40
40.1	62.4	30.0	31.229	31.229	0.00	10.42
100.2	155.9	30.0	78.017	77.856	-0.21	20.00
-	-	-	-	-	-	-
-	•	-	-	-	(**	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI)

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

11-29-2004 Date of calibration

Endress+Hauser 2350 Endress Place

Greenwood, IN 46143

Tim Swick

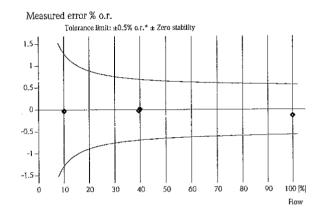
Operator

Certified acc. to MIL-STD-45662A

ISO 9001, Reg.-Nº 030502.2

People for Process Automation

Flow Calibration with Adjustment


30171212-1304705

Tag N°

WWRA-006931-F
Purchase order number
US-19068473-30 / Endress+Hauser Flowtec
Order N°/Manufacturer
23P50-AL1A1AA022AW
Order code
PROMAG 23 P 2"
Transmitter/Sensor
6C036F16000
Serial N°
FIT-1201

FCP-6.F	
Calibration rig	
155.6102 us.gal/min Calibrated full scale	(△ 100%)
Current 4 - 20 mA	
Calibrated output	
0.9101	
Calibration factor	
-34	
Zero point	
78.7 °F	

	Flow (%)	Flow [us.gal/min]	Duration [8]	V target [us.gal]	V meas. [us.gal]	∆ o.r.* [%]	Outp.**
	10.1	15.7	30.2	7.8942	7.8921	-0.03	5.61
	39.5	61.5	30.2	30.956	30.950	-0.02	10.32
ļ	39.9	62.1	30.2	31.263	31.268	0.02	10.39
İ	100.0	155.7	30.2	78.338	78.232	-0.14	19.98
	_	-		-	-	-	-
	-	_	_	-	-	-	-
	_	-	-	-		-	-
	-	_	-	-	-	-	
	_	_	-	-	-	-	-
	-	_	_ '	_	-	-	[- :
i		I	1	1	(ı	r

*o.r.: of rate **Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Réinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

08-06-2010

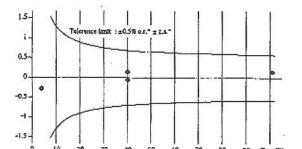
Date of calibration

Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 John Davis Operator

Water temperature

Certified acc. to

MIL-STD-45662A ISO 9001, Reg.-N° 030502.2



Flow Calibration without Adjustment

92002720-1304706

4600082515	FCP-8.2 US
Putchase order number	Calibration rig
US-3601521707-200 / Endress+Hauser Inc.	155 us.gal/min { ≜ 100%
Order N°/Manufacturer	Callbrated full scale
23P50-AL1A1AA022AW	Current 4-20 mA
Order code	Calibrated output
PROMAG 23 P 2"	0.9154
Transmitter/Sensor	Callbration factor
6C037016000	0
Sertal Nº	Zero point
FIT-1202	75.5 °F
Tag №	Water temperature

Plow [K]	Flow [us.gal/min]	Duration [sec]	V turget [us.gal]	V meas. [us.gal]	Δ o.r.~ [%]	Outp.**	
4.0	6.12	60.0	6.1222	6.1053	-0.28	4.63	ľ
40.1	62.2	60.0	62.267	62.358	0.15	10.43	
40.2	62.2	60.0	62,283	62.243	-0.06	10.42	
101.1	156.7	60.0	156,766	156.998	0.15	20.20	ì
-	~	-	_	-	_	-	
-	-	-	-	-	-	-	
-		-	112	-	_	-	î
-	-	-	-	-	-	E= 1	
-	-	- i	-	-	-	-	
	-	-	_	- 1	_	-	i

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Traceability to the national standard for all test instruments used for the calibration is guaranteed.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

06-19-2012

Date of calibration

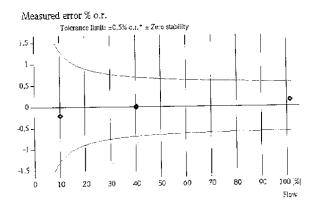
Endress+Hauser Inc. 10057 Porter Road La Porte, Texas 77571 Wasty Watter

Measured error % o.r.

"Z.S.: Zero stability

W. Watkins
Operator

People for Process Automation


Flow Calibration with Adjustment

30202337-1385113

WWRA008929F
Purchase order number
US-465002382-30 / Endress+Hauser Flowtec
Crder Nº/Manufacturer
23P80-AL1A1AA022AW
Order code
PROMAG 23 P 3"
Transmitter/Sensor
7700C616000
Serial N ^o
<u> </u>
Tag N°

FCP-7.1.B	
Calibration rig	
398.3621 us.gal/min	(≙ 100%)
Calibrated full scale	
Current 4-20 mA	<u> </u>
Calibrated output	
1.1670	
Calibration factor	
35	
Zero point	
82.3 °F	
Water temperature	

	Flow [%]	Flow [us.gal/min]	Duration is	V target إند.وعا]	V meas. [us.gal]	∆ o.r.* %	Outp.**
ĺ	10.1	40.0	60.1	40.074	39.992	-0.20	5.60
l	40.2	160.2	60.1	160.332	160.322	-0.01	10.43
	40.2	160.2	60.1	160.400	160.424	0.01	10.44
İ	101.4	404.0	60.1	404.438	405.041	0.15	20.25
	_	-		-	٠.,	-	- 1
ļ	_	_	_	-	-	-	-
	_	_	ļ <u>-</u>	-	j -	=	-
l	_	_	_	į -	- '	-	
ļ	_	_	<u> </u>		' - I	-	-
	-	_	-	-	-	-	-

For detailed data concerning output specifications of the unit under test, see technical informations (TI), chapter Performance characteristics.

The calibration is traceable to the N.I.S.T. through standards certified at preset intervals.

Endress-Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

07-25-2011 Date of calibration

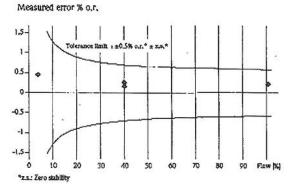
Endress+Hauser Flowtec, Division USA 2330 Endress Place Greenwood, IN 46143 Taylor Shepard

Operator

Certified acc. to ISO 9001, Reg.-N° 030502.2 ISO 14001, Reg.-N° EMS561046

[&]quot;o.r.z of rate

^{**}Calculated value (4 - 20 mA)


Flow Calibration without Adjustment

92002718-1275190

4600082515	
Purchase order number	
US-3601521707-100 / Endress+Hau	ser Inc.
Order N°/Manufacturer	
23P50-AL1A1RA022AW	
Order code	
PROMAG 23 P 2"	
Transmitter/Sensor	
6A021F16000	
Serial Nº	
FIT-100	3
Tag N°	

FCP-8.2 US	
Calibration rig	
155 us.gal/min	$(\triangleq 100\%)$
Calibrated full scale	
Current 4-20 mA	
Calibrated output	
0.9178	
Calibration factor	
0 .	12
Zero point	
75.3 °F	
Water temperature	

	Flow (%)	Flow [us.gal/min]	Duration [sed]	V target (us.gal)	V mess. [us.gal]	Δ o.r.* [%]	Outp.**
1	4.0	6.14	60.0	6.1423	6.1699	0.45	4.64
	40.2	62.3	60.0	62.353	62.512	0.26	10.45
1	40.2	62.3	60.0	62.361	62.460	0.16	10.44
	100.8	156.3	60.0	156.354	156.703	0.22	20.17
	-	-	- 1	-	-	-	- 1
	-	-	-	-	1 - 1	-	-
		-	-	-	-	=	-
	_	-	-	_	-	_	-
	-	-	-	•	1 - 1	-	-
	_	- 1	2	-	_	2	-

*o.r.: of rate

**Calculated value (4 - 20 mA)

For detailed data concerning output specifications of the unit under test, see Technical Information (TI), chapter Performance characteristics. Traceability to the national standard for all test instruments used for the calibration is guaranteed.

Endress+Hauser Flowtec operates ISO/IEC 17025 accredited calibration facilities in Reinach (CH), Cernay (FR), Greenwood (USA), Aurangabad (IN) and Suzhou (CN).

06-19-2012

Date of calibration

Endress+Hauser Inc. 10057 Porter Road La Porte, Texas 77571 Wesley Within

W. Watkins

Appendix D Fourth Quarter 2012 Laboratory Analytical Reports

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 5, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-381 PROJECT, SLUDGE

MONITORING,

TLI No.: 804100

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-381 project sludge monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 10, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

All final results and associated dilution factors are reported on a dry weight basis.

Due to matrix interference, the sample for Total Beryllium by SW 6010B was analyzed at a dilution of 2x and reported as non-detect with a report limit that exceeded the contract required detection limit.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project

Project No.: 456827.01.DM

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

Laboratory No.: 804100

Date: November 5, 2012 Collected: October 2, 2012 Received: October 2, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 300.0	Anions	Giawad Ghenniwa
SM 2540 B	% Moisture	Gautam Savani
SW 6010B	Metals by ICP	Ethel Suico
SW 6020A	Metals by ICP/MS	Bita Emami
SW 7199	Hexavalent Chromium	George Wahba

Cilent: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Project Name: PG&E Topock Project

Attention: Shawn Duffy

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 804100

Date Received: October 2, 2012

Analytical Results Summary

<u>SM 2540 B</u> % Moisture	%	42.3
EPA 300.0 Nitrate as N	mg/kg	14.1
EPA 300.0 Fluoride	mg/kg	20.6
SW 7199 Hexavalent Chromium	mg/kg	20.8
Sample Time	75 7 7 N LOCAL	10:10
Sample I.D.		SC-Sludge-WDR-381 10:10
Lab I.D.		804100

ND: Non Detected (below reporting limit) mg/L: Milligrams per liter.

Results below 0.01 ppm will have two (2) significant figures. Result above or equal to 0.01 ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results:

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Project Name: PG&E Topock Project **Attention: Shawn Duffy**

P.O. No.: 456827.01.DM

Project No.: 456827.01.DM

Date Received: October 2, 2012 Laboratory No.: 804100

Analytical Results Summary

Rednes
nalyses as
Total Metal A
S ANALYSIS:
METALS

METALS A	METALS ANALYSIS: Tota	Total Metal Analyses as Requested	as Requested									
	7	Date of Analysis:		Antimony SW 6010B 10/17/12	Arsenic SW 6010B 10/17/12	Barium SW 6010B 10/16/12	Beryllium SW 6010B 10/30/12	Cadmium SW 6010B 10/30/12	Chromium SW 6010B 10/16/12	Cobalt SW 6010B 10/16/12	Copper SW 6010B 10/30/12	Lead SW 6010B 10/30/12
Lab I.D.	Sample ID	Time Coll.	1,00	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
804100	SC-Sludge-WDR-381 10:10	-381 10:10		32.8	QN	39.7	QN	4.54	2370	QN	14.2	ND
		Date of Analysis:	Manganese SW 6010B	Mercury SW 6020A	Molybdenum SW 6010B 10/16/12	Nickel SW 6010B 10/17/12	Selenium SW 6010B 10/17/12	Silver SW 6010B 10/30/12	Thallium SW 6010B 10/30/12	Vanadium SW 6010B 10/16/12	Zinc SW 6010B 10/17/12	
Lab I.D.	Sample ID	Time Coll.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
804100	SC-Sludge-WDR-381 10:10	-381 10:10	265	QN	QN	23.2	QN	Q	QN	28.7	29.1	

NOTES:

ND: Not detected, or below limit of detection

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Relative

Percent

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM Prep. Batch: 10CrH12A Laboratory No.: 804100

Date: November 5, 2012 Collected: October 2, 2012 Received: October 2, 2012

QC Within

Control

Prep/ Analyzed: October 16, 2012 Analytical Batch: 10CrH12A

Acceptance

limite

Investigation:

Hexavalent Chromium by IC Using Method SW 7199

REPORT

Analytical Results Hexavalent Chromium

Field I.D. Sample Time **Run Time** <u>Units</u> DF RL Results TLI I.D. 6.93 804100 SC-Sludge-WDR-381 10:10 11:08 mg/kg 10.0 20.8

QA/QC Summary

Duplicate

oncontration

Sample

			Num	bei	Concentra	ition	0	filiation	Difference				Control	
	Duplic	cate	8041	00	20.8		2	1.1	1.56%		≤ 20%		Yes	
QC Std I.D.	Lab Number	Conc.o unspike sampl	d Dilutio	on Factor	Added Spike Conc.	l	MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	İ	MS% ecovery	A	cceptance limits	QC Within Control
MS	804100	20.8	2	25.0	11.2	- 2	281	314	301		105%		75-125%	Yes
IMS	804100	20.8		100	17.8	1	781	1920	1801		107%		75-125%	Yes
PDMS	804100	20.8	2	25.0	6.98		175	194	195	9	9.2%		85-115%	Yes
			1	Mea	sured	l Th	eoretical	Percei	nt Accenta	nce	OC With	hin		

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.400		<0.400	Yes
MRCCS	2.04	2.00	102%	90% - 110%	Yes
MRCVS#1	2.10	2.00	105%	90% - 110%	Yes
LLCS	0.00924	0.0100	92.4%	70% - 130%	Yes
LCS	2.03	2.00	101%	80% - 120%	Yes

ND: Below the reporting limit (Not Detected).

QC STD I.D.

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without propuration from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM Laboratory No.: 804100

Date: November 5, 2012

Collected: October 2, 2012 Received: October 2, 2012

Prep/ Analyzed: October 4, 2012 Analytical Batch: 10SOLID12A

Investigation:

Total Solids by SM 2540 B

REPORT

Analytical Results % Moisture

 TLI I.D.
 Field I.D.
 Sample Time
 Units
 Results

 804100
 SC-Sludge-WDR-381
 10:10
 %
 42.3

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	804100	42.3	41.2	2.62%	≤ 20%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM Laboratory No.: 804100

Date: November 5, 2012

QC Within

Collected: October 2, 2012 Received: October 2, 2012

Prep/ Analyzed: October 3, 2012

Analytical Batch: 10AN12D

Acceptance

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

Sample Time Run Time **Units** DF RL Results Field I.D. TLI I.D. 1.00 3.46 20.6 15:19 10:10 mg/kg 804100 SC-Sludge-WDR-381

QA/QC Summary

Duplicate

Relative

	QCST	O I.D.	Number	Concentrat	Con	centration	Difference	limits	Control	
	Duplic	ate 8	301102-2	2.60		2.67	2.73%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	801102-2	2.60	5.00	4.00	20.0	23.1	22.6	103%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	4.12	4.00	103%	90% - 110%	Yes
MRCVS#1	3.15	3.00	105%	90% - 110%	Yes
MRCVS#2	3.18	3.00	106%	90% - 110%	Yes
MRCVS#3	3.16	3.00	105%	90% - 110%	Yes
LCS	4.12	4.00	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

for

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without programment authorization from Truesdail Laboratories.

5.00

4.00

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample
Project Name: PG&E Topock Project

Project No.: 456827.01.DM **P.O. No.:** 456827.01.DM

Laboratory No.: 804100

Date: November 5, 2012 Collected: October 2, 2012

Received: October 2, 2012

Prep/ Analyzed: October 3, 2012

Analytical Batch: 10AN12D

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

Sample Time Run Time **Units** DF RL Results Field I.D. TLI I.D. 15:19 1.00 3.46 14.1 10:10 mg/kg SC-Sludge-WDR-381 804100

QA/QC Summary

	QC STE) I.D.	Laboratory Number	Concentr	ation	-	plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	804102-2	3.16			3.09	2.08%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control

20.0

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	4.10	4.00	102%	90% - 110%	Yes
MRCVS#1	2.98	3.00	99.3%	90% - 110%	Yes
MRCVS#2	2.99	3.00	99.8%	90% - 110%	Yes
MRCVS#3	2.98	3.00	99.4%	90% - 110%	Yes
MRCVS#4	2.98	3.00	99.3%	90% - 110%	Yes
LCS	4.01	4.00	100%	90% - 110%	Yes

23.6

23.2

ND: Below the reporting limit (Not Detected).

804102-2

DF: Dilution Factor.

Respectfully submitted,

102%

85-115%

Yes

TRUESDAIL LABORATORIES, INC.

ر ا - د

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 804100

Reported: November 5, 2012 Collected: October 2, 2012 Received: October 2, 2012 Analyzed: See Below

REPORT

Attention: Shawn Duffy

Samples: One (1) Soil Sample
Project Name: PG&E Topock Project

Project No.: 456827.01.DM **P.O. No.:** 456827.01.DM

Investigation: Total Metal Analyses as Requested

Client: E2 Consulting Engineers, Inc.

Oakland, CA 94612

155 Grand Ave. Suite 1000

Analytical Results

SAMPLE ID: SC-S	ludge-WDR-381	Time Coll	ected: 10	0:10		LAB ID	: 804100	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL.	Batch	Analyzed	Analyzed
Antimony	SW 6010B	32.8	5.00	mg/kg	5.00	101712B-Th2	10/17/12	17:52
Arsenic	SW 6010B	ND	5.00	mg/kg	5.00	101712B-⊤h2	10/17/12	17:52
Barium	SW 6010B	39.7	10.0	mg/kg	10.0	101612B-Th2	10/16/12	18:49
Beryllium	SW 6010B	ND	2.00	mg/kg	1.71	103012A-Th2	10/30/12	12:06
Cadmium	SW 6010B	4.54	2.00	mg/kg	1.71	103012A	10/30/12	15:04
Chromium	SW 6010B	2370	10.0	mg/kg	8.53	101612B-Th2	10/16/12	18:49
Cobalt	SW 6010B	ND	10.0	mg/kg	10.0	101612B-Th2	10/16/12	18:49
Copper	SW 6010B	14.2	2.00	mg/kg	5.00	103012A	10/30/12	15:04
Lead	SW 6010B	ND	2.00	mg/kg	5.00	103012A-Th2	10/30/12	12:06
Manganese	SW 6010B	265	10.0	mg/kg	8.53	101612B-Th2	10/16/12	18:49
Мегсигу	SW 6020A	ND	5.00	mg/kg	0.100	102912A	10/29/12	14:31
Molybdenum	SW 6010B	ND	10.0	mg/kg	10.0	101612B-Th2	10/16/12	18:49
Nickel	SW 6010B	23.2	5.00	mg/kg	5.00	101712B-Th2	10/17/12	17:52
Selenium	SW 6010B	ND	5.00	mg/kg	5.00	101712B-Th2	10/17/12	17:52
Silver	SW 6010B	ND	2.00	mg/kg	5.00	103012A	10/30/12	15:04
Thallium	SW 6010B	ND	2.00	mg/kg	5.00	103012A	10/30/12	15:04
Vanadium	SW 6010B	28.7	10.0	mg/kg	8.53	101612B-Th2	10/16/12	18:49
Zinc	SW 6010B	29.1	5.00	mg/kg	10.0	101712B-Th2	10/17/12	17:52

NOTES:

Sample results and reporting limits reported on a dry weight basis.

ND: Not detected or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612 Attention: Shawn Duffy

Project Name: PG&E Topock Project Samples: One (1) Soil Sample Project No.: 456827.01.DM

P.O. No.: 456827.01.DM

Reported: November 5, 2012 Laboratory No.: 804100

Collected: October 2, 2012 Received: October 2, 2012

Quality Control/Quality Assurance Report

			DIGES	DIGESTED BLANK		MRCCS				MRCVS			
						Observed	TRUE	%	Control	Observed	TPIIE	/0	1079
Parameter	Method	Batch	Units	Blank	RL	Value	Value	Rec	Limits	Value	Value	ς Rec	Control I imits %
Antimony	SW 6010B	SW 6010B 101712B-Th2	mg/kg	QN	5.00	4.94	5.00	98.8%	90-110%	4 57	5 NO	01 5%	00 4400/
Arsenic	SW 6010B	SW 6010B 101712B-Th2	mg/kg	S	5.00	4.93	5.00	98.5%	90-110%	4 50	00.5	70000	90-1-10%
Barium	SW 6010B	SW 6010B 101612B-Th2	mg/kg	9	10.0	4.88	5.00	%2.76	90-110%	4 01	00.0	90.0%	90-110%
Beryllium	SW 6010B	SW 6010B 103012A-Th2	mg/kg	S	1.00	4.82	5.00	96.4%	90-110%	4.69	2.00	90.270	90-110%
Cadmium	SW 6010B	103012A	mg/kg	ΩN	1.00	4.67	5.00	93.4%	90-110%	4 95	200.5	90.00	90-110%
Chromium	SW 6010B	SW 6010B 101612B-Th2	mg/kg	ON	5.00	5.13	5.00	103%	90-110%	4.89	2.00	93.0%	90-110%
Cobalt	SW 6010B	SW 6010B 101612B-Th2	mg/kg	Q	10.0	5.05	5.00	101%	90-110%	4.76	5.00	97.770	90-110%
Copper	SW 6010B	SW 6010B 103012A	mg/kg	8	5.00	4.75	5.00	94.9%	90-110%	4.75	5.00	95 1%	90-110%
Lead	SW 6010B	SW 6010B 103012A-Th2	mg/kg	Ð	5.00	4.99	5.00	99.7%	90-110%	4.92	5 00	98.4%	90-110%
Manganese	SW 6010B	SW 6010B 101612B-Th2	mg/kg	Q	1.00	5.10	5.00	102%	90-110%	5.06	5 00	101%	90-110%
Mercury	SW 6020A	SW 6020A 102912A	mg/kg	S.	0.100	0.00192	0.00200	96.2%	90-110%	0.00186	00000	03.2%	90-11078
Molybdenum	SW 6010B	SW 6010B 101612B-Th2	mg/kg	QN QN	10.0	4.98	5.00	99.66	90-110%	4.56	5.00	91.2%	90-110%
Nickel	SW 6010B	SW 6010B 101712B-Th2	mg/kg	2	5.00	5.05	5.00	101%	90-110%	4 70	500	04 0%	90 110%
Selenium	SW 6010B	SW 6010B 101712B-Th2	mg/kg	QN QN	5.00	5.00	5.00	%6.66	90-110%	4 62	5.00	02.4%	90 110%
Silver	SW 6010B	103012A	mg/kg	S	5.00	4.81	5.00	96.1%	90-110%	4.73	5.00	04.7%	90-110%
Thallium	SW 6010B	103012A	mg/kg	QN.	5.00	4.86	5.00	97.2%	90-110%	5.12	5.00	102%	90-110%
Vanadium	SW 6010B	SW 6010B 101612B-Th2	mg/kg	Q	5.00	5.05	5.00	101%	90-110%	4.80	5.00	%U 90	90-110%
Zinc	SW 6010B	SW 6010B 101712B-Th2	mg/kg	Q	10.0	5.13	5.00	103%	90-110%	4.92	5.00	98.3%	90-110%
													200

Report Continued

		INTERFE	RENCE CHE	INTERFERENCE CHECK STANDARD (ICS	D (ICS A+B #1)	1)	INTERFEREN	INTERFERENCE CHECK STANDARD (ICS A+B #2)	TANDARD (ICS A+B #2)		
Parameter	Method	Units	SOI	S	%	Control	ICS	S	%	Control		
			Obs.	Theo.	Rec.	Limits	Obs.	Theo.	Rec.	Limits		
Arsenic	SW 6010B	mg/kg	1.82	2.00	91.2%	80-120%	1.78	2.00	88.9%	80-120%		
Cadmium	SW 6010B	mg/kg	1.97	2.00	%9.86	80-120%	2.05	2.00	103%	80-120%		
Chromium	SW 6010B	mg/kg	2.02	2.00	101%	80-120%	1.96	2.00	98.2%	80-120%		
Cobalt	SW 6010B	mg/kg	2.01	2.00	100%	80-120%	1.93	2.00	96.5%	80-120%		
Copper	SW 6010B	mg/kg	1.97	2.00	98.7%	80-120%	1.98	2.00	%0.66	80-120%		
Мапдапеѕе	SW 6010B	mg/kg	2.02	2.00	101%	80-120%	2.04	2.00	102%	80-120%		
Mercury	SW 6020A	mg/kg	0.00189	0.00200	94.5%	80-120%	0.00175	0.00200	87.7%	80-120%		
Nickel	SW 6010B	mg/kg	1.93	2.00	%9.96	80-120%	1.91	2.00	95.6%	80-120%	,	
Silver	SW 6010B	mg/kg	1.85	2.00	92.7%	80-120%	1.95	2.00	92.6%	80-120%		
Zinc	SW 6010B	mg/kg	1.97	2.00	98.3%	80-120%	2.01	2.00	101%	80-120%		
			LABORATO	LABORATORY CONTROL SAMPLES	SAMPLES		SAMPLE DUPLICATES	PLICATES				
Parameter	Method	Units	SOT	SOT	%	Control	SAMPLE	SAM	SAMPLE	DUP	%	Control
			Obs.	Theo.	Rec.	Limits	O	RES	RESULT	RESULT	RPD	Limits %
Antimony	SW 6010B	mg/kg	1.95	2.00	97.3%	85-115%	804100	32.8		28.4	14.3%	<220
Arsenic	SW 6010B	mg/kg	1.92	2.00	96.2%	85-115%	804100	QN		9	0.00%	<20
Barium	SW 6010B	mg/kg	1.82	2.00	%6.06	85-115%	804100	39.7	_	37.7	5.01%	≥20
Beryllium	SW 6010B	mg/kg	2.00	2.00	100%	85-115%	804100	Q		Q	0.00%	<20
Cadmium	SW 6010B	mg/kg	1.98	2.00	98.9%	85-115%	804100	4.54		4.61	1.70%	≥20
Chromium	SW 6010B	mg/kg	1.91	2.00	95.7%	85-115%	804100	2370	0	2290	3.43%	<20
Cobalt	SW 6010B	mg/kg	1.88	2.00	94.2%	85-115%	804100	Q		ND	0.00%	<20
Copper	SW 6010B	mg/kg	1.97	2.00	98.7%	85-115%	804100	14.2		14.1	0.72%	<20
Lead	SW 6010B	mg/kg	2.01	2.00	100%	85-115%	804100	QN		Q	0.00%	\$20
Manganese	SW 6010B	mg/kg	1.99	2.00	99.7%	85-115%	804100	265		251	5.64%	<20
Mercury	SW 6020A	mg/kg	0.0958	0.100	95.8%	85-115%	804100	Q.		Q	0.00%	<20
Molybdenum	SW 6010B	mg/kg	1.77	2.00	88.6%	85-115%	804100	Q		9	0.00%	<20
Nickel	SW 6010B	mg/kg	2.05	2.00	102%	85-115%	804100	23.2		22.4	3.57%	<20
Selenium	SW 6010B	mg/kg	1.96	2.00	98.1%	85-115%	804100	Q		Q	0.00%	≥20
Silver	SW 6010B	mg/kg	1.96	2.00	97.9%	85-115%	804100	Q.		Q.	0.00%	<20
Thallium	SW 6010B	mg/kg	2.09	2.00	105%	85-115%	804100	Q		ND	0.00%	<20
anadium	SW 6010B	mg/kg	1.88	2.00	93.9%	85-115%	804100	28.7		28.1	2.32%	<20
G inc	SW 6010B	mg/kg	2.09	2.00	105%	85-115%	804100	29.1		28.9	0.72%	≥20

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

TRUESD	

				Sample		Spike	Total Amt.	Theo.	MS	%	Control
mple ID	Sample ID Parameter	Method	Units	Result	DF	Level	of Spike	Value	Obs.	Rec.	Limits %
804100	Antimony	SW 6010B	mg/kg	32.8	5.00	171	853	886	810	91.2%	75-125%
804100	Arsenic	SW 6010B	mg/kg	0.00	5.00	171	853	853	794	93.1%	75-125%
804100	Barium	SW 6010B	mg/kg	39.7	10.0	171	1706	1745	1790	103%	75-125%
804100	Beryllium	SW 6010B	mg/kg	0.00	2.00	86.5	173	173	197	114%	75-125%
804100	Cadmium	SW 6010B	mg/kg	4.54	2.00	86.5	173	178	167	93.8%	75-125%
804100	Chromium	SW 6010B	mg/kg	2370	10.0	171	1706	4076	3890	89.1%	75-125%
804100	Cobalt	SW 6010B	mg/kg	0.00	10.0	171	1706	1706	1600	93.8%	75-125%
804100	Copper	SW 6010B	mg/kg	14.2	2.00	87	173	187	177	93.8%	75-125%
804100	Lead	SW 6010B	mg/kg	0.00	2.00	86.5	173	173	136	78.7%	75-125%
804100	Manganese	SW 6010B	mg/kg	265	10.0	171	1706	1971	1900	95.8%	75-125%
804100	Mercury	SW 6020A	mg/kg	0.00	5.00	0.213	1.07	1.07	0.934	84.6%	75-125%
804100	Molybdenum	SW 6010B	mg/kg	0.00	10.0	171	1706	1706	1620	95.0%	75-125%
804100	Nickel	SW 6010B	mg/kg	23.2	5.00	171	853	876	797	%2'06	75-125%
804100	Selenium	SW 6010B	mg/kg	0.00	5.00	171	853	853	764	89.6%	75-125%
804100	Silver	SW 6010B	mg/kg	0.00	2.00	86.5	173	173	150	86.6%	75-125%
804100	Thallium	SW 6010B	mg/kg	0.00	2.00	86.5	173	173	141	81.3%	75-125%
804100	Vanadium	SW 6010B	mg/kg	28.7	10.0	171	1706	1734	1600	92.1%	75-125%
804100	Zinc	SW 6010B	ma/ka	29.1	5.00	171	853	882	865	98.0%	75-125%

ND: Not detected, or below limit of detection. DF: Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

For Mona Nassimi, Manager Analytical Services Jon

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Dry Weight Calculations

Date Calculated: 11/5/2012

	Sample Result Wet Weight	Dilution Factor	% Moisture	Sample Result Dry* Weight	Reported Value	Reporting Limit Wet Weight	Reporting Limit Dry Weight
	mg/kg		%%	mg/kg	mg/kg	mg/kg	mg/kg
Fluoride	11.909		42.3	20.6284	20.6	2.00	3.46
Nitrate as N	8.144		42.3	14.1068	14.1	2.00	3.46
Hexavalent Chromium	12.0040		42.3	20.7930	20.8	4.0000	6.93
Hexavalent Chromium - Dup	12.1931		42.3	21.1205	21.1	4.0000	6.93
Hexavalent Chromium - MS	181.5656		42.3	314.503	314	10.1215	17.5
Hexavalent Chromium - IMS	1108.959		42.3	1920.907	1920	39.6825	68.7
Hexavalent Chromium - PDMS	112.3175		42.3	194.553	194	10.0806	17.5
Antimony	18.97	5.00	42.3	32.8593	32.8	2.4616	5.00
Arsenic	ND	5.00	42.3	ND	ND	2.4616	5.00
Barium	22.91	10.0	42.3	39.68405	39.7	4.9232	10.0
Beryllium	0.4927	2.00	42.3	0.8534	ND	0.9846	1.71
Cadmium	2.619	2.00	42.3	4.5366	4.54	0.9846	1.71
Chromium	1369	10.0	42.3	2371.3430	2370	4.9232	8.53
Cobalt	1.479	10.0	42.3	2.5619	ND	4.9232	10.0
Copper	8.192	2.00	42.3	14.1899	14.2	0.9846	5.00
Lead	1.202	2.00	42.3	2.0821	ND	0.9846	5.00
Manganese	153.2	10.0	42.3	265.3687	265	4.9232	8.53
Mercury	0.03794	5.00	42.3	0.06572	ND	0.0492	0.100
Molybdenum	2.593	10.0	42.3	4.4915	ND	4.9232	10.0
Nickel	13.41	5.00	42.3	23.2284	23.2	2.4616	5.00
Selenium	ND	5.00	42.3	ND	ND	2.4616	5.00
Silver	ND	2.00	42.3	ND	ND	0.9846	5.00
Thallium	ND	2.00	42.3	ND	ND	0.9846	5.00
Vanadium	16.58	10.0	42.3	28.7194	28.7	4.9232	8.53
Zinc	16.80	5.00	42.3	29.1005	29.1	2.4616	10.0

Sample Result in Dry Weight = [Sample_{ww} / (100-%Moisture)]*100

where

Sampleww = Sample result in wet weight

E2

TO 1	IECDAII	LADODAT	ODIES INC
ıκι	JEODAIL	LABURAI	ORIES, INC.

TOTAL SOLIDS BY SM 2540 B

5c

Date of Analysis:

10/04/12

Analytical Batch: 10SOLID12A Oven Temp, °C: 105

Lab No.	Dish Number	Weight of dish, g	Wt of wet sample, g	Wt of wet sample+ dish, g	Wt of dried residue+dish,g	Wt of dried residue, g	% Total Solids	% Moisture
804100	1	1.3195	2.0301	3.3496	2.4915	1.1720	57,731	42.269
804100D	2	1.3281	2.017	3,3451	2.5146	1,1865	58.825	41.175
	,							
				A contraction of the contraction				
							Anthony and control of the control o	

	Relati	ve Percent Difference	
Sample ID	Sample	Sample Dup	RPD
80411	42.269	41.175	2.6

% Total Solids =

(A-B)*100 =

Weight of dried residue x 100
Weight of wet sample

Where:

A = Weight of dried Residue + Dish, g

B = Weight of dish, g

C = Weight of wet sample + Dish, g

G. Savani Analyst Name

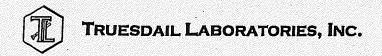
Analyst Signature

Reviewer Name

Reviewer Signature

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD


[IM3plant-WDR-381]

PAGE 1 10 Days TURNAROUND TIME DATE 10/02/12

P

2000	CHOM HILL / ED	2			_			/	1	_			-	_	/		1	1	
COMPANY	O IZIVI I IILL / L	7					<i>\</i>)))	_	<u> </u>	\	\	_	\	_	_	COMMENTS	
PROJECT NAME	PG&E Topock IM3	IM3						W Se			_	_		<u> </u>	\		<u> </u>		
PHONE	530-229-3303		FAX 53	FAX 530-339-3303	······································	\	\	PPNJO	<u></u>							_	5		
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 4612				NO3	116 SS, (In)	10 SS (IL)	, u								, ABNIATI		
P.O. NUMBER	424973.01.DM) E'	ρΑ ". π (80		W (80	\	\			<u></u>			Vo _D _s		
SAMPLERS (SIGNATURE		C. Carr	3			96 Ke 100E)	109)	(66)	1000		_			_	<u></u>	73	-بد ۱۵		
O H) 	F	NOTEGIGORA		enoin ^e eseoie elejeM	SlejeN SlejeN	(Z) or	Netals	<u></u>	\	\	_		\	BWON			***************************************
SC-Sludge	SC-Sludge-WDR-381	10/02/12	Minus		′ ×		\ \ \ \ \ \ \ \ \ \	×	$oldsymbol{\perp}$	+	igapha			<u> </u>		4			
							<u> </u>												
		::																	
	; <u> </u>																		
			C		1		1	Tige Signal Signal	<i>(</i>	£									
		3	5		***************************************	33 <u>1</u>		S. Fig.	Parago Parago Paragon	G Som	Anne gang Tanan Tanan	ÇQ.							
							Accessor	general and the second	The second		Torquesq Sures								
				<u>secologica contratorio de tentro de</u>							FF (5)					C.co.	ALIN IATOT	NI MARER OF CONTAINERS	V du

SAMPLE CONDITIONS	RECEIVED COOL E WARM \\ \frac{\lambda}{\lambda} \cdot \\ \frac{\lambda}{\lambda} \\ \frac{\lambda}{\la	CUSTODY SEALED YES 🔲 NO 🗹	SPECIAL REQUIREMENTS:	3		
	Date/ 0.2. 2 Time	Date/ 70 2 77 7 Time / 5 7 20	Time 22:07	Date idalla 2260	Date/ Tìme	Date/ Time
IGNATURE RECORD	Company CH 2M Hill Time 14:41	Company/ C. L. T.	/ Company/ C. L. T. Agency	Company/ 72 ?	Company/ Agency	Company/ Agency
CHAIN OF CUSTODY SIGNAT	ted C. Krught	ted Kafor	1e Ko Led	ted Lucka	ted ne	ted ne
CHAIN	Printed Printed	Jay Davi Coname	n fall () a v. Mame	idelective Name	Printed Name	Printed Name
	Signature (Relinquished)	Signature (Received)	(Relinquished)	Signature (Received)	Signature (Relinquished)	Signature (Received)

Sample Integrity & Analysis Discrepancy Form

C	lient: <u>F2</u>	Lab #_804100
Da	ate Delivered:/ <u>/</u> ○ / <u>/</u> 2/12 Time: <u>22.′//</u> By: □Mail ØF	Field Service
1.	Was a Chain of Custody received and signed?	ØYes □No □N//
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÞN/
3.	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ₽N/A
5 .	Were all requested analyses understood and acceptable?	ÆYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)?⁴ <u>√&°C</u>	AQYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ÆİYes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No ÆN/A
9.	Does the number of samples received agree with COC?	ДYes □No □N/A
10.	Did sample labels correspond with the client ID's?	AYes ONO ONA
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client	□Yes □No ANA
12.	Were samples pH checked? pH =	□Yes □No ☑NA
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	AYes DNo DNA
14.	Have Project due dates been checked and accepted? Tum Around Time (TAT): □ RUSH	. ☐Yes □No □N/A
<i>5</i> .	Sample Matrix:	
6.	Comments:	-
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	1. Steabunine

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 6, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-381 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 804102

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-381 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 2, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The method blank internal standards Germanium #2 and #3 for Total Metals by EPA 200.8 analyzed in batch 101512A just exceeded the recovery limits of 70% - 130%. The method blank was also analyzed in batches 100512A and 100812C and the internal standard recovery was within the acceptance range. All other QA/QC was within acceptable limits, therefore, the data was accepted.

The matrix spike recovery for Total Arsenic by EPA 200.8 was outside the acceptance limits, therefore a post-spike was analyzed and the recovery was within acceptable limits. All other QA/QC were within acceptable limits (batch 102612A).

The matrix spike for Total Boron by EPA 200.7 was spiked too low for the sample concentration, therefore a post-spike was analyzed and all QA/QC were within acceptable limits (batch 100912A-Th2).

Due to matrix interference, the sample for Total Arsenic by EPA 200.8 was analyzed at a dilution of 5x and reported as non-detect with a report limit that exceeded the contract required detection limit. Mr. Duffy was notified.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwaters Project Name: PG&E Topock Project

Project No.: 424973.01.DM

Laboratory No.: 804102
Date: November 6, 2012
Collected: October 2, 2012
Received: October 2, 2012

<u>ANALYST LIST</u>

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Maksin Gorbunov
SM 4500-NO2 B	Nitrite as N	Jenny Tankunakorn
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Katia Kiarashpoor / Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 424973.01.DM

P.O. No.: 424973.01.DM

Laboratory No.: 804102 Date Received: October 2, 2012

Analytical Results Summary

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	R.
804102-001	SC-700B-WDR-381	E120.1	NONE	10/2/2012	13:52	EC	7230	m/soquii	0.0
804102-001	SC-700B-WDR-381	E200.7	NONE	10/2/2012	13.52	Aliminim		1000	2 6
804102-001	SC-700B-WDR-381	E200.7	NONE	10/2/2012	13:52	BORON	928	ug/L	0.00
804102-001	SC-700B-WDR-381	E200.7	NONE	10/2/2012	13:52	Iron	א בא	ug/L	200
804102-001	SC-700B-WDR-381	E200.7	NONE	10/2/2012	13:52	Zinc	2 2	ug/L	20.0
804102-001	SC-700B-WDR-381	E200.8	NONE	10/2/2012	13:52	Antimony	Ş	1 (A)	0.0
804102-001	SC-700B-WDR-381	E200.8	NONE	10/2/2012	13:52	Arsenic	Ž) 1 /	0, L
804102-001	SC-700B-WDR-381	E200.8	NONE	10/2/2012	13:52	Barium	12.3))) (
804102-001	SC-700B-WDR-381	E200.8	NONE	10/2/2012	13:52	Chromium	ב ב	9 5	
804102-001	SC-700B-WDR-381	E200.8	NONE	10/2/2012	13.52	Conner	2 2	ng/L	- r
804102-001	SC-700B-WDR-381	E200.8	HNCN	10/2/2012	13.52	ייקריט - פסל	2 2	ug/L	0.0
804102-001	SC-700B-WDR-381	F200.8	I III	10/2/2012	10.57	Load	Q (ug/L	0.7
804102-001	SC.700B.W/DD.384	0.000		10/2/2012	20.01	Manganese	O. L	ng/L	1.0
00.4400	100-1001-00	E200.0	NONE	10/2/2012	13:52	Molybdenum	20.4	ng/L	5.0
804 I 0Z-001	SC-700B-WDR-381	E200.8	NONE	10/2/2012	13:52	Nickel	Q	na/l	2.0
804102-001	SC-700B-WDR-381	E218.6	LABFLT	10/2/2012	13:52	Chromium, Hexavalent	0.21	 /2	5.0
804102-001	SC-700B-WDR-381	E300	NONE	10/2/2012	13:52	Fluoride	2.10	, gg 1 / bg	0.50
804102-001	SC-700B-WDR-381	E300	NONE	10/2/2012	13.52	Nitrate as N	5 6	1119/L	0.300
804102-001	SC-700B-WDR-381	E300	HNCN	10/2/2012	13.52	Sulfato	5.00	11g/L	0.500
804102-001	SC-700B-WDR-381	SM2130B		10000	2.00	Ouliate I :::	784	mg/L	90.0
804102 004	700 4007	CIVIZIOD	U I	710/2/2012	13:52	Turbidity	Q	DTN	0.100
100-201	SC-700B-VVDR-381	SMZ540C	NONE	10/2/2012	13:52	Total Dissolved Solids	4350	ma/L	250
0 804102-001	SC-700B-WDR-381	SM4500NH3D	NONE	10/2/2012	13:52	Ammonia-N	QN	ma/l	0.500
90804102-001	SC-700B-WDR-381	SM4500NO2B	NONE	10/2/2012	13:52	Nitrite as N	2	mg/L	0.0050
;									

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

	i	Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	꿉
804102-002	SC-100B-WDR-381	E120.1	NONE	10/2/2012	13:36	EC	7520	nmhos/cm	2 00
804102-002	SC-100B-WDR-381	E200.7	NONE	10/2/2012	13:36	Aluminum	9	na/L	10.0
804102-002	SC-100B-WDR-381	E200.7	NONE	10/2/2012	13:36	BORON	977	ng/L	200
804102-002	SC-100B-WDR-381	E200.7	NONE	10/2/2012	13:36	Iron	2	T/Bn	20.0
804102-002	SC-100B-WDR-381	E200.7	NONE	10/2/2012	13:36	Zinc	2	Tight na/L	10.0
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Antimony	2	ng/L	2.0
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Arsenic	3.3	na/L	10
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Barium	24.9	na/L	5.0
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Chromium	735	na/L	200
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Copper	2	/br	5.0
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Lead	S	- [/DI	, ,
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Manganese	9	1/Bn	, ,
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Molybdenum	22.2	1/6n	5.0
804102-002	SC-100B-WDR-381	E200.8	NONE	10/2/2012	13:36	Nickel	2	1/67	2.0
804102-002	SC-100B-WDR-381	E218.6	LABFLT	10/2/2012	13:36	Chromium, Hexavalent	791	ng/L	10.0
804102-002	SC-100B-WDR-381	E300	NONE	10/2/2012	13:36	Fluoride	2.60	mg/L	0.500
804102-002	SC-100B-WDR-381	E300	NONE	10/2/2012	13:36	Nitrate as N	3.16	mg/L	0.500
804102-002	SC-100B-WDR-381	E300	NONE	10/2/2012	13:36	Sulfate	520	l/bm	25.0
804102-002	SC-100B-WDR-381	SM2130B	NONE	10/2/2012	13:36	Turbidity	0.106	i i	0 100
804102-002	SC-100B-WDR-381	SM2540C	NONE	10/2/2012	13:36	Total Dissolved Solids	4620	ma/l	250
804102-002	SC-100B-WDR-381	SM4500NH3D	NONE	10/2/2012	13:36	Ammonia-N	2	mg/l	0.500
804102-002	SC-100B-WDR-381	SM4500NO2B	NONE	10/2/2012	13:36	Nitrite as N	8	mg/L	0.0050
804102-003	SC-701-WDR-381	E120.1	NONE	10/2/2012	13:19	EC	43500	mɔ/soyun	2.00

I sh Samula ID	בו בופו	Analysis	Extraction	Sample Date	Sample	Daramoter	Recult	in Stign	ā
ran cample in			Memora	Odinpo pare			1000	200	
804102-003	SC-701-WDR-381	E200.7	NONE	10/2/2012	13:19	Zinc	Q	ng/L	10.0
804102-003	SC-701-WDR-381	E200.8	NON	10/2/2012	13:19	Antimony	Q	ng/L	2.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Arsenic	7.	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NON	10/2/2012	13:19	Barium	82.8	ng/L	5.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Beryllium	Q	ng/L	0.50
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Cadmium	QN	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Chromium	7.9	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Cobalt	Q	ng/L	5.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Copper	Q	ng/L	5.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Lead	Q	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Manganese	10.7	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Mercury	Q	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Moiybdenum	144	ng/L	2.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Nickel	8.2	ng/L	2.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Selenium	22.3	ng/L	5.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Silver	Q	ng/L	5.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Thallium	Q	ng/L	1.0
804102-003	SC-701-WDR-381	E200.8	NONE	10/2/2012	13:19	Vanadium	Q	ng/L	5.0
804102-003	SC-701-WDR-381	E218.6	LABFLT	10/2/2012	13:19	Chromium, Hexavalent	2	ng/L	2.0
804102-003	SC-701-WDR-381	E300	NONE	10/2/2012	13:19	Fluoride	15.4	mg/L	0.500
804102-003	SC-701-WDR-381	SM2540C	NONE	10/2/2012	13:19	Total Dissolved Solids	32000	mg/L	1250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 40

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 11/7/2012

Laboratory No. 804102

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 10/2/2012 10:00:00 PM

Field ID	Lab ID	Collected	Matrix	
SC-700B-WDR-381	804102-001	10/02/2012 13:52	Water	
SC-100B-WDR-381	804102-002	10/02/2012 13:36	Water	
SC-701-WDR-381	804102-003	10/02/2012 13:19	Water	

Anions By I.C EPA 300.0		Batch 10AN12D				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
804102-001 Fluoride	mg/L	10/03/2012 10:44	5.00	0.104	0.500	2.10
Nitrate as Nitrogen	mg/L	10/03/2012 10:44	5.00	0.0415	0.500	3.00
Sulfate	mg/L	10/03/2012 10:41	100	3.07	50.0	497
804102-002 Fluoride	mg/L	10/03/2012 10:56	5.00	0.104	0.500	2.60
Nitrate as Nitrogen	mg/L	10/03/2012 10:56	5.00	0.0415	0.500	3.16
Sulfate	mg/L	10/03/2012 13:59	50.0	1.54	25.0	520
804102-003 Fluoride	mg/L	10/03/2012 11:07	5.00	0.104	0.500	15.4

Odnate		111g/ L	10,00	,, 2012 10.00	00.0	1.01	20.0	020
804102-003 Fluoride		mg/L	10/03	3/2012 11:07	5.00	0.104	0.500	15.4
Method Blank								
Parameter	Unit	DF	Result					
Fluoride	mg/L	1.00	ND					
Sulfate	mg/L	1.00	ND					
Nitrate as Nitrogen	mg/L	1.00	ND					
Duplicate							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Sulfate	mg/L	100	494	497		0.688	0 - 20	
Duplicate							Lab ID = i	804102-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Fluoride	mg/L	5.00	2.67	2.60		2.62	0 - 20	
Nitrate as Nitrogen	mg/L	5.00	3.09	3.16		2.18	0 - 20	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without principles.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Printed 11/7/2012

Page 2 of 40

Project Number: 456827.01.DM

Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	4.12	4.00	103	90 - 110
Sulfate	mg/L	1.00	20.1	20.0	100	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.01	4.00	100	90 - 110
Matrix Spike						Lab ID = 804102-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Sulfate	mg/L	100	1530	1500(1000)	103	85 - 115
Matrix Spike						Lab ID = 804102-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Fluoride	mg/L	5.00	23.1	22.6(20.0)	102	85 - 115
Nitrate as Nitrogen	mg/L	5.00	23.6	23.2(20.0)	102	85 - 115
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	4.12	4.00	103	90 - 110
Sulfate	mg/L	1.00	20.1	20.0	100	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.01	4.00	100	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.18	3.00	106	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.15	3.00	105	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.16	3.00	105	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	14.9	15.0	99.7	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	15.0	15.0	100.	90 - 110
Nitrate as Nitrogen	mg/L	1.00	2.98	3.00	99.4	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nitrate as Nitrogen	mg/L	1.00	2.98	3.00	99.3	90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without properties authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 40 Printed 11/7/2012

Parameter Nitrate as Nitrogen	Unit mg/L	DF 1.00	Result 2.98	Expected 3.00	F	Recovery 99.3	Acceptar 90 - 110	nce Range
MRCVS - Primary								
Parameter Nitrate as Nitrogen	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	F	Recovery 99.8	Acceptar 90 - 110	nce Range
Nitrite SM 4500-NO2 B			Batch	10NO212C				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Nitrite as Nitrogen		mg/L	10/03	/2012 12:36	1.00	0.000540	0.0050	ND

NITITIE SIN 4300-NOZ D			Daton	101102120			
Parameter		Unit	Anal	lyzed DI	= MDL	RL	Result
804102-001 Nitrite as Nitroge	n	mg/L	10/03	/2012 12:36 1.0	0.000540	0.0050	ND
804102-002 Nitrite as Nitroge	n	mg/L	10/03	/2012 12:37 1.0	0.000540	0.0050	ND
Method Blank							
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result ND				
Duplicate						Lab ID = 8	04102-002
Parameter Nitrite as Nitrogen Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0	RPD 0	Acceptar 0 - 20	nce Range
Parameter Nitrite as Nitrogen Matrix Spike	Unit mg/L	DF 1.00	Result 0.0282	Expected 0.0308	Recovery 91.6	90 - 110	nce Range 04102-001
Parameter Nitrite as Nitrogen MRCCS - Secondary	Unit mg/L	DF 1.00	Result 0.0183	Expected/Added 0.0200(0.0200)	Recovery 91.5	Acceptar 85 - 115	nce Range
Parameter Nitrite as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 0.0282	Expected 0.0308	Recovery 91.6	Acceptar 90 - 110	ice Range
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0187	Expected 0.0200	Recovery 93.5	Acceptar 90 - 110	ice Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 4 of 40 Printed 11/7/2012

Specific Conductivity - El	PA 120.1		Batch	10EC12A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Specific Conductive	vity	umhos/	cm 10/05	/2012	1.00	0.116	2.00	7230
804102-002 Specific Conductiv	vity	umhos/	cm 10/05	/2012	1.00	0.116	2.00	7520
804102-003 Specific Conductiv	vity	umhos/	cm 10/05	/2012	1.00	0.116	2.00	43500
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	804102-003
Parameter	Unit	DF	Result	Expected	R	RPD	Accepta	ince Range
Specific Conductivity	umhos	1.00	43400	43500		0.230	0 - 10	_
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	702	702 706		99.4	90 - 110)
Lab Control Sample Du	plicate							
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	708	706		100	90 - 110)
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	693	706		98.2	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	970	998		97.2	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	975	998		97.7	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 5 of 40 Printed 11/7/2012

Chrome VI by EPA 218.6	5			10CrH12C			_	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Chromium, Hex	avalent	ug/L			1.00	0.00920	0.20	0.21
804102-002 Chromium, Hex	avalent	ug/L	10/08	3/2012 11:29	50.0	0.460	10.0	791
804102-003 Chromium, Hex	avalent	ug/L	10/08	3/2012 13:03	10.0	0.0920	2.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804102-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Chromium, Hexavalent	ug/L	50.0	792	791		0.131	0 - 20	
Low Level Calibration	ı Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ınce Range
Chromium, Hexavalent	ug/L	1.00	0.186	0.200		92.8	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Chromium, Hexavalent	ug/L	1.00	4.96	5.00		99.2	90 - 110	
Matrix Spike							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery		ınce Range
Chromium, Hexavalent	ug/L	5.00	4.99	5.21(5.00)		95.6	90 - 110	
Matrix Spike							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	•	ince Range
Chromium, Hexavalent	ug/L	1.00	1.16	1.21(1.00)		95.3	90 - 110	
Matrix Spike							Lab ID =	804102-002
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	-	ince Range
Chromium, Hexavalent	ug/L	50.0	1760	1790(1000)		97.2	90 - 110	
Matrix Spike					ranging injects up a		Lab ID =	804102-003
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	•	ince Range
Chromium, Hexavalent	ug/L	1.00	ND	1.00(1.00)			90 - 110	
Matrix Spike								804102-003
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	-	ince Range
Chromium, Hexavalent	ug/L	10.0	11.1	11.8(10.0)		92.9	90 - 110	
Matrix Spike								804105-001 _
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 41.0	Expected/Add 43.4(25.0)	ed F	Recovery 90.2	Accepta 90 - 110	ince Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 8 of 40 Printed 11/7/2012

Metals by EPA 200.7, T	otal		Batch	100912A-Th2				
Parameter		Unit	Unit Analyzed DF MDL		RL	Result		
804102-001 Boron		ug/L	10/09	9/2012 11:56	1.00	2.30	200	926
Iron		ug/L	10/09	9/2012 11:56	1.00	0.900	20.0	ND
804102-002 Boron		ug/L	10/09	9/2012 13:14	1.00	2.30	200	977
Iron		ug/L	10/09	9/2012 13:14	1.00	0.900	20.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Boron	ug/L	1.00	ND					
Duplicate							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Iron	ug/L	1.00	ND	0		0	0 - 20	
Boron	ug/L	1.00	916	926		1.10	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Iron	ug/L	1.00	107	100		107	85 - 115	5
Boron	ug/L	1.00	103	100		103	85 - 115	5
Matrix Spike							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected/Ac	lded F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	88.5	100(100)		88.5	75 - 125	,
Boron	ug/L	1.00	2700	2930(2000)		88.5	75 - 125	;
MRCCS - Secondar	у							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Iron	ug/L	1.00	4950	5000		99.0	95 - 105	
Boron	ug/L	1.00	4940	5000		98.7	95 - 105	i
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Iron	ug/L	1.00	4990	5000		99.8	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Iron	ug/L	1.00	4740	5000		94.8	90 - 110	
Boron	ug/L	1.00	4910	5000		98.2	90 - 110	1
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Boron	ug/L	1.00	5170	5000		103	90 - 110	1

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 10 of 40

Printed 11/7/2012

Metals by EPA 200.7, T	otal		Batch	101012A-Th2				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Aluminum		ug/L	10/10)/2012 12:26 1	.00	2.00	10.0	ND
Zinc		ug/L	10/10)/2012 12:26 1	.00	4.60	10.0	ND
804102-002 Aluminum		ug/L	10/10)/2012 13:07 1	.00	2.00	10.0	ND
Zinc		ug/L	10/10)/2012 13:07 1	.00	4.60	10.0	ND
804102-003 Zinc		ug/L	10/10)/2012 13:13 1	.00	4.60	10.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Aluminum	ug/L	1.00	ND					
Zinc	ug/L	1.00	ND					
Duplicate							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ınce Range
Aluminum	ug/L	1.00	ND	0		0	0 - 20	
Zinc	ug/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Aluminum	ug/L	1.00	103	100		103	85 - 115	
Zinc	ug/L	1.00	96.1	100		96.1	85 - 115	
Matrix Spike							Lab ID =	804102-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	•	ince Range
Aluminum	ug/L	1.00	76.7	100(100)		76.7	75 - 125	
Zinc	ug/L	1.00	100	100(100)		100	75 - 125	5
MRCCS - Secondar	y							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Aluminum	ug/L	1.00	5080	5000		102	95 - 105	
Zinc	ug/L	1.00	5200	5000		104	95 - 105	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	-	ince Range
Aluminum	ug/L	1.00	4790	5000		95.8	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Aluminum	ug/L	1.00	4810	5000		96.2	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Zinc	ug/L	1.00	5010	5000		100	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 12 of 40 Printed 11/7/2012

Metals by EPA 200.8, To	otal		Batch	100512A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Chromium		ug/L	10/06	6/2012 02:10	5.00	0.195	1.0	ND
Lead		ug/L	10/06	5/2012 02:10	5.00	0.265	1.0	ND
Molybdenum		ug/L	10/06	5/2012 02:10	5.00	0.150	5.0	20.4
804102-002 Lead		ug/L	10/06	6/2012 03:22	5.00	0.265	1.0	ND
Molybdenum		ug/L	10/06	3/2012 03:22	5.00	0.150	5.0	22.2
804102-003 Cadmium		ug/L	10/06	3/2012 03:29	5.00	0.135	1.0	ND
Chromium		ug/L	10/06	3/2012 03:29	5.00	0.195	1.0	7.9
Cobalt		ug/L	10/06	5/2012 03:29	5.00	0.270	5.0	ND
Lead		ug/L	10/06	6/2012 03:29	5.00	0.265	1.0	ND
Mercury		ug/L	10/06	6/2012 03:29	5.00	0.120	1.0	ND
Thallium		ug/L	10/06	6/2012 03:29	5.00	0.265	1.0	ND
Cobalt Chromium Mercury Lead Thallium Molybdenum	ug/L ug/L ug/L ug/L ug/L ug/L	1.00 1.00 1.00 1.00 1.00	ND ND ND ND ND ND					
Duplicate							Lab ID =	804102-00
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Rang
Barium	ug/L	5.00	13.3	12.6		5.26	0 - 20	
Cadmium	ug/L	5.00	ND	0		0	0 - 20	
Cobalt	ug/L	5.00	ND	0		0	0 - 20	
Chromium	ug/L	5.00	ND	0		0	0 - 20	
Mercury	ug/L	5.00	ND	0		0	0 - 20	
	11	5.00	ND	0		0	0 - 20	
Lead	ug/L	5.00	110	U				
Lead Thallium	ug/L ug/L	5.00	ND	0		0	0 - 20	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 13 of 40 Printed 11/7/2012

Low Level Calibrat	ion Verification					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	0.949	1.00	94.9	70 - 130
Cadmium	ug/L	1.00	0.190	0.200	95.0	70 - 130
Cobalt	ug/L	1.00	0.968	1.00	96.8	70 - 130
Chromium	ug/L	1.00	0.221	0.200	110	70 - 130
Mercury	ug/L	1.00	0.228	0.200	114	70 - 130
Lead	ug/L	1.00	0.192	0.200	96.2	70 - 130
Thallium	ug/L	1.00	0.201	0.200	101	70 - 130
Molybdenum	ug/L	1.00	0.771	1.00	77.1	70 - 130
Lab Control Sampl	е					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	5.00	113	100	113	85 - 115
Cadmium	ug/L	5.00	106	100	106	85 - 115
Cobalt	ug/L	5.00	107	100	107	85 - 115
Chromium	ug/L	5.00	105	100	105	85 - 115
Mercury	ug/L	5.00	9.96	10.0	99.6	85 - 115
Lead	ug/L	5.00	111	100	111	85 - 115
Thallium	ug/L	5.00	111	100	111	85 - 115
Molybdenum	ug/L	5.00	103	100	103	85 - 115
Matrix Spike						Lab ID = 804102-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Barium	ug/L	5.00	121	113(100)	109	75 - 125
Cadmium	ug/L	5.00	90.0	100(100)	90.0	75 - 125
Cobalt	ug/L	5.00	105	100(100)	105	75 - 125
Chromium	ug/L	5.00	108	100(100)	108	75 - 125
Mercury	ug/L	5.00	8.39	10.0(10.0)	83.9	75 - 125
Lead	ug/L	5.00	99.4	100(100)	99.4	75 - 125
Thallium	ug/L	5.00	99.2	100(100)	99.2	75 - 125
Molybdenum	ug/L	5.00	126	120(100)	106	75 - 125

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 14 of 40

Printed 11/7/2012

Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Barium	ug/L	5.00	122	113(100)	109	75 - 125
Cadmium	ug/L	5.00	92.3	100(100)	92.3	75 - 125
Cobalt	ug/L	5.00	108	100(100)	108	75 - 125
Chromium	ug/L	5.00	99.9	100(100)	99.9	75 - 125
Mercury	ug/L	5.00	8.51	10.0(10.0)	85.1	75 - 125
Lead	ug/L	5.00	101	100(100)	101	75 - 125
Thallium	ug/L	5.00	101	100(100)	101	75 - 125
Molybdenum	ug/L	5.00	133	120(100)	113	75 - 125
MRCCS - Secondar	y					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.4	20.0	102	90 - 110
Cadmium	ug/L	1.00	20.3	20.0	101	90 - 110
Cobalt	ug/L	1.00	20.4	20.0	102	90 - 110
Chromium	ug/L	1.00	20.6	20.0	103	90 - 110
Mercury	ug/L	1.00	1.84	2.00	91.9	90 - 110
Lead	ug/L	1.00	20.4	20.0	102	90 - 110
Thallium	ug/L	1.00	21.0	20.0	105	90 - 110
Molybdenum	ug/L	1.00	21.9	20.0	110	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.9	20.0	105	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.9	20.0	104	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.8	20.0	104	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.8	20.0	104	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.2	20.0	101	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 21 of 40 Printed 11/7/2012

Metals by EPA 200.8, To	otal		Batch	100812C				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Barium		ug/L	10/09	/2012 10:44	5.00	0.205	5.0	12.3
Copper		ug/L	10/09	/2012 10:44	5.00	0.235	5.0	ND
304102-002 Barium		ug/L	10/09	10/09/2012 11:49		0.205	5.0	24.9
Copper		ug/L	10/09	/2012 11:49	5.00	0.235	5.0	ND
304102-003 Barium		ug/L	10/09	/2012 12:03	5.00	0.205	5.0	82.8
Beryllium		ug/L	10/09	/2012 12:03	5.00	0.140	0.50	ND
Copper		ug/L	10/09	/2012 12:03	5.00	0.235	5.0	ND
Molybdenum		ug/L	10/09	/2012 12:03	5.00	0.150	2.0	144
Vanadium		ug/L	10/09	/2012 12:03	5.00	0.325	5.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Barium	ug/L	1.00	ND					
Beryllium	ug/L	1.00	ND					
Copper	ug/L	1.00	ND					
Vanadium	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Rang
Barium	ug/L	1.00	0.976	1.00		97.6	70 - 130)
Beryllium	ug/L	1.00	0.110	0.100		110	70 - 130)
Copper	ug/L	1.00	0.940	1.00		94.0	70 - 130)
Vanadium	ug/L	1.00	1.02	1.00		102	70 - 130)
Molybdenum	ug/L	1.00	0.414	0.400		104	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Rang
Barium	ug/L	5.00	101	100		101	85 - 115	
Beryllium	ug/L	5.00	100	100		100	85 - 115	
Copper	ug/L	5.00	104	100		104	85 - 115	5
Vanadium	ug/L	5.00	103	100		103	85 - 115	5
Molybdenum	ug/L	5.00	97.8	100		97.8	85 - 115	;

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 22 of 40

Printed 11/7/2012

Matrix Spike						Lab ID = 804102-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Barium	ug/L	5.00	112	112(100)	99.6	75 - 125
Beryllium	ug/L	5.00	99.6	100(100)	99.6	75 - 125
Copper	ug/L	5.00	91.7	100(100)	91.7	75 - 125
Vanadium	ug/L	5.00	108	100(100)	108	75 - 125
Molybdenum	ug/L	5.00	121	120(100)	101	75 - 125
Matrix Spike Duplicate						Lab ID = 804102-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Barium	ug/L	5.00	107	112(100)	94.3	75 - 125
Beryllium	ug/L	5.00	95.0	100(100)	95.0	75 - 125
Copper	ug/L	5.00	92.6	100(100)	92.6	75 - 125
Vanadium	ug/L	5.00	106	100(100)	106	75 - 125
Molybdenum	ug/L	5.00	116	120(100)	96.4	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	19.7	20.0	98.7	90 - 110
Beryllium	ug/L	1.00	19.8	20.0	98.9	90 - 110
Copper	ug/L	1.00	20.8	20.0	104	90 - 110
Vanadium	ug/L	1.00	20.3	20.0	102	90 - 110
Molybdenum	ug/L	1.00	21.6	20.0	108	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	19.9	20.0	99.4	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.8	20.0	104	90 - 110
MRCVS - Primary	ika wanzangakani na kasani		de activações a proportionados a proportionados de la composiçõe de la composiçõe de la composiçõe de la compo		and the second second second second second second second second second second second second second second second	
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.5	20.0	102	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.3	20.0	102	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	20.5	20.0	103	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 26 of 40

Printed 11/7/2012

Interference Check S	Standard AB					
Parameter Vanadium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	Standard AB					
Parameter Vanadium	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check S	Standard AB					
Parameter Molybdenum Interference Check \$	Unit ug/L Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Serial Dilution						Lab ID = 804102-003
Parameter Barium Molybdenum	Unit ug/L ug/L	DF 25.0 25.0	Result 85.3 147	Expected 82.8 144	RPD 2.99 1.92	Acceptance Range 0 - 10 0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 27 of 40 Printed 11/7/2012

Metals by EPA 200.8,	rotal			n 101012A				
Parameter	· · · · · · · · · · · · · · · · · · ·	Unit	Ana	alyzed	DF	MDL	RL	Result
804102-003 Selenium		ug/L	10/10	0/2012 19:19 5	.00	0.355	5.0	22.3
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Nickel	ug/L	1.00	ND					
Selenium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Low Level Calibration	on Verification)						
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range
Arsenic	ug/L	1.00	0.254	0.200		127	70 - 130	
Nickel	ug/L	1.00	1.06	1.00		106	70 - 130	
Selenium	ug/L	1.00	1.06	1.00		106	70 - 130	
Manganese	ug/L	1.00	0.206	0.200		103	70 - 130	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Arsenic	ug/L	5.00	99.0	100		99.0	85 - 115	_
Nickel	ug/L	5.00	105	100		105	85 - 115	
Selenium	ug/L	5.00	95.4	100		95.4	85 - 115	
Manganese	ug/L	5.00	99.4	100		99.4	85 - 115	
Matrix Spike							Lab ID = 8	304102-00 ⁻
Parameter	Unit	DF	Result	Expected/Adde	d R	ecovery	Accepta	nce Range
Selenium	ug/L	5.00	91.4	100(100)		91.4	75 - 125	_
Matrix Spike Duplica	ate						Lab ID = 8	304102-001
Parameter	Unit	DF	Result	Expected/Adde	d R	ecovery	Accepta	nce Range
Selenium	ug/L	5.00	91.8	100(100)		91.8	75 - 125	Ū
MRCCS - Secondar	y	sassana di anaranya ya kanara			end order residen			18 - 18 page 14 may 14 - 17 may 14 may 14 may 14 may 14 may 14 may 14 may 14 may 14 may 14 may 14 may 14 may 1
Parameter	Unit	DF	Result	Expected	R	ecovery	Acceptar	nce Range
Arsenic	ug/L	1.00	19.4	20.0		97.2	90 - 110	
Nickel	ug/L	1.00	20.4	20.0		102	90 - 110	
Selenium	ug/L	1.00	19.7	20.0		98.6	90 - 110	
Manganese	ug/L	1.00	19.7	20.0		98.6	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Acceptar	nce Range
Arsenic	ug/L	1.00	21.2	20.0		106	90 - 110	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without matter without authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 31 of 40 Printed 11/7/2012

Batch 101512A Metals by EPA 200.8, Total DF Result Parameter Unit Analyzed MDL RL 1.0 ND 804102-001 Arsenic ug/L 10/15/2012 12:47 5.00 0.265 10/15/2012 12:47 5.00 0.270 1.0 1.0 Manganese ug/L ND Nickel ug/L 10/15/2012 12:47 5.00 0.355 2.0 5.00 0.265 3.3 ug/L 10/15/2012 13:45 1.0 804102-002 Arsenic 10.0 735 0.390 2.0 Chromium ug/L 10/15/2012 13:59 5.00 0.270 1.0 3.9 ug/L 10/15/2012 13:45 Manganese 10/15/2012 13:45 5.00 0.355 2.0 ND ug/L Nickel 10/15/2012 14:20 5.00 0.265 1.0 1.1 ug/L 804102-003 Arsenic 10/15/2012 14:20 5.00 0.270 1.0 10.7 ug/L Manganese 10/15/2012 14:20 5.00 0.355 2.0 8.2 Nickel ug/L Method Blank Unit DF Result Parameter ND Arsenic ug/L 1.00 ND ug/L 1.00 Chromium ND Nickel ug/L 1.00 ug/L ND 1.00 Manganese Lab ID = 804102-001 Duplicate **RPD** Acceptance Range Unit DF Result Expected Parameter 0 - 20ug/L 5.00 ND 0 0 Arsenic 0 0 - 20Chromium ug/L 5.00 ND 0 0 0 0 - 20Nickel 5.00 ND ug/L 15.4 0 - 20ug/L 5.00 0.891 1.04 Manganese Low Level Calibration Verification Acceptance Range Unit DF Result Expected Recovery Parameter 0.259 0.200 129 70 - 130ug/L 1.00 Arsenic 103 70 - 130 0.200 0.206 Chromium ug/L 1.00 104 70 - 1300.209 0.200 1.00 ug/L Nickel 103 70 - 1300.206 0.200 ug/L 1.00 Manganese Lab Control Sample Expected Recovery Acceptance Range DF Result Parameter Unit 100 92.3 85 - 115 ug/L 5.00 92.3 Arsenic

97.4

94.1

99.4

ug/L

ug/L

ug/L

Chromium

Manganese

Nickel

5.00

5.00

5.00

100

100

100

97.4

94.1

99.4

85 - 115

85 - 115

85 - 115

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 32 of 40 Printed 11/7/2012

Desembles	1 1 14	חר	Dooult	Evpostod/Add-d	Dogg::an:	Assentance Demin
Parameter Arsenic	Unit ug/L	DF 5.00	Result 95.3	Expected/Added 100(100)	Recovery 95.3	Acceptance Range 75 - 125
Chromium	ug/L	5.00	98.7	100(100)	98.7	75 - 125
Nickel	ug/L	5.00	92.9	100(100)	92.9	75 - 125
Manganese	ug/L	5.00	96.9	101(100)	95.9	75 - 125
Matrix Spike Duplica	omostore a con-					Lab ID = 804102-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	5.00	91.6	100(100)	91.6	75 - 110
Chromium	ug/L	5.00	96.0	100(100)	96.0	75 - 125
Nickel	ug/L	5.00	90.1	100(100)	90.1	75 - 125
Manganese	ug/L	5.00	98.8	101(100)	97.7	75 - 125
MRCCS - Secondary	1					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	18.4	20.0	92.2	90 - 110
Chromium	ug/L	1.00	19.6	20.0	97.8	90 - 110
Nickel	ug/L	1.00	19.3	20.0	96.4	90 - 110
Manganese	ug/L	1.00	18.6	20.0	93.2	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	19.0	20.0	95.0	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	19.6	20.0	98.2	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	20.5	20.0	102	90 - 110
MRCVS - Primary				uma pada je se sa pagaga pada ne na jetenua sa e e e e e e e e e e e e e e e e e e	al and a challenged and a surface place of the contract of the contract of the contract of the contract of the	
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	19.7	20.0	98.4	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	20.0	20.0	99.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	19.0	20.0	95.0	90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 34 of 40 Printed 11/7/2012

Interference Check Sta	ndard AB					
Parameter Chromium	Unit ug/L	DF 1.00	Result 20.6	Expected 20.0	Recovery 103	Acceptance Range 80 - 120
Interference Check Sta	ndard AB					
Parameter Chromium Interference Check Sta	Unit ug/L indard AB	DF 1.00	Result 19.8	Expected 20.0	Recovery 99.2	Acceptance Range 80 - 120
Parameter Nickel	Unit ug/L	DF 1.00	Result 20.1	Expected 20.0	Recovery 101	Acceptance Range 80 - 120
Interference Check Sta					_	_
Parameter Nickel	Unit ug/L	DF 1.00	Result 18.8	Expected 20.0	Recovery 94.2	Acceptance Range 80 - 120
Interference Check Sta	ndard AB					
Parameter Manganese Interference Check Sta	Unit ug/L indard AB	DF 1.00	Result 20.4	Expected 20.0	Recovery 102	Acceptance Range 80 - 120
Parameter Manganese	Unit ug/L	DF 1.00	Result 20.8	Expected 20.0	Recovery 104	Acceptance Range 80 - 120
Serial Dilution						Lab ID = 804102-002
Parameter Chromium	Unit ug/L	DF 50.0	Result 729	Expected 735	RPD 0.778	Acceptance Range 0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 35 of 40 Printed 11/7/2012

Metals by EPA 200.8,	Total		Batch	101912A			
Parameter		Unit	Ana	lyzed [F MDL	. RL	Result
804102-003 Silver		ug/L	10/19	/2012 13:38 5.	00 0.125	5.0	ND
Method Blank							
Parameter	Unit	DF	Result				
Silver	ug/L	1.00	ND				
Duplicate						Lab ID =	804102-003
Parameter	Unit	DF	Result	Expected	RPD	•	ance Range
Silver	ug/L	5.00	ND	0	0	0 - 20	
Low Level Calibrat	tion Verification						
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Silver	ug/L	1.00	1.12	1.00	112	70 - 13	0
Lab Control Sampl	le						
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Silver	ug/L	5.00	91.6	100	91.6	85 - 11	
Matrix Spike						Lab ID =	804102-003
Parameter	Unit	DF	Result	Expected/Adde	•	•	ance Range
Silver	ug/L	5.00	105	100(100)	105	75 - 12	5
MRCCS - Seconda	ary						
Parameter	Unit	DF	Result	Expected	Recovery		ance Range
Silver	ug/L	1.00	20.2	20.0	101	90 - 11)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery		ance Range
Silver	ug/L	1.00	18.9	20.0	94.7	90 - 11	0
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	9	ance Range
Silver	ug/L	1.00	21.8	20.0	109	90 - 11	O Statementalisassastis suur
Interference Checl	k Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Silver	ug/L	1.00	ND	0			
Interference Checl	k Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Silver	ug/L	1.00	ND	0			

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 37 of 40 Printed 11/7/2012

Metals by EPA 200.8, 7	Total		Batch	103012A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Antimony		ug/L	10/30)/2012 11:07	2.50	0.210	2.0	ND
804102-002 Antimony		ug/L	10/30)/2012 11:15	2.50	0.210	2.0	ND
804102-003 Antimony		ug/L	10/30)/2012 12:21	2.50	0.210	2.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Antimony	ug/L	1.00	ND					
Duplicate							Lab ID =	804102-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Antimony	ug/L	2.50	ND	0		0	0 - 20	
Low Level Calibration	on Verification)						
Parameter	Unit	DF	Result	Expected	F	Recovery		ance Range
Antimony	ug/L	1.00	0.571	0.500		114	70 - 130	0
Lab Control Sample	.							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Antimony	ug/L	2.50	110	100		110	85 - 11	
Matrix Spike							Lab ID =	804102-002
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	•	ance Range
Antimony	ug/L	2.50	111	100(100)		111	75 - 12	
Matrix Spike Duplica	ate						Lab ID =	804102-002
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	•	ance Range
Antimony	ug/L	2.50	113	100(100)		113	75 - 12	5
MRCCS - Secondar	У							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Antimony	ug/L	1.00	21.9	20.0		110	90 - 110)
MRCVS - Primary	unionalitan ya kaisista kantakan katakan ka	en enganteratur en en en en en en en en en en en en en		consideration of the property of the particular constitution of the constitution of th	kan selatat ni singanya			
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Antimony	ug/L	1.00	21.1	20.0		105	90 - 110	ס
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Antimony	ug/L	1.00	21.4	20.0		107	90 - 110	0
Interference Check	Standard A							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Antimony	ug/L	1.00	ND	0				

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 38 of 40

Printed 11/7/2012

Interference Check	Standard A					
Parameter Antimony	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check	Standard AB					
Parameter Antimony	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check	Standard AB					
Parameter Antimony	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range

Total Dissolved Solids	by SM 254	0 C	Batch	10TDS12B				
Parameter	Ī	Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Total Dissolved	Solids	mg/L	10/04	1/2012	1.00	0.757	250	4350
804102-002 Total Dissolved	Solids	mg/L	10/04	1/2012	1.00	0.757	250	4620
804102-003 Total Dissolved	Solids	mg/L	10/04	1/2012	1.00	0.757	1250	32000
Method Blank Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND				Lab ID =	804101-001
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 2600	Expected 2720	F	RPD 4.70	Accepta 0 - 10	ince Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 491	Expected 500	F	Recovery 98.2	Accepta 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 39 of 40 Printed 11/7/2012

Ammonia Nitrogen by SI	Л4500-NH	I3D	Batch	10NH312A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804102-001 Ammonia as N		mg/L	10/04	/2012	1.00	0.00980	0.500	ND
804102-002 Ammonia as N		mg/L	10/04	/2012	1.00	0.00980	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.24	8.00		103	90 - 110	
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.61	8.00		108	90 - 110	
Matrix Spike							Lab ID =	804102-00°
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	7.60	6.00(6.00)		127	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	5.98	6.00		99.8	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.37	6.00		106	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.25	6.00		104	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 40 of 40 Printed 11/7/2012

Project Number: 456827.01.DM

Batch 10TUC12C Turbidity by SM 2130 B Unit Analyzed DF MDL RL Result Parameter NTU 10/03/2012 1.00 0.0140 0.100 ND 804102-001 Turbidity 0.106 NTU 10/03/2012 1.00 0.0140 0.100 804102-002 Turbidity Method Blank Unit DF Result Parameter NTU 1.00 ND **Turbidity** Lab ID = 804102-002 **Duplicate** Unit DF Result Expected **RPD** Acceptance Range Parameter NTU 1.00 0.108 0.106 1.87 0 - 20Turbidity Lab Control Sample Expected Acceptance Range DF Result Recovery Parameter Unit 8.20 8.00 102 90 - 110 NTU 1.00 Turbidity Lab Control Sample Duplicate DF Result Expected Recovery Acceptance Range Parameter Unit 1.00 7.70 8.00 96.2 90 - 110 NTU Turbidity

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

to -

Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

(SC

Calculations

Batch: 10TDS12B Date Analyzed: 10/8/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	69.1949	69.1952	69.1950	0.0002	No	0.0001	1.0	25.0	ND	1
804101-1	20	50.3202	50.3749	50.3747	0.0002	No	0.0545	2725.0	125.0	2725.0	1
804101-2	10	48.0084	48.0574	48.0573	0.0001	No	0.0489	4890.0	250.0	4890.0	1
804102-1	10	51.4710	51.5149	51.5145	0.0004	No	0.0435	4350.0	250.0	4350.0	1
804102-2	10	47.5160	47.5624	47.5622	0.0002	No	0.0462	4620.0	250.0	4620.0	1
804102-3	2	51.0754	51.1396	51.1394	0.0002	No	0.0640	32000.0	1250.0	32000.0	1
804111	50	67.6996	67.7385	67.7385	0.0000	No	0.0389	778.0	50.0	778.0	1
804116-1	100	69.3395	69.3975	69.3974	0.0001	No	0.0579	579.0	25.0	579.0	1
804116-2	100	67.1019	67.1613	67.1613	0.0000	No	0.0594	594.0	25.0	594.0	1
804117-8	100	78.3969	78.4321	78.4319	0.0002	No	0.0350	350.0	25.0	350.0	1
804120	200	115,2361	115.2588	115.2587	0.0001	No	0.0226	113.0	12.5	113.0⁴	1
804101-1D	20	49.1973	49.2494	49.2492	0.0002	No	0.0519	2595.0	125.0	2595.0	1
LCS	100	69.3427	69.3920	69.3918	0,0002	No	0.0491	491.0	25.0	491.0	1
804122-1	100	66.8086	66.8314	66.8311	0.0003	No	0.0225	225.0	25.0	225.0	1
804123-1	100	66.7126	66.7354	66.7354	0.0000	No	0.0228	228.0	25.0	228.0	1
804129-4	50	50.7030	50.7652	50.7648	0.0004	No	0.0618	1236.0	50.0	1236.0	1
804129-5	50	74.5311	74.5931	74.5931	0.0000	No	0.0620	1240.0	50.0	1240.0	1
804129-6	100	50.1279	50.1689	50.1687	0.0002	No	0.0408	408.0	25.0	408.0	1
804139	490	109.0645	109.0647	109.0647	0.0000	No	0.0002	0.4	5.1	ND	1
804180-4	100	76.3406	76,388	76.388	0.0000	No	0.0474	474.0	25.0	474.0	1
A											

Calculation as follows:

Filterable residue (TDS), mg/L =

 $\left(\frac{A-B}{C}\right) \times 10^6$

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered. RL= reporting limit, ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std	Measurd Value, ppm	Theoretical Value, ppm	Percent Rac	Acceptance Limit	QC Within Control?
LCS1	491	500	98.2%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804101-1	0.0545	0.0519	2.4%	≤5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left| A \text{ or } B - C \right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Hope T.

Reviewer Printed Name

119

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12B Date Analyzed: 10/8/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804101-1	4460	0.61	2899	0.94
804101-2	7340	0.67	4771	1.02
804102-1	7340	0.59	4771	0.91
804102-2	7660	0.60	4979	0.93
804102-3	44300	0.72	28795	1.11
804111	1340	0.58	871	0,89
804116-1	920	0.63	598	0.97
804116-2	931	0.64	605.15	0.98
804117-8	579	0.60	376.35	0.93
804120	171	0.66	111.15	1.02
804101-1D	4460	0.58	2899	0.90
LCS		•		
804122-1	389	0.58	252.85	0.89
804123-1	324	0.70	210.6	1.08
804129-4	1802	0.69	1171.3	1.06
804129-5	1806	0.69	1173.9	1.06
804129-6	630	0.65	409.5	1.00
804139	2.5	ND	1.625	ND
804180-4	791	0.60	514.15	0.92

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-381]

TURNAROUND TIME	10 Days	
DATE 10/02/12	PAGE 1 0	lä.

COMMENTS BK-MO NUMBER OF CONTAINERS (850N-005p) 50N Total Metals (200.7) Mn \times A (0.00s) snoinA × Total Metals (200.7) See List Below (EHN-0084) sinommA \times \times × Title 22 Metals List (200.7, 200.8, 245.1) 10S (2640 c) \times \times Cr(VI) (218.6) Lab Fillered × × × × \times DESCRIPTION FAX 530-339-3303 (351 13:36 TIME 13:19 10/02/12 10/02/12 10/02/12 155 Grand Ave Ste 1000 DATE Oakland, CA 94612 PG&E Topock IM3 530-229-3303 CH2M HILL /E2 408401.01.DM SC-100B-WDR-381 SC-700B-WDR-381 SC-701-WDR-381 SAMPLERS (SIGNATURE PROJECT NAME P.O. NUMBER SAMPLE I.D. COMPANY ADDRESS PHONE

3

	CHAIN OF CUSTODY SIGNATU		RE RECORD			SAMPLE CONDITIONS
Signature (Relinquished) C. Waght	Printed C.1Anight	Company/ Agency	CHZMether	Date/ 14:41 Time (0-2-	Date/ 14:4! Time 10・2・12~	RECEIVED COOL E WARM "E
Signature (Received) A G V V	Printed Ref. //	Company/ Agency	ナイナ	Date/ / Time	Date/ 10-2-12 Time /5:30	CUSTODY SEALED YES NO []
Signature	Printed >	Company/	The state of the s	Date/	"	
(Relinquished)	In Mane Kafarl	Agency	ナシー	Time	Time X2 " CA	SPECIAL REQUIREMENTS:
Signature 7	Printed	Company/	C.	Date/	Diolin.	The metals include: Or Al Sh As Ba B Cu Dh Ma
(Received) / Willeeur	eening Name dudid	Agency	7/1	Time (Time 1941 226	Mo Ni Eo Za
€ Signature	Printed	Company/		Date/		WO, M, P, C.
Kelinquished)	Name	Agency		Time		
Signature	Printed	Company/		Date/		
(Received)	Name	Agency		Time	•	

TOTAL NUMBER OF CONTAINERS

Ū

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
09/21/12	803903-1	9.5	NIA	NIA	NIA	0
1	1, -2	1,	4	1	1	
09/21/12	803904-1	9.5	NIA	MA	HIA	
	-2			1		
	-3					
Į,			,	1	\downarrow	
09/21/12	803905-1	9-5	NIA.	NIA	1~1/A	
1.	-2	1			1	
	-3					
	-4					
	-5					
	-6					
	1 . 7		<u> </u>	J,		\downarrow
09/26/12	803980	7	2 ml	9.5	8:30 AM	HAV
09126112	803981	9-5	NIA	NIA	NIA	HAV
09126112	803982-1	9-5	NIA	NIA	MIA	HAV
	-2)	
	-3					
	-4					
	-5					
	J -6		4	J.		\downarrow
09/26/12 9	803983 -1	9.5	NIA	NIA	NIA	НЯУ
	-2					
1	1 -3	<u> </u>	<u></u>	1,		1,
10/03/12 4	804101-1	7	2 ml	9.5	9:00 AM	HAV
10/03/12	304102-1	7	2 ml	9-5	9:20 AM	HAV
	-2	7	2 ml		9:30 AM	HAV
		8	1 ml	<u> </u>	9:40 AM	HAV
10/03/12 4	804101 - 2	7	2 ml	9.3	9:10 AM	HAV
10/03/12	304103-1	9.5	NIA	NIA NIA		HAV
_ _\	2 -2	4		\mathcal{L}		<u> </u>

3-10/10/12/132

		T-11	lurbic	dity/pH C	heck	·		
Sample Number	Turbidity	pH 65-	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
80,35,94	>1	7 1 2	9-21-12	BE	3010A			-3/2
8038951-3	1		1					-30H<2
803892(1-3)		12	1		1			
803943(1-2)	₹1	1						-
803904 L1-4)	Ì							
803905 (1-7)								
803914	71 .	J						
803915 (-2+5)	ナメ1 BE	72				\ \$283a	AM	
803908(1-2)	41	J		J	V	10130/	im	
803943	71	くて	9-24-12	BE	BoloA			
803929	1		\	1				
803903/1-2/	<1	<2	9 24-12	µ.M	3010A			
803904 (1-4)	1							
803 305 11-11	V	V	V		W			
803925	71	22	9.124/2	µ.M	3010B			
803943	V	<u> </u>	V				·	
793983	71	<2	9-25-12	BF	30 hA			
803914								
803985								
8 - 39 66.								
8 = 3967			1	7	<u> </u>			
803980	<1	72	9-26-12	H.M	3010 A			
803 981		<2						
803982(4-6)			l l,					
803983(1-3)	V,	<u> </u>	V					
803964	7.1	<2	9-26-12	H.M	30 to 4			
803965	- V		J. J.	y .	<i>V</i>	1 2	2 4-	P4 <2
803971(1-3)	<1	>2	9-26-12	BE	No	15.30	7-27	P4 (Z
8°3977		· ~ A	()	<u> </u>	20101	10:00	V	_ 1/
804011	<i>>/</i>	72	9-26-12	M.M	3010A No	16:00	9-27	PHCZ
2040\2U=17	<u> </u>	72		BE	- / <u>'</u>	17:15		- \
804010(1-3)						-		
804009(1-9)							1-28	00/2
804013(1-40)	<u> </u>	<u> </u>	Ø 97 10	M.M	3010A		1- 40	PACL
804 015 (1-5) 804 030(1-3)	<1 <1	<2 <2	9-28-12	M.M	3010A			
804020	21	<u> </u>	10/1/12	ES	7010 A			· · · · · · · · · · · · · · · · · · ·
804024			1011112	1	10107			
804052				-],				
	21	<u>~</u> 2	10/0/12	MM	3010 K		. ,	·
804062 304100 mg		~ <u>~ ~ ~</u>	10/2/12	MM	30/01			
	21	***	10/03/12	1	1			
804101 11-21		2 2	 					
V 11 () 17 / 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

Notes:

Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

C	lient: <u>E2</u>	Lab # <u> </u>
Da	ate Delivered: <u>l0</u> / <u>02</u> /12 Time: <u>22/0</u> 0 By: □Mail Ø	Field Service
1.	Was a Chain of Custody received and signed?	AYes ONo ON/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÞNA
3 .	Are there any special requirements or notes on the COC?	□Yes □No ZN/A
4.	If a letter was sent with the COC, does it match the COC?	☐Yes ☐No ☐N/A
5 .	Were all requested analyses understood and acceptable?	☐Yes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)?½ <u>&°C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc.)	ØYes □No □N/A
8.	Were sample custody seals intact?	☐Yes ☐No ☑N/A
9.	Does the number of samples received agree with COC?	ØYes □No □N/A
10.	Did sample labels correspond with the client ID's?	☑Yes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail AClient	Yes ONO ONA
12.	Were samples pH checked? pH = Sel C. O. e	Ø(Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	⊲ZYes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH 전 Std	∞QYes □No □N/A
<i>5</i> .	Sample Matrix: □Liquid □Drinking Water □Ground Water □Soil □Wipe □Paint □Solid 🕱 🖸	17/ 0
6.	Comments:	
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	L. Chabining

Established 1931

October 26, 2012

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-382 PROJECT, GROUNDWATER MONITORING, TLI NO.: 804229

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-382 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 9, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to, Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample **Project Name:** PG&E Topock Project

Project No.: 456827.01.DM

Laboratory No.: 804229

Date: October 26, 2012

Collected: October 9, 2012 Received: October 9, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav / George Wahba

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 804229

Date Received: October 9, 2012

Analytical Results Summary

Lab Sample ID Field ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	R
804229-001	SC-700B-WDR-382 E120.1	E120.1	NONE	10/9/2012	13:18	EC	7310	umhos/cm	2.00
804229-001	SC-700B-WDR-382	E200.8	NONE	10/9/2012	13:18	Chromium	Q	ug/L	1.0
804229-001	SC-700B-WDR-382	E200.8	NONE	10/9/2012	13:18	Manganese	1.1	ng/L	0.50
804229-001	SC-700B-WDR-382		LABFLT	10/9/2012	13:18	Chromium, Hexavalent	QN	ng/L	0.20
804229-001	SC-700B-WDR-382	SM2130B	NONE	10/9/2012	13:18	Turbidity	Q	NTO	0.100
804229-001	SC-700B-WDR-382	0,	NONE	10/9/2012	13:18	Total Dissolved Solids	4360	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Result above or equal to 0.01ppm will have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results: Quality Control data will always have three (3) significant figures. Results below 0.01ppm will have two (2) significant figures.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 10/26/2012

Page 1 of 9

Laboratory No. 804229

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 10/9/2012 9:30:00 PM

 Field ID
 Lab ID
 Collected
 Matrix

 SC-700B-WDR-382
 804229-001
 10/09/2012
 13:18
 Water

Specific Conductivity	- LI M 14V, I			th 10EC12B				
Parameter	***************************************	Unit	An	alyzed	DF	MDL	RL	Result
804229-001 Specific Condu	uctivity	umhos/cr	m 10/1	2/2012	1.00	0.116	2.00	7310
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	804229-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7310	Expected 7310	i	RPD 0.00	Accepta 0 - 10	ance Range
Lab Control Sample								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 703	Expected 706	F	Recovery 99.6	Accepta 90 - 110	ance Range)
Lab Control Sample	Duplicate							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 706	Expected 706	F	Recovery 100.	Accepta 90 - 110	nce Range
MRCCS - Secondary	y							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 678	Expected 706	F	Recovery 96.0	Accepta 90 - 110	nce Range
MRCVS - Primary								
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 975	Expected 998	F	Recovery 97.7	Accepta 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 979	Expected 998	F	Recovery 98.1	Accepta 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without priggritten authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 9 Printed 10/26/2012

Chrome VI by EPA 218.6		Batch	10CrH12E					
Parameter		Unit	Ana	lyzed I	OF.	MDL	RL	Result
804229-001 Chromium, Hex	avalent	ug/L	10/10)/2012 10:25 1	.00 (0.00920	0.20	ND
Method Blank	teral e e						9	
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND					
Duplicate							Lab ID =	804181-010
Parameter Chromium, Hexavalent	Unit ug/L	DF 10.0	Result 140.	Expected 140.	RPI 0.	D 273	Accepta 0 - 20	ince Range
Low Level Calibration	Verification	r dag gaga.						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.172	Expected 0.200		covery 6.2	Accepta 70 - 130	ance Range)
Lab Control Sample								
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.88	Expected 5.00		covery 7.5	Accepta 90 - 110	nce Range)
Matrix Spike							Lab ID =	804181-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 250	Result 10500	Expected/Adde 10500(5000)		covery 00.	Accepta 90 - 110	nce Range)
Matrix Spike							Lab ID =	804181-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 200	Result 8870	Expected/Adde 8850(4000)		covery 00.	Accepta 90 - 110	ince Range)
Matrix Spike							Lab ID =	804181-009
Parameter Chromium, Hexavalent	Unit ug/L	DF 25.0	Result 701.	Expected/Adde 691(375)		covery 03.	Accepta 90 - 110	nce Range)
Matrix Spike							Lab ID =	804181-010
Parameter Chromium, Hexavalent	Unit ug/L	DF 10.0	Result 282.	Expected/Adde 290.(150.)		covery 4.8	Accepta 90 - 110	ince Range
Matrix Spike							Lab ID =	804181-011
Parameter Chromium, Hexavalent	Unit ug/L	DF 25.0	Result 631.	Expected/Adde 625(375)		covery 02.	Accepta 90 - 110	nce Range
Matrix Spike							Lab ID =	804182-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 200	Result 8460	Expected/Adde 8510(4000)		covery 3.8	Accepta 90 - 110	nce Range

Client: E2 Consulting Er	ngineers, Ind		Project Name: Project Number:	PG&E Topock Pro 456827.01.DM	pject	Page 4 of 9 Printed 10/26/2012
Matrix Spike						Lab ID = 804183-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.840	Expected/Added 1.00(1.00)	Recovery 84.0	Acceptance Range 90 - 110 Lab ID = 804183-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 4.66	Expected/Added 5.00(5.00)	Recovery 93.2	Acceptance Range 90 - 110
Matrix Spike Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 4.50	Expected/Added 5.00(5.00)	Recovery 90.0	Lab ID = 804183-002 Acceptance Range 90 - 110 Lab ID = 804183-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.814	Expected/Added 1.00(1.00)	Recovery 81.4	Acceptance Range 90 - 110 Lab ID = 804183-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result ND	Expected/Added 1.00(1.00)	Recovery	Acceptance Range 90 - 110 Lab ID = 804183-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 4.77	Expected/Added 5.00(5.00)	Recovery 95.4	Acceptance Range 90 - 110 Lab ID = 804183-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 7.08	Expected/Added 7.32(5.00)	Recovery 95.2	Acceptance Range 90 - 110 Lab ID = 804229-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.00	Result 1.19	Expected/Added 1.18(1.00)	Recovery 101.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.90	Expected 5.00	Recovery 98.0	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.00	Expected 10.0	Recovery 100.0	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.96	Expected 10.0	Recovery 99.6	Acceptance Range 95 - 105

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 10/26/2012

Page 6 of 9

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804229-001 Chromium		ug/L	10/23	3/2012 07:14	5.00	0.195	1.0	ND
Manganese		ug/L	10/23	3/2012 07:14	5.00	0.270	0.50	1.1
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	804229-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Chromium	ug/L	5.00	ND	0.00		0	0 - 20	
Manganese	ug/L	5.00	1.03	1.14		10.1	0 - 20	
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Chromium	ug/L	1.00	0.208	0.200		104.	70 - 130	_
Manganese	ug/L	1.00	0.100	0.100		100.	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Chromium	ug/L	5.00	102.	100.		102.	85 - 115	;
Manganese	ug/L	5.00	102.	100.		102.	85 - 115	;
Matrix Spike							Lab ID =	804229-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Chromium	ug/L	5.00	105.	100.(100.)		105.	75 - 125	;
Manganese	ug/L	5.00	103.	101.(100.)		101.	75 - 125	5
Matrix Spike Duplicat	te						Lab ID =	804229-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Chromium	ug/L	5.00	106.	100.(100.)		106.	75 - 125	•
Manganese	ug/L	5.00	101	101.(100.)		99.9	75 - 125	;
MRCCS - Secondary	ings. E							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Chromium	ug/L	1.00	19.6	20.0		97.8	90 - 110)
Manganese	ug/L	1.00	19.7	20.0		98.4	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Chromium	ug/L	1.00	20.4	20.0		102.	90 - 110	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 8 of 9 Printed 10/26/2012

Interference Check Standard AB

Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	20.0	20.0	100.	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	19.4	20.0	96.9	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	20.2	20.0	101.	80 - 120

Total Dissolved Solids	by SM 254	10 C	Bato	h 10TDS12C				
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
804229-001 Total Dissolved	Solids	mg/L	10/1	0/2012	1.00	0.757	250.	4360
Method Blank								
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	804229-001
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 4240	Expected 4360	F	RPD 2.79	Accepta 0 - 10	ance Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 494	Expected 500.	F	Recovery 98.8		ance Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 9 of 9 Printed 10/26/2012

Turbidity by SM 2130 B			Batc	h 10TUC12F				
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
804229-001 Turbidity		NTU	10/1	0/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter Turbidity	Unit NTU	DF 1.00	Result ND				a de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la c	
Duplicate							Lab ID =	804229-001
Parameter Turbidity	Unit NTU	DF 1.00	Result ND	Expected 0.00	F	RPD 0	Accepta 0 - 20	nce Range
Lab Control Sample								
Parameter Turbidity	Unit NTU	DF 1.00	Result 8.17	Expected 8.00	F	Recovery 102.	Accepta 90 - 110	nce Range
Lab Control Sample Du	uplicate							
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.79	Expected 8.00	F	Recovery 97.4	Accepta 90 - 110	nce Range

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

/ Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS12C Date Analyzed: 10/10/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	66.8086	66.8088	66.8088	0.0000	No	0.0002	2.0	25.0	ND	1
804199-1	50	68.8054	68.8434	68.8431	0.0003	No	0.0377	754.0	50.0	754.0	1
804199-2	50	69.5106	69.5494	69.5493	0.0001	No	0.0387	774.0	50.0	774.0	1
804200-2	20	73.5930	73.6481	73.6481	0.0000	No	0.0551	2755.0	125.0	2755.0	1
804203	850	108.7366	108.7374	108.7374	0.0000	No	8000.0	0.9	2.9	ND	1
804221-1	100	71.3282	71.3796	71.3796	0.0000	No	0.0514	514.0	25.0	514.0	1
804221-2	100	72.7779	72.8269	72.8268	0.0001	No	0.0489	489.0	25.0	489.0	1
804221-3	100	76.5450	76.5952	76.5952	0.0000	No	0.0502	502.0	25.0	502.0	1
804222-2	100	76.6760	76.6954	76.6954	0.0000	No	0.0194	194.0	25.0	194.0	1
804222-4	100	74.6785	74.7149	74.7146	0.0003	No	0.0361	361.0	25.0	361.0	1
804229	10	74.1522	74.1959	74.1958	0.0001	No	0.0436	4360.0	250.0	4360.0	11
804229D	10	65.6676	65.7102	65.7100	0.0002	No	0.0424	4240.0	250.0	4240.0	1
LCS	100	76.3406	76.3901	76.3900	0.0001	No	0.0494	494.0	25.0	494.0	. 1
804233-2	50	73.1854	73.2499	73.2499	0.0000	No	0.0645	1290.0	50.0	1290.0	1
804257	50	68.3801	68.4147	68.4147	0.0000	No	0.0346	692.0	50,0	692.0	1
804276-1	50	68.4084	68.5162	68.5162	0.0000	No	0.1078	2156.0	50.0	2156.0	1
804276-2	50	75.9629	76.0706	76.0705	0.0001	No	0.1076	2152.0	50.0	2152.0	1
804295-5	50	67.0552	67.0854	67.0851	0.0003	No	0.0299	598.0	50.0	598.0	1
804295-6	50	74.2297	74.2598	74.2597	0.0001	No	0.0300	600.0	50.0	600.0	1
									1		

Calculation as follows:

Filterable residue (TDS), mg/L =

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

 $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	494	500	98.8%	90-110%	Yes
LCSD					

Where:

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804229	0.0436	0.0424	1.4%	≤5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \, 100$$

P = Percent recovery.

LC = Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left| \frac{1}{A \text{ or } B - C} \right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksing. -Hope T.

Reviewer Printed Name

Jenny T.

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12C
Date Analyzed: 10/10/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804199-1	1250	0.60	812.5	0.93
804199-2	1230	0.63	799.5	0.97
804200-2	3880	0.71	2522	1.09
804203	7.09	ND	4.6085	ND ,
804221-1	896	0.57	582.4	0.88
804221-2	858	0.57	557.7	0.88
804221-3	850	0.59	552.5	0.91
804222-2	307	0.63	199.55	0.97
804222-4	615	0.59	399.75	0.90
804229	7280	0.60	4732	0.92
804229D	7280	0.58	4732	0.90
LCS				
804233-2	1930	0.67	1254.5	1.03
804257	1248	0.55	811.2	0.85
804276-1	3020	0.71	1963	1.10
804276-2	3000	0.72	1950	1.10
804295-5	1060	0.56	689	0,87
804295-6	1060	0.57	689	0.87

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-382]

ē		
윤		
들		
رَ		
္ပ		

OUND TIME 10/9/12

0F

PAGE

10 Days

TURNAR	DATE 1	
	Z	7
	Pa	8
		*

		COMMENTS							(F.002/3=
				NERS	IATI	VOJ.	40 Y =	awn _N	7.0
		_				_		AMUN	က
1					_				
7	_				_	_			
S					_				
	\mid	\			_				
			\		\				
	_				_	(00			
	-				_		IZWS)	Turbidit	×
	\vdash	\		(4)	· ·		D01537V	VS) SQI	
		\		U	V 12	^e Sue);	Conduc	Specific NB) SQT	×
	1		\		De.	(Z'0)	DZ) SIEJE	Specific Specific	×
				_		Eithe	7e7 (9%	CR (ZT)	×
			FAX (530) 339-3303			-		DESCRIPTION	Water
-,/			4x (530	1	1	TEAM		TIME	1318
				Ste 1000	1612		Bosenhar	DATE	10/9/12
	E2	PG&E Topock	(530) 229-3303	155 Grand Ave Ste 1000	Oakland, CA 94612	456827.01.DM	ATURE ON		R-382
>	COMPANY	PROJECT NAME	PHONE	ADDRESS		P.O. NUMBER	SAMPLERS (SIGNATURE	SAMPLE 1.D.	SC-700B-WDR-382

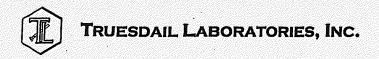
TOTAL NUMBER OF CONTAINERS

SAMPLE CONDITIONS	RECEIVED COOL CY WARM C 2.6 C	CUSTODY SEALED YES NO	SPECIAL REQUIREMENTS:		e de	
TURE RECORD	CM 2000 CH 200 Time 10-9-12.	Agency L.L. Time /3:25	Agency / L I Time 2/23	Company! 72 P Date! 10/9/12	Company/ Date/ Agency Time	Company/ Date/ Agency Time
CHAIN OF CUSTODY SIGNA	Signature Rosenberg Rosenberg Agen Rosenberg Agen	Signature Signature A Coll Signature Signature	eathabel varile	Signature Lill Printed Sufferent	Signature Printed (QRelinquished) Name	Signature Printed (Received) Name

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials	
10109/12	804200-10	9-5	NIA	NIA	NIA	HAY	7
10/10/12	804229	7	9 ml	9.5	9:60 AM	HAV	
10/10/12	804230	9.5	NIA	NIA	NIA	HAV	1
10/10/12	804231-1	9.5	NIA	NIA	NIA	HAV	1
1	-2	j				}	1
	. 3				·		7
	- 4						
	-5						7
	. 6						1
	. 7	<u>.</u>					1
	- 8						
	9		1	J			
10/10/12	804232-1	9.5	NIA	NIA	NIA	HAV	
	-2					j	1
	. 3].
	- 4						
	- 5						
	. 6				· ·		1
	· 7						1
	. 8						
	.9						
	-10				,		
				4		1,	
10/10/12	804233-1	9.5	NIA	NIA	ארט	HAV	
	-2				1		m
	,3		·				10-12-12
	-4						10-10
البلا	<u> </u>			7	J,	1	
10/10/12	804234-1	9.5	NIA	NIA	NIA	HAY	
	-2				1		
1,	<u> </u>		<u></u>	1,		J.	

HAN 10/15/12



Turbidity/pH Check

			Turbic	lity/pH C	песк			
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	. pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
804/04/1-4)	<i>c1</i>	<i>L</i> 2	10/03/12	M.M	601017			
804 105 11-91	1	1	V	1				
204079	31	<2 V	10/03/12	U, M	B010 A			
804080	V	V	W	W	1			
170408	>1	< 2	10/03/12	M. M	3010A			
804072	ĺ							
804073								
804074								
804075								
804099	,							
804111	J		1		\ <u>\</u>			
304147	1	>ر	19-5-12	BF	3010A	8:30A1	~	
804142	,							
804083	<\				Wo	Q See Ar	· ·	
8040944-3)								
804112(10-12)								
804117(295-6)		,	1		J			
804154	7.1	22	10/05/2	M. M	30104			
804 155			1					
804156								
804172								
804173	V	J	1	1	V			
304129 11-71	21	<2	10/05/12	M.M	30101			
804 157 [1-5]		V		V				
804 179	41	<2	10/09/12	M. W	30104			
804 180 [1-4]			1		Î			
804181 (1-11)								
804182 (1-4)								
804183 11-41								
804199 (1-41			1		,			
804200 [1-9]	1	V	y	y	y			
804229	41	72	10/10/12	H.M	3010A			
804230		52						
804231 11-91		1						
804 232 (1-9,11)								
904 233(1-3,5)			, ,					
80423411-91	y	V	V	V	₩			
804120	7/	<2	10/10/12	M.M	301017			
8 OU 139								
804174								
RD4 126								
804189								
201.10/1-01				1,				
800 167		-		_//_	J			
100-1117	V		<u> </u>		<u> </u>		<u> </u>	

Notes:

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	lient:E&	Lab #
Da	ate Delivered:/ <u>□</u> / <u>❷</u> / 12 Time: <u>纠:30</u> By: □Mail &	Field Service
1.	Was a Chain of Custody received and signed?	ØdYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ZHN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ÀN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ÞN/A
5 .	Were all requested analyses understood and acceptable?	
6 .	Were samples received in a chilled condition? Temperature (if yes)? <u>ਕੈ∙ ਿ C</u>	✓ Ó Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	∠ZYes □No □N/A
8.	Were sample custody seals intact?	□Yes □No □AVA
9.	Does the number of samples received agree with COC?	DYes □No □N/A
10.	Did sample labels correspond with the client ID's?	☑Yes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client	GYes □No⊙⊠N/A
2.	Were samples pH checked? pH = <u>\$ll C. O. l</u>	⊠ Yes □No □N/A
3.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Yes ONO ONA
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH Ø Std	□Yes □No □N/A
5.	Sample Matrix: DLiquid Drinking Water Ground Solid Wipe Paint Solid	, 177 3 ······
3 .	Comments:	
	Sample Check-In completed by Truesdail Log-In/Receiving:	d. Stiaberisis

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 2, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-383 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 804407

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-383 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 16, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

لمر Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 804407

Date: December 2, 2012 Collected: October 16, 2012 Received: October 16, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 804407

Date Received: October 16, 2012

Analytical Results Summary

	0(0	05	0:	8	0
R	2.0	<u></u>	0.50	0.2	0.1	25
Units	umhos/cm	ng/L	ng/L	ng/L	NTO	mg/L
Result	7370	Q	0.82	0.25	2	4330
Parameter	EC	Chromium	Manganese	Chromium, Hexavalent	Turbidity	Total Dissolved Solids
Sample Time	14:09	14:09	14:09	14:09	14:09	14:09
Sample Date	10/16/2012	10/16/2012	10/16/2012	10/16/2012	10/16/2012	10/16/2012
Extraction Method	NONE	NONE	NONE	LABFLT	NONE	NONE
Analysis Method	E120.1	E200.8	E200.8	E218.6	SM2130B	SM2540C
) Field ID	SC-700B-WDR-383 E120.1	SC-700B-WDR-383	SC-700B-WDR-383	SC-700B-WDR-383	SC-700B-WDR-383	SC-700B-WDR-383
Lab Sample ID Field ID	804407-001	804407-001	804407-001	804407-001	804407-001	804407-001

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 10

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/2/2012

Laboratory No. 804407

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 10/16/2012 9:30:00 PM

 Field ID
 Lab ID
 Collected
 Matrix

 SC-700B-WDR-383
 804407-001
 10/16/2012 14:09
 Water

Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
804407-001 Specific Conduc	tivity	umhos/c	m 10/1	3/2012	1.00	0.116	2.00	7370
Method Blank						-	::41	
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	804407-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7370	Expected 7370		RPD 0	0 - 10	ance Range
Duplicate							Lab ID =	804408-005
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7470	Expected 7470		RPD 0	Accepta 0 - 10	ance Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 700	Expected 706		Recovery 99.2	Accepta 90 - 110	ance Range)
Lab Control Sample D	ouplicate							
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 703	Expected 706		Recovery 99.6	Accepta 90 - 110	ance Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 694	Expected 706		Recovery 98.3	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 971	Expected 998		Recovery 97.3	Accepta 90 - 110	ance Range)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 10 Printed 12/2/2012

Chrome VI by EPA 218.	6		Batch	10CrH12J				
Parameter		Unit Analyzed		yzed	DF	MDL	RL	Result
304407-001 Chromium, Hex	xavalent	ug/L	10/18/2012 14:15		1.00	0.00580	0.20	0.25
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804275-00
Parameter	Unit	DF	Result	Expected		RPD	•	ance Rang
Chromium, Hexavalent	ug/L	1.00	1.66	1.66		0.192	0 - 20	
Low Level Calibratio	n Verification							
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Rang
Chromium, Hexavalent	ug/L	1.00	0.200	0.200		99.9	70 - 13	0
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Rang
Chromium, Hexavalent	ug/L	1.00	4.88	5.00		97.6	90 - 11	0
Matrix Spike							Lab ID =	804275-00
Parameter	Unit	DF	Result	Expected/Add	led	Recovery	Accept	ance Rang
Chromium, Hexavalent	ug/L	1.00	6.46	6.66(5.00)		96.0	90 - 11	0
Matrix Spike							Lab ID =	804275-00
Parameter	Unit	DF	Result	Expected/Add	led	Recovery	•	ance Rang
Chromium, Hexavalent	ug/L	1.00	1.86	1.86(1.00)		99.8	90 - 11	0
Matrix Spike							Lab ID =	804275-00
Parameter	Unit	DF	Result	Expected/Add	led	Recovery	Accept	ance Ranç
Chromium, Hexavalent	ug/L	1.00	6.12	6.27(5.00)		96.9	90 - 11	0
Matrix Spike							Lab ID =	804275-00
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accept	ance Rang
Chromium, Hexavalent	ug/L	1.00	6.96	7.13(5.00)		96.5	90 - 11	0
Matrix Spike							Lab ID =	804275-0
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	•	ance Ran
Chromium, Hexavalent	ug/L	1.00	6.12	6.23(5.00)		97.8	90 - 11	
Matrix Spike							Lab ID =	804275-0
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accept	ance Ran
Chromium, Hexavalent	ug/L	1.00	6.37	6.58(5.00)		95.8	90 - 11	0

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Number	PG&E Topock Pro : 456827.01.DM	ject	Page 4 of 10 Printed 12/2/2012
Matrix Spike						Lab ID = 804275-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.82	Expected/Added 6.90(5.00)	Recovery 98.5	Acceptance Range 90 - 110 Lab ID = 804275-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 7.04	Expected/Added 7.10(5.00)	Recovery 98.9	Acceptance Range 90 - 110 Lab ID = 804275-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.975	Expected/Added 1.00(1.00)	Recovery 97.5	Acceptance Range 90 - 110 Lab ID = 804276-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 8.26	Expected/Added 8.35(5.00)	Recovery 98.2	Acceptance Range 90 - 110 Lab ID = 804276-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 8.22	Expected/Added 8.37(5.00)	Recovery 97.0	Acceptance Range 90 - 110 Lab ID = 804276-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 6.91	Expected/Added 6.94(5.00)	Recovery 99.3	Acceptance Range 90 - 110 Lab ID = 804276-004
Matrix Spike Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 7.07	Expected/Added 6.83(5.00)	Recovery 105	Acceptance Range 90 - 110 Lab ID = 804276-005
Matrix Spike Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.38	Expected/Added 6.48(5.00)	Recovery 98.1	Acceptance Range 90 - 110 Lab ID = 804276-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.983	Expected/Added 1.00(1.00)	Recovery 98.3	Acceptance Range 90 - 110 Lab ID = 804276-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.95	Expected/Added 7.08(5.00)	Recovery 97.5	Acceptance Range 90 - 110 Lab ID = 804407-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.00	Result 1.23	Expected/Added 1.25(1.00)	Recovery 98.2	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.91	Expected 5.00	Recovery 98.2	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 6 of 10 Printed 12/2/2012

Metals by EPA 200.8, Total	l		Batch	112612B			
Parameter		Unit	Ana	lyzed	DF MDL	RL	Result
804407-001 Chromium		ug/L	11/27	/2012 04:02	2.50 0.230	1.0	ND
Manganese		ug/L	11/27	/2012 04:02 2	2.50 0.215	0.50	0.82
Method Blank	**						
Parameter	Unit	DF	Result				
Chromium	ug/L	1.00	ND				
Manganese	ug/L	1.00	ND				
Low Level Calibration Ve	erification						
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Chromium	ug/L	1.00	0.186	0.200	92.8	70 - 130)
Manganese	ug/L	1.00	0.187	0.200	93.4	70 - 130	כ
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	99.3	100	99.3	85 - 11	5
Manganese	ug/L	2.50	96.9	100	96.9	85 - 11	5
Matrix Spike						Lab ID =	804302-006
Parameter	Unit	DF	Result	Expected/Add	ed Recovery	Accepta	ance Range
Chromium	ug/L	2.50	102	106(100)	96.2	75 - 12	5
Manganese	ug/L	2.50	93.2	102(100)	91.5	75 - 12	5
Matrix Spike Duplicate						Lab ID =	804302-006
Parameter	Unit	DF	Result	Expected/Add	ed Recovery	Accepta	ance Range
Chromium	ug/L	2.50	102	106(100)	95.9	75 - 12	5
Manganese	ug/L	2.50	93.6	102(100)	91.9	75 - 12	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	20.2	20.0	101	90 - 11	כ
Manganese	ug/L	1.00	19.4	20.0	96.8	90 - 11	כ
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	20.3	20.0	101	90 - 11	כ
MRCVS - Primary	·						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	20.2	20.0	101	90 - 11	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Expected

Expected

Expected

8.00

8.00

0

RPD

0

Recovery

Recovery

101

102

Project Number: 456827.01.DM

Page 9 of 10 Printed 12/2/2012

Acceptance Range

Acceptance Range

Acceptance Range

0 - 20

90 - 110

90 - 110

Total Dissolved Solids !	y SM 254	0 C	Batc	h 10TDS12D				
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
804407-001 Total Dissolved	Solids	mg/L	10/1	8/2012	1.00	0.757	250	4330
Method Blank	21 44							
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND				lah ID≕	804301-006
					_			
Parameter	Unit	DF	Result	Expected	F	RPD	•	nce Range
Total Dissolved Solids Lab Control Sample	mg/L	1.00	980	1020		4.00	0 - 10	
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Total Dissolved Solids	mg/L	1.00	502	500		100	90 - 110	
Turbidity by SM 2130 B			Batc	h 10TUC12J				
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
804407-001 Turbidity		NTU	10/1	7/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
and the second s								804408-005

Result

Result

8.20

Result

8.10

ND

DF

1.00

DF

1.00

DF

1.00

Unit

Unit

Unit

NTU

NTU

NTU

Parameter

Parameter

Parameter

Turbidity

Turbidity

Lab Control Sample

Lab Control Sample

Turbidity

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 10 of 10

Project Number: 456827.01.DM Printed 12/2/2012

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

5

Calculations

Batch: 10TDS12D Date Analyzed: 10/15/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	76.1930	76.1931	76.1930	0.0001	No	0.0000	0.0	25.0	ND	1
804343-2	100	75.2066	75.2230	75.2230	0.0000	No	0.0164	164.0	25.0	164.0	1
804343-4	100	72.5691	72.6091	72.6088	0.0003	No	0.0397	397.0	25.0	397.0	1
804300-1	50	46.9872	47.0937	47.0935	0.0002	No	0.1063	2126.0	50.0	2126.0	1
804300-2	50	48.1385	48.1917	48.1916	0.0001	No	0.0531	1062.0	50.0	1062.0	1
804300-5	50	47.9495	48.0056	48.0055	0.0001	No	0.0560	1120.0	50.0	1120.0	1
804300-6	50	48.9979	49.0534	49.0532	0.0002	No	0.0553	1106.0	50.0	1106.0	1
804300-7	50	72.6385	72.6896	72.6893	0.0003	No	0.0508	1016.0	50.0	1016.0	1
804301-1	50	47.7657	47.8016	47.8016	0.0000	No	0.0359	718.0	50.0	718.0	1
804301-2	50	50.4130	50.4593	50.4592	0.0001	No	0.0462	924.0	50.0	924.0	1
804301-4	50	50.9550	51.0059	51.0055	0.0004	No	0.0505	1010.0	50.0	1010.0	1
804301-6D	50	51.4341	51.4832	51.4831	0.0001	No	0.0490	980.0	50.0	980.0	1
LCS	100	67.1632	67.2134	67.2134	0.0000	No	0.0502	502.0	25.0	502.0	1
804301-5	50	50.9449	50.995	50,9946	0.0004	No	0.0497	994.0	50.0	994.0	1
804301-6	50	51.0529	51.1041	51.104	0.0001	No	0.0511	1022.0	50.0	1022.0	1
804301-7	50	47.2204	47.2844	47.284	0.0004	No	0.0636	1272.0	50.0	1272.0	1
804301-8	50	51.4240	51.4904	51.49	0.0004	. No	0.0660	1320.0	50.0	1320.0	1
804301-9	50	49.5170	49.5715	49.5715	0.0000	No	0.0545	1090.0	50.0	1090.0	1
804301-10	50	50.4929	50.5738	50.5738	0.0000	No	0.0809	1618.0	50.0	1618.0	1
804331-1	50	47.8668	47.9305	47.9301	0.0004	No	0.0633	1266.0	50.0	1266.0	1
804331-2	50	74.7050	74.8205	74.8205	0.0000	No	0.1155	2310.0	50.0	2310.0	1
804331-3	20	49.6804	49.7563	49.7563	0.0000	No	0.0759	3795.0	125.0	3795.0	1
804407	10	49.2475	49.2909	49.2908	0.0001	No	0.0433	4330.0	250.0	4330.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

A = weight of dish + residue in grams. B = weight of dish in grams, C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	502	500	100.4%	90-110%	Yes
LCSD					

Where:

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804301-6	0.0511	0.049	2.1%	≤5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) \times 10^{-10}$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\begin{vmatrix} A & \text{or } B - C \end{vmatrix}}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

MutoAm Hope T.

Reviewer Printed Name

Jenny T.

Analyst Printed Name

WetChem TDS_2012.xls

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12D

Date Analyzed: 10/15/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804343-2	300	0.55	195	0.84
804343-4	684	0.58	444.6	0.89
804300-1	3020	0.70	1963	1.08
804300-2	1570	0.68	1020.5	1.04
804300-5	1680	0.67	1092	1.03
804300-6	1650	0.67	1072.5	1.03
804300-7	1570	0.65	1020.5	1.00
804301-1	1250	0.57	812.5	0.88
804301-2	1510	0.61	981.5	0.94
804301-4	1520	0.66	988	1.02
804301-6D	1570	0.62	1020.5	0.96
LCS				
804301-5	1520	0.65	988	1.01
804301-6	1570	0.65	1020.5	1.00
804301-7	1830	0.70	1189.5	1.07
804301-8	1940	0.68	1261	1.05
804301-9	1720	0.63	1118	0.97
804301-10	2330	0.69	1514.5	1.07
804331-1	1850	0.68	1202.5	1.05
804331-2	3330	0.69	2164.5	1.07
804331-3	5150	0.74	3347.5	1.13
804407	7370	0.59	4790.5	0.90

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[iM3Plant-WDR-383] **804407**

COC Number	70	Dave	
TIME CALOCATAINO			1
DATE 10/16/12	PAGE	4	Ö

COMPANY	E2								_		_	_		_	_	_	_	_		COMMENTS	.,
PROJECT NAME	PG&E Topock							_					_					<u> </u>	_		
PHONE	(530) 229-3303	An international Control of the Cont	FAX (530) 339-3303	339-3303												_					
ADDRESS	155 Grand Ave Ste 1000 Oakland CA 94612	Ste 1000	l				UN	(100										SA3NIA			
P.O. NUMBER	456827.01.DM		TEAM	4		FIREFE	(1) (L)	PL) asue,		(08								CONT			
SAMPLERS (SIGNATURE		C. (Lung WF	产		197	907 (0	CODE	JS24OC)	_	(SWS)							45	30.			
SAMPLE 1.D.		DATE	TIME	DESCRIPTION	Cr6 (218	CF (278 TOBINE SPECIFIC	Specific	Specific	7	VirbidiuT							BWNN				
SC-700B-WDR-383	R-383	10/16/12 14:09	14:04	Water	×	×	×	×	×								3			DH=6(200)	7.00.
																Betternesses	8	TOTAL	NUMBEI	7 FOTAL NUMBER OF CONTAINERS	RS

10	CHAIN OF CUSTODY SIGNATU	SNATURE RECORD		SAMPLE CONDITIONS 3
Signature (Relinquished) (,(Luuque	Printed C. Knight	Company/ CH2W·Htd.	Date/ 10/16/12 Time 15:23	RECEIVED COOL [] WARM [] 5.3 %
Signature (Received) / / / /	Printed Rafar	Companyl T. L. T.	Date/ 10-16-12	CUSTODY SEALED YES NO
Signature (Relinquished) Halay	Winted D. J. Name D. Kor.	Company/ / K. Z.	Date O 16:15	SPECIAL REQUIREMENTS:
Signature Phublicina Received) Shublicina	Printed (Name Kulley	Company/ 70	Date/ 19/16/12 1/53	0
Signature Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	1-:4:-1-
10/16/12	804358-1	9.5	NIA			
	-2	1	1 7 7 7 7	NIA	1-4 1A	HAV
	-3					
	-4					
	-5					
	-6					-
	1, ,7					
10/16/12	804359-1	9+5	NIA			
	-2	7		HIA	NIA	1+AV
	-3					
	-4					-
	-5					
	-6					
	1 .7					
	-8			- - 		
	-9					_
1	1 -10					+
10/17/12 9	504407	7	2 ml	9.5	11:22 000	12
10/17/12 9		9.5	NIA	NIA	11:30 AM	HAV
	1 2				777	HAV
	'3					
	-24				,	
	1, .5	1,	J.	1,		
10/17/12 8	04409-1	9.5	NIA	NIA	HIA	HAV
	. 2					777
·	-3		٠.			
	-14					
	. 3					
	-6					
	,7					1
<u> </u>	1, .4	1				1.

10-24-12

HAV

	•		Turbic	lity/pH C	heck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
804259	71	<2	10/10/12	M.M	3010A			
804274/179	1 < 1	L 2.	10/11/12	H.M	300 A			
804 275 11-81		1	/ //					
804276 11-5,7-8		V	1	J				
504209	7/	2 2	10/12/12	M.M	3010A			
804211	1	-1		1				
8114 926 11-61								
814236 [1-6]								
804238								
80426411-21			,					
804 294	1/			1	J			
80429311-31	21	< 2	10/15/12	W.M	3010A			
8429511-81	1	Ī	V	الل			ſ	
804 303	71	72	10/15/12	MM	3010 A			
80434341124	 	72	10 /1.5/1.	YA	No	10-15-12	10-16-12	PH<2
804222-4-4		1	1	1	V		1	
804221 (1-3)						1		
10735711-61	21	29	10/16/12	M. M	3010A	- 9	V	
	-/-	7	19 01/2	T.	77			
804 358 11-5,7		 						
804 359 [1-9]	l l	1	 					
804 360 (1-2)		<i>y</i>	10/17/2	MA	301012			
104 407	61	72	10/11/2		1			
804 408 (1-5			-					
104409 (1-11)		-			 			
804410 (1-21	 	-						
804411 (1-6)		ļ	 					
204412 (1-41			 	V	· ·	 		
804413 11-151	u u	<u> </u>	V 10. 10.	ν -	NO	1213000	10-19-12	PH <2
20426900-18) <u> </u>	72	10-18-12	BE	"	12 (50)	19212	1
804270(1-7)	<u> </u>			 			10-22-12	PH<2.
804376	 		 			 	10-20-10	1
804399(1-3)			 					
80 4405 (1-3)		<u> </u>						
804428(1-3)					ļ.,			
804429 L10-12)		<u> </u>	100 100	V	V	. v	-	<u> </u>
804439	<u> </u>	12	10/18/12	KK	YCS .			
80 4442	71	12	b	W	11			
204418 4-51	21	12	10/22/12	MM	30 10A			
804 434 (1-9)								
804435114,6-9					 	<u> </u>		
804213611-7,6-10	, i			<u> </u>	ļ <u> </u>			
804837 1				<u> </u>		-		
804438		/		<u> </u>				
8114 458 11-3	/	V	<u> </u>	V	<u> </u>		L	
804 304	<1	42	10/16/12	MM	301CA		•	

Notes:

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

TRUESDAIL LABORATORIES, INC.

Sample Integrity & Analysis Discrepancy Form

	lient:&2	Lab # <u>80440</u>
Di	ate Delivered: 10/16/12 Time: 21:30 By: □Mail	Field Service
. 1 .	Was a Chain of Custody received and signed?	AYes DNo DNA
2.	Does Customer require an acknowledgement of the COC?	□Yes □No PNA
<i>3</i> .	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	☐Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? 2.2°C	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes □No □N/A
<i>8</i> .	Were sample custody seals intact?	□Yes □No ØN/A
9.	Does the number of samples received agree with COC?	ØYes □No □N/A
10.	Did sample labels correspond with the client ID's?	ØYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	□Yes □No MN/A
12.	Were samples pH checked? pH = <u>See</u> CoC	MYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	☑Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH Std	
15.	Sample Matrix: □Liquid □Drinking Water □Ground W □Sludge □Soil □Wipe □Paint □Solid □	
16.	Comments:	
'7.	Sample Check-In completed by Truesdail Log-In/Receiving:	Aber

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 2, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-384 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 804512

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-384 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 23, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612 **Attention:** Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

Laboratory No.: 804512

Date: December 2, 2012

Collected: October 23, 2012

Received: October 23, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	George Wahba

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Date Received: October 23, 2012 Laboratory No.: 804512

155 Grand Ave. Suite 1000 Oakland, CA 94612

Client: E2 Consulting Engineers, Inc.

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

P.O. No.: 456827.01.DM

Analytical Results Summary

Lab Sample ID Field ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804512-001	SC-700B-WDR-384 E120.1	E120.1	NONE	10/23/2012	14:00	EC	7320	nmhos/cm	2.00
804512-001	SC-700B-WDR-384	E200.8	NONE	10/23/2012	14:00	Chromium	Q	ng/L	1.0
804512-001	SC-700B-WDR-384	E200.8	NONE	10/23/2012	14:00	Manganese	0.81	ng/L	0.50
804512-001	SC-700B-WDR-384	E218.6	LABFLT	10/23/2012	14:00	Chromium, Hexavalent	0.21	ng/L	0.20
804512-001	SC-700B-WDR-384	SM2130B	NONE	10/23/2012	14:00	Turbidity	0.11	NTO	0.100
804512-001	SC-700B-WDR-384		NONE	10/23/2012	14:00	Total Dissolved Solids	4210	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results:

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 7

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/2/2012

Laboratory No. 804512

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 10/23/2012 9:30:00 PM

 Field ID
 Lab ID
 Collected
 Matrix

 SC-700B-WDR-384
 804512-001
 10/23/2012
 14:00
 Water

Specific Conductivity - EPA 120.1			Batc	h 10EC12F					
Parameter		Unit	An	alyzed	DF	MDL	RL	Result	
804512-001 Specific Cond	uctivity	umhos	s/cm 10/2	5/2012	1.00	0.116	2.00	7320	
Method Blank									
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND						
Duplicate							Lab ID =	804512-001	
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7310	Expected 7320	F	RPD 0.137	Accepta 0 - 10	Acceptance Range 0 - 10	
Lab Control Sample	es fille , y								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 703	Expected 706	i	Recovery 99.6	Accepta 90 - 110	ance Range)	
MRCCS - Seconda	ıry								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 701	Expected 706	Ī	Recovery 99.3	Accepta 90 - 110	ance Range)	
MRCVS - Primary									
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 980	Expected 996		Recovery 98.4	Accepta 90 - 110	ance Range	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 2 of 7 Printed 12/2/2012

Chrome VI by EPA 218.6	Batch 10CrH12S							
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804512-001 Chromium, Hexavalent		ug/L	10/24/2012 14:16		1.00	0.00920	0.20	0.21
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804358-003
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.07	4.07		0.0540	0 - 20	
Low Level Calibration	Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	0.191	0.200		95.6	70 - 13	כ
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.84	5.00		96.9	90 - 11)
Matrix Spike							Lab ID =	804358-001
Parameter	Unit	DF	Result	Expected/Add	ed f	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	8.04	8.41(5.00)		92.6	90 - 11)
Matrix Spike							Lab ID =	804358-002
Parameter	Unit	DF	Result	Expected/Add	ed f	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	7.36	7.70(5.00)		93.3	90 - 110	כ
Matrix Spike							Lab ID =	804358-003
Parameter	Unit	DF	Result	Expected/Add	ed f	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	8.66	9.07(5.00)		91.8	90 - 110	כ
Matrix Spike							Lab ID =	804358-004
Parameter	Unit	DF	Result	Expected/Add	ed f	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	8.65	9.02(5.00)		92.6	90 - 110	כ
Matrix Spike							Lab ID =	804358-005
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	-	anc <mark>e</mark> Range
Chromium, Hexavalent	ug/L	1.00	6.35	6.72(5.00)		92.6	90 - 110	
Matrix Spike							Lab ID =	804358-006
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	0.931	1.00(1.00)		93.1	90 - 110)

Client: E2 Consulting Engineers, Inc.			oject Name: oject Number	ject	Page 3 of 7 Printed 12/2/2012	
Matrix Spike						Lab ID = 804358-007
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 8.01	Expected/Added 8.36(5.00)	Recovery 92.9	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804410-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.02	Expected/Added 1.05(1.00)	Recovery 96.6	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804412-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 8.77	Expected/Added 9.08(5.00)	Recovery 93.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804412-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 7.86	Expected/Added 8.20(5.00)	Recovery 93.1	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804412-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 8.15	Expected/Added 8.52(5.00)	Recovery 92.7	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804412-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.34	Expected/Added 9.60(5.00)	Recovery 94.7	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 804512-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.15	Expected/Added 1.21(1.00)	Recovery 94.1	Acceptance Range 90 - 110
MRCCS - Secondary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.84	Expected 5.00	Recovery 96.7	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.60	Expected 10.0	Recovery 96.0	Acceptance Range 95 - 105
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium, Hexavalent	ug/L	1.00	9.66	10.0	96.6	95 - 105
MRCVS - Primary						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.77	Expected 10.0	Recovery 97.7	Acceptance Range 95 - 105

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/2/2012

Page 4 of 7

Parameter		Unit	Ana	lyzed [DF	MDL	RL	Result
04512-001 Chromium		ug/L	11/27	/2012 21:57 2	.50	0.230	1.0	ND
Manganese		ug/L	11/27	/2012 21:57 2	.50	0.215	0.50	0.81
Method Blank		4						
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	804512-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Chromium	ug/L	2.50	ND	0		0	0 - 20	
Manganese	ug/L	2.50	0.747	0.807		7.68	0 - 20	
Low Level Galibration V	erification							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	0.173	0.200		86.5	70 - 130)
Manganese	ug/L	1.00	0.164	0.200		82.0	70 - 130	כ
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	100	100		100	85 - 11	5
Manganese	ug/L	2.50	94.1	100		94.1	85 - 11	5
Matrix Spike							Lab ID =	804512-00 ⁻
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	101	100(100)		101	75 - 12	5
Manganese	ug/L	2.50	95.7	101(100)		94.9	75 - 12	5
Matrix Spike Duplicate							Lab ID =	804512-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	104	100(100)		104	75 - 12	5
Manganese	ug/L	2.50	98.9	101(100)		98.1	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Chromium	ug/L	1.00	20.1	20.0		101	90 - 110)
Manganese	ug/L	1.00	19.0	20.0		95.1	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Chromium	ug/L	1.00	19.6	20.0		98.2	90 - 110)

Unit

ug/L

Parameter

Manganese

DF

1.00

Report Continued

Client: E2 Consulting Eng	gineers, Inc	•	Project Name:	PG&E Topock	-	Page 6 of 7
			Project Number:	456827.01.DN	/I	Printed 12/2/2012
Interference Check Sta	andard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	19.0	20.0	95.2	80 - 120
Interference Check Sta	andard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	18.6	20.0	93.2	80 - 120
Interference Check Sta	andard AB					

Result

18.3

Expected

20.0

Recovery

91.6

Acceptance Range

80 - 120

Total Dissolved Solids	Bato	h 10TDS12J						
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
804512-001 Total Dissolved	Solids	mg/L	10/2	4/2012	1.00	0.757	250	4210
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID = 8	304459-011
Parameter	Unit	DF	Result	Expected	1	RPD	Accepta	nce Range
Total Dissolved Solids	mg/L	1.00	1330	1340		1.05	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	1	Recovery	Acceptai	nce Range
Total Dissolved Solids	mg/L	1.00	491	500		98.2	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/2/2012

Page 7 of 7

Turbidity by SM 2130 B		h 10TUC12N						
Parameter		Unit	Ana	alyzed DF MD		MDL	RL	Result
804512-001 Turbidity		NTU	10/2	4/2012	1.00	0.0140	0.100	0.110
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID = 8	804512-001
Parameter	Unit	DF	Result	Expected		RPD	Acceptar	nce Range
Turbidity	NTU	1.00	0.111	0.110		0.905	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptar	nce Range
Turbidity	NTU	1.00	8.33	8.00		104	90 - 110	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptar	nce Range
Turbidity	NTU	1.00	8.10	8.00		101	90 - 110	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

4 Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS12J Date Analyzed: 10/23/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	72.5691	72.5699	72.5696	0,0003	No	0.0005	5.0	25.0	ND	1
804459-1	100	71.3095	71.3621	71.3621	0.0000	No	0.0526	526.0	25.0	526.0	1
804459-2	50	67.1631	67.2321	67.2318	0.0003	No	0.0687	1374.0	50.0	1374.0	1
804459-3	50	74.6111	74.7093	74.7093	0.0000	No	0.0982	1964.0	50.0	1964.0	1
804459-4	20	51.1863	51.2614	51.261	0.0004	No	0.0747	3735.0	125.0	3735.0	1
804459-5	20	51.4372	51.5086	51.5086	0.0000	No	0.0714	3570.0	125.0	3570.0	1
804459-7	100	68.8721	68.9163	68.9161	0.0002	No	0.0440	440.0	25.0	440.0	1
804459-8	50	71.8074	71.8772	71.8771	0.0001	No	0.0697	1394.0	50.0	1394.0	1
804459-9	50	75.7610	75.83	75.8297	0.0003	No	0.0687	1374.0	50.0	1374.0	1
804459-10	50	72.3863	72.4318	72.4314	0.0004	No	0.0451	902.0	50.0	902.0	1
804459-11	50	74.7062	74.7733	74.7732	0.0001	No	0.0670	1340.0	50.0	1340.0	1
804459-11D	50	65.4470	65.5137	65.5133	0.0004	No	0.0663	1326.0	50.0	1326.0	1
LCS	100	75.2749	75.3240	75.3240	0.0000	No	0.0491	491.0	25.0	491.0	1
804453	50	67.9715	68.0664	68.0661	0.0003	No	0.0946	1892.0	50.0	1892.0	1
804478	50	69.4083	69,4508	69.4504	0.0004	No	0.0421	842.0	50.0	842.0	1
804493-1	100	67.7071	67.732	67.7318	0.0002	No	0.0247	247.0	25.0	247.0	1
804493-3	100	68.1779	68.2115	68.2113	0.0002	No	0.0334	334.0	25.0	334.0	1
804493-4	100	65.6234	65.6669	65.6666	0.0003	No	0.0432	432.0	25.0	432.0	1
804493-5	100	68.1915	68.2289	68.2289	0.0000	No	0.0374	374.0	25.0	374.0	1
804493-6	50	77.5556	77.6183	77.6182	0.0001	No	0.0626	1252.0	50.0	1252.0	1
804493-7	20	74.9370	75.0154	75.015	0.0004	No	0.0780	3900.0	125,0	3900.0	1
804512	10	70.8924	70.9346	70.9345	0.0001	No	0.0421	4210.0	250.0	4210.0	1
804520-1	50	74.7296	74.7718	74.7715	0.0003	No	0.0419	838.0	50.0	838.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grains.
B = weight of dish in grams.
C = mL of sample filtered.

 $\left(\frac{A-B}{C}\right) \times 10^6$

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	491	500	98.2%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804459-11	0.067	0.0663	0.5%	≤5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{1}{A \text{ or } B - C}\right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G. Hope T.

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12J
Date Analyzed: 10/23/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
		Ì		
804459-1	882	0.60	573.3	0.92
804459-2	2000	0,69	1300	1.06
804459-3	2880	0.68	1872	1.05
804459-4	5210	0.72	3386.5	1.10
804459-5	5080	0.70	3302	1.08
804459-7	736	0.60	478.4	0.92
804459-8	1980	0.70	1287	1.08
804459-9	2000	0.69	1300	1.06
804459-10	1420	0.64	923	0.98
804459-11	1950	0.69	1267.5	1.06
804459-11D	1950	0.68	1267.5	1.05
LCS				
804453	2890	0,65	1878.5	1.01
804478	1250	0.67	812.5	1.04
804493-1	437	0.57	284.05	0.87
804493-3	550	0.61	357.5	0.93
804493-4	667	0.65	433.55	1.00
804493-5	611	0.61	397.15	0.94
804493-6	1766	0.71	1147.9	1.09
804493-7	5790	0.67	3763.5	1.04
804512	7380	0.57	4797	0.88
804520-1	1440	0.58	936	0.90

Rec'd 10/23/15 12

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

5
8
O
[IM3Plant-WDR-384]

-		
7		
¢		
0		
ζ		

DATE 10/23/12	S		6	
TURNAROUND T	•	4		
COC Number				

	-	
	승	
Days		
10	PAGE_	
TURNAROUND TIME	DATE 10/23/12	

OMPANY	E2							/		_	_		_					_	_		COMBREMI	MTC	Γ
ROJECT NAME	PG&E Topock										_	_						_	_	_		2	
HONE	(530) 229-3303		AX (53(FAX (530) 339-3303										\		_	_		<u> </u>				
ODRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 612	į 1			p	UN	150.1)										PAINIAT					
O. NUMBER	456827.01.DM		TEAM	√	7	() Zi	(S))an		(08			\					Noo.					
SAMPLERS (SIGNATURE		C. Kargint			⁴⁶ 7 (9:8	OZ) S/E/E	Conduc	1524OC	١٥١١	12WOI							95	30 Vi					
SAMPLE I.D.		DATE	TIME	DESCRIPTION	Cre (27)	Specific Specific	Specific	Ne) eat	Turbidin	(hibidhu [†]					//		BMUN						
SC-700B-WDR-384	र-384	10/23/12 14:00	14:00	Water	×	×	×		×								က			à	7= 6	32	ΓŤ

For Sample Conditions See Form Attached

TOTAL NUMBER OF CONTAINERS

M

	3.46					
LIONS	WARM	ON	AV TO THE THE THE THE THE THE THE THE THE THE			
SAMPLE CONDITIONS		YES 🔲				
łS	D 0000 a	CUSTODY SEALED	UIREMENTS:			
	RECEIVED		SPECIAL REQUIREMENTS:	0	*	***********
	Date/ 10-23-12 Time /5:00	Date/ 10 - 23 - 12	Time 2/30	Jate 10/23/12 2/130		understand des des des des des des des des des de
and the state of t	Jate/ Time	Datel 10	Time C.	Date/	Date/ Time	Date/ Time
ORD	Company/ CH2M HiL	エ・ア・ユ	T . Y . 1	N		manani ani-polar pratifici pratifici da Presidente de Securita de
IRE RECORD	5.5		1	Company/ 7_L_P Agency	,	_
GNATUR	Company Agency	Company/ Agency	Company	Company Agency	Company/ Agency	Company/ Agency
CHAIN OF CUSTODY SIGNATU	CKMGNT	Later	to fail	Printed Luda		
HAIN OF	Printed Name	au (Name	Name	Printed Name	Printed Name	Printed Name
O	P. Kunght	Davil	J. Verra	debeur, na		
	hed)	tropet.	hedi X E	20	hed)	
	Signature (Relinquished)	Signature (Received)	(Relinquished)	Signature QReceived)	ye ignature Q Relinquished)	Signature (Received)

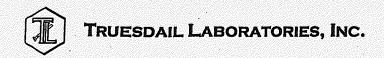
Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab	Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
10/19/12	804	461-6	9.5	NIA	NIA	NIA	HAY
		* 7		1			1
	ļ	.8					
		.9				·	
		-10					
		-11					
		-12					
		113					
	J,	. 14			·		م
10119112	804	478	9.5	NIA	NIA	NIA	HAV
16/23/12	804	493-1	۹,5	NA	VIA	NIA	Q-1
		-2				1	
		-3			·		
		-4					
		-5					
		-6					
<u> </u>	<u> </u>	٦	4	*	1	1	
10/24/12	804	512	7	2ml/10mL	9.5	12:13 pm	6
	· · · · · · · · · · · · · · · · · · ·						
				-			
						`	
			. .				
	·····						
	·						
						In	

10-30-12 HAV

10129112

urbidity/pH Check


			Turbid	ity/pH Cl	heck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
204459/15811	41	22	10/22/11	MKI	3010A			
804 459 (1-5, Ell 804 46011,3-11)			7					
804461 11-141		-1	1/	/	\mathcal{I}			
804418	< \	>2	10-22-12	BE	NO	15:00	10-23-12	PH<2
204444	71	£2	10/23/12	MM	3010A			
	1		11					
804447								
804472								
804482								
804 494							·	
804499	/		/	/				
204502			J		J.			
804502	<1	<2	10/24/12	M.M	3010 A			
804512	21	>2	V	V	- V:			
804507-1	< 1	72	10/25/12	MS	No	16:10 pm	11-04	RH < 2
804507-2	Z 1	72	10/25/12	MO	Ne	16:12		-
804507-3	<1 \	72	10/25/12	MS	No	16:15		
304506	<1	72	10/25/12	r V	No	16:17	•	<u> </u>
804529-10	<1	>2	10/25/12	พร	No	16:19		
804529-11	<1	72	10/25/12	MS	No	16:22		
804529-12	<1	72	10/25/12	Ms	No	16:24	V.	4
204 520	>1	22	10/29/12	M.M	30104			
804532	1	1	1					
80453 T	,				·			
804543								
804544								
804575								
804546								
804547	ı		1					
804562		b	ų.	4	V			·
80 4570 (19294)	< \	72	10-30-12	B2-	No	8 100 An		PH<2
804573(1-3	1 71	>2	10/31/12	KK	yes	TTLCE !	am	
204 574	١٧	>2	1	V	14	<u> </u>		
204602	21	72	10/31/12	MM	3010A			
804575	7/	12						
x04276	Rubber	1.			TTLC			
804593	>/	19	1		V		ļ	
204607	1			\\ \\ _	301012			
2046012	V	72	10/31/12			11:30au	10/31/12	pu < 2
804620	71	くて	11-2-12	BE	30/0A			
804621								
804622						:		
804623						-		
804824								

- Notes:

 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

 2. All Total Recoverable Analytes must be pH adjusted and digested.

 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	ient: <u> </u>	_ Lab #_ <u> </u>
Da	te Delivered: ½/ ೨/ 12 Time: ¼/ 30 By: □Mail	☑Field Service □Client
1.	Was a Chain of Custody received and signed?	⊠Yes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ØN/A
3 .	Are there any special requirements or notes on the COC?	□Yes □No ☑N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ŹN/A
5 .	Were all requested analyses understood and acceptable?	ಶiYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? ⁴ . ⁴ ° C	∕⊟Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ZÍYes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No ÆN/A
9.	Does the number of samples received agree with COC?	AYes □No □N/A
10.	Did sample labels correspond with the client ID's?	ØYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	□Yes □No ÆN/A
2.	Were samples pH checked? pH =	-ØYes □No □N/A
3 .	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	AYes □No □N/A
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH □ Std	ÆYes □No □N/A
5.	Sample Matrix:	i Water □Waste Water ÁOther <u>Wakek</u>
3.	Comments:	
	Sample Check-In completed by Truesdail Log-In/Receiving:	d. Shabunine

Established 1931

December 2, 2012

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-385 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 804602

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-385 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on October 30, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

🕹 – Mona Nassimi

Manager, Analytical Services

Midwel to

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 804602

Date: December 2, 2012 **Collected:** October 30, 2012 **Received:** October 30, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample Project Name: PG&E Topock Project

Project No.: 456827.01.DM

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Date Received: October 30, 2012

Laboratory No.: 804602

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

P.O. No.: 456827.01.DM

Project No.: 456827.01.DM

Analytical Results Summary

0, 0, 0	SC-700B-WDR-385 E120.1 SC-700B-WDR-385 E200.8	E120.1	NONE	0.000.00		Parameter	Result	Units	묎
0, 0	WDR-385			710/30/2012	13:15	EC	7380	umhos/cm	2.00
·		E200.8	NONE	10/30/2012	13:15	Chromium	QN	ng/L	1.0
1-000/-00 100-700b0		E200.8	NONE	10/30/2012	13:15	Manganese	2.4	ng/L	0.50
0,		E218.6	LABFLT	10/30/2012	13:15	Chromium, Hexavalent	Q	ng/L	0.20
٠,	SC-700B-WDR-385	SM2130B	NONE	10/30/2012	13:15	Turbidity	0.189	NTO	0.100
304602-001 SC-700B-1	SC-700B-WDR-385 SM2540C	SM2540C	NONE	10/30/2012	13:15	Total Dissolved Solids	4700	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 8

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/2/2012

Laboratory No. 804602

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Jennifer Low

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 10/30/2012 9:30:00 PM

Matrix Lab ID Collected Field ID 10/30/2012 13:15 804602-001 Water SC-700B-WDR-385 Batch 10EC12H Specific Conductivity - EPA 120.1 DF Analyzed MDL RL Result Unit Parameter 7380 umhos/cm 10/31/2012 1.00 0.116 2.00 804602-001 Specific Conductivity Method Blank DF Result Parameter Unit umhos 1.00 ND Specific Conductivity Lab ID = 804602-001 Duplicate Acceptance Range **RPD** Unit DF Result Expected Parameter 0.136 Specific Conductivity 7370 7380 0 - 10 umhos 1.00 Lab Control Sample DF Result Expected Recovery Acceptance Range Unit Parameter 90 - 110 1.00 702 706 99.4 umhos Specific Conductivity MRCCS - Secondary Acceptance Range Unit DF Result Expected Recovery Parameter 710 706 100 90 - 110 umhos 1.00 Specific Conductivity MRCVS - Primary Expected Recovery Acceptance Range Unit DF Result Parameter 98.4 90 - 110 umhos 1.00 980 996 Specific Conductivity

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without price written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/2/2012

Page 2 of 8

Chrome VI by EPA 218.	6		Batch	11CrH12B				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
304602-001 Chromium, Hex	xavalent	ug/L	11/02	2/2012 11:35 °	.00	0.00920	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804636-00
Parameter	Unit	DF	Result	Expected	i	RPD	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	ND	0		0	0 - 20	
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	i	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	0.196	0.200		97.8	70 - 13	0
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	i	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	5.04	5.00		101	90 - 11	0
Matrix Spike							Lab ID =	804435-00
Parameter	Unit	DF	Result	Expected/Adde	ed i	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	1.92	1.96(1.00)		95.4	90 - 11	0
Matrix Spike							Lab ID =	804602-00
Parameter	Unit	DF	Result	Expected/Adde	ed l	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	5.00	5.24	5.00(5.00)		105	90 - 11	0
Matrix Spike							Lab ID =	804602-00
Parameter	Unit	DF	Result	Expected/Add	ed i	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	1.15	1.14(1.00)		101	90 - 11	0
Matrix Spike							Lab ID =	804636-00
Parameter	Unit	DF	Result	Expected/Adde	ed I	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	1.02	1.00(1.00)		102	90 - 11	0
Matrix Spike							Lab ID =	804636-00
Parameter	Unit	DF	Result	Expected/Adde	ed l	Recovery		ance Rang
Chromium, Hexavalent	ug/L	1.00	0.998	1.00(1.00)		99.8	90 - 11	
Matrix Spike							Lab ID =	804636-00
Parameter	Unit	DF	Result	Expected/Add	ed I	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	0.998	1.00(1.00)		99.8	90 - 11	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 5 of 8 Printed 12/2/2012

Metals by EPA 200.8, To	tal		Batch	112712A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804602-001 Chromium		ug/L	11/27	/2012 11:02	2.50	0.230	1.0	ND
Manganese		ug/L	11/27	/2012 11:02	2.50	0.215	0.50	2.4
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	804602-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium	ug/L	2.50	ND	0		0	0 - 20	
Manganese	ug/L	2.50	2.47	2.40		2.71	0 - 20	
Low Level Calibration	Verification							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	0.173	0.200		86.5	70 - 13	0
Manganese	ug/L	1.00	0.164	0.200		82.0	70 - 13	0
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	2.50	50.8	50.0		102	85 - 11	5
Manganese	ug/L	2.50	48.8	50.0		97.7	85 - 11	5
Matrix Spike							Lab ID =	804602-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	52.5	50.0(50.0)		105	75 - 12	5
Manganese	ug/L	2.50	51.9	52.4(50.0)		99.0	75 - 12	5
Matrix Spike Duplicat	8						Lab ID =	804602-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	51.1	50.0(50.0)		102	75 - 12	5
Manganese	ug/L	2.50	50.3	52.4(50.0)		95.8	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Chromium	ug/L	1.00	20.1	20.0		101	90 - 11	0
Manganese	ug/L	1.00	19.0	20.0		95.1	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery		ance Range
Chromium	ug/L	1.00	19.6	20.0		98.2	90 - 11	_

Client: E2 Consulting Engineers, Inc.

PG&E Topock Project Project Name:

Page 7 of 8

Project Number: 456827.01.DM

Printed 12/2/2012

Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	19.0	20.0	95.2	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	18.6	20.0	93.2	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Manganese	ug/L	1.00	18.3	20.0	91.6	80 - 120

Total Dissolved Solids	by SM 254	10 C	Bato	h 10TDS12K				
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
804602-001 Total Dissolved	d Solids	mg/L	11/0	5/2012	1.00	0.757	250	4700
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	804570-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	90.0	93.0		3.28	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	494	500		98.8	90 - 11	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/2/2012

Page 8 of 8

Turbidity by SM 2130 B			Bato	h 10TUC12Q				
Parameter		Unit	An	alyzed	DF	MDL	. RL	Result
804602-001 Turbidity		NTU	10/3	1/2012	1.00	0.0140	0.100	0.189
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	804602-001
Parameter	Unit	DF	Result	Expected	i	RPD	Accepta	ince Range
Turbidity	NTU	1.00	0.190	0.189		0.528	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	i	Recovery	Accepta	ance Range
Turbidity	NTU	1.00	8.50	8.00		106	90 - 110)
Lab Control Sample								
Parameter	Unit	ÐF	Result	Expected	i	Recovery	Accepta	ince Range
Turbidity	NTU	1.00	8.35	8.00		104	90 - 110)

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

├₀ , Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS12K Date Analyzed: 10/30/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
Blank	100	68.8420	68,8422	68,8422	0.0000	No	0.0002	2.0	25.0	ND	11
804570-2	200	110.9445	110.9631	110.9631	0.0000	No	0.0186	93.0	12.5	93.0	1
804570-4	100	108.7338	108.7715	108.7714	0.0001	No	0,0376	376.0	25.0	376.0	1
804602	10	71.3219	71.3689	71.3689	0.0000	No	0.0470	4700.0	250.0	4700.0	1
804607	50	73.1803	73.2247	73.2243	0.0004	No	0.0440	880.0	50.0	880,0	1
804620	20	49.7761	49.8770	49.8770	0.0000	No	0.1009	5045.0	125.0	5045,0	1
804621	20	50.8522	50.9489	50.9489	0.0000	No	0.0967	4835.0	125.0	4835.0	1
804622	5	51.3397	51.4327	51.4327	0.0000	No	0.0930	18600.0	500.0	18600.0	1
804623	10	51.2454	51.2957	51.2956	0.0001	No	0.0502	5020.0	250.0	5020.0	1
804624	10	49.4000	49.4608	49.4607	0.0001	No	0.0607	6070.0	250.0	6070.0	1
804625	10	50.3187	50.3744	50.3742	0.0002	No	0.0555	5550.0	250.0	5550.0	1
804570-2D	200	112.9685	112.9865	112.9865	0.0000	No	0.0180	90.0	12.5	90.0	1
LCS	100	73.4901	73,5395	73.5395	0.0000	No	0.0494	494.0	25.0	494.0	1
804626	10	51.9310	51.9878	51.9874	0.0004	No	0.0564	5640.0	250.0	5640.0	1
804627	20	51.9377	52.0316	52.0316	0.0000	No	0.0939	4695.0	125.0	4695.0	1
804615	470	105.3551	105.364	105.364	0.0000	No	0.0089	18.9	5.3	18.9	1
804636	100	111.3382	111.3881	111.3881	0.0000	No	0.0499	499.0	25.0	499.0	1
804651-1	480	109.0637	109.0647	109.0645	0.0002	No	0.0008	1.7	5.2	ND	1
804651-2	490	109.9026	109.9026	109.9026	0.0000	No	0.0000	0.0	5.1	ND	1
804658-2	200	112.8428	112.8619	112.8619	0.0000	No	0.0191	95.5	12.5	95,5	1
804658-4	100	111.6516	111.6883	111.6883	0.0000	No	0.0367	367.0	25.0	367.0	1
804622D	5	49.3541	49.4471	49.4468	0,0003	No	0.0927	18540.0	500.0	18540.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

$$\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$$

RL= reporting limit. ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std l.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	494	500	98.8%	90-110%	Yes
LCSD					

Where:

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804570-2	0.0186	0.018	1.6%	≤5%	Yes
804622	0,093	0.0927	0.2%	5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \, 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{A \text{ or } B - C}{A}\right|}{C} \times 1000$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim Hope T.

Jenny T. Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS12K Date Analyzed: 10/30/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804570-2	165	0.56	107.25	0.87
804570-4	667	0,56	433.55	0.87
804602	7380	0.64	4797	0.98
804607	1418	0.62	921.7	0.95
804620	6560	0.77	4264	1.18 、
804621	6560	0.74	4264	1.13
804622	28100	0.66	18265	1.02
804623	7970	0.63	5180.5	0.97
804624	7960	0.76	5174	1.17
804625	7860	0.71	5109	1.09
804570-2D	165	0.55	107.25	0.84
LCS				
804626	7920	0.71	5148	1.10
804627	6510	0.72	4231.5	1.11
804615	34.4	0.55	22.36	0.85
804636	900	0.55	585	0.85
804651-1	19.4	ND	12.61	ND
804651-2	1.23	ND	0.7995	ND
804658-2	173	0.55	112.45	0.85
804658-4	670	0.55	435.5	0.84
804622D	28100	0.66	18265	1.02

204602

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

PAGE 1 TURNAROUND TIME DATE 10/30/12 COC Number

유

10 Days

[IM3Plant-WDR-385]

COMPANY	E2						/		_	_	_	_		_	_	_			-		
PROJECT NAME	PG&E Topock					_	_				_			_	_			<u> </u>	3	SINGENIO	
PHONE	(530) 229-3303		AX (530)	FAX (530) 339-3303							_		Rec'd		10/30/12						
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 1612				PS	UW 'S	(1501)				~	189	0	0 4 6 0	0	2 VTAINERS	SAD.			
P.O. NUMBER	456827.01.DM		TEAM	~	_	FINER!	(V)	931		(OE							VOD.				
SAMPLERS (SIGNATURE		C. Knught	Ā		(9'8	Jer (SU)	Conduc	20t9ZV	3/187/	12inin				\			ER OF				
SAMPLE 1.D.		DATE	TIME	DESCRIPTION	Cre (27)	TOBI M.S.	Specific	NS) SQI	(hibidhu ^T							- W //V	8No.				
SC-700B-WDR-385	R-385	10/30/12	13:15	Water	×	×	×		×							3	(زز)	9=H	5	(1.00:	
																W	<u>0</u> 1	TAL NUMBE	ER OF CC	TOTAL NUMBER OF CONTAINERS	-

For Sample Conditions See Form Attached

Signature (Mund M. Signature)	CHAIN OF CUSTODY SIGNATUR Printed C, Kngれた Company Name C, Kngれた Agency	RE /	RECORD	SAMPLE CONDITIONS RECEIVED COOL
(Received) Talay [nulle	Name Kafae		Time /5:30	CUSTODY SEALED YES 🔲 NO 🗖
(Relinquished) (C. 1) Signature	Printed Me	Agency - h . L	Time 27 30 12 Date 10 20 12	SPECIAL REQUIREMENTS:
Wecelved) Signature Relinquished)	Name Name	Agency (L (Company/ Agency	Time 2.1.2.00 Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Ti	l ab	Number	Initis	ıl pH	Buffer A	dded (mL)	Fina	ıl pH	Time F	Buffered	Init	ials
10/31	12	Sa-	1602	irri (ice	<u>, p, , </u>	2 mL	/100mL	9		111	Am	(2	
2/1/2 -	-	<u> </u>	1002			7,000	/			,,,	17//	2	
11/2/12	2 8	804	636-1	۹,	5	N	TA	N	A	N	/A	6	J.
			~ 2	<u>``</u>					<u>'</u>		<u>'/ 1</u>	Ĭ	
			-3			_							
			-7										
			-5										
			-6 -7										
	_												
		[-8										
	_		9				<u>.</u>						
	_ _		-10							***************************************			
									<u> </u>				
			-12						1				
		-	-13						1			-	
			-14						1				
3312	+	<u> </u>	_15		<u>v</u>		4				<u> </u>	7	,
WSI	<u> </u>	207	652-1	۹.	5		/A	\sim	IA	-N	17	0	
	+	+	- <u>2</u>	}									
		\dashv	-6										
	-	\dashv	-7										
			-8	-+								$\neg \uparrow$	
		1	-9									$\neg +$	
		. \	~10										
			_17										
_, 少,			/ -13	Y			1,	4	/	1	,	$\overline{}$	
11/12	. 8	'०५ॅ	122-1	٦		2 ml	looml (otal) (1.5	1/:0	0 Am	C	,
		R	v -2	7						11:1	OAM		
	8		723-1	7						U:H	SAM		
1		<u> 7</u>	2	7		•	V			11:2	0 Am	L	

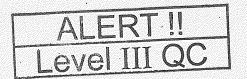
HAV 11/08/12

C:\My Documents\Templates\Hexavalent Chromium\Cr6+ pH Log

urbidity/pH Check

			Turbid	ity/pH Cl	heck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
804459 15511	41	22	10/22/12	MKI	3010A		-	
804 459 (1-5, 1-11) 804 46011,3-11) 804461 (1-14) 804478			1					
DOLLEGT 11-141		-	1/	/				
204470	< \	>2	10-22-12	BE	NO	15200	10-23-12	PH<2
504444	71	<2	10/23/12	MM	3010A			
	1/	— 	10/005/12	1				
804447 804471								
804472								
804482								
804494			,					
804499	├	-	 		/			
804502	V		10.10.10	*	3010 A	>		
804493	<1 21	<2	10/24/12	M.M	14			
804512	21_	>2	1	V		1/-1 - 5	11-04	RH < 2
804507-1	< I	72	10/25/12	M2	No ·	16:10 pm	1120-1	111
804507-2	< 1	72	10/25/12		No	16:12		
804507-3	<1	72	10/25/12	M2	No	16:15	 	
B04506	<1 \	72	10/25/12	m>	No	16:17	 	4
804529-10	<1	72	10/25/12	M2	No	16:19		
804529-11	<1	72	10/25/12	M2	No	16:22		
804529-12	<'	72	10/25/12	Ms	No	16:24	<u> </u>	1
204 520	>1	22	10/29/12	M.M	3010A			
804532 804537								
804537	/							
804543								
804544								
804575								
804576								
804547	,							
804562		b	l d	V	V			
80 4570 (19294)	< \	72	10-30-12	B2-	No	8 100 A	n 11-4	PH<2
804573(1-3	اذ	>2	10/31/12	KK	ver	TTLCOK	Dam	
	31	>2	T	V	14	V		
204 574	21	72	10/31/12	MM	3010A			
204602	7/	12	1		I			
804575					TTLC			
304276	Rubber >1		1					
804593	1	29	 \	- Y	3010A			
304607	1.1/	72	10/31/12	U.M			10/31/12	0429
8046012	<u> </u>		11-2-12		3010A	7. 2.00	1 , , , , ,	1
804620	71	イ 2	11-2-12	BE	76/6/1			
804621	-				 			
804622	 	 	-					
804623						1		
8048261		<u> </u>	4	*	<u> </u>			

- Notes:


 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

 2. All Total Recoverable Analytes must be pH adjusted and digested.

 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

TRUESDAIL LABORATORIES, INC.

Sample Integrity & Analysis Discrepancy Form

CI	lient:	Lab # <u>8046</u> 0
Da	ate Delivered: 10/30/12 Time: 21:30 By: 🗆 Mail 🎽	Field Service
1.	Was a Chain of Custody received and signed?	
2.	Does Customer require an acknowledgement of the COC?	□Yes □No \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3.	Are there any special requirements or notes on the COC?	□Yes □No ¤N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	∕⁄2\Yes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)? $\underline{S \circ C}$	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	⊠Yes □No □N/A
<i>8</i> .	Were sample custody seals intact?	□Yes □No ØN⁄A
9.	Does the number of samples received agree with COC?	¥Yes □No □N/A
10.	Did sample labels correspond with the client ID's?	AYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □Client	□Yes □No ⊠N/A
12.	Were samples pH checked? pH = See CoC	Maryes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØYes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH Ø Std	, ☐Yes □No □N/A
15.	Sample Matrix: □Liquid □Drinking Water □Ground W	Vater
6.	Comments:	· ;
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	Mex

Analytical Bench Log Book

WDR pH Results

្នឹង nple Name	Date of sampling	Date Time Date Tim of of of sampling sampling analysis	Date of analysis	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Date Time pH meter pH meter Calibrated Calibrated	Slope of the Curve	Analyst Name (for the pH result)	pH Result
26. to	70-2-01	10-2-12 13:36 10-2-12 13:42	40-212	1	METER #	152- 50:00 21-201	00:0 0	-,55.	C. Icmaht	7.3

Se-700B	19.2-12 13.5	27-2-97	14:01	METTER #1	73-7-07	DO:50	-55.1	O.tenith-	7:1

Actes:

8.7			6.9
Josh K.		4	C-taught
-54.7			p.63-
25:00			\$p:00
10-4-12 00.50 F1-6-01			Sp:00 2).91.01
Meder#1			Merce #1
3:30			EF: 15
10-9-12 13:18 10-9-12 13:3			10 10 10 10 10 10 10 14:
13:18			4:5
10-9-12			4.40
3 SC-70013			SC 700B
2	Notes:		X

Notes:

<u>`</u>	
1288 V	
05:00 17:00 2	
Marker F.	
60:±	
6.83.7	
<u>₹</u>	
10:23:7 4:8	
56.788	

Fulles:

-54.2 C. KMg/WF 1.0		
51:10		,
10-30-12	,	
meter#1		
4 13:19		
÷ 8.		
13:15		
10 30-12		
1900/35	Fotes:	• ,

₽-ptes:

Reminder: WDR Required pH Range for the Effluent (SC-700B) is: 6.5 - 8.4

Analytical Bench Log Book

	vo.											!					-							53
	Notes											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							<u>_</u>		ļ 			
	emsN taylenA	Ç.	Z)	8	169	<u>{</u>	9,	2	9	a	7	54F	4,0	3 6	3	الدوم	500	3	9	9	5		3	। ভ
	Final result corrected for dilution (mg/L)											 	 								 	- - -		న్ .
	inemuntani Resding (mg/L)	_	59	0 2	0	200	87	70	2,49	0,47	74	l O	9 6	3 7	ं मुद्	<i>6</i> 000	30) 	[2]	53	द्ध	2.0		0	17.20
	Sample Volume (sim) bəzylsnA		<u> </u>						_ -		 	<u> </u> 					. <u></u>						_	
	Other					ठ्य				NTV						 			Ē	F	-	-		
re:	VivitaubnoC)							>		>				×			\ <u>\</u>	<u> </u>		<u> </u>	<u> </u>		7
Temperature	H	9)	2	٨	180	>	7		 			×	×	-	×	\ <u></u>				-		>	
Room T	sizylans to emi	1 6	15	23	121	572	1612	7071	1607	1605	877	~	Z Ö	0:09	0:09	07:75	ļ	8:17	62	<u> </u>	<u>> k</u>	7	6.35	180
	gnilqmss to эті	<u>با</u>	3	8	202	38	1600	004/	003/	1400	_l	200	8	8	8	8	0080	888	100		300	00 -	000	-ساده
	gaildmss to ets	a ,	2,7,2	20.2.0	6.2.0	27.707	21-2-01	21-2-91	21-2-01	21-2-01	7	76701	10-3-12	10-3-12	1	1	10-3-17	10-3-12	2 6	71,50	10-5-17	21-6-01	10.2.17	40-3-12
	e E	-	8	Q	 	8	600	P. P. C.	977	(37)	3 3	COR	0000	0000	0000	of 12) 68 188	008	200	300	280	88	Oues	20000-
Analysis Date:	Sample Name		Se. 1016 - 1200	20. 2014-1200	So. 160- 170	000 - 130 -	81-00-180	(May - 10/2/13)	SV - 700(- 1600	(m) - 1/0/- 20	30. 100.	52-201-100	Sp. 400 - 0000	SA - 700C - 0000	ODOL - 1007 - 12	0012 - 001 00	18 0 18 18 18 18 18 18 18 18 18 18 18 18 18	Cr. Col - 0800		16 SC-501 - Upon	17195- 605- 6300	25 - Ans - 0000	000 - 000 - 050	1000 - 100C - 0800
Analva		-	<u>ئ</u> ر	<i>7</i> ₹	5		۱د	L	<u>o</u> †	-	∞	-6	<u></u>		1		2	4		<u>ē</u>	岩	ļ-īģ	<u> </u>	গ্র

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 11, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-386 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 804722

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-386 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 6, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

🂪 – Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwaters
Project Name: PG&E Topock Project
Project No.: 456827.01.DM

Laboratory No.: 804722

Date: December 11, 2012 Collected: November 6, 2012 Received: November 6, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST					
EPA 120.1	Specific Conductivity	Gautam Savani					
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn					
SM 2320B	Total Alkalinity	Melissa Scharfe					
SM 4500-Si D	Soluble Silica	Jenny Tankunakorn					
SM 4500-P B,E	Total Phosphorus	Jenny Tankunakorn					
SM 5310C	Total Organic Carbon	Jenny Tankunakorn					
SM 2130B	Turbidity	Gautam Savani					
EPA 300.0	Anions	Giawad Ghenniwa					
SM 4500-NH3 D	Ammonia	Melissa Scharfe					
SM 4500-NO2 B	Nitrite as N	Jenny Tankunakorn					
EPA 200.7	Metals by ICP	Ethel Suico					
EPA 200.8	Metals by ICP/MS	Bita Emami					
EPA 218.6	Hexavalent Chromium	George Wahba					

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Established 1931

Date Received: November 6, 2012 Laboratory No.: 804722

Attention: Shawn Duffy

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Project Name: PG&E Topock Project Project No.: 456827.01.DM

P.O. No.: 456827.01.DM

Analytical Results Summary

		Analysis	Extraction	Sample	Sample				
Lab Sample ID	Field ID	Method	Method	Date	Time	Parameter	Result	Units	R
804722-001	SC-700B-WDR-386	E120.1	NONE	11/6/2012	13:32	EC	7250	umhos/cm	2.00
804722-001	SC-700B-WDR-386	E200.7	NONE	11/6/2012	13:32	Aluminum	Q	ng/L	50.0
804722-001	SC-700B-WDR-386	E200.7	NONE	11/6/2012	13:32	BORON	940	ug/L	200
804722-001	SC-700B-WDR-386	E200.7	NONE	11/6/2012	13:32	Iron	Q	ug/L	20.0
804722-001	SC-700B-WDR-386	E200.7	NONE	11/6/2012	13:32	Zinc	Q.	ng/L	20.0
804722-001	SC-700B-WDR-386	E200.8	NONE	11/6/2012	13:32	Antimony	Q	ug/L	2.00
804722-001	SC-700B-WDR-386	E200.8	NONE	11/6/2012	13:32	Arsenic	Q	ug/L	0.50
804722-001	SC-700B-WDR-386	E200.8	NONE	11/6/2012	13:32	Barium	11.2	ug/L	5.0
804722-001	SC-700B-WDR-386	E200.8	NONE	11/6/2012	13:32	Chromium	g	ng/L	1.0
804722-001	SC-700B-WDR-386	E200.8	NON	11/6/2012	13:32	Copper	Q.	ng/L	5.0
804722-001	SC-700B-WDR-386	E200.8	NON	11/6/2012	13:32	Lead	Q	ng/L	1.0
804722-001	SC-700B-WDR-386	E200.8	NONE	11/6/2012	13:32	Manganese	1.	ng/L	0.50
804722-001	SC-700B-WDR-386	E200.8	NON	11/6/2012	13:32	Molybdenum	21.8	ng/L	2.0
804722-001	SC-700B-WDR-386	E200.8	NON	11/6/2012	13:32	Nickel	N	ng/L	2.0
804722-001	SC-700B-WDR-386	E218.6	LABFLT	11/6/2012	13:32	Chromium, Hexavalent	QN	ug/L	0.20
804722-001	SC-700B-WDR-386	E300	NONE	11/6/2012	13:32	Fluoride	1.97	mg/L	0.500
804722-001	SC-700B-WDR-386	E300	NONE	11/6/2012	13:32	Nitrate as N	3.15	mg/L	0.500
804722-001	SC-700B-WDR-386	E300	NONE	11/6/2012	13:32	Sulfate	486	mg/L	25.0
804722-001	SC-700B-WDR-386	SM2130B	NONE	11/6/2012	13:32	Turbidity	ΩN	NTO	0.100
804722-001	SC-700B-WDR-386	SM2540C	NONE	11/6/2012	13:32	Total Dissolved Solids	4480	mg/L	250
804722-001	SC-700B-WDR-386	SM4500NH3D	NONE	11/6/2012	13:32	Ammonia-N	Q	mg/L	0.500
804722-001	SC-700B-WDR-386	SM4500NO2B	NONE	11/6/2012	13:32	Nitrite as N	9	mg/L	0.0050

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
804722-002	SC-100B-WDR-386	E120.1	NONE	11/6/2012	13:47	EC	7740	nmhos/cm	2.00
804722-002	SC-100B-WDR-386	E200.7	NONE	11/6/2012	13:47	Aluminum	N Q	ug/L	50.0
804722-002	SC-100B-WDR-386	E200.7	NONE	11/6/2012	13:47	BORON	224	ug/L	200
804722-002	SC-100B-WDR-386	E200.7	NONE	11/6/2012	13:47	Iron	QN	ng/L	20.0
804722-002	SC-100B-WDR-386	E200.7	LABFLT	11/6/2012	13:47	Iron	9	ug/L	20.0
804722-002	SC-100B-WDR-386	E200.7	NONE	11/6/2012	13:47	Zinc	9	ng/L	20.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Antimony	Ω	ng/L	2.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Arsenic	3.4	ug/L	0.50
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Barium	25.0	ug/L	5.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Chromium	716	ug/L	1.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Copper	QN	ng/L	5.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Lead	Q	ng/L	1.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Manganese	3.7	ug/L	0.50
804722-002	SC-100B-WDR-386	E200.8	LABFLT	11/6/2012	13:47	Manganese	3.4	ug/L	0.50
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Molybdenum	22.0	ug/L	2.0
804722-002	SC-100B-WDR-386	E200.8	NONE	11/6/2012	13:47	Nickel	Ω	ug/L	2.0
804722-002	SC-100B-WDR-386	E218.6	LABFLT	11/6/2012	13:47	Chromium, Hexavalent	758	ug/L	10.0
804722-002	SC-100B-WDR-386	E300	NONE	11/6/2012	13:47	Fluoride	2.61	mg/L	0.500
804722-002	SC-100B-WDR-386	E300	NONE	11/6/2012	13:47	Nitrate as N	3.34	mg/L	0.500
804722-002	SC-100B-WDR-386	E300	NONE	11/6/2012	13:47	Sulfate	522	mg/L	25.0
804722-002	SC-100B-WDR-386	SM2130B	NONE	11/6/2012	13:47	Turbidity	ΩN	NTC	0.100
804722-002	SC-100B-WDR-386	SM2320B	NONE	11/6/2012	13:47	Alkalinity	141	mg/L	5.00
804722-002	SC-100B-WDR-386	SM2320B	NONE	11/6/2012	13:47	Alkalinity, Bicarbonate (As CaCO3)	141	mg/L	5.00
804722-002	SC-100B-WDR-386	SM2320B	NONE	11/6/2012	13:47	Alkalinity, Carbonate (As CaCO3)	9	mg/L	5.00
804722-002	SC-100B-WDR-386	SM2540C	NONE	11/6/2012	13:47	Total Dissolved Solids	4550	mg/L	250
804722-002	SC-100B-WDR-386	SM4500NH3D	NONE	11/6/2012	13:47	Ammonia-N	R	mg/L	0.500
804722-002	SC-100B-WDR-386	SM4500NO2B	NONE	11/6/2012	13:47	Nitrite as N	Q	mg/L	0.0050
804722-002	SC-100B-WDR-386	SM4500-PB_E	NONE	11/6/2012	13:47	Total Phosphorous-P	QN	mg/L	0.0200
804722-002	SC-100B-WDR-386	SM4500SI	NONE	11/6/2012	13:47	Soluble Silica	21.5	mg/L	2.00
804722-002	SC-100B-WDR-386	SM5310C	NONE	11/6/2012	13:47	Total Organic Carbon	Ω	mg/L	0.300

ND: Non Detected (below reporting limit) mg/L: Milligrams per liter.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Note: The following "Significant Figures" rule has been applied to all results:
Results below 0.01ppm will have two (2) significant figures.
Result above or equal to 0.01ppm will have three (3) significant figures.
Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 31

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/11/2012

Laboratory No. 804722

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 11/6/2012 11:45:00 PM

Field ID	Lab ID	Collected	Matrix	
SC-700B-WDR-386	804722-001	11/06/2012 13:32	Water	
SC-100B-WDR-386	804722-002	11/06/2012 13:47	Water	

Anions By I.C EPA 3	00.0		Batch	11AN12D				
Parameter		Unit	Ana	llyzed	DF	MDL	RL	Result
804722-001 Fluoride		mg/L	11/07	7/2012 11:41	5.00	0.104	0.500	1.97
Nitrate as Nitr	ogen	mg/L	11/07	7/2012 11:41	5.00	0.0415	0.500	3.15
Sulfate		mg/L	11/07	7/2012 14:10	50.0	1.54	25.0	486
804722-002 Fluoride		mg/L	11/07	7/2012 11:53	5.00	0.104	0.500	2.61
Nitrate as Nitr	ogen	mg/L	11/07	7/2012 11:53	5.00	0.0415	0.500	3.34
Sulfate		mg/L	11/07	7/2012 14:21	50.0	1.54	25.0	522
Method Blank								
Parameter	Unit	DF	Result					
Fluoride	mg/L	1.00	ND					
Sulfate	mg/L	1.00	ND					
Nitrate as Nitrogen	mg/L	1.00	ND					
Duplicate							Lab ID =	804729-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Fluoride	mg/L	1.00	ND	0		0	0 - 20	
Sulfate	mg/L	1.00	ND	0		0	0 - 20	
Nitrate as Nitrogen	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample)							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Fluoride	mg/L	1.00	4.14	4.00		103	90 - 110	
Sulfate	mg/L	1.00	20.1	20.0		100	90 - 110	
Nitrate as Nitrogen	mg/L	1.00	4.01	4.00		100	90 - 110	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prigram:

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 31 Printed 12/11/2012

Nitrite SM 4500-NO2 B				11NO212C			<u>_</u>	
Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
804722-001 Nitrite as Nitro	gen	mg/L	11/07	/2012 15:40	1.00	0.000540	0.0050	ND
804722-002 Nitrite as Nitro	gen	mg/L	11/07	/2012 15:41	1.00	0.000540	0.0050	ND
Method Blank								-
Parameter	Unit	DF	Result					
Nitrite as Nitrogen	mg/L	1.00	ND					
Duplicate							Lab ID = 8	04680-010
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	ND	0		0	0 - 20	_
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0309	0.0310		99.7	90 - 110	
Matrix Spike							Lab ID = 8	04722-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0201	0.0200(0.0200))	100	85 - 115	
MRCCS - Secondar	y							
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0308	0.0310		99.4	90 - 110	_
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ice Range
Nitrite as Nitrogen	mg/L	1.00	0.0194	0.0200		97.0	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptar	ce Range
Nitrite as Nitrogen	mg/L	1.00	0.0194	0.0200		97.0	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/11/2012

Page 4 of 31

Alkalinity by SM 2320B			Batch	11ALK12E				
Parameter		Unit	Ana	llyzed	DF	MDL	RL	Result
804722-002 Alkalinity as Ca	iCO3	mg/L	11/12	2/2012 1	.00	0.555	5.00	141
Bicarbonate (C	alculated)	mg/L	11/12	2/2012 1	.00	0.555	5.00	141
Carbonate (Cal	lculated)	mg/L	11/12	2/2012 1	.00	0.555	5.00	ND
Method Blank								
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	804722-002
Parameter Alkalinity as CaCO3 Lab Control Sample	Unit mg/L	DF 1.00	Result 135	Expected 141	F	RPD 4.35	Accepta 0 - 20	ance Range
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 102	Expected 100	F	Recovery 102	Accepta 90 - 110	ince Range
Lab Control Sample	Duplicate							
Parameter Alkalinity as CaCO3 Matrix Spike	Unit mg/L	DF 1.00	Result 102	Expected 100	F	Recovery 102	90 - 110	ance Range) 804733-005
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 170	Expected/Adde 174(100)	ed F	Recovery 96.0	Accepta 75 - 125	ince Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 5 of 31 Printed 12/11/2012

Specific Conductivity -	EPA 120.1		Batch	11EC12C				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804722-001 Specific Condu	ıctivity	umhos/	cm 11/08	3/2012	1.00	0.116	2.00	7250
804722-002 Specific Condu	ıctivity	umhos/	cm 11/08	3/2012	1.00	0.116	2.00	7740
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	804723-002
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 8300	Expected 8300	F	RPD 0	Accepta 0 - 10	ance Range
Lab Control Sample								
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 703	Expected 706	F	Recovery 99.6	Accepta 90 - 110	ance Range)
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 708	Expected 706		Recovery 100	Accepta 90 - 110	ance Range)
MRCVS - Primary		riger.						
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 973	Expected 996	F	Recovery 97.7	Accepta 90 - 110	ance Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/11/2012

Page 6 of 31

Chrome VI by EPA 218	1,6		Batch	11CrH12D				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804722-001 Chromium, He	exavalent	ug/L	11/08	3/2012 08:54	1.00	0.00920	0.20	ND
804722-002 Chromium, He	exavalent	ug/L	11/08	3/2012 09:04	50.0	0.460	10.0	758
Method Blank								aren .
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804723-00
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	6.87	6.88		0.141	0 - 20	
Low Level Calibration	on Verification	n .						
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Rang
Chromium, Hexavalent	ug/L	1.00	0.195	0.200		97.7	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Rang
Chromium, Hexavalent	ug/L	1.00	4.95	5.00		99.0	90 - 110)
Matrix Spike							Lab ID =	804722-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ince Rang
Chromium, Hexavalent	ug/L	1.00	1.07	1.09(1.00)		97.8	90 - 110)
Matrix Spike							Lab ID =	804722-00
Parameter	Unit	DF	Result	Expected/Adde	∍d	Recovery	Accepta	ınce Rang
Chromium, Hexavalent	ug/L	50.0	1720	1760(1000)		96.1	90 - 110)
Matrix Spike							Lab ID =	804723-00
Parameter	Unit	DF	Result	Expected/Adde	∍d	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	16.4	16.9(10.0)		95.4	90 - 110)
Matrix Spike							Lab ID =	804724-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.0300	29.0	29.0(15.0)		99.7	90 - 110)
Matrix Spike							Lab ID =	804724-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.0300	28.0	28.0(15.0)		100	90 - 110)
Matrix Spike							Lab ID =	804725-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.00	8.10	8.35(5.00)		95.1	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/11/2012

Page 9 of 31

Metals by EPA 200.7, T	Batch 113012A-Th2							
Parameter		Unit	Unit Analyzed		DF	MDL	RL	Result
804722-001 Aluminum		ug/L	11/30)/2012 10:35	1.00	10.0	50.0	ND
Boron		ug/L	11/30)/2012 10:35	1.00	2.70	200	940
Iron		ug/L	11/30/2012 10:35		1.00	9.50	20.0	ND
Zinc		ug/L	11/30/2012 10:35		1.00	7.00	20.0	ND
804722-002 Aluminum		ug/L	11/30/2012 10:41		1.00	10.0	50.0	ND
Boron		ug/L	11/30/2012 10:41		1.00	2.70	200	977
Iron		ug/L	11/30/2012 10:41		1.00	9.50	20.0	ND
Zinc		ug/L	11/30/2012 10:41		1.00	7.00	20.0	ND
Method Blank		· · · · · · · · · · · · · · · · · · ·						
Parameter	Unit	DF	Result					
Aluminum	ug/L	1.00	ND					
Iron	ug/L	1.00	ND					
Zinc	ug/L	1.00	ND					
Boron	ug/L	1.00	ND					
Duplicate							Lab ID = 804722	
Parameter	Unit	DF	Result	Expected	ſ	RPD	Acceptance Rang	
Aluminum	ug/L	1.00	ND	0		0	0 - 20	
Iron	ug/L	1.00	ND	0		0	0 - 20	
Zinc	ug/L	1.00	ND	0		0	0 - 20	
Boron	ug/L	1.00	965	977		1.22	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptance Rang	
Aluminum	ug/L	1.00	2040	2000		102	85 - 115	
Iron	ug/L	1.00	2080	2000		104	85 - 115	I
Zinc	ug/L	1.00	2150	2000		107	85 - 115	!
Boron	ug/L	1.00	1970	2000		98.6	85 - 115	
Matrix Spike							Lab ID =	804722-002
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Aluminum	ug/L	1.00	1640	2000(2000)		82.1	75 - 125	
Iron	ug/L	1.00	1820	2000(2000)		90.8	75 - 125	
Zinc	ug/L	1.00	2230	2000(2000)		111	75 - 125	
Boron	ug/L	1.00	2780	2980(2000)		90.2	75 - 125	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 12 of 31 Printed 12/11/2012

Metals by EPA 200.8	, Total		Batch	112812C				
Parameter		Unit	Analyzed)F	MDL	RL	Result
804722-001 Barium	:	ug/L	11/29/2012 03:26		.50	0.470	5.0	11.2
Chromium		ug/L	11/29/2012 03:26		.50	0.230	1.0	ND
Copper		ug/L	11/29/2012 03:26		.50	0.642	5.0	ND
804722-002 Barium		ug/L	11/29/2012 04:31		.50	0.470	5.0	25.0
Chromium		ug/L	11/29/2012 04:45		0.0	0.920	2.0	716
Copper		ug/L	11/29/2012 04:31		.50	0.642	5.0	ND
Method Blank				er samonina anno anno anno anno anno anno anno				
Parameter	Unit	DF	Result					
Barium	ug/L	1.00	ND					
Chromium	ug/L	1.00	ND					
Copper	ug/L	1.00	ND					
Low Level Calibra	ation Verification	ŧ						
Parameter	Unit	DF	Result	Expected	F	ecovery Accepta		ance Range
Barium	ug/L	1.00	0.361	0.400		90.3	70 - 130	כ
Chromium	ug/L	1.00	0.176	0.200		88.2	70 - 130	
Copper	ug/L	1.00	0.836	1.00		83.6	70 - 130)
Lab Control Samp	ple							
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptance Range	
Barium	ug/L	2.50	47.1	50.0		94.2	85 - 115	5
Chromium	ug/L	2.50	46.2	50.0		92.5	92.5 85 - 115	
Copper	ug/L	2.50	46.8	50.0		93.7	85 - 115	5
Matrix Spike							Lab ID =	804722-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Acceptance Ran	
Barium	ug/L	2.50	55.3	61.2(50.0)		88.1	75 - 125	5
Chromium	ug/L	2.50	47.4	50.0(50.0)		94.9	75 - 125	
Copper	ug/L	2.50	43.9	50.0(50.0)		87.8	75 - 125	
Matrix Spike Dupl	licate						Lab ID =	804722-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Acceptance Rar	
Barium	ug/L	2.50	57.1	61.2(50.0)		91.7	75 - 125	
Chromium	ug/L	2.50	48.4	50.0(50.0)		96.8	75 - 125	
Copper	ug/L	2.50	43.1	50.0(50.0)		86.2	75 - 125	5

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 15 of 31

Printed 12/11/2012

Serial Dilution

Lab ID = 804722-002

Expected **RPD** Unit DF Result Acceptance Range Parameter 25.0 2.49 0 - 10 12.5 25.6 ug/L Barium 716 1.87 0 - 1050.0 703 Chromium ug/L

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 16 of 31 Printed 12/11/2012

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804722-001 Antimony		ug/L	11/29	/2012 13:45	2.50	0.830	2.0	ND
Arsenic		ug/L	11/29	/2012 13:45	2.50	0.250	0.50	ND
Lead		ug/L	11/29	/2012 13:45	2.50	0.185	1.0	ND
Manganese		ug/L	11/29	/2012 13:45	2.50	0.215	0.50	1.1
Molybdenum		ug/L	11/29	/2012 13:45	2.50	0.518	2.0	21.8
804722-002 Antimony		ug/L	11/29	/2012 14:52	2.50	0.830	2.0	ND
Arsenic		ug/L	11/29	/2012 14:52	2.50	0.250	0.50	3.4
Lead		ug/L	11/29	/2012 14:52	2.50	0.185	1.0	ND
Manganese		ug/L	11/29	/2012 14:52	2.50	0.215	0.50	3.7
Molybdenum		ug/L	11/29	/2012 14:52	2.50	0.518	2.0	22.0
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Antimony	ug/L	1.00	ND					
Lead	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate							Lab ID =	804722-00°
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Arsenic	ug/L	2.50	ND	0		0	0 - 20	
Antimony	ug/L	2.50	ND	0		0	0 - 20	
Lead	ug/L	2.50	ND	0		0	0 - 20	
Manganese	ug/L	2.50	1.08	1.10		1.56	0 - 20	
Molybdenum	ug/L	2.50	21.4	21.8		1.85	0 - 20	
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Arsenic	ug/L	1.00	0.244	0.200		122	70 - 130)
Antimony	ug/L	1.00	0.745	0.800		93.2	70 - 130	
Lead	ug/L	1.00	0.180	0.200		90.0	70 - 130)
Manganese	ug/L	1.00	0.172	0.200		85.8	70 - 130)
Molybdenum	ug/L	1.00	0.546	0.500		109	70 - 130)

Client: E2 Consulting Engineers, Inc. Project Name:

ame: PG&E Topock Project

Project Number: 456827.01.DM

Page 17 of 31 Printed 12/11/2012

		Pr	oject Numbe	r: 456827.01.DM		Printed 12/11/2012
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	2.50	46.0	50.0	92.0	85 - 115
Antimony	ug/L	2.50	57.0	50.0	114	85 - 115
Lead	ug/L	2.50	47.2	50.0	94.5	85 - 115
Manganese	ug/L	2.50	49.9	50.0	99.7	85 - 115
Molybdenum	ug/L	2.50	53.3	50.0	106	85 - 115
Matrix Spike						Lab ID = 804722-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	2.50	45.6	50.0(50.0)	91.2	75 - 125
Antimony	ug/L	2.50	51.4	50.0(50.0)	103	75 - 125
Lead	ug/L	2.50	39.6	50.0(50.0)	79.1	75 - 125
Manganese	ug/L	2.50	48.8	51.1(50.0)	95.4	75 - 125
Molybdenum	ug/L	2.50	72.5	71.8(50.0)	101	75 - 125
Matrix Spike Duplicate						Lab ID = 804722-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	2.50	48.5	50.0(50.0)	97.0	75 - 125
Antimony	ug/L	2.50	55.3	50.0(50.0)	110	75 - 125
Lead	ug/L	2.50	42.8	50.0(50.0)	85.6	75 - 125
Manganese	ug/L	2.50	51.9	51.1(50.0)	102	75 - 125
Molybdenum	ug/L	2.50	77.7	71.8(50.0)	112	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	20.1	20.0	100	90 - 110
Antimony	ug/L	1.00	21.6	20.0	108	90 - 110
Lead	ug/L	1.00	19.3	20.0	96.6	90 - 110
Manganese	ug/L	1.00	20.0	20.0	100	90 - 110
Molybdenum	ug/L	1.00	19.0	20.0	95.1	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	20.1	20.0	101	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	20.0	20.0	99.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	19.9	20.0	99.7	90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without matter without authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 22 of 31 Printed 12/11/2012

Metals by EPA 200.8,	Total		Batch	120412A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804722-001 Nickel		ug/L	12/04	/2012 17:55	1.00	0.786	2.0	ND
804722-002 Nickel		ug/L	12/04	/2012 18:31	1.00	0.786	2.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Nickel	ug/L	1.00	ND					
Duplicate							Lab ID =	804722-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Nickel	ug/L	1.00	ND	0		0	0 - 20	
Low Level Calibrat	tion Verification	1						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Nickel	ug/L	1.00	1.83	2.00		91.6	70 - 130)
Lab Control Samp	le							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Nickel	ug/L	2.50	47.5	50.0		94.9	85 - 118	5
Matrix Spike							Lab ID =	804722-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	ance Range
Nickel	ug/L	1.00	41.5	50.0(50.0)		83.0	75 - 125	5
Matrix Spike Dupli	cate						Lab ID =	804722-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	ance Range
Nickel	ug/L	1.00	44.2	50.0(50.0)		88.5	75 - 125	5
MRCCS - Seconda	ary							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Nickel	ug/L	1.00	19.0	20.0		95.1	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Nickel	ug/L	1.00	18.4	20.0		92.0	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Nickel	ug/L	1.00	18.5	20.0		92.4	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Nickel	ug/L	1.00	18.5	20.0		92.6	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 24 of 31 Printed 12/11/2012

Method Blank	eactive Silica by SM450	10-Si D		Batch	11Si12A				
Method Blank Parameter Unit DF Result Silica mg/L 1.00 ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Silica mg/L 50.0 22.0 21.5 2.24 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.203 0.220 92.4 90 - 110 Matrix Spike Lab ID = 80 Parameter Unit DF Result Expected/Added Recovery Acceptance Silica mg/L 1.00 0.403 0.400(0.400) 101 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 Total Dissolved Solids by SM 25	arameter		Unit	Ana	lyzed	DF	MDL	RL	Result
Parameter Unit DF Result Silica mg/L 1.00 ND)4722-002 Silica		mg/L	11/09	/2012	50.0	0.505	2.00	21.5
Silica mg/L 1.00 ND	Method Blank								
Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Silica mg/L 50.0 22.0 21.5 2.24 0 - 20 Carbon Ca									
Parameter Unit DF Result Expected RPD Acceptance Accepta	Silica	mg/L	1.00	ND					00.4700.000
Silica mg/L 50.0 22.0 21.5 2.24 0 - 20 Lab Control Sample Parameter Unit DF mg/L Result Expected Recovery Acceptance Acceptance 92.4 90 - 110 Lab ID = 80 Matrix Spike Parameter Unit DF mg/L Result Expected/Added Recovery Acceptance Recovery Acceptance Acceptance 30.400(0.400) 101 75 - 125 <	Duplicate							Lab ID =	804722-002
Lab Control Sample	^o arameter	Unit			-			•	ance Range
Parameter Silica Unit Mg/L DF Mg/L Result Loo Expected Output Recovery P2.4 Acceptance Acceptance P3.10 Matrix Spike In 1.00 0.203 0.220 92.4 90 - 110 Lab ID = 80 Parameter Unit DF Mg/L Result Expected/Added P3.20 Recovery P3.21 Acceptance P3.21 MRCCS - Secondary DF Result Expected P3.21 Recovery P3.21 Acceptance P3.21 Silica Mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance P3.21 Acceptance P3.22	Silica	mg/L	50.0	22.0	21.5		2.24	0 - 20	
Silica mg/L 1.00 0.203 0.220 92.4 90 - 110 Lab ID = 80 Parameter Unit DF Result Expected/Added Recovery Acceptance Silica mg/L 1.00 0.403 0.400(0.400) 101 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Result <td< td=""><td>Lab Control Sample</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Lab Control Sample								
Matrix Spike Lab ID = 80 Parameter Silica Unit mg/L DF mg/L Result mg/L Expected/Added mg/L Recovery mg/L Acceptance mg/L Silica mg/L 1.00 0.403 0.400(0.400) 101 75 - 125 MRCCS - Secondary Parameter Unit mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit mg/L N.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit mg/L Analyzed mg/L DF mg/L MDL mg/L 804722-001 Total Dissolved Solids mg/L 11/07/2012 mg/L 1.00 mg/L 0.757 mg/L 250 Method Blank Parameter mg/L Unit mg/L ND mg/L ND mg/L Lab ID = 80 Parameter Unit mg/L DF mg/L Result mg/L Expected mg/L RPD mg/L Acceptance mg/L Total Dissolved Solids mg/L 1.00 mg/L S58 mg/L 552 mg/L RPD mg/L Acceptance mg/L	Parameter	Unit	DF	Result	•		•	•	ance Range
Parameter Unit DF Result Expected/Added Recovery Acceptance Silica mg/L 1.00 0.403 0.400(0.400) 101 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80<	Silica	mg/L	1.00	0.203	0.220		92.4	90 - 11	0
Silica mg/L 1.00 0.403 0.400(0.400) 101 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10 Total Dissolved Solids mg/L 1.00 1.00 1.00 Total Dissolved Solids mg/L 1.00 1.00 1.00 Total	Matrix Spike							Lab ID =	804729-001
MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08	Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10		mg/L	1.00	0.403	0.400(0.400	0)	101	75 - 12	5
Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Result Lab ID = 80 Duplicate Lab ID = 80 Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10	MRCCS - Secondary								
Silica mg/L 1.00 0.104 0.110 94.1 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Result Lab ID = 80 Duplicate Lab ID = 80 Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10	Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
MRCVS - Primary Parameter Silica Unit mg/L DF mesult spected no.403 Recovery no.400 Acceptance no.400 Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Dissolved Solids Mg/L 11/07/2012 1.00 0.757 250 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Result ND ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10			1.00	0.104	0.110		94.1	90 - 11	0
Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10									
Silica mg/L 1.00 0.403 0.400 101 90 - 110 Total Dissolved Solids by SM 2540 C Batch 11TDS12A Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10		Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10		mg/L	1.00	0.403	0.400		101	90 - 11	0
Parameter Unit Analyzed DF MDL RL 804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10			Assessables and the Salah			entidos entens.	APPEN DEMORPRODE		
804722-001 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 804722-002 Total Dissolved Solids mg/L 11/07/2012 1.00 0.757 250 Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Duplicate Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10	otal Dissolved Solids b	y SM 254							
### 804722-002 Total Dissolved Solids mg/L	arameter		Unit	Ana	lyzed	DF	MDL	RL	Result
Method Blank Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10)4722-001 Total Dissolved S	olids	mg/L	11/07	7/2012	1.00	0.757	250	4480
Parameter Unit DF Result Total Dissolved Solids mg/L 1.00 ND Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10)4722-002 Total Dissolved S	olids	mg/L	11/07	7/2012	1.00	0.757	250	4550
Total Dissolved Solids mg/L 1.00 ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10	Method Blank	-							
Total Dissolved Solids mg/L 1.00 ND Duplicate Lab ID = 80 Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10	Parameter	Unit	DF	Result					
Duplicate Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10				_					
Parameter Unit DF Result Expected RPD Acceptance Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10								Lab ID =	804696-010
Total Dissolved Solids mg/L 1.00 558 552 1.08 0 - 10		l Init		Result	Expected		RPD	Accept	ance Range
Total Blosdived College High L					•			•	5-
Lap Control Sample	Lab Control Sample	···-g· —							
	·	Linit	DF	Result	Expected		Recovery	Accept	ance Range
Total Dissolved Solids mg/L 1.00 492 500 98.4 90 - 110					•		•	•	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 25 of 31 Printed 12/11/2012

Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result
804722-002 Total Organic (Carbon	mg/L	11/09	9/2012 11:59	1.00	0.0309	0.300	ND
Method Blank								
Parameter	Unit	DF	Result					
Total Organic Carbon	mg/L	1.00	ND					
Duplicate							Lab ID =	804722-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	ND	0		0	0 - 20	J
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	9.95	10.0		99.5	90 - 110	_
Matrix Spike							Lab ID = l	804722-002
Parameter	Unit	DF	Result	Expected/Ad	ded R	Recovery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	8.31	10.0(10.0)		83.1	75 - 125	
MRCCS - Secondary	y							
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Total Organic Carbon	mg/L	1.00	10.3	10.0		103	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Acceptai	nce Range
Total Organic Carbon	mg/L	1.00	9.56	10.0		95.6	90 - 110	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Acceptar	nce Range
Total Organic Carbon	mg/L	1.00	9.24	10.0		92.4	90 - 110	•

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 26 of 31 Printed 12/11/2012

Total Phosphate, SM 45	500-PB,E		Batch	11TP12A			
Parameter		Unit	Anal	yzed DI	= MDL	RL	Result
804722-002 Phosphate, Total	al As P	mg/L	11/08	/2012 1.0	0.00648	0.0200	ND
Method Blank							24
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result ND				
Duplicate						Lab ID = 8	04637-013
Parameter Phosphate, Total As P Lab Control Sample	Unit mg/L	DF 1.00	Result 0.0601	Expected 0.0614	RPD 2.14	Acceptar 0 - 20	ice Range
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.134	Expected 0.130	Recovery 103	Acceptar 90 - 110	ice Range
Matrix Spike						Lab ID = 8	04637-014
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0550	Expected/Added 0.0650(0.0650)	Recovery 84.6	Acceptar 75 - 125	ice Range
MRCCS - Secondary							
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0643	Expected 0.0650	Recovery 98.9	Acceptar 90 - 110	ice Range
MRCVS - Primary							
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0627	Expected 0.0650	Recovery 96.5	Acceptan 90 - 110	ce Range
MRCVS - Primary							
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0627	Expected 0.0650	Recovery 96.5	Acceptan 90 - 110	ce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 27 of 31 Printed 12/11/2012

Ammonia Nitrogen by SI	VI4500-NH	I3D	Batch	11NH312B				
Parameter		Unit	Ana	lyzed l	DF	MDL	RL	Result
804722-001 Ammonia as N		mg/L	11/14	l/2012 1	.00	0.00980	0.500	ND
804722-002 Ammonia as N		mg/L	11/14	1/2012 1	.00	0.00980	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	7.36	8.00		92.0	90 - 110	
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	7.75	8.00		96.9	90 - 110	
Matrix Spike							Lab ID =	804722-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.06	8.00(8.00)		101	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	5.92	6.00		98.6	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	6.33	6.00		106	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 28 of 31 Printed 12/11/2012

Parameter	.,	Unit	Ana	lyzed D	F MDL	RL	Result
304722-002 Manganese		ug/L	12/08	/2012 05:40 2.5	50 0.215	0.50	3.4
Method Blank							
Parameter	Unit	DF	Result				
Manganese	ug/L	1.00	ND				
Duplicate						Lab ID =	804723-001
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ınce Range
Manganese	ug/L	2.50	43.2	43.9	1.58	0 - 20	
Low Level Calibration	Nerification						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Manganese	ug/L	1.00	0.187	0.200	93.3	70 - 130)
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Manganese	ug/L	2.50	47.9	50.0	95.8	85 - 115	5
Matrix Spike						Lab ID =	804723-001
Parameter	Unit	DF	Result	Expected/Added	•		nce Range
Manganese	ug/L	2.50	83.5	93.9(50.0)	79.2	75 - 125	
Matrix Spike Duplicat	te					Lab ID =	804723-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	ince Range
Manganese	ug/L	2.50	92.9	93.9(50.0)	98.0	75 - 125	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Manganese	ug/L	1.00	19.4	20.0	96.8	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Manganese	ug/L	1.00	18.3	20.0	91.6	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Manganese	ug/L	1.00	18.5	20.0	92.6	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Manganese	ug/L	1.00	18.5	20.0	92.4	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 30 of 31 Printed 12/11/2012

Metals by 200.7, Dissolve Parameter		Unit	^n^	luzod	DF N	MDL RL Result
	· · · · · · · · · · · · · · · · · · ·			lyzed		
804722-002 Iron		ug/L	11/30)/2012 10:10	1.00 9.50	20.0 ND
Method Blank						
Parameter	Unit	DF	Result			
Iron	ug/L	1.00	ND			
Duplicate						Lab ID = 804724-00
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Iron	ug/L	1.00	ND	0	0	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recove	ry Acceptance Range
Iron	ug/L	1.00	2080	2000	104	85 - 115
Matrix Spike						Lab ID = 804724-00
Parameter	Unit	DF	Result	Expected/Add	ed Recove	ry Acceptance Range
Iron	ug/L	1.00	1890	2000(2000)	94.6	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recove	ry Acceptance Range
Iron	ug/L	1.00	5040	5000	101	95 - 105
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recove	ry Acceptance Range
Iron	ug/L	1.00	4980	5000	99.6	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recove	ry Acceptance Range
Iron	ug/L	1.00	4970	5000	99.3	90 - 110
Interference Check Sta	andard A					
Parameter	Unit	DF	Result	Expected	Recove	ry Acceptance Range
Iron	ug/L	1.00	2100	2000	105	80 - 120
Interference Check Sta	andard A					
Parameter	Unit	DF	Result	Expected	Recove	
Iron	ug/L	1.00	2090	2000	105	80 - 120
Interference Check Sta	andard AB	ŀ				
Parameter	Unit	DF	Result	Expected	Recove	ry Acceptance Range
Iron	ug/L	1.00	2080	2000	104	80 - 120

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 31 of 31 Printed 12/11/2012

Interference Check Standard AB

Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	2080	2000	104	80 - 120

Turbidity by SM 2130 B			Batcl	n 11TUC12D				
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
804722-001 Turbidity		NTU	11/07	7/2012	1.00	0.0140	0.100	ND
804722-002 Turbidity		NTU	11/07	7/2012	1.00	0.0140	0.100	ND
Method Blank		er en jorn silv						7.4.375E
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID = 8	04722-002
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptar	nce Range
Turbidity	NTU	1.00	ND	0		0	0 - 20	J
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	lecovery	Acceptar	ice Range
Turbidity	NTU	1.00	7.85	8.00		98.1	90 - 110	Ü
Lab Control Sample Du	plicate							
Parameter	Unit	DF	Result	Expected	R	lecovery	Acceptan	ice Range
Turbidity	NTU	1.00	7.79	8.00		97.4	90 - 110	3

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 11TDS12A Date Analyzed: 11/7/12

Laboratory Number	Sample volume, mi	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	66.8065	66.8069	66.8065	0.0004	No	0.0000	0.0	25.0	ND	1
804680-17	100	77.7833	77.8391	77.8388	0.0003	No	0,0555	555.0	25.0	555.0	1
804683-1	50	74.9341	74.9818	74.9817	0.0001	No	0.0476	952.0	50.0	952.0	1
804683-2	100	74.6118	74.6663	74.6660	0.0003	No	0.0542	542.0	25.0	542.0	1
804683-3	50	67.2055	67.2361	67.2361	0.0000	No	0.0306	612.0	50.0	612.0	1
804696-9	100	72.0912	72.148	72.1477	0.0003	No	0.0565	565.0	25.0	565.0	1
804696-10	100	65.6243	65.6797	65.6795	0.0002	No	0,0552	552.0	25.0	552.0	1
804722-1	10	50.5009	50.5460	50.5457	0.0003	No	0.0448	4480.0	250.0	4480.0	- 1
804722-2	10	49.1760	49.2219	49.2215	0.0004	No	0.0455	4550.0	250.0	4550.0	1
804723-1	20	50.8333	50.8876	50.8875	0.0001	No	0.0542	2710.0	125.0	2710.0	1
804723-2	10	50.8652	50.9154	50.9154	0.0000	No	0.0502	5020.0	250.0	5020.0	1
804696-10D	100	69.4085	69.4645	69.4643	0.0002	No	0.0558	558.0	25.0	558.0	1
LCS	100	68.1277	68.1769	68.1769	0.0000	No	0.0492	492.0	25.0	492.0	1
	,										
						37					

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

(A-B)	۱ _~	1	06
$\begin{pmatrix} C \end{pmatrix}$	^	1	Ü

RL= reporting limit. ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	492	500	98.4%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804696-10	0.0552	0.0558	0.5%	≤5%	Yes
804696-10	0.0552	0.0558	0.5%	≤5%	4

Jenny ⊤.

Analyst Printed Name

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \ 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{1}{A \text{ or } B - C}\right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Reviewer Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS12A
Date Analyzed: 11/7/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804680-17	962	0.58	625.3	0.89
804683-1	1674	0.57	1088.1	0.87
804683-2	962	0.56	625.3	0.87
804683-3	1040	0.59	676	0.91
804696-9	922	0.61	599.3	0.94
804696-10	902	0.61	586.3	0.94
804722-1	7300	0.61	4745	0.94
804722-2	7750	0.59	5037.5	0.90
804723-1	4800	0.56	3120	0.87
804723-2	8330	0.60	5414.5	0,93
804696-10	902	0.62	586.3	0.95
LCS				
				-
	146			
				,
	· · · · · · · · · · · · · · · · · · ·			

Alkalinity by SM 2320B Calculations

11ALK12E 11/12/12 Water Analytical Batch: Matrix: Date of Analysis:

> °	Т	T	Т	T	Т	T	Ţ	T	7			Т	Ţ	7		<u> </u>	Т	_	_		1	_	T
Low Alkalinity as CaCO ₃																							
OH Alkalinity as CaCO ₃ (ppm)	ND	QN	QN	QN	2	QN	QV																
HCO3 Conc. CO3 Alkalinity of as CaCO ₃ (ppm) as CaCO ₃ (ppm)	Q	9	9	QN	98	94	94																
HCO3 Conc. as CaCO, (ppm)	QN	141.0	135.0	74.0	84.0	8.0	8.0																
Total Alkalinity Reported Value	QN	141.0	135.0	74.0	170.0	102.0	102.0																
RL, ppm	5	2	5	5	5	ည	5																
Total Alkalinity as CaCO3	0.0	141.0	135.0	74.0	170.0	102.0	102.0																
Total mL titrant to reach pH 0.3 unit lower										-				İ					+	The state of the same of the same of			
Titrant Volume to reach pH 4.5	00.0	7.05	6.75	3.70	8.50	5.10	5.10										i			A COMPANY OF THE PROPERTY OF T			
Alk	0.0	0.0	0.0	0.0	43.0	47.0	47.0																
Titran Volum to reac pH 8.3					2.15	2.4	24								-					STATE OF STATE OF			
N of HCL	0.02	0.02	0.02	0.02	0.02	0.02	0.02							Ī.									
SS A	S	20	20	8	22	22	20				-012				Contract of the same of the same of		N= Octob			1	1934120°		
Sample pH	6.37	7,70	7.74	7.64	9.79	10.60	10.60								be seen as a seemed a second first			v- y-eço	di-un				
Lab ID	BLANK	804/22-2	804722-2 DUP	804733-5	804733-5 MS	SS	CSD								The second secon								

 $A \times N \times 50000$ Tor P= Where:

Calculations as follows:

P = Phenolphthalein Alkalinity, mg CaCO3/L $mL \quad sample$ T = Total Alkalinity, mg CaCO3/L

Where:

N = normality of standard acid A = mL standard acid used

Accept Limit | QC Within

Measured Value, ppm

Reporting Limit, RL 5 ppm

Blank Summary

ψ

0

C = Total mL titrant to reach pH 0.3 unit lower LCS = Laboratory Control Standard/Duplicate N = Normality of standard acid

 $(2 \times B - C) \times N \times 50000$

mL sample

Low Alkalinity: = as mg/L CaCO3
B = mL titrant to first recorded pH

MS/MSD = Matrix Spike/Duplicate
ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

QC Within	Control?	Yes	Yes
Accetance	Limit	90-110	90-110
), Doco,(pp.)	/overovery	102.0%	102.0%
Theoretical	Value, ppm	100	100
Measured	Value, ppm	102	102
QC Std	l.D.	SOT	CSD

ımary		Accetance Limit
rence Sun	ď	אַ ה
ate Determination Difference S	Dup Value,	mdd
Determina	Measured	Value, ppm
Duplicate	Lab Number	<u>.</u>

ppm

QC Within

Control?

Xes

≥20%

4.3%

4

			ummary	IS/MSD) Si	x Spike (IV	Sample Matrix Spike (MS/MSD) Summary
	Yes	90-110	102.0%	100	102	LCSD
80472	Yes	90-110	102.0%	100	102	rcs
<u></u>	Control?	Limit	%жесоv егу	Value, ppm	Value, ppm	.Ö.
Lab Nun	QC Within	Accetance	0 /0	Theoretical	Measured	QC Std

_	L		
	RPD Accept Limit		
	RPD		
	QC Within Control?	Yes	
	MS Accept Limit	75 405	671-67
	MS/MSD %Rec	%96	
	Theor Conc of Spk Spi MS/MSD %Rec	174.00	
	Measrd Conc of Spk Spl	170	

MS/MSD Amt

Added Spk Conc

Dil Factor

Conc of Unspk spl

Lab Number

7.

8

100 100

QC Within Control?

Reviewer Signature

Reviewer Printed Name

Mu 4512

804733-5

Analyst Printed Name

Melissa S.

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD [IM3Plant-WDR-386]

COC Number

TURNAROUND TIME

占

PAGE 1 10 Days

	COMPANY	CH2M HILL /E2						_	_		/	_			_		paj	(0)						
	PROJECT NAME	PG&E Topock IM3	M3						_			MO		_	_		 ³ 111 ₉ ₉ e ₁	0) IS	\			COMMENTS		
	PHONE	530-229-3303		FAX 530	FAX 530-339-3303							/ 9 8 18				9, AA.	0091		_				······································	
	ADDRESS	155 Grand Ave Ste 1000	Ste 1000					pa.	\	_		/7 ə _ē	_	3, 5) E) ₉ / ₁			EKS				
		Oakland, CA 94612	1612				<u></u> - -		_	<u>_</u>	٥(<u>/</u>	18H31	<u></u>	ON:		.500	hoses (<u></u>	NAT	Au				
	P.O. NUMBER	456827.01.DM					9e7 (/		_	(500	V-00s	(4.0	100		SIP	Ά. ΑςΟΙ		№ 3					
	SAMPLERS (SIGNATURE	ATURE	P. Krey	75/2			(53) Ay	~ " Oc	000	. "	_ 191	Slein	0056)	00E) s		V-0051 101115 a 1010 0	V-0051		AO A					
				-		<u> </u>	!!! E	?/)	3) s	-) ~	V 10	d le	, 	3) J		lqer.	\\ \\ \\\ \\\	V	, ale					
	SAMPLE I.D.		DATE	TIME	DESCRIPTION	ردر /	ZYV	_ `	,a1	_	,	101 301	ΛΑ. 	01)/0ç	OA:	NV						
	SC-700B-WDR-386	NDR-386	11/06/12	13:32	•	×		×	×	×	×		×		<u> </u>	×		7			5 H=2	(2007) V	5.7	
4	SC-100B-WDR-386	NDR-386	11/06/12	13:47		×	×	×	×	×	×	×	×	×	×	×		9		170	128	7 = 40/	1.,	
																				(100.1)	V	7,002	4/1/5	
																							Ī	
•							e e	4	5		E		S	U.	-	<u> </u>								
	Nacco	V				discours and the	O O	2007 2007 2007			5					<u> </u>								
			111			Ű.	Q,	Ó		E		2	5											
					- February													Ξ	TO	TAL NUN	ABER OF	TOTAL NUMBER OF CONTAINERS	ιχ	

	CHAIN OF CUSTODY SIGNATUI	Y SIGNATURE	RECORD		SAMPLE CONDITIONS
Signature (Relinquished) C-14wight	Printed C.Kmgitt	Company/ Agency	CHUMHIC	Date/ 1.6.17 Time 14:00	RECEIVED COOL IN WARM 466 "
Signature Rafal Day	Printed Rate	Company/	エ・イ・ユ	Date/ 11-6-12 Time 14:00	CUSTODY SEALED YES NO
Signature (Relinquished) Relinquished)	Printed ACL	Company/ Agency	7.7.7	Γ	SPECIAL REQUIREMENTS:
Signature (Received)	Printed Shaller	Company/	727	Date/ The metals incl	The metals include: Cr, Al, Sb, As, Ba, B, Cu, Pb, Mn,
Signature (Relinquished)	Printed Name	Company/ Agency		Date/ Time	MO, NI, Fe, ZII
Signature (Received)	Printed Name	Company/ Agency		Date/ Time	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

٠		\	Tiab	NI	1:4:	I B es A I I			T	
		ate		Number	Initial pH	Buffer Added				
1 1	10	31/12	00,	1602	\ .	2 ml/10	oml	9.5	II A	m G
1/2/1	12	$\frac{1}{1}$	0	1-1	^ -	(10		la la	/ 1	
	W	2/12	804	636-1	9,5	NA		NA	NA	67
		}		~ 2						
				-3						
				4						
				-5						
}		\		-6 -7						
		1						•		
ļ		1		-8						
-				-9						
	****			c1_						
_				-19				-		
				12						
				-13						
. L	·			-14					·	
		4	4	_15	7	4		1	V	
	uls	112	804	652-1	9.5	N/A		NA	MA	Cir
			A	-2		į į		Î	1	
				5						
				-6						
				-7						
			, \	-8						
				-9						
Γ				~10						
				_17						
				-13	1	1,		V		
1	1/1	1(2	804		7	2 ml / 100	201 (16	tel) 9.5	11:00 A.	
	1	 		, -2	1	7 10.		19 (7)	11:10A	
			804	123-1	7				11: 15 A	
		r	Ì	-2	Ĺ				11:20 A	
		·						4	11.70 17	

C:\My Documents\Templates\Hexavalent Chromium\Cr6+ pH Log

J 11/14/12

Turbidity/pH Check

			i urbi	dity/pH C	песк			
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
804625	71	₹ 2	11-2-12	BE	3010A			
806626				1				
804627					1			
E O KEOO	<1	72			ivo	7:00 AM	16-4	PH<2
804617(10-12))	
804635(1-3)		4	J		7	4		
80463611-151	< 1	ح کی	11/05/12	M-M	3010A			
804 652 /1-25 A	1 1	V	1	1	V			
804647	>1	<2	11/05/12	MUY	301014			
104648		1	l I					
8046 49	V	V	V	V_{-}				
504658(12,4)	2	>2	11/5/12	We	NO	4PM	14.6	PH 1
E9 4683(11213)	≺ (71	11-6-12	BC	No	5 pm	11-7	4
804 \$26/15/	41	22	11-7-12	N.M	30104			
904725/1,21		L dire	total					
304722 (1,21		-1<2,-272	221					
04723 (1.2)		72						
04724 (1,2)	J/	U	<i>y</i>		,			
04690		- NA			TTLC	13:00	11/07/12	p4 <2
046781	7/7	22	11/07/12	MM	30104			0
04679		<₽						
04680		<2						
04691		11						
804692								
864693								
804694								
804695								
804706								
804707	·							
804708								
204709	1,-	11.					,	
204721		- K- J				13:00	41/277/2	
804731	V >/	72	11/05/0	VI	0 1 0 14		11/07/12	pri 2
04 678-2	_//	72	11/07/2	M.M	30101	13.00	11/07/12	p421
- 5	in V	V	•		V	_ / ·		1
01/300 02 ,80430	U /	< 9	10/16/12	11 -1	30104			
04300		< 2	10/16/12	N.M	30104	- =		
04301-302	1	-1,		1,				
04304 - 305	V	>2	11-212	B. E	No	2.2.00	11 112	00.0
304720	<1	7-	1 0-11	10.1	// 0	5:3cpM	11-14	PH<2
						_	11-14	
011/3/10-12)	<u> </u>	-	11/00/10	<u> </u>	- 1			1
704 7771-11	21	72	11/09/12	M.M	30/04			
0477811-41	21	22	V		V			

- Notes:

 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

 2. All Total Recoverable Analytes must be pH adjusted and digested.

 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

	lient: <u>E L</u>	Lab #_ foyto
Dá	nte Delivered:///////////////////////////////////	Field Service
1.	Was a Chain of Custody received and signed?	AYes ONO ONA
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÞN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ÞAN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	ÆlYes □No □N/A
<i>6.</i>	Were samples received in a chilled condition? Temperature (if yes)? \(\frac{\psi_o \mathbb{C}}{2}\)	ÁYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Œ(Yes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No ØN/A
9.	Does the number of samples received agree with COC?	JYes □No □N/A
10.	Did sample labels correspond with the client ID's?	AYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ☑Truesdail □Client	⊄ Yes □No □N/A
12.	Were samples pH checked? pH = Sel C. O. e.	✓Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Yes ONO ONA
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH	A es □No □N/A
15.	Sample Matrix: □Liquid □Drinking Water □Ground W	Vater UWaste Water Other Waker
16.	Comments:	· .
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	dude

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 10, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-387 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 804841

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-387 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 13, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

Laboratory No.: 804841

Date: December 10, 2012

Collected: November 13, 2012 Received: November 13, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Katia Kiarashpoor / Bita Emami
EPA 218.6	Hexavalent Chromium	George Wahba

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 804841

Date Received: November 13, 2012

Analytical Results Summary

Lab Sample ID Field ID	Field ID	Analysis Method	Extraction	Sample Date	Sample	Darameter	7 1130 1	l Inite	ō
	j j	nemon	INCHION	Sample Date	ווננ	raiailletei	Nesult	OIIIIS	٧٢
804841-001	SC-700B-WDR-387 E120.1	E120.1	NONE	11/13/2012	13:44	EC	7400	umhos/cm	2.00
804841-001	SC-700B-WDR-387	E200.8	NONE	11/13/2012	13:44	Chromium	Q	ng/L	1.0
804841-001	SC-700B-WDR-387	E200.8	NONE	11/13/2012	13:44	Manganese	1.3	ng/L	0.50
804841-001	SC-700B-WDR-387	E218.6	LABFLT	11/13/2012	13:44	Chromium, Hexavalent	Q	ng/L	0.20
804841-001	SC-700B-WDR-387	SM2130B	NONE	11/13/2012	13:44	Turbidity	Q	NTO	0.100
804841-001	SC-700B-WDR-387 SM2540C	SM2540C	NONE	11/13/2012	13:44	Total Dissolved Solids	4050	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Result above or equal to 0.01ppm will have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results: Quality Control data will always have three (3) significant figures. Results below 0.01ppm will have two (2) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 11

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/10/2012

Laboratory No. 804841

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 11/13/2012 11:00:00 PM

Collected Matrix Lab ID Field ID 11/13/2012 13:44 804841-001 Water SC-700B-WDR-387 Batch 11EC12F Specific Conductivity - EPA 120.1 DF MDL Unit RL Result Analyzed Parameter 11/16/2012 1.00 0.116 2.00 7400 umhos/cm 804841-001 Specific Conductivity Method Blank Parameter Unit DF Result 1.00 ND Specific Conductivity umhos Lab ID = 804841-001 Duplicate Unit DF Result Expected **RPD** Acceptance Range Parameter 7390 7400 0.135 0 - 101.00 Specific Conductivity umhos Lab Control Sample Expected Recovery Acceptance Range Parameter Unit DF Result 90 - 110 umhos 1.00 698 706 98.9 Specific Conductivity Lab Control Sample Duplicate Acceptance Range DF Result Expected Recovery Parameter Unit 99.2 90 - 110 700 706 1.00 Specific Conductivity umhos MRCCS - Secondary Acceptance Range Unit DF Result Expected Recovery Parameter 99.4 90 - 110 umhos 1.00 702 706 Specific Conductivity MRCVS - Primary Acceptance Range Unit DF Result Expected Recovery Parameter 98.8 90 - 110 984 996 Specific Conductivity umhos 1.00 MRCVS - Primary Acceptance Range Unit DF Result Expected Recovery Parameter 90 - 110 996 99.1 umhos 1.00 987 Specific Conductivity

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prigreyritten authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 11 Printed 12/10/2012

Chrome VI by EPA 218.6				tydd cynnei oddioddioddiol lygod	DF	MDL	RL	Result
Parameter		Unit						
804841-001 Chromium, Hex	avalent	ug/L	11/16	/2012 10:09 1	1.00	0.00920	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	804842-005
Parameter	Unit	DF	Result	Expected	R	PD	Accepta	ince Range
Chromium, Hexavalent	ug/L	5.00	17.3	17.3		0.150	0 - 20	
Low Level Calibration	Verification	ı						
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.191	0.200		95.6	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	4.95	5.00		99.0	90 - 110)
Matrix Spike							Lab ID =	804841-001
Parameter	Unit	DF	Result	Expected/Adde	ed R	ecovery	•	nce Range
Chromium, Hexavalent	ug/L	1.00	1.04	1.07(1.00)		97.0	90 - 110	
Matrix Spike							Lab ID =	804842-001
Parameter	Unit	DF	Result	Expected/Adde		ecovery	•	ance Range
Chromium, Hexavalent	ug/L	5.00	4.93	5.10(5.00)		96.7	90 - 110	
Matrix Spike							Lab ID =	804842-001
Parameter	Unit	DF	Result	Expected/Adde		ecovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	1.01	1.10(1.00)		90.5	90 - 110	
Matrix Spike							Lab ID =	804842-002
Parameter	Unit	DF	Result	Expected/Adde	ed R	ecovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	1.03	1.08(1.00)		94.9	90 - 110	
Matrix Spike							Lab ID =	804842-002
Parameter	Unit	DF	Result	Expected/Adde	ed R	ecovery		ance Range
Chromium, Hexavalent	ug/L	5.00	4.94	5.12(5.00)		96.5	90 - 110	
Matrix Spike							Lab ID =	804842-003
Parameter	Unit	DF	Result	Expected/Adde		ecovery		ance Range
Chromium, Hexavalent	ug/L	1.00	0.982	1.00(1.00)		98.2	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 6 of 11 Printed 12/10/2012

Metals by EPA 200.8, T	otal		Batch	120412A			
Parameter		Unit	Ana	lyzed D	F MDL	RL	Result
804841-001 Chromium		ug/L	12/04	/2012 12:17 2.5	50 0.230	1.0	ND
Method Blank							
Parameter	Unit	DF	Result				
Chromium	ug/L	1.00	ND				
Duplicate						Lab ID =	804841-001
Parameter	Unit	DF	Result	Expected	RPD		ance Range
Chromium	ug/L	2.50	ND	0	0	0 - 20	
Low Level Calibration	n Verification						
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Chromium	ug/L	1.00	0.168	0.200	84.2	70 - 130)
Lab Control Sample	r. :						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	44.9	50.0	89.9	85 - 11	5
Matrix Spike						Lab ID =	804841-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	•	ance Range
Chromium	ug/L	2.50	49.4	50.0(50.0)	98.9	75 - 12	5
Matrix Spike Duplica	ate					Lab ID =	804841-001
Parameter	Unit	DF	Result	Expected/Added	d Recovery	Accepta	ance Range
Chromium	ug/L	2.50	48.5	50.0(50.0)	97.0	75 - 12	5
MRCCS - Secondar	у						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	19.4	20.0	97.2	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	18.3	20.0	91.4	90 - 11	0
Interference Check	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	ND	0			
Interference Check	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	ND	0			


Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 8 of 11 Printed 12/10/2012

Parameter 804841-001 Manganese		Unit	Anal	yzed DF	MDL	RL	Result
		1100/1					
		ug/L	12/03	/2012 00:44 2.5	0 0.215	0.50	1.3
Method Blank							
Parameter	Unit	DF	Result				
Manganese	ug/L	1.00	ND				
Duplicate						Lab ID =	304841-001
Parameter	Unit	DF	Result	Expected	RPD	•	nce Range
Manganese	ug/L	2.50	1.44	1.30	10. 4	0 - 20	
Low Level Calibration Ver	rification						
Parameter	Unit	DF	Result	Expected	Recovery		nce Range
Manganese	ug/L	1.00	0.182	0.200	91.1	70 - 130	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	•	nce Range
Manganese	ug/L	2.50	43.9	50.0	87.8	85 - 115	
Matrix Spike						Lab ID =	804841-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	•	nce Range
Manganese	ug/L	2.50	48.2	51.3(50.0)	93.9	75 - 125	
Matrix Spike Duplicate						Lab ID =	804841-001
Parameter	Unit	DF	Result	Expected/Added	Recovery		nce Range
Manganese	ug/L	2.50	49.0	51.3(50.0)	95.5	75 - 125	
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery		nce Range
Manganese	ug/L	1.00	20.3	20.0	102	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	•	nce Range
Manganese	ug/L	1.00	19.6	20.0	98.2	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	•	nce Range
Manganese	ug/L	1.00	19.6	20.0	98.2	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	•	nce Range
Manganese	ug/L	1.00	20.1	20.0	100	90 - 110	1

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 10 of 11 Printed 12/10/2012

Batch 11TDS12C Total Dissolved Solids by SM 2540 C MDL RL Result Analyzed DF Unit Parameter 1.00 250 4050 0.757 mg/L 804841-001 Total Dissolved Solids 11/15/2012 Method Blank Unit DF Result Parameter 1.00 ND mg/L Total Dissolved Solids Lab ID = 804779-006 Duplicate **RPD** Acceptance Range Expected Unit DF Result Parameter 1.02 0 - 101.00 1960 1940 **Total Dissolved Solids** mg/L Lab ID = 804841-001 **Duplicate RPD** Acceptance Range Unit DF Result Expected Parameter 0 - 104090 4050 0.983 **Total Dissolved Solids** mg/L 1.00 Lab Control Sample Acceptance Range Expected Recovery DF Result Unit Parameter 97.8 90 - 110 1.00 489 500 mg/L **Total Dissolved Solids** Batch 11TUC12G Turbidity by SM 2130 B Result DF MDL RL Unit Analyzed Parameter 0.0140 0.100 ND 1.00 11/15/2012 NTU 804841-001 Turbidity Method Blank DF Result Unit Parameter ND 1.00 NTU Turbidity Lab ID = 804841-001 Duplicate **RPD** Acceptance Range Expected DF Result Unit Parameter 0 - 20ND 0 0 NTU 1.00 **Turbidity** Lab Control Sample Acceptance Range Recovery Result Expected Unit DF Parameter 90 - 1108.00 96.0 7.68 1.00 NTU Turbidity Lab Control Sample Duplicate Recovery Acceptance Range Expected DF Result Parameter Unit 90 - 110 97.8 7.82 8.00 NTU 1.00 Turbidity

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

Page 11 of 11

Project Number: 456827.01.DM

Printed 12/10/2012

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

√ Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 11TDS12C Date Analyzed: 11/15/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
Blank	100	72.3862	72.3865	72.3864	0.0001	No	0.0002	2.0	25.0	ND	1
804778-1	100	73.5925	73.6252	73.6249	0.0003	No	0.0324	324.0	25.0	324.0	1
804778-2	100	68.8014	68.828	68.828	0.0000	No	0.0266	266.0	25.0	266.0	1
804778-3	100	74.1546	74.1808	74.1807	0.0001	No	0.0261	261.0	25.0	261.0	1
804778-4	100	67.1002	67.1340	67.1339	0.0001	No	0.0337	337.0	25.0	337.0	1
804779-1	50	52.0701	52.1342	52.1341	0.0001	No	0.0640	1280.0	50.0	1280.0	1
804779-2	100	76.5405	76.5837	76.5834	0.0003	No	0.0429	429.0	25.0	429.0	1
804779-3	100	65,6664	65.7079	65.7077	0.0002	No	0.0413	413.0	25.0	413.0	1
804779-4	100	74.7263	74.7689	74.7689	0.0000	No	0.0426	426.0	25.0	426.0	1
804779-5	100	74.7055	74.736	74.7359	0.0001	No	0.0304	304.0	25.0	304.0	1
804779-6	50	50.5707	50.6676	50.6675	0.0001	No	0.0968	1936.0	50.0	1936.0	1
804779-6D	50	51.8945	51.9925	51.9925	0.0000	No	0.0980	1960.0	50.0	1960.0	1
LCS	100	75.2763	75.3256	75.3252	0.0004	No	0.0489	489.0	25.0	489.0	1
804800-1	50	49.9071	49.9576	49.9575	0.0001	No	0.0504	1008.0	50.0	1008.0	1
804800-2	50	52.0432	52.1042	52.1039	0.0003	No	0.0607	1214.0	50.0	1214.0	1
804800-3	50	50.5602	50.6242	50.6242	0.0000	No	0.0640	1280.0	50.0	1280.0	1
804800-4	50	49.8219	49.8775	49.8772	0.0003	No	0.0553	1106.0	50.0	1106.0	1
804800-5	50	48.0043	48.0805	48.0802	0.0003	No	0.0759	1518.0	50.0	1518.0	1
804841	10	51.8588	51.8993	51.8993	0.0000	No	0.0405	4050.0	250.0	4050.0	1
804841D	10	49.5005	49.5414	49.5414	0.0000	No	0.0409	4090.0	250.0	4090.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

$$\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$$

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	489	500	97.8%	90-110%	Yes
LCSD				·	

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804779-6	0.0968	0.098	0.6%	≤5%	Yes
804841	0.0405	0.0409	0.5%	5%	Yes

Jenny T.

Analyst Printed Name

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) \times 10^{-1}$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

$$\% \text{ Difference} = \frac{\left| \frac{A \text{ or } B = C}{A} \right|}{C} \times 100$$

where

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Matsim -Hope-T___

Reviewer Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS12C
Date Analyzed: 11/15/12

EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
524	0,62	340.6	0.95
444	0.60	288.6	0.92
457	0.57	297.05	0.88
525	0.64	341.25	0.99
1811	0.71	1177.15	1.09
651	0.66	423.15	1.01
678	0.61	440.7	0.94
695	0.61	451.75	0.94
521	0.58	338.65	0.90
2920	0.66	1898	1.02
2920	0.67	1898	1.03
1550	0.65	1007.5	1.00
1820	0.67	1183	1.03
1930	0.66	1254.5	1.02
1740	0.64	1131	0.98
2380	0.64	1547	0.98
7420	0.55	4823	0.84
7420	0.55	4823	0.85
			-
	524 444 457 525 1811 651 678 695 521 2920 2920 1550 1820 1930 1740 2380 7420	524 0.62 444 0.60 457 0.57 525 0.64 1811 0.71 651 0.66 678 0.61 695 0.61 521 0.58 2920 0.66 2920 0.67 1550 0.65 1820 0.67 1930 0.66 1740 0.64 2380 0.64 7420 0.55	EC IDS/EC Ratio: 0.559 TDS (EC*0.65) 524 0.62 340.6 444 0.60 288.6 457 0.57 297.05 525 0.64 341.25 1811 0.71 1177.15 651 0.66 423.15 678 0.61 440.7 695 0.61 451.75 521 0.58 338.65 2920 0.66 1898 2920 0.67 1898 1550 0.65 1007.5 1820 0.67 1183 1930 0.66 1254.5 1740 0.64 1131 2380 0.64 1547 7420 0.55 4823

COMPANY

ADDRESS

PHONE

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-387]

TURNAROUND TIME COC Number

COMMENTS

씅

PAGE

10 Days

NUMBER OF CONTAINERS DATE 11/13/12 Turbidily (SM2730) CIG (218.6) Lab Filtered DESCRIPTION FAX (530) 339-3303 TEAM 344 TIME C. Krught 155 Grand Ave Ste 1000 DATE Oakland, CA 94612 (530) 229-3303 PG&E Topock 456827.01.DM SAMPLERS (SIGNATURE 臣 PROJECT NAME P.O. NUMBER

SE CONTROLLE CON See Form Attached

0

TOTAL NUMBER OF CONTAINERS

6

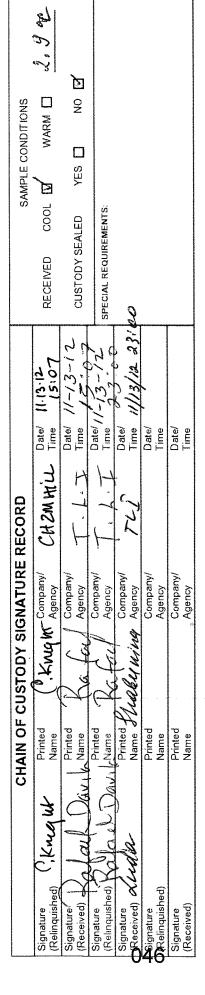
2000

9=H0

m

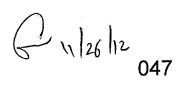
×

×


×

Water

11/13/12


SC-700B-WDR-387

SAMPLE 1.D.

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

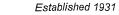
Date	Lab I	Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
11/14/12	८०५	841	٦	2ml/poml (tat	9.5	II AM	6
4/14/12	804	1842-1	9.5	J/A	N/A	NA	6
		-2 -3					1
	· .	-3					·
		-7					
		5					
		- 6					
		-7					
V	4	8	<u> </u>	4	4	4	7
11 14 12	804	843-1	9.5	~/A	~/A	NA	مشا
	-+	-2		<u> </u>	-		
<u> </u>		-3	\ -				
		4			ļ <u>'</u>		
		~5				·	
		<u>r</u>					
		-8					
		P-					
		cl					
		-12					_
		-13	<u> </u>				_
		-i4					
	-	_10		·			
		-13				, , , , , , , , , , , , , , , , , , , ,	
		-10					
			V		4	7	4
			i				
	· · · · · · · · · · · · · · · · · · ·						
L					L		

			Turbi	dity/pH C	heck			
Sample Number	Turbidity	pН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
804779 (1-6)	41	<2	11/09/12	M.M	30 10 A			
804745		Î		1				
1/147 49								
804 I R1								
104193								
20195		,						
804194	y-	<i>y</i>	V	1/	1/			
204 700	41	12	11/12/12	u. N	3010#			
204800	7	1/	110	W.	1/			
204325		< 2	10/2/12	M. M	3010.A			
8043321-9	< 1 1 1 .	1/	16 17 11	1	30(04			
301 300	-, -	<u> </u>	10 116/12			1.		
104328(1-5	4, 1		10 110/12			'>		
	 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
804330 (1-4	/ //	- /-	 	<u> </u>	//			
804331 11-3	/_ y	<u>ک</u> کـ	111).	W	<i>V</i>	(1:3/m		PH<2
804803(1-2,4)	41	<u> </u>	11/13/12	1 7	NO	- 1 Jupur	11-24	VIII A
304812	41		11/13/12	<u> </u>	4	<u> </u>	1/19/12/23	PHEL
804817	>,1	- 42	11/1/2	MM	3010A		•	,
04825			ļ <u>`</u>	 				
8048334			1					
804835			ļ .	`				
804849	<i>y</i>	<u> </u>						
804851	71	72	JV ,	<i>y</i>				
8048496	21	72	11/18/12	MM	30101			
804 842 748	101,	<2						
80484311-18	1							
804 844 11-1		_1/_	J.	V	V			
204840 (1-3)	4	△2	11/19/12	KK	No	@ 130pm	5H<2	17-23-12
04839	1		1 1					
RAU 859 (10-12)								
104862(1-3)	1	V	1	Y		\mathbf{V}	<u> </u>	
304820-6	41	72	11/19/12	ES	NO	24:00	•	
804887	41	41	l		yu			
804898	1.				1			
804896			·		+	0		
804898 804896 804927 (1-3)		72	L		No	ev:10	11-23-12	PHKZ
gul 966	フィ	L2	11/21/12	ES .	ys 3010A	3010"		
804957	L	J	1		<i>*</i> 1			
804 @ 73(1-5)	<1	42	11/21-12	BE	30 (0 A			
8 14 91461-2)		Ĺ	7	10	.1			
4049555678	, . \		7	· · · · · · · · · · · · · · · · · · ·	*			
904 161 W-3)	<1	>2	11-23-12	BE	NO	wg:com		
304982 (10-12)	1		J	<i>DD</i>	J	J. An		
てんほり5イフ / 1ュニ1フ !!	• •		114		. <i>u</i>	1 1		

- Notes:

 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

 2. All Total Recoverable Analytes must be pH adjusted and digested.


 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CII	ient: <u>E 2</u>	Lab # <u>804841</u>
Da	te Delivered: <u>//</u> / <u>/ /</u> 3/ 12	Field Service
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No □N/A
3.	Are there any special requirements or notes on the COC?	□Yes □No □N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	EYes DNo DN/A
6 .	Were samples received in a chilled condition? Temperature (if yes)? Location C	☑Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	daYes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No đ∏N/A
9.	Does the number of samples received agree with COC?	ØİYes □No □N/A
10.	Did sample labels correspond with the client ID's?	AYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	□Yes □No ∞ ≦ N/A
12.	Were samples pH checked? pH = Sec C.O.C.	Yes ONO ONA
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ATYes ONO ONA
14.	Have Project due dates been checked and accepted? Tum Around Time (TAT): □ RUSH ☑ Std	,⊈Yes □No □N/A
15 .	Sample Matrix: □Liquid □Drinking Water □Ground W □Sludge □Soil □Wipe □Paint □Solid	, 1 / /
6.	Comments:	
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	L. Shakeenine

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 14, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3Plant-WDR-388 PROJECT, GROUNDWATER

MONITORING, TLI NO.: 804967

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-388 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 20, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

The sample receipt temperature was recorded as being 8°C.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

سر لرار Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

Laboratory No.: 804967

Date: December 14, 2012 Collected: November 20, 2012 Received: November 20, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	George Wahba

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 804967

Date Received: November 20, 2012

Analytical Results Summary

ab Sample ID Field ID) Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
304967-001	SC-700B-WDR-388 E120.1	E120.1	NONE	11/20/2012	11:30	EC	7390	nmhos/cm	2.00
304967-001	SC-700B-WDR-388	E200.8	NONE	11/20/2012	11:30	Chromium	N	ng/L	1.0
304967-001	SC-700B-WDR-388	E200.8	NONE	11/20/2012	11:30	Manganese	1.2	ug/L	0.50
304967-001	SC-700B-WDR-388	E218.6	LABFLT	11/20/2012	11:30	Chromium, Hexavalent	QN	ug/L	0.20
304967-001	SC-700B-WDR-388	SM2130B	NONE	11/20/2012	11:30	Turbidity	Q) NTO	0.100
304967-001	SC-700B-WDR-388	SM2540C	NONE	11/20/2012	11:30	Total Dissolved Solids	4170	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results:

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 7

Printed 12/14/2012

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No. 804967

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Jennifer Low

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Specific Conductivity

Samples Received on 11/20/2012 8:30:00 PM

Collected Field ID Lab ID Matrix Water SC-700B-WDR-388 804967-001 11/20/2012 11:30 Batch 11EC12H Specific Conductivity - EPA 120.1 DF MDL Unit Analyzed RL Result Parameter 804967-001 Specific Conductivity umhos/cm 11/23/2012 1.00 0.116 2.00 7390 Method Blank DF Parameter Unit Result umhos 1.00 ND Specific Conductivity Lab ID = 804967-001 Duplicate Acceptance Range Unit DF Result Expected **RPD** Parameter 7400 7390 0.135 Specific Conductivity umhos 1.00 0 - 10Lab Control Sample DF Expected Recovery Acceptance Range Parameter Unit Result 706 90 - 110 Specific Conductivity umhos 1.00 701 99.3 MRCCS - Secondary DF Expected Parameter Unit Result Recovery Acceptance Range 706 98.0 90 - 110 Specific Conductivity umhos 1.00 692 MRCVS - Primary Unit DF Result Expected Recovery Acceptance Range Parameter

970

996

97.4

90 - 110

1.00

umhos

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 2 of 7 Printed 12/14/2012

Chrome VI by EPA 218.6	3		Batch	11CrH12L			
Parameter	and a speciment of the control of the second	Unit	Ana	lyzed [OF MD	L RL	Result
804967-001 Chromium, Hex	avalent	ug/L	11/23	/2012 10:26 1	00 0.0092	0 0.20	ND
Method Blank							
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND				
Duplicate						Lab ID =	804968-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.5	Expected 10.6	RPD 0.937	Accepta 0 - 20	ance Range
Low Level Calibration	Verification	P POS 45 G					
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.185	Expected 0.200	Recovery 92.5	Accepta 70 - 130	ance Range)
Lab Control Sample							
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.84	Expected 5.00	Recovery 96.8	90 - 110	
Matrix Spike						Lab ID =	804844-013
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 174	Expected/Adde 177(100)	d Recovery 97.3	Accepta 90 - 110	ance Range)
Matrix Spike						Lab ID =	804844-014
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 178	Expected/Adde 181(100)	d Recovery 97.6	Accepta 90 - 110	ance Range)
Matrix Spike						Lab ID =	804967-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.14	Expected/Adde 1.15(1.00)	d Recovery 98.7	Accepta 90 - 110	ance Range)
Matrix Spike						Lab ID =	804968-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 19.1	Expected/Adde 19.8(10.0)	d Recovery 92.6	Accepta 90 - 110	ance Range)
Matrix Spike						Lab ID =	804968-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 30.4	Expected/Adde 31.4(25.0)	d Recovery 96.1	Accepta 90 - 110	ance Range)
Matrix Spike			enge Visit			Lab ID =	804968-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.0300	Result 25.0	Expected/Adde 25.6(15.0)	d Recovery 95.8	Accepta 90 - 110	ance Range)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Printed 12/14/2012

Page 4 of 7

Metals by EPA 200.8, Total Parameter		Unit	Ana	lyzed l	DF	MDL	RL	Result
804967-001 Chromium		ug/L		J	.50	0.230	1.0	ND
		_			.50	0.230	0.50	1.2
Manganese		ug/L	12/00	72012 00.33 2		0.2.13	0.50	1.4
Method Blank								
Parameter	Unit	DF	Result					
	ug/L	1.00	ND					
•	ug/L	1.00	ND					
Low Level Calibration Ver	ification							
Parameter	Unit	DF	Result	Expected		Recovery		ance Range
Chromium	ug/L	1.00	0.200	0.200		99.8	70 - 130	
Manganese	ug/L	1.00	0.187	0.200		93.3	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	2.50	49.8	50.0		99.6	85 - 115	5
Manganese	ug/L	2.50	47.9	50.0		95.7	85 - 115	5
Matrix Spike							Lab ID =	804967-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	50.6	50.0(50.0)		101	75 - 125	5
Manganese	ug/L	2.50	47.6	51.2(50.0)		92.9	75 - 125	5
Matrix Spike Duplicate							Lab ID =	804967-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
	ug/L	2.50	49.5	50.0(50.0)		99.0	75 - 12	5
	ug/L	2.50	46.9	51.2(50.0)		91.4	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
	ug/L	1.00	20.2	20.0		101	90 - 110)
Manganese	ug/L	1.00	19.4	20.0		96.8	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
	ug/L	1.00	18.8	20.0		94.2	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
	ug/L	1.00	19.3	20.0		96.7	90 - 110	-

Client: E2 Consulting E	ngineers, In	c.	Project Name: Project Numbe	PG&E Topo r: 456827.01.E	=	ct		age 6 of 7 2/14/2012
Interference Check S	Standard AB							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Manganese	ug/L	1.00	19.7	20.0		98.3	80 - 120)
Interference Check S	Standard AB							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Manganese	ug/L	1.00	19.6	20.0		97.8	80 - 120)
Total Dissolved Solids	by SM 254	0 C	Batch	11TDS12E				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
804967-001 Total Dissolved	l Solids	mg/L	_ 11/27	7/2012	1.00	0.757	250	4170
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	804967-001
Parameter	Unit	DF	Result	Expected	ļ	RPD	Accepta	ince Range
Total Dissolved Solids	mg/L	1.00	4130	4170		0.964	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Total Dissolved Solids	mg/L	1.00	496	500		99.2	90 - 110)
Turbidity by SM 2130 B	ľ		Batch	11TUC12L				
Parameter		Unit	: Ana	ılyzed	DF	MDL	RL	Result
804967-001 Turbidity		NTU	11/21	1/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	804967-001
Parameter	Unit	DF	Result	Expected	ı	RPD	Accepta	in <mark>c</mark> e Range
Turbidity	NTU	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	1	Recovery	•	ince Range
Turbidity	NTU	1.00	7.53	8.00		94.1	90 - 110)
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	l	Recovery	•	ince Range
Turbidity	NTU	1.00	7.35	8.00		91.9	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 7 of 7

Printed 12/14/2012

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

fa - Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 11TDS12E Date Analyzed: 11/27/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	111.3976	111.3981	111.3979	0.0002	No	0.0003	3.0	25.0	ND	1
804967	10	46.9842	47.0262	47.0259	0.0003	No	0.0417	4170.0	250.0	4170.0	1
805003	100	76.8032	76.8708	76.8707	0.0001	No	0.0675	675.0	25.0	675.0	1
804967D	10	75.2924	75.334	75,3337	0.0003	No	0.0413	4130.0	250.0	4130.0	1
LCS	100	73.8032	73.8528	73.8528	0.0000	No	0.0496	496.0	25.0	496.0	1
					_						
		-									

											*
	Í										

Calculation as follows:

Filterable residue (TDS), mg/L =

 $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

<u>Lubolucoi</u>	, 00:11:10:00	mpic /200	, our min	7	
QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	496	500	99.2%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
804967	0.0417	0.0413	0.5%	≤5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) \times 10^{-10}$$

LC = Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

where

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim Hope T.

Reviewer Printed Name

Jenny T.

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS12E |
Date Analyzed: 11/27/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
804967	7400	0.56	4810	0.87
805003	982	0.69	638.3	1.06
804967D	7400	0.56	4810	0.86
LCS				
	•			
			-	
				
			-	
			-	
			-	

204967 CHAIN OF CUSTODY RECORD

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

[IM3Plant-WDR-388]

10 Days PAGE 1 TURNAROUND TIME DATE 11/20/12 COC Number

COMPANY	E2							/			/	/	/	/ /	/	_		STATISTICS	
PROJECT NAME	PG&E Topock										 						-	COMMEN	
PHONE	(530) 229-3303		FAX (530) 339-3303	339-3303				_							_	_			
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 612					UW:	(102								TAINERS			
P.O. NUMBER	456827.01.DIM		TEAM	-	b Filtered	DO. 7) CI	Siance (S			(Oc						NOOS			
SAMPLERS (SIGNATURE	ATURE TANK		Mail !		9.6)	is) s _{lejej}	npuos	00 tS ZW	ZWS) X						975	0 V=			
SAMPLE I.D.		DATE	TIME	DESCRIPTION	CE (S)	NIBOT	Mosur 201	200	Turbidiu				/	/	N_{NN}				
SC-700B-WDR-388	R-388	11/20/12	08:11	Water	×	×	×		×						ო	Ha)/ =	(2003.7)	
															ω	, TOTAL	NUMBER	OTAL NUMBER OF CONTAINERS	S

For Sample Concerns See Form Attacks See

15	CHAIN OF CUSTODY SIGNATU	SNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed Name South	Company/ Om/	Date! 11/20-12 Time 14:50	RECEIVED COOL & WARM
Signature (Received)	Printed H10116	Company! H	Date 1/- 10-19 Time 14:50	CUSTODY SEALED YES 🔲 NO 🗹
Signature (Relinquished)	Name 7 (1)	Company/ / //	Time 20:26	SPECIAL REQUIREMENTS:
Signature / // Received)	Printed R	Company/ F.C. Agency	Date/ 11-70-17 Time 20:30	
Signature Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Duffered	[[mix: -1-
	४०५७५ प	Q.5	M/A	NA	Time Buffered	Initials
11/4/12	804800-1	9.5	NA	NIA	N/A	7
1111	-2		7//		7//1	-6-
	-3					
	-4					
J.	45	,				
11/14/12	8-4843	9.5	N/A	NIA	N/1A	0
11/2/12	804967	7	2 ml/ 100 ml (Tit	4) 9.5	10:15 Am	Cul
11/21/12	804968-1	9.5	NA	NA	~//A	0
1	1 -2		1	î	- /V / · ·	3
	~3					
	1 -4					
	-5					
	V -6	J	J :	7	J	4
		and the same and t)	
			/	/		
					÷	
-		:				
				·		

G11/4/12


m 127-12

ne of 2nd Comments
ried attel filt

- Notes:

 Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

Clie	nt: <u>EZ</u>	Lab # <u>8979</u>
Date	Delivered: // /20/12 Time: 20:30 By: □Mail ©	Field Service
ļ.	Was a Chain of Custody received and signed?	MYes □No □N/A
•	Does Customer require an acknowledgement of the COC?	□Yes □No ⊠N/A
	Are there any special requirements or notes on the COC?	□Yes □No ¤N/A
٠	If a letter was sent with the COC, does it match the COC?	□Yes □No □N/A
	Were all requested analyses understood and acceptable?	ØYes □No □N/A
	Were samples received in a chilled condition? Temperature (if yes)? $\underline{\mathcal{S} \circ \mathbf{C}}$	☑Yes □No □N/A
	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Mayes □No □N/A
	Were sample custody seals intact?	□Yes □No Þ/N/A
	Does the number of samples received agree with COC?	ØYes □No □N/A
	Did sample labels correspond with the client ID's?	Ø¥es □No □N/A
	Did sample labels indicate proper preservation? Preserved (if yes) by: □ Truesdail □ Client	□Yes ⊠No □N/A
	Were samples pH checked? pH = <u>See</u> LOC	∕ÄYes □No □N/A
	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØYes □No □N/A
	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ДФStd	ØYes □No □N/A
	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground W □Sludge □Soil □Wipe □Paint □Solid ⁄️ဩC	Vater Waste Water Other Worker
	Comments:	

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 12, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-389 PROJECT, GROUNDWATER

MONITORING, TLI No.: 805017

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-389 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 27, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

10 - Mona Nassimi

Manager, Analytical Services

Miduel An

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

Laboratory No.: 805017

Date: December 12, 2012 Collected: November 27, 2012 Received: November 27, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Established 1931

Date Received: November 27, 2012 Laboratory No.: 805017

Project Name: PG&E Topock Project

P.O. No.: 456827.01.DM

Project No.: 456827.01.DM

Analytical Results Summary

곱	2.00 1.0 0.50 0.20 0.100
Units	umhos/cm ug/L ug/L ug/L NTU
Result	7440 ND 3.1 ND ND 0.102
Parameter	EC Chromium Manganese Chromium, Hexavalent Turbidity Total Dissolved Solids
Sample Time	4:10 4:10 4:10 4:10 6:41 6:10
Sample Date	11/27/2012 11/27/2012 11/27/2012 11/27/2012 11/27/2012
Extraction Method	NONE NONE NONE LABFLT NONE
Analysis Method	E120.1 E200.8 E200.8 E218.6 SM2130B SM2540C
) Field ID	SC-700B-WDR-389 E120.1 SC-700B-WDR-389 E200.8 SC-700B-WDR-389 E200.8 SC-700B-WDR-389 SM2130 SC-700B-WDR-389 SM2130
Lab Sample ID Field ID	805017-001 805017-001 805017-001 805017-001 805017-001

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 7

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 12/12/2012

Laboratory No. 805017

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 11/27/2012 10:00:00 PM

Field ID Lab ID Collected Matrix SC-700B-WDR-389 805017-001 11/27/2012 14:10 Water Batch 11EC12I Specific Conductivity - EPA 120.1 Parameter Unit Analyzed DF MDL RL Result 805017-001 Specific Conductivity umhos/cm 11/28/2012 1.00 0.116 2.00 7440 Method Blank Unit DF Result Parameter Specific Conductivity umhos 1.00 ND Lab ID = 805017-001 Duplicate Parameter Unit DF Result Expected **RPD** Acceptance Range 7440 7440 0 0 - 10umhos 1.00 Specific Conductivity Lab Control Sample DF Expected Parameter Unit Result Recovery Acceptance Range Specific Conductivity umhos 1.00 702 706 99.4 90 - 110 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Range 701 706 99.3 90 - 110 Specific Conductivity umhos 1.00 MRCVS - Primary DF Unit Expected Recovery Acceptance Range Parameter Result umhos 1.00 986 996 99.0 90 - 110 Specific Conductivity

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 2 of 7 Printed 12/12/2012

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
305017-001 Chromium, Hex	avalent	ug/L	12/01	/2012 12:20 1	.00	0.00920	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	805019-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Chromium, Hexavalent	ug/L	10.0	209	209		0.0161	0 - 20	
Low Level Calibration	Verification	l _.						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.191	0.200		95.6	70 - 130	_
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	4.80	5.00		95.9	90 - 110	1
Matrix Spike							Lab ID =	805017-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	1.08	1.12(1.00)		95.9	90 - 110	1
Matrix Spike							Lab ID =	805018-002
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	10.0	361	367(200)		97.0	90 - 110	ı
Matrix Spike							Lab ID =	805019-002
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.00	146	149(75.0)		96.7	90 - 110	
Matrix Spike							Lab ID =	805020-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.954	1.00(1.00)		95.4	90 - 110	
Matrix Spike							Lab ID =	805020-003
Parameter	Unit	DF	Result	Expected/Adde	d R	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	50.0	1380	1430(750)		93.5	90 - 110	
Matrix Spike							Lab ID =	805020-004
Parameter	Unit	DF	Result	Expected/Adde	d R	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	250	6650	6770(3750)		96.9	90 - 110	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG

PG&E Topock Project

Project Number: 456827.01.DM

Page 4 of 7 Printed 12/12/2012

Parameter		Unit	Ana	lyzed D	F	MDL	RL	Result
805017-001 Chromium		ug/L	12/08	/2012 09:09 2.5	50	0.230	1.0	ND
Manganese		ug/L	12/08	/2012 09:09 2.5	50	0.215	0.50	3.1
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Low Level Calibration	Verification) i						
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	nce Range
Chromium	ug/L	1.00	0.200	0.200	9	99.8	70 - 130)
Manganese	ug/L	1.00	0.187	0.200	9	93.3	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Chromium	ug/L	2.50	49.8	50.0	9	99.6	85 - 115	;
Manganese	ug/L	2.50	47.9	50.0	9	95.7	85 - 115	i
Matrix Spike							Lab ID =	804967-001
Parameter	Unit	DF	Result	Expected/Added	Re	covery	Accepta	nce Range
Chromium	ug/L	2.50	50.6	50.0(50.0)	1	01	75 - 125	i
Manganese	ug/L	2.50	47.6	51.2(50.0)	9	92.9	75 - 125	;
Matrix Spike Duplicat	e ·						Lab ID =	804967-001
Parameter	Unit	DF	Result	Expected/Added	Re	covery	Accepta	nce Range
Chromium	ug/L	2.50	49.5	50.0(50.0)	9	9.0	75 - 125	i
Manganese	ug/L	2.50	46.9	51.2(50.0)	9	1.4	75 - 125	i
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Chromium	ug/L	1.00	20.2	20.0	1	01	90 - 110	
Manganese	ug/L	1.00	19.4	20.0	9	6.8	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Chromium	ug/L	1.00	18.8	20.0	9	4.2	90 - 110	_
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	nce Range
Chromium	ug/L	1.00	19.3	20.0	9	6.7	90 - 110	_

Client: E2 Consulting E	ngineers, In		roject Name: roject Numbe	PG&E Topo er: 456827.01.[-	Page 6 of 7 Printed 12/12/2012
Interference Check S	Standard AB					
Parameter Manganese Interference Check S	Unit ug/L Standard AB	DF 1.00	Result 19.7	Expected 20.0	Recovery 98.3	Acceptance Range 80 - 120
Parameter Manganese	Unit ug/L	DF 1.00	Result 19.6	Expected 20.0	Recovery 97.8	Acceptance Range 80 - 120
Total Dissolved Solids Parameter	by SM 254	0 C Unit		ı 11TDS12F ilyzed	DF MDI	L RL Result
805017-001 Total Dissolved	Solids	mg/L		9/2012	1.00 0.757	250 4300
Method Blank	u sa Baaran.			1414		1885 - 188
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND			
Duplicate						Lab ID = 805017-001
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 4260	Expected 4300	RPD 0.934	Acceptance Range 0 - 10
Lab Control Sample Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 490	Expected 500	Recovery 98.0	Acceptance Range 90 - 110
Turbidity by SM 2130 B			Batch	12TUC12O		
Parameter		Unit		lyzed	DF MDI	_ RL Result
805017-001 Turbidity		NTU	11/28	3/2012	1.00 0.0140	0.100 0.102
Method Blank		:41				, Amien
Parameter Turbidity	Unit NTU	DF 1.00	Result ND			
Duplicate						Lab ID = 805017-001
Parameter Turbidity	Unit NTU	DF 1.00	Result 0.104	Expected 0.102	RPD 1.94	Acceptance Range 0 - 20
Lab Control Sample	11-4	DE	Decul	Cyna ata d	December:	Accenteres Deser
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.44	Expected 8.00	Recovery 93.0	Acceptance Range 90 - 110
Lab Control Sample					22.0	
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.53	Expected 8.00	Recovery 94.1	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 7 of 7

Project Number: 456827.01.DM Printed 12/12/2012

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

0

Calculations

Batch: 11TDS12F Date Analyzed: 11/29/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
Blank	100	70.3202	70.3205	70.3204	0.0001	No	0.0002	2.0	25.0	ND	1
805017	10	72.6379	72.6812	72.6809	0.0003	No	0.0430	4300.0	250.0	4300.0	1
805024-1	490	103.4140	103.4164	103,4164	0.0000	No	0.0024	4.9	5.1	ND	1
805032-1	20	51.0530	51.0958	51.0958	0.0000	No	0.0428	2140.0	125.0	2140.0	1
805032-2	20	51.4317	51.4792	51.4788	0.0004	No	0.0471	2355.0	125.0	2355.0	1
805053	10	47.2202	47.2767	47.2766	0.0001	No	0.0564	5640.0	250.0	5640.0	1
805054	10	50.7017	50.7662	50.7659	0.0003	No	0.0642	6420.0	250.0	6420.0	1
805055	10	50.9449	51.0057	51.0057	0.0000	No	0.0608	6080.0	250.0	6080.0	1
805056	10	50.4922	50.5425	50.5423	0.0002	No	0.0501	5010.0	250.0	5010.0	1
805057	10	48.9966	49.0566	49.0566	0.0000	No	0.0600	6000.0	250.0	6000.0	1
805058	55	50.1537	50.2349	50.2347	0.0002	No	0.0810	16200.0	500.0	16200.0	1
805017D	10	50.9551	50.9982	50.9977	0.0005	No	0.0426	4260.0	250.0	4260.0	1
LCS	100	111.4192	111.4684	111.4682	0.0002	No	0.0490	490.0	25.0	490.0	1
805059	10	75.7565	75.8055	75.8054	0.0001	No	0.0489	4890.0	250.0	4890.0	1
805060	10	47.5141	47.5664	47.5662	0.0002	No	0.0521	5210.0	250.0	5210.0	1
805058D	5	50.1265	50,2066	50.2064	0.0002	No	0.0799	15980.0	500.0	15980.0	1
		<u> </u>									

Calculation as follows:

Filterable residue (TDS), mg/L =

 $\left(\frac{A-B}{C}\right) x \ 1 \ 0^6$

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	490	500	98.0%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
805017	0.043	0.0426	0.5%	≤5%	Yes
805058	0.081	0.0799	0.7%	5%	Yes

Jenny T.

Analyst Printed Name

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \, 100$$

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{A \text{ or } B - C}{C} \times 10$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g). Maksim

Hope T.

Reviewer Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 11TDS12F |
Date Analyzed: 11/29/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
805017	7430	0.58	4829.5	0.89
805024-1	16.3	ND	10.595	ND
805032-1	3610	0.59	2346.5	0.91
805032-2	4120	0.57	2678	0.88
805053	7020	0.80	4563	1.24
805054	8350	0.77	5427.5	1.18
805055	8060	0.75	5239	1.16
805056	6520	0.77	4238	1.18
805057	8080	0.74	5252	1.14
805058	23200	0.70	15080	1.07
805017D	7430	0.57	4829.5	0.88
LCS				
805059	6420	0.76	4173	1.17
805060	6570	0.79	4270.5	1.22
805058D	23200	0.69	15080	1.06
	9,79 Van .	731-34		
		and the second s		
		777		

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-389]

TURNAROUND TIME COC Number

96 10 Days PAGE 1 DATE 11/27/12 210508

COMPANY	E2							•	_	_	 	_	 _	_	_	_	-		
PROJECT NAME	PG&E Topock						_				 		 					W 000	COMMENTS
PHONE	(530) 229-3303		FAX (530	FAX (530) 339-3303							 		 				_		
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 4612	***************************************			DE DE	UN Y	(1501)							TAINERS	SABNIAT			
P.O. NUMBER	456827.01.DM		TEAM	-		D Fifter	(2 n)	aye.	_	(08)			 _			Voo.			
SAMPLERS (SIGNATURE	ATURE	ر ان ت	C. Kunglit		2/(98	K) SIRJE	Condu	00 tg ZV	_	12min			 \		10 A3	10			
SAMPLE I.D.		DATE	TIME	DESCRIPTION	Cro (27)	Total M. Specific	S) SQ1	S) SQ1	(Jibidiu)						BWUN				
SC-700B-WDR-389	ત-38 9	11/27/12	14:10	Water	×	×	×	×	×						3			19=HO	(cw.7)

TOTAL NUMBER OF CONTAINERS

 ω

.	CHAIN OF CUSTODY SIGNATUR	SNATURE	RECORD			SAMI	SAMPLE CONDITIONS	ONS
Signature (Relinquished) C. Churq LL	Printed C. Knight Company Name Agency	Company/ Agency	CH2M.thc	Date/ Time	16.27.12.	RECEIVED COOL []		WARM \ 3.80°C
Signature (Received) of Colonial	Pfinted A	Company/ Agency	エシナ	Date/ /	Date/ //- 27-/2	. CUSTODY SEALED	YES 🗖	Č.
Signature Signature (Relinquished)	Printed O	Company/	+ , +	Date/ //	-27-12	ن ا	1	
Charles Line	10/01	Company/	11.7	Date/	200			
Checeived) Judget 10 Mid	Name KUMEN Printed	Agency Company/	7-1	Time ///	Time 11/2/11/2 22:00	a		
(Relinquished)	Name	Agency		Time	***************************************			
Signature	70	Company/		Date/				
(Received)	Name	Agency		Time	Palves			

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

11 128 12 8050 7 2 m/ 100 m/ 11 128 12 805 0 8 9.5 M/A M	Date	Lab Number	Initial pH	Puffor Addad (ml.)	Final nu	Time Duff- and	I , ,	7 ·
11/28/12 805 018-1 9.5 N/A N/A N/A G-1 11/28/12 805 018-1 9.5 N/A N/A N/A G-1 11/28/12 805 021-1 9.5 N/A N/A N/A G-1 11/28/12 805 021-1 9.5 N/A N/A N/A G-1 11/28/12 805 021-1 9.5 N/A N/A N/A G-1 11/28/12 805 021-1 9.5 N/A N/A N/A N/A HAV 12/104/12	i i			1	1-		Initials	-
11/28/12 805020-1 9.5 N/A N/A N/A GANDA N/A N/A GANDA N/A N/A N/A GANDA N/A N/A N/A GANDA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/			0 6	, , -			5	1
	11/12/8/17	1 1 - 1	1,	N/M	W/N	~ (A	6	-
	1 - 1		0 -	- 10	(1)	4/0	1	-
1	11/28/15	805019-1	1	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N/H	<i></i> //A	6	-
1	44/20/12	011	0 6	1//0		V	7,4,	
11/28/12 805021-1 9.5 N/A N/A N/A G -3 -4 -3 -4 -3 -4 -3 -4 -5 -6 -7 -8 -9 -9 -10 -10 -10 -10 -10 -10	1128112	1 . 1	۹٠۶	<i>N</i> / \(\tau\)	N/A	N/A	رسی	
11 128 12 805021 -1 9.5 N/A N/A N/A G		-2						
11 12 12 805021-1 9.5 N/A N/A N/A G -3 -4 -7 -6 -7 -7 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7								
11/28/12 805021-1 9.5 N/A N/A N/A B -3 -4 -7 -7 -7 -7 -7 -8 -10 11/28/12 805022-1 9.6 N/A N/A N/A N/A HAV -2 -3 -4 -7 -7 -7 -7 -7 -7 -7 -7 -7		 				·	-	
		1				- 		
11/28/12 \$05072-1 9.5 NIA NIA NIA HAV -2 -3 -4 -1 -1 -1 -1 -1 -1 -1 -1 -1			Q E	1//	<u> </u>	- 1	*	
11/12/2/12 \$05072-1 9.5 NIA NIA NIA HAV -2 -3 -4 -1 -7 -8 -1 -1 -9 -1 -1 -1 -1 -1 -1 -1	11/28/112		1,2	- M/A	N/A	NA	6	
11/28/12 805022-1 9.5 N/A N/A N/A HAY -2 -3 -4 -3 -4 -3 -4 -3 -4 -9 -9 -9 -9 -9 -9 -9 -9 -9		 			·			
-5 -6 -6 -7 -7 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10		†						
1/128/12 \$05022-1 9.6 NIA NIA HAV -2 -3 -4 -5 -6 -7 -8 -10 -10 -10 -10 -10 -10 -10		 						
HAV 12104112 -9 11/128/112 805072-1 9.5 N/A N/A N/A HAV -2 -3 -4 -9 -6 -6 -9 -9 -9 -9 -9 -9 -9		-5						
-8 1/204/12 1/1/28/12 805072-1 9.5 N/A N/A N/A HAV -2 -3 -4 -4 -5 -6 -6 -7 -7 -10 -9 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10								
-9 11/28/12 \$65672-1 \$9.5 NIA NIA NIA HAV -2 -3 -4 -5 -6 -6 -9 -9 -9 -9 -9 -9 -10 -10		 						HAV
1/128/12 805072-1 9.5 NIA NIA NIA HAV -2 -3 -4 -6 -3 -6 -7 -8 -9 -10 -10 -10 -10 -10 -10 -10								12104/12
11/28/12 \$05072-1 9.5 N/A N/A N/A HAV								
-2 -3 -4 -5 -6 -6 -7 -8 -9 -10	10.10.			V		4		
-3 -4 -5 -6 -7 -6 -7 -8 -9	11/28112		9.5	NIA	NIA	NIA	HAV	
-4 -5 -6 -7 -8 -9 -10								
-6 -6 -7 -8 -9 -10	· · · · · · · · · · · · · · · · · · ·							
-6 -7 -8 -9 -10								
· · · · · · · · · · · · · · · · · · ·								
, 9 , -10 , -10								
, -10								
1, -10 1							<u> </u>	
				<u> </u>				
d an	7	1, -10	7	4	<u> </u>		4	

12-10-12 H

HAV 12/08/12

Turbidity/pH Check

				Turbic	lity/pH C	heck			
	Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
	804021 (1-5)	41	ZZ	12/3/12	ES	ye			
	805019(1-2)	4	V	1	1	1			
	804967		72				11. DODEW		
	805017		Ĺ	V			T. DOP:M		
	8050 W 124								
	805116 (1-4)	41	42	12/4/12	KK	yes			
	804746	4	~2	12/4/12	pt	V88			
	EO 5022 (10)	<1	42	12/4-12	BE	YXLS			
	805117-1	21	42	1214112	的				,
	805145-(1-3)	41	72	12/6/12	AA	WO.	9=30KA		
	805160(1-3)	41		196/12	/(-1	,	1-1-001	,	
			72	-		<u> </u>			
	805 (71(10-12)	<u> </u>		1	1		A	1	
	865-175-(1-3)	<1	>2 <2	1216+12	BZ	xes			
	205179	21	12	12/6/12	ES	Yes			
	905 180 (1-5)	41	72	1210112	1	No	10:00 cm		
	805076	1	1			100	10.0000		
	805114 (17,24)	<u> </u>	<u> </u>	10 : 7/10	0	xes.	<u> </u>		
	80515211-3	-1'	<2 \	12/7/12	BZ	Je,			
12-7/12	8°5153 L1-2)		<u> </u>					Aciditial after	1 6:12
82	89515561-2)		72					Tribited all	71 4119
805156	20 \$5156 (1-2)		<u> </u>						
	805157(1-9)		<2						-
	805159(1-12)								
0.4	805158617-2793) < \							
52	8051824-8)							
	8051816697)					-			
	80521964)								
	805220(1-3)	—							
	805221 11-4)	1		<u> </u>	-	<u> </u>			
	80524 B 12/1	12							
	805095	'41	42	12/7/12	ES	yu			
	805098			ļ		<u> </u>		·	
	805104								
	805106			ļ					-
	815125								
	805126								
	605 127								
•	805 128								
	805 120								
	805130								
	805 131						Ä		
	805 192								
	805-202	,							
	505201	1				1			
					·				

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	lient: <u>F 2</u>	Lab # <u>8050/</u>
Da	nte Delivered: // / ½½ / 12 Time: 🚣 2.00 By: □Mail 💆	Field Service
1.	Was a Chain of Custody received and signed?	ÆÍYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ØN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No □N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ŒN/A
5.	Were all requested analyses understood and acceptable?	ØYes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)? ³ . 8°C	⊠Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Æ Yes □No □N/A
8.	Were sample custody seals intact?	☐Yes ☐No ፙN/A
9 .	Does the number of samples received agree with COC?	Payes ONO ONA
10.	Did sample labels correspond with the client ID's?	✓ Edyes □No □N/A
1 1.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client	□Yes □No ÆÍN/A
12.	Were samples pH checked? pH = $\underline{Sel\ C}$. O. e .	ØYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	edYes □No □N/A
4.	Have Project due dates been checked and accepted? Tum Around Time (TAT): □ RUSH ☑ Std	طلاes □No □N/A
5 .	Sample Matrix: □Liquid □Drinking Water □Ground V □Sludge □Soil □Wipe □Paint □Solid 対	
6.	Comments:	
7	Sample Check-In completed by Truesdail Log-In/Receiving:	4. Shaluning

Analytical Bench Log Book

WDR pH Results

4 the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

Sample Name		Date Time Date Tin of of of o sampling sampling analysis analy	Date of analysis	Time of analysis	pH Meter #1, #2, or #3 etc. See cover Sheet for Serial Number	Date pH meter Calibrated	Time pH meter Calibrated	Slope of the Curve	Analyst Name (for the pH result)	pH Result
1 50-7008	11-6-12 13:32 11-6-12 13:36	13:32	11612	13:36	Meter #1	11.6-12 08:50 -55.1	08:50	-55.	C. Schuight	7.0
Otes:									-	
2 SC. 100 B	11.6-12	13:47	11.6.12	13:52	11.6-12 13:47 11.6-12 13:52 Motest 11.6-12 00:50 155.1	11.6.12	Ø:00	55.	Chugh-	7.4

	7.0	
	C.Euriqut	7.
	-54.	
	oles	
	11.13.12	
	METEL *!	
	13:44 (1.13.12 13:5)	
-	11:13:12	
	\$ 50.700.6	Mites:

1 1	
12	
1/2	
1/3	
1811	
1/4	
28	
2	
45	
8	
8	
13	
111	
7	
1/2	
1/0	
1	
12	
10	
1	
á	
2	
120	
10	
13	
$ \mathcal{Z} $	
12	
3	;;
4.22-1	Sept.
į I	_

	Ī	1
	7.7	1
	77.	
	C. 152	
	م. من	
	<u>رن</u>	
	03:25	
	11-27.12	
-		
	METER #1	
	14:17	
	71-22-15	
ľ	4:10	
	11-27-12 1	
	5 SC-7008	
1	<u>a</u>	

Notes:

9

ों tes:

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 8, 2013

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-390 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 805156

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-390 project groundwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 4, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The internal standard for samples SC-700B-WDR-390 and SC-100B-WDR-390 analyzed straight for Total Nickel by EPA 200.8 in batch 010213B was outside the recovery limits of 70% - 130%. Therefore, the sample was re-analyzed at a 2.50x dilution and the internal standards were within acceptable limits. Due to the dilution, the reporting limit for Total Nickel exceeds the Contract Required Detection Limit. All other QA/QC was within acceptable limits.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

√o− Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwaters **Project Name:** PG&E Topock Project

Project No.: 456827.01.DM

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 805156

Date: January 8, 2013 Collected: December 4, 2012 Received: December 4, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2320B	Total Alkalinity	Melissa Scharfe
SM 4500-Si D	Soluble Silica	Jenny Tankunakorn
SM 4500-P B,E	Total Phosphorus	Jenny Tankunakorn
SM 5310C	Total Organic Carbon	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Melissa Scharfe
SM 4500-NO2 B	Nitrite as N	Jenny Tankunakorn
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Established 1931

Date Received: December 4, 2012 Laboratory No.: 805156

Attention: Shawn Duffy

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Project Name: PG&E Topock Project

Project No.: 456827.01.DM **P.O. No.:** 456827.01.DM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	몺
805156-001	SC-700B-WDR-390	E120.1	NONE	12/4/2012	14:33	EC	7380	nmhos/cm	2.00
805156-001	SC-700B-WDR-390	E200.7	NONE	12/4/2012	14:33	Aluminum	2	ng/L	50.0
805156-001	SC-700B-WDR-390	E200.7	NONE	12/4/2012	14:33	BORON	1040	ng/L	200
805156-001	SC-700B-WDR-390	E200.7	NONE	12/4/2012	14:33	Iron	Q	ng/L	20.0
805156-001	SC-700B-WDR-390	E200.7	NONE	12/4/2012	14:33	Zinc	9	ng/L	20.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Antimony	9	ng/L	2.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Arsenic	2	ng/L	0.50
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Barium	10.2	ng/L	5.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Chromium	Q	ng/L	1.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Copper	Q.	ng/L	5.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Lead	2	ng/L	1.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Manganese	0.52	ng/L	0.50
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012	14:33	Molybdenum	21.9	ng/L	5.0
805156-001	SC-700B-WDR-390	E200.8	NONE	12/4/2012		Nickel	2	ng/L	5.0
805156-001	SC-700B-WDR-390	E218.6	LABFLT	12/4/2012		Chromium, Hexavalent	0.21	ng/L	0.20
805156-001	SC-700B-WDR-390	E300	NONE	12/4/2012		Fluoride	2.00	mg/L	0.500
805156-001	SC-700B-WDR-390	E300	NONE	12/4/2012		Nitrate as N	3.14	mg/L	0.500
805156-001	SC-700B-WDR-390	E300	NONE	12/4/2012		Sulfate	498	mg/L	25.0
805156-001	SC-700B-WDR-390	SM2130B	NONE	12/4/2012	14:33	Turbidity	0.102	NTC	0.100
805156-001	SC-700B-WDR-390	SM2540C	NONE	12/4/2012	14:33	Total Dissolved Solids	4380	mg/L	250
805156-001	SC-700B-WDR-390	SM4500NH3D	NONE	12/4/2012	14:33	Ammonia-N	<u>Q</u>	mg/L	0.500
805156-001	SC-700B-WDR-390	SM4500NO2B	NONE	12/4/2012	14:33	Nitrite as N	9	mg/L	0.0050

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	R
805156-002	SC-100B-WDR-390	E120.1	NONE	12/4/2012	14:41	EC	7810	nmhos/cm	2.00
805156-002	SC-100B-WDR-390	E200.7	NONE	12/4/2012	14:41	Aluminum	Q	ng/L	50.0
805156-002	SC-100B-WDR-390	E200.7	NONE	12/4/2012	14:41	BORON	1090	ng/L	200
805156-002	SC-100B-WDR-390	E200.7	NONE	12/4/2012	14:41	Iron	Q	ng/L	20.0
805156-002	SC-100B-WDR-390	E200.7	LABFLT	12/4/2012	14:41	Iron	ΩŽ	ng/L	20.0
805156-002	SC-100B-WDR-390	E200.7	NONE	12/4/2012	14:41	Zinc	Q	ng/L	20.0
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Antimony	2.0	ng/L	2.0
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Arsenic	3.3	ng/L	0.50
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Barium	26.1	ng/L	5.0
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Chromium	746	ug/L	2.0
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Copper	Ω	ng/L	5.0
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Lead	Q	ng/L	1.0
805156-002	SC-100B-WDR-390	E200.8	LABFLT	12/4/2012	14:41	Manganese	3.8	ng/L	0.50
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Manganese	3.6	ug/L	0.50
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Molybdenum	21.2	ug/L	5.0
805156-002	SC-100B-WDR-390	E200.8	NONE	12/4/2012	14:41	Nickel	Q	ng/L	5.0
805156-002	SC-100B-WDR-390	E218.6	LABFLT	12/4/2012	14:41	Chromium, Hexavalent	746	ng/L	10.0
805156-002	SC-100B-WDR-390	E300	NONE	12/4/2012	14:41	Fluoride	2.38	mg/L	0.500
805156-002	SC-100B-WDR-390	E300	NONE	12/4/2012	14:41	Nitrate as N	3.25	mg/L	0.500
805156-002	SC-100B-WDR-390	E300	NONE	12/4/2012	14:41	Sulfate	532	mg/L	25.0
805156-002	SC-100B-WDR-390	SM2130B	NONE	12/4/2012	14:41	Turbidity	0.166	NTO	0.100
805156-002	SC-100B-WDR-390	SM2320B	NONE	12/4/2012	14:41	Alkalinity	127	mg/L	5.00
805156-002	SC-100B-WDR-390	SM2320B	NONE	12/4/2012	14:41	Alkalinity, Bicarbonate (As CaCO3)	127	mg/L	5.00
805156-002	SC-100B-WDR-390	SM2320B	NONE	12/4/2012	14:41	Alkalinity, Carbonate (As CaCO3)	Q	mg/L	5.00
805156-002	SC-100B-WDR-390	SM2540C	NONE	12/4/2012	14:41	Total Dissolved Solids	4660	mg/L	250
805156-002	SC-100B-WDR-390	SM4500NH3D	NONE	12/4/2012	14:41	Ammonia-N	Q	mg/L	0.500
805156-002	SC-100B-WDR-390	SM4500NO2B	NONE	12/4/2012	14:41	Nitrite as N	Q.	mg/L	0.0050
805156-002	SC-100B-WDR-390	SM4500-PB_E	NONE	12/4/2012	14:41	Total Phosphorous-P	Q.	mg/L	0.0200
805156-002	SC-100B-WDR-390	SM4500SI	NONE	12/4/2012	14:41	Soluble Silica	20.6	mg/L	1.00
805156-002	SC-100B-WDR-390	SM5310C	NONE	12/4/2012	14:41	Total Organic Carbon	0.448	mg/L	0.300

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 30

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 1/8/2013

Laboratory No. 805156

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

SC-700B-WDR-390

SC-100B-WDR-390

Release Number:

Field ID

Samples Received on 12/4/2012 10:30:00 PM

Samples Neceived of	11 12/4/2012 10.00	5.00 T W		
	Lab ID	Collected	Matrix	
	805156-001	12/04/2012 14:33	Water	
	805156-002	12/04/2012 14:41	Water	

Anions By I.C EPA 300.0		Batch 12AN12D					
Parameter	Unit Analyzed		DF	MDL	RL	Result	
805156-001 Fluoride	mg/L	12/05/2012 10:57	5.00	0.104	0.500	2.00	
Nitrate as Nitrogen	mg/L	12/05/2012 10:57	5.00	0.0415	0.500	3.14	
Sulfate	mg/L	12/05/2012 15:42	50.0	1.54	25.0	498	
805156-002 Fluoride	mg/L	12/05/2012 11:08	5.00	0.104	0.500	2.38	
Nitrate as Nitrogen	mg/L	12/05/2012 11:08	5.00	0.0415	0.500	3.25	
Sulfate	mg/L	12/05/2012 15:54	50.0	1.54	25.0	532	

Method Blank						
Parameter	Unit	DF	Result			
Chloride	mg/L	1.00	ND			
Fluoride	mg/L	1.00	ND			
Sulfate	mg/L	1.00	ND			
Nitrate as Nitrogen	mg/L	1.00	ND			
Duplicate	The state of the s					Lab ID = 805156-002
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Parameter Fluoride	Unit mg/L	DF 5.00	Result 2.38	Expected 2.38	RPD 0.168	Acceptance Range 0 - 20
,				•		, -
Fluoride	mg/L	5.00	2.38	2.38	0.168	0 - 20
Fluoride Nitrate as Nitrogen	mg/L	5.00	2.38	2.38	0.168	0 - 20 0 - 20
Fluoride Nitrate as Nitrogen Duplicate	mg/L mg/L	5.00 5.00	2.38 3.28	2.38 3.25	0.168 0.858	0 - 20 0 - 20 Lab ID = 805162-001

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 2 of 30 Printed 1/8/2013

Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride	mg/L	1.00	3.96	4.00	99.0	90 - 110
Fluoride	mg/L	1.00	4.13	4.00	103	90 - 110
Sulfate	mg/L	1.00	20.2	20.0	101	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.03	4.00	101	90 - 110
Matrix Spike						Lab ID = 805156-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Fluoride	mg/L	5.00	23.1	22.4(20.0)	104	85 - 115
Nitrate as Nitrogen	mg/L	5.00	23.7	23.2(20.0)	102	85 - 115
Matrix Spike						Lab ID = 805162-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Chloride	mg/L	1.00	2.06	2.00(2.00)	103	85 - 115
Sulfate	mg/L	1.00	2.02	2.00(2.00)	101	85 - 115
Matrix Spike Duplic	ate					Lab ID = 805162-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Chloride	mg/L	1.00	2.05	2.00(2.00)	102	85 - 115
Sulfate	mg/L	1.00	2.01	2.00(2.00)	100	85 - 115
MRCCS - Seconda	iry .					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride	mg/L	1.00	3.98	4.00	99.6	90 - 110
Fluoride	mg/L	1.00	4.15	4.00	104	90 - 110
Sulfate	mg/L	1.00	20.3	20.0	101	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.04	4.00	101	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride	mg/L	1.00	2.98	3.00	99.3	90 - 110
MRCVS - Primary	di kaca in manasatas terbahkan katalah mena	ay badalahay di babadi ya karanan	na kanatawa kaominina kalendari Walio makanatawa kaominina kalendari Walio	en de la composição de la composição de la composição de la composição de la composição de la composição de la	The state of the s	
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride	mg/L	1.00	2.94	3.00	98.1	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride	mg/L	1.00	2.94	3.00	98.1	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.11	3.00	104	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 4 of 30 Printed 1/8/2013

Nitrite SM 4500-NO2 E	3		Batch	12NO212B			
Parameter		Unit	Analyzed		F MDL	RL	Result
805156-001 Nitrite as Nitro	ogen	mg/L	12/05	/2012 15:50 1.	00 0.000540	0.0050	ND
805156-002 Nitrite as Nitro	ogen	mg/L	12/05	/2012 15:51 1.	00 0.000540	0.0050	ND
Method Blank							
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result ND				
Duplicate						Lab ID = 8	305114-010
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result ND	Expected 0	RPD 0	Acceptai 0 - 20	nce Range
Lab Control Sample	e						
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0295	Expected 0.0308	Recovery 95.8	y Acceptance 90 - 110	
Matrix Spike						Lab ID = 8	305156-001
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0185	Expected/Added 0.0200(0.0200)	d Recovery 92.5	Acceptance Rang 85 - 115	
MRCCS - Seconda	ıry						
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0299	Expected 0.0308	Recovery 97.1	Acceptai 90 - 110	nce Range
MRCVS - Primary							
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0184	Expected 0.0200	Recovery 92.0	Acceptai 90 - 110	nce Range
MRCVS - Primary							
Parameter Nitrite as Nitrogen	Unit mg/L	DF 1.00	Result 0.0184	Expected 0.0200	Recovery 92.0	Acceptar 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 5 of 30 Printed 1/8/2013

Alkalinity by SM 2320E	3		Batch	12ALK12B				
Parameter		Unit	Analyzed		DF	MDL	RL	Result
805156-002 Alkalinity as C	aCO3	mg/L	12/06/2012		1.00	0.555	5.00	127
Bicarbonate (C	Calculated)	mg/L	mg/L 12/06/2012		1.00	0.555	5.00	127
Carbonate (Ca	alculated)	mg/L	L 12/06/2012 1.00 0.555		5.00	ND		
Method Blank								
Parameter	Unit	DF	Result					
Alkalinity as CaCO3	mg/L	1.00	ND					
Duplicate							Lab ID =	805181-007
Parameter	Unit	DF	Result Expected		F	RPD	Acceptance Range	
Alkalinity as CaCO3	mg/L	1.00	90.0	88.0		2.25	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Alkalinity as CaCO3	mg/L	1.00	96.0	100		96.0	90 - 110	
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	ecovery Acceptance	
Alkalinity as CaCO3	mg/L	1.00	95.0	100		95.0	90 - 110	כ
Matrix Spike							Lab ID =	805181-007
Parameter	Unit	DF	Result	Expected/Ac	lded F	Recovery	Accepta	ance Range
Alkalinity as CaCO3	mg/L	1.00	183	188(100)		95.0	75 - 12	5

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 6 of 30 Printed 1/8/2013

Specific Conductivity -	EPA 120.1		Batch	12EC12A				
Parameter		Unit	Unit Analyzed		DF	MDL	RL	Result
805156-001 Specific Condu	ıctivity	umhos/cm	12/06	12/06/2012 12/06/2012		0.116	2.00	7380 7810
805156-002 Specific Condu	ıctivity	umhos/cm	12/06			0.116	2.00	
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	805156-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	•		RPD 0.135		Acceptance Rang 0 - 10	
Duplicate								805156-002
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result Expected 7810 7810		F	RPD 0	Acceptance Ra 0 - 10	
Lab Control Sample								
Parameter Specific Conductivity	Unit umhos	DF 1.00	•		Recovery 100		Acceptance Range 90 - 110	
Lab Control Sample	Duplicate							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 712	Expected 706	F	Recovery 101	Accepta 90 - 110	ince Range)
MRCCS - Secondar	у							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result Expected 695 706		F	Recovery 98.4	Accepta 90 - 110	ince Range)
MRCVS - Primary								
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	•		Recovery 98.4	Accepta 90 - 110	ance Range)	
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 988	Expected 996	F	Recovery 99.2	Accepta 90 - 110	ance Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 7 of 30 Printed 1/8/2013

Chrome VI by EPA 218.0	5		Batch	12CrH12I				
Parameter		Unit	Unit Analyzed		DF	MDL	RL	Result
805156-001 Chromium, Hex	avalent	ug/L	12/10/2012 13:48		1.00	0.00920	0.20	0.21
05156-002 Chromium, Hexavalent		ug/L 12/10/2012 13:59		/2012 13:59 5	0.0	0.460	10.0	746
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected	F	RPD	•	ance Range
Chromium, Hexavalent	ug/L	50.0	740	746		0.838	0 - 20	
Low Level Calibration	Nerification	K Samus						
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	0.212	0.200		106	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptance Rar	
Chromium, Hexavalent	ug/L	1.00	4.80	5.00		96.1	90 - 110	
Matrix Spike							Lab ID =	805155-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	16.4	17.0(10.0)		93.6	90 - 110)
Matrix Spike							Lab ID =	805156-001
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	1.20	1.21(1.00)		98.5	90 - 110)
Matrix Spike							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	50.0	1470	1500(750)		97.1	90 - 110)
Matrix Spike							Lab ID =	805157-001
Parameter	Unit	DF	Result	Expected/Adde	ed J	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	0.939	1.00(1.00)		93.9	90 - 110)
Matrix Spike							Lab ID =	805157-002
Parameter	Unit	DF	Result	Expected/Adde	ed I	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	250	9220	9480(5000)		94.7	90 - 110)
Matrix Spike							Lab ID =	805157-003
Parameter	Unit	DF	Result	Expected/Adde	ed I	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	250	8790	8980(5000)		96.1	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 9 of 30 Printed 1/8/2013

Metals by EPA 200.7, T	otal .		Batch	121412B-Th2				
Parameter		Unit	Ana	lyzed [)F	MDL	RL	Result
805156-001 Aluminum		ug/L	12/14	/2012 18:27 1	.00	10.0	50.0	ND
Zinc		ug/L	12/14	/2012 18:27 1	.00	7.00	20.0	ND
805156-002 Aluminum		ug/L	12/14	/2012 18:34 1	.00	10.0	50.0	ND
Zinc		ug/L	12/14	/2012 18:34 1	.00	7.00	20.0	ND
Method Blank	in sääsa.	alia s						
Parameter	Unit	DF	Result					
Aluminum	ug/L	1.00	ND					
Zinc	ug/L	1.00	ND					
Duplicate							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected	1	RPD	Accepta	ince Range
Aluminum	ug/L	1.00	ND	0		0	0 - 20	
Zinc	ug/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accepta	ince Range
Aluminum	ug/L	1.00	2230	2000		111	85 - 115	5
Zinc	ug/L	1.00	2200	2000		110	85 - 115	5
Matrix Spike							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected/Adde	d l	Recovery	Accepta	ince Range
Aluminum	ug/L	1.00	1580	2000(2000)		79.2	75 - 125	5
Zinc	ug/L	1.00	2030	2000(2000)		102	75 - 125	5
MRCCS - Secondar	y							
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accepta	nce Range
Aluminum	ug/L	1.00	5200	5000		104	95 - 105	5
Zinc	ug/L	1.00	5160	5000		103	95 - 105	5
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	1	Recovery		ince Range
Aluminum	ug/L	1.00	5240	5000		105	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	I	Recovery	Accepta	nce Range
Aluminum	ug/L	1.00	5270	5000		105	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	1	Recovery	Accepta	ance Range
Zinc	ug/L	1.00	5180	5000		104	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 11 of 30 Printed 1/8/2013

Batch 121312A-Th2 Metals by EPA 200.7, Total Unit Analyzed DF MDL RL Result Parameter 200 1040 ug/L 12/13/2012 13:03 1.00 2.70 805156-001 Boron 1.00 9.50 20.0 ND ug/L 12/13/2012 13:03 Iron

11011		ug, _	12,10	, _ 0 , _ 1 0 , 0 0			
305156-002 Boron		ug/L	12/13	/2012 13:10 1.00	2.70	200	1090
Iron		ug/L	12/13	/2012 13:10 1.00	9.50	20.0	ND
Method Blank							
Parameter	Unit	DF	Result				
Iron	ug/L	1.00	ND				
Boron	ug/L	1.00	ND				
Duplicate						Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ance Range
Iron	ug/L	1.00	ND	0	0	0 - 20	
Boron	ug/L	1.00	1080	1090	1.29	0 - 20	
Lab Control Samp	le						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	2260	2000	113	85 - 115	5
Boron	ug/L	1.00	2080	2000	104	85 - 115	5
Matrix Spike						Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	ance Range
Iron	ug/L	1.00	2200	2000(2000)	110	75 - 125	5
Boron	ug/L	1.00	3340	3090(2000)	113	75 - 12	5
MRCCS - Second	ary						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	5110	5000	102	95 - 10	5
Boron	ug/L	1.00	5050	5000	101	95 - 10	5
MRCVS - Primary							
Parameter	Unit	ÐF	Result	Expected	Recovery	Accepta	ance Range
Iron	ug/L	1.00	5270	5000	105	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	-	ance Range
Iron	ug/L	1.00	5460	5000	109	90 - 110)
Boron	ug/L	1.00	5400	5000	108	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Boron	ug/L	1.00	5200	5000	104	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 13 of 30

Metals by EPA 200.8	, Total		Batch	121712A				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
805156-001 Barium		ug/L	12/17	/2012 13:46	2.50	0.470	5.0	10.2
Chromium		ug/L	12/17	/2012 13:46	2.50	0.230	1.0	ND
Copper		ug/L	12/17	/2012 13:46	2.50	0.642	5.0	ND
Lead		ug/L	12/17	/2012 13:46	2.50	0.185	1.0	ND
Manganese		ug/L	12/17	/2012 13:46	2.50	0.215	0.50	0.52
Molybdenun	n	ug/L	12/17	/2012 13:46	2.50	0.518	5.0	21.9
805156-002 Barium		ug/L	12/17	/2012 14:21	2.50	0.470	5.0	26.1
Chromium		ug/L	12/17	/2012 14:36	10.0	0.920	2.0	746
Copper		ug/L	12/17	/2012 14:21	2.50	0.642	5.0	ND
Lead		ug/L	12/17	/2012 14:21	2.50	0.185	1.0	ND
Manganese		ug/L	12/17	/2012 14:21	2.50	0.215	0.50	3.6
Molybdenun	n	ug/L	12/17	/2012 14:21	2.50	0.518	5.0	21.2
Method Blank								
Parameter	Unit	DF	Result					
Barium	ug/L	1.00	ND					
Chromium	ug/L	1.00	ND					
Copper	ug/L	1.00	ND					
Lead	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate							Lab ID =	805156-001
Parameter	Unit	DF	Result	Expected	F	RPD		ance Range
Barium	ug/L	2.50	9.74	10.2		4.62	0 - 20	
Chromium	ug/L	2.50	ND	0		0	0 - 20	
Copper	ug/L	2.50	ND	0		0	0 - 20	
Lead	ug/L	2.50	ND	0		0	0 - 20	
Manganese	ug/L	2.50	0.500	0.516		3.19	0 - 20	
Molybdenum	ug/L	2.50	21.0	21.9		4.43	0 - 20	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 14 of 30 Printed 1/8/2013

Low Level Calibratio	n Verification					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	1.02	1.00	102	70 - 130
Chromium	ug/L	1.00	0.201	0.200	101	70 - 130
Copper	ug/L	1.00	1.01	1.00	101	70 - 130
Lead	ug/L	1.00	0.224	0.200	112	70 - 130
Manganese	ug/L	1.00	0.252	0.200	126	70 - 130
Molybdenum	ug/L	1.00	0.578	0.500	116	70 - 130
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	2.50	51.9	50.0	104	85 - 115
Chromium	ug/L	2.50	52.8	50.0	106	85 - 115
Copper	ug/L	2.50	52.1	50.0	104	85 - 115
Lead	ug/L	2.50	51.8	50.0	104	85 - 115
Manganese	ug/L	2.50	52.8	50.0	106	85 - 115
Molybdenum	ug/L	2.50	54.2	50.0	108	85 - 115
Matrix Spike						Lab ID = 805156-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Barium	ug/L	2.50	57.9	60.2(50.0)	95.4	75 - 125
Chromium	ug/L	2.50	50.4	50.0(50.0)	101	75 - 125
Copper	ug/L	2.50	45.0	50.0(50.0)	89.9	75 - 125
Lead	ug/L	2.50	43.3	50.0(50.0)	86.5	75 - 125
Manganese	ug/L	2.50	49.7	50.5(50.0)	98.3	75 - 125
Molybdenum	ug/L	2.50	73.8	71.9(50.0)	104	75 - 125
Matrix Spike Duplica	ite					Lab ID = 805156-001
Many oblice publice						
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
		DF 2.50	Result 56.7	Expected/Added 60.2(50.0)	Recovery 93.1	Acceptance Range 75 - 125
Parameter	Unit			•	•	75 - 125 75 - 125
Parameter Barium	Unit ug/L	2.50	56.7	60.2(50.0)	93.1 100 87.3	75 - 125 75 - 125 75 - 125
Parameter Barium Chromium	Unit ug/L ug/L	2.50 2.50	56.7 50.3	60.2(50.0) 50.0(50.0)	93.1 100 87.3 85.4	75 - 125 75 - 125 75 - 125 75 - 125
Parameter Barium Chromium Copper	Unit ug/L ug/L ug/L	2.50 2.50 2.50	56.7 50.3 43.7	60.2(50.0) 50.0(50.0) 50.0(50.0)	93.1 100 87.3	75 - 125 75 - 125 75 - 125

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 18 of 30

Serial Dilution						Lab ID = 805156-002
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Barium	ug/L	12.5	27.5	26.1	5.15	0 - 10
Chromium	ug/L	50.0	723	746	3.16	0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 19 of 30

Metals by EPA 200.8, 7	otal		Batch	010213B			
Parameter		Unit	Ana	yzed [OF MDL	RL	Result
805156-001 Antimony		ug/L	01/02	/2013 17:24 2	.50 0.830	2.0	ND
Arsenic		ug/L	01/02	/2013 17:24 2	.50 0.250	0.50	ND
Nickel		ug/L	01/02	/2013 17:24 2	.50 1.96	5.0	ND
805156-002 Antimony		ug/L	01/02	/2013 18:35 2	.50 0.830	2.0	2.0
Arsenic		ug/L	01/02	/2013 18:35 2	.50 0.250	0.50	3.3
Nickel		ug/L	01/02	/2013 18:35 2	.50 1.96	5.0	ND
Method Blank	Han Miles of						
Parameter	Unit	DF	Result				
Arsenic	ug/L	1.00	ND				
Nickel	ug/L	1.00	ND				
Antimony	ug/L	1.00	ND				
Duplicate						Lab ID =	805156-001
Parameter	Unit	DF	Result	Expected	RPD	•	ance Range
Arsenic	ug/L	2.50	ND	0	0	0 - 20	
Nickel	ug/L	2.50	ND	0	0	0 - 20	
Antimony	ug/L	2.50	ND	0	0	0 - 20	
Low Level Calibration	on Verification						
Parameter	Unit	DF	Result	Expected	Recovery	-	ance Range
Arsenic	ug/L	1.00	0.219	0.200	109	70 - 13	
Nickel	ug/L	1.00	2.24	2.00	112	70 - 13	
Antimony	ug/L	1.00	0.862	0.800	108	70 - 13	0
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery		ance Range
Arsenic	ug/L	2.50	47.1	50.0	94.2	85 - 11	5
Nickel	ug/L	2.50	49.2	50.0	98.5	85 - 11	5
Antimony	ug/L	2.50	53.7	50.0	107	85 - 11	5
Matrix Spike						Lab ID =	805156-001
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accept	ance Range
Arsenic	ug/L	2.50	46.7	50.0(50.0)	93.4	75 - 12	5
Nickel	ug/L	2.50	47.9	50.0(50.0)	95.8	75 - 12	5
Antimony	ug/L	2.50	52.0	50.0(50.0)	104	75 - 12	5

Client: E2 Consulting Engi	ineers, Inc		oject Name: oject Number	PG&E Topock Pro : 456827.01.DM	ject	Page 20 of 30 Printed 1/8/2013
Matrix Spike Duplicate						Lab ID = 805156-001
Parameter Arsenic	Unit ug/L	DF 2.50	Result 47.8	Expected/Added 50.0(50.0)	Recovery 95.5	Acceptance Range 75 - 125
Nickel	ug/L	2.50	47.8	50.0(50.0)	95.7 108	75 - 125 75 - 125
Antimony Secondary	ug/L	2.50	53.8	50.0(50.0)	100	70 - 120 maj - page grides J. 1460a
MRCCS - Secondary		grifetigi v DE	Dec. #	t skillefritt samme i skirte: Even oderd	Dogwon	Acceptance Pance
Parameter	Unit ug/L	DF 1.00	Result 19.3	Expected 20.0	Recovery 96.4	Acceptance Range 90 - 110
Arsenic Nickel	ug/L ug/L	1.00	19.1	20.0	95.4	90 - 110
Antimony	ug/L ug/L	1.00	20.3	20.0	102	90 - 110
MRCVS - Primary	agre Allino atom		enarii ae.a.	e il 1886 i same make d	andria. Taribilian seemita	
in a significant production and the effect of the entertial configuration and the entertial form of the entertial configuration and the entertial configuratio	1156-00 14669 1154	DF	Result	Expected	Recovery	Acceptance Range
Parameter Arsenic	Unit ug/L	1.00	19.5	20.0	97.7	90 - 110
MRCVS - Primary	ug/L	Williams		- 1900 Miliau - Laga Affili		
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	19.4	20.0	96.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	19.2	20.0	95.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	, 19.4	20.0	96.9	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	19.8	20.0	99.1	90 - 110
MRCVS - Primary						
Parameter Nickel	Unit ug/L	DF 1.00	Result 19.8	Expected 20.0	Recovery 99.2	Acceptance Range
MRCVS - Primary	-9 1988: 199					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	20.2	20.0	101	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	19.8	20.0	98.8	90 - 110
Antimony	ug/L	1.00	20.0	20.0	100	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 22 of 30

Printed 1/8/2013

Interference Check Standard AB Expected Recovery Acceptance Range DF Result Parameter Unit 94.8 80 - 120 19.0 20.0 1.00 ug/L Nickel Interference Check Standard AB Recovery Acceptance Range DF Result Expected Unit Parameter ND 0 ug/L 1.00 Antimony Interference Check Standard AB Unit DF Result Expected Recovery Acceptance Range Parameter 1.00 ND 0 ug/L Antimony

Reactive Silica by SM45	00-Si D		Batch	12Si12A				
Parameter		Unit	Ana	lyzed [)F	MDL	RL	Result
805156-002 Silica		mg/L	12/12	/2012 2	5.0	0.252	1.00	20.6
Method Blank								
Parameter Silica	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	805156-002
Parameter Silica	Unit mg/L	DF 25.0	Result 22.3	Expected 20.6		PD 8.08	Accepta 0 - 20	ance Range
Lab Control Sample								
Parameter Silica	Unit mg/L	DF 1.00	Result 0.188	Expected 0.206		ecovery 91.0	90 - 110	
Matrix Spike							Lab ID =	805193-001
Parameter Silica	Unit mg/L	DF 1.00	Result 0.389	Expected/Adde 0.400(0.400)		ecovery 97.3	Accepta 75 - 128	ance Range 5
MRCCS - Secondary								
Parameter Silica	Unit mg/L	DF 1.00	Result 0.103	Expected 0.103		ecovery 100	Accepta 90 - 110	ance Range)
MRCVS - Primary								
Parameter Silica	Unit mg/L	DF 1.00	Result 0.423	Expected 0.400	R	ecovery 106	Accepta 90 - 110	ance Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 23 of 30

Total Dissolved Solids	by SM 254	0 C	Batch	12TDS12A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
305156-001 Total Dissolved	Solids	mg/L	12/06	6/2012	1.00	0.757	250	4380
305156-002 Total Dissolved	Solids	mg/L	12/06	6/2012	1.00	0.757	250	4660
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND				المراجعة والمراق الروارات	والمعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة
Duplicate							Lab ID =	805145-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	560	565		0.889	0 - 10	
Duplicate							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	4670	4660		0.214	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	503	500		101	90 - 110	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 24 of 30

Total Organic Carbon (.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A	lvzed D	_	MDL	RL	Result
Parameter		Unit	Anai					
305156-002 Total Organic C	Carbon	mg/L	12/11	/2012 13:30 1.	00	0.0309	0.300	0.448
Method Blank								
Parameter	Unit	DF	Result					
Total Organic Carbon	mg/L	1.00	ND					
Duplicate							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected		PD	•	nce Range
Total Organic Carbon	mg/L	1.00	0.450	0.448		0.379	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	•	nce Range
Total Organic Carbon	mg/L	1.00	9.86	10.0		98.6	90 - 110	
Matrix Spike							Lab ID =	805265-020
Parameter	Unit	DF	Result	Expected/Added		ecovery	•	nce Range
Total Organic Carbon	mg/L	1.00	11.9	12.1(10.0)		97.8	75 - 125	i
MRCCS - Secondar	y 13 ja ja ja ja ja ja ja ja ja ja ja ja ja							
Parameter	Unit	DF	Result	Expected	R	ecovery		nce Range
Total Organic Carbon	mg/L	1.00	10.7	10.0		107	85 - 115	j
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	ince Range
Total Organic Carbon	mg/L	1.00	9.04	10.0		90.4	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	•	ince Range
Total Organic Carbon	mg/L	1.00	9.56	10.0		95.6	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 25 of 30

Total Phosphate, SM 450	00-PB,E		Batch	12TP12A				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
805156-002 Phosphate, Tota	ıl As P	mg/L	12/05/	2012 1	.00	0.00648	0.0200	ND
Method Blank								
Parameter Phosphate, Total As P Duplicate	Unit mg/L	DF 1.00	Result ND				Lab ID = 8	05032-002
Parameter Phosphate, Total As P	Unit mg/L	DF 10.0	Result 0.310	Expected 0.316	F	RPD 1.98	Acceptar 0 - 20	nce Range
Lab Control Sample								
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.141	Expected 0.130	F	Recovery 108	90 - 110	nce Range
Matrix Spike							Lab ID = 8	05156-002
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0582	Expected/Adde 0.0650(0.0650		Recovery 89.5	Acceptar 75 - 125	nce Range
MRCCS - Secondary								
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0624	Expected 0.0650	F	Recovery 96.0	Acceptar 90 - 110	nce Range
MRCVS - Primary								
Parameter Phosphate, Total As P	Unit mg/L	DF 1.00	Result 0.0681	Expected 0.0650	F	Recovery 105	Acceptar 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 26 of 30 Printed 1/8/2013

Ammonia Nitrogen by SN	I3D	Batch	12NH312A					
Parameter		Unit	Anal	yzed [)F	MDL	RL	Result
805156-001 Ammonia as N		mg/L	12/19	/2012 1	.00	0.00980	0.500	ND
805156-002 Ammonia as N		mg/L	12/19	/2012 1	.00	0.00980	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Duplicate							Lab ID =	805156-001
Parameter	Unit	DF	Result	Expected	F	RPD	•	nce Range
Ammonia as N	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	8.02	8.00		100	90 - 110	1
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	7.54	8.00		94.3	90 - 110	
Matrix Spike							Lab ID =	805156-002
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	6.09	8.00(8.00)		76.1	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Ammonia as N	mg/L	1.00	6.09	6.00		101	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ince Range
Ammonia as N	mg/L	1.00	6.16	6.00		103	90 - 110)
MRCVS - Primary								
Parameter		DF a	Result	Expected		Recovery	•	nce Range
Ammonia as N	mg/L	1.00	5.88	6.00		98.1	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 27 of 30 Printed 1/8/2013

Metals by EPA 200.8, Di	issolved		Batch	121712A			
Parameter		Unit	Anal	lyzed [OF MDL	RL	Result
805156-002 Manganese		ug/L	12/17	/2012 12:48 2	.50 0.215	0.50	3.8
Method Blank							
Parameter	Unit	DF	Result				
Manganese	ug/L	1.00	ND				
Duplicate						Lab ID =	805152-001
Parameter	Unit	DF	Result	Expected	RPD	•	ance Range
Manganese	ug/L	2.50	0.905	0.895	1.08	0 - 20	
Low Level Calibration	n Verification						
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Manganese	ug/L	1.00	0.252	0.200	126	70 - 13	0
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Manganese	ug/L	2.50	52.8	50.0	106	85 - 11	
Matrix Spike						Lab ID =	805152-001
Parameter	Unit	DF	Result	Expected/Adde	-	-	ance Range
Manganese	ug/L	2.50	51.6	50.9(50.0)	101	75 - 12	
Matrix Spike Duplica	te					Lab ID =	805152-001
Parameter	Unit	DF	Result	Expected/Adde	-	•	ance Range
Manganese	ug/L	2.50	50.8	50.9(50.0)	99.7	75 - 12	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	-	ance Range
Manganese	ug/L	1.00	19.5	20.0	97.6	90 - 11	0
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	· ·	ance Range
Manganese	ug/L	1.00	20.4	20.0	102	90 - 11	0
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Manganese	ug/L	1.00	19.8	20.0	99.2	90 - 11	0
Interference Check S	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Manganese	ug/L	1.00	ND	0			

Client: E2 Consulting Engineers, Inc.

Parameter

Parameter

Iron

Iron

PG&E Topock Project Project Name:

Project Number: 456827.01.DM

Page 29 of 30

Printed 1/8/2013

80 - 120

80 - 120

Acceptance Range

119

Recovery

110

Batch 121312A-Th2 Metals by 200.7, Dissolved DF MDL RL Result Unit Analyzed Parameter 1.00 9.50 20.0 ND 12/13/2012 14:08 ug/L 805156-002 Iron Method Blank DF Result Unit Parameter ug/L 1.00 ND Iron Lab ID = 805152-001 Duplicate **RPD** Acceptance Range Expected Unit DF Result Parameter 0 0 - 201.00 ND 0 ug/L Iron Lab Control Sample Recovery Acceptance Range Expected DF Result Unit Parameter 85 - 1152000 113 1.00 2260 ug/L Iron Lab ID = 805152-001 Matrix Spike Recovery Acceptance Range Expected/Added Unit DF Result Parameter 75 - 125 2420 2000(2000) 121 1.00 ug/L Iron MRCCS - Secondary Acceptance Range Expected Recovery Unit DF Result Parameter 95 - 105 5000 102 ug/L 1.00 5110 Iron MRCVS - Primary Acceptance Range Expected Recovery Unit DF Result Parameter 109 90 - 110 5000 5460 ug/L 1.00 Iron MRCVS - Primary Recovery Acceptance Range Expected Unit DF Result Parameter 5000 105 90 - 110 1.00 5270 ug/L Iron Interference Check Standard A Acceptance Range Recovery DF Result Expected Unit Parameter 80 - 120 110 2210 2000 ug/L 1.00 Iron Interference Check Standard A Acceptance Range Expected Recovery DF Result Unit

2380

Result

2200

1.00

DF

1.00

ug/L

Unit

ug/L

Interference Check Standard AB

2000

2000

Expected

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 30 of 30

Printed 1/8/2013

Interference Check	Standard At	3
--------------------	-------------	---

Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Iron	ug/L	1.00	2220	2000	111	80 - 120

Turbidity by SM 2130 B			Batch	12TUC12C				
Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
805156-001 Turbidity		NTU	12/05	/2012	1.00	0.0140	0.100	0.102
805156-002 Turbidity		NTU	12/05	/2012	1.00	0.0140	0.100	0.166
Method Blank								
Parameter Turbidity	Unit NTU	DF 1.00	Result ND				Lab ID =	805156-002
Duplicate Parameter Turbidity	Unit NTU	DF 1.00	Result 0.168	Expected 0.166		RPD 1.20	Accepta 0 - 20	nce Range
Lab Control Sample Parameter Turbidity Lab Control Sample I	Unit NTU Du plicate	DF 1.00	Result 7.88	Expected 8.00		Recovery 98.5	Accepta 90 - 110	nce Range
Parameter Turbidity	Unit NTU	DF 1.00	Result 7.58	Expected 8.00	-	Recovery 94.8	Accepta 90 - 110	nce Range

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 12TDS12A Date Analyzed: 12/6/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
Blank	100	76.2806	76.2806	76.2806	0.0000	No	0.0000	0.0	25.0	ND	1
805073	100	72.7713	72,8154	72.8151	0.0003	No	0.0438	438.0	25.0	438.0	1
805076	100	74.2237	74.2517	74.2513	0.0004	No	0.0276	276.0	25.0	276.0	11
805114-17	100	78.8044	78.8653	78.8651	0.0002	No	0.0607	607,0	25.0	607.0	1
805117-1	100	77.2938	77.35	77.35	0.0000	No	0.0562	562.0	25.0	562.0	1
805117-2	100	74.9329	74.9691	74.9689	0.0002	No	0.0360	360.0	25.0	360.0	1
805117-3	50	47.7619	47.8335	47.8333	0.0002	No	0.0714	1428.0	50.0	1428.0	1
805117-4	100	68.3733	68.4104	68.4102	0.0002	No	0.0369	369.0	25.0	369.0	1
805137-9	100	66.7063	66.7667	66.7664	0,0003	No	0.0601	601.0	25.0	601.0	1
805137-10	100	77.9934	78.0502	78.0502	0.0000	No	0.0568	568.0	25.0	568.0	1
805145-1	100	77.7805	77.8374	77.837	0.0004	No	0.0565	565.0	25.0	565.0	1
805145-1D	100	72.0896	72.1457	72.1456	0.0001	No	0.0560	560.0	25.0	560.0	1
LCS	100	66,8022	66.8525	66.8525	0.0000	No	0.0503	503.0	25.0	503.0	1
805145-2	100	75.2763	75.3295	75.3292	0.0003	No	0.0529	529.0	25.0	529.0	1
805145-3	100	73.8010	73.8538	73.8534	0.0004	No	0.0524	524.0	25.0	524.0	1
805160-4	100	72.3814	72.4155	72.4155	0.0000	No	0.0341	341.0	25.0	341.0	1
805192	50	78.6179	78.7268	78.7268	0.0000	No	0.1089	2178.0	50.0	2178.0	1
805193	990	112.9662	112.9668	112.9668	0.0000	No	0.0006	0.6	2.5	ND	1
805194-1	100	74.5318	74.5862	74.5858	0.0004	No	0.0540	540.0	25.0	540.0	1
805155-1	20	49.8815	49.9373	49.9372	0.0001	No	0.0557	2785.0	125.0	2785.0	1
805155-2	10	49.1750	49.2258	49.2256	0.0002	No	0.0506	5060,0	250.0	5060,0	1
805156-1	10	50.7515	50.7955	50,7953	0,0002	No	0.0438	4380.0	250.0	4380.0	11
805156-2	10	47.4325	47.4791	47.4791	0.0000	No	0.0466	4660.0	250.0	4660.0	1
805156-2D	10	48.5867	48,6335	48.6334	0.0001	No	0.0467	4670.0	250.0	4670.0	1

Calculation as follows:

 $\left(\frac{A-B}{C}\right) \times 10^6$

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std 1.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	503	500	100.6%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
805145-1	0.0565	0.056	0.4%	≤5%	Yes
805156-2	0.0466	0,0467	0.1%	5%	Yes

LCS Recovery
$$P = \left(\frac{LC}{LT}\right) x \, 100$$

P = Percent recovery.

LC = Measured LCS value (ppm). LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{A \text{ of } B - C}{A}\right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

Reviewer Printed Name

Jenny T.

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 12TDS12A Date Analyzed: 12/6/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
805073	679	0.65	441.35	0.99
805076	427	0.65	277.55	0.99
805114-17	996	0.61	647.4	0.94
805117-1	823	0.68	534.95	1.05
805117-2	539	0.67	350.35	1.03
805117-3	2030	0.70	1319.5	1.08
805117-4	524	0.70	340.6	1.08
805137-9	925	0,65	601.25	1.00
805137-10	895	0.63	581.75	0.98
805145-1	899	0.63	584.35	0.97
805145-1D	899	0.62	584.35	0.96
LCS				
805145-2	862	0.61	560.3	0.94
805145-3	851	0.62	553.15	0.95
805160-4	564	0.60	366,6	0.93
805192	2620	0.83	1703	1.28
805193	3.19	ND	2.0735	ND
805194-1	677	0.80	440.05	1.23
805155-1	4750	0.59	3087.5	0.90
805155-2	8480	0.60	5512	0.92
805156-1	7380	0.59	4797	0.91
805156-2	7810	0.60	5076.5	0.92
805156-2D	7810	0.60	5076.5	0.92

QC Within Control?

RPD Accept Limit

Alkalinity by SM 2320B

TRUESDAIL LABORATORIES, INC.

Water 12/6/12 Analytical Batch: Date of Analysis: Matrix:

				-	-									
Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL titrant to reach pH 0,3 unit lower	Total Alkalinity as CaCO3	RL, ppm	Total Alkalinity Reported Value	HCO3 Conc. as CaCO ₃ (ppm)	HCO3 Conc. CO3 Alkalinity as CaCO _{3 (ppm)} as CaCO ₃ (ppm)	OH Alkalinity as CaCO ₃ (ppm)	Low Alkalinity as CaCO ₃
LANK	06.9	99	0.02		0.0	0.00		0:0	5	QN	ON.	. ON	Q	
805076	7.83	S	0.02		0.0	4.75		95.0	5	95.0	95.0	2	2	
305114.27	7.87	2	0.02		0.0	4.00		80.0	2	80.0	80.0	Q	2	
805117 1	7.55	8	0.02		0.0	00:6		180.0	5	180.0	180.0	9	9	
5(53.1	7.67	B	0.02		0.0	5.80		116.0	5	116.0	116.0	9	9	
5153.2	7.74	20	0.02		0.0	5.15		103.0	2	103.0	103.0	2	9	
805 (55-1	7,60	20	0.02		0.0	9.75		195.0	2	195.0	195.0	9	2	
5155-2	7.29	<u>유</u>	0 02		0.0	6.00		120.0	5	120.0	120.0	2	Q	
5160.7	7.66	ន	0.02		0.0	3,80		76.0	5	76.0	76.0	SN.	2	
3181-6	7.94	යි	0.02		0.0	7.60		152.0	5	152.0	152.0	2	9	, vancana de la compansa de la compa
5181-7	7.40	B	0.02		0.0	4.40		88.0	2	88.0	88.0	9	9	
805/81.7 DUP	7.40	S S	0.02		0.0	4.50		90.0	2	90.0	90.0	9	9	000
805181.7 MS	80.6	22	0.02	1.7	33.0	9 5		183.0	5	183.0	117.0	99	2	
OS	10.47	20	0.02	22	43.0	4.80		96.0	2	96.0	10.0	86	QN	
OSD	10.50	20	0.02	22	44.0	4.75		95.0	2	95.0	7.0	88	S	
805156.2	7.30	- 50	002		0.0	6.35		127.0	5	127.0	127.0	QN	QN	
		-	-	The Person Name and Address of the Owner, where the Person of the Person		TO SERVICE STATE OF THE PROPERTY OF THE PART	Contraction of the same							

Calculations as follows:

 $A \times N \times 50000$ Tor P = Where:

 $\begin{pmatrix} mL & sample \\ T = Total Alkalinity, mg CaCO3/L \end{pmatrix}$

Where:

P = Phenolphthalein Alkalinity, mg CaCO3/L

Accept Limit | QC Within

Measured Value, ppm

Reporting Limit, RL 5 ppm

Blank Summary

Yes

Ą

A = mL standard acid used
N = normality of standard acid

(2 x B - C) x N x 50000 mL sample B = mL tilrant to first recorded pH as mg/L CaCO3 Low Alkalinity:

C = Total mL titrant to reach pH 0.3 unit lower N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

ND = Not Detected (below the reporting limit) MS/MSD = Matrix Spike/Duplicate

Duplicate Determination Difference Summary

	I			200	, ,	
QC Within	Lab Number	Measured	Dup Value,	;		OC Withir
Control?	ď	Value, ppm	mdd	KPD	Accetance Limit	
Yes	805181-7	88	06	2.2%	%UC>	Yac
			The second secon	21	200	3
Yes						

Accetance Limit 90-110 90-110

"Recovery %0.96

Theoretical Value, ppm 9 6

Measured Value, ppm

QC Std I.D. CSD

98

95.0%

Laboratory Control Sample (LCS/LCSD) Summary

Sample Matrix Spike (MS/MSD) Summary

Lab Number	Conc of Unspk spl	Dil Factor	Added Spk Conc	MS/MSD Amt	Measrd Conc of Spk Spl	Theor Conc of Spk Spl	MS/MSD %Rec	MS Accept Limit	QC Within Control?	RPL
805484.7	88	1	100	100	183	188.00	95%	L	Yes	
2		1	100	100				75-125		
Meliss	a S			H			Hobe.	Thaksin		
	Lab Number 805181-7 Meliss		spl spl spl spl spl spl spl spl spl spl	onc of Unspik Dil Factor spl 88 1	onc of Unspik Dil Factor Added Spik Conc Spil 1 100 1	onc of Unspk Dil Factor Added Spk MS/MSD Aunt Conc Conc 100 100 100 100 100 100 100 100 100 10	onc of Unspk Dil Factor Added Spk MS/MSD Aunt Conc Conc 100 100 100 100 100 100 100 100 100 10	Section Added Spk MS/MSD Aunt Measrd Conc of Spk Spl MS/MSD Aunt Added Spk Spl Theor Conc of Spk Spl MS/MSD	Second Pactor Added Spk MS/MSD Amt Measrd Conc Theor Conc of Spk Spl MS/MSD %Rec Spl MS/	Section Added Spk MS/MSD Amt Measrd Conc Theor Conc of Spk Spl MS/MSD %Rec Limit

Analyst Printed Name 120612b

HOPET. MUKIN Reviewer Printed Name

Reviewer Signature

TRUESDAIL 14201 Frankl (714)730-623 www.truesda

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[iM3Plant-WDR-390]

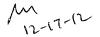
COC Number

TURNAROUND TIME 10 Days

DATE 12/04/12 PAGE 1 OF

20d,7 COMMENTS 1 = JU NUMBER OF CONTAINERS - Reactive (4500-SI COrd) 42 (820N-005p) ZON Ossolved Metals (200.7) Fe, Mn lab fillered × × × (300.0) F, NO3, SO4 \times × Total Metals (200.7) See List Below × × \times \times × TDS (2540 c) \times × EC (150.1) Alkalinity (2320-B) Cr(VI) (218.6) Lab Fillered \times × × DESCRIPTION FAX 530-339-3303 4.33 4.4 TIME 12/04/12 12/04/12 155 Grand Ave Ste 1000 DATE Oakland, CA 94612 PG&E Topock IM3 530-229-3303 CH2M HILL /E2 456827.01.DM SC-100B-WDR-390 SC-700B-WDR-390 SAMPLERS (SIGNATURE PROJECT NAME P.O. NUMBER SAMPLE I.D. COMPANY ADDRESS PHONE

CF.	CHAIN OF CUSTODY SIGNATU	GNATURE RECORD		SAMPLE CONDITIONS
Signature (.lwg)	Printed (O. Knight	Company/ CH2 MHLL	Date/ 12-4-12 Time 15:30	RECEIVED COOL WARM \$ 3.6 °C
(Received) Kakal 1000.	Printed Rafer	Company/ T.L.I.	Date/ $12-4-72$ Time $75:30$	CUSTODY SEALED YES NO
Signature (Relinquished)	Printed A ted	Company/ / / T	7 ×	SPECIAL REQUIREMENTS:
Signature Chaleunma	Printed () Name ()	Company/ PC-E	Date/ //// 3 2.73	Date/ Lyff 32,30 Mr. Ni Es 72
Signature	Printed	Company/	Date/	141, 1 6, 211
OX Relinquished)	Name	Agency	Time	
Signature	Printed	Company/	Date/	
(Received)	Name	Agency	Time	


TOTAL NUMBER OF CONTAINERS

 $\underline{\Sigma}$

S

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab	Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
12/04/12	80%	5116-1	9.5	IVIA	NIA	NIA	HAY
		~2					
	1-1	-3					
7	1	^4		1	1	Jr	1
12/05/12	405	ſ	7	2 ml	9.5	8:30 AM	HAY
	ļ	-2	9.5	NIA	NIA	NIA	HAV
	<u> </u>	-3	7	2 onl	9.5	8:40 Am	HAV
		-4	9.5	NIA	NIA	NIA	HAV
		-5	7	2 ml	M9-5	8:50 AM	HAV
		-6				9:00 AM	HAV
		- チ				9:05AM	HAV
		.8				9:10 AM	HAV
		-9			-	9:15 AM	HAV
		-10				9:20 AM	HAV
		-11				9:23 AM	HAV
1	k	-12	<u> </u>	<u> </u>		9:30 AM	HAY
2105/12	805	155 -1	7	2 ml	9.5	10:00 Am	HAV
<u> </u>		1, -2	1,	7	1	7	٧,
2105/12	805	156-1	7	2 ml	9.5	10:30 AM	HAV
7	<u></u>	-2				10:40 Am	1
2/05/12	8051	57-1	9.5	HIA	NIA	NIA	HAV
		-2		·			
		^3					
		-4		·			
		~5					
		-6					
		-7					
		- 46					
<u> </u>	<u></u>	. 9	<u> </u>		<u></u>		1
				·			
							-

rhidity/pH Chack

				Turbic	lity/pH C	heck			
	Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
	80\$ OZI (1-5)	41	ZZ	12/3/12	ES	yes			
	805019 (1-2)	4	V		1	1			
	804967		72	3/4			T DODEN		
	805017		72 L	-V	6		Τ'_		
	8050 W 12/4								
	805116 (1-4)	21	42	12/4/12	EK.	yes			
	804746	4	42	11/9/12.	pl	VES			
	80 5022 (10)	<1	۷ ۷	12/4-12	BE	Vxcs			
j	405117-1	41	42	12/4/12	- 55	yu.			,
	805145-(1-3)	41	72	12/6/12	AA	MO	8=30KA		
	805160 (1-3)	41	72	, f'	1				
	805171(10-12)	4	72_						
	865-175-(1-3)	CI	22	V	V	<i>V</i>	1	1 -	
	205179	< 1	<2	1216+12	Bz	xes			
,	905 180 (1-5)	Z 1	12.	12/6/12	ES	yes			
	805076	41	72			No	10:00 cm		
	805114 (17,24)		1	l			V_		
	第515211-3	<1	<u> </u>	12/7/12	BE	Xes			
12-7,12	805153 L1-2)		<u> </u>						, e. (.
82	80515561-2)		72					Aciditial afti	1 filt
805156	20 \$5156 (1-2)		<u> </u>	·					
	805157(1-9)		<u> </u>						
	8.05159(1-12)								
. a	805158617-273	<i>y</i> < <i>r</i>							
BF	805182U-8)							
	805181697)								
	805219 (-45)	}		-					
	805220(1-3)						-	ł	
	8-5221 (1-4)	1	4	<u> </u>	<u> </u>	—	-		
	808-214 B 12/1	12	/ 0	12/2/12	ES	(1)			
	805095	741	42	12/7/12	()	yu			,
	805098			<u> </u>					
	805104								
	815125			 					
	805/26			 	-				
	605 127				-				
	805 128								
	805 120	-							
	805 120		-	-					
	805 170				- -				
	805 192	· ·				 			
	805-100				 				
:	505 261	 , 	-		+ 1,	,			
	107 801		₩	V	L V		1	1	

- Notes:
 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 2. All Total Recoverable Analytes must be pH adjusted and digested.
 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	ient: <u>E</u> &	_ Lab #_ 805/56
Da	nte Delivered: ½/½/12 Time: ½/30 By: □Mail 🛭	Field Service
1.	Was a Chain of Custody received and signed?	ÆYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ØN/A
3 .	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ÆN/A
5.	Were all requested analyses understood and acceptable?	Ares □No □N/A
<i>6.</i>	Were samples received in a chilled condition? Temperature (if yes)? <u>३.७ ° C</u>	⊿Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	⊈Yes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No ÆN/A
9 .	Does the number of samples received agree with COC?	☐Yes □No □N/A
10_	Did sample labels correspond with the client ID's?	⊒Yes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdall □Client	ÁYes □No □N/A
12.	Were samples pH checked? pH = $\frac{Sel C O e}{}$.	
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	AYes ONO ON/A
4.	Have Project due dates been checked and accepted? Tum Around Time (TAT): □ RUSH	ØYes □No □N/A
<i>5</i> .	Sample Matrix: □Liquid □Drinking Water □Ground □Sludge □Soil □Wipe □Paint □Solid ☒	Water
6.	Comments:	
7.	Sample Check-In completed by Truesdail Log-In/Receiving: _	duda.
	ΔΙΕΙ	PTII I

ALERT!! Level III QC

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

January 4, 2013

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-391 PROJECT, GROUNDWATER MONITORING, TLI NO.: 805303

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-391 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 11, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

The straight run for the matrix spike for sample SC-700B-WDR-391 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

Laboratory No.: 805303

Date: January 4, 2013

Collected: December 11, 2012 Received: December 11, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Melissa Scharfe
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 805303

Date Received: December 11, 2012

Analytical Results Summary

4 5	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
SC-700B-WDR-391 E120.1		NONE	12/11/2012	15:09	EC	7030	nmhos/cm	2.00
E200.8		NONE	12/11/2012	15:09) Chromium	g	ng/L	1.0
E200.8		NONE	12/11/2012	15:09	Manganese	0.98	ng/L	0.50
SC-700B-WDR-391 E218.6		LABFLT	12/11/2012	15:09	Chromium, Hexavalent	2	ng/L	0.20
SM2130B		NONE	12/11/2012	15:09	Turbidity	Q	NTC	0.100
SM2540C		NONE	12/11/2012	15:09	Total Dissolved Solids	4190	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 1/4/2013

Page 1 of 9

Laboratory No. 805303

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 12/11/2012 10:30:00 PM

Field ID				Lab ID	Col	lected	Matı	ix
SC-700B-WDR-391				805303-001	12/11/	/2012 15:09	Wat	er
Specific Conductivity -	EPA 120.1		Batch	12EC12D				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
805303-001 Specific Condu	uctivity	umhos/c	m 12/14	1/2012	1.00	0.757	2.00	7030
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	805303-001
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7050	Expected 7030	R	RPD 0.284	Accepta 0 - 10	ince Range
Parameter	Unit	DF	Result	Expected		Recovery	Accents	ınce Range
Specific Conductivity	umhos	اط 1.00	688	706	1.	97.4	90 - 110	_
Lab Control Sample								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 680	Expected 706	R	Recovery 96.3	Accepta 90 - 110	ince Range)
MRCCS - Secondar	y							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 674	Expected 706	R	lecovery 95.5	Accepta 90 - 110	ince Range)
MRCVS - Primary								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 986	Expected 996	R	lecovery 99.0	Accepta 90 - 110	ince Range)
MRCVS - Primary								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 945	Expected 996	R	lecovery 94.9	Accepta 90 - 110	ince Range)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 9 Printed 1/4/2013

Chrome VI by EPA 218.0	6		Batch	12CrH12N				
Parameter		Unit	Anal	yzed l	DF	MDL	RL	Result
305303-001 Chromium, Hex	avalent	ug/L	12/17/	/2012 12:51 1	.00	0.00920	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	805305-002
Parameter	Unit	DF	Result	Expected	ı	RPD		ance Range
Chromium, Hexavalent	ug/L	1.00	0.0615	0.0713		14.8	0 - 20	
Low Level Calibration	Nerification							
Parameter	Unit	DF	Result	Expected	ı	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	0.196	0.200		98.2	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	I	Recovery		ance Range
Chromium, Hexavalent	ug/L	1.00	4.80	5.00		96.0	90 - 110	
Matrix Spike							Lab ID =	805303-00
Parameter	Unit	DF	Result	Expected/Adde	ed l	Recovery	-	ance Range
Chromium, Hexavalent	ug/L	1.00	1.15	1.15(1.00)		100	90 - 110	
Matrix Spike							Lab ID =	805305-002
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	1.02	1.07(1.00)		94.7	90 - 110	
Matrix Spike							Lab ID =	805305-003
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	0.871	1.00(1.00)		87.1	90 - 11	
Matrix Spike							Lab ID =	805305-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	-	ance Range
Chromium, Hexavalent	ug/L	5.00	4.74	5.00(5.00)		94.7	90 - 11	
Matrix Spike							Lab ID =	805305-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	0.949	1.00(1.00)		94.9	90 - 11	
Matrix Spike							Lab ID =	805305-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	5.00	4.18	5.00(5.00)		83.6	90 - 11	0

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

Project Number: 456827.01.DM Printed 1/4/2013

Page 6 of 9

90 - 110

94.4

Batch 121712C Metals by EPA 200.8, Total Unit DF MDL RL Result Parameter Analyzed 12/18/2012 06:05 ug/L 2.50 0.230 1.0 ND 805303-001 Chromium 0.215 Manganese ug/L 12/18/2012 06:05 2.50 0.50 0.98 Method Blank Unit DF Result Parameter ND Chromium ug/L 1.00 1.00 ND Manganese ug/L Low Level Calibration Verification Unit DF Result Expected Recovery Acceptance Range Parameter Chromium ug/L 1.00 0.213 0.200 107 70 - 130110 70 - 130ug/L 1.00 0.220 0.200 Manganese Lab Control Sample Unit DF Result Expected Recovery Acceptance Range Parameter 2.50 51.0 50.0 102 ug/L 85 - 115 Chromium 2.50 50.0 103 85 - 115 Manganese ug/L 51.6 Lab ID = 805303-001 Matrix Spike Recovery DF Expected/Added Parameter Unit Result Acceptance Range 2.50 50.0 50.0(50.0) 99.9 75 - 125 Chromium ug/L ug/L 2.50 50.2 51.0(50.0) 98.5 75 - 125Manganese Lab ID = 805303-001 Matrix Spike Duplicate Unit DF Result Expected/Added Recovery Acceptance Range Parameter 96.6 75 - 125 ug/L 2.50 48.3 50.0(50.0) Chromium 75 - 125 105 ug/L 2.50 53.3 51.0(50.0) Manganese MRCCS - Secondary DF Acceptance Range Unit Result Expected Recovery Parameter ug/L 1.00 18.2 20.0 90.9 90 - 110 Chromium ug/L 1.00 19.0 20.0 95.2 90 - 110 Manganese MRCVS - Primary Acceptance Range Parameter Unit DF Result Expected Recovery 90 - 110 ug/L 1.00 19.1 20.0 95.5 Chromium MRCVS - Primary Unit DF Result Expected Recovery Acceptance Range Parameter

18.9

20.0

uq/L

Chromium

1.00

			Report Cor	ntinued				
Client: E2 Consulting E	ngineers, In		roject Name: roject Numbe	PG&E Topo er: 456827.01.[•	ct	Printed 1 Revised	Page 8 of 9 /9/2013
Interference Check S	Standard AB							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Manganese	ug/L	1.00	19.5	20.0		97.4	80 - 120)
Interference Check S	Standard AB							
Parameter Manganese	Unit ug/L	DF 1.00	Result 19.1	Expected 20.0	F	Recovery 95.6	Accepta 80 - 120	ance Range
Total Dissolved Solids	by SM 254	0 C	Batch	12TDS12C				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
805303-001 Total Dissolved	Solids	mg/L	12/13	3/2012	1.00	0.757	250	4190
Method Blank					a Pilotonia			
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	805314-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	2420	2410		0.620	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Total Dissolved Solids	mg/L	1.00	491	500		98.2	90 - 110)
Turbidity by SM 2130 B			Batch	12TUC12E	(E)			
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
805303-001 Turbidity		NTU	12/12	2/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND				sumules sidenteed of the	nas vasnasnas en som ness san som
Duplicate							Lab ID =	805303-001
Parameter Turbidity	Unit NTU	DF 1.00	Result ND	Expected 0	F	RPD 0	Accepta 0 - 20	ince Range
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery		nce Range
Turbidity	NTU	1.00	8.30	8.00		104	90 - 110)
Lab Control Sample	and the state of t							
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range

8.05

8.00

101

90 - 110

NTU

Turbidity

1.00

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

TORE TOPOCKTTO

Page 9 of 9

Project Number: 456827.01.DM

Printed 1/4/2013

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 12TDS12C Date Analyzed: 12/13/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
Blank	100	75.9550	75.9550	75,9550	0,0000	No	0.0000	0.0	25.0	МD	1
805270-1	50	47.8631	47.9208	47.9204	0.0004	No	0.0573	1146.0	50.0	1146.0	1
805270-2	50	50.4990	50.5531	50.5527	0.0004	No	0.0537	1074.0	50.0	1074.0	1
805270-3	50	50.8289	50.8718	50.8717	0.0001	No	0.0428	856.0	50.0	856.0	1
805270-4	50	47.9484	47.9985	47.9983	0.0002	No	0.0499	998.0	50.0	998.0	1
805277	440	103.7334	103.7340	103.7340	0.0000	No	0.0006	1.4	5.7	ND	1
805285	200	109.8965	109.9088	109.9088	0.0000	No	0.0123	61.5	12.5	61.5	1
805286	50	51.9200	52.0411	52.041	0.0001	No	0.1210	2420.0	50.0	2420.0	1
805303	10	49.7756	49.8175	49.8175	0:0000	No	0.0419	4190.0	250.0	4190.0	11
805314-1	50	51.2378	51.3459	51.3455	0.0004	- No	0.1077	2154.0	50.0	21,54.0	1
805314-2	20	51.9365	51.985	51,9847	0.0003	No	0.0482	2410.0	125.0	2410.0	1
805314-2D	20	50.8517	50.9006	50.9002	0.0004	No	0.0485	2425.0	125.0	2425.0	1.
LCS	100	76.5406	76.5897	76.5897	0.0000	No	0.0491	491.0	25.0	491.0	1
805320-1	100	78.3955	78.4224	78.4224	0.0000	No	0.0269	269.0	25.0	269.0	1
805345	10	51.8948	51.9488	51.9484	0.0004	No	0.0536	5360.0	250.0	5360.0	1
805346	10	51.8790	51.9377	51.9377	0.0000	No	0.0587	5870.0	250.0	5870.0	1
805347	10	49.9072	49.9639	49.9635	0.0004	No	0.0563	5630.0	250.0	5630.0	1
805348	10	52.0700	52.132	52,1317	0.0003	No	0.0617	6170.0	250.0	6170.0	1
805349	10	48.0022	48.0612	48.0609	0.0003	No	0.0587	5870.0	250.0	5870.0	1
805350	5	48.0309	48.0933	48.0933	0.0000	No	0.0624	12480.0	500.0	12480.0	1
805351	10	49.8219	49.87	49.8696	0.0004	No	0.0477	4770.0	250.0	4770.0	1
805352	10	49.6779	49.7273	49.7269	0.0004	No	0.0490	4900.0	250.0	4900.0	1
805350D	5	52.0432	52.1044	52.1044	0.0000	No	0.0612	12240.0	500.0	12240.0	1 ,

Calculation as follows:

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

-upoluto:	y 001111101 01	mpic (Loc	7 Cullinia.	Z	
QC Std LD.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	491	500	98.2%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Şample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
805314-2	0.0482	0.0485	0.3%	≤5%	Yes
805350	0.0624	0.0612	1.0%	5%	Yes

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) \times 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left| A \text{ or } B - C \right|}{C} \times 1000$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

Reviewer Printed Name

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 12TDS12C
Date Analyzed: 12/13/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Call TDS <1.3
805270-1	1817	0.63	1181.05	0.97
805270-2	1687	0.64	1096.55	0.98
805270-3	1375	0.62	893,75	0.96
805270-4	1596	0.63	1037.4	0.96
805277	30.4	ND	19.76	ND
805285	94.5	0,65	61.425	1,00
805286	3130	0.77	2034.5	1.19
805303	7450	0.56	4842.5	0.87
805314-1	3640	0.59	2366	0.91
805314-2	4150	0.58	2697.5	0.89
805314-2D	4150	0.58	2697.5	0.90
LCS				
805320-1	487	0.55	316.55	0.85
805345	7030	0.76	4569.5	1.17
805346	7760	0.76	5044	1.16
805347	7740	0.73	5031	1.12
805348	8050	0.77	5232.5	1.18
805349	8090	0.73	5258.5	1.12
805350	18870	0.66	12265.5	1.02
805351	6550	0.73	4257.5	1.12
805352	6650	0.74	4322.5	1.13
805350D	18870	0.65	12265.5	1.00

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-391]

TURNAROUND TIME DATE 12/11/12

COC Number

805303

유

PAGE 1

10 Days

OMPANY	E2						/		/		 /	/	/			/	-				
ROJECT NAME	PG&E Topock			-		_	_				 	_					\	\	8	COMMENTS	·····································
HONE	(530) 229-3303	The particular and the particula	4x (53C	FAX (530) 339-3303		_					 		_		_		_				
ODRESS	155 Grand Ave Ste 1000	Ste 1000	1			_	u	4			 					_	NER				
	Oakland, CA 94612	612	1			Po.	W JO	(150		_	 	_		_			1/P/TV				
O. NUMBER	456827.01.DM		TEAM	-	7	FIRE!	(20)	estin.		(08)	 		_			VOD.	10				
AMPLERS (SIGNATURE		O. Kuezh	7		1 (9)	or stell	Cough	00 pg ZV	37/	12WS)					_	40 Y3					
SAMPLE 1.D.		<i>U</i> Date	TIME	DESCRIPTION	CIE (218	TOBI ME	Specific Specific	NS) SQI	Turbidan	Turbidity						BWNN					
SC-700B-WDR-391	۲-391	12/11/12	1509	Water	×	×	×	×	×						٣			6	H=6(2)9	(200.7

I TOTAL NUMBER OF CONTAINERS

Μ

	CHAIN OF	CHAIN OF CUSTODY SIGNATURE RECORD	SNATURE	RECORD		19-11-63	SAMPLE CONDITIONS	
Signature (P. Kune	. (Lueghi Brinted	C. Enuque	Company/ Agency	Company! CH2W HLL	Date/ Time	15:15	RECEIVED COOL WARM	¥
Signature (Received)	Printed Name	Lafay	Company/ Agency	ア・ソ・ナ	Time	Date! / 2 - // - / 2 Time / 5 / / 6	CUSTODY SEALED YES NO	
(Relinquished)	d VI Name	Kated	Agency	ノ・バ・エ	Time	Time / 42:22	SPECIAL REQUIREMENTS:	
Signature (Received) Mulfor	Printed Name 2	Printed Compar Name Hulletter Well Agency	Company/ Agency	The	Date/ Time	12/11/12 2220	0	
Signature	Printed	A THE PARTY OF THE	Company/	After the product of the control of	Date/			
(Relinquished)	Name		Agency		Time			
Signature	Printed		Company/		Date/			
(Received)	Name		Agency		Time			

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
	805221-1	9.5	NIA	NIA	NIA	1
	-2	1 1			1	HAV
	-3					
	1 -4					
12/07/12	805233	9.5	NIA	NIA	NIA	HAV
	805270-1	7	2 ml	9.5	12:10 pm	HAV
	-2				12:15 PM	
	-3				12:20 pm	
<u></u>	, ~4	7	4	· 4	12:25 PM	1
12/12/12	805303	7	2 ml	9.5	10:00 AM	HAV
12/12/12	80 5304	9-5	NIA	NA	NIA	HAV
12/12/12	805305-1	9.5	NIA	NIA	NIA	HAV
	-2					
	-3					
	-4 r	4	- 1	10		
	-5 -6	i	5 drop 25% NaOH	9-5	10:30 AM	HAV
	-7	9.5	NIA	NIA	NIA	HAY
	-8					_
	-9					
	-10					
	~11					
	-12					
	-13					
	-14					
	75					
	-16					
	-17					
	- 18					
	-19					
	- 20		<u> </u>	\downarrow	1	1

M 12-17-12

Turbidity/pH Check

			I UTDI	dity/pH C	neck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
805213	۷١	22	12/7/12	ES	ges			
805214	1	ľ	1	ı	1			
805215								
80 + 239							·	
805241								
805242								
805244								
805245 - 255		1	1	4	J J			
204968 (1-6)	21	42	11/30/12	KR	162			
505018 (1-2)	1		1		71			
8 04930(1-5)								
305023 (1-5)	4	1/		4	V			
805259	>1	2 2 2 2	12/12/12	4A	Yes			
805260	f	<2			. 1			
805261		<2						
405268-6		<2 > 2			VNO			
805270(1-4)	4	>2	U.	V	44		12/17 PHYZ	-2 For digest
805217	61	>2 72 <2	12/12/12	AA	No		12-14	PH < L
805343	<.1	72	1	BE	xes	9130		
8 05304	< \	<2			ال			
30529361-3	41	72	12/13		No	14:00		pH<2
805319(10-12)	7	- 1			J	14:00	4	<u>_</u>
805281	71	<2			yes.			
8.5282								
805285								
8.5286								
805287								
8.5288								
8-5289	1.5							
8.5290							i	
805332	•		4	<u> </u>	V			
805306 (20)	۲١	12			xen	· · · · · · · · · · · · · · · · · · ·		
805305 (19)								
805329U-5		<u> </u>		<u> </u>	1			2/1.0
E05389(1947) RO5353	1	. 72	12/17	BE	NO	13:00	3010 A	pH<2
205 353	<i>></i> /	11	1/13/11	MM	yes		3010 A	
305372			1					
805378								
305 380	·							
105 382								
205 383								
786 708								
305194								
805396	1	V		<u> </u>				

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	ient: $\underline{E}\mathcal{L}$	Lab # <u>805303</u>
Dá	te Delivered: 12/1/12 Time 22/30 By: □Mail &	Field Service
1.	Was a Chain of Custody received and signed?	AYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÆN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ÆN/A
5 .	Were all requested analyses understood and acceptable?	ÆYes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)?∜ <u>· ⟨ ° C</u>	ÄYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	⊠Yes □No □N/A
8 .	Were sample custody seals intact?	□Yes □No c\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
9.	Does the number of samples received agree with COC?	⊉ Yes □No □N/A
10.	Did sample labels correspond with the client ID's?	dYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client	□Yes □No □MA
12.	Were samples pH checked? pH = See C. O. C	ÆYes □No □N/A
' 3 .	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØYes □No □N/A
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std	ДaYes □No □N/A
5 .	Sample Matrix:	
ĵ.	Comments:	· .
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	uder

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

January 8, 2013

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-392 PROJECT, GROUNDWATER

MONITORING, TLI No.: 805429

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-392 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 18, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

The straight run for the matrix spike for sample SC-700B-WDR-392 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits, the data from the straight run is reported.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Service

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 805429

Date: January 8, 2013 Collected: December 18, 2012 Received: December 18, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Date Received: December 18, 2012

Laboratory No.: 805429

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

P.O. No.: 456827.01.DM

Analytical Results Summary

ple ID	ab Sample ID Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	묎
	SC-700B-WDR-392	E120.1	NONE	12/18/2012	10:30	EC	7100	umhos/cm	2.00
	SC-700B-WDR-392	E200.8	NONE	12/18/2012	10:30	Chromium	ND	ng/L	1.0
	SC-700B-WDR-392	E200.8	NONE	12/18/2012	10:30	Manganese	1.5	ng/L	0.50
	SC-700B-WDR-392	E218.6	LABFLT	12/18/2012	10:30	Chromium, Hexavalent	Q	ng/L	0.20
	SC-700B-WDR-392	SM2130B	NONE	12/18/2012	10:30	Turbidity	Q	NTC	0.100
	SC-700B-WDR-392	SM2540C	NONE	12/18/2012	10:30	Total Dissolved Solids	4280	mg/L	250

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Result above or equal to 0.01ppm will have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results: Quality Control data will always have three (3) significant figures. Results below 0.01ppm will have two (2) significant figures.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 9

14201 FRANKLIN AVENUE
 TUSTIN, CALIFORNIA 92780-7008
 (714) 730-6239 · FAX (714) 730-6462
 www.truesdail.com

Printed 1/8/2013

Laboratory No. 805429

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM P.O. Number: 456827.01.DM

Release Number:

Samples Received on 12/18/2012 9:30:00 PM

 Field ID
 Lab ID
 Collected
 Matrix

 SC-700B-WDR-392
 805429-001
 12/18/2012
 10:30
 Water

Specific Conductivity - EPA 120.1
Batch 01EC13A

Specific Conductivity	/, ,			01EC13A				_
Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result
805429-001 Specific Condu	uctivity	umhos/cm	n 01/02	2/2013	1.00	0.116	2.00	7100
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	805429-001
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 7100	Expected 7100	F	RPD 0	Accepta 0 - 10	ance Range
Lab Control Sample								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 698	Expected 706	F	Recovery 98.9	Accepta 90 - 110	ince Range)
Lab Control Sample	Duplicate							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 701	Expected 706	F	Recovery 99.3	Accepta 90 - 110	ince Range)
MRCCS - Secondar	У							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 674	Expected 706	F	Recovery 95.5	Accepta 90 - 110	ince Range)
MRCVS - Primary								
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 940	Expected 996	F	Recovery 94.4	Accepta 90 - 110	ince Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 932	Expected 996	F	Recovery 93.6	Accepta 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without propertite authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 3 of 9 Printed 1/8/2013

Chrome VI by EPA 218.	6		Batch	1 12CrH12Q				
Parameter		Unit	Ana	alyzed [)F	MDL	RL	Result
805429-001 Chromium, Hex	kavalent	ug/L	12/20	0/2012 11:56 1	.00	0.00920	0.20	ND
Method Blank				A salatana.	71.5			
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	805374-002
Parameter	Unit	DF	Result	Expected	R	PD	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	20.1	20.2		0.574	0 - 20	_
Low Level Calibration	n Verificatio	n						
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.210	0.200		105	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	4.82	5.00		96.5	90 - 110)
Matrix Spike							Lab ID =	805306-006
Parameter	Unit	DF	Result	Expected/Adde	d R	ecovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	10.0	9.41	10.0(10.0)		94.1	90 - 110	1
Matrix Spike							Lab ID =	805306-017
Parameter	Unit	DF	Result	Expected/Added	d R	ecovery	•	nce Range
Chromium, Hexavalent	ug/L	10.0	9.44	10.0(10.0)		94.4	90 - 110	
Matrix Spike							Lab ID =	805373-001
Parameter	Unit	DF	Result	Expected/Added		ecovery	•	nce Range
Chromium, Hexavalent	ug/L	10.0	459	478(250)		92.3	90 - 110	
Matrix Spike							Lab ID =	805373-002
Parameter	Unit	DF	Result	Expected/Added		ecovery	•	nce Range
Chromium, Hexavalent	ug/L	5.00	143	148(75.0)		93.6	90 - 110	
Matrix Spike							Lab ID =	805374-002
Parameter	Unit	DF	Result	Expected/Added		ecovery	-	nce Range
Chromium, Hexavalent	ug/L	1.0526	45.4	46.5(26.3)		95.8	90 - 110	
Matrix Spike							Lab ID = i	805374-004
Parameter	Unit	DF	Result	Expected/Added		ecovery	•	nce Range
Chromium, Hexavalent	ug/L	5.00	6.08	6.35(5.00)		94.6	90 - 110	

Client: E2 Consulting En	ıgineers, In		Project Name: Project Number	PG&E Topock Pro : 456827.01.DM	oject	Page 4 of 9 Printed 1/8/2013
Matrix Spike						Lab ID = 805374-005
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.59	Expected/Added 5.89(5.00)	Recovery 94.0	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-006
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 4.54	Expected/Added 5.00(5.00)	Recovery 90.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-006
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND	Expected/Added 1.00(1.00)	Recovery	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-007
Parameter Chromium, Hexavalent	Unit ug/L	DF 50.0	Result 1870	Expected/Added 1900(1000)	Recovery 96.4	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-008
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.926	Expected/Added 1.00(1.00)	Recovery 92.6	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-008
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 4.67	Expected/Added 5.17(5.00)	Recovery 90.1	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-009
Parameter Chromium, Hexavalent	Unit ug/L	DF 1000	Result 45000	Expected/Added 45200(25000)	Recovery 99.0	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-010
Parameter Chromium, Hexavalent	Unit ug/L	DF 1000	Result 44900	Expected/Added 45400(25000)	Recovery 98.2	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-011
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 4.86	Expected/Added 5.17(5.00)	Recovery 93.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805374-011
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.928	Expected/Added 1.00(1.00)	Recovery 92.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805429-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 4.83	Expected/Added 5.20(5.00)	Recovery 92.6	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 805429-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.14	Expected/Added 1.10(1.00)	Recovery 104	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 6 of 9 Printed 1/8/2013

Metals by EPA 200.8, To	otal			010713B				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
805429-001 Chromium		ug/L	01/08	3/2013 04:58 2	2.50	0.230	1.0	ND
Manganese		ug/L	01/08	3/2013 04:58 2	2.50	0.215	0.50	1.5
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	805221-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Chromium	ug/L	2.50	1.03	1.03		0.389	0 - 20	
Manganese	ug/L	2.50	2.51	2.50		0.359	0 - 20	
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Chromium	ug/L	1.00	0.210	0.200		105	70 - 130)
Manganese	ug/L	1.00	0.238	0.200		119	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Chromium	ug/L	2.50	50.2	50.0		100	85 - 115	5
Manganese	ug/L	2.50	47.5	50.0		95.1	85 - 115	5
Matrix Spike							Lab ID =	80 5221-00 1
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Chromium	ug/L	2.50	51.5	51.0(50.0)		101	75 - 125	;
Manganese	ug/L	2.50	49.8	52.5(50.0)		94.6	75 - 125	j
Matrix Spike Duplicat	te						Lab ID =	805221-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Chromium	ug/L	2.50	52.9	51.0(50.0)		104	75 - 125	j
Manganese	ug/L	2.50	51.0	52.5(50.0)		97.1	75 - 125	j
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Chromium	ug/L	1.00	19.7	20.0		98.4	90 - 110)
Manganese	ug/L	1.00	19.0	20.0		95.0	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Chromium	ug/L	1.00	20.2	20.0		101	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 8 of 9 Printed 1/8/2013

Interference Check Standard AB

Parameter Unit DF Result Expected Recovery Acceptance Range Manganese ug/L 1.00 18.9 20.0 94.6 80 - 120

Total Dissolved Solids	by SM 254	0 C	Batch	12TDS12E				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
805429-001 Total Dissolved	Solids	mg/L	12/20)/2012	1.00	0.757	250	4280
Method Blank								
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND				Lab ID =	805429-001
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 4460	Expected 4280	F	RPD 4.12	Accepta 0 - 10	ance Range
Lab Control Sample								
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 514	Expected 500	F	Recovery 103	Accepta 90 - 110	ance Range

Turbidity by SM 2130 B			Batch	12TUC12K				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
805429-001 Turbidity		NTU	12/19	/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	805429-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Turbidity	NTU	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.13	8.00		102	90 - 110	
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.02	8.00		100	90 - 110	

Client: E2 Consulting Engineers, Inc.

PG&E Topock Project Project Name:

Page 9 of 9

Project Number: 456827.01.DM

Printed 1/8/2013

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 12TDS12E Date Analyzed: 12/20/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	66.7126	66.7128	66.7128	0.0000	No	0.0002	2.0	25.0	ND	1
805404	100	102,7195	102.7655	102.7651	0.0004	No	0.0456	456.0	25.0	456.0	1
805422	50	49.3981	49.4422	49.4421	0.0001	No	0.0440	0.088	50.0	0.088	1
805429	10	51.3367	51.3799	51.3795	0.0004	No	0.0428	4280.0	250.0	4280.0	1
805443	50	49.3515	49.3874	49.387	0.0004	No	0.0355	710.0	50.0	710.0	1
805465	1000	111.6475	111.6475	111.6475	0.0000	No	0.0000	0.0	2.5	ND	1
805429D	10	51.9262	51.9708	51.9708	0.0000	No	0.0446	4460.0	250.0	4460.0	1
LCS	100	77.2962	77.3477	77.3476	0.0001	No	0.0514	514.0	25.0	514.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	514	500	102.8%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

	Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
MV4	_805929	0.0428	0:0446	2.1%	≤5%	Yes
	805479					

$$P = \left(\frac{LC}{LT}\right) \times 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{1}{A \text{ or } B - C}\right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

Jenny T.

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 12TDS12E Date Analyzed: 12/20/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
805404	732	0.62	475.8	0.96
805422	1374	0.64	893.1	0.99
805429	7120	0.60	4628	0.92
805443	1095	0.65	711.75	1.00
805465	6.53	ND	4.2445	ND
805429D	7120	0.63	4628	0.96
LCS				
-				

PROJECT NAME

COMPANY

P.O. NUMBER

ADDRESS

PHONE

SAMPLE I.D.

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

TURNAROUND TIME

COC Number

COMMENTS Ġ 10 Days PAGE NUMBER OF CONTAINERS DATE 12/18/12 67AS08 Turbidity (SM2730) × [IM3Plant-WDR-392] 108 (SM2540C) Specific Conductance (120,1) (7.00S) sleieM (800.7) × Cto (218.6) Lab Fillered >< DESCRIPTION Water FAX (530) 339-3303 TEAM TIME 12/18/12 155 Grand Ave Ste 1000 DATE Oakland, CA 94612 (530) 229-3303 PG&E Topock 456827.01.DIM SAMPLERS (SIGNATURE SC-700B-WDR-392 E2

)

18

TOTAL NUMBER OF CONTAINERS

1

	WARM \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					
NOLLIONS	WARM [ON ON				
SAMPLE CONDITIONS	C001 M	YES [j;			
		CUSTODY SEALED	SPECIAL REQUIREMENTS:			
	GECEIVED		4	······································	W	08:10
	Date/ 12-1812 Time 15;30	Date 12-18-12 Time 15:30	Time / S		Date 12 18-12 Time 21:30	Sate 12/18/12 21:30
		Date/ / Time	Time / S	Date/ Time	Date//	Date/ Time /
URE RECORD	Company/ CL2 mb. 11	1.4.7	Lenth		I.Y.1	742
GNATURE	Company/ C		Company/ Agency (7)	Company/ Agency	Company/ Agency	Company/ Agency
CHAIN OF CUSTODY SIGNATI	attoom Compan	a feel	一大ない		Laka	nolar
HAIN OF C	Printed S	Printed	A Hame Con	Printed	Printed /	Printed And M
O	Mosand	1 (Azv	as sulf	-	1 / () Le	nather na
	AS BOT	Kafa	The Part of		(pa)	10%
	Signature (Relinquished	Signature (Received)	Signature (Relinquished)	Signature (Received)	Signature (Relinquished)	Signature (Received)

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
12/18/12	805429	7	2 ml	9-5	9:15 AM	HAV
			٠.,			
						. •
						·····
		·				
	*					
		***************************************				,
			`			
				<u>-</u>		· · · · · · · · · · · · · · · · · · ·
						·
	on the same of the same of the same of the same of the same of the same of the same of the same of the same of		and the control of th	glege, jiger e, v	A Section 1997 And the second section 1997 And the section 1997 And the second section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the section 1997 And the	
						-
	· · · · · · · · · · · · · · · · · · ·					

1-2-17 HAY 1217712 046

Turbidity/pH Check

Turbidity/pH Check										
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comment		
805397	71	<u> </u>	14/17/2	MU	Les					
805397 30555 1211710			10-1 10		1					
700830(1-6)	41	72	12/17/12	ES	No	10:00	12/18/12 22	-		
30545661-3)	\ \ \ \ \		12/20/12	BI-	NO	8,00	1-7-13	PH<2		
805425 (1-3,4)			1	1		Í				
8054014-3										
805443										
805404										
	-		+ +	- 4	¥2.5	Y		¥		
805429		72 <2			77			-		
805373										
8053760-12)										
8 05 37461-12	<u> </u>	<u> </u>		—	-					
805462	71	<2 				_		+		
805417										
805418										
805419										
805420					L					
80542										
805427 (1-3)										
805446										
8.5442							NATION TO COLOR			
805455										
805471										
805472					1					
805473										
805518	<1	>z	12-31-12	BG	NO	15:00	1-2-13	PH < 2		
80551411-4)	<1	72	1-02-13	BI-	No	a.a. AM				
805519	Ì	1								
805520 (1-4)				. 1	6					
205535(4-6)	Y					14100				
802418(10-15)						14:00				
£0 5545	ζ1	72	1-03-13	BE	Yes	14:00				
805581).	22],	T					
805508	1		1-4-13	36	xe5					
80 5503			12-27-12	<u> </u>		-				
80 9501										
0 //-1	1	!	<u> </u>	Ψ						
								<u> </u>		
		N								

Notes:

Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	ient:	Lab # 805423
Da	te Delivered: 년 기울 / 12 Time: 월 130 By: ☐ Mail 🗵	Field Service
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÁN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ØN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ŪA/A
5.	Were all requested analyses understood and acceptable?	⊘ Yes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)?⊰ <u>. ⊌ ° C</u>	Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes □No □N/A
8.	Were sample custody seals intact?	□Yes □No ÆN/A
9.	Does the number of samples received agree with COC?	ÁYes □No □N/A
10.	Did sample labels correspond with the client ID's?	ŹYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	□Yes □No ÆN/A
12.	Were samples pH checked? pH = See C.O.C.	⊠Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	EYes DNo DNA
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std	ÆYes □No □N/A
5 .	Sample Matrix: □Liquid □Drinking Water □Ground □Sludge □Soil □Wipe □Paint □Solid 🛣	
6.	Comments:	 _
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	duda

January 7, 2013

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-393 PROJECT, GROUNDWATER MONITORING, TLI NO.: 805505

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-WDR-393 project groundwater monitoring for Hexavalent and Total Chromium, Total Manganese, Turbidity, Specific Conductivity, and Total Dissolved Solids. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on December 26, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium and Total Manganese were analyzed by EPA 200.8 rather than EPA 200.7 as requested on the chain of custody with Mr. Shawn Duffy's approval.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

/ Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 456827.01.DM

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 805505

Date: January 7, 2013 Collected: December 26, 2012 Received: December 26, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Maksim Gorbunov
SM 2130B	Turbidity	Maksim Gorbunov
EPA 200.8	Total Metals	Bita Emami
EPA 218.6	Hexavalent Chromium	Himani Vaishnav

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 456827.01.DM P.O. No.: 456827.01.DM

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 805505

Date Received: December 26, 2012

Analytical Results Summary

R	2.00	; -). - C	0.00	710	250
Units	umhos/cm	/DI	1 (%) 1 / VI) 	J EN	mg/L
Result	7080	S	т Д	; <u>C</u>	Ē	4680
Parameter	EC	Chromium	Manganese	Chromium Hexavalent	Turbidity	Total Dissolved Solids
Sample Time	6:50	6:50	6:50	6:50	6:50	6:50
Sample Date	12/26/2012	12/26/2012	12/26/2012	12/26/2012	12/26/2012	12/26/2012
Extraction Method	NONE	NONE	NONE	LABFLT	NONE	NONE
Analysis Method	E120.1	E200.8	E200.8	E218.6	SM2130B	SM2540C
Field ID	SC-700B-WDR-393 E120.1	SC-700B-WDR-393	SC-700B-WDR-393	SC-700B-WDR-393 E218.6	SC-700B-WDR-393	SC-700B-WDR-393 SM2540C
Lab Sample ID Field ID	805505-001	805505-001	805505-001	805505-001	805505-001	805505-001

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Result above or equal to 0.01ppm will have three (3) significant figures. Note: The following "Significant Figures" rule has been applied to all results: Quality Control data will always have three (3) significant figures. Results below 0.01ppm will have two (2) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 1/7/2013

Page 1 of 7

Laboratory No. 805505

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

P.O. Number: 456827.01.DM

Release Number:

Samples Received on 12/26/2012 8:00:00 PM

Field ID Lab ID Collected Matrix SC-700B-WDR-393 805505-001 12/26/2012 06:50 Water

				000000-001	12/20	12012 06.50	vva	ter
Specific Conductivity	- EPA 120.1		Batcl	n 01EC13B				100
Parameter	Unit	Analyzed		DF	MDL	RL	Result	
305505-001 Specific Conductivity		umhos	/cm 01/02	2/2013	1.00	0.116	2.00	7080
Method Blank					Sautilia.	inerijo klime sij		
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				lah ID →	805505-001
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 7080	Expected 7080	R	PD 0		ince Range
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 703	Expected 706		ecovery 99.6	Accepta 90 - 110	ince Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 670	Expected 706		ecovery 94.9	Accepta 90 - 110	nce Range
MRCVS - Primary								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 980	Expected 996		ecovery 98.4	Accepta 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proportion from Tuesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 2 of 7 Printed 1/7/2013

Chrome VI by EPA 218.	6		Batch	01CrH13A			
Parameter		Unit	Ana	lyzed D	F MDL	RL	Result
805505-001 Chromium, Hex	avalent	ug/L	01/02	/2013 14:53 1.	00 0.00920	0.20	ND
Method Blank							
Parameter	Unit	DF	Result				
Chromium, Hexavalent	ug/L	1.00	ND				
Duplicate						Lab ID =	805508-001
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ınce Range
Chromium, Hexavalent	ug/L	1.00	0.0322	0.0334	3.66	0 - 20	
Low Level Calibration	Verification	Y Carlotte					
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.199	0.200	99.4	70 - 130)
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	4.68	5.00	93.7	90 - 110)
Matrix Spike						Lab ID =	805374-006
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	10.0	9.22	10.0(10.0)	92.2	90 - 110	1
Matrix Spike						Lab ID =	805505-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.976	1.06(1.00)	91.8	90 - 110	1
Matrix Spike						Lab ID =	805506-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.00	4.60	5.00(5.00)	92.0	90 - 110	1
Matrix Spike						Lab ID =	805506-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	0.942	1.00(1.00)	94.2	90 - 110	
Matrix Spike						Lab ID =	805506-002
Parameter	Unit	DF	Result	Expected/Added	•	-	nce Range
Chromium, Hexavalent	ug/L	1.00	0.959	1.02(1.00)	94.3	90 - 110	
Matrix Spike						Lab ID =	805506-003
Parameter	Unit	DF	Result	Expected/Added	Recovery	-	nce Range
Chromium, Hexavalent	ug/L	1.00	1.08	1.01(1.00)	106	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 4 of 7 Printed 1/7/2013

Metals by EPA 200.8, To	otal		Batch	010413C				
Parameter	200 Complete	Unit	Ana	lyzed	DF	MDL	RL	Result
805505-001 Chromium		ug/L	01/05	5/2013 01:07 2	.50	0.230	1.0	ND
Manganese		ug/L	01/05	5/2013 01:07 2	2.50	0.215	0.50	5.4
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	805505-00
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Chromium	ug/L	2.50	ND	0		0	0 - 20	
Manganese	ug/L	2.50	5.84	5.42		7.51	0 - 20	
Low Level Calibration	n Verification)						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	0.200	0.200		99.9	70 - 130)
Manganese	ug/L	1.00	0.223	0.200		112	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	50.2	50.0		100	85 - 115	5
Manganese	ug/L	2.50	52.9	50.0		106	85 - 115	5
Matrix Spike							Lab ID =	805505-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Chromium	ug/L	2.50	53.0	50.0(50.0)		106	75 - 125	5
Manganese	ug/L	2.50	58.5	55.4(50.0)		106	75 - 125	5
Matrix Spike Duplica	te						Lab ID =	805505-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Chromium	ug/L	2.50	52.6	50.0(50.0)		105	75 - 125	5
Manganese	ug/L	2.50	58.3	55.4(50.0)		106	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ınce Range
Chromium	ug/L	1.00	20.9	20.0		104	90 - 110)
Manganese	ug/L	1.00	21.6	20.0		108	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ınce Range
Chromium	ug/L	1.00	19.6	20.0		98.0	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 6 of 7 Printed 1/7/2013

Total Dissolved Solids	by SM 254	0 C	Batch	12TDS12F				
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
805505-001 Total Dissolved	Solids	mg/L	12/31/2012		1.00	0.757	250	4680
Method Blank								
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab ID =	805505-00
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 4560	Expected 4680	RPD 2.60		Accepta 0 - 10	ince Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 527	Expected 500	d Recovery 105		Acceptance Ran 90 - 110	
Turbidity by SM 2130 B			Batch	12TUC12N				an Table
Parameter		Unit	Ana	ılyzed	DF	MDL	RL	Result
305505-001 Turbidity		NTU	12/27	7/2012	1.00	0.0140	0.100	ND
Method Blank								
Parameter Turbidity	Unit NTU	DF 1.00	Result ND					
Duplicate							Lab ID =	805499-006
Parameter Turbidity	Unit NTU	DF 1.00	Result ND	Expected 0	R	PD 0	Accepta 0 - 20	nce Range
Lab Control Sample								
Parameter Turbidity	Unit NTU	DF 1.00	Result 8.09	Expected 8.00	R	ecovery 101	Accepta 90 - 110	nce Range
Lab Control Sample I	Duplicate							
Parameter Turbidity	Unit NTU	DF 1.00	Result 8.14	Expected 8.00	R	ecovery 102	Accepta 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 456827.01.DM

Page 7 of 7

Printed 1/7/2013

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

ł₀ – Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C 3

Calculations

Batch: 12TDS12F Date Analyzed: 12/31/2012

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	74.1466	74.1466	74.1466	0.0000	No	0.0000	0.0	25.0	ND	1
805505	10	74.6690	74.7156	74.7158	-0.0002	No	0.0468	4680.0	250.0	4680.0	1
805509	50	65.6618	65.7702	65.7701	0.0001	No	0.1083	2166.0	50.0	2166.0	1
80514-2	150	66.9200	66.9346	66.9342	0.0004	No	0.0142	94.7	16.7	94.7	1
80514-4	100	67.6887	67.7193	67.7191	0.0002	No	0.0304	304.0	25.0	304.0	1
805505D	10	74.7264	74.7720	74.7720	0.0000	No	0.0456	4560.0	250.0	4560.0	1
LCS	100	74.6021	74.6544	74.6548	-0.0004	No	0.0527	527.0	25.0	527.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

$$\left(\frac{A-B}{C}\right) \times 10^6$$

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

·								
QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?			
LCS1	527	500	105.4%	90-110%	Yes			
LCSD								

Where:

Duplicate Determinations Difference Summary

Daphote Determinations Difference Carminary								
Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?			
805929	0.0466	0.0456	1.1%	≤5%	Yes			

Makin

Analyst Printed Name

LCS Recovery
$$P = \left(\frac{LC}{LT}\right) x 100$$

P = Percent recovery.

LC = Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{|A \text{ or } B - C|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Reviewer Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 12TDS12F
Date Analyzed: 12/31/2012

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Cald TDS <1.3
			-	
805505	7080	0.66	4602	1.02
805509	2600	0.83	1690	1.28
80514-2	130	0.73	84.5	1.12
80514-4	560	0.54	364	0.84
805505D	7080	0.64	4602	0.99
LCS				
				<u> </u>
				İ
				1

Rec'd 12/26/12 S158 0 55 0 5

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-393] TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462

7 Days PO PAGE 1 TURNAROUND TIME DATE 12/26/12 COC Number

	$\overline{}$					-		1		1
		COMMENTS							1.00277 /	/ FOTAL NUMBER OF CONTAINERS
			_						nd	Z Z
		-		NERS	/IV					JTAL
					INTV	voo.	10 Vz			۲
	_	_			•		SER OF	NUME	က	60
	_								AND PROPERTY.	
							_ `			
				_						
-			_							~
	_		_			_				
	_	_			_					
	_	_			_					
deline de deline				_						
The state of the s				_			_			
			_			(00)	ZWS) A			
-	_		_ `			_	.07 //	ibidiuT	Х	
	/	_			_	- (20			
***************************************		_ `		4	(150	a)UD	DO #SZW	$S_{I}S_{G_{I}}$	×	
-				U	W '10) / =/5	00 t9 ZW. Couque Jejaja (SC	JID BH C		
-				_ `	/hn	1200	ોટ) કા _{ણા}	W / P	×	
					70	b Fitter	18.6) sielieli 18.6) Lai	Total	×	
								0,00	×	
			339-3303				THE STATE OF THE PARTY OF THE P	DESCRIPTION	Water	**
		. 200	FAX ⁵ (530) 339-3303	****	***********	TEAM		TIME	6:30	
				Ste 1000	4612	N		DATE	12/26/12	
	MPANY E2	PROJECT NAME PG&E TOPOCK	NE (530) 229-3303	DRESS 155 Grand Ave Ste 1000	Oakland, CA 94612	P.O. NUMBER 456827.01.DM	SAMPLERS (SIGNATURE	SAMPLE 1.D.	SC-700B-WDR-393	
,	COMPANY	PROJEC	PHONE	ADDRESS		P.O. NU	SAMPLE	SAMPL	SC-70	

1828

0)

	CHAIN OF CUSTODY SIGNATU	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	- Printed Ryan Phelps	Company/ CH2M HILL Agency	Date/ /2-24-/2 Time /3:00	RECEIVED COOL M WARM 5.1 6
Signature (Received) Chaul	la Name of feel	Company/ / / L I	Date 12-26-12 Time 13:00	CUSTODY SEALED YES NO
Signature (Relinquished)	DVI Wame Katal	Company/ T. K. T.	7	SPECIAL REQUIREMENTS:
Signature Keceived) Kudu	Printed Compar Name Studdelewine Agency	Company/ TLP Agency	Date 17/8 b/2 20,00	CD
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL) Final pH	Time Buffered	Initials
12/18/12	805429	7	2 ml	9-5	9:15 AM	HAV
12127/12	805505	7	2 ml	9.5	10:15 AM	HAV
12127112	805506-1	9.5	NIA	NIA	NIA	HAV
	-2]	1
10	1, .3	<u>L</u> ,				1
12/27/12	805507	9-5	NIA	NIA	NIA	HAV
12127/12	805508	9.5	NIA	NIA	NIA	HAV
			•			
·						
				·		
		,			·	
				·		
					·	
	· · · · · · · · · · · · · · · · · · ·	·				
		· · ·				
			· · · · · · · · · · · · · · · · · · ·			·
					A CONTRACTOR OF THE PARTY OF TH	e santang garang ere ere ere ere ere ere ere ere ere er
			-			

Turbidity/pH Check

Sample Number	Turbidity	рН	Date	Analyst	2010A	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
805397 40535 12/17/12	71	<u> </u>	14/17/2	MU	yes			
\$155 5 12/17/12					1			
700870(1-6)	41	72	12/17/12	ES	No	16:00	12/18/12 22	
3054566-31	1		12/20/12	BI-	NO.	21.00	1-2-13	PH <z< td=""></z<>
305425 (1-394)								
8054014-3								
805443								
805404	W					*		
805429		72			X25			
€ 05373		<2.						
8053760-12)								
305 37461-12	J							
205462	>1	Ž۷		ľ				١
205417								
805418								
805419		2						
805420								
80542'								
805427 (1-3)								
805446								
8.5442								
808455								
825471			·			-		
805472		,			\			
80 5473		<u>, </u>	J.	<u> </u>				
E05548	۷١	>2	12-31-12	BE	NO	15:00	1-2-13	PH < 2
80551411-4)	<1	72	1-02-13	BI	No	ana Am		
805519				(<u> </u>			
805520 (1-4)				*				
205535(4-6)						14100		
802498(10-12)	1	1				14:00		
50 5505	<1	72	1-03-13	BE	Yes	14:00		
805581		<2	<u> </u>	1	· ·			
809508			1-4-13	36	×e5			
80 5503		•	12-27-12					
8c 9501	1		4	4	.			

- Notes:
 1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 2. All Total Recoverable Analytes must be pH adjusted and digested.
 3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

CI	ient: <u>E 2</u>	Lab#_ SUSSU
Da	te Delivered: ½ / ½ / 12 Time: ஹீ By: □Mail ⁄⁄ û	Field Service
1.	Was a Chain of Custody received and signed?	ø Yes □No □N/A
2 .	Does Customer require an acknowledgement of the COC?	□Yes □No ÞN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ½N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ☑AN/A
5.	Were all requested analyses understood and acceptable?	ØYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? √/ ° C	⊘ÓYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	∄Yes □No □N/A
8.	Were sample custody seals intact?	□Yes □No ÆÑ/A
9.	Does the number of samples received agree with COC?	AYes ONO ON/A
10_	Did sample labels correspond with the client ID's?	AYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	□Yes □No ⊠N/A
12.	Were samples pH checked? pH = <u>See C</u> . O. C	Yes ONo ONA
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ÆYes □No □N/A
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): A RUSH 2 Std	∯Yes □No □N/A
5 .	Sample Matrix: □Liquid □Drinking Water □Ground W □Sludge □Soil □Wipe □Paint □Solid	
6.	Comments:	,
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	duda

Analytical Bench Log Book

WDR pH Results

If the on site laboratory pH result for T-700 tank is less than pH 6.6 or greater than pH 8.3 the Injection well should be shut down until the problem is fixed.

	pH Result						į.
	Analyst Name (for the pH result)	•	C. WALTER			いいとうという	C. EMG MT
	Siope of the Curve		25.5			\ 33'	2:5
	TIme pH meter Calibrated		\$ 7 \$			04:20	
	Date pH meter Calibrated		12.4.12 OF 36	ľ		12.4.12 04:20	
	pH Meter #1, #2, or #3 stc. See cover Sheat for Serial Number	- 1	NETEC TO			表的 第一	
	TIme of analysis	1-	14:42		114.00.	<u></u>	
			10.00		7	70.67	
i	of of sampling	1160.11	1		20.111	4.22	
Part.	Sampilng sampilng analysis	12-46-12	200.71 15.44		10.13	12.7 10 14.33 124.12	
	ample Name	50-lm #		C (88:	St- You		les:

9 (2-14-12 15:14 NETER# 12-11-12 03:25 -54.8 C. Emqut 7.0
5:09 12
(12-11-12)
. SC. 700 B.

		\ '\
,		11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
1		W. Car
	8 / rai	ががか
	ou.in	<u>z</u> . <u> </u>
	10.10.10	6
	1 1 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1000	
0. 1. 00	00 100	
10 0 0	1 11-01-1	
Ba	0	
6.70	11/1/2	.app.

	2.7
1	
	1
	11/2
	50 -
	17.
	1/2
	Eleca
7	9
	1.27.77
(2)	2000
11.11.11	2
38	1
818	

6) Yes:	Untest