

Curt Russell Topock Site Manager Chromium Remediation Gas Transmission & Distribution Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: <u>gcr4@pge.com</u>

June 25, 2010

Mr. Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: 2009 – 2010 Storm Water Annual Report PG&E Topock Interim Measure No. 3 I-40 & Park Moabi Road, Needles, California WDID No. 7 36I 019443 Report Number: PGE20100630A

Dear Mr. Perdue:

Enclosed is the 2009 – 2010 Storm Water Annual Report for the Pacific Gas and Electric Company (PG&E) Topock Interim Measure No. 3 (IM3) Groundwater Treatment System, Facility WDID No. 7 36I 019443. This report is being submitted in compliance with the National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000001 for Industrial Activities.

The IM3 Notice of Intent (NOI) was submitted April 5, 2005. The Storm Water Pollution Prevention Plan (SWPPP) is available at the facility. All Best Management Practices (BMPs) have been fully implemented.

Three locations at the treatment plant site have been identified as possible storm water discharge locations. <u>There was one storm event that resulted in discharge of storm water from the site during the 2009 – 2010 wet season</u>. During this storm, discharge was observed at only <u>one of the three designated storm water discharge locations</u>. <u>Therefore, storm water samples</u> <u>were collected from only one location during the 2009 – 2010 wet season</u>. Discharge of additional storm water from the site did not occur due to the arid climate during the wet season, the drainage properties of soil in unpaved areas, and all storm water that collected in the concrete containment structure was pumped into the treatment plant.

If you have any questions regarding this report, please call me at (760) 326-5582. Sincerely,

Curt Russell Topock Site Manager

Enclosures:

Mr. Robert Perdue June 25, 2010 Page 2

Annual Report Form including Certification

Form 1 – Sampling and Analysis Results

Form 2 - Quarterly Visual Observations of Authorized Non-Storm Water Discharges

Form 3 - Quarterly Visual Observations of Unauthorized Non-Storm Water Discharges

Form 4 – Monthly Visual Observations of Storm Water Discharges

Form 5 - Annual Comprehensive Site Compliance Evaluation

Attachment A – Response Explanations to Annual Report Form

Attachment B - Rainfall Measurements during 2009-2010 Wet Season

Attachment C – Analytical Results from Storm Water Sample, January 21, 2010

cc: Suhas Chakraborty, Colorado River Basin Regional Water Quality Control Board Jose Cortez, Colorado River Basin Regional Water Quality Control Board Tom Vandenberg, State Water Resources Control Board Aaron Yue, California Department of Toxic Substances Control

State of California STATE WATER RESOURCES CONTROL BOARD

2009-2010 ANNUAL REPORT

FOR

STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

Reporting Period July 1, 2009 through June 30, 2010

An annual report is required to be submitted to your local Regional Water Quality Control Board (Regional Board) by July 1 of each year. This document must be certified and signed, under penalty of perjury, by the appropriate official of your company. Many of the Annual Report questions require an explanation. Please provide explanations on a separate sheet as an attachment. Retain a copy of the completed Annual Report for your records.

Please circle or highlight any information contained in Items A, B, and C below that is new or revised so we can update our records. Please remember that a Notice of Termination and new Notice of Intent are required whenever a facility operation is relocated or changes ownership.

If you have any questions, please contact your Regional Board Industrial Storm Water Permit Contact. The names, telephone numbers and e-mail addresses of the Regional Board contacts, as well as the Regional Board office addresses can be found at http://www.waterboards.ca.gov/stormwtr/contact.html. To find your Regional Board information, match the first digit of your WDID number with the corresponding number that appears in parenthesis on the first line of each Regional Board office.

REGIONAL BOARD INFORMATION:

Colorado River Basin Region	Contact: Suhas Chakraborty
73-720 Fred Waring Dr., Ste 100	Tel: (760) 776-8961
Palm Desert, CA 92260	Email: Schakraborty@waterboards.ca.gov

GENERAL INFORMATION:

А.	Facility Information:	Facility WDID No: <u>7 36I 019443</u>
	Facility Business Name: PG&E Topock Interim Measures No. 3	Contact Person: Curt Russell
	Physical Address: <u>I-40 & Park Moabi Road</u>	e-mail: <u>gcr4@pge.com</u>
	City: <u>Needles</u>	CA Zip: <u>92363</u> Phone: <u>760-326-5582</u>
	Standard Industrial Classification (SIC) Code(s): <u>4953</u>	
В.	Facility Operator Information:	
	Operator Name: PG&E Topock Interim Measures No. 3	Contact Person: Curt Russell
	Mailing Address: <u>PO Box 337</u>	e-mail: <u>gcr4@pge.com</u>
	City: <u>Needles</u>	State: <u>CA</u> Zip: <u>92363</u> Phone: <u>760-326-5582</u>
C.	Facility Billing Information:	
	Operator Name: same as Facility Operator	Contact Person:
	Mailing Address:	e-mail:
	City:	State: Zip: Phone:

Additional Table D Parameters: Fe

(Hazardous Waste Facilities, see Table D, Sector K of the Permit for Additional Parameters)

SPECIFIC INFORMATION

MONITORING AND REPORTING PROGRAM

D.	<u>SAI</u>	MPLING /	AND AN	ALYSIS EXEMPTIC	ONS AND REDUCTIC	<u>NS</u>		
	1.				acility exempt from co 5 of the General Perm		nalyzing	samples from two storm events in
			YES	Go to Item D.2		\boxtimes	NO	Go to Section E
	2.				xempt from collecting iate certification if you			es from two storm events. Attach a or v.
		i.	Particip	ating in an Approve	ed Group Monitoring P	Plan	Group	o Name:
		ii. 🗌	Submitt	ed No Exposure C	Certification (NEC)		Date S	Submitted: / /
			Re-eval	uation Date: /	/			
			Does fa	cility continue to sa	tisfy NEC conditions?		YES	NO
		iii. 🗌	Submitted Sampling Reduction Certification (SRC)		SRC)	Date S	Submitted: / /	
			Re-eval	uation Date: /	/			
			Does fa	cility continue to sa	tisfy SRC conditions?		YES	NO
		iv. 🗌	Receive	ed Regional Board	Certification		Certifie	cation Date: / /
		v.	Receive	ed Local Agency Ce	ertification		Certifi	cation Date: / /
	3.	lf you ch	necked bo	oxes i or iii above, v	were you scheduled to	o sample one	storm e	vent during the reporting year?
			YES	Go to Section E			NO	Go to Section F
	4.	lf you ch	necked be	oxes ii, iv, or v, go t	o Section F.			
E.	SAN	MPLING /	AND AN/	ALYSIS RESULTS				
	item				item D.2	If less than 2, attach explanation (if you checked item D.2.i or iii. above, only attach explanation if you answer "0").		
	2.				s from the first storm c (Section B.5 of the Ge			produced a discharge during
			YES				NO	attach explanation (Please note that if you do not sample the first storm event, you are still required to sample 2 storm events)
	3.	How ma	iny storm	water discharge lo	cations are at your fa	cility? <u>3</u>	_	

4.		each storm event sampled, did you collect and analyze a nple from each of the facility's' storm water discharge locations?		YES,	go to li	tem E.6 🛛 NO
5.		is sample collection or analysis reduced in accordance n Section B.7.d of the General Permit?		YES	\square	NO, attach explanation
		YES", attach documentation supporting your determination t two or more drainage areas are substantially identical.				
	Dat	te facility's drainage areas were last evaluated06/15/10				
6.	We	re all samples collected during the first hour of discharge?	\square	YES		NO, attach explanation
7.		is <u>all</u> storm water sampling preceded by three (3) rking days without a storm water discharge?	\square	YES		NO, attach explanation
8.		re there any discharges of storm water that had been aporarily stored or contained? (such as from a pond)		YES	\square	NO, go to Item E.10
9.	Did you collect and analyze samples of temporarily stored or contained storm water discharges from two storm events? (or one storm event if you checked item D.2.i or iii. above) YES NO, attach explanation X/A					explanation 🛛 N/A
10.	(TS be p	ction B.5. of the General Permit requires you to analyze storm wat SS), Specific Conductance (SC), Total Organic Carbon (TOC) or C present in storm water discharges in significant quantities, and an neral Permit.	Dil and	Grease	e (O&C	G), other pollutants likely to
	a.	Does Table D contain any additional parameters related to your facility's SIC code(s)?	\square	YES		NO, Go to Item E.11
	b.	Did you analyze all storm water samples for the applicable parameters listed in Table D?	\square	YES		NO
	C.	If you did not analyze all storm water samples for the applicable Table D parameters, check one of the following reasons:				
		In prior sampling years, the parameter(s) have not be consecutive sampling events. Attach explanation	en det	ected ir	n signif	icant quantities from two
		The parameter(s) is not likely to be present in storm w discharges in significant quantities based upon the fac				
		Other. Attach explanation				
						ort the sampling and analysis

- 11. For each storm event sampled, attach a copy of the laboratory analytical reports and report the sampling and analysis results using **Form 1** or its equivalent. The following must be provided for each sample collected:
 - Date and time of sample collection
 - Name and title of sampler
 - Parameters tested
 - Name of analytical testing laboratory
 - Discharge location identification

- Testing results
- Test methods used
- Test detection limits
- Date of testing
- Copies of the laboratory analytical results

F. QUARTERLY VISUAL OBSERVATIONS

1. Authorized Non-Storm Water Discharges

Section B.3.b of the General Permit requires quarterly visual observations of all authorized non-storm water discharges and their sources.

a. Do authorized non-storm water discharges occur at your facility?

 \boxtimes

YES

NO Go to Item F.2

b. Indicate whether you visually observed all authorized non-storm water discharges and their sources during the quarters when they were discharged. Attach an explanation for any "NO" answers. Indicate "N/A" for quarters without any authorized non-storm water discharges.

July-September	YES	NO	🖂 N/A	October-December	YES	NO	🛛 N/A
January-March	YES		N/A	April-June	YES		🖂 N/A

- c. Use **Form 2** to report quarterly visual observations of authorized non-storm water discharges or provide the following information:
 - i. name of each authorized non-storm water discharge
 - ii. date and time of observation
 - iii. source and location of each authorized non-storm water discharge
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location
 - v. name, title, and signature of observer
 - vi. **any** new or revised BMPs necessary to reduce or prevent pollutants in authorized non-storm water discharges. Provide new or revised BMP implementation date.

2. Unauthorized Non-Storm Water Discharges

Section B.3.a of the General Permit requires quarterly visual observations of all drainage areas to detect the presence of unauthorized non-storm water discharges and their sources.

a. Indicate whether you visually observed all drainage areas to detect the presence of unauthorized non- storm water discharges and their sources. Attach an explanation for any "NO" answers.

July-September	October-December	
January-March	April-June	

b. Based upon the quarterly visual observations, were any unauthorized non-storm water discharges detected?

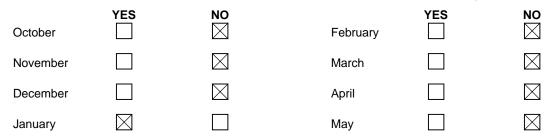
NO Go to Item F.2.d

YE	S
----	---

c. Have each of the unauthorized non-storm water discharges been eliminated or permitted?

 $|\times|$

	YES
--	-----


NO Attach explanation

- d. Use **Form 3** to report quarterly unauthorized non-storm water discharge visual observations or provide the following information:
 - i. name of each unauthorized non-storm water discharge
 - ii. date and time of observation
 - iii. source and location of each unauthorized non-storm water discharge
 - iv. characteristics of the discharge at its source and impacted drainage area/discharge location
 - v. name, title, and signature of observer
 - vi. **any** corrective actions necessary to eliminate the source of each unauthorized non-storm water discharge and to clean impacted drainage areas. Provide date unauthorized non-storm water discharge(s) was eliminated or scheduled to be eliminated.

G. MONTHLY WET SEASON VISUAL OBSERVATIONS

Section B.4.a of the General Permit requires you to conduct monthly visual observations of storm water discharges at all storm water discharge locations during the wet season. These observations shall occur during the first hour of discharge or, in the case of temporarily stored or contained storm water, at the time of discharge.

 Indicate below whether monthly visual observations of storm water discharges occurred at <u>all</u> discharge locations. Attach an explanation for any "NO" answers. Include in this explanation whether any eligible storm events occurred during scheduled facility operating hours that did not result in a storm water discharge, and provide the date, time, name and title of the person who observed that there was no storm water discharge.

- 2. Report monthly wet season visual observations using **Form 4** or provide the following information:
 - a. date, time, and location of observation
 - b. name and title of observer
 - c. characteristics of the discharge (i.e., odor, color, etc.) and source of any pollutants observed
 - d. **any** new or revised BMPs necessary to reduce or prevent pollutants in storm water discharges. Provide new or revised BMP implementation date.

ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION (ACSCE)

H. ACSCE CHECKLIST

Section A.9 of the General Permit requires the facility operator to conduct one ACSCE in each reporting period (July 1-June 30). Evaluations must be conducted within 8-16 months of each other. The SWPPP and monitoring program shall be revised and implemented, as necessary, within 90 days of the evaluation. The checklist below includes the minimum steps necessary to complete a ACSCE. Indicate whether you have performed each step below. Attach an explanation for any "NO" answers.

- 1. Have you inspected all potential pollutant sources and industrial activities areas? XES NO The following areas should be inspected:
 - areas where spills and leaks have occurred during the last year
 - outdoor wash and rinse areas
 - process/manufacturing areas
 - loading, unloading, and transfer areas
 - waste storage/disposal areas
 - dust/particulate generating areas
 - erosion areas

- building repair, remodeling, and construction
- material storage areas
- vehicle/equipment storage areas
- truck parking and access areas
- rooftop equipment areas
- vehicle fueling/maintenance areas
- non-storm water discharge generating areas

2.	Have you reviewed your SWPPP to assure that its BMPs address existing potential pollutant sources and industrial activities areas?	YES	NO
3.	Have you inspected the entire facility to verify that the SWPPP's site map is up-to-date? The following site map items should be verified:	YES	

- facility boundaries
- outline of all storm water drainage areas
- areas impacted by run-on
- storm water discharges locations
- storm water collection and conveyance system
- structural control measures such as catch basins, berms, containment areas, oil/water separators, etc.

4.	Have you reviewed all General Permit compliance records ge since the last annual evaluation?	enerat	ed	X YES	
	 The following records should be reviewed: quarterly authorized non-storm water discharge visual observations monthly storm water discharge visual observation records of spills/leaks and associated clean-up/response activities 	• •	quarterly unauth visual observation Sampling and Ar preventative ma maintenance rec	ons nalysis reco intenance in	
5.	Have you reviewed the major elements of the SWPPP to ass compliance with the General Permit? The following SWPPP items should be reviewed:	sure		YES	NO
	 pollution prevention team list of significant materials description of potential pollutant sources 	•		d description	utant sources n of the BMPs to be tial pollutant source
6.	Have you reviewed your SWPPP to assure that a) the BMPs in reducing or preventing pollutants in storm water discharge non-storm water discharges, and b) the BMPs are being imp	s and	authorized	X YES	
	The following BMP categories should be reviewed:				
	 good housekeeping practices spill response employee training erosion control quality assurance 	• • •	preventative ma material handling waste handling/s structural BMPs	g and storag	ge practices
7.	Has all material handling equipment and equipment needed implement the SWPPP been inspected?	to		X YES	NO
<u>AC</u>	SCE EVALUATION REPORT				
Th	e facility operator is required to provide an evaluation report th	at incl	udes:		
• •	identification of personnel performing the evaluation the date(s) of the evaluation necessary SWPPP revisions	•	schedule for imp any incidents of corrective action	non-complia	WPPP revisions ance and the

Use Form 5 to report the results of your evaluation or develop an equivalent form.

J. ACSCE CERTIFICATION

I.

The facility operator is required to certify compliance with the Industrial Activities Storm Water General Permit. To certify compliance, both the SWPPP and Monitoring Program must be up to date and be fully implemented.

Based upon your ACSCE, do you certify compliance with the Industrial Activities Storm Water General Permit?

\times	YES
	NO

If you answered "NO" **attach an explanation** to the ACSCE Evaluation Report why you are not in compliance with the Industrial Activities Storm Water General Permit.

ATTACHMENT SUMMARY

Answer the questions below to help you determine what should be attached to this annual report. Answer NA (Not Applicable) to questions 2-4 if you are not required to provide those attachments.

1.	Have you attached Forms 1,2,3,4, and 5 or their equivalent?	YES (Man	datory)
2.	If you conducted sampling and analysis, have you attached the laboratory analytical reports?	YES	NO
3.	If you checked box II, III, IV, or V in item D.2 of this Annual Report, have you attached the first page of the appropriate certifications?	☐ YES ⊠ NA	NO
4.	Have you attached an explanation for each "NO" answer in items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J?	YES	NO

ANNUAL REPORT CERTIFICATION

I am duly authorized to sign reports required by the INDUSTRIAL ACTIVITIES STORM WATER GENERAL PERMIT (see Standard Provision C.9) and I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Printed Name:	Curt Russell	
	behumn	
Signature:		Date: <u>6/25/2010</u>
Title:	PG&E Topock Site Manager	

 If analytical results are less than the detection limit (or non detectable), show the value as less than the numerical value of the detection limit (example: <.05) If you did not analyze for a required parameter, do not report "0". Instead, leave the appropriate box blank NAME OF PERSON COLLECTING SAMPLE(S): Chris Knight 	re less than the detec	atob and an instants			and then			a designed and a desi	nortable analy	sis (such as	n the aldered	Datare SC
NAME OF PERSON COL	of the detection limit (e for a required param	ation limit (or non uete example: <.05) ieter, do not report "0'	ctable), show t '. Instead, lear	the value as I ve the approf	less man oriate box blar	••	when analysis is done using portable analysis (such as portable pH meters, SC meters, etc.), indicate "PA" in the appropriate test method used box. Make additional copies of this form as necessary.	s done using dicate "PA" in copies of this	the appropriation of the the appropriation of the	te test metho ssary.	d used box.	
	TECTING SAMPLE(S): Chris Knight		TITL	TITLE: Lead Operator		SIG	SIGNATURE:	Cle	unt-		
	,									$\langle \cdot \rangle$		
						AN	ANALYTICAL RESULTS For First Storm Event	RESULTS	10	C		
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE		BASI	BASIC PARAMETERS	ERS			ОТН	OTHER PARAMETERS	TERS	
LOCATION Example: NW Out Fall	COLLECTION	STARTED	Н	TSS	sc	O&G	TOC	Hexavalent Chromium	Total Chromium	Ammonia as N	Diesel	сор
IM3-SW-002 NE outfall near IM3 plant entry gate	<u>01/21/10</u> 03:10 PM	<u>01/21/10</u> 03:10 PM	8.25 J	157	117	General Permit allows TOC for O&G	1.20	QN	12.9	QN	QN	75.1
TEST REPORTING UNITS:	UNITS:		pH Units	mg/L	umho/cm	mg/L	mg/L	ug/L	ug/L	mg/L	ug/L	mg/L
TEST REPORTING LIMIT:	LIMIT:		2.0	5.00	2.00		0.300	0.20	1.11	0.500	500	20.0
TEST METHOD USED:	ä		SM 4500- HB	SM 2540D	EPA 120.1		SM 5310C	EPA 218.6	EPA 200.8	SM 4500- NH3 D	EPA 8015 (modified)	EPA 410.4
ANALYZED BY (SELF/LAB):	-F/LAB):		LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB

FORM 1-SAMPLING & ANALYSIS RESULTS

SIDE A

											SIDE A - Continued	ontinued
		UL.	FORM 1-SA		G & ANA	-SAMPLING & ANALYSIS RESULTS	ESULTS					
If analytical results : #he sumoded value	If analytical results are less than the detection limit (or non detectable), show the value as less than the number of the detection limit (cornor detectable), show the value as less than	ction limit (or non dete	ctable), show	the value as	OLINIA EVENT	100	hen analysis i	s done using	portable analy	sis (such as	When analysis is done using portable analysis (such as portable pH meters, SC	eters, SC
 If you did not analyz 	the numencal value of the detection infini (example, <.uo) If you did not analyze for a required parameter, do not report "0". Instead,	(example: <.uo) neter, do not report "0		we the approl	leave the appropriate box blank	•	sters, etc.), in ake additional	copies of this	meters, etc.), indicate PA in the appropriate test Make additional copies of this form as pecessary.	le lest melho ssary. <i>(</i>	d used box.	
NAME OF PERSON COLLECTING SAMPLE(S):_	ILLECTING SAMPLE	(S): <u>Chris Knight</u>		- TITLE:	.E: <u>Lead Operator</u>	perator	SIGN	SIGNATURE:	CM	lue	1	I
						AN	ANALYTICAL RESULTS For First Storm Event	RESULTS		þ		
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE		OTH	OTHER PARAMETERS	TERS			ОТН	OTHER PARAMETERS	TERS	
LOCATION Example: NW Out Fall	COLLECTION	STARTED	Arsenic	Cadmium	Lead	Magnesium	Mercury	Selenium	Silver	Iron	Cyanide	
IM3-SW-002 NE outfall near IM3 plant entry gate	<u>01/21/10</u> 03:10 PM	<u>01/21/10</u> 03:10 PM	6.09	3.35	10.1	5530	QN	QN	QN	9420	QN	
			_									
TEST REPORTING UNITS:) UNITS:		ng/L	ug/L	<i>u</i> g/L	ng/L	ng/L	ng/L	ug/L	ng/L	mg/L	
TEST REPORTING LIMIT:	S LIMIT:		1.11	3.00	10.0	555	1.11	10.0	5.0	111	0.0100	
TEST METHOD USED:	SED:		EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.7	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.7	SM 4500CN	
ANALYZED BY (SELF/LAB):	:LF/LAB):		LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB	LAB
TSS - Total Suspended Solids	Solids	SC - Spec	SC - Specific Conductance	ce	- 980	O&G - Oil & Grease		TOC - 1	TOC - Total Organic Carbon	Carbon		

		Ű	FORM 1-S		SAMPLING & ANALYSIS RESULTS	NLYSIS R	ESULTS		
 If analytical results a 	ire less than the detec	If analytical results are less than the detection limit (or non detectable), show the value as less than	ztable), show i	the value as	withe value as less than •		hen analysis is	When analysis is done using portable analysis (such as portable pH meters, SC	s, SC
 If you did not analyza 	the numerical value of the detection limit (example: <.05) If you did not analyze for a required parameter, do not rer	the numerical value of the detection limit (example: <.05) If you did not analyze for a required parameter, do not report "0". Instead,		ve the appro	priate box blar		eters, etc.), ind	icate "PA" in the appropriate test method used box.	
					J-		Knight	Countribe. (Merch-	
NAME OF FERSON COLLECTING SAMPLE(3);					1	-caa uper	1010		
						A N M	ANALYTICAL RESULTS For Second Storm Event	() RESULTS torm Event	
DESCRIBE DISCHARGE	DATE/TIME OF SAMPLE	TIME DISCHARGE		BAS	BASIC PARAMETERS	ERS		OTHER PARAMETERS	
LOCATION Example: NW Out Fall	COLLECTION	STARTED	Hd	TSS	sc	O&G	TOC		
No second storm event during 2009- 2010 wet season created runoff	MA	MM MM MM MM	-						
	MA	AM PM PM							
	/ / MA [] :	MA PMM PMM							
	/ / MM PM	MA							
TEST REPORTING UNITS:	UNITS:		pH Units	l/gm	umho/cm	mg/ł	mg/l		
TEST METHOD DETECTION LIMIT:	TECTION LIMIT:								
TEST METHOD USED:	Ë								
ANALYZED BY (SELF/LAB):	LF/LAB):								
TSS - Total Suspended Solids	:==>	SC - Specific Conductance	õ	O&G - Oil & Grease		TOC - Total C	TOC - Total Organic Carbon		

SIDE B

2009-2010 ANNUAL REPORT

ANNUAL REPORT 2009-2010

FORM 2-QUARTERLY VISUAL OBSERVATIONS OF <u>AUTHORIZED</u> NON-STORM WATER DISCHARGES (NSWDS)

- *
- Quarterly dry weather visual observations are required of each authorized NSWD. Observe each authorized NSWD source, impacted drainage area, and discharge location.
- Authorized NSWDs must meet the conditions provided in Section D (pages 5-6), of the General Permit. Make additional copies of this form as necessary. • •

If YES, complete	If YES , complete	If YES , complete	If YES, complete
reverse side of	reverse side of	reverse side of	reverse side of
this form.	this form.	this form.	this form.
WERE ANY AUTHORIZED NSWDS			
DISCHARGED DURING THIS QUARTER?			
Observers Name: Clued-	Observers Name: CHRLS MAJLAHT	Observers Name: CtrPoLS KNUGHT	Observers Name: CHELS MILGIH
Title: Lead Openator-	Title: Lead Operator	Title: LETTO EPERATOR-	Title: LEMB ODERPADE
Signature: Obline Ur-	Signature: Cluef	Signature: Cluert	Signature: Claue M
QUARTER:	OCTDEC.	03 / 3 / 1 / 0	APRIL-JUNE
JULY-SEPT.	DCTDEC.		DATE:
DATE:	DATE:		DATE:
<u>09130109</u>	12/3//01		Db/ 15/10

SIDE A

- Unauthorized NSWDs are discharges (such as wash or rinse waters) that do not meet the conditions provided in Section D (pages 5-6) of the General Permit.
 - Quarterly visual observations are required to observe current and detect prior unauthorized NSWDs.
 - Quarterly visual observations are required during dry weather and at all facility drainage areas. •
- Each unauthorized NSWD source, impacted drainage area, and discharge location must be identified and observed. .
- Unauthorized NSWDs that can not be eliminated within 90 days of observation must be reported to the Regional Board in accordance with Section A.10.e of the General Permit. .
 - Make additional copies of this form as necessary.

If YES to either	The AND question, complete	Preverse reverse side.	If YES to either	TYES XNO question, complete	Preverse reverse side.	If YES to	TYES NO question, complete	TYES MO	If YES to either	TYES ANO question, question, complete	
WERE UNAUTHORIZED	NSWDs OBSERVED?	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	WERE UNAUTHORIZED	NSWDs OBSERVED?	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	WERE UNAUTHORIZED	NSWDs OBSERVED?	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?	WERE UNAUTHORIZED	NSWDs OBSERVED?	WERE THERE INDICATIONS OF PRIOR UNAUTHORIZED NSWDs?
Observers Name: Citels MULLIT	Title: Cead Operator	Signature: Oluve M	Observers Name: CARIS KN/ CHT	Title: LEND ONERATOR.	Signature:	Observers Name: Citre S Kullatt	Title: LEVO OPTERATOL	Signature: Olluch	Observers Name: CHaul KNLGAHT	Title: LEVD OPERADIE	Oluch
QUARTER: JULY-SEPT.	DATE/TIME OF OBSERVATIONS	<u>1/30 09 14:00 15 PM</u>	QUARTER: OCTDEC.		12/31/10 10:00 D M	QUARTER: JANMARCH	DATE/TIME OF OBSERVATIONS	MA DO: 01 10-50 PM	QUARTER: APRIL-JUNE	DATE/TIME OF OBSERVATIONS	Harso to 11:30 D PM

FORM 4-MONTHLY VISUAL OBSERVATIONS OF 2010 ANNUAL REPORT

STORM WATER DISCHARGES

- Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31. Visual observations must be conducted during the first hour of discharge •
 - .
- at all discharge locations. Discharges of temporarily stored or contained storm water must be observed at the time of discharge.
- - .
- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation. Make additional copies of this form as necessary. Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

						ſ
Observation Date: October $\overline{3 }$ 2009	No CAN Drainage Location Description	#1 Ngue	#2 Nove	#3 NoµE	3Nav ##	
Observers Name: 0. Kwildth 7	Observation Time	M. M. M. M. M. M. M. M. M. M. M. M. M. M	M.A	P.M. M.M.		M. M.
Title: NONE	Time Discharge Began	M.A. M.A.	A.M.	DP.M. A.M.		Mi Mi A D D D
Signature:	Were Pollutants Observed (If yes, complete reverse side)	YES ON OO	VES 🔲 NO 🗍		YES 🔲 NO	
Observation Date: November <u>30</u> 2009	No RAN EVENTS Drainage Location Description	#1 NONE	#2 NONE	#3 NONE	#4	
Observers Name: CHU245 MWLARK1	Observation Time	M. W.	M.A D D	DA.M.		M, M, M, M,
Title LEAD & DEPARTOR.	Time Discharde Began	Ж. Ж. М. М.	N. W.	DP.M. DA.M.		Ξ Δ Δ Δ
Signature:	Were Pollutants Observed (If yes, complete reverse side)	YES 🗌 NO 🗍	VES 🗌 NO 🗍	YES 🔲 NO 🗍	YES D N	D Q
Observation Date: December <u>27</u> 2009	No RMN 3/4 Drainage Location Description	#1 NowE	#2 None	#3 NONE	#4	
	Observation Time	M. M. W.	A.M.	DAM.		N N A D D D
Title URAD OPERATOR	Time Discharge Began	M. M. H.	W.W.	DP.M.		A A A A A A
Signature: exurgent	Were Pollutants Observed (If yes, complete reverse side)	YES 🔲 NO 🗍	YES 🗌 NO 🗍	YES D NO D	° S	
Observation Date: January <u>21</u> 2010	RAtion 5 ⁴⁴ in 30 hours Drainage Location Description	#1 No Dischmelar	#2 Yeo.	#3 Nove	#	
Observers Name:	Observation Time	ι <i>Σ</i> ; ασ ΔΡ.Μ.	15:00 DA.M.	<i>LS</i> :00 DAM.		<u>м</u> , м Ф П
Title: LEAD OPERATOR	Time Discharge Began	DP.M. DA.M.	(5:10 BA.M.	A.M.		
Signature: C pright	Were Poliutants Observed (If yes, complete reverse side)	YES NO	YES 🔲 NO 🔀	YES O NO O	XES C	D Q

SIDE A

-2010	REPORT
, .	ANNUAL

FORM 4-MONTHLY VISUAL OBSERVATIONS OF STORM WATER DISCHARGES

DESCRIBE ANY REVISED OR NEW BMPs AND THEIR DATE OF IMPLEMENTATION	NONE				
IDENTIFY AND DESCRIBE SOURCE(S) OF POLLUTANTS EXAMPLE: Oil sheen caused by oil dripped by	NO POLLULATION				
DESCRIBE STORM WATER DISCHARGE CHARACTERISTICS Indicate whether storm water discharge is clear, cloudy, or discolored; causing staining; containing monimo chiores or an oil shoot has offense and	MUDDY WATER	Andry XS			
DRAINAGE AREA DESCRIPTION EXAMPLE: Discharge from	SWPP #2				
DATE/TIME OF OBSERVATION (From Reverse Side)	MA D MA	- F	₩ ₩ ₩ ₩	WA WA	MA IIII

SIDE B

FORM 4 (Continued)-MONTHLY VISUAL OBSERVATIONS OF ANNUAL REPORT

SIDE A

STORM WATER DISCHARGES

Storm water discharge visual observations are required for at least one storm event per month between October 1 and May 31.

- Visual observations must be conducted during the first hour of discharge at all discharge locations.
- Discharges of temporarily stored or contained storm water must be observed at the time of discharge.
- Indicate "None" in the first column of this form if you did not conduct a monthly visual observation. •
- Make additional copies of this form as necessary. Until a monthly visual observation is made, record any eligible storm events that do not result in a storm water discharge and note the date, time, name, and title of who observed there was no storm water discharge.

ç		#1	#2		ŧ		#	
Observation Date: February <u>2010</u> 2010	Drainage Location Description	NONE "hangad						
Observers Name: C.I.L.N.I. GLAT		In'su DP.M.		A.M.		DAM.		A.M.
Title: LEAD OPENATOR	- Observation Time	imete		M.A.		A.M.		M.A M.M.
Signature: Cluude-	Were Pollutants Observed	YES D NO 🔀	YES D NG		YES 🔲	No	YES 🛛	D ON
0 Observation Date: March 31 2010	(in yes, compress reverse events) Drainage Location Description	#1 NO EUGIBUE	#2		ŧ		#4	
Observers Name: CKnight				A.M.		A.M.		A.M.
THE LEAD OPENATOR	Observation Time	M-P				A.M.		A.M.
Signature: Elleredu-	Time Discharge Began Were Pollutants Observed //f vas commilate reverse side)	YES D NO D	YES 0		YES 🗆	No 🗆	YES 🛛	
02 	(the second way lead ut	#1 No RANIFAL	#2		ŧ		荐	
Observation Date: April 2010	Drainage Location Description	EVENTS						NoL
Observers Name: C.ILwichth		A M.A		A.M.		A.M.		
Title: LEGYD OPERATOR		M.H.		P.M. A.M.		.W.A	i.v.	A.M.
Signature: Cultur M	Were Pollutants Observed (K ves commete reverse side)	YES ON O	YES ON	D ON	YES 🔲	No 🛛	YES 🛛	D ov
0 Observation Date: May <u>20</u> 2010	Drainage Location Description	#1 No KNNFML	#2		¥		#	
Observers Name: Citra's Wide HT				M.M.C		A.M.	4	M.A
Title: LEKD OVERPAR	Observation Time			DP.M. DA.M.		A.M.		N.Y.
Signature: 01 Luce 14-	Were Pollutants Observed	YES D NO	YES		YES 🔲		YES 🛛	D ON

EVALUATION DATE: 06/14/10 INSPEC	POTENTIAL POLLUTANT SO	ັ⊳ ⊑	OURCE/INDUSTRIAL ACTIVITY BMP STATUS ITLE: Project Scientist signature: Advanded	Ednord 6/15/10
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.1 Groundwater extraction,	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?	VES If yes, to either question, complete the next two columns of this form	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	ARE ADDITIONAL/REVISED BMPs NECESSARY?			
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?	TYES If yes, to either output of the next two columns of this	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	NO VES		
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.3 Loading and Unloading	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?	VES If yes, to either NO the next two columns of this form	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
ACUVILLES	ARE ADDITIONAL/REVISED BMPs NECESSARY?	VES NO		
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.4 Vehicular Movement and	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?	If yes, to either NO the next two columns of this form	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	Ves No		

SIDE A

FORM 5-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLITITANT SOURCE/INDUSTRIAL ACTIVITY RMP STATUS

EVALUATION DATE: 06/14/10 INSPE	INSPECTOR NAME: Andrew Redmond	nd TITLE:	: Project Scientist	cientist SIGNATURE: How W	ucanta 0/12/10
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.5 Management of Lab Sink	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?		If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
Waste	ARE ADDITIONAL/REVISED BMPs NECESSARY?		columns of this form		
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.6 Management of Emergency	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?		If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	ARE ADDITIONAL/REVISED BMPs NECESSARY?	NO	form		
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.7 Incidental Equipment	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	NO	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
малтелалсе	ARE ADDITIONAL/REVISED BMPs NECESSARY?		columns of this form		
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.8 Management of Septic	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?	NO VES	If yes, to either question, complete the next two	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
Holding Lank waste	ARE ADDITIONAL/REVISED BMPs NECESSARY?	VO	columns of this form		

FORM 5 (Continued)-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION

SIDE B - CONTINUED

FORM 5 (Continued)-ANNUAL COMPREHENSIVE SITE COMPLIANCE EVALUATION POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY BMP STATUS

INSPECTOR NAME: Andrew Redmond TITLE: Project Scientist SIGNATURE: EVALUATION DATE: 06/14/10

A charlednord 6/15/10

Describe additional/revised BMPs or corrective actions and their date(s) of implementation		Describe additional/revised BMPs or corrective actions and their date(s) of implementation		Describe additional/revised BMPs or corrective actions and their date(s) of implementation		Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
Describe deficiencies in BMPs or BMP implementation		Describe deficiencies in BMPs or BMP implementation		Describe deficiencies in BMPs or BMP implementation		Describe deficiencies in BMPs or BMP implementation		
If yes, to either question, complete the next two	If yes, to either question, complete the next two columns of this form columns of this form complete the next two complete the next two form		If yes, to either question, complete the next two	form	If yes, to either question, complete the next two	form		
HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED?	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ARE ADDITIONAL/REVISED BMPS NECESSARY? HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ARE ADDITIONAL/REVISED BMPS NECESSARY?		ARE ADDITIONAL/REVISED BMPs NECESSARY?	HAVE ANY BMPs NOT BEEN FULLY IMPLEMENTED?	ARE ADDITIONAL/REVISED BMPs NECESSARY?	HAVE ANY BMPS NOT BEEN FULLY IMPLEMENTED? ARE ADDITIONAL/REVISED BMPS NECESSARY?		
POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP) 4.9 Non-Storm Water Discharge		POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	R	POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	R	POTENTIAL POLLUTANT SOURCE/INDUSTRIAL ACTIVITY AREA (as identified in your SWPPP)	Z	

Attachment A

PG&E Topock IM3 Groundwater Treatment System, WDID No. 7 36I 019443

Response Explanations for each "NO" Answers in Items E.1, E.2, E.5-E.7, E.9, E.10.c, F.1.b, F.2.a, F.2.c, G.1, H.1-H.7, or J:

E.1 "How many storm events did you sample?" – Answer 1. Only one storm event occurred during the October 1, 2009 through May 31, 2010 wet season that caused discharge from the site. This storm event occurred January 21, 2010 and discharge was observed from only one (SW-02) of the three (SW-1, SW-2 and SW-3) storm water discharge locations identified in the SWPPP.

E.2 – Answer Yes

E.5 – IM3 storm water sample collection was not reduced in accordance with Section B.7.d of the General Permit.

E.6 – Answer Yes **E.7** – Answer Yes **E.9** – Answer not applicable (N/A)

E.10.c - IM3 did analyze all storm water samples for the applicable parameters in Table D of the General Permit.

F.1.b – Answer Yes F.2.a – Answer Yes F.2.c – Answer Yes

G.1 – Only one storm event occurred during the October 1, 2009 through May 31, 2010 wet season that caused discharge from the site. For storm events that <u>did not</u> result in a storm water discharge see Attachment B.

H.1 – Answer Yes H.2 – Answer Yes H.3 – Answer Yes H.4 – Answer Yes H.5 – Answer Yes H.6 – Answer Yes H.7 – Answer Yes J – Answer Yes

Attachment B

PG&E Topock IM3 Groundwater Treatment System, WDID No. 7 36I 019443

Rainfall Measurements

During 2009-2010 Wet Season (October 1, 2009 – May 31, 2010)

		Measured Rainfall Amount	Discharge Observed?	
Date	Time	(inches)	(Yes/No)	Observer Name and Title
October 2009 had no measurable rainfall			No	Chris Knight, Lead Operator
November 2009 had no measurable rainfall			No	Chris Knight, Lead Operator
December 2009 had no measurable rainfall			No	Chris Knight, Lead Operator
January 19, 2010	1:40 am	0.2	No	Chris Lentz, Industrial Technician
January 20, 2010	3:20 am	1.4	No	Chris Lentz, Industrial Technician
January 21, 2010	1:30 am	0.4	No	Chris Lentz, Industrial Technician
January 22, 2010	2:40 am	3.5	Yes, Observed 1/21/10 at 3:10 pm at location SW-2	Chris Knight, Lead Operator
February 28, 2010	10:54 am	1.0	No	Chris Knight, Lead Operator
March 2010 had no measurable rainfall			No	Chris Knight, Lead Operator
April 2010 had no measurable rainfall			No	Chris Knight, Lead Operator
May 2010 had no measurable rainfall			No	Chris Knight, Lead Operator

* IM3 onsite rain-gauge

Attachment C

PG&E Topock IM3 Groundwater Treatment System, WDID No. 7 36I 019443

Analytical Results from Storm Water Sample, January 21, 2010

Table of ContentsTLI Laboratory Data Package

For Laboratory Number: 987414

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

+

•

.

.

.

.

.

,

٠

Case Narrative

•

٠

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

February 1, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-SW-002 PROJECT, STORMWATER MONITORING,

TLI NO.: 987414

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-SW-002 project stormwater monitoring. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on January 22, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Mr. Shawn Duffy of CH2MI fill noted that this sample is from Location 2 of the stormwater monitoring project

The sample for pH analysis by SM 4500-H B was past the holding time upon arrival. Mr. Shawn Duffy was informed and approved the analysis.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Hona Nassimi Manager, Analytical Services

K. R. P. Syer

K.R.P. Iyer Quality Assurance/Quality Control Officer

Section 2.0

.

Summary Table of Final Results

~

Esteblished 1931	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA <i>9</i> 2780-7008 [714] 730-6239 - FAX [714] 730-6462 · www.twesdail.com Laboratory No.: 967414 Date Received: January 22, 2010			lary	<u>SM 5310 C SM 4500-NH3 D</u> El TOC Ammonia as N moli moli	1.20 ND 75.1					
				s Summ	<u>SM 2640 D</u> TSS	121	EPA 8015M Diesel	MD ND			
	· ·			Analytical Results Summary	<u>SM 4500-H B</u> <i>pH</i>		<u>SM 4500CN</u> Cyanide	ДN Т/бш			
				Analytica	EPA 218.6 Hexavalent Chromium	UN N	<mark>EPA 120.1</mark> EC	umhos/cm 117			
RIES, INC.	jų -				<u>Sample Time</u>	15:10	Sample Time	15:10		pplied to all resuits: cant figures. co (3) significant figures. gnificant figures.	
TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612	thawn Duffy	Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02		<u>Sample I.D.</u>	SC-1M3-SW-002	Sample LD.	SC-1M3-SW-002	ND: Non Detected (below reporting limit) g/L: Miligrams per liter.	Nots: The following "Significant Figures" rufe has been applied to all results: Results below 0.001ppm will have two (2) significant figures. Result above or equel to 0.001ppm with have three (3) significant figures. Quality Controd data will always have three (3) significant figures.	
	Client: E	Attention: Shawn Duffy	Project Name: PG&E Topoct Project No.: 379209.01.02 P.O. No.: 379209.01.02		<u>Lab I.D.</u>	987414	<u>Lab I.O.</u>	987414	ND: Nm Detected (bek mg/L: Meligrams per liter,	Note: The followin Results of Results of Quality Co	004

÷

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 0aktand, CA 94612 Attention: Shawn Duffy Project Name: PG&E Topock Project Project Name: PG&E Topock Project Project Name: PG&E Topock Project Project Name: PG&E Topock Project Project Name: PG&E Topock Project Attention: 379209.01.02 P.O. No.: 379209.01.02 Project Name: PG&E Topock Project Project Name: PG&E Topo	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Cakland, CA 94612 Attention: Shawn Duffy Troject Name: Pocket January 22, 2010 Attention: Shawn Duffy Troject Non: 379209.01.02 Project Non: 379200.01.02 Project Non: 3700.01.02 Project Non:		FRUESDAIL LABOF EXCELLENCE IN INDEPENDENT TESTING	TRUESDAIL LABORATORIES, INC. EXCELLENCE IN INDEPENDENT TESTING	ories, lr	ÿ						Established 1931	ed 1931
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 Oakland, CA 94612 Laboratory No.: 987414 Attention: Shawn Duffy Date Received: January 22, 2010 Project Name: PG&E Topook Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 P.O. No.: 379209.01.02 P.O. No.: 379209.01.02 P.O. No.: 379209.01.02 P.D. No.: 379209.01.02 P.D. No.: 379209.01.02 </th <th>Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 Oakland, CA 94512 Date Toport Nor: 39714 Attention: Shawn Diffy Attention: Shawn Diffy Project Nor: 372209 01.02 Pole Project Project Name: PG&E Topock Project Project Nor: 372209 01.02 Pole Project Project Nor: 372209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 39320 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 3930 01.02 P.O. Nor. 37920 01.02</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>14201 FRANK (714) 730-6</th> <th>(LIN AVENUE - TU 239 - FAX (714)</th> <th>STIN, CALIFORNIA 92780-70 730-6462 - www.fruesdail.co</th>	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 155 Grand Ave. Suite 1000 Oakland, CA 94512 Date Toport Nor: 39714 Attention: Shawn Diffy Attention: Shawn Diffy Project Nor: 372209 01.02 Pole Project Project Name: PG&E Topock Project Project Nor: 372209 01.02 Pole Project Project Nor: 372209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor: 379209 01.02 Project Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor: 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 39320 01.02 P.O. Nor. 379209 01.02 P.O. Nor. 3930 01.02 P.O. Nor. 37920 01.02										14201 FRANK (714) 730-6	(LIN AVENUE - TU 239 - FAX (714)	STIN, CALIFORNIA 92780-70 730-6462 - www.fruesdail.co
ANALYSIS: Total Metal Analyses as Requested Total Metal Analyses as Requested Total Metal Analysis: 01/31/10 01/21/10 01/31/10 000000	AnaLYSIS: Total Metal Analyses as Requested Arsenic Cadmium Chromium Lead Mercury Selenium Date of Analysis: 0:131/10 OI131/10 OI131/10 Date of Analysis: 0:131/10 OI131/10 OI131/10 Solution Chromium Lead Mercury Silver Date of Analysis: 0:131/10 OI131/10 OI131/10 OI131/10 Solution Lead Mercury Silver Solution Colspan="4">Colspan="4">Colspan="4">Colspan="4">Silver Solution Colspan="4">Colspan="4">Silver Solution Silver Solution Solution Silver Solution Solution Solution Solution Solution Solution<	ά. ·	Client: Attention: Project No.: P.O. No.:	E2 Consulting Eng 155 Grand Ave. S Oakland, CA 9461 Shawn Duffy PG&E Topock Prc 379209.01.02 379209.01.02	gineers, Inc. uite 1000 12)ject	,				boratory Ne ite Receive	o.: 987414 d: January	22, 2010	
ANALYSIS: Total Metal Analyses as Requested Arsenic Cadmium Chromium Lead Magnesium Mercury Selenium Silver EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 Date of Analysis: 01/31/10 01/10 000 000 000 000 000 000 000 0	ANALYSIS: Total Metal Analyses as Requested ANALYSIS: Total Metal Analyses as Requested Arsenic Cadmium Chromium Lead Magnesium Mercury Selenium Silver EPA 200.8 EPA 200.7 EPA 200.8 EPA 200.8 EPA 200.7 EPA 200.8					Analy	<u>tical R</u>	sults	Summé	Z			
Arsenic Cadmium Chromium Lead Magnesium Mercury Selenium Silver EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.7 EPA 200.8	Arsenic Cadmium Chromium Lead Magnesium Mercury Selenium Silver EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.3 EPA 200.7 EPA 200.8	METALS /		Total Metal Analyses	as Requested								
	SC-IM3-SW-002 15:10 6.09 3.35 12.9 10.1 5530 ND ND ND	Lab I. D.	sample ID	Date of Analysis: Time Coll.	Arsenic EPA 200.8 01/31/10 μg/L	Cadmium EPA 200.8 01/31/10 µg/L	Chromium EPA 200.8 01/31/10 µg/L	Lead EPA 200.8 01/31/10 µg/L	Magnesium EPA 200.7 01/29/10 µg/L	Mercury EPA 200.8 01/29/10 µg/L	Selenium EPA 200.8 01/31/10 µg/L	Silver EPA 200.8 01/31/10 µg/L	lron EPA 200.7 01/29/10 μg/L
		987414	SC-IM3-SW-0		60.9	3.35	12.9	10.1	5530	Q	Q	Ð	9420

+

•

÷

.

ND: Not detected, or below limit of detection

005

.

Section 3.0

·_

•_

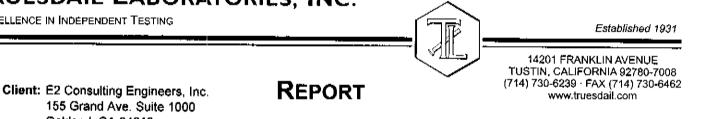
٠

-

۰.

΄.

'. .


Final Reports

.

: -

. •

EXCELLENCE IN INDEPENDENT TESTING

155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Prep. Batch: 01CrH10G

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	DF	RL	Results
987414	SC-IM3-SW-002	15:10	15:50	μ g/L	1.05	0.200	ND

					ຼຽບ	mmaŋ	y			
QC ST) I.D.	Laboratory Number				entration	Relative Percent Difference	Acceptance limits	QC Within Control	
Duplic	ate	987389-19	NÐ	1		ND	0.00%	<u>< 20%</u>	Yes	
Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	_		Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
987414	0.095	1.06	1.00	• 1	1.06	1.21	1.16	105%	90-110%	Yes
	Lab Number	Lab Number	Number Duplicate 987389-19 Lab Conc.of Number Dilution Factor sample Dilution Factor	QC STD I.D. Laboratory Number Sample Concentra Duplicate 987389-19 ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc.	QC STD I.D. Laboratory Number Sample Concentration Duplicate 987389-19 ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc.	QC STD I.D. Laboratory Number Sample Concentration Du Concentration Duplicate 987369-19 ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. MS Amount	QC STD I.D. Laboratory Number Sample Concentration Duplicate Duplicate 987389-19 ND ND Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. Ms Amount Measured Conc. of spiked sample	QC STD I.D. Laboratory Number Sample Concentration Duplicate Concentration Percent Difference Duplicate 987389-19 ND ND 0.00% Lab Number Conc.of unspiked sample Dilution Factor Added Spike Conc. MS Amount Measured Spike sample Theoretical Conc. of Spike sample	QC STD I.D. Laboratory Number Sample Concentration Duplicate Concentration Relative Percent Difference Acceptance Himits Duplicate 987389-19 ND ND 0.00% < 20%	QC STD I.D. Laboratory Number Sample Concentration Duplicate Concentration Relative Percent Difference Acceptance limits QC Within Control Duplicate 987389-19 ND ND 0.00% < 20%

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limit s	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	5.21	5.00	104%	90% - 110%	Yes
MRCVS#1	10.3	10.0	103%	85% - 105%	Yes
MRCVS#2	10.2	10.0	102%	95% - 105%	Yes
MRCVS#3	10.1	10.0	101%	95% - 105%	Yes
LCS	5.36	5.00	107%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, **TRUESDAIL LABORATORIES, INC.**

Laboratory No.: 987414

Collected: January 21, 2010

Received: January 22, 2010

Prep/ Analyzed: January 25, 2010

Analytical Batch: 01CrH10G

Date: February 1, 2010

Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

A 100 0

EXCELLENCE IN INDEPENDENT TESTING

Laboratory No.: 987414

Date: February 1, 2010 Collected: January 21, 2010 Received: January 22, 2010 Prep/ Analyzed: January 23, 2010 Analytical Batch: 01PH10Y

Oakiand, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

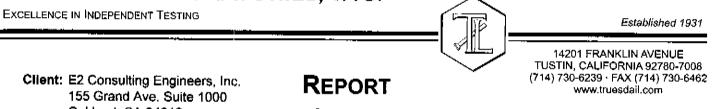
pH by SM 4500-H B

Analytical Results pH

<u>TLH.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	RL	<u>Results</u>
987414	SC-1M3-SW-002	15:10	10:00	pН	2.00	8.25 J

QA/QC Summarv

QC STD I.D	Laboratory Number	Concentra	ition	Dupli Concent		DI	fference (Units)		eptance limits	QC Within Control
Duplicate	987414	8.25		8.2	5		0.00	<u>+</u> 0.	100 Units	Yes
	QC Std I.D.	Measured Concentration	Theoretical Concentration		Differer (Units		Accepta Limit		QC Within Control	'
	MRCVS	7.02		7.00	0.02		<u>+</u> 0.100 l	Jnits	Yes	-
-	LCS	7.03	I	7.00	0.03		<u>+</u> 0.100 (Jnits	Yes	


ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 987414

Date: February 1, 2010 Collected: January 21, 2010 Received: January 22, 2010 Prep/ Analyzed: January 25, 2010 Analytical Batch: 01TSS10K

Total Suspended Solids by SM 2540 D

Investigation:

Analytical Results Total Suspended Solids

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
987414	SC-IM3-SW-002	mg/L	SM 2540 D	5.00	157

QA/QC Summarv

QC STD I	. D .	Laboratory Number		Concentration		-	Duplicate Concentration		Percent Difference		ceptance limits	QC Within Control
Duplicat	e	987329-3		43.2		43.	4		0.23%		<u>≤</u> 5%	Yes
	Q	C Std I.D.	-	Measured ncentration		oretical entration	Perce Recove	-	Accepta Limit		QC Within Control	
[Blank		ND		<10.0			<10.0)	Yes	1
		LCS		99.0		100	99.0%	6	90% - 11	0%	Yes	
l		LCSD		98.0		100	98.0%	6	90% - 11	0%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖅 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 987414

Date: February 1, 2010 Collected: January 21, 2010 Received: January 22, 2010 Prep/ Analyzed: January 28, 2010 Analytical Batch: 01TOC10P

Investigation:

Total Organic Carbon by SM 5310 C

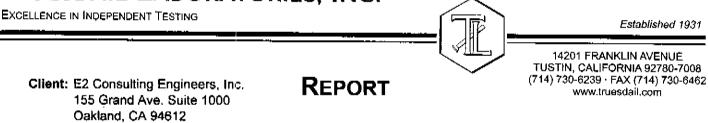
Analytical Results for Total Organic Carbon

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
987414	SC-IM3-SW-002	15:10	mg/L	1.00	0.300	1.20

QA/QC Summarv

QC STD I	Number		Concentra	 Duplic: Concentr	ation	P Oif	elative ercent ference	Acceptance limits ≤ 20%		QC Within Control
Duplicate	e 9874	14	1.20	 1.29			7.23%		20%	Yes
	QC Std I.D.		asured entration	 eoretical centration	Perce Recov		Accept Limi		QC Within Control	,
	Blank		ND	<0.300	***		<0.30	00	Yes	
	MRCCS		9.98	10.0	99.8	%	90% - 1	10%	Yes	
	MRCVS#1		9.58	 10.0	95.8	%	90% - 1	10%	Yes	
	LCS		18.8	20.0	94.0	%	90% - 1	10%	Yes	7

ND: Below the reporting limit (Not Detected). **DE:** Dilution Factor


÷

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

Analytical Results Ammonia as N

Ammonia as N by Method SM 4500-NH3 D

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Method	<u>Units</u>	<u>DF</u>	RL	<u>Results</u>
987414	SC-IM3-SW-002	15:10	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

) I.D.		abora Numb		Concentra	ation	Du Conc	plica entra		F	Relative Percent Ifference	Acceptance limits		1	QC Within Control	
	Duplic	ate		9874	14	ND			ND			0.00%		<u>≤</u> 20%	- T	Yes	
QC Std I.D.	Lab Number	បរានដ	ic.of biked nple		ution actor	Added Spike Conc.		MS nount	Co s	asured onc. of piked ample	ſ	Theoretical Conc. of spiked sample	1	MS% Icovery	A	Acceptance limits	QC Within Control
MŜ	987414	0.	00	1	.00	6.00	(6.00		6.10		6.00		102%		75-125%	Yes
		Q	C Std	I.D.		esured		neoretica ncentrati		Perce Recov		Accepta		QC Wit Contr			
			Blan	k		ND		<0.500	_			<0.50	0	Yes			
			MRCO	cs		6.12		6.00		102%	6	90% - 11	0%	Yes			
		N	/RCV	S#1		5.95		6.00		99.24	%	90% - 11	0%	Yes			
			LCS	;		10.3		10.0		1039	6	90% - 11	0%	Yes			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 987414

Collected: January 21, 2010

Received: January 22, 2010

Prep/ Analyzed: January 26, 2010 Analytical Batch: 01NH3-E10C

Date: February 1, 2010

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 987414

Date: February 1, 2010 Collected: January 21, 2010 Received: January 22, 2010 Prep/ Analyzed: February 1, 2010 Analytical Batch: 02COD10A

Investigation:

Chemical Oxygen Demand by EPA 410.4

Analytical Results for Chemical Oxygen Demand

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
987414	SC-1M3-SW-002	15:10	mg/L	2.00	20.0	75.1

QA/QC Summary

	QC STO	D 1.D.		aborat Numb	-	Concentra	ation	Du Conc	plicat entrat	lion	Relative Percent Difference	t	Acceptance limits		(QC Within Control	
	Duplic	ate		98741	4	75.1			83.9		11.1%		<u><</u> 20%			Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple		ution ctor	Added Spike Conc.		MS nount	Co sp	sured nc. of biked mple	Theore Conc. spike samp	of		MS% covery	A	Acceptance limits	QC Within Control
MŚ	987414	75	5.1	2	.00	34.3		68.6		141	144		9	6.1%		75-125%	Yes
		a	C Std	I.D.		easured centration		neoretica Icentrati		Percer Recove		epta: .imits		QC Wit Contro			
			Blan	k		ND		<10.0			<10			Yes			
			MRCO	CS .		180		172		105%	90%	6 - 11	10% Yes				
		<u> </u>	/RCV	5#1		108		100		108%	90%	6 - 11	0%	Yes		,	
			LCS	3		374		343		109%	90%	6 - 11	0%	Yes			

ND: Below the reporting limit (Not Detected).

NE Dilution Eactor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Laboratory No.: 987414

Date: February 1, 2010 Collected: January 21, 2010 Received: January 22, 2010 Prep/ Analyzed: January 25, 2010 Analytical Batch: 01CN10G

Investigation:

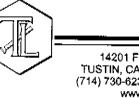
Cyanide by Method SM 4500CN

Analytical Results Cyanide

<u>TLI I.D.</u>	Field I.D.	Sample Time	Method	<u>Units</u>	<u>DF</u>	RL	<u>Results</u>
987414	SC-IM3-SW-002	15:10	SM 4500CN	mg/L	1.00	0.0100	ND

QA/QC Summary

QC STD I.	D. Laborato Numbe		Concentra	ation	Duplic Concentr		P	elative ercent fference		eptance imits	QC Within Control
Duplicate	987414	<u>ا ا</u>	ND		ND		0.00%		۲	20%	Yes
	QC Std I.D.		asured entration		eoretical centration	Perce Recov		Accept Limi		QC Within Control	
	Blank		ND		<0.01			<0.0	1	Yes	
	MRCCS	0	.0800		0.0800	100%	6	90% - 1	10%	Yes	1
Ļ	MRCVS#1	0	.0807		0.0800	1019	6	90% - 1	10%	Yes	1
Ļ	LCS	()	.0827		0.0800	1039	6	90% - 1	10%	Yes]
L	LCSD	0	.0832		0.0800	104%	6	90% - 1	10%	Yes]


ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

+-- Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: February 1, 2010

Collected: January 21, 2010

Received: January 22, 2010

Prep/ Analyzed: January 25, 2010

Analytical Batch: 01EC10H

Laboratory No.: 987414

Established 1931

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02

Investigation:

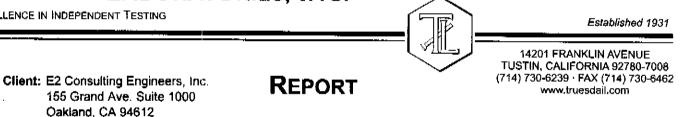
Analytical Results Specific Conductivity

Specific Conductivity by EPA 120.1

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	RL	<u>Results</u>
987414	SC-IM3-SW-002	µmhos/cm	EPA 120.1	1.00	2.00	1 17

QA/QC S	Summary
---------	---------

QC S		1 Concontrot	ion	Duplica		1	tive Percent	Ac	ceptance	QC Within
I.D.	Numbe	r		Concentra	11101		Difference		limits	Control
Duplic	ate 987414	117		119		i	1.69%		<u>≺</u> 10%	Yes
	QC Std I.D.	Measured Concentration		Theoretical oncentration	Perc Reco		Acceptan Limits	ce	QC Withi Control	
	Blank	NĎ	<2,00			-	<2.00		Yes	-
	CCS	704		706	99.7	7%	90% - 110	%	Yes	
	CVS#1	996		998	99.8	3%	<u>90%</u> - 110	%	Yes	
	LCS	706		706	100	%	90% - 110	%	Yes	
l l	LĊSD	706		706	100	%	90% - 110	%	Yes	


Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

014

EXCELLENCE IN INDEPENDENT TESTING

Oakland, CA 94612 Attention: Shawn Duffy Sample: One (1) Stormwater Sample Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Prep. Batch: 012810

Investigation:

Diesel by EPA 8015 (Modified)

Analytical Results Diesel

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
987414	SC-IM3-SW-002	15:10	11:56	μg/Լ	5.00	500	ND

QA/QC Summary

	QC ST	D I.D.	Laboratory Number	Sample Concentra		Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	987414	ND		ND	0.0%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.o unspike sample	d Dilution Factor	Added Spike Conc.	MS Amou	Measured Conc. of nt spiked sample		MS% Recovery	Acceptance limits	QC Within Control
MS	987414	0.00	5.00	2000	1000	0 9750	10000	97.5%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<100		<100	Yes
MRCCS	885	1000	88.5%	85% - 115%	Yes
MRCVS#1	1030	1000	103%	85% - 115%	Yes
(Ŝ) MB	89.6	100	89.6%	70% - 130%	Yes
(\$) LCS	106	100	106%	70% - 130%	Yes
(Š) LĊŠD	119	100	119%	70% - 130%	Yes
(S) 987414	98	100	98.4%	70% - 130%	Yes
(S) MS	104	100	104%	70% - 130%	Yes
LCS	1880	2000	94.0%	70% - 130%	Yes
LCSD	2180	2000	109%	70% - 130%	Yes

(S): Surrogate o-Terphonyl

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Laboratory No.: 987414

Collected: January 21, 2010

Received: January 22, 2010

Prep/ Analyzed: January 28, 2010

Analytical Batch: 012810

Date: February 1, 2010

🛵 🦯 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to products. As a mutual protection to clients, the public, and these laborationes, this report is submitted and accepted for the excitative days of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

Client: E2 Consulting Engineers, Inc. 155 Grand Ave, Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Samples: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02 Investigation: Total Metal Analyses as Requested

Analytical Results

SAMPLE ID:	SC-IM3-SW-002	Time Co	lected:	15:10			LAB ID:	987414	
		Reported						Date	Time
Parameter	Method	Value	DF		Units	RL	Batch	Analyzed	Analyzed
Arsenic	EPA 200.8	6.09	5.56	÷	μg/L	1.11	013110A	01/31/10	21:05
Cadmium	EPA 200.8	3.35	5.56		µg/L	3.00	013110A	01/31/10	21:05
Chromium	EPA 200.8	12.9	5.56		μg/L	1,11	013110A	01/31/10	21:05
Lead	EPA 200.8	10.1	5.56		µg/L	10.0	013110A	01/31/10	21:05
Magnesium	EPA 200.7	5530	1.11		μ g /L	555	012910A-Th	01/29/10	13:11
Mercury	EPA 200.8	ND	5.55		μg/L	1.11	012910-Hg	01/29/10	14:06
Selenium	EPA 200.8	ND	5.56		μg/L	10.0	0131 10A	01/31/10	21:05
Silver	EPA 200.8	ND	5.56		μg/L	5.00	013110A	01/31/10	21:05
Iron	EPA 200.7	9420	11.1		μg/L	111	012910A-Th	01/29/10	13:35

ND: Not detected or below limit of detection. **DF**: Dilution factor.

> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

for Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

016

Established 1931

(714) 730-6239 · FAX (714) 730-6462 www.truesdail.com Laboratory No.: 987414

Reported: February 1, 2010 Collected: January 22, 2010 Received: January 22, 2010 Analyzed: See Below

	ail.com		Control Limits %	90-1 10%	90-1 10%	90-110%	90-110%	90-110%	90-11 0%	90-110 %	90- 110%	90-110%
	6462 · www.truesda 6462 · www.truesda 4 2010 2010 2010		% Rec	97.0%	94.0%	94.4%	103%	103%	101%	93.0%	101%	107%
Established 1931	wue: Tusmu.cz W (714) 730-64 Io.: 987414 ebruary 1, 21 anuary 22, 22 anuary 22, 22		TRUE Value	50.0	50.0	50.0	50.0	2000	2.00	50.0	50.0	5000
	(714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com Laboratory No.: 987414 Reported: February 1, 2010 Collected: January 22, 2010 Received: January 22, 2010	RCVS	Observed Value	48.5	47.0	47.2	51.7	5160	2.01	46.5	50.6	5330
		ort	Control Limits	90-110%	90- 110%	90-110%	90-110%	95-105%	90-110%	90-110%	90-110%	95-105%
		ce Rep	Rec &	98.8%	95.8%	96 .8%	102%	101%	99.5%	92:0%	103%	96.0%
		Assuran	TRUE Value	50.0	50.0	50.0	50.0	5000	2.00	50.0	50.0	5000
		Quality Control/Quality Assurance Report	Observed Value	49.4	47.9	48.4	50.9	5030	1.99	47.5	51.6	4800
		, Contro	R	0.200	3.00	1.00	10.0	100	0.200	10.0	5.00	20.0
NC.	ن	Quality Ri ANK	Blank	£	Q	ġ	QN	Q	2	Ð	Q	Q
ales, lr	gineers, In tuite 1000 12 aters ject		Units	μgμ	16 п	1/6i1	אפיין	hg/L	hg/L	hgđ	hgu	hg/L
	E2 Consulting Engineers, In 155 Grand Ave. Suite 1000 Oakland, CA 94612 Shawn Duffy Two (2) Groundwaters PG&E Topock Project 379209.01.02 379209.01.02		Batch	013110A	013110A	013110A	013110A	012910A-Th	012910-Hg	013110A	013110A	012910A-Th
TRUESDAIL LABORATORIES, INC. EXCELLENCE IN INDEPENDENT TESTING	Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Samples: Two (2) Groundwaters Project Name: PG&E Topock Project Project No.: 379209.01.02 P.O. No.: 379209.01.02		Method	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.7	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.7
TRUESI Excellence IN	Projec St Proj		Parameter	Arsenic	Cadmium	Chromium	Lead	Magnesium	Mercury	Selenium	Silver	lron

.

1

•

-

This reportapplies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Report Continued

,			INTERFEREN	INTERFERENCE CHECK STANDAR	TANDARD	•	•	•
Parameter	Method	Units	S	S	*	Control		
			Obs.	Theo.	Rec.	Limits		
Arsenic	EPA 200.8	μθη	49.2	50.0		80-120%		
Cadmium	EPA 200.8	իցվե	48.4	50.0		80-120%		
Chromium	EPA 200.8	цQľ	47.5	50.0				
Magnesium	EPA 200.7	л <u>9</u> /Г	2050	2000	103%	80-120%		
Mercury	EPA 200.8	hg/	1.94	2.00	97.0%	80- 120%		
Silver	EPA 200.6	<u>אסיר</u>	50.9	50.0	102%	80-120%		
lron	EPA 200.7	Ърц	1950	2000	97.5%	80-120%		
				• • •				

ameter Method Units LCS LCS % Control SAMPLE mic Dbs. Theo. Rec. Limits D B7.44 SAMPLE mic EPA 200.8 µg/L 1950 2000 97.5% 90-110% 98.7414 mium EPA 200.8 µg/L 1930 2000 96.5% 90-110% 98.7414 mium EPA 200.8 µg/L 2100 2000 96.5% 90-110% 98.7414 mium EPA 200.8 µg/L 2100 2000 96.5% 90-110% 98.7414 mium EPA 200.8 µg/L 1.83 2.000 96.6% 90-110% 98.7414 resium EPA 200.8 µg/L 1.83 2.000 96.6% 90-110% 98.7414 resium EPA 200.8 µg/L 1.83 2.000 96.6% 90-110% 98.7414 resium EPA 200.8 µg/L 1.83 2.000 96.6% 90-110% 96.74		LABORATO	LABORATORY CONTROL SAMPLI	SAMPLES		SAMPLE DUPLICATES	VLICATES			
Iter Method Units LCS LCS % Control SAMPLE CDs. Theo. Rec. Limits D 987414 2014 m EPA 200.8 μg/L 1950 2000 97.5% 90-110% 987414 m EPA 200.8 μg/L 1930 2000 96.5% 90-110% 987414 m EPA 200.8 μg/L 2050 2000 103% 90-110% 987414 m EPA 200.8 μg/L 2100 2000 105% 90-110% 987414 um EPA 200.8 μg/L 1.8.3 2.000 96.5% 90-110% 987414 um EPA 200.8 μg/L 1.8.3 2.000 96.5% 90-110% 987414 n EPA 200.8 μg/L 1.8.3 2.000 96.5% 90-110% 987414 n EPA 200.8 μg/L 1.920 2000 96.5% 90-110% 987414 n <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Precision</th></td<>										Precision
Obs. Theo. Rec. Limits ID π EPA 200.8 μg/L 1950 2000 97.5% 90-110% 987414 m EPA 200.8 μg/L 1930 2000 96.5% 90-110% 987414 m EPA 200.8 μg/L 2050 2000 103% 90-110% 987414 m EPA 200.8 μg/L 2100 2000 105% 90-110% 987414 um EPA 200.8 μg/L 1.83 2.000 96.6% 90-110% 987414 m EPA 200.8 μg/L 1.83 2.00 96.6% 90-110% 987414 m EPA 200.8 μg/L 1.83 2.00 96.6% 90-110% 987414 n EPA 200.8 μg/L 1.920 2000 96.6% 90-110% 987414 n EPA 200.8 μg/L 1.920 2000 96.0% 96.110% 987414 n EPA 200.8 μg/L		SCI	LCS	*	Control	SAMPLE	SAMPLE	ano	%	Control
EPA 200.8 μg/L 1950 2000 97.5% 90-110% m EPA 200.8 μg/L 1930 2000 96.5% 90-110% m EPA 200.8 μg/L 2050 2000 105% 90-110% m EPA 200.8 μg/L 2100 2000 105% 90-110% m EPA 200.8 μg/L 2100 2000 96.6% 90-110% m EPA 200.7 μg/L 1.83 2.00 96.6% 90-110% m EPA 200.8 μg/L 1.83 2.00 96.6% 90-110% n EPA 200.8 μg/L 1.83 2.00 96.0% 90-110% n EPA 200.8 μg/L 1.82 2.00 96.0% 90-110% n EPA 200.8 μg/L 1.82 90-110% 90-110%		Obs.	Theo.	Rec.	Limits	Q	RESULT	RESULT	RPD	Limits %
m EPA 200.8 μg/L 1930 2000 96.5% 90-110% m EPA 200.8 μg/L 2050 2000 103% 90-110% um EPA 200.8 μg/L 2100 2000 105% 90-110% um EPA 200.8 μg/L 4330 5000 96.6% 90-110% um EPA 200.8 μg/L 1.83 2.00 96.6% 90-110% n EPA 200.8 μg/L 1.83 2.00 96.6% 90-110% n EPA 200.8 μg/L 1.920 2000 96.6% 90-110% n EPA 200.8 μg/L 1.920 2000 96.0% 90-110% n EPA 200.8 μg/L 1.920 2000 96.0% 90-110%		1950	2000	97.5%	90-110%	987414	6.09	6.26	2.75%	20
m EPA 200.8 μg/L 2050 2000 103% 90-110% ePA 200.8 μg/L 2100 2000 105% 90-110% um EPA 200.7 μg/L 4930 5000 96.6% 90-110% n EPA 200.8 μg/L 1.8.3 2.000 91.5% 90-110% n EPA 200.8 μg/L 1.8.3 2.000 91.5% 90-110% n EPA 200.8 μg/L 1.920 2000 96.6% 90-110% n EPA 200.8 μg/L 2.000 96.6% 90-110% 90-110%		1930	2000	96.5%	90-110%	987414	3.35	3.49	4.09%	00 00
EPA 200.8 μg/L 2100 2000 105% 90-110% um EPA 200.7 μg/L 4930 5000 98.6% 90-110% n EPA 200.8 μg/L 1.8.3 2.00 91.5% 90-110% n EPA 200.8 μg/L 1.820 2.000 96.6% 90-110% n EPA 200.8 μg/L 1.920 2000 96.0% 90-110% n EPA 200.8 μg/L 2.000 96.0% 90-110% n EPA 200.8 μg/L 2.000 96.0% 90-110%	Ì	2050	2000	103%	90-110%	987414	12.9	13.0	0.77%	- 63
υπ EPA 200.7 μg/L 4930 5000 98.6% 90-110% EPA 200.8 μg/L 1.83 2.00 91.5% 90-110% n EPA 200.8 μg/L 1.83 2.000 96.0% 90-110% FPA 200.8 μg/L 1920 2000 96.0% 90-110% FPA 200.8 μg/L 2040 2000 96.0% 90-110%		2100	2000	105%	90-110%	987414	10.1	10.4	2.93%	, Q
n EPA 200.8 µg/L 1.83 2.00 91.5% 90-110% EPA 200.8 µg/L 1920 2000 96.0% 90-110% EPA 200.8 µg/L 2040 2000 102% 90-110%		4930	5000	98.6%	90-110%	987414	5530	5770	4.25%	ଷ
n EPA 200.8 μg/L 1920 2000 96.0% 90-110% EPA 200.8 μg/L 2040 2000 102% 90-110%		1.83	2.00	91.5%	90-110%	987414	Q	Q	0.00%	19
EPA 200.8 µg/L 2040 2000 102% 90-110%		1920	2000	96.0%	90-110%	987414	QN	Q	0.00%	
There were considered the trace of the trace		2040	2000	102%	90-110%	987414	Q	QN	%00:0	<u>2</u> 0
рg/с 4860 5000 37.2% 90-110%	EPA 200.7 μ9/L	4860	5000	97.2%	90-110%	987414	9420	9520	1.06%	- 051 - 051

ī

-

018

This report applies only to the samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Report Continued

•

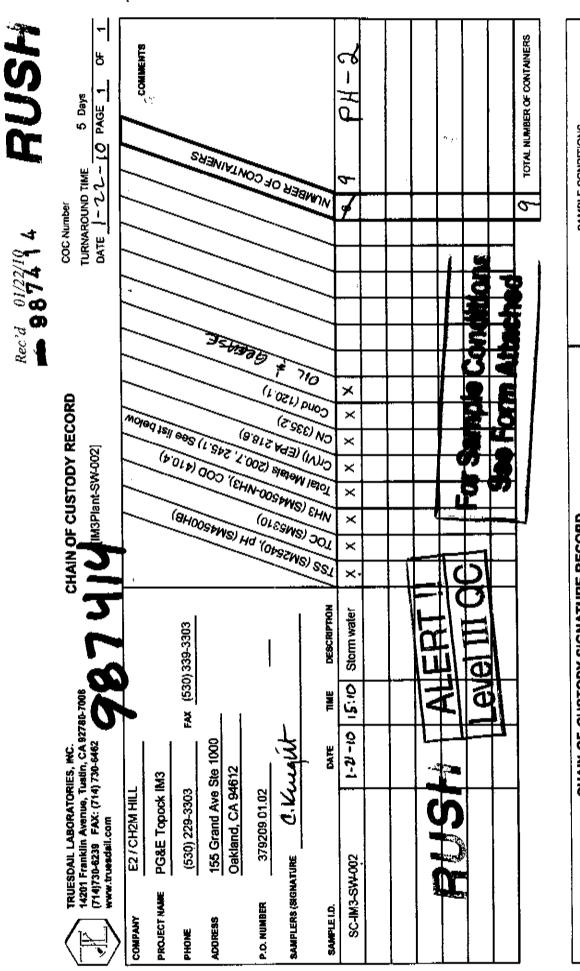
٠

MATRIX SPIKE

•

Accuracy

				Sample		Spike	Total Amt.	Theo.	NS	\$	Control
Sampie ID	Parameter	Method	Units	Result	Ŀ	Level	of Spike	Value	Obs.	Rec.	Limits %
987414	Arsenic	EPA 200.8	101	6.09	11.1	200	2220	2226	2180	97.9%	75-125%
987414	Cadmium	EPA 200.8	וופער	3.35	11.1	200	2220	2223	2170	97.6%	75-125%
987414	Chromium	EPA 200.8	וופעך	12.9	11.1	200	2220	2233	2330	104%	75-125%
987414	Lead	EPA 200.8	µg/L	10.1	11.1	200	2220	2230	2340	105%	75-125%
987414	Magnesium	EPA 200.7	hg/L	5530	1.11	2000	2220	7750	8040	113%	75-125%
987414	Mercury	EPA 200.8	µ9/Г	0.00	5.55	2.00	11.1	11.1	10.9	98.2%	75-125%
987414	Selenium	EPA 200.8	<mark>л9</mark> л	0.00	11.1	200	2220	2220	2160	97.3%	75-125%
987414	Silver	EPA 200.8	h0rl	0.00	11.1	200	2220	2220	2280	103%	75-125%
987414	Iron	EPA 200.7	ng/L	9420	11.1	2000	22200	31620	31700	100%	75-125%


ND: Not detected, or below limit of detection. **DF:** Dilution Factor

TRUESDAIL LABORATORIES, INC. Respectfully submitted,

Lo Carry Carry Corry Corry Corry Corry Manager

Analytical Services

019

Ļ Metals list: Mg, As, Cd, Pb, Hg, Se, Ag, Cr, and Fe ₽ WARM D SAMPLE CONDITIONS YES 🛛 П 200 SPECIAL REQUIREMENTS: CUSTODY SEALED RECEIVED 2 100 000 م آ 6 Date: 1-22-10 Time 2:23 Date//-22 Detter / - 22 Date/ I- 2 ate Line CH ZM Н CHAIN OF CUSTODY SIGNATURE RECORD Ĥ 0WI Company/ Agency Company/ Agency Company/ Company/ Agency Company Companyl Agency Agency Agency Printed C. Kini Lett Primted / Name Finted ' Panted Name Printed Shame Shame emen 1/2 Name C Cuudit Signature (Relinquished) (Relinquished) (Relinquished) Signature of (Received) 1 (Received) Signature ' Signature (Received) Signature Signature

.

· ,

Sample Integrity & Analysis Discrepancy Form

Clie	ent: <u>E 2</u>	Lab # 987414
Dat	e Delivered:0 <u>/</u> / <u>↓</u> 2/10 Time: <u>↓/:0</u> 0 By: □Mail XiFiel	
1.	Was a Chain of Custody received and signed?	∭AYes ⊡No ⊡N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ⊠N/A
З.	Are there any special requirements or notes on the COC?	□Yes □No. 🖬 N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No Da(N/A
5.	Were all requested analyses understood and acceptable?	Yes INO IN/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <mark>4.2° c</mark>	₩Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes □No □N/A
8.	Were sample custody seals intact?	□Yes □No \$\$N/A
9.	Does the number of samples received agree water of?	DYES DNO DNA
10.	Did sample labels correspond with the client ID's?	es INO IN/A
11,	Did sample labels indicate proper preservation? Preserved (if yes) by: D Truesdail DClient	Yes No N/A
12.	Were samples pH checked? pH = <u>Sel </u> C. O. C.	ŹYes ⊡No □N/A
13,	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	QYes □No □N/A
14.	Have Project due dates been checked and accept on Turn Around Time (TAT): A RUSH G Sta	ØYes □No □N/A
15.	Sample Matrix: Liquid Drinking Water Ground Wa	ter DWaste Water
		ner Storm Water
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Shabuning