

Yvonne J. Meeks Manager

Environmental Remediation Gas Transmission & Distribution Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 Fax: 805.546.5232 E-mail: <u>YJM1@pqe.com</u>

January 15, 2010

Aaron Yue Senior Hazardous Substance Engineer California Department of Toxic Substances Control 5796 Corporate Avenue Cypress, California 90630

Robert Perdue
Executive Officer
California Regional Water Quality Control Board
Colorado River Basin Region
73-720 Fred Waring Drive, Suite 100
Palm Desert, California 92260

Subject: Board Order R7-2006-0060, WDID No. 7B 36 2033 001 - Interim Measures No. 3, Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half 2009, PG&E Topock Compressor Station, Needles, California

Dear Mr. Yue and Mr. Perdue:

Enclosed is the *Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half 2009* for the Interim Measure No. 3 at the Pacific Gas and Electric Company (PG&E) Topock Compressor Station. This monitoring report presents the results of the third and fourth quarter 2009 Compliance Monitoring Program (CMP) groundwater monitoring events and has been prepared in conformance with California Regional Water Quality Board (Water Board) Order No. R7-2006-0060, MRP No. R7-2006-0060 Revision 1, as well as with the Department of Toxic Substances Control (DTSC)'s July 15, 2005 letter approving the Compliance Monitoring Plan and subsequent letters modifying the reporting requirements.

On August 8, 2006 and July 3, 2008, PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for hexavalent chromium (Cr[VI]), total chromium (Cr[T]), total dissolved solids (TDS), and pH to be used to determine if contingency plan actions were necessary based on sample results. The water quality objectives (WQO) concentrations used to trigger the contingency plan are as follows: Cr(VI) greater than 32.6 micrograms per liter (μ g/L), Cr(T) greater than 28.0 μ g/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

Mr. Aaron Yue Mr. Robert Purdue Page 2 January 15, 2010

During the third quarter 2009 monitoring event, a primary sample and field duplicate from the well OW-2S (29.6 and 30.7 μ g/L) exceeded the Cr(T) WQO. During the fourth quarter 2009 monitoring event, a sample from OW-2S (31.8 μ g/L) exceeded the Cr(T) WQO. A review of the water quality parameters indicative of treated groundwater injection (Cr(VI), TDS, sulfate, molybdenum, nitrate/nitrite, and fluoride) confirm that injected water has not yet reached OW-2S and that the concentration of Cr(T) is not related to injected water (which consistently has significantly lower chromium concentrations than those measured at well OW-2S), but instead is related to the natural variability within the shallower portions of the aquifer.

In a letter data January 5, 2007, DTSC stated that it was not necessary to follow contingency plan requirements for Cr(VI) and Cr(T) with respect to OW-2S and OW-5S. The Water Board concurred with this decision in a letter dated March 2, 2007. As such, the contingency plan was not triggered due to the Cr(T) concentration detected in OW-2S during the second half 2009.

No other samples exceeded the water quality objectives for Cr(VI), Cr(T), pH, or TDS during second half 2009 sampling events. The next CMP event is scheduled to occur in April 2010.

Please contact me at (805) 546-5243 if you have any questions on the CMP.

Sincerely,

Yvonne Meeks

Topock Remediation Project Manager

Geonne Meks

Cc: Cliff Raley, Water Board Christopher Guerre, DTSC

Enclosure

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2009

Interim Measure No. 3 PG&E Topock Compressor Station Needles, California Board Order R7-2006-0060 WDID No. 7B 36 2033 001

Prepared for

California Department of Toxic Substances Control and the California Regional Water Quality Control Board, Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

January 15, 2010

CH2MHILL

155 Grand Avenue, Suite 1000 Oakland, CA 94612

Compliance Monitoring Program Semiannual Groundwater Monitoring Report Second Half 2009

PG&E Topock Compressor Station Needles, California Board Order R7-2006-0060, WDID No. 7B 36 2033 001

Prepared for

California Department of Toxic Substance Control and the California Regional Water Quality Control Board, Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

ONAL

SERENA LEE

NO. 8259

January 15, 2010

This report was prepared under the supervision of a

California Professional Geologist

Serena Lee

Professional Geologist, P.G. #8259

Contents

Acro	onyms	s and Abbreviations	vii										
1.0	Intr	oduction	1-1										
2.0	Seco	ond Half 2009 Activities	2-1										
3.0	Second Half 2009 Results												
	3.1	Analytical Results	3-1										
		3.1.1 Hexavalent and Total Chromium	3-1										
		3.1.2 Other Metals and General Chemistry	3-2										
	3.2	3-2											
		3.2.1 Matrix Interference	3-2										
		3.2.2 Matrix Spike Samples	3-3										
		3.2.3 Quantitation and Sensitivity	3-3										
		3.2.4 Holding Time Data Qualification											
		3.2.5 Field Duplicates											
		3.2.6 Method Blanks											
		3.2.7 Equipment Blanks	3-3										
		3.2.8 Laboratory Duplicates	3-3										
		3.2.9 Calibration	3-3										
		3.2.10 Conclusion	3-3										
	3.3	Influence of Treated Water	3-4										
		3.3.1 Post-injection Versus Pre-injection	3-4										
		3.3.2 Water Quality Hydrographs	3-5										
	3.4	Water Level Measurements											
		3.4.1 Groundwater Gradient Characteristics	3-6										
	3.5	Field Parameter Data	3-7										
	3.6	WDR Monitoring Requirements	3-7										
4.0	Stat	tus of Monitoring Activities	4-1										
	4.1	Quarterly Monitoring	4-1										
	4.2	Semiannual Monitoring	4-1										
5.0	Refe	erences	5-1										
6.0	Cert	tification	6-1										

Tables

- Operational Status of Interim Measures No. 3 Injection Wells from Inception of Injection through Fourth Quarter 2009
- Well Construction and Sampling Summary for Groundwater Samples, Fourth Quarter 2009

BAO\100150001

- 3 Chromium Results for Groundwater Samples, Third and Fourth Quarter 2009
- 4 Metals and Cation Results for Groundwater Samples, Third and Fourth Quarter 2009
- 5 Other Inorganics Results for Groundwater Samples, Third and Fourth Quarter 2009
- 6 Treated Water Quality Compared to OW and CW Pre-Injection Water Quality
- 7 Treated Water Quality Compared to Third and Fourth Quarter 2009 Sampling Events Water Quality
- 8 Manual Water Level Measurements and Elevations, Third and Fourth Quarter 2009
- 9 Vertical Gradients within the OW and CW Clusters
- Field Parameter Measurements for Groundwater Samples, Third and Fourth Quarter 2009
- Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009

Figures

- 1 Site Location and Layout
- 2 Monitoring Locations for CMP
- 3A OW-1S, OW-2S, OW-5S Water Quality Hydrographs
- 3B OW-1M, OW-2M, OW-5M Water Quality Hydrographs
- 3C OW-1D, OW-2D, OW-5D Water Quality Hydrographs
- 3D CW-1M, CW-2M, CW-3M, CW-4M Water Quality Hydrographs
- 3E CW-1D, CW-2D, CW-3D, CW-4D Water Quality Hydrographs
- 4A OW-1S Groundwater Elevation Hydrograph
- 4B OW-2S Groundwater Elevation Hydrograph
- 4C OW-5 Groundwater Elevation Hydrographs
- 5A Groundwater Elevations for Shallow Wells, November 23, 2009
- 5B Groundwater Elevation Contours for Mid-Depth Wells, November 23, 2009
- 5C Groundwater Elevation Contours for Deep Wells, November 23, 2009

Appendices

- A Laboratory Reports, Second Half 2009
- B Field Data Sheets, Second Half 2009

vi BAO\100150001

Acronyms and Abbreviations

μg/L micrograms per liter

CMP Compliance Monitoring Program

Cr(T) total chromium

Cr(VI) hexavalent chromium

CW compliance well

DTSC California Department of Toxic Substances Control

IM Interim Measure

IM No. 3 Interim Measure No. 3

IW injection well

mg/L milligrams per liter

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

OW observation well

QAPP Quality Assurance Project Plan

TDS total dissolved solids

USEPA United States Environmental Protection Agency

Water Board California Regional Water Quality Control Board, Colorado River Basin Region

WDR Waste Discharge Requirements

WQO water quality objective

BAO\100150001 vii

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM No. 3). Currently, the IM No. 3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM No. 3 extraction, conveyance, treatment, and injection facilities. (All figures are provided at the end of this report.)

The *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* (CH2M HILL, 2005a) was submitted to the Water Board and the California Department of Toxic Substances Control (DTSC) on June 17, 2005 (herein referred to as the Compliance Monitoring Plan). The Compliance Monitoring Plan and its addendum provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the CMP. In a letter dated June 9, 2006, DTSC modified the reporting requirements of the Compliance Monitoring Plan (DTSC, 2006).

On October 13, 2004, the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) adopted Waste Discharge Requirements (WDR) Order No. R7-2004-0103. This WDR authorized PG&E to inject treated groundwater into wells located in the East Mesa area of the Topock site. This WDR was superseded on September 20, 2006 by WDR No. R7-2006-0060, which has similar terms. Work described in this report was performed in accordance with the WDR No. R7-2006-0060.

The WDR specifies effluent limitations, prohibitions, specifications, and provisions for subsurface injection. Monitoring and Reporting Program (MRP) No. R7-2004-0103 specified the requirements for the Compliance Monitoring Program (CMP) to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality. As with the WDR, MRP No. R7-2004-0103 was superseded on September 20, 2006 by MRP No. R7-2006-0060 with similar requirements.

The injection system consists of two injection wells (IWs): IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005), and injection into IW-2 began on July 31, 2005. Table 1 is a summary of the history of injection for IM No. 3. (All tables are provided at the end of this report.)

Figure 2 shows the locations of the injection wells and the groundwater monitoring wells (observation wells and compliance wells) in the CMP. Table 2 is a summary of information on well construction and sampling methods for all wells in the CMP.

On January 22, 2007 (DTSC, 2007), DTSC approved a reduction of constituents analyzed during quarterly sampling of the CMP observation wells (details are provided in CH2M HILL, 2006). The Water Board concurred in a letter dated January 23, 2007

BAO\100150001 1-1

(Water Board, 2007a). Observation wells (OWs) are sampled for a limited suite of constituents during quarterly monitoring events. Semiannual CMP events still retain the original constituent suite for the OWs and compliance wells (CWs).

On October 16, 2007, the Water Board approved collecting pH measurements in the field rather than through laboratory analysis due to the change to 15-minute holding time for laboratory measurements specified by United States Environmental Protection Agency (USEPA) Method 150.1 (Water Board, 2007b). DTSC provided concurrence for the field pH change in an e-mail dated January 22, 2008 (DTSC, 2008a). This change became effective with the first quarter 2008 sampling event.

On November 13, 2007, the Water Board approved a modification to hexavalent chromium (Cr[VI]) analytical methods, which extended the holding time from 24 hours to 28 days (Water Board, 2007c). DTSC provided concurrence for the 28-day holding time for Cr(VI) analyses in an e-mail dated January 22, 2008 (DTSC, 2008a). The first quarter 2008 sampling event was the first event to incorporate the new 28-day holding time for analyzing Cr(VI).

PG&E proposed modifications to the CMP, including the sampling and reporting frequency and the field pH trigger range for the CMP contingency plan, to the Water Board and the DTSC on July 3, 2008. On August 28, 2008, the Water Board approved these modifications as Revision 1 to the MRP (Water Board, 2008). On December 12, 2008, the modification of the CMP contingency plan pH range to a field pH range of 6.2 to 9.2 was also approved by the DTSC (DTSC, 2008b). The remaining MRP modifications were approved by DTSC on September 3, 2009 (DTSC, 2009).

With the approval of the MRP modifications quarterly sampling is no longer required. However, the third quarter data had already been collected. The MRP modifications require that the results of any analysis taken more frequently than required be reported. Therefore, third quarter results are included in this report.

For the third quarter sampling event, samples were collected from OWs (Figure 2) according to the following schedule:

• Nine OWs located near the IM No. 3 injection well field were sampled for a limited suite of constituents.

For the fourth quarter sampling event, as of October 2009, samples are collected from OWs and CWs (Figure 2) according to the following schedule:

- Nine OWs located near the IM No. 3 injection well field are sampled semiannually (during the 2nd and 4th quarters) for a limited suite of constituents.
- Six wells OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D are sampled for a full suite of constituents one cluster at a time on a triennial (once every three years) schedule. Within a 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents. The triennial sampling will occur during the annual event (4th quarter).
- Eight CWs wells are sampled annually (during the 4th quarter) for a full suite of constituents.

1-2 BAO\100150001

For semiannual events, laboratory analyses include total dissolved solids (TDS), turbidity, specific conductance, and a reduced suite of metals. Annual and triennial sampling events include dissolved total chromium (Cr[T]), Cr(VI), metals, specific conductance, TDS, turbidity, and major inorganic cations and anions for CWs and select OWs. For annual events for the rest of the OWs, laboratory analyses include TDS, turbidity, specific conductance, and a reduced suite of metals. Groundwater elevation data and field water quality data—including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity—are also measured during each monitoring event (CH2M HILL, 2005a).

This report presents the results of the second half 2009 (third and fourth quarter) CMP groundwater monitoring events.

BAO\100150001 1-3

2.0 Second Half 2009 Activities

This section provides a summary of the monitoring and sampling activities completed during the third and fourth quarter 2009. The third quarter 2009 monitoring event was conducted on July 7-8, 2009 and consisted of:

- Nine observation monitoring wells were sampled for water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- One duplicate sample was collected at well OW-2S to assess field sampling and analytical quality control.

The fourth quarter 2009 event was a semiannual/annual event conducted on October 12-15, 2009 and consisted of:

- Nine observation and eight compliance monitoring wells were sampled for water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at well CW-3M and OW-1S to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual* (CH2M HILL, 2005b) and addendums.

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and EMAX Laboratories, Inc. in Torrance, California, both California-certified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the Sampling, Analysis, and Field Procedures Manual (CH2M HILL, 2005b) and addendums. Data validation and management were conducted in accordance with the Quality Assurance Project Plan (QAPP) provided as Appendix D of the Sampling, Analysis, and Field Procedures Manual and addendums.

BAO\100150001 2-1

3.0 Second Half 2009 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the second half 2009. Figure 2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), Cr(T), specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the third and fourth quarter 2009 monitoring events are presented in Appendices A and B, respectively.

3.1 Analytical Results

Nine observation wells were sampled during the third quarter 2009 sampling event, and 17 compliance and observation wells were sampled during the fourth quarter 2009 sampling event. Analytical results for Cr(VI) and Cr(T), other metals, and general chemistry parameters are presented in Tables 3, 4, and 5 and are discussed below. Interim action levels/water quality objectives (WQOs) were updated in the *Addendum to the Compliance Monitoring Plan*, which was submitted to DTSC and the Water Board on December 13, 2005 (CH2M HILL, 2005c). On August 8, 2006, PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), Cr(T), TDS, and pH to be used to determine if contingency plan actions were necessary based on sample results.

3.1.1 Hexavalent and Total Chromium

Table 3 presents the Cr(VI) and Cr(T) results for groundwater in the shallow, middle, and deep wells for the second half 2009 CMP sampling events. For shallow wells, the maximum detected Cr(VI) concentration was 31.7 micrograms per liter (μ g/L) in well OW-2S on October 13, 2009. For the middle wells, the maximum detected Cr(VI) concentration was 16.7 μ g/L in well CW-4M on October 15, 2009. For the deep wells, the maximum detected Cr(VI) concentration was 1.26 μ g/L in well OW-1D on October 12, 2009.

During the second half 2009 sampling events, none of the samples exceeded the WQO of $32.6 \mu g/L$ for Cr(VI).

For shallow wells, the maximum detected Cr(T) concentration was $31.8 \,\mu g/L$ in well OW-2S on October 13, 2009. For the middle wells, the maximum detected Cr(T) concentration was $16.6 \,\mu g/L$ in well CW-4M on October 15, 2009. For the deep wells, the maximum detected Cr(T) concentration was $2.3 \,\mu g/L$ in well CW-4D on October 15, 2009.

During the second half 2009 sampling events, samples from one well exceeded the WQO of $28 \mu g/L$ for Cr(T). The July 8, 2009 primary and duplicate samples and the October 13, 2009 sample from well OW-2S had concentrations of 29.6 $\mu g/L$, 30.7 $\mu g/L$, and 31.8 $\mu g/L$, respectively. For these exceedances, the results are not considered to be the result of injection of treated groundwater since the average effluent concentration of Cr(T) from the IM No. 3 treatment plant is normally non-detect with a reporting limit of 0.2 $\mu g/L$ (CH2M HILL,

BAO\100150001 3-1

2009a). Cr(T) and Cr(VI) concentrations at OW-2S have been consistently above the WQOs since November 2005. This exceedance of Cr(T) is thus considered reflective of the natural variance in background water quality. The contingency plan was not triggered due to the Cr(T) concentration detected in OW-2S during the second half 2009.

3.1.2 Other Metals and General Chemistry

Table 4 presents the other metals and cation results for the CMP groundwater wells sampled during the second half 2009. Metals and cations detected in the second half 2009 sampling events included arsenic, barium, boron, calcium, total iron, dissolved iron, magnesium, molybdenum, potassium, sodium, vanadium, and zinc. In general, concentrations of metals and cations detected during the second half 2009 sampling events are similar to those detected in previous sampling events.

Table 5 presents other inorganic analyte results from the CMP wells. During the second half 2009, the sampling results from all wells were within the WQOs for TDS (10,800 milligrams per liter [mg/L]) and pH (6.2 to 9.2). Sampling results for TDS varied from 954 mg/L in well OW-2S to 5,640 mg/L in well CW-3M. Field pH varied from 7.51 in well OW-2D to 8.19 in well CW-2D (see Table 10).

3.2 Analytical Data Quality Review

The laboratory analytical data generated from the third and fourth quarter 2009 CMP monitoring events were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP for the PG&E Topock Program, which is Appendix D of the *Sampling, Analysis, and Field Procedures Manual, Revision 1* (CH2M HILL, 2005b) and addendums. A detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

3.2.1 Matrix Interference

For the third quarter 2009 sampling event, matrix interference was encountered in two groundwater samples that affected the sensitivity for Cr(VI) when using Method E218.6. The Cr(VI) sample results from OW-1D and OW-2D reflected an adjusted reporting limit of 1 μ g/L as a result of the serial dilution that was required to overcome the matrix interference and provide an acceptable matrix spike recovery. No qualifier flags were applied.

For the fourth quarter 2009 sampling event, matrix interference was encountered in six groundwater samples that affected the sensitivity for Cr(VI) when using Method E218.6. The Cr(VI) sample results from CW-1D, CW-2D, CW-3D, CW-4D, OW-2D, and OW-5D reflected an adjusted reporting limit of 1 μ g/L (2 μ g for CW-4D) as a result of the serial dilution that was required to overcome the matrix interference and provide an acceptable matrix spike recovery. No qualifier flags were applied.

3-2 BAO\100150001

3.2.2 Matrix Spike Samples

For the third and fourth quarter 2009 sampling events, matrix spike acceptance criteria were met.

3.2.3 Quantitation and Sensitivity

For the third and fourth quarter 2009 sampling events, with the exception of the matrix interference issues discussed in Section 3.2.1, all method and analyte combinations met the project reporting limit objectives.

3.2.4 Holding Time Data Qualification

For the third and fourth quarter 2009 sampling events, all method holding time requirements were met.

Based on the March 2007 EPA Ruling pH now has a 15 minute holding time. As a result pH measurements are performed in the field and are no longer considered a laboratory parameter for this project. Therefore, laboratory pH results were qualified as estimated and "J" flagged.

3.2.5 Field Duplicates

For the third quarter 2009 sampling event, all field duplicate acceptance criteria were met.

For the fourth quarter 2009 sampling event, one field duplicate (CW-3M) for dissolved zinc had a relative percent difference greater than the upper control limit. The detected result was qualified as estimated and "J" flagged; the non-detect result was qualified as estimated and "J" flagged. All other field duplicate acceptance criteria were met.

3.2.6 Method Blanks

For the third and fourth quarter 2009 sampling events, method blank acceptance criteria were met.

3.2.7 Equipment Blanks

For the third and fourth quarter 2009 sampling events, equipment blank acceptance criteria were met.

3.2.8 Laboratory Duplicates

For the third and fourth quarter 2009 sampling events, laboratory duplicate acceptance criteria for the methods were met.

3.2.9 Calibration

For the third and fourth quarter 2009 sampling events, initial and continuing calibrations were performed as required by the methods. All calibration criteria were met.

3.2.10 Conclusion

For the third and fourth quarter 2009 sampling events, the completeness objectives were met for all method and analyte combinations. The analyses and data quality met the QAPP and

BAO\100150001 3-3

laboratory method quality control criteria. Overall, the analytical data are considered acceptable for the purpose of the CMP.

3.3 Influence of Treated Water

3.3.1 Post-injection Versus Pre-injection

Injection of treated water began on July 31, 2005. Under WDR No. R7-2006-0060 for the IM No. 3 groundwater treatment system, PG&E is required to submit WDR monitoring reports on the operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water quality of the treated water being injected into the IM No. 3 injection well field. Table 6 provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, July 2, 2007, and October 7, 2009. While there are differences among some parameters in these samples, a number of parameters show relatively consistent concentrations in the effluent over time. Analytes that are relatively consistent over the injection time period include Cr(VI), Cr(T), fluoride, molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. These seven constituents provide a characterization of the effluent that does not appear to vary greatly over time and can serve as a basis for determining if a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of December 2005 through October 2009 effluent characteristics):

- Cr(VI): typically non-detect (0.2 μg/L)
- Cr(T): typically non-detect (1.0 μg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 15 μg/L
- Nitrate/nitrite as nitrogen: approximately 3.0 mg/L
- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 6 also lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contain no detectable Cr(VI) or Cr(T), which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents but observable differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

3-4 BAO\100150001

Table 7 presents a comparison between the treated water quality and the results from the most recent sampling events (the third and fourth quarter 2009 sampling events). These samples were collected after approximately 51 months of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the third and fourth quarter 2009 sample results now show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, OW-5D, CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. To date, all shallow observations wells (wells OW-1S, OW-2S, and OW-5S) and the following compliance wells (CW-3M, and CW-4M) show no water quality effects due to injection of treated water, indicating that injected water has not yet reached these depths and locations.

3.3.2 Water Quality Hydrographs

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM No. 3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, Cr(T), fluoride, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each observation well during the second half 2009 within the IM No. 3 injection well field are presented in Figures 3A through 3E.

Observation well water quality hydrographs are presented in Figures 3A through 3C. These hydrographs show the same overall patterns: wells that are identified as affected by treated water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no net trends. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, it is inferred that the movement of treated water is non-uniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth wells (OW-1S, OW-2S, and OW-5S) show little water quality variation over time and generally have no net trends over time. TDS, sodium, chloride, vanadium, and molybdenum are particularly consistent with baseline pre-injection concentrations and show that the local groundwater quality at shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 3D and 3E. Wells CW-1D, CW-2D, CW-3D, and CW-4D show a decreasing trend in TDS and chloride. Wells CW-1M and CW-2M show decreasing trends in Cr(VI) and Cr(T). These changes are attributed to the arrival of treated injection water.

BAO\100150001 3-5

3.4 Water Level Measurements

Table 8 presents the manual water level measurements and groundwater elevations for the second half 2009 monitoring events.

As a requirement of the conditional approval by DTSC (DTSC, 2005) and subsequent modifications (DTSC, 2009), water level measurements from continuously measured (measurements collected every half hour) pressure transducers were used to produce hydrographs from select wells. Figures 4A through 4C present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the second half 2009 reporting period at select observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 5A through 5C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The date is noted on each figure.

3.4.1 Groundwater Gradient Characteristics

The monitoring wells in the middle- and deep-zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the relationships of groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation. Therefore, the groundwater contours on Figures 5B and 5C should be viewed as approximate.

The injection well field is located in the East Mesa area of the Topock site (Figure 2). Overall sitewide water level contour maps for shallow wells are prepared annually, with flow consistently being shown to move to the east, northeast across the uplands portions of the site (CH2M HILL, 2009b).

The effects of injection in the IM No. 3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection wells IW-3 and IW-2. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 51 months of injection, the mound has increased and then stabilized in height at several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the average groundwater elevation of the mound within the middle and deep wells using November 23, 2009 groundwater elevations. As expected with a mound, the potentiometric surface of the deep wells is slightly broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection wells. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM No. 3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 9 presents the vertical gradient data calculated using the November 23, 2009 groundwater elevations. The magnitude of the vertical gradients is

3-6 BAO\100150001

similar between clusters and between the depth intervals, indicating that the vertical gradient is of the same order of magnitude throughout the injection area. A component of the vertical gradients calculated in the vicinity of the IM No. 3 injection well field is undoubtedly related to the injection of treated water in the lower portions of the aquifer. The observed groundwater gradients in the IM No. 3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, and salinity. Table 10 is a summary of the field water quality data measured during the third and fourth quarter 2009 monitoring events. Field data sheets for the third and fourth quarter 2009 events are presented in Appendix B.

3.6 WDR Monitoring Requirements

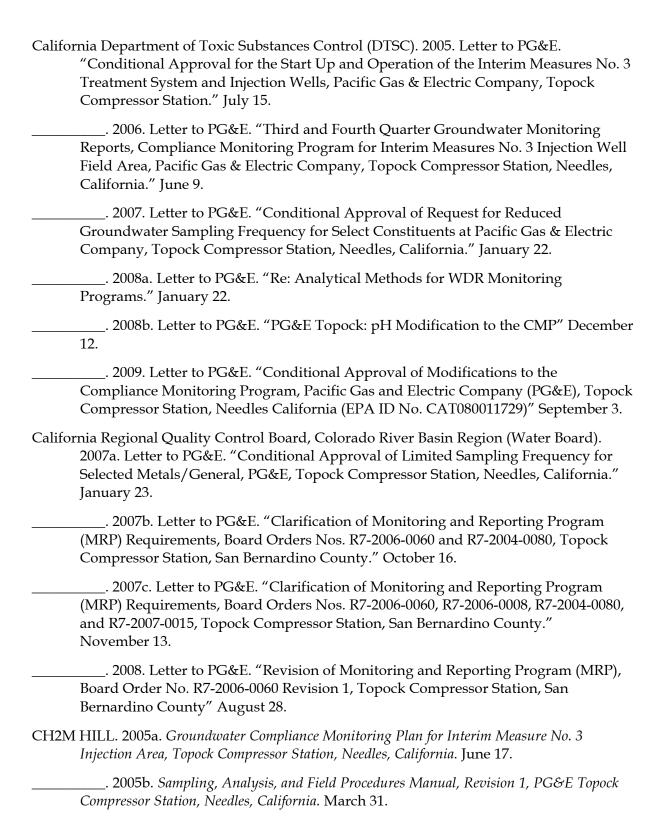
Table 11 identifies the laboratory that performed each analysis and lists the following information as required by the WDR for the second half 2009 monitoring events:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

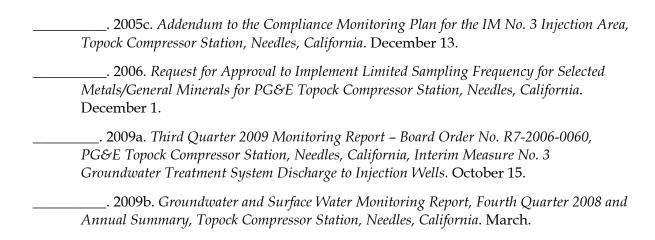
BAO\100150001 3-7

4.0 Status of Monitoring Activities

4.1 Quarterly Monitoring


Per the DTSC and RWQCB approved modifications to the MRP, quarterly monitoring is no longer required (Water Board, 2008; DTSC, 2009).

4.2 Semiannual Monitoring


The next semiannual monitoring event will occur in April during the second quarter 2010. This CMP monitoring event, which will encompass only the OW wells, will include the sampling and analysis scope presented in the Compliance Monitoring Plan (CH2M HILL, 2005a, c) and subsequent approved scope revisions (DTSC, 2007, 2008a-b, 2009; Water Board, 2007a-b, 2008). The groundwater monitoring report for this semiannual CMP monitoring event will be submitted by July 15, 2010.

BAO\100150001 4-1

5.0 References

BAO\100150001 5-1

5-2 BAO\100150001

6.0 Certification

PG&E submitted a signature delegation letter to the Water Board on September 20, 2006. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2006-0060.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature: _	Sponne Mucks
	Yvonne J. Meeks
Company: _	Pacific Gas and Electric Company
Title:	Topock Project Manager
Date:	January 15, 2010

BAO\100150001 6-1

TABLE 1
Operational Status of Interim Measures No. 3 Injection Wells From Inception of Injection Through Fourth Quarter 2009
PG&E Topock Compliance Monitoring Program

Time Period	Injection Status
July 31, 2005 to Fourth Quarter 2005	Injection occurred at IW-2.
First Quarter 2006	Injection occurred primarily at IW-2 except during periods of operational testing, when injection was divided equally between IW-2 and IW-3.
Second Quarter 2006	Injection occurred at IW-2.
Third Quarter 2006	In August 2006, IW-2 went offline for routine maintenance, and injection commenced at IW-3.
Fourth Quarter 2006	Injection occurred at IW-3, except during routine maintenance.
First Quarter 2007	Injection occurred at IW-3 and transitioned over to IW-2 on March 8.
Second Quarter 2007	Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.
Third Quarter 2007	Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.
Fourth Quarter 2007	Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.
First Quarter 2008	Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.
Second Quarter 2008	Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing occurred at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.
Third Quarter 2008	Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short period on July 25 and from August 12 – August 31, 2008. Backwashing events occurred at IW-3 on June 17, June 27, July 9, July 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing events occurred at IW-2 on September 9 - September 11, 2008.
Fourth Quarter 2008	Injection occurred at IW-3 and then switched to IW-2 on September 23. Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued at IW-2 until December 16, 2008 and occurred concurrently and continued at IW-3 on December 11, 2008.
First Quarter 2009	Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events occurred periodically during the periods when each injection well was offline. Routine and scheduled maintenance occurred 12/18/08 and 1/21/09 at which time both wells were offline.
Second Quarter 2009	Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.

Third Quarter 2009	IM3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned.
Fourth Quarter 2009	Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.

TABLE 2Well Construction and Sampling Summary for Groundwater Samples, Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Well ID	Site Area	Measuring Point Elevation (ft AMSL)	Screen Interval	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typic Purge l (gpn	Rate	Typical Purge Volume (gallons)	Pump Depth (ft bgs)	Transducer Status	Remarks
IM Compliar	nce Wells												
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	190.0	109.7	Temp Redi-Flo	AR 2	2	42	124		
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	300.2	109.8	Temp Redi-Flo	AR 3	3	100	125		
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	202.0	93.3	Temp Redi-Flo	AR 2	2	56	108		
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	355.0	92.8	Temp Redi-Flo	AR 3	3	135	108		
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	222.0	78.2	Temp Redi-Flo	AR 2	2	75	93		
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	340.0	77.5	Temp Redi-Flo	AR 3	3	135	93		
CW-04M	East Mesa	518.55	119.5 - 169.8	2 (PVC)	169.8	62.0	Temp Redi-Flo	AR 2	2	56	77		
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	303.0	62.0	Temp Redi-Flo	AR 3	3	126	77		
IM Observat	tion Wells	•			•								
OW-01S	East Mesa	550.21	83.5 - 113.5	2 (PVC)	113.5	94.1	Temp Redi-Flo	AR 1		12	109	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	185.8	93.8	Temp Redi-Flo	AR 2	<u> </u>	48	109		
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	277.0	93.6	Temp Redi-Flo	AR 3	3	94	108		
OW-02S	East Mesa	548.88	71 - 101	2 (PVC)	121.0	92.8	Temp Redi-Flo	AR 2	<u> </u>	16	108	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	210.3	91.8	Temp Redi-Flo	AR 3	3	61	107		
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	340.0	91.7	Temp Redi-Flo	AR 3	3	127	107		
OW-05S	East Mesa	551.83	70 - 110	2 (PVC)	110.3	95.6	Temp Redi-Flo	AR 1		8	110	Active	
OW-05M	East Mesa	551.81	210 - 250	2 (PVC)	250.3	95.1	Temp Redi-Flo	AR 3	3	81	110	Active	
OW-05D	East Mesa	552.41	300 - 320	2 (PVC)	350.0	95.6	Temp Redi-Flo	AR 3	3	132	110	Active	

Notes:

AMSL above mean sea level BGS below ground surface

BTOC below top of polyvinyl chloride (PVC) casing Redi-Flo AR adjustable-rate electric submersible pump

Temp temporary

gpm gallons per minute

Depth to water shown is the most recently measured depth to water. All wells were purged and sampled using 3 well-volume method.

TABLE 3
Chromium Results for Groundwater Samples, Third and Fourth Quarter 2009
PG&E Topock Compliance Monitoring Program

	Method:	E218.6	E200.8	
Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (total) (µg/L)	
CW-01M	10/12/2009	1.94	2.36	
CW-01D	10/12/2009	ND (1.1)	1.41	
CW-02M	10/14/2009	6.49	6.70	
CW-02D	10/14/2009	ND (1.1)	ND (1.0)	
CW-03M	10/15/2009	11.4	11.4	
CW-03M	10/15/2009 (FD)	11.4	11.6	
CW-03D	10/15/2009	ND (1.1)	ND (1.0)	
CW-04M	10/15/2009	16.7	16.6	
CW-04D	10/15/2009	ND (2.1)	2.30	
OW-01S	7/8/2009	17.8	19.4	
OW-01S	10/12/2009	21.9	21.6	
OW-01S	10/12/2009 (FD)	22.0	21.4	
OW-01M	7/8/2009	2.57	3.38	
OW-01M	10/12/2009	1.81	2.14	
OW-01D	7/7/2009	ND (1.1)	1.78	
OW-01D	10/12/2009	1.26	1.51	
OW-02S	7/8/2009	29.3	29.6	
OW-02S	7/8/2009 (FD)	30.0	30.7	
OW-02S	10/13/2009	31.7	31.8	
OW-02M	7/8/2009	2.52	2.64	
OW-02M	10/13/2009	1.68	2.18	
OW-02D	7/8/2009	ND (1.1)	ND (1.0)	
OW-02D	10/13/2009	ND (1.1)	ND (1.0)	
OW-05S	7/8/2009	21.2	22.9	
OW-05S	10/13/2009	21.7	21.8	
OW-05M	7/8/2009	2.37	2.10	
OW-05M	10/13/2009	1.15	1.67	
OW-05D	7/8/2009	1.08	1.26	
OW-05D	10/13/2009	ND (1.1)	1.18	

Notes:

FD field duplicate

ND parameter not detected at the listed reporting limit

μg/L micrograms per liter

Hexavalent Chromium and Chromium (total) are field filtered.

TABLE 4 Metal and Cation Results for Groundwater Samples, Third and Fourth Quarter 2009 PG&E Topock Compliance Monitoring Program

	Method:												Dissolved	E200.7, E20	8.00											
Location ID	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Lead	Manganes μg/L	e Mercury	Molybdenu	ım Nickel	Selenium	Silver	Thallium	Vanadium	n Zinc	Boron	Calciu	m Iron ¹	Iron ² Por		Magnesiun	n Sodiur
CW-01M	10/12/2009	ND (50)	ND (10)	1.88	80.0	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	11.9	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	1.04	134	0.0251	0.029	12.2	11.2	1210
CW-01D	10/12/2009	ND (50)	ND (10)	1.69	22.6	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	12.2	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	1.02	149	ND (0.02)	ND (0.02)	11.9	13.2	1220
CW-02M	10/14/2009	ND (50)	ND (10)	2.76	66.3	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	25.8	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	1.08	129	ND (0.02)	ND (0.02)	13.1	10.4	1310
CW-02D	10/14/2009	ND (50)	ND (10)	4.18	10.5	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	17.6	ND (10)	ND (10)	ND (5.0)	ND (1.0)	5.69	ND (10)	1.46	76.0	ND (0.02)	ND (0.02)	11.9	4.25	1290
CW-03M	10/15/2009	ND (50)	ND (10)	1.34	51.2	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	21.1	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	44.2 J	1.12	208	ND (0.02)	ND (0.02)	17.0	17.7	1470
CW-03M	10/15/2009 FD	ND (50)	ND (10)	1.32	50.8	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	20.6	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)J	1.09	212	ND (0.02)	ND (0.02)	17.9	19.0	1470
CW-03D	10/15/2009	ND (50)	ND (10)	2.09	ND (10)	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	49.1	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	1.59	69.3	ND (0.02)	ND (0.02)	12.8	5.62	1320
CW-04M	10/15/2009	ND (50)	ND (10)	2.36	80.0	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	11.4	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	0.846	146	ND (0.02)	ND (0.02)	13.0	13.0	1080
CW-04D	10/15/2009	ND (50)	ND (10)	4.06	23.8	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	32.8	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	1.47	148	ND (0.02)	ND (0.02)	15.0	9.95	1560
OW-01S	7/8/2009												ND (10)							0.32						
OW-01S	10/12/2009																			0.366						
OW-01S	10/12/2009 FD																			0.362						
OW-01M	7/8/2009												ND (10)							1.01						
OW-01M	10/12/2009	ND (50)	ND (10)	1.11	91.0	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	11.6	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	0.992	198	ND (0.02)	ND (0.02)	14.8	20.2	1150
OW-01D	7/7/2009												10.3							1.03						
OW-01D	10/12/2009	ND (50)	ND (10)	1.48	36.4	ND (1.0)	ND (3.0)	ND (5.0)	ND (5.0)	ND (10)	ND (10)	ND (1.0)	ND (10)	ND (10)	ND (10)	ND (5.0)	ND (1.0)	ND (5.0)	ND (10)	1.01	176	0.0226	0.0239	13.9	14.8	1210
OW-02S	7/8/2009												36.5							0.675						
OW-02S	7/8/2009 FD												33.1							0.674						
OW-02S	10/13/2009																			0.666						
OW-02M	7/8/2009												11.0							1.07						
OW-02M	10/13/2009																			1.10						
OW-02D	7/8/2009												13.3							1.03						
OW-02D	10/13/2009																			1.07						
OW-05S	7/8/2009												23.6							0.415						
	10/13/2009																			0.409						
OW-05M													10.7							1.03						
	10/13/2009																			1.16						
OW-05D													12.8							1.09						
OW-05D	10/13/2009																			1.07						

NOTES:

FD field duplicate
ND parameter not detected at the listed reporting limit
mg/L milligrams per liter

µg/L micrograms per liter

--- data not collected or available

J concentration estimated by laboratory or data validation

2 Dissolved Iron

¹ Total Iron

TABLE 5 Other Inorganics Results for Groundwater Samples, Third and Fourth Quarter 2009 PG&E Topock Compliance Monitoring Program

	Method:	E120.1	SM4500-HB	SM2540C	SM2130B	E300.0	E300.0	E300.0	SM4500NO3E	SM2320B	SM4500NH3I
Location ID	Sample Date	Specific Conductance (μmhos/cm)	pH (pH units)	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Alkalinity, total as CaCo3 (mg/L)	Ammonia as Nitrogen (mg/L)
CW-01M	10/12/2009	6980	7.56 J	3870	0.712	2060	2.19	480	2.78	69.0	ND (0.5)
CW-01D	10/12/2009	7120	7.73 J	4090	0.105	2080	1.94	492	3.19	64.0	ND (0.5)
CW-02M	10/14/2009	7020	8.00 J	4370	0.251	2130	2.88	436	1.78	49.0	ND (0.5)
CW-02D	10/14/2009	7140	8.19 J	4510	0.221	2110	4.92	491	3.65	59.0	ND (0.5)
CW-03M	10/15/2009	8600	7.83 J	5640	0.205	2710	2.81	415	1.23	47.0	ND (0.5)
CW-03M	10/15/2009 (FD)	8670	7.79 J	5080	0.229	2780	2.87	417	1.01	46.0	ND (0.5)
CW-03D	10/15/2009	7070	8.16 J	4590	0.369	2070	6.28	484	2.33	60.0	ND (0.5)
CW-04M	10/15/2009	6250	7.90 J	3760	0.176	1900	1.96	331	1.25	53.0	ND (0.5)
CW-04D	10/15/2009	8770	8.02 J	5580	0.168	2700	4.26	527	1.76	54.0	ND (0.5)
OW-01S	7/8/2009	3420		2000	0.418	893	1.85	169	1.76		
OW-01S	10/12/2009	2960	7.75 J	1890	0.439	829	2.45	162	2.70		
OW-01S	10/12/2009 (FD)	2890	7.74 J	1950	0.430	797	2.23	151	2.54		
OW-01M	7/8/2009	7340		4290	0.193	1970	1.49	470	1.80		
OW-01M	10/12/2009	7020	7.64 J	4190	0.234	2070	2.36	486	2.77	75.0	ND (0.5)
OW-01D	7/7/2009	7180		4260	0.661	1960	1.48	463	2.99		
OW-01D	10/12/2009	7190	7.69 J	4630	0.473	2090	1.56	500	2.73	77.0	ND (0.5)
OW-02S	7/8/2009	1780		988	0.559	404	3.88	116	3.66		
OW-02S	7/8/2009 (FD)	1720		954	0.543	399	4.27	113	3.47		
OW-02S	10/13/2009	1720	8.06 J	962	0.735	389	5.20	112	3.54		
OW-02M	7/8/2009	7220		4190	ND (0.1)	2070	1.74	487	2.75		
OW-02M	10/13/2009	7120	7.70 J	4630	ND (0.1)	2090	4.81	489	2.73		
OW-02D	7/8/2009	7350		4300	0.116	2030	1.91	478	3.90		
OW-02D	10/13/2009	7490	7.58 J	4750	ND (0.1)	2250	2.17	529	2.92		
OW-05S	7/8/2009	1940		1080	0.376	453	2.21	113	3.39		
OW-05S	10/13/2009	1870	7.89 J	1040	0.680	462	2.40	113	3.56		
OW-05M	7/8/2009	7340		4090	0.144	2050	1.89	484	2.73		
OW-05M	10/13/2009	7140	7.60 J	4520	ND (0.1)	2100	2.08	490	2.64		
OW-05D	7/8/2009	7400		4150	ND (0.1)	2090	1.88	482	2.89		
OW-05D	10/13/2009	7250	7.65 J	4120	ND (0.1)	2070	2.31	489	2.84		

NOTES:

ND parameter not detected at the listed reporting limit
FD field duplicate

µmhos/cm micro-mhos per centimeter

NTU Nephelometric Turbidity Unit
mg/L milligrams per liter
--- data not collected, available

J concentration estimated by laboratory or data validation

TABLE 6 Treated Water Quality Compared to OW and CW Pre-injection Water Quality PG&E Topock Compliance Monitoring Program

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Total Chromium (µg/L)	Fluoride (mg/L)	Dissolved Molybdenum (µg/L)	Nitrate/ Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Treated Water	8/29/2005	ND(1.0)	ND(2.1)	1.95	8.3	3.7	450	3620
Treated Water	7/2/2007	ND(0.2)	ND(1.0)	2.18	17.5	2.60	477	3980
Treated Water	10/7/2009	ND(0.2)	ND(1.0)	2.39	15.5	2.72	500	4310
OW-01S	7/28/2005	19.4	23.5	2.45	17.2	3.2	114	1320
OW-01M	7/27/2005	16.3	18.9	2.31	27	1.01	311	3450
OW-01D	7/27/2005	ND(1.0)	ND(1.3)	1.14	46.1	0.321	441	6170
OW-02S	7/28/2005	15.3	14.8	3.79	35.6	3.81	126	1090
OW-02M	7/28/2005	5.4	5.7	2.19	32.4	0.735	342	4380
OW-02D	7/28/2005	ND(1.0)	ND(1.2)	0.966	51.2	0.1	616	9550
OW-05S	7/28/2005	23.4	25.6	2.3	17.1	3.55	105	1060
OW-05M	7/28/2005	8.6	8.8	2.74	35.4	0.621	417	5550
OW-05D	7/28/2005	ND(1.0)	ND(1.2)	1.11	57	0.151	480	8970
CW-01M	9/15/2005	18.1	17.8	2.34	21.6	1.11	318	2990
CW-01D	9/15/2005	ND(1.0)	1.6	0.951	32.1	0.972	379	6230
CW-02M	9/15/2005	15.8	15.5	2.3	23.1	0.908	342	3500
CW-02D	9/15/2005	ND(1.0)	1.6	0.982	41.6	0.28	601	8770
CW-03M	9/15/2005	8.8	8.1	2.57	24.2	0.642	464	4740
CW-03D	9/15/2005	ND(1.0)	ND(1.0)	1.4	29.2	0.304	672	9550
CW-04M	9/15/2005	19.2	19	1.5	12.3	1.18	240	3310
CW-04D	9/15/2005	ND(1.0)	ND(1.0)	1.01	26	0.188	534	7470

NOTES:

ND Not detected at the listed reporting limit. mg/L milligrams per liter

μg/L micrograms per liter

Hexavalent chromium samples were analyzed with method E218.6. Total chromium samples were analyzed with method E200.8. Total chromium samples of the treated water were unfiltered.

TABLE 7
Treated Water Quality Compared to Third and Fourth Quarter 2009 Sampling Event Water Quality PG&E Topock Compliance Monitoring Program

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (total) (µg/L)	Fluoride (mg/L)	Molybdenum (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	6/3/2009	ND (0.2)	ND (1.0)	2.45	17.3	2.76	511	4370
Treated Water	9/2/2009	ND (0.2)	ND (1.0)	2.47	24.6	2.84	485	4220
Treated Water	10/7/2009	ND (0.2)	ND (1.0)	2.39	15.5	2.72	500	4310
CW-01M	10/12/2009	1.94	2.36	2.19	11.9	2.78	480	3870
CW-01D	10/12/2009	ND (1.0)	1.41	1.94	12.2	3.19	492	4090
CW-02M	10/14/2009	6.49	6.70	2.88	25.8	1.78	436	4370
CW-02D	10/14/2009	ND (1.0)	ND (1.0)	4.92	17.6	3.65	491	4510
CW-03M	10/15/2009 (FD)	11.4	11.6	2.87	20.6	1.01	417	5080
CW-03M	10/15/2009	11.4	11.4	2.81	21.1	1.23	415	5640
CW-03D	10/15/2009	ND (1.0)	ND (1.0)	6.28	49.1	2.33	484	4590
CW-04M	10/15/2009	16.7	16.6	1.96	11.4	1.25	331	3760
CW-04D	10/15/2009	ND (2.1)	2.30	4.26	32.8	1.76	527	5580
OW-01S	7/8/2009	17.8	19.4	1.85	ND (10)	1.76	169	2000
OW-01S	10/12/2009	21.9	21.6	2.45		2.70	162	1890
OW-01S	10/12/2009 (FD)	22.0	21.4	2.23		2.54	151	1950
OW-01M	7/8/2009	2.57	3.38	1.49	ND (10)	1.80	470	4290
OW-01M	10/12/2009	1.81	2.14	2.36	11.6	2.77	486	4190
OW-01D	7/7/2009	ND (1.0)	1.78	1.48	10.3	2.99	463	4260
OW-01D	10/12/2009	1.26	1.51	1.56	ND (10)	2.73	500	4630
OW-02S	7/8/2009	29.3	29.6	3.88	36.5	3.66	116	988
OW-02S	7/8/2009 (FD)	30.0	30.7	4.27	33.1	3.47	113	954
OW-02S	10/13/2009	31.7	31.8	5.20		3.54	112	962
OW-02M	7/8/2009	2.52	2.64	1.74	11.0	2.75	487	4190
OW-02M	10/13/2009	1.68	2.18	4.81		2.73	489	4630
OW-02D	7/8/2009	ND (1.0)	ND (1.0)	1.91	13.3	3.90	478	4300
OW-02D	10/13/2009	ND (1.0)	ND (1.0)	2.17		2.92	529	4750
OW-05S	7/8/2009	21.2	22.9	2.21	23.6	3.39	113	1080
OW-05S	10/13/2009	21.7	21.8	2.40		3.56	113	1040
OW-05M	7/8/2009	2.37	2.10	1.89	10.7	2.73	484	4090
OW-05M	10/13/2009	1.15	1.67	2.08		2.64	490	4520
OW-05D	7/8/2009	1.08	1.26	1.88	12.8	2.89	482	4150
OW-05D	10/13/2009	ND (1.0)	1.18	2.31		2.84	489	4120

TABLE 7

Treated Water Quality Compared to Third and Fourth Quarter 2009 Sampling Event Water Quality PG&E Topock Compliance Monitoring Program

Notes:

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter micrograms per liter μg/L

All hexavalent chromium samples were analyzed with method E218.6

All chromium (total) and molybdenum samples were analyzed with method E200.8. Chromium (total) and molybdenum samples were field filtered, except for the treated water.

Fluoride and Sulfate samples were analyzed with method E300.0.

All nitrate/nitrite as nitrogen samples were analyzed with method SM4500NO3E, except for treated water which used method E300.

All total dissolved solid samples were analyzed with method SM2540C.

TABLE 8
Manual Water Level Measurements and Elevations, Third and Fourth Quarter 2009
PG&E Topock Compliance Monitoring Program

Location ID	Well Depth (feet BTOC)	Measuring Point Elevation (feet AMSL)	Monito	•	Water Level Measurement (feet BTOC)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
CW-01M	190.0	566.16	12-Oct-09	12:25 PM	109.28	0.66	456.91
CW-01D	300.2	566.57	12-Oct-09	11:02 AM	109.42	0.70	457.28
CW-02M	202.0	549.37	14-Oct-09	4:05 PM	92.98	0.68	456.47
CW-02D	355.0	549.64	14-Oct-09	2:39 PM	92.55	0.60	457.06
CW-03M	222.0	534.21	15-Oct-09	9:30 AM	78.01	0.84	456.46
CW-03D	340.0	534.27	15-Oct-09	8:09 AM	77.29	0.66	457.07
CW-04M	169.8	518.66	15-Oct-09	12:39 PM	61.80	0.61	456.89
CW-04D	303.0	518.68	15-Oct-09	11:13 AM	61.75	0.84	457.32
OW-01S	113.5	550.21	08-Jul-09	9:49 AM	92.97	0.32	457.20
		550.15	12-Oct-09	4:04 PM	93.61	0.32	456.50
OW-01M	185.8	550.45	08-Jul-09	8:17 AM	92.73	0.68	457.76
			12-Oct-09	3:09 PM	93.32	0.68	457.17
OW-01D	277.0	550.48	07-Jul-09	4:25 PM	92.01	0.67	458.53
			12-Oct-09	2:05 PM	92.79	0.67	457.76
OW-02S	121.0	548.88	08-Jul-09	4:50 PM	91.52	0.19	457.28
			13-Oct-09	2:10 PM	92.42	0.19	456.39
OW-02M	210.3	548.59	08-Jul-09	3:37 PM	90.95	0.68	457.68
			13-Oct-09	12:59 PM	91.46	0.68	457.17
OW-02D	340.0	549.15	08-Jul-09	2:14 PM	90.90	0.67	458.30
			13-Oct-09	11:48 AM	91.33	0.67	457.88
OW-05S	110.3	551.83	08-Jul-09	12:56 PM	94.40	0.25	457.39
			13-Oct-09	10:28 AM	95.32	0.25	456.48
OW-05M	250.3	551.81	08-Jul-09	12:48 PM	93.85	0.67	458.02
			13-Oct-09	9:31 AM	94.71	0.67	457.24
OW-05D	350.0	552.41	08-Jul-09	10:46 AM	94.54	0.76	458.11
			13-Oct-09	8:13 AM	95.28	0.76	457.62

Notes:

AMSL above mean sea level

BTOC below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

TABLE 9
Vertical Gradients within the OW and CW Clusters
PG&E Topock Compliance Monitoring Program

Well Pairs	Vertical Gradient (ft/ft) ^a
CW-01D to CW-01M	0.0034
CW-02D to CW-02M	0.0026
CW-03D to CW-03M	0.0056
CW-04D to CW-04M	0.0038
OW-01M to OW-01S	0.0073
OW-01D to OW-01M	0.0023
OW-02M to OW-02S	0.0068
OW-02D to OW-02M	0.0047
OW-05M to OW-05S	0.0052
OW-05D to OW-05M	0.0047

^a Positive value signifies an upward gradient.

Gradients calculated using November 23, 2009 groundwater levels.

TABLE 10
Field Parameter Measurements for Groundwater Samples, Third and Fourth Quarter 2009
PG&E Topock Compliance Monitoring Program

Location ID	Sampling Date	Specific Conductance (µmhos/cm)	Temperature (°C)	рН	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Salinity (%)
CW-01M	10/12/2009	7300	28.46	7.78	88.7	7.17	0.4	0.47
CW-01D	10/12/2009	7332	28.25	7.74	100.8	7.74	1	0.47
CW-02M	10/14/2009	7366	28.42	7.99	0.9	4.13	2	0.48
CW-02D	10/14/2009	7499	29.39	8.19	-12	6.48	2	0.48
CW-03M	10/15/2009	8911	28.37	7.66	50.5	0.81	2	0.58
CW-03D	10/15/2009	7319	29.2	8.07	98.7	6.39	1	0.47
CW-04M	10/15/2009	6516	28.41	7.73	21	1.69	3	0.42
CW-04D	10/15/2009	9063	29.19	7.86	27	4.62	1	0.59
OW-01S	7/8/2009	3540	30.24	7.56	53.9	4.27	1.4	0.23
OW-01S	10/12/2009	3070	28.22	7.65	72.2	5.34	2	0.2
OW-01M	7/8/2009	7390	29.26	7.55	111		0.4	0.48
OW-01M	10/12/2009	7268	28.05	7.54	98.7	11.3	1	0.47
OW-01D	7/7/2009	6596	29.86	7.62	37.8	10.1	2.1	0.43
OW-01D	10/12/2009	7326	28.06	7.61	102.1	11.3	2	0.47
OW-02S	7/8/2009	1800	29.96	7.95	98.1	8.69	1.7	0.12
OW-02S	10/13/2009	1759	27.92	8.16	65.1	8.1	2	0.11
OW-02M	7/8/2009	7390	28.89	7.58	137		0.3	0.48
OW-02M	10/13/2009	7402	28.88	7.65	86.3	9.98	0.4	0.48
OW-02D	7/8/2009	7450	30.63	7.51	91.7		0.4	0.48
OW-02D	10/13/2009	7817	27.77	7.63	96.4	9.26	1	0.5
OW-05S	7/8/2009	1990	29.56	7.79	130.3	7.65	1.9	0.13
OW-05S	10/13/2009	1952	28	7.9	78.6	6.99	3	0.13
OW-05M	7/8/2009	7460	28.68	7.55	102.8	7.81	0.4	0.48
OW-05M	10/13/2009	7407	28.37	7.66	100.2	6.41	0.5	0.48
OW-05D	7/8/2009	7480	29.31	7.58	104.1	8.76	0.4	0.48
OW-05D	10/13/2009	7358	29	7.71	121	7.22	1	0.47

Notes:

µmhos/cm micro-mhos per centimeter

°C degree centigrade

ORP oxidation reduction potential

mV millivolts

mg/L milligrams per liter

NTU Nephelometric Turbidity Unit

% percentage

--- data not collected, not available, or rejected

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-022	Aurora Abbott	10/12/2009	11:57:00 AM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7120	2.0	0.022
					TLI	EPA 200.7	BD	10/28/2009	Kris Collins	mg/L	1.02	0.20	0.002
					TLI	EPA 200.7	CAD	10/23/2009	Kris Collins	mg/L	149	4.00	0.68
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	10/28/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	10/23/2009	Kris Collins	mg/L	11.9	0.50	0.04
					TLI	EPA 200.7	MGD	10/23/2009	Kris Collins	mg/L	13.2	0.20	0.08
					TLI	EPA 200.7	NAD	10/23/2009	Kris Collins	mg/L	1220	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	1.69	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	22.6	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	1.41	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/15/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	12.2	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	ND (1.1)	1.1	0.0998

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-022	Aurora Abbott	10/12/2009	11:57:00 AM	TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	2080	100	12.0
					TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	1.94	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	492	12.5	1.00
					TLI	SM 2320B	ALKB	10/14/2009	Iordan Stavrev	mg/L	64.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/14/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/14/2009	Iordan Stavrev	mg/L	64.0	5.0	0.153
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.105	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4090	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.73 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/15/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	3.19	0.5	0.10
CW-01M	CW-01M-022	Aurora Abbott	10/12/2009	1:25:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	6980	2.0	0.022
					TLI	EPA 200.7	BD	10/28/2009	Kris Collins	mg/L	1.04	0.20	0.002
					TLI	EPA 200.7	CAD	10/23/2009	Kris Collins	mg/L	134	4.00	0.68
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	0.0251	0.02	0.004
					TLI	EPA 200.7	FETD	10/28/2009	Kris Collins	mg/L	0.029	0.02	0.004
					TLI	EPA 200.7	KD	10/23/2009	Kris Collins	mg/L	12.2	0.50	0.04
					TLI	EPA 200.7	MGD	10/23/2009	Kris Collins	mg/L	11.2	0.20	0.08
					TLI	EPA 200.7	NAD	10/23/2009	Kris Collins	mg/L	1210	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	1.88	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	80.0	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	2.36	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01M	CW-01M-022	Aurora Abbott	10/12/2009	1:25:00 PM	TLI	EPA 200.8	HGD	10/15/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	11.9	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	1.94	1.1	0.0998
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	2060	100	12.0
					TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	2.19	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	480	12.5	1.00
					TLI	SM 2320B	ALKB	10/14/2009	Iordan Stavrev	mg/L	69.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/14/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/14/2009	Iordan Stavrev	mg/L	69.0	5.0	0.153
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.712	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	3870	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.56 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/15/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.78	0.5	0.10
CW-02D	CW-02D-022	Aurora Abbott	10/14/2009	3:44:00 PM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	7140	2.0	0.022
					TLI	EPA 200.7	BD	11/2/2009	Kris Collins	mg/L	1.46	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	76.0	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/2/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	11.9	0.50	0.04

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-022	Aurora Abbott	10/14/2009	3:44:00 PM	TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	4.25	0.20	0.08
					TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1290	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	4.18	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	10.5	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	17.6	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	5.69	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	ND (1.1)	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2110	100	12.0
					TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	4.92	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	491	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	59.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	59.0	5.0	0.153

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-022	Aurora Abbott	10/14/2009	3:44:00 PM	TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.221	0.1	0.007
					TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	4510	250	7.00
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	8.19 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	3.65	0.5	0.10
CW-02M	CW-02M-022	Aurora Abbott	10/14/2009	4:50:00 PM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	7020	2.0	0.022
					TLI	EPA 200.7	BD	11/3/2009	Kris Collins	mg/L	1.08	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	129	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/3/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	13.1	0.50	0.04
					TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	10.4	0.20	0.08
					TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1310	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	2.76	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	66.3	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	6.70	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	25.8	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02M	CW-02M-022	Aurora Abbott	10/14/2009	4:50:00 PM	TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	6.49	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2130	100	12.0
					TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	2.88	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	436	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	49.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	49.0	5.0	0.153
					TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.251	0.1	0.007
					TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	4370	250	7.00
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	8.00 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	1.78	0.5	0.10
CW-03D	CW-03D-022	Aurora Abbott	10/15/2009	9:09:00 AM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	7070	2.0	0.022
					TLI	EPA 200.7	BD	11/2/2009	Kris Collins	mg/L	1.59	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	69.3	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/2/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	12.8	0.50	0.04
					TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	5.62	0.20	0.08
					TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1320	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	2.09	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.21

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-022	Aurora Abbott	10/15/2009	9:09:00 AM	TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	49.1	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	ND (1.1)	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2070	100	12.0
					TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	6.28	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	484	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	60.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	60.0	5.0	0.153
					TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.369	0.1	0.007
					TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	4590	250	7.00
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	8.16 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.33	0.5	0.10
CW-03M	OW-90-022	Aurora Abbott	10/15/2009	8:25:00 AM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	8670	2.0	0.022

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	OW-90-022	Aurora Abbott	10/15/2009	8:25:00 AM	TLI	EPA 200.7	BD	11/2/2009	Kris Collins	mg/L	1.09	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	212	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/2/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	17.9	0.50	0.04
					TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	19.0	0.20	0.08
					TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1470	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	1.32	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	50.8	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	11.6	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	20.6	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)J	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	11.4	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2780	100	12.0

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	OW-90-022	Aurora Abbott	10/15/2009	8:25:00 AM	TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	2.87	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	417	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	46.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	46.0	5.0	0.153
					TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.229	0.1	0.007
					TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	5080	250	7.00
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	7.79 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	1.01	0.2	0.04
CW-03M	CW-03M-022	Aurora Abbott	10/15/2009	10:23:00 AM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	8600	2.0	0.022
					TLI	EPA 200.7	BD	11/2/2009	Kris Collins	mg/L	1.12	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	208	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/2/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	17.0	0.50	0.04
					TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	17.7	0.20	0.08
					TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1470	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	1.34	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	51.2	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	11.4	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	CW-03M-022	Aurora Abbott	10/15/2009	10:23:00 AM	TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	21.1	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	44.2 J	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	11.4	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2710	100	12.0
					TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	2.81	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	415	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	47.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	47.0	5.0	0.153
					TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.205	0.1	0.007
					TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	5640	250	7.00
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	7.83 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	1.23	0.2	0.04
CW-04D	CW-04D-022	Aurora Abbott	10/15/2009	12:10:00 PM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	8770	2.0	0.022
					TLI	EPA 200.7	BD	11/2/2009	Kris Collins	mg/L	1.47	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	148	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/2/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	15.0	0.50	0.04
					TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	9.95	0.20	0.08

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-022	Aurora Abbott	10/15/2009	12:10:00 PM	TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1560	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	4.06	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	23.8	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	2.30	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	32.8	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	ND (2.1)	2.1	0.20
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2700	100	12.0
					TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	4.26	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	527	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	54.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	54.0	5.0	0.153
					TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.168	0.1	0.007

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-022	Aurora Abbott	10/15/2009	12:10:00 PM	TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	5580	250	7.00
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	8.02 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	1.76	0.5	0.10
CW-04M	CW-04M-022	Aurora Abbott	10/15/2009	1:18:00 PM	TLI	EPA 120.1	SC	10/20/2009	Tina Acquiat	μmhos/cm	6250	2.0	0.022
					TLI	EPA 200.7	BD	11/2/2009	Kris Collins	mg/L	0.846	0.20	0.002
					TLI	EPA 200.7	CAD	10/26/2009	Kris Collins	mg/L	146	10.0	1.70
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	11/2/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	11/3/2009	Kris Collins	mg/L	13.0	0.50	0.04
					TLI	EPA 200.7	MGD	11/3/2009	Kris Collins	mg/L	13.0	0.20	0.08
					TLI	EPA 200.7	NAD	10/26/2009	Kris Collins	mg/L	1080	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	2.36	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	80.0	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	16.6	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/20/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	11.4	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	CW-04M-022	Aurora Abbott	10/15/2009	1:18:00 PM	TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/20/2009	Sonya Bersudsky	μg/L	16.7	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	1900	100	12.0
					TLI	EPA 300.0	FL	10/16/2009	Giawad Ghenniwa	mg/L	1.96	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	331	12.5	1.00
					TLI	SM 2320B	ALKB	10/19/2009	Iordan Stavrev	mg/L	53.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/19/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/19/2009	Iordan Stavrev	mg/L	53.0	5.0	0.153
					TLI	SM2130B	TRB	10/16/2009	Gautam Savani	NTU	0.176	0.1	0.007
					TLI	SM2540C	TDS	10/20/2009	Tina Acquiat	mg/L	3760	125	3.50
					TLI	SM4500-HB	PH	10/16/2009	Tina Acquiat	pH Units	7.90 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/19/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	1.25	0.2	0.04
OW-01D	OW-01D-021	Aurora Abbott	7/7/2009	5:18:08 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	7180	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	1.03	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	1.78	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	10.3	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	ND (1.1)	1.1	0.152
					TLI	EPA 300.0	CL	7/9/2009	Giawad Ghenniwa	mg/L	1960	200	28.0
					TLI	EPA 300.0	FL	7/9/2009	Giawad Ghenniwa	mg/L	1.48	0.5	0.025
					TLI	EPA 300.0	SO4	7/9/2009	Giawad Ghenniwa	mg/L	463	25.0	1.20
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.661	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	4260	250	50.4
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	2.99	0.5	0.10
OW-01D	OW-01D-022	Aurora Abbott	10/12/2009	2:50:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7190	2.0	0.022

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01D	OW-01D-022	Aurora Abbott	10/12/2009	2:50:00 PM	TLI	EPA 200.7	BD	10/28/2009	Kris Collins	mg/L	1.01	0.20	0.002
					TLI	EPA 200.7	CAD	10/23/2009	Kris Collins	mg/L	176	4.00	0.68
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	0.0226	0.02	0.004
					TLI	EPA 200.7	FETD	10/28/2009	Kris Collins	mg/L	0.0239	0.02	0.004
					TLI	EPA 200.7	KD	10/23/2009	Kris Collins	mg/L	13.9	0.50	0.04
					TLI	EPA 200.7	MGD	10/23/2009	Kris Collins	mg/L	14.8	0.20	0.08
					TLI	EPA 200.7	NAD	10/23/2009	Kris Collins	mg/L	1210	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	1.48	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	36.4	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	1.51	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/15/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	1.26	1.1	0.0998
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	2090	100	12.0

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01D	OW-01D-022	Aurora Abbott	10/12/2009	2:50:00 PM	TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	1.56	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	500	12.5	1.00
					TLI	SM 2320B	ALKB	10/14/2009	Iordan Stavrev	mg/L	77.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/14/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/14/2009	Iordan Stavrev	mg/L	77.0	5.0	0.153
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.473	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4630	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.69 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/15/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.73	0.5	0.10
OW-01M	OW-01M-021	Aurora Abbott	7/8/2009	9:03:21 AM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	7340	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	1.01	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	3.38	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	ND (10)	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	2.57	1.1	0.152
					TLI	EPA 300.0	CL	7/9/2009	Giawad Ghenniwa	mg/L	1970	200	28.0
					TLI	EPA 300.0	FL	7/9/2009	Giawad Ghenniwa	mg/L	1.49	0.5	0.025
					TLI	EPA 300.0	SO4	7/9/2009	Giawad Ghenniwa	mg/L	470	25.0	1.20
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.193	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	4290	250	50.4
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	1.80	0.5	0.10
OW-01M	OW-01M-022	Aurora Abbott	10/12/2009	3:44:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7020	2.0	0.022
					TLI	EPA 200.7	BD	10/28/2009	Kris Collins	mg/L	0.992	0.20	0.002
					TLI	EPA 200.7	CAD	10/23/2009	Kris Collins	mg/L	198	4.00	0.68
					TLI	EPA 200.7	FE	10/22/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	FETD	10/28/2009	Kris Collins	mg/L	ND (0.02)	0.02	0.004
					TLI	EPA 200.7	KD	10/23/2009	Kris Collins	mg/L	14.8	0.50	0.04

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01M	OW-01M-022	Aurora Abbott	10/12/2009	3:44:00 PM	TLI	EPA 200.7	MGD	10/23/2009	Kris Collins	mg/L	20.2	0.20	0.08
					TLI	EPA 200.7	NAD	10/23/2009	Kris Collins	mg/L	1150	100	4.00
					TLI	EPA 200.8	AGD	11/2/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.19
					TLI	EPA 200.8	ALD	10/22/2009	Romuel Chaves	μg/L	ND (50)	50.0	2.36
					TLI	EPA 200.8	ASD	10/19/2009	Romuel Chaves	μg/L	1.11	1.0	0.142
					TLI	EPA 200.8	BAD	10/22/2009	Romuel Chaves	μg/L	91.0	10.0	0.21
					TLI	EPA 200.8	BED	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.15
					TLI	EPA 200.8	CDD	10/19/2009	Romuel Chaves	μg/L	ND (3.0)	3.0	0.06
					TLI	EPA 200.8	COBD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.075
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	2.14	1.0	0.075
					TLI	EPA 200.8	CUD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.52
					TLI	EPA 200.8	HGD	10/15/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.125
					TLI	EPA 200.8	MND	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.06
					TLI	EPA 200.8	MOD	10/19/2009	Romuel Chaves	μg/L	11.6	10.0	0.725
					TLI	EPA 200.8	NID	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.205
					TLI	EPA 200.8	PBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.075
					TLI	EPA 200.8	SBD	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.495
					TLI	EPA 200.8	SED	10/19/2009	Romuel Chaves	μg/L	ND (10)	10.0	0.245
					TLI	EPA 200.8	TLD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.085
					TLI	EPA 200.8	VD	10/19/2009	Romuel Chaves	μg/L	ND (5.0)	5.0	0.06
					TLI	EPA 200.8	ZND	10/26/2009	Romuel Chaves	μg/L	ND (10)	10.0	1.50
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	1.81	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2070	100	12.0
					TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	2.36	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	486	12.5	1.00
					TLI	SM 2320B	ALKB	10/14/2009	Iordan Stavrev	mg/L	75.0	5.0	0.153
					TLI	SM 2320B	ALKC	10/14/2009	Iordan Stavrev	mg/L	ND (5.0)	5.0	0.153
					TLI	SM 2320B	ALKT	10/14/2009	Iordan Stavrev	mg/L	75.0	5.0	0.153

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01M	OW-01M-022	Aurora Abbott	10/12/2009	3:44:00 PM	TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.234	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4190	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.64 J	2.0	0.017
					TLI	SM4500NH3D	NH3N	10/15/2009	Iordan Stavrev	mg/L	ND (0.5)	0.5	0.005
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.77	0.5	0.10
OW-01S	OW-01S-021	Aurora Abbott	7/8/2009	10:13:07 AM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	3420	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	0.32	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	19.4	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	ND (10)	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	17.8	0.2	0.0304
					TLI	EPA 300.0	CL	7/9/2009	Giawad Ghenniwa	mg/L	893	100	14.0
					TLI	EPA 300.0	FL	7/9/2009	Giawad Ghenniwa	mg/L	1.85	0.5	0.025
					TLI	EPA 300.0	SO4	7/9/2009	Giawad Ghenniwa	mg/L	169	5.0	0.24
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.418	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	2000	50.0	10.1
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	1.76	0.5	0.10
OW-01S	OW-91-022	Aurora Abbott	10/12/2009	12:32:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	2890	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	0.362	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	21.4	1.0	0.075
					TLI	EPA 218.6	CR6	10/15/2009	Sonya Bersudsky	μg/L	22.0	0.2	0.02
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	797	100	12.0
					TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	2.23	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	151	12.5	1.00
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.43	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	1950	50.0	1.40
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.74 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.54	0.5	0.10

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01S	OW-01S-022	Aurora Abbott	10/12/2009	4:27:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	2960	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	0.366	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	21.6	1.0	0.075
					TLI	EPA 218.6	CR6	10/15/2009	Sonya Bersudsky	μg/L	21.9	0.2	0.02
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	829	40.0	4.80
					TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	2.45	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	162	5.0	0.40
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.439	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	1890	50.0	1.40
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.75 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.70	0.5	0.10
OW-02D	OW-02D-021	Aurora Abbott	7/8/2009	3:09:36 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	7350	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	1.03	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	ND (1.0)	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	13.3	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	ND (1.1)	1.1	0.152
					TLI	EPA 300.0	CL	7/9/2009	Giawad Ghenniwa	mg/L	2030	100	14.0
					TLI	EPA 300.0	FL	7/9/2009	Giawad Ghenniwa	mg/L	1.91	0.5	0.025
					TLI	EPA 300.0	SO4	7/9/2009	Giawad Ghenniwa	mg/L	478	25.0	1.20
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.116	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	4300	250	50.4
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	3.90	0.5	0.10
OW-02D	OW-02D-022	Aurora Abbott	10/13/2009	12:40:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7490	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	1.07	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	ND (1.0)	1.0	0.075
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	ND (1.1)	1.1	0.0998
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	2250	100	12.0

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02D	OW-02D-022	Aurora Abbott	10/13/2009	12:40:00 PM	TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	2.17	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	529	12.5	1.00
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	ND (0.1)	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4750	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.58 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.92	0.5	0.10
OW-02M	OW-02M-021	Aurora Abbott	7/8/2009	4:16:13 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	7220	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	1.07	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	2.64	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	11.0	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	2.52	1.1	0.152
					TLI	EPA 300.0	CL	7/10/2009	Giawad Ghenniwa	mg/L	2070	100	14.0
					TLI	EPA 300.0	FL	7/10/2009	Giawad Ghenniwa	mg/L	1.74	0.5	0.025
					TLI	EPA 300.0	SO4	7/10/2009	Giawad Ghenniwa	mg/L	487	50.0	2.40
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	ND (0.1)	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	4190	250	50.4
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	2.75	0.5	0.10
OW-02M	OW-02M-022	Aurora Abbott	10/13/2009	1:46:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7120	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	1.10	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	2.18	1.0	0.075
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	1.68	1.1	0.0998
					TLI	EPA 300.0	CL	10/16/2009	Giawad Ghenniwa	mg/L	2090	100	12.0
					TLI	EPA 300.0	FL	10/14/2009	Giawad Ghenniwa	mg/L	4.81	0.5	0.06
					TLI	EPA 300.0	SO4	10/16/2009	Giawad Ghenniwa	mg/L	489	12.5	1.00
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	ND (0.1)	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4630	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.70 J	2.0	0.017

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02M	OW-02M-022	Aurora Abbott	10/13/2009	1:46:00 PM	EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.73	0.5	0.10
OW-02S	MW-91-021	Aurora Abbott	7/8/2009	2:11:49 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	1720	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	0.674	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	30.7	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	33.1	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	30.0	1.1	0.152
					TLI	EPA 300.0	CL	7/9/2009	Giawad Ghenniwa	mg/L	399	20.0	2.80
					TLI	EPA 300.0	FL	7/9/2009	Giawad Ghenniwa	mg/L	4.27	0.5	0.025
					TLI	EPA 300.0	SO4	7/9/2009	Giawad Ghenniwa	mg/L	113	2.5	0.12
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.543	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	954	50.0	10.1
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	3.47	0.5	0.10
OW-02S	OW-02S-021	Aurora Abbott	7/8/2009	5:30:08 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	1780	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	0.675	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	29.6	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	36.5	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	29.3	1.1	0.152
					TLI	EPA 300.0	CL	7/10/2009	Giawad Ghenniwa	mg/L	404	20.0	2.80
					TLI	EPA 300.0	FL	7/10/2009	Giawad Ghenniwa	mg/L	3.88	0.5	0.025
					TLI	EPA 300.0	SO4	7/10/2009	Giawad Ghenniwa	mg/L	116	2.5	0.12
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.559	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	988	50.0	10.1
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	3.66	0.5	0.10
OW-02S	OW-02S-022	Aurora Abbott	10/13/2009	2:26:00 PM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	1720	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	0.666	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	31.8	1.0	0.075
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	31.7	1.1	0.0998

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02S	OW-02S-022	Aurora Abbott	10/13/2009	2:26:00 PM	TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	389	100	12.0
					TLI	EPA 300.0	FL	10/15/2009	Giawad Ghenniwa	mg/L	5.20	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	112	5.0	0.40
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.735	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	962	50.0	1.40
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	8.06 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	3.54	0.5	0.10
OW-05D	OW-05D-021	Aurora Abbott	7/8/2009	11:37:00 AM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	7400	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	1.09	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	1.26	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	12.8	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	1.08	1.1	0.152
					TLI	EPA 300.0	CL	7/10/2009	Giawad Ghenniwa	mg/L	2090	100	14.0
					TLI	EPA 300.0	FL	7/10/2009	Giawad Ghenniwa	mg/L	1.88	0.5	0.025
					TLI	EPA 300.0	SO4	7/10/2009	Giawad Ghenniwa	mg/L	482	12.5	0.60
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	ND (0.1)	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	4150	250	50.4
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	2.89	0.5	0.10
OW-05D	OW-05D-022	Aurora Abbott	10/13/2009	9:08:00 AM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7250	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	1.07	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	1.18	1.0	0.075
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	ND (1.1)	1.1	0.0998
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	2070	100	12.0
					TLI	EPA 300.0	FL	10/15/2009	Giawad Ghenniwa	mg/L	2.31	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	489	12.5	1.00
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	ND (0.1)	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4120	250	7.00

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05D	OW-05D-022	Aurora Abbott	10/13/2009	9:08:00 AM	TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.65 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.84	0.5	0.10
OW-05M	OW-05M-021	Aurora Abbott	7/8/2009	12:34:29 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	7340	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	1.03	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	2.10	1.0	0.266
					TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	10.7	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	2.37	1.1	0.152
					TLI	EPA 300.0	CL	7/10/2009	Giawad Ghenniwa	mg/L	2050	100	14.0
					TLI	EPA 300.0	FL	7/10/2009	Giawad Ghenniwa	mg/L	1.89	0.5	0.025
					TLI	EPA 300.0	SO4	7/10/2009	Giawad Ghenniwa	mg/L	484	12.5	0.60
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.144	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	4090	250	50.4
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	2.73	0.5	0.10
OW-05M	OW-05M-022	Aurora Abbott	10/13/2009	10:07:00 AM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	7140	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	1.16	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	1.67	1.0	0.075
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	1.15	1.1	0.0998
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	2100	100	12.0
					TLI	EPA 300.0	FL	10/15/2009	Giawad Ghenniwa	mg/L	2.08	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	490	12.5	1.00
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	ND (0.1)	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	4520	250	7.00
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.60 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	2.64	0.5	0.10
OW-05S	OW-05S-021	Aurora Abbott	7/8/2009	1:16:00 PM	TLI	EPA 120.1	SC	7/13/2009	Tina Acquiat	μmhos/cm	1940	2.0	0.153
					TLI	EPA 200.7	BD	7/31/2009	Kris Collins	mg/L	0.415	0.20	0.0048
					TLI	EPA 200.8	CRTD	7/9/2009	Daniel Kang	μg/L	22.9	1.0	0.266

TABLE 11Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05S	OW-05S-021	Aurora Abbott	7/8/2009	1:16:00 PM	TLI	EPA 200.8	MOD	7/20/2009	Daniel Kang	μg/L	23.6	10.0	0.084
					TLI	EPA 218.6	CR6	7/9/2009	Michael Nonezyan	μg/L	21.2	1.1	0.152
					TLI	EPA 300.0	CL	7/10/2009	Giawad Ghenniwa	mg/L	453	20.0	2.80
					TLI	EPA 300.0	FL	7/10/2009	Giawad Ghenniwa	mg/L	2.21	0.5	0.025
					TLI	EPA 300.0	SO4	7/10/2009	Giawad Ghenniwa	mg/L	113	2.5	0.12
					TLI	SM2130B	TRB	7/9/2009	Gautam Savani	NTU	0.376	0.1	0.007
					TLI	SM2540C	TDS	7/13/2009	Tina Acquiat	mg/L	1080	50.0	10.1
					EMXT	SM4500NO3-E	NO3NO2N	7/17/2009	Elena Robles	mg/L	3.39	0.5	0.10
OW-05S	OW-05S-022	Aurora Abbott	10/13/2009	10:55:00 AM	TLI	EPA 120.1	SC	10/14/2009	Tina Acquiat	μmhos/cm	1870	2.0	0.022
					TLI	EPA 200.7	BD	10/22/2009	Kris Collins	mg/L	0.409	0.20	0.001
					TLI	EPA 200.8	CRTD	10/19/2009	Romuel Chaves	μg/L	21.8	1.0	0.075
					TLI	EPA 218.6	CR6	10/16/2009	Sonya Bersudsky	μg/L	21.7	0.2	0.02
					TLI	EPA 300.0	CL	10/15/2009	Giawad Ghenniwa	mg/L	462	20.0	2.40
					TLI	EPA 300.0	FL	10/15/2009	Giawad Ghenniwa	mg/L	2.40	0.5	0.06
					TLI	EPA 300.0	SO4	10/15/2009	Giawad Ghenniwa	mg/L	113	5.0	0.40
					TLI	SM2130B	TRB	10/14/2009	Gautam Savani	NTU	0.68	0.1	0.007
					TLI	SM2540C	TDS	10/15/2009	Tina Acquiat	mg/L	1040	50.0	1.40
					TLI	SM4500-HB	PH	10/14/2009	Tina Acquiat	pH Units	7.89 J	2.0	0.017
					EMXT	SM4500NO3-E	NO3NO2N	10/22/2009	Elena Robles	mg/L	3.56	0.5	0.10

TABLE 11

Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, Third and Fourth Quarter 2009

PG&E Topock Compliance Monitoring Program

NOTES:

MDL method detection limit corrected for sample dilution

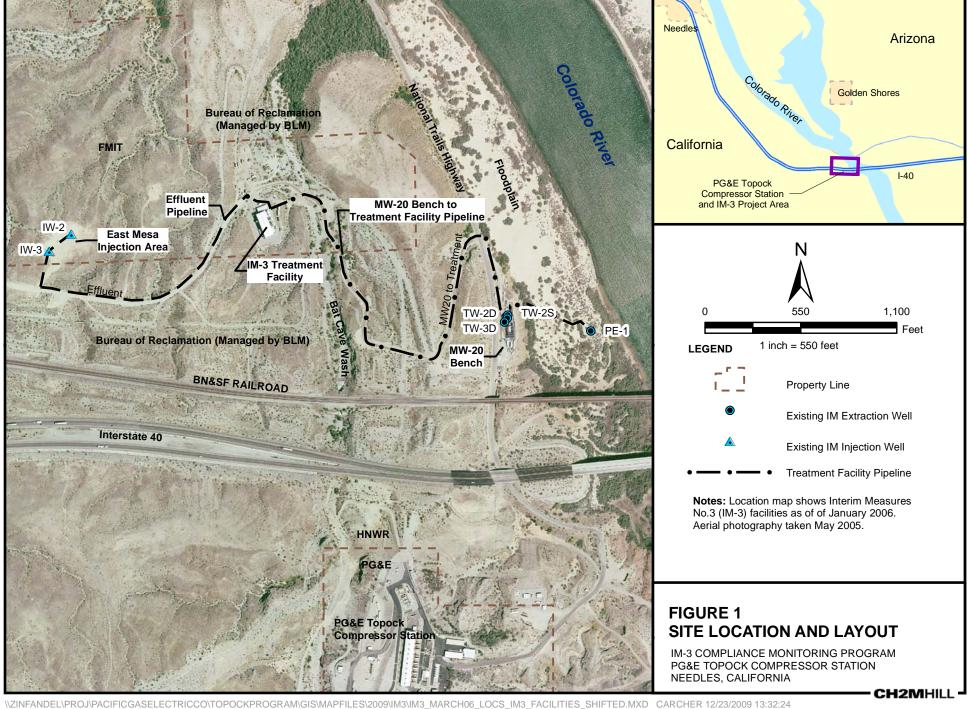
RL reporting limit corrected for sample dilution

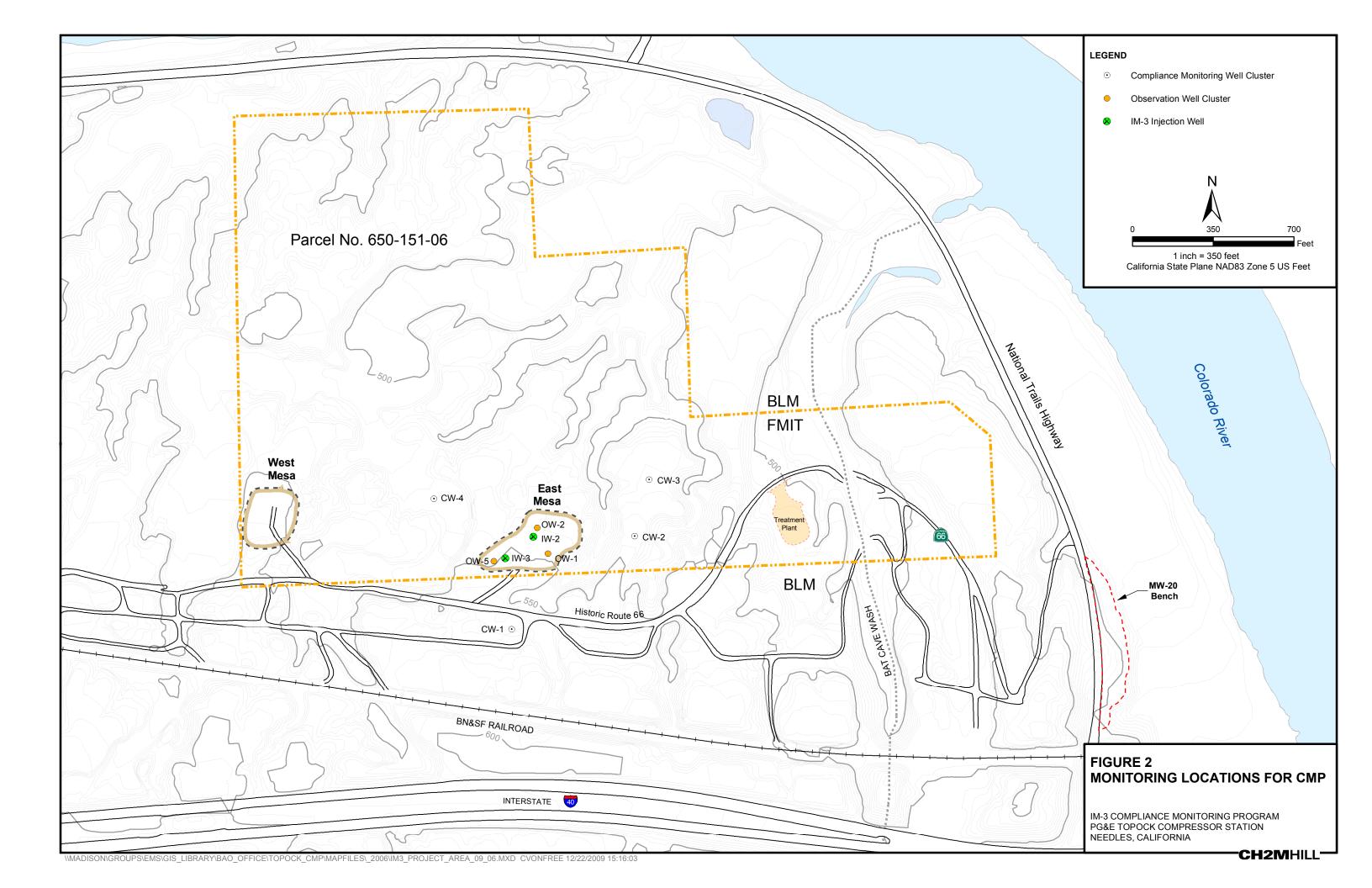
ND parameter not detected at the listed reporting limit

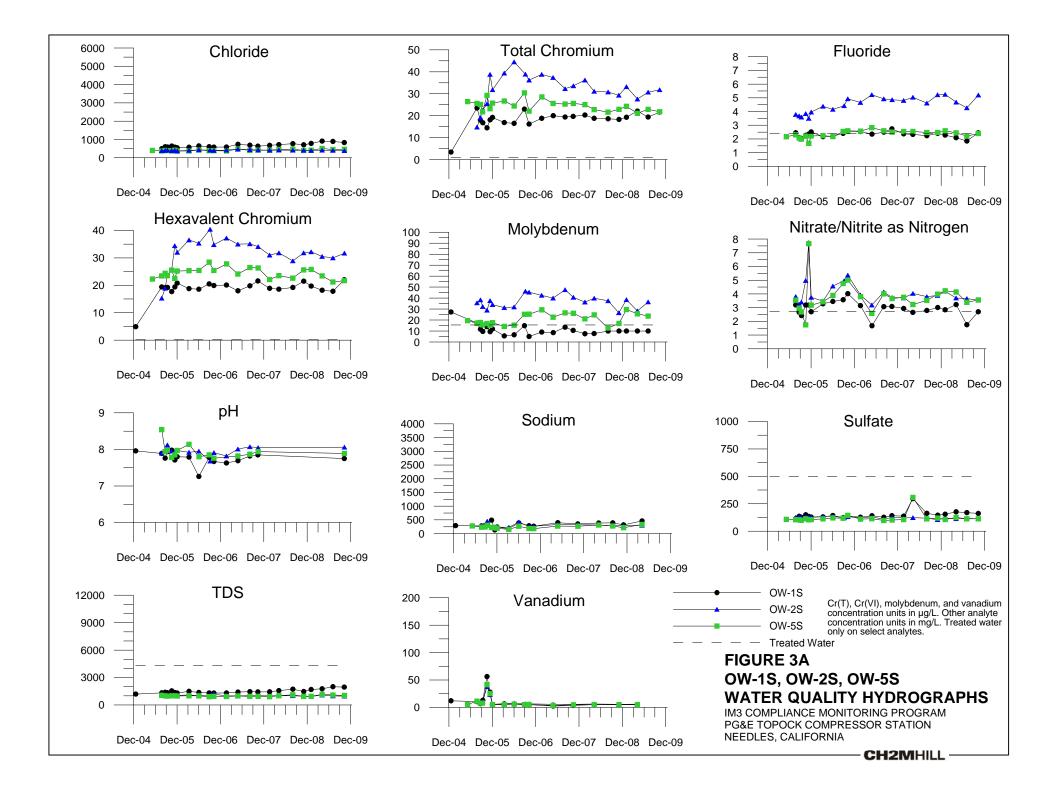
μmhos/cm micro-mhos per centimeter
NTU Nephelometric Turbidity Unit

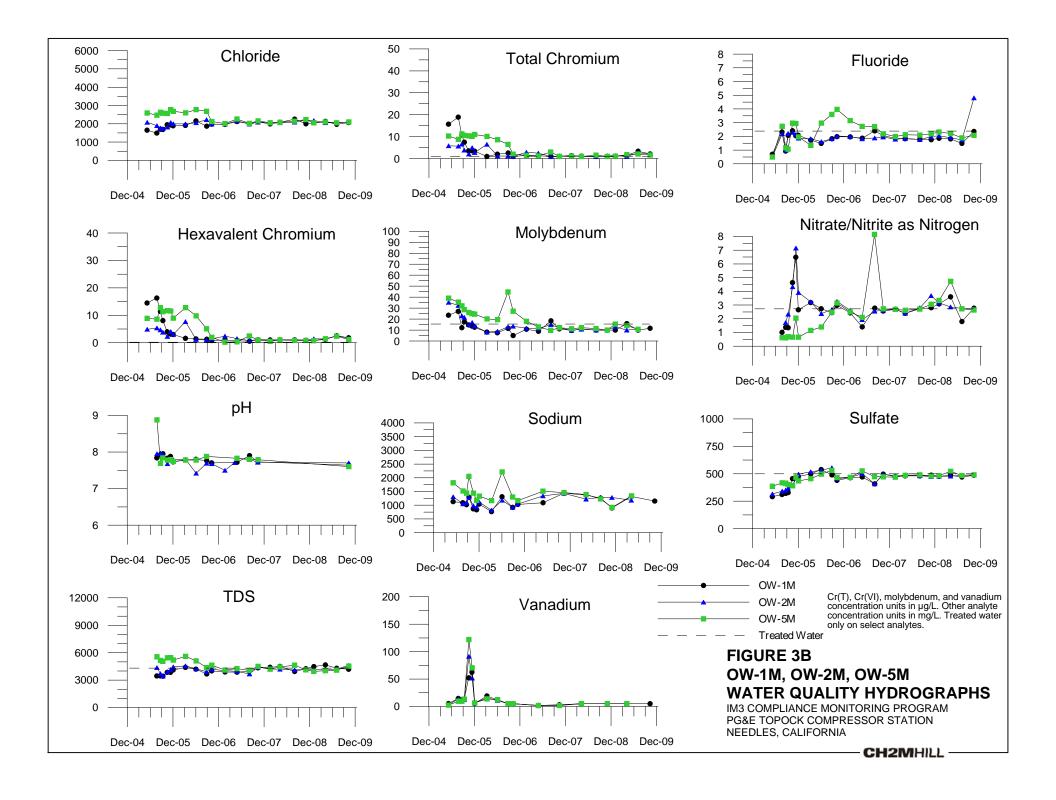
mg/L milligrams per liter μg/L micrograms per liter

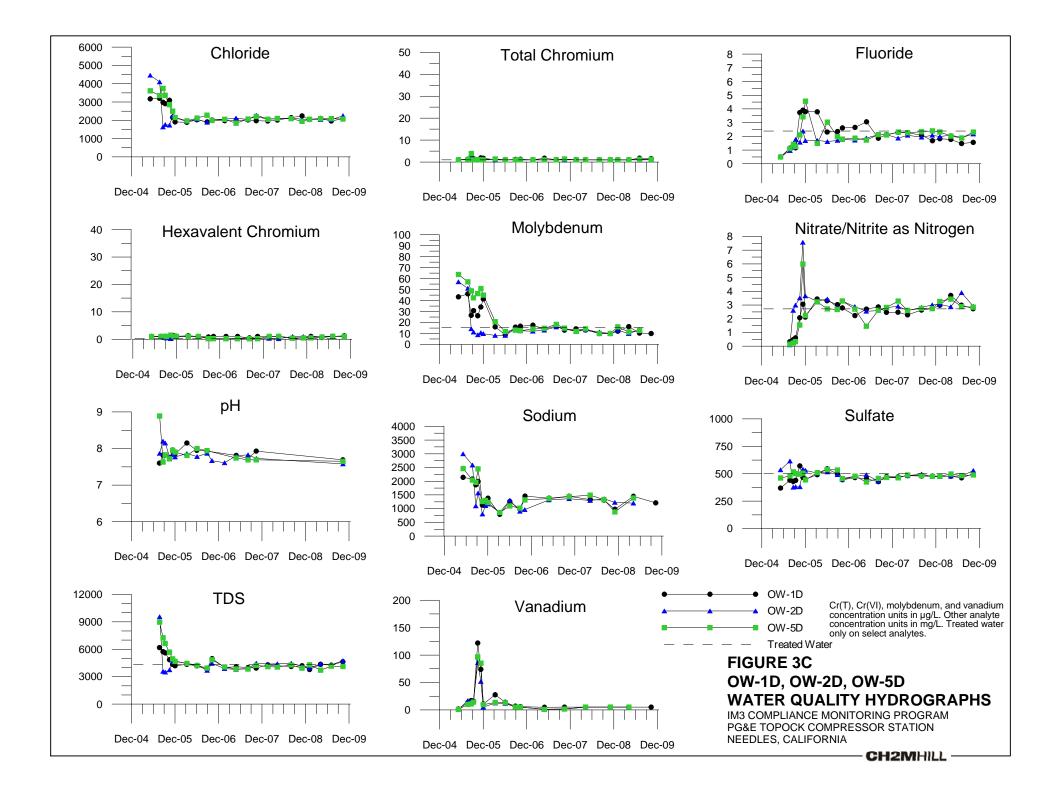

Concentration estimated by laboratory or data validation

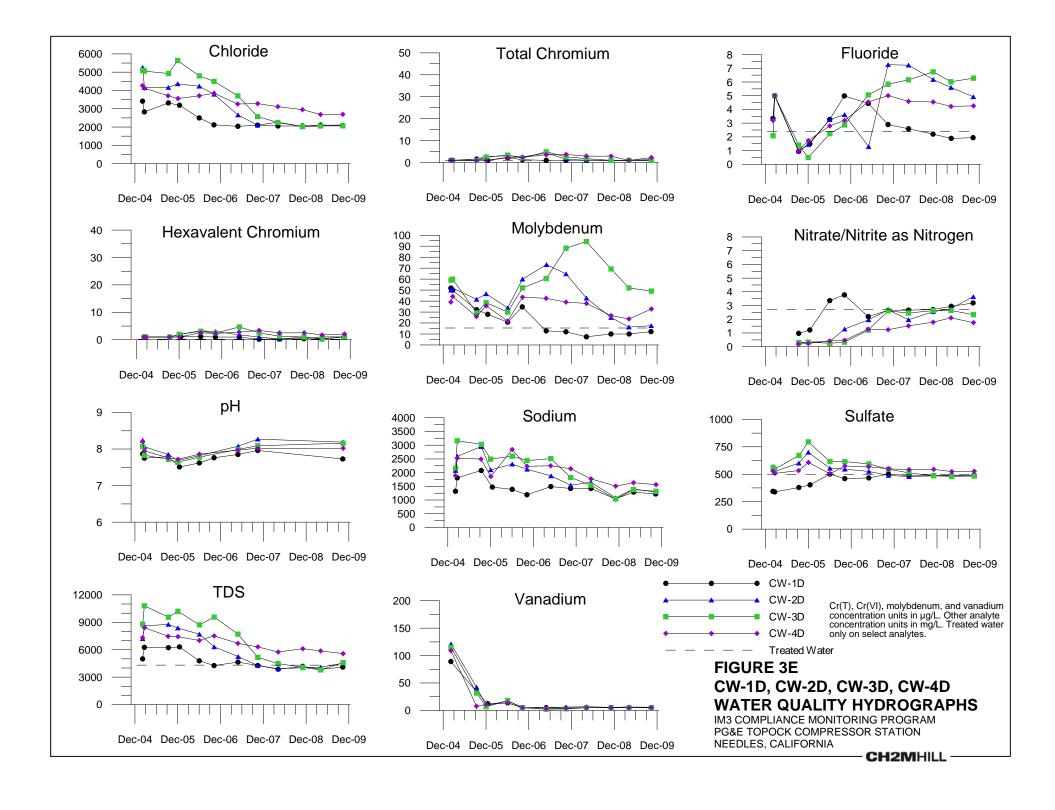

TLI Truesdail Laboratories, Inc.

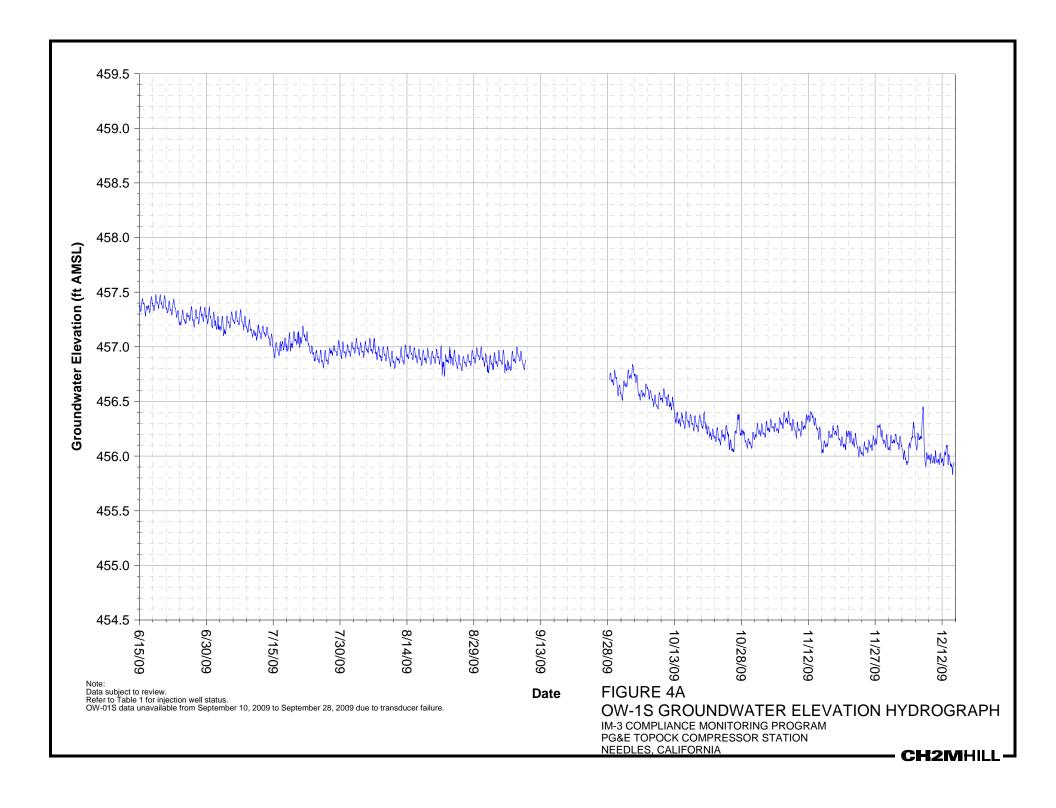

EMXT Emax Laboratories

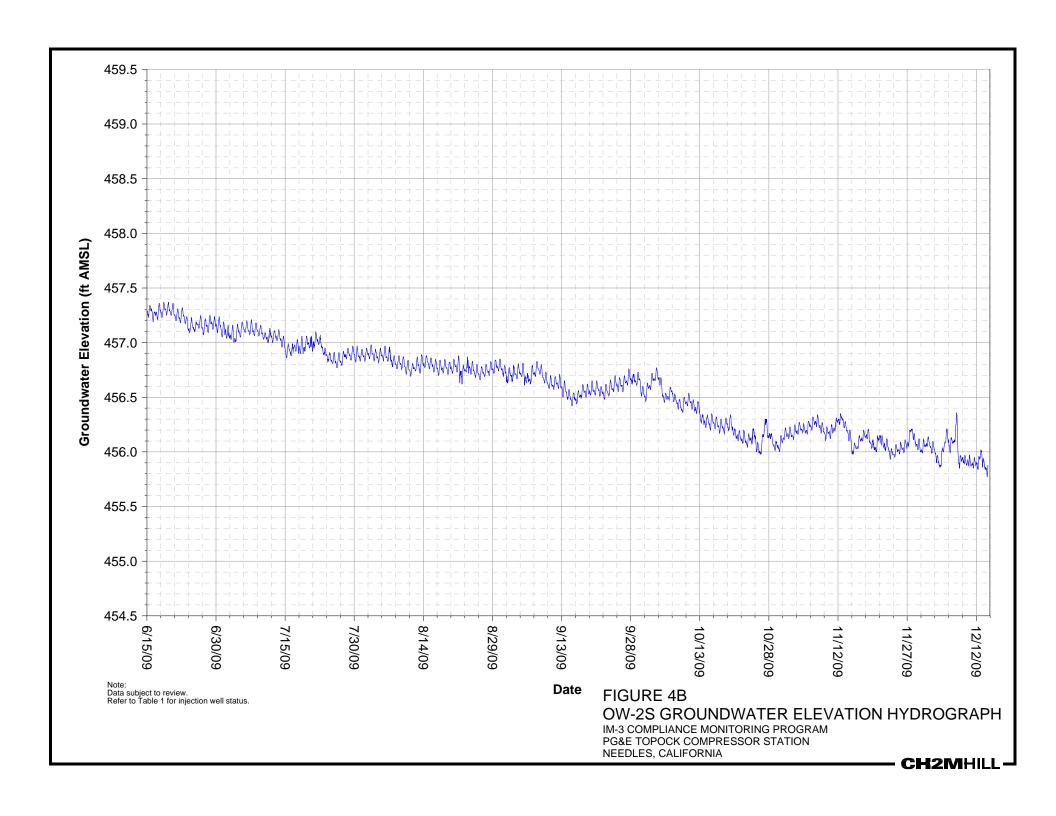

WDR Waste Discharge Requirements

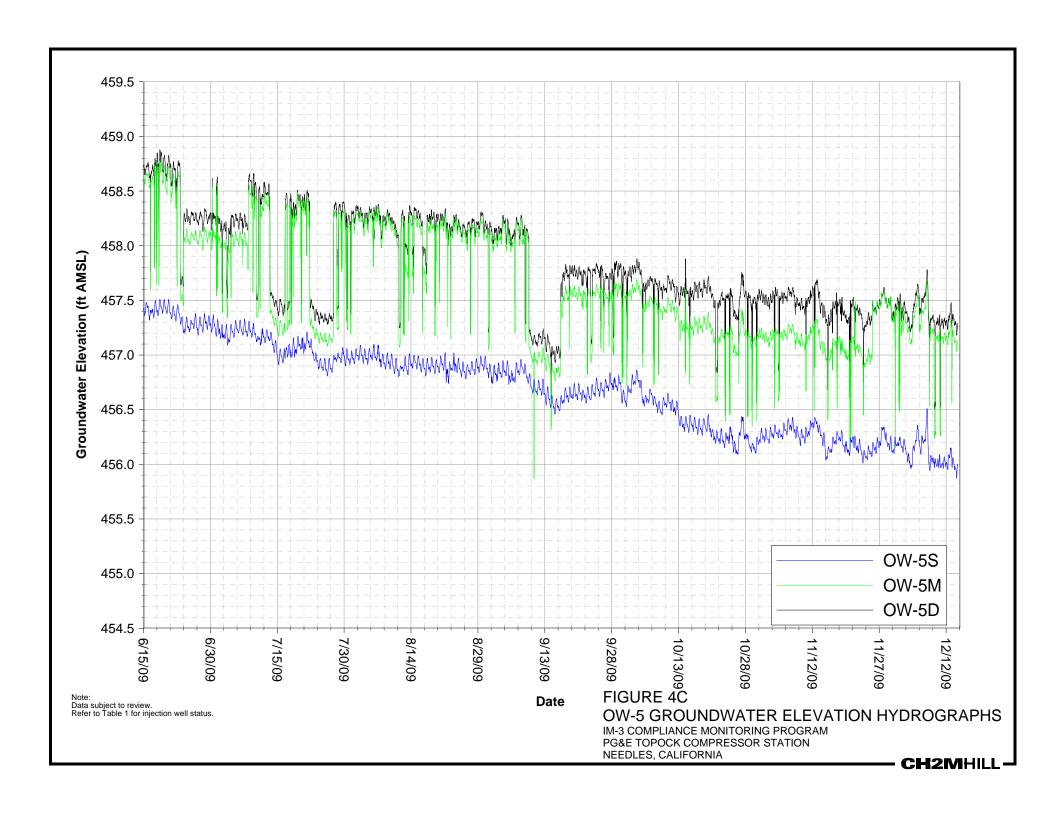

ALKC ALKT ALKB	alkalinity, as carbonate alkalinity, total as CaCO3 alkalinity, bicarbonate as CaCO3	HGD KD MGD	mercury, dissolved potassium, dissolved magnesium, dissolved
ALD	almunium, dissolved	MND	manganese, dissolved
AGD	silver, dissolved	MOD	molybdenum, dissolved
ASD	arsenic, dissolved	NAD	sodium, dissolved
BD	boron, dissolved	NID	nickel, dissolved
BAD	barium, dissolved	NH3N	ammonia (as Nitrogen)
BED	beryllium, dissolved	NO3NO2N	nitrate/nitrite (as Nitrogen)
CAD	calcium, dissolved	PBD	lead, dissolved
CDD	cadmium, dissolved	SBD	antimony, dissolved
CL	chloride	SC	specific conductance
COBD	cobalt, dissolved	SED	selenium, dissolved
CRTD	chromium, dissolved	SO4	sulfate
CR6	hexavalent chromium	TLD	thallium, dissolved
CUD	copper, dissolved	TDS	total dissolved solids
FE	iron	TRB	turbidity
FETD	iron, dissolved	VD	vanadium, dissolved
FL	fluoride	ZND	zinc, dissolved

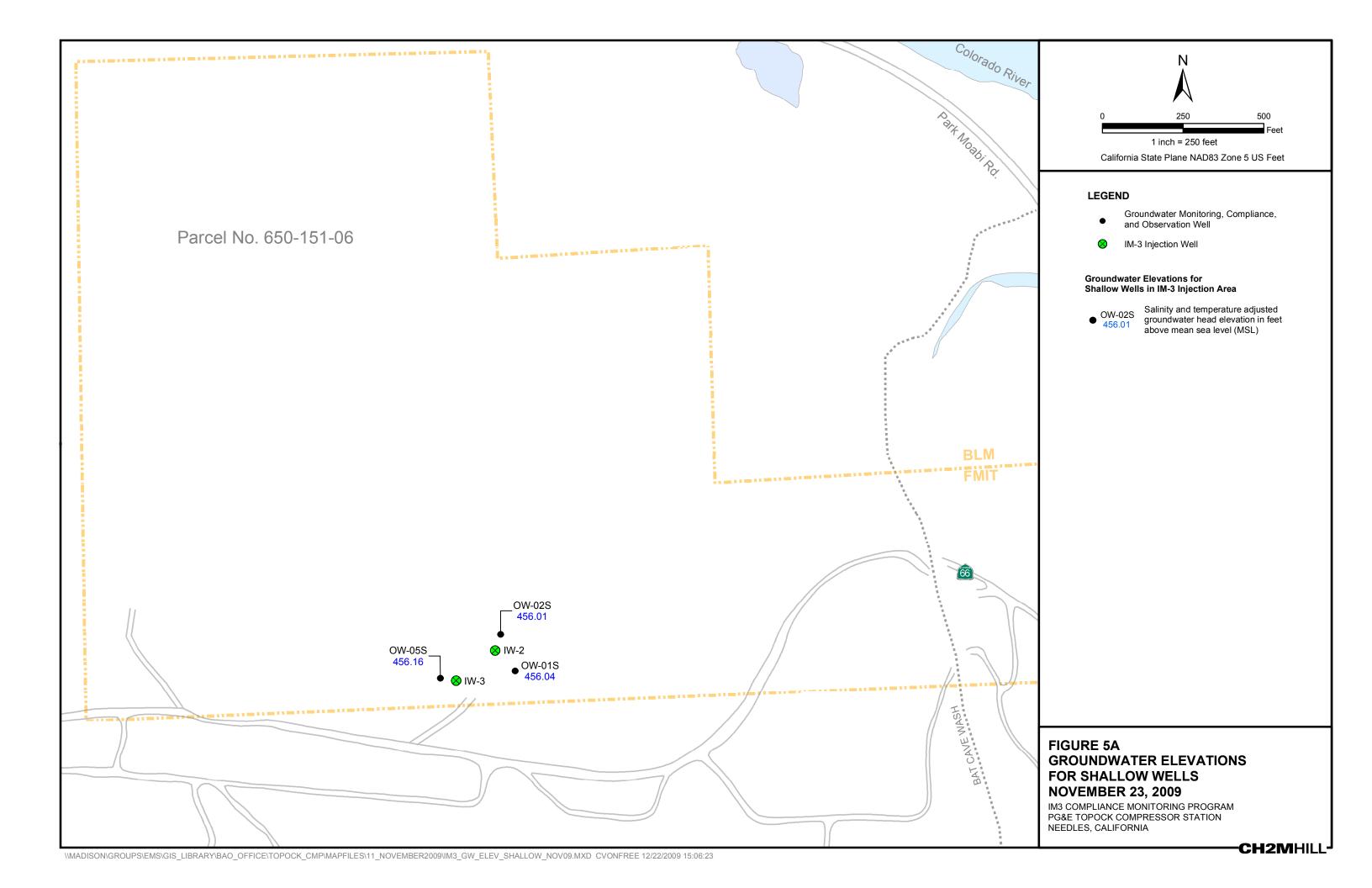


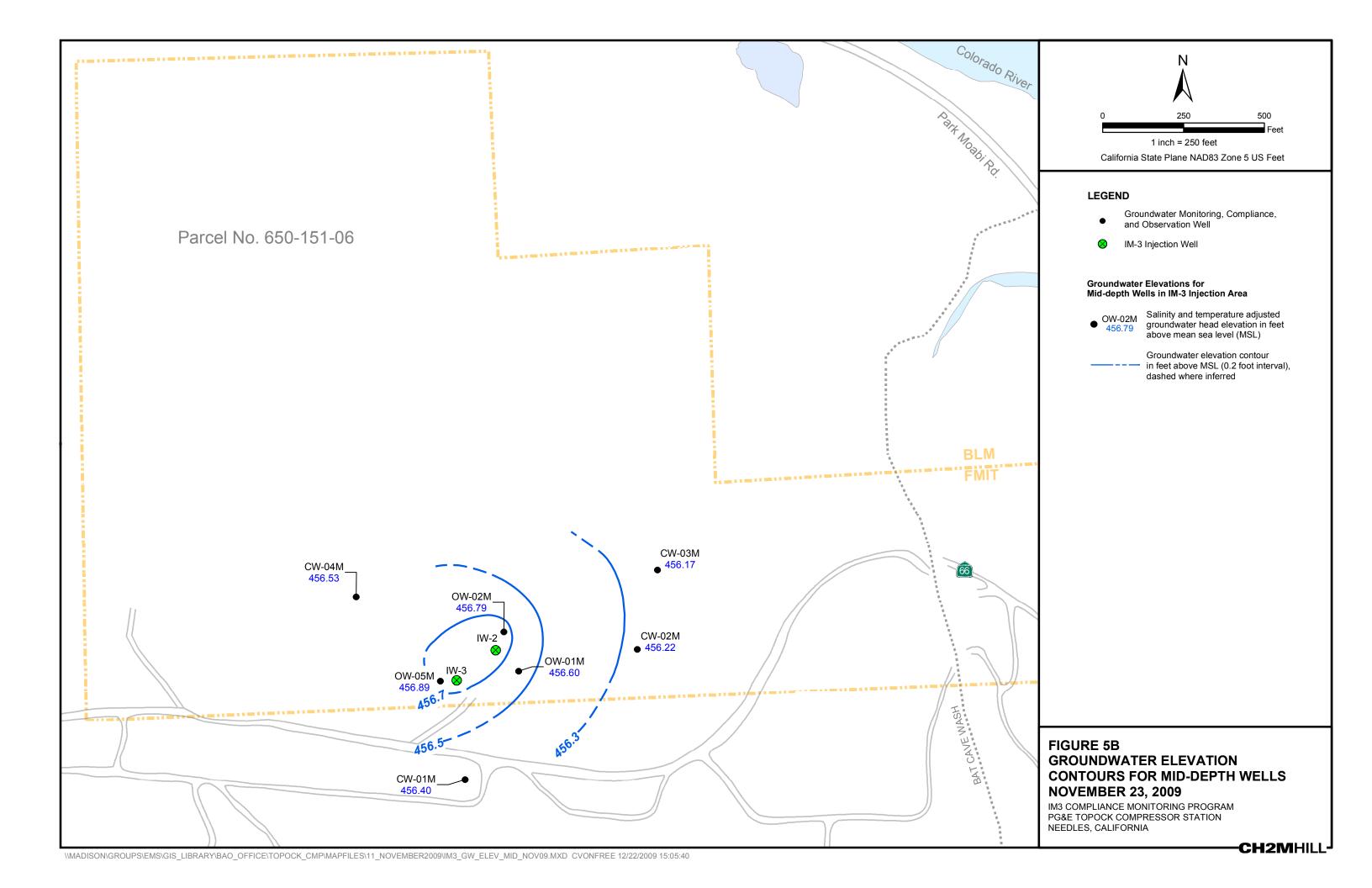


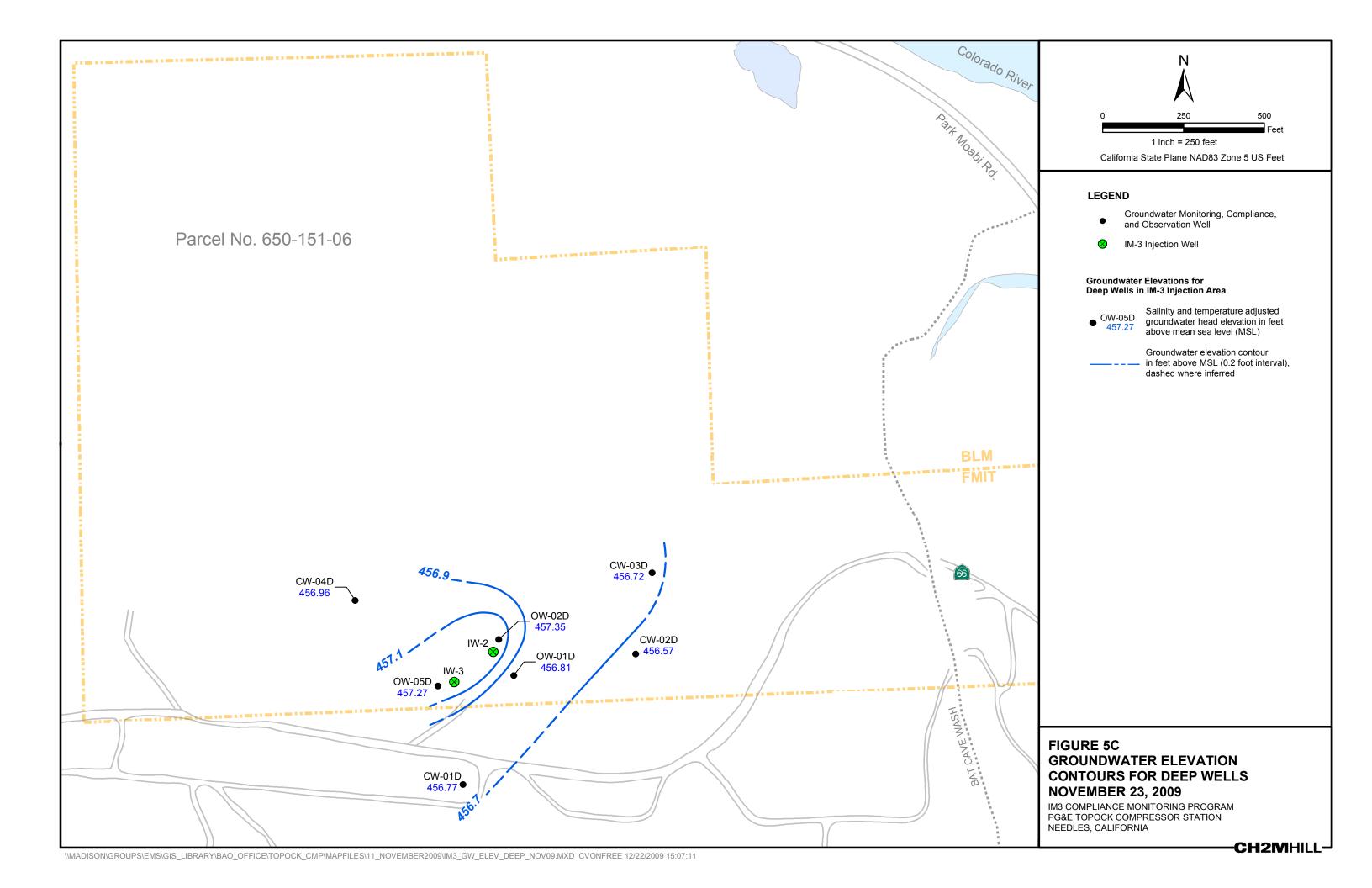


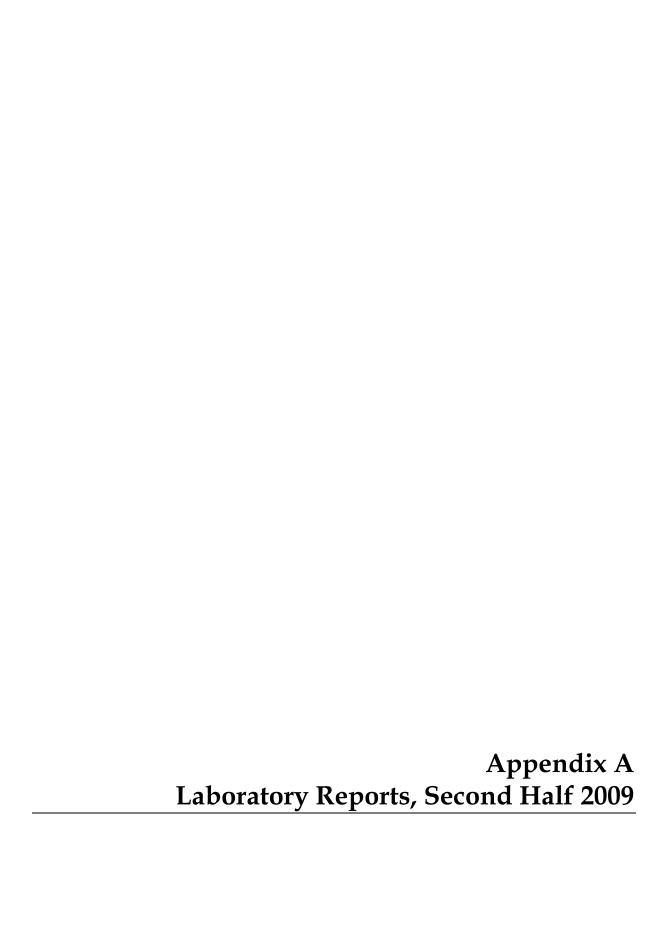


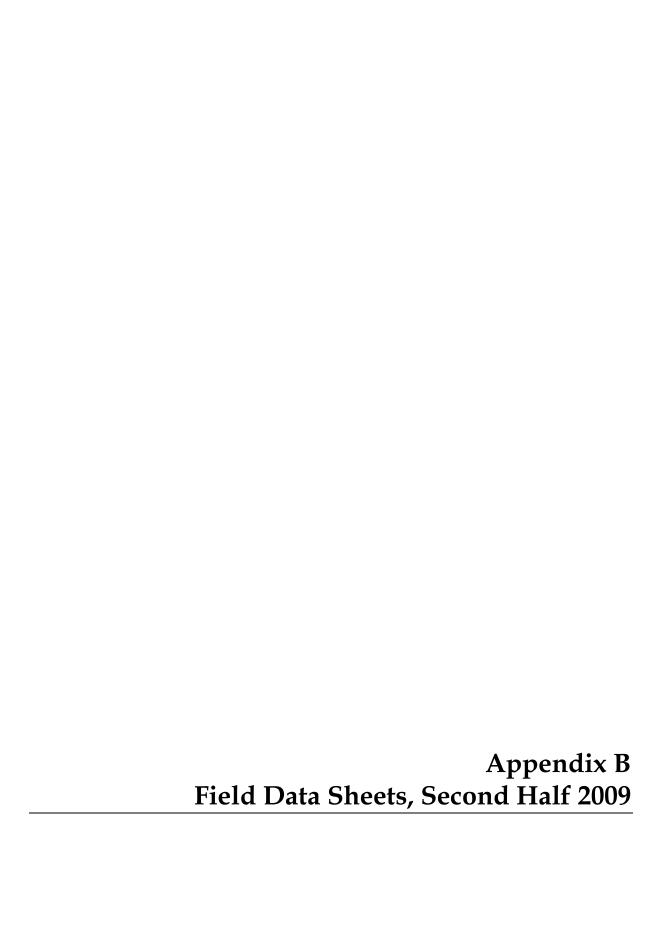












EXCELLENCE IN INDEPENDENT TESTING

August 3, 2009

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2009-CMP-021, GROUNDWATER MONITORING

PROJECT, TLI NO.: 984209

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2009-CMP-021 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on July 7, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the large number of samples in-house, the samples for Total Chromium and Molybdenum analysis were analyzed by method EPA 200.8, rather than EPA 200.7 as requested on the chain of custody.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

🚣 Mona Nassimi

Manager, Analytical Services

K-R.P. Sylv

K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

O-M--- CA CACAG

Oakland, CA 94612

Attention: Shawn Duffy
Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009

ANALYST LIST

		tunia kana kana kana kana kana kana kana k
EPA 120.1	Specific Conductivity	Tìna Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
EPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Daniel Kang
EPA 218.6	Hexavalent Chromium	Michael Nonezyan

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009 **Collected:** July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 9, 2009 Analytical Batch: 07CrH09C

investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-1	OW-01D-021	17:18	15:43	μ ց/ L	5.25	1.05	ND
984209-2	MW-91-021	14:11	15:53	μg/L	5.25	1.05	30.0
984209-3	OW-01M-021	09:03	17:40	μg/L	5.25	1.05	2.57
984209-4	OW-01\$-021	10:13	14:08	μg/L	1.05	0.20	17,8
984209-5	OW-02D-021	15:09	18:22	μg/L	5.25	1.05	ND
984209-6	OW-02M-021	16:16	18:42	μg/L	5.25	1.05	2.52
984209-7	OW-02S-021	17;30	14:18	μg/L	5.25	1.05	29.3
984209-8	OW-05D-021	11:37	19:03	μg/L	5.25	1.05	1.08
984209-9	OW-05M-021	12:34	20:21	μg/L	5.25	1.05	2.37
984209-10	OW-058-021	13:16	14:29	μg/L	5.25	1.05	21.2

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Laboratory

Number

EXCELLENCE IN INDEPENDENT TESTING

Relative

Percent

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367,MP.02,CM.01 P.O. No.: 370367,MP.02,CM.01

QC STD I.D.

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

QC Within

Received: July 8, 2009 Prep/ Analyzed: July 9, 2009 Analytical Batch: 07CrH09C

Acceptance

limite

Investigation:

Hexavalent Chromium by EPA 218.6

QA/QC Summary

Concentration

Duplicate

Concentration

							Difference	111111125	Control	
	Duplic	ate	984208-1	333		333	0.00%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.c unspike sample	d Dilution	Added Spike Conc.	MS Amou		Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	984209-1	0.90	5.25	1.00	5.25	5.97	6.15	96.6%	90-110%	Yes
MS	984209-2	30.0	5.25	10.0	52.5	80.2	82.5	95.6%	90-110%	Yes
MS .	984209-3	2.57	5.25	1.00	5.25	7.70	7.82	97.7%	90-110%	Yes
MS	984209-4	17.8	1.06	20.0	21.2	38.6	39.0	98.1%	90-110%	Yes
MS	984209-5	0.73	5.25	1.00	5.25	5.86	5.98	97.7%	90-110%	Yes
MS	984209-6	2.52	5.25	1.00	5.25	7.66	7.77	97.9%	90-110%	Yes
MS	984209-7	29.3	5.25	10.0	52.5	80.0	81.8	96.6%	90-110%	Yes
MS	984209-8	1.08	5.25	1.00	5.25	6.27	6.33	98.9%	90-110%	Yes
MS	984209-9	2.37	5.25	1.00	5.25		7.62	93.3%	90-110%	Yes
MS_	984209-10	21.2	5.25	5.00	26.3		47.5	99.0%	90-110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009
Prep/ Analyzed: July 9, 2009
Analytical Batch: 07CrH09C

Investigation:

Hexavalent Chromium by EPA 218.6

QA/QC Summary

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	5.11	5.00	102%	90% - 110%	Yes
MRCV\$#1	10.0	10.0	100%	95% - 105%	Yes
MRCVS#2	9.83	10.0	98.3%	95% - 105%	Yes
MRCVS#3	9.64	10.0	96.4%	95% - 105%	Yes
MRCVS#4	9.68	10.0	96.8%	95% - 105%	Yes
MRCVS#5	9.67	10.0	96.7%	95% - 105%	Yes
MRCVS#6	9.63	10.0	96.3%	95% - 105%	Yes
LCS	5.08	5,00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 9, 2009

Analytical Batch: 07TUC09F

Investigation;

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Fleld I.D.	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-1	OW-01D-021	17:18	NTU	1.00	0.100	·
984209-2	MW-91-021	14:11	NTU	1.00	0.100	0.661 0.543
984209-3	OW-01M-021	09:03	NTU	1.00	0.100	
984209-4	OW-01S-021	10:13	NTU	1.00	0.100	0.193 0.418
984209-5	OW-02D-021	15:09	NTU	1.00	0.100	0.416
984209-6	OW-02M-021	16:16	NTU	1.00	0.100	ND
984209-7	OW-02\$-021	17:30	NTU	1.00	0.100	0.559
984209-8	OW-05D-021	11:37	NTU	1.00	0.100	ND
984209-9	OW-05M-021	12:34	NTU	1.00	0.100	0.144
984209-10	OW-05S-021	13:16	NTU	1.00	0.100	0.144

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	9847209-7	0.559	0.560	0.18%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.100		<0.100	Yes
LCS	7.74	8.00	96.8%	90% - 110%	Yes
LCS	7.80	8.00	97.5%	90% - 110%	Yes
LCS	7.75	8.00	96.9%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without properly interesting authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009

Collected: July 7 - 8, 2009 Received: July 8, 2009

Prep/ Analyzed: July 13, 2009 Analytical Batch: 07EC09D

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>MDL</u>	<u>DF</u>	<u>RL</u>	Results
984209-1	OW-01D-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	7180
984209-2	MW-91-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	1720
984209-3	OW-01M-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	7340
984209-4	OW-01S-021	μ mhos/cm	EPA 120.1	0.099	1.00	2.00	3420
984209-5	OW-02D-021	μ mhos/cm	EPA 120.1	0.099	1.00	2.00	7350
984209-6	OW-02M-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	7220
984209-7	OW-02S-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	1780
984209-8	OW-05D-021	μ mhos/cm	EPA 120.1	0.099	1.00	2.00	7400
984209-9	OW-05M-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	7340
984209-10	OW-05S-021	μmhos/cm	EPA 120.1	0.099	1.00	2.00	1940

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	984209-9	7340	7340	0.00%	≤ 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	NĎ	<2.00		<2.00	Yes
ccs	704	706	99.7%	90% - 110%	Yes
CVS#1	994	999	99.5%	90% - 110%	Yes
CVS#2	995	999	99.6%	90% - 110%	Yes
LÇŞ	704	706	99.7%	90% - 110%	Yes
LCSD	704	706	99.7%	90% - 110%	Yes

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without properties authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009

Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 13, 2009

Analytical Batch: 07TDS09D

Investigation:

Total Dissolved Solids by SM 2540C

REPORT

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	Fleid I.D.	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
984209-1	OW-01D-021	mg/L	SM 2540C	25 0	4260
984209-2	MW-91-021	mg/L	SM 2540C	50.0	954
984209-3	OW-01M-021	mg/L	SM 2540C	250	4290
984209-4	OW-01S-021	mg/L	SM 2540C	50.0	2000
984209-5	OW-02D-021	mg/L	SM 2540C	250	4300
984209-6	OW-02M-021	mg/L	SM 2540C	250	4190
984209-7	OW-02\$-021	mg/L	SM 2540C	50.0	988
984209-8	OW-05D-021	mg/L	SM 2540C	250	4150
984209-9	OW-05M-021	mg/L	SM 2540C	250	4090
984209-10	OW-05S-021	mg/L	SM 2540C	50.0	1080

QA/QC Summary

QC STD I.D,	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	9 84 209-8	4150	4040	1.34%	≤ 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<25.0		<25.0	Yes
LCS 1	502	500	100%	90% - 110%	Yes
LCS 2	500	500	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without propugation from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM,01 P.O. No.: 370367.MP.02.CM.01

REPORT

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009

Prep/ Analyzed: July 9, 2009 Analytical Batch: 07AN09G

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

TLI I.D.	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
984209-1	OW-01D-021	17:18	16:31	mg/L	50.0	25.0	463
984209-2	MW-91-021	14:11	16:54	mg/L	5.00	2.50	113
984209-3	OW-01M-021	09:03	17:16	mg/L	50.0	25.0	470
984209-4	OW-01S-021	10:13	18:02	mg/L	10.0	5.00	169
984209-5	OW-02D-021	15:09	18:25	mg/L	50.0	25.0	478

QA/QC Summary

	QC ST	3 1.13. 1	Number 984180-1 46 of Dilution Factor Spike Conc.	Concentr	Concentration		on Duplicate Concentration		Acceptance limits	QC Within Control	
	Duplic	ate 9	84180-1	463			468	1.07%	<u>≺</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample			ı	MS nount	Measured Conc. of spiked sample		MS% Recovery	Acceptance limits	QC Within Control
MS	984180-1	463	100	10.0	1	000	1450	1463	98.7%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	19.8	20.0	99.0%	90% - 110%	Yes
MRCVS#1	14,9	15.0	99.3%	90% - 110%	Yes
MRCVS#2	15.0	15.0	100%	90% - 110%	Yes
MRCVS#3	14,9	15.0	99.3%	90% - 110%	Yes
MRCVS#4	15.0	15.0	100%	90% - 110%	Yes
MRCV\$#5	15.1	15.0	101%	90% - 110%	Yes
LCS	20.2	20.0	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected),

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without property item authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 10, 2009 Analytical Batch: 07AN09H

Sulfate by Method EPA 300.0

Investigation:

Analytical Results Sulfate

REPORT

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>D</u> F	<u>RL</u>	Results
984209-6	OW-02M-021	16:16	12:19	mg/L	100	50.0	487
984209-7	OW-02S-021	17:30	15:33	mg/L	5.00	2.50	116
984209-8	OW-05D-021	11:37	15: 44	mg/L	25.0	12.5	482
984209-9	OW-05M-021	12:34	15:55	mg/L	25.0	12.5	484
984209-10	OW-05S-021	13:16	16:07	mg/L	5.00	2.50	113

QA/QC Summary

	QC STE	1.D.	aboratory Number	Concent	ation	Duplicate Concentration		Relative Percent Difference	Acceptance limits	QC Within Control	
	<u>Duplic</u>	ate	984209-6	487			478	1.87%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	IS 984209-6 487 100 10.0		10.0	1000		1470	1487	98.3%	85-115%	Yes	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	20.0	20.0	100%	90% - 110%	Yes
MRCVS#1	14.8	15.0	98.7%	90% - 110%	Yes
MRCVS#2	14.7	15.0	98.0%	90% - 110%	Yes
MRCV5#3	14,7	15,0	98.0%	90% - 110%	Yes
LCS	20.0	20.0	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009

Prep/ Analyzed: July 9, 2009 Analytical Batch: 07AN09G

Investigation:

Chloride by Method EPA 300.0

REPORT

Analytical Results Chloride

TLI I.D.	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-1 984209-2	OW-01D-021 MW-91-021	17:18 14:11	16:19 16:42	mg/L mg/L	1000 100	200	1960
984209-3 984209-4	OW-01M-021 OW-01S-021	09:03 10:13	17:05 17:51	mg/L mg/L	1000	20.0 200	399 1970
984209-5	OW-02D-021	15:09	18:13	mg/L	500 500	100 100	893 2030

QA/QC Summary

	QC STD		Num 9841	ber	Concentra 297	ation		entration	Percent Difference 1.34%	Acceptance limits < 20%	QC Within Control Yes	
QC Std I.D.	Lab Number	Conc. unspik samp	ed C	ilution factor	Added Spike Conc.		MS lount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample		Acceptance limits	QC Within Control
MS	984180-1	297		100	4.00	4	100	705	697	102%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500	_	<0.500	Yes
MRCCS	3,97	4.00	99.3%	90% - 110%	Yes
MRCVS#1	2.93	3.00	97.7%	90% - 110%	Yes
MRCVS#2	2.92	3.00	97.3%	90% - 110%	Yes
MRCVS#3	2.95	3.00	98.3%	90% - 110%	Yes
MRCVS#4	2.92	3.00	97.3%	90% - 110%	Yes
MRCVS#5	3.00	3.00	100%	90% - 110%	Yes
LCS	3.90	4.00	97.5%	90% 110%	V

ND: Below the reporting limit (Not Detected).

OF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proposition authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Date: August 3, 2009 Collected: July 7 - 8, 2009 Received: July 8, 2009 Prep/ Analyzed: July 10, 2009

Laboratory No.: 984209

Analytical Batch: 07AN09H

Investigation:

Chloride by Method EPA 300.0

REPORT

Analytical Results Chloride

<u>TLI I.D.</u>	Field I.D.	<u>Şample Time</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-6	OW-02M-021	16:16	14;13	mg/L	500	100	2070
984209-7	OW-02S-021	17:30	13:38	mg/L	100	20.0	404
984209-8	OW-05D-021	11:37	14:24	mg/L	500	100	2090
984209-9	OW-05M-021	12:34	14:47	mg/L	500	100	2050
984209-10	OW-05S-021	13:16	14:58	mg/L	100	20.0	453

QA/QC Summarv

							<u> </u>			J					
	QC ST) I.D.	1	iborat Vumb	Concentra		centration Duplical			Relative Percent Difference		Acceptance limits		QC Within Control	
	Duplic	ate 98		84209)-7	404					1.00%		≤ 20%	Yes	
I.D. Number		ugenikad			ector Spike		Added M Spike Amo		Measured Conc. of spiked sample	Theoretical Conc. of spiked sample		MS% Recovery		Acceptance limits	QC Within Control
MS	984209-7	84209-7 404		404 1		4.00	400		816	804		103%		85-115%	Yes
		C	C Std	I.D.		esured entration		eoretical centratio			Acceptan Limits	Cė	QC With Contro	in	
		Blank ND <		<0.500		<0.500		0 Yes							
			MRCC	S		3.97		4.00	99.3%	6	90% - 110		Yes	⊣	
			4000										, 45		

3.00

3.00

4.00

97.7%

100%

99.3%

90% - 110%

90% - 110%

90% - 110%

ND: Below the reporting limit (Not Detected).

MRCVS#1

MRCVS#2

LCS

2.93

3.01

3.97

DF: Dilution Factor.

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Yes

Yes

Yes

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prop written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 984209

Date: August 3, 2009

Collected: July 7 - 8, 2009 Received: July 8, 2009

Prep/ Analyzed: July 9, 2009

Analytical Batch: 07AN09G

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-1	OW-01D-021	17:18	13:45	mg/L	5.00	0.500	1.48
984209-2	MW-91-021	14:11	13:56	mg/L	5.00	0.500	4.27
984209-3	OW-01M-021	09:03	14:08	mg/L	5.00	0.500	1.49
984209-4	OW-01S-021	10:13	14:19	mg/L	5.00	0.500	1.85
984209-5	OW-02D-021	15:09	14:30	mg/L	5.00	0.500	1.91

QA/QC Summary

	Duplic		Number 984209-1	1,48	1,48 1.		Percent Difference 12.1%	limits ≤ 20%		
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	984209-1	1.48	5.00	4.00	20.0	22.1	21.5	103%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yeş
MRCCS	4.02	4.00	101%	90% - 110%	Yes
MRCCS#1	3.04	3.00	101%	90% - 110%	Yes
MRCCS#2	3.02	3.00	101%	90% - 110%	Yes
MRCVS#3	3.05	3.00	102%	90% - 110%	Yes
LCS	4.02	4.00	101%	00% 110%	Vac

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without proventien authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02,CM.01

Laboratory No.: 984209

Date: August 3, 2009

Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 10, 2009

Analytical Batch: 07AN09H

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-6	OW-02M-021	16:16	11:22	mg/L	5.00	0.500	1.74
984209-7	OW-02S-021	17:30	11:33	mg/L	5.00	0.500	3.88
984209-8	OW-05D-021	11:37	11:44	mg/L	5.00	0.500	1.88
984209-9	OW-05M-021	12:34	11:56	mg/L	5.00	0.500	1.89
984209-10	OW-05\$-021	13:16	12:07	mg/L	5.00	0.500	2.21

QA/QC Summary

		QC STE	QC STD I.D. Laboratory Number		Concentr	Concentration Duplicate Concentration			Relative Percent Difference	Acceptance limits	QC Within Control	
_		Duplic	ate 9	84209-6	1.74			1.80	3.39%	≤ 20%	Yes	
	QC Std I.D.	Lab Number Conc.of unspiked sample Factor			Added Spike Conc.	Spike MS Amount		Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
٨	<u>as</u>	984209-6	1.74	5.00	4.00	2	20.0	22.4	21,7	103%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	4.06	4.00	102%	90% - 110%	Yes
MRCCS#1	3.06	3.00	102%	90% - 110%	Yes
MRCCS#2	3.08	3.00	103%	90% - 110%	Yes
MRCVS#3	3.05	3.00	102%	90% - 110%	Yes
MRCVS#4	3.06	3.00	102%	90% - 110%	Yes
LCS	4.09	4.00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without projections. authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02 Prep. Batch: 070909A Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 9, 2009 Analytical Batch: 070909A

Investigation:

Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using EPA 200.8

Analytical Results Total Dissolved Chromium

REPORT

<u>TLUI.D.</u>	Field I.D.	Sample Time	<u>Method</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-1	OW-01D-021	17:18	EPA 200.8	17:49	μg/L	5.00	1.00	1.78
984209-2	MW-91-021	14:11	EPA 200.8	17:55	μ g/ L	5.00	1.00	30.7
984209-3	OW-01M-021	09:03	EPA 200.8	18:02	μg/L	5.00	1.00	3.38
984209-4	OW-01\$-021	10:13	EPA 200.8	18:28	μg/L	5.00	1.00	19.4
984209-5	OW-02D-021	15:09	EPA 200.8	18:34	μg/L	5.00	1.00	ND
984209-6	OW-02M-021	16:16-	EPA 200.8	18:41	μ g/L	5.00	1.00	2.64
984209-7	OW-02S-021	17:30	EPA 200.8	18:47	μg/L	5.00	1.00	29.6
984209-8	OW-05D-021	11:37	EPA 200.8	18:54	μ g/L	5.00	1.00	1.26
984209-9	OW-05M-021	12:34	EPA 200.8	19:00	μg/L	5.00	1.00	2.10
984209-10	OW-05S-021	13:16	EPA 200.8	19:07	μ g /L	5.00	1.00	22.9

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02,CM,01

Prep. Batch: 070909A

REPORT

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 9, 2009 Analytical Batch: 070909A

Investigation:

Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using EPA 200.8

QA/QC Summary

	QC STE) I	aboratory Number	Concentr	ation		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	984207	ND			ND	0.00%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	984207	0.00	5.00	50.0	;	250	247	250	98.8%	70-130%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<1.00		<1.00	Yes
MRCCS	48.3	50.0	96.6%	90% - 110%	Yes
MRCVS#1	49.5	50.0	99.0%	90% - 110%	Yes
MRCVS#2	49.0	50.0	98.0%	90% - 110%	Yes
ICS	50.2	50.0	100%	80% - 120%	Yes
LCS	47.5	50.0	95.0%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Offution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without properties authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 073109A

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009 Received: July 8, 2009

Prep/ Analyzed: July 31, 2009 Analytical Batch: 073109A

Investigation:

Total Dissolved Boron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

Analytical Results Total Dissolved Boron

REPORT

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Method</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
984209-1	OW-01D-021	17:18	EPA 200.7	13:20	μ g/L	1.00	200	1030
984209-2	MW-91-021	14:11	EPA 200.7	13:42	μ g /L	1.00	200	674
984209-3	OW-01M-021	09:03	EPA 200.7	13:48	μg/L	1.00	200	1010
984209-4	OW-01S-021	10:13	EPA 200.7	13:54	μ g/ L	1.00	200	320
984209-5	OW-02D-021	15:09	EPA 200.7	14:11	μ g/L	1.00	200	1030
984209-6	OW-02M-021	16:16	EPA 200.7	14:16	μ g/L	1.00	200	1070
984209-7	OW-02S-021	17:30	EPA 200.7	14:22	μ g/L	1.00	200	675
984209-8	OW-05D-021	11:37	EPA 200.7	14:28	μg/L	1.00	200	1090
984209-9	OW-05M-021	12:34	EPA 200.7	14:34	μ g/L	1.00	200	1030
984209-10	OW-05S-021	13:16	EPA 200.7	14:39	μ g/L	1.00	200	415

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 073109A

REPORT

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009 Received: July 8, 2009

Prep/ Analyzed: July 31, 2009 Analytical Batch: 073109A

Investigation:

Total Dissolved Boron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

QA/QC Summarv

	QC ST) I.D.		borat Numb	•	Concentr	ation	ion Duplicate Concentration			Relative Percent Ifference	Acceptance limits		1	QC Within Control	
	Duplic	ate	9	84209)-1	1030		1	010	2.0%		≤ 20%		T	Yes	
QC Std I.D.	Lab Number	นกรเ	nc.of piked nple		ution	Added Spike Conc.		MS nount	Measure Conc. c spiked sample	of	Theoretical Conc. of spiked sample		MS% covery	,	Acceptance limits	QC Within Control
MS	984209-1	10	030	1	.00	2000	2000 20	2000			3030	7	38.0%		75-125%	Yes
		0	C Std	I.D.	_ '	easured centration	1	eoretical		cent overy	Accepta		QC Wit			
			Blank	,		ND		<20.0	_		<20.0	,	Yes			
			MRCC	s		4830		5000	96,	6%	95% - 10	35%	Yes			
		^	JRCVS	3#1		4950		5000	99.	0%	90% - 1	10%	Yes			
			MRCVS	3#2		4780		5000	95.	6%	90% - 1	10%	Yes			
			LCS			4870		5000	97.	4%	90% - 11	10%	Yes		i	

ND: Below the reporting limit (Not Detected).

DF: Ollution Factor,

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without products.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUÉ TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 072009A

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 20, 2009 Analytical Batch: 072009A

Investigation:

Total Dissolved Molybdenum by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Dissolved Molybdenum

REPORT

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Method</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
984209-1	OW-01D-021	17:18	EPA 200.8	13:43	μ g/ Լ	5.00	10.0	10.3
984209-2	MW-91-021	14:11	EPA 200.8	14:36	μ g/ L	5.00	10.0	33.1
984209-3	OW-01M-021	09:03	EPA 200.8	14:43	μg/L	5.00	10.0	ND
984209-4	OW-01S-021	10:13	EPA 200.8	14:50	μ g/L	5.00	10.0	ΝĎ
984209-5	OW-02D-021	15:09	EPA 200.8	14:56	μg/L	5.00	10.0	13.3
984209-6	OW-02M-021	16:16	EPA 200.8	15:03	μg/L	5.00	10.0	11.0
984209-7	OW-02S-021	17:30	EPA 200.8	15:10	μ g/L	5.00	10.0	36.5
984209-8	OW-05D-021	11:37	EPA 200.8	15:16	μg/L	5.00	10.0	12.8
984209-9	OW-05M-021	12:34	EPA 200.8	15:23	μ g/ L	5.00	10.0	10.7
984209-10	OW-05\$-021	13:1 6	EPA 200.8	15:30	μg/L	5.00	10.0	23.6

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Ten (10) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 072009A

Laboratory No.: 984209

Date: August 3, 2009 Collected: July 7 - 8, 2009

Received: July 8, 2009 Prep/ Analyzed: July 20, 2009

Analytical Batch: 072009A

Investigation: Total Dissolved Molybdenum by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

QA/QC Summary

								•								
	QC STE) I.D.		boret Numb		Concentr	ation		plic entr	ate ration	Relative Percent Difference		eptance limits	Ţ	QC Within Control	
	Duplic	ate	9	84209)-1	10.3			9.63	3	6.72%		≤ 20%	T	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple		ution	Added Spike Conc.		MS nount	C	leasured Conc. of spiked sample	Theoretica Conc. of spiked sample		MS% ecovery	4	Acceptance limits	QC Within Control
MŞ	984209-1	11	0.3	5	.00	50.0		250		272	260		105%		75-125%	Yes
		G	C Std	t,D,		easured centration		eoretical		Percent Recover			QC With			
			Blani	<		ND		<10.0			<10	0	Yes			
			MRCC	Ś		50.7		50.0		101%	90% - 1	10%	Yes			
			MRÇV	S#1		49.2		50.0		98.4%	90% - 1	10%	Yes			
			MRCVS	3#2		48,4		50.0		96.8%	90% - 1	10%	Yes			
			LCS			46.9	L	50.0		93.8%	90% - 1	10%	Yes			

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

CH2MHILL

984209 CHAIN OF CUSTODY RECORD

7/8/2009 3:30:49 PM

Page 1 OF

										3-	<u> </u>	– Č –
Project Name PGE Topock		Container	250 ml Poly	500 ml Poly	1 Liter Poly	1L Poly	Poly	1 Liter Poly		Π	Γ	
Location Topock Project Number 370367.MP.0	12,CM.01	Preservatives	(NHE)CS OB/NHO OH, 4°C	HN Q ⊃	4°C	4°C	4*C	4*C	Rec'd 07/08/09 53∙984209		-	
Project Manager Jay Piper		Filtered		Field	NA.	NA.	N/A	- NA	904209		ı	
Sample Manager Matt Ringier		Holding Time	1	7	28	. 7	2	28			ı	
Task Order Project 2009-CMP-021 Turnaround Time 10 Days Shipping Date: 7/8/2009 COC Number: 3			Cr6 (E218.6) Lab Filtered	Metals (E200.7FF) Field Filtere B, Cr, Mo	Specific Conductance (£120.1)	TDS (SM2540C)	Anions (E300.0) Chloride,Fluoride,Suffate	Turbidity (SM2130)	ALERT II Level III QC	Number of Containers	:	
	DATE	TIME Matrix		Δ.					120		Lº	COMMENTS
OW-01D-021	7/7/2009	17:18 Water	×	X	X	x	X	x		5	L	pu-1
MW-89-021	7/8/2009	10:29 Water	X							1	Ш	fold
MW-91-021	7/8/2009	(L) Water	x	X	X	X]	X	x	\ \(\mathrea{Q}_{2} \)	5		<u> </u>
OW-01M-021	7/8/2009	9:03 Water	х	х	х	х	х	x		5		1
OW-01S-021	7/8/2009	10:13 Water	х	х	х	х	х	х		5		Ť
OW-020-021	7/8/2009	1509 Water	x	х	x	x	x	х	7.0	5		M=2
OW-02M-021	7/8/2009	Noto Water	x	X	x	х	Х	х	7/4	5	H	
OW-02S-021	7/8/2009	1730 Water	X	Х	х	X	x	X		5	П	
OW-05D-021	7/8/2009	11:37 Water	X	X	X	X	х	х		5		
OW-05M-021	7/8/2009	12:34 Water	x	x	x	X	x	X		5	H	
OW-05S-021	7/8/2009	13:16 Water	X ·	X	X	X	X	x		5	ナ	
	•	 	·					•	TOTAL NUMBER OF CONTAINERS	51	i –	

i	Approved by Sampled by	Signatures Date/Time	Shipping Details Method of Shipment: FedEx	ATTN:	Special Instructions: July 9-10, 2009
	Relinquished by	10 1	On Ice: yes / no	Sample Custody	
79	Received by	Davila 7-8-09/8:0	Airbill No:		Report Copy to
	Relinquished by	Davik 7-8-09 23:5	Lab Name: Truesdail Laboratories, Inc.	:	Shawn Duffy
į	Received by	mua 7/8/09	Lab Phone: (714) 730-6239		(530) 229-3303
		23:53			

CH2MHILL					CHAIN OF CUSTODY RECORD 7/8/2009 3:32:12 PM	Page	OF1
Project Name PGE Topock		Cor	ntainer:	1 Liter Poly		Γ	
Location Topock		Preserv	vatives:	H□SO□, pH<2, 4°C		<u> </u>	
Project Number 370367.MP.02	CM.01						1
Project Manager Jay Piper		Fil Holding	Iltered:	<u> </u>			
Sample Manager Matt Ringier		Holung	, inite.	20			l
Task Order Project 2009-CMP-021 Turnaround Time 12 Days Shipping Date: 7/8/2009 COC Number: 4				Nitrate/Nitrite (SM4500NO3-E)		Number of Containers	
OW-01D-021	DATE 7/7/2009	TIME M	Matrix Water)3-F)		iners	COMMENTS
MW-91-021	7/8/2009	1411 4	Water	х		1	
OW-01M-021	7/8/2009		Water	x		1	
OW-01\$-021	7/8/2009	10:13 W	Water	х		1	
OW-02D-021	7/8/2009	1509 W	Water	x		1	
OW-02M-021	7/8/2009	 	Water	х		1	
OW-02S-021	7/8/2009		Water	х		1	
OW-05D-021	7/8/2009		Water	х		1	
OW-05M-021	7/8/2009	12:34 W	Water	х		1	
OW-05S-021	7/8/2009	13:16 W	Water	X		1	
					TOTAL NUMBER OF CONTAINERS	10	

T= 3.2°C

	1 -					
	Signatures	Date/Time	Shipping Details		Special Instructions:	
Approved by	_1////	7-8-07	Method of Shipment: FedEx	ATTN:	July 9-10, 2009	
Sampled by	-DV/-		•			
Relinquished by	HILL		On Ice: yes / no	Sample Custody		
Received by	Kafar Davila	7-8-09 18:00	Airbill No:		B	
Relinquished by	Rafael Davile	- 0 0 72:08	Lab Name:		Report Copy to Shawn Duffy	
Received by	raturne	49109 1019	Lab Phone:		(530) 229-3303	
B	eth Stant 71	9/09 1040	7/9/09 1	705		

CLIENT: CH2M HILL TOPOCK

SDG: 09G080

Analyst names:

1. SM4500NO3: Elena Robles

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 09G080

METHOD SM4500NO3 NITRATE/NITRITE-N

A total of ten (10) water samples were received on 07/09/09 for Nitrate/Nitrite as N analysis, Method SM4500NO3 in accordance with Methods for Chemical Analysis of Water and Wastes, EPA600/479020 (1983).

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at a frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAG001WL/C were all within QC limits.

Matrix QC Sample

Matrix QC sample was analyzed at a frequency prescribed by the project. Percent recovery for G080-10M was within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD SM4500NO3 NITRATE/NITRITE-N

: CH2M HILL Client

Matrix : WATER Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : I70

Batch No. : 09G080

SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF 1	101ST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NAGO01WB	ND	.1	NA	0.100	0.0200	07/17/0916:11	NA	NAG00111	NAG00108	NAG001W	NA	NA
LCS1W	NAG001WL	0.477	1	NA	0.100	0.0200	07/17/0916:11	NA	NAG00112	NAG00108	NAG001W	NA	NA
LCD1W	NAG001WC	0.483	1	NA	0.100	0.0200	07/17/0916:11	ΝA	NAG00113	NAG00108	NAG001W	NA	NA
OW-01D-021	G080-01	2.99	5	NA	0.500	0.100	07/17/0916:11	NA	NAG00114	NAG00108	NAGOO1W	07/07/0917:18	07/09/09
MW-91-021	G080-02	3.47	5	NA	0.500	0.100	07/17/0916:12	NA	NAG00115	NAG00108	NAGO01W	07/08/0914:11	07/09/09
OW-01M-021	G080-03	1.80	5	NA	0.500	0.100	07/17/0916:12	NA	NAG00116	NAG00108	NAG001W	07/08/0909:03	07/09/09
ow-01s-021	G080-04	1.76	5	NA	0.500	0,100	07/17/0916:12	NA	NAG00117	NAG00108	NAGO01W	07/08/0910:13	07/09/09
OW-02D-021	G080-05	3.90	5	NA	0.500	0.100	07/17/0916:12	NA	NAG00118	NAG00108	NAG001W	07/08/0915:09	07/09/09
ow-02M-021	G080-06	2.75	5	NA	0.500	0.100	07/17/0916:13	NA	NAG00121	NAG00119	NAGO01W	07/08/0916:16	07/09/09
OW-02S-021	G080-07	3.66	5	NA	0.500	0.100	07/17/0916:13	NA	NAG00122	NAGD0119	NAGDO1W	07/08/0917:30	07/09/09
OW-05D-021	G080-08	2.89	5	NA	0.500	0.100	07/17/0916:13	NA	NAG00123	NAG00119	NAG001W	07/08/0911:37	07/09/09
OW-05M-021	G080-09	2.73	5	NA	0.500	0.100	07/17/0916:13	NA	NAG00124	NAG00119	NAG001W	07/08/0912:34	07/09/09
ow-058-021	G080-10	3.39	5	NA	0.500	0.100	07/17/0916:14	NA	NAG00125	NAG00119	NAG001W	07/08/0913:16	07/09/09
OW-058-021DUP	G080-10D	3.55	5	NA	0.500	0.100	07/17/0916:14	NA	NAG00126	NAG00119	NAGO01W	07/08/0913:16	07/09/09
OW-058-021MS	G080-10M	3.88	5	NA	0.500	0.100	07/17/0916:14	NA	NAG00127	NAG00119	NAG001W	07/08/0913:16	07/09/09

Established 1931

November 6, 2009

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2009-CMP-022, GROUNDWATER MONITORING

PROJECT, TLI No.: 985819

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2009-CMP-022 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on October 13, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Samples 985819-1 through 985819-6 were received and analyzed past the holding time for pH.

Mercury was analyzed by EPA 200.8 rather that EPA 245.1 due to instrument problems.

The chain of custody requested Total Dissolved Chromium and Total Dissolved Boron by SW 6010B for samples 985819-5 through 985819-12. Mr. Shawn Duffy of CH2M Hill requested the samples be analyzed by EPA 200.7 or EPA 200.8. Total Dissolved Chromium was analyzed by EPA 200.8 and Total Dissolved Boron was analyzed by EPA 200.7.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

K-R.P. Tyen

K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009 Received: October 13, 2009

ANALYST LIST

WETHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 4500-H B	pH	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2320B	Alkalimity	lordan Stavrev
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia -	lordan Stavrey
EPA 200.7	Metals by ICP	Kris Collins
EPA 200.8	Metals by ICP/MS	Romuel Chaves
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Oakland, CA 94612

155 Grand Ave. Suite 1000

Attention: Shawn Duffy

Investigation:

Sample: Twelve (12) Groundwater Samples

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM.01

Laboratory No.: 985819

Date: November 5, 2009

Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 14, 2009

Analytical Batch: 10PH09I

pH by SM 4500-H B

Analytical Results pH

TLI I.D.	Field I.D.	Run Time	<u>Units</u>	MDL	<u>RL</u>	<u>Results</u>
985819-1	CW-01D-022	08:25	pН	0.017	2.00	7.73 J
985819-2	CW-01M-022	08:28	pН	0.017	2.00	7.56 J
985819-3	OW-01D-022	08:31	pΗ	0.017	2.00	7.69 J
985819-4	QW-01M-022	08:33	рH	0.017	2.00	7.64 J
985819-5	OW-01\$-022	08:35	pН	0.017	2.00	7.75 J
985819-6	OW-91-022	08:36	pН	0.017	2.00	7.74 J
985819-7	OW-02D-022	08:46	pН	0.017	2.00	7.58
985819-8	OW-02M-022	08:52	pН	0.017	2.00	7.70
985819-9	OW-02S-022	08:55	pН	0.017	2.00	8.06
985819-10	OW-05D-022	08:38	pH ·	0.017	2.00	7.65
985819-11	OW-05M-022	08:40	ρH	0.017	2.00	7.60
985819-12	OW-05S-022	08:43	pН	0.017	2.00	7.89

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	985819-7	7.58	7.59	0.01	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
MRCVS	7.03	7.00	0.03	<u>+</u> 0.100 Units	Yes
LCS	7.05	7.00	0.05	<u>+</u> 0.100 Units	Yes
LCSD	7.04	7.00	0.04	+ 0.100 Units	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

010

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009 Received: October 13, 2009 Analyzed: October 15, 2009

Analytical Batch: 10CrH09!

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	RL	<u>Results</u>
985819-5	OW-01S-022	16:27	19:04	μ g/ L	1.05	0.20	21.9
985819-6	OW-91-022	12:32	19:25	μ g/ L	1.05	0.20	22.0

NO: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009 Received: October 13, 2009 Analyzed: October 15, 2009

Analytical Batch: 10CrH09F

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

QA/QC Summary

	QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Suppose 90001949 32.2 31.7 1,00% \$20% YE	Duplicate		32.2	31.7	1,56%	<u>≤</u> 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	985819-5	21.9	1.08	20.0	21.6	42.2	43.5	94.0%	90-110%	Yes
MS	985819-6	22.0	1.08	20.0	21.6	42.8	43.6	96.3%	90-110%	Yes

QC Std I.D.	Measured - Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
BLANK	ΩŅ	<0.200	***	<0.200	Yes
MRCCS	5.20	5.00	104%	90% - 110%	Yes
MRCVS#1	10.1	10.0	101%	95% - 105%	Yes
MRCVS#2	10.2	10.0	102%	95% - 105%	Yes
MRCVS#3	9.97	10.0	99.7%	95% - 105%	Yes
MRCVS#4	9.94	10.0	99.4%	95% - 105%	Yes
LCS	5.17	5.00	103%	90% - 110%	Yes

ND; Below the reporting limit (Not Detected).

DF; Däution Factor.

Respectfully submitted,
TRUESDAIL LABORATORIE

TRÚESDÁIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009 Received: October 13, 2009 Analyzed: October 16, 2009

Analytical Batch: 10CrH09J

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

TLI I.D.	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-1	CW-01D-022	11:57	11:21	μ g/ L	5.25	1.05	ДИ
985819-2	CW-01M-022	13:25	11:42	μg/L	5.25	1.05	1.94
985819-3	OW-01D-022	14:50	11:00	μg/L	5.25	1.05	1.26
985819-4	OW-01M-022	15:44	11:11	μg/L	5.25	1.05	1.81
985819-7	OW-02D-022	12:40	12:55	μ g/L	5.25	1.05	ND
985819-8	OW-02M-022	13:46	13:05	μ g /L	5.25	1.05	1.68
985819-9	OW-02S-022	14:26	13:16	μg/L	5.25	1.05	31.7
985819-10	OW-05D-022	09:08	13:26	μg/L	5.25	1.05	ND
985819-11	OW-05M-022	10:07	15:33	μg/L	5.25	1.05	1.15
985819-12	OW-05S-022	10:55	15:22	μg/L	1.05	0.20	21.7

ND: Below the reporting limit (Not Detected).

DF: Oilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

-013

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, ÇA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009 Received: October 13, 2009 Analyzed: October 16, 2009

Analytical Batch: 10CrH09J

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	985819-3	1.26	1,12	11.8%	≤ 20%	· Yes

QC Std	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	M\$% Recovery	Acceptance limits	QC Within Control
MŞ	985819-1	0.891	5.25	1.00	5.25	6.18	6.14	101%	90-110%	Yes
MS	985819-2	1.94	5.25	1.00	5.25	7,53	7,19	106%	90-110%	Yes
MŞ	985819-3	1.26	5.25	1.00	5.25	6.30	6.51	96.0%	90-110%	Yes
MS	985819-4	1.81	5.25	1.00	5.25	7.27	7.06	104%	90-110%	Yes
MS	985819-7	0.298	5.25	1.00	5.25	5.70	5.55	103%	90-110%	Yes
MS	985819-8	1.68	5.25	1.00	5.25	6.97	6.93	101%	90-110%	Yes
MS	985819-9	31.7	5.25	10.0	52.5	81.2	84.2	94.3%	90-110%	Yes
MS	985819-10	0.705	5.25	1.00	5.25	6.13	5.96	103%	90-110%	Yes
MS	985819-11	1,15	5.25	1.00	5.25	6.76	6.40	107%	90-110%	Yes
MS	985819-12	21.7	1.09	25.0	27.3	47.6	49.0	95.0%	90-110%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
BLANK	ND	<0.200		<0.200	Yes
MRCCS	5.17	5.00	103%	90% - 110%	Yes
MRCVS#1	9.86	10.0	98.6%	95% - 105%	Yes
MRCVS#2	9.73	10.0	97.3%	95% - 105%	Yes
MRCVS#3	9.87	10.0	98.7%	95% - 105%	Yes
LCS	5.15	5.00	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

014

Mona Nassimi, Manager
Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 101909A

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 19, 2009

Analytical Batch: 101909A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using EPA 200.8

Analytical Results Total Dissolved Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	Run Time	DF	RL	Results
985819-5	OW-01S-022	μg/L	EPA 200.8	12:10	5.00	1.00	21.6
985819-6	OW-91-022	μg/L	EPA 200.8	12:16	5.00	1.00	21.4
985819-7	OW-02D-022	μg/L	EPA 200.8	12:22	5.00	1.00	ND
985819-8	OW-02M-022	μg/L	EPA 200.8	12:28	5.00	1.00	2.18
985819-9	OW-02S-022	μ g/L	EPA 200.8	12:35	5.00	1.00	31.8
985819-10	OW-05D-022	μg/L	EPA 200.8	12:41	5.00	1.00	1.18
985819-11	OW-05M-022	μg/L	EPA 200.8	12:47	5.00	1.00	1.67
985819-12	OW-05S-022	μg/L	EPA 200.8	13:06	5.00	1.00	21.8

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

015

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 103009A

Laboratory No.: 985819

Date: November 5, 2009

Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 30, 2009

Analytical Batch: 103009A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

QA/QC Summarv

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	985893-1	NO	DA	0.00%	<u><</u> 20%	Yes

QC Std	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	985893-1	0.00	5.00	50.0	250	249	250	99.6%	75-125%	Yes

		***				001070
	QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
l	Blank	ND	<1.00		<1.00	Yes
	MRCCS	51.7	50.0	103%	90% - 110%	Yes
	MRCVS#1	51.9	50.0	104%	90% - 110%	Yes
	MRCVS#2	51.9	50.0	104%	90% - 110%	Yes
	MRCVS#3	50.8	50.0	102%	90% - 110%	Yes
	ics	50.9	50.0	102%	80% - 120%	Yes
	LCS	51.7	50.0	103%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 102209B

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 22, 2009

Analytical Batch: 102209B

Investigation:

Total Dissolved Boron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

-

Analytical Results Total Dissolved Boron

TLLLD.	Field I.D.	<u>Units</u>	<u>Method</u>	Run Time	<u>DF</u>	<u>RL</u>	<u>Results</u>
985819-5	OW-01\$-022	μ g/L	EPA 200.7	14:25	1.00	200	366
985819-6	OW-91-022	μ g/L	EPA 200.7	14:30	1.00	200	362
985819-7	OW-02D-022	μ g/L	EPA 200.7	14:36	1.00	200	1070
985819-8	OW-02M-022	μ g/ L	EPA 200.7	14:42	1.00	200	1100
985819-9	OW-02S-022	μ g/ L	EPA 200.7	14:47	1.00	200	66 6
985819-10	OW-05D-022	μg/L	EPA 200.7	14:53	1.00	200	1070
985819-11	OW-05M-022	μg/L	EPA 200.7	· 14:58	1.00	200	1160
985819-12	OW-05\$-022	μ g/L	EPA 200.7	15:04	1.00	200	409

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

017

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Prep. Batch: 102209B

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 22, 2009

Analytical Batch: 102209B

Investigation:

Total Dissolved Boron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance fimits	QC Within Control
Duplicate	985819-1 T	1100	1100	0.00%	<u>≺</u> 20%	Yes

QC Std I.D,	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
мѕ	985819-1 T	1100	1.00	2000	2000	3070	3100	98.5%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC WithIn Control
Blank	ND .	<200		<200	Yes
MRCCS	5110	5000	102%	95% - 105%	Yes
MRCV\$#1	5000	5000	100%	90% - 110%	Yes
MRCVS#2	5210	5000	104%	90% - 110%	Yes
MRCVS#3	5330	5000	107%	90% - 110%	Yes
LCS	5040	5000	101%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367,MP.02,CM.01 P.O. No.: 370367,MP.02,CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 14, 2009

Analytical Batch: 10EC09F

Investigation:

Specific Conductivity by EPA 120.1

REPORT.

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Fleid I.D.	<u>Units</u>	<u>Method</u>	MDL	<u>DF</u>	<u>RL</u>	<u>Results</u>
985819-1	CW-01D-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7120
985819-2	CW-01M-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	6980
985819-3	OW-01D-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7190
985819-4	OW-01M-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7020
985819-5	OW-01\$-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	2960
985819-6	OW-91-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	2890
985819-7	OW-02D-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7490
985819-8	OW-02M-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7120
985819-9	OW-02\$-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	1720
985819-10	OW-05D-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7250
985819-11	OW-05M-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7140
985819-12	OW-05S-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	1870

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance Ilmits	QC Within Control
Duplicate	985819-12	1870	1870	0.00%	≤ 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<2.00		<2.00	Yes
ccs	<u>7</u> 08	708	10,0%	90% - 110%	Yes
CVS#1	998	999	99.9%	90% - 110%	Yes
CVS#2	998	999	99.9%	90% - 110%	Yes
LCS	707	706	100%	90% - 110%	Yes
LCSD	707	706	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

For Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM.01

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 15, 2009

Analytical Batch: 10TDS09D

investigation:

Total Dissolved Solids by SM 2540C

REPORT

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
985819-1	CW-01D-022	mg/L	SM 2540C	250	4090
985819-2	CW-01M-022	mg/L	SM 2540C	250	3870
985819-3	OW-01D-022	mg/L	SM 2540C	250	4630
985819-4	OW-01M-022	mg/L	SM 2540C	250	4190
985819-5	OW-01S-022	mg/L	SM 2540C	50.0	1890
985819-6	OW-91-022	mg/L	SM 2540C	50.0	1950
985819-7	OW-02D-022	mg/L	SM 2540C	250	4750
985819-8	OW-02M-022	mg/L	SM 2540C	250	4630
985819-9	OW-02S-022	mg/L	SM 2540C	50.0	962
985819-10	OW-05D-022	mg/L	· SM 2540C	250	4120
985819-11	OW-05M-022	mg/L	SM 2540C	250	4520
985819-12	OW-05S-022	mg/L	SM 2540C	50.0	1040

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	985819-9	962	946	0.84%	≤ 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<10.0		<10.0	Yes
LCS 1	497	500	99.4%	90% - 110%	Yes
LCS 2	496	500	99.2%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM.01

REPORT

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 14, 2009

Analytical Batch: 10ALK09D

Investigation:

Alkalinity by SM 2320B

Analytical Results Total Alkalinity, Bicarbonate, Carbonate

<u>TLI 1.D.</u>	<u>Field I,D.</u>	<u>Units</u>	RL	Total Alkalinity	<u>Bicarbonate</u>	Carbonate
985819-1	CW-01D-022	mg/L	5.00	64.0	64.0	ND
985819-2	CW-01M-022	mg/L	5.00	69.0	69.0	ND
985819-3	OW-01D-022	mg/L	5.00	77.0	77.0	ND
985819-4	OW-01M-022	mg/L	5.00	75.0	75.0	ND

QA/QC Summary

	QC STD	I.D.	ı	oratory umber	Concentrati	on	Duplicate Concentration	1 Percent I		QC Within Control	
	Duplic	ate	98	<u>581</u> 9-4	75.0		75.0	0.00%	<u>≤</u> 20%	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	1 Conc of	MS% Recovery	Acceptance limits	QC Within Control
MS	985819-4	7:	5.0	1.00	100	100	170	175	95.0%	75-125%	Yes
				T	Managed		_411		T	<u> </u>	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<5.00	***	<5.00	Yes
LCS	100	100	100%	90% - 110%	Yes

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi, Manager **Analytical Services**

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUÉ TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM.01

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 14, 2009

Analytical Batch: 10TUC091

Investigation:

Turbidity by Method SM 2130B

REPORT

Analytical Results Turbidity

<u>TLI 1.D.</u>	Field I.D.	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-5	OW-01S-022	16:27	NTU	1.00	0.100	0.439
985819-6	OW-91-022	12:32	NTU	1.00	0.100	0.430
985819-7	OW-02D-022	12:40	'NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.D.	Number Concentration Conce		Duplicate Concentration	Relative Percent Oifference	Acceptance limits	QC Within Control	
Duplicate	985809-9	ND	ND ND	0.00%	≤ 20%	Yes	

QC Std I.D.	Measured . Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.100		<0.100	Yes
LCS	8.08	8.00	101%	90% - 110%	Yes
LCS	7.92	8.00	99%	90% - 110%	Yes
LC\$	8.10	8.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRÚESDÁIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 14, 2009

Analytical Batch: 10TUC09J

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TL1 I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-1	CW-01D-022	11:57	NTU	1.00	0.400	0.405
985819-2	CW-01M-022	13:25	NTU	1.00	0.100	0.105
985819-3	OW-01D-022	14:50	NTU		0.100	0.712
985819-4	OW-01M-022	15:44		1.00	0.100	0.473
985819-8	OW-02M-022		NTU	1.00	0.100	0.234
985819-9	OW-028-022	13:46	NTU	1.00	0.100	ND
985819-10	OW-05D-022	14:26	NTU	1.00	0.100	0.735
985819-11		09:08	NTU	1.00	0.100	ND
	OW-05M-022	10:07	NTU	1.00	0.100	ND
985819-12	OW-05S-022	10:55	NTU	1.00	0.100	0.680

QA/QC Summary

QC STD I.D.	Laboratory Number Concentration		Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control	
Duplicate	985833-2	0.394	0.396	0.51%	< 20%	Yes	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND ND	<0.100		<0.100	Yes
LCS	8.06	8.00	101%	90% - 110%	Yes
LCS	7.90	8.00	98.8%	90% - 110%	Yes
LCS	7.88	8.00	98.5%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009 Prep/ Analyzed: October 15, 2009

Analytical Batch: 10NH3-E09B

Investigation:

Ammonia as N by Method SM 4500-NH3 D

Analytical Results Ammonia as N

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Method</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985819-1	CW-01D-022	11:57	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985819-2	CW-01M-022	13:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985819-3	OW-01D-022	14:50	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985819-4	OW-01M-022	15:44	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

	QC STE		Labor Num	nber			ND Concer		Concentration Difference ND 0.0%		Difference	ı	eptance imits	QC Within Control		
	Duplic	ate	9858	319-4	ļ.	ND						<u><</u> 20%		Yes		
QC Std	Lab Number	Conc.c unspike sample	ed C	Dilut Fact		Added Spike Conc.		MS C Amount		sured nc. of liked mple	Theoretical Conc. of spiked sample	1	MS% covery	Acceptance limit		QC Within Control
MS	985819-4	0.00		1,0	0	6.00		6.00		.89	6.00	98.2%			75-125%	Yes
	QC Std I,D,			easured Th		eoretical centratio		Percen Recove			QC Wit					

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	5.95	6.00	99.2%	90% - 110%	Yes
MRCVS#1	5.74	6.00	95.7%	90% - 110%	Yes
LCS	10.0	10.0	100%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Managel Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Laboratory

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM,01

Laboratory No.: 985819

Date: November 5, 2009

QC Within

Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 14, 2009

Analytical Batch: 10AN091

Investigation:

Fluoride by ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-1	CW-01D-022	11:57	14:55	mg/L	5.00	0.500	1.94
985819-2	CW-01M-022	13:25	15:30	mg/L	5.00	0.500	2.19
985819-3	OW-01D-022	14:50	15:41	mg/L	5.00	0.500	1.56
985819-4	OW-01M-022	15:44	15:52	mg/L	5.00	0.500	2.36
985819-5	OW-01S-022	16:27	16:04	mg/L	5.00	0.500	2.45
985819-6	OW-91-022	12:32	16:15	mg/L	5.00	0.500	2.23
985819-7	OW-02D-022	12:40	16:27	mg/L	5.00	0.500	2.17
985819-8	OW-02M-022	13:46	16:38	mg/L	5.00	0.500	4.81

QA/QC Summary

Duplicate

Relative

		400.0		N	lumber	0011001111	anon	Conce	entration	Difference	limits	Control	
		Duplica	te	٤	85815	ND			NĎ	0.0%	≤ 20%	Yes	
	Std .D.	Lab Number	Conc unspi sam	iked	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked samp	MS% Recovery	Acceptance limits	QC Within Control
MS		985815	0.0	0	1.00	2.00	2	2.00	2.16	2.00	108%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	4.08	4.00	102%	90% - 110%	Yes
MRCVS#1	3.14	3.00	105%	90% - 110%	Yes
MRCVS#2	3.15	3.00	105%	90% - 110%	Yes
MRCVS#3	3.14	3.00	105%	90% - 110%	Yes
LCS	4.08	4.00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

Acceptance

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Laboratory No.: 985819

Date: November 5, 2009 **Collected:** October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 15, 2009

Analytical Batch: 10AN09J

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-9	OW-02S-022	14:26	11:46	mg/L	5.00	0.500	5.20
985819-10	OW-05D-022	09:08	11:58	mg/L	5.00	0.500	2.31
985819-11	OW-05M-022	10:07	12:09	mg/L	5.00	0.500	2.08
985819-12	OW-05\$-022	10:55	12:21	ma/L	5.00	0.500	2.40

	QC STD	1.D. L	Number	Concentr	ation		plicate, entration	Percent Difference	limits	Control	
	Duplica	te	985858-1	1.26	<u> </u>		1.22	3.23%	≤ 20%	Yes	
QC :	 Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	,	MS Tount	Measured Conc. of spiked sample	Theoretical Conc. of spiked samp	MS% Recovery	Acceptance limits	QC Within Control
MS	985858-1	1,26	1.00	4.00	4	.00	5.26	5.26	100%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	4.10	4.00	103%	90% - 110%	Yes
MRCV\$#1	3.12	3.00	104%	90% - 110%	Yes
MRCVS#2	3.12	3.00	104%	90% - 110%	Yes
LCS	4.09	4.00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager **Analytical Services**

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 17, 2009

Collected: October 12 - 13, 2009 Received: October 13, 2009

Prep/ Analyzed: October 15, 2009

Analytical Batch: 10AN09J

Revision 1

Investigation:

Chloride by Ion Chromatography using EPA 300.0

Analytical Results Chloride

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	RL	Results
985819-1	CW-01D-022	11:57	15:57	mg/L	500	100	2080
985819-2	CW-01M-022	13:25	16:09	mg/L	500	100	2060
985819-3	OW-01D-022	14:50	16:20	mg/L	500	100	2090
985819-5	OW-01S-022	16:27	16:43	mg/L	200	40.0	829
985819-6	OW-91-022	12:32	16:54	mg/L	500	100	797
985819-7 985819-9	OW-02D-022 OW-02S-022	12:40	17:06	mg/L	500	100	2250
985819-10	OW-025-022 OW-05D-022	14:26	17:28	mg/L	500	100	389
985819-11	OW-05M-022	09:08 10:07	18:03	mg/L	500	100	2070
985819-12	OW-05S-022	10:55	18:14 18:25	mg/L mg/L	500 100	100 20.0	2100 462

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRÚESDÁIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009

Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 15, 2009

Analytical Batch: 10AN09J

Investigation:

Chloride by Ion Chromatography using EPA 300.0

REPORT

QA/QC Summary

	QC STD			iborat Yumb	er	Concenti	ation		plicate entration	F	Relative Percent ifference		eptance imits	QC Within Control	
	Duplica	te	9	85858	3-3	50.7	<u> </u>		50.6		0.20%		20%	Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple		ution	Added Spike Conc.	_	MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample	1 _	MS% ecovery	Acceptance limits	QC Within Control
M\$	985858-3	50	0.7	2	5.0	4.00	1	100	152		151		101%	85-115%	Yes
		C	C Std	I.D.		asured entration	_	eoretical centratio			Acceptan Limits		QC With		•
			Blani	(ND		<0.500			<0.500		Yes		
			MRCC	s		3.97		4.00	99.3	%	90% - 110)%	Yes		
			MRCVS	3#1		2.98		3.00	99.3	%	90% - 110	ኃ%	Yes		
			MRCVS	#2		2.98		3.00	99.3	%	90% - 110) %	Yes		
			MRCVS	S#3		2.96		3.00	98.7	%	90% - 110	3%	Yes		
		<u> </u>	MRCVS	3#4		2.99		3.00	99.7	%	90% - 110	3%	Yes		
		- 1	LCS			3.97		4.00	99.3	%	90% - 110	794	Vec		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

Investigation:

Chloride by Ion Chromatography using EPA 300.0

Analytical Results Chloride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-4	OW-01M-022	15:44	16:14	mg/L	500	100	2070
985819-8	OW-02M-022	13:46	16:25	mg/L	500	100	2090

QA/QC Summary

	QC STD	LD. I	aboratory Number	Concenti	ration		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplica	te	985761	ИD			ND	0.00%	<u>≤</u> 20%	Yes	
QC Std I.D,	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		//S ount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	985761	0.00	1.00	2.00	2	.00	2.01	2.00	101%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	3.97	4.00	99.3%	90% - 110%	Yes
MRÇVS#1	2,98	3.00	99.3%	90% - 110%	Yes
MRCVS#2	3,01	3.00	100%	90% - 110%	Yes
MRCVS#3	3.01	3.00	100%	90% - 110%	Yes
MRCV\$#4	3.03	3.00	101%	90% - 110%	Yeş
LCS	3.97	4.00	99.3%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

OF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

س Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 15, 2009

Analytical Batch: 10AN09J

Investigation:

Sulfate by Ion Chromatography using EPA 300.0

Analytical Results Sulfate

TLI I.D.	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985819-1	CW-01D-022	11:57	19:11	mg/L	25.0	12.5	492
985819-2	CW-01M-022	13:25	19:23	mg/L	25.0	12.5	480
985819-3	OW-01D-022	14:50	19:34	mg/L	25.0	12.5	500
985819-5	OW-01S-022	16:27	20:20	mg/L	10.0	5.00	162
985819-6	OW-91-022	12:32	20:31	mg/L	25.0	12.5	151
985819-7	OW-02D-022	12:40	20:42	mg/L	25.0	12.5	529
985819-9	OW-02S-022	14:26	21:05	mg/L	10.0	5.00	112
985819-10	OW-05D-022	09:08	21:17	mg/L	25.0	12.5	489
985819-11	OW-05M-022	10:07	21:28	mg/L	25.0	12.5	490
985819-12	OW-05S-022	10:55	21:39	mg/L	10.0	5.00	113

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 15, 2009

Analytical Batch: 10AN09J

Investigation:

Sulfate by Ion Chromatography using EPA 300.0

QA/QC Summary

	QC STD		Num	ber	Concent	ration		entrat	ion	Percent Difference		eptance limits	QC Within Control	
	Duplica	ite	9858	58-3	105	<u> </u>	<u> </u>	105		0.00%		≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.c unspike sample	d G	ilution Factor	Added Spike Conc.	Spike Am		Co.	sured ic. of iked inple	Theoretical Conc. of splked sample		MS%	Acceptance limits	QC Within Control
MS	985858-3	105		25.0	10.0	7	250	3	64	355		104%	85-115%	Yes
		QC S	itd I.D.		easured centration		eoretical centratio		Percen Recove			QC Withi Control		····
		В	ank		ND	·	<0.500			<0.50	00	Yes		
		MR	ccs		20.2		20.0		101%	90% - 1	10%	Yes		
		MRC	VS#1		15.0		15.0		100%	90% - 1	10%	Yes		
		MRC	VS#2		15.0		15.0		100%	90% - 1	10%	Yes		
		MRC	VS#3		15,0		15.0		100%	90% - 1	10%	Yes		
		MRC	V5#4		15.0		15.0		100%	90% - 1	10%	Yes		

15.0

20,0

101%

ND: Below the reporting limit (Not Detected).

MRCV\$#5

LCS

15.1

20.2

DF: Dilution Factor.

Respectfully submitted,

90% - 110%

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

Yes

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009 Collected: October 12 - 13, 2009

Received: October 13, 2009

Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

Acceptance

Investigation:

Sulfate by Ion Chromatography using EPA 300.0

Analytical Results Sulfate

TLI I.D.	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985819-4	OW-01M-022	15:44	18:38	mg/L	25.0	12.5	486 489
985819-8	OW-02M-022	13:46	18:50	mg/L	25.0	12.5	4

QA/QC Summary

	QC STD Duplica		Numbe 98576	r	Concentr	ation	Conce	ntration ND	DIF	ercent ference 0.00%	li	imits 20%	Control Yes	_
QC Std I.D.	Lab Number	Conc.of unspiked sample		ution ctor	Added Spike Conc.		MS lount	Measured Conc. of spiked sample		heoretical Conc. of spiked sample		MS% covery	Acceptance limits	QC Within Control
MS	985761	0.00	1.	.00	2.00	2	.00	1.94		2.00	9	7.0%	85-115%	Yes
		QC Sto	1 I.D.		easured centration		eoretical centratio			Acceptar Limits		QC With Contro	1	_
		I	. 1											

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	20.2	20.0	101%	90% - 110%	Yes
MRCVS#1	15.0	15.0	100%	90% - 110%	Yes
MRCV5#2	15.0	15.0	100%	90% - 110%	Yes
MRCVS#3	15.1	15.0	101%	90% - 110%	Yes
MRCVS#4	15.0	15.0	100%	90% - 110%	Yes
MRCVS#5	15,0	15.0	100%	90% - 110%	Yes
LCS	20.2	20.0	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985819

Date: November 5, 2009

Collected: October 12 - 13, 2009 Received: October 13, 2009

Prep/ Analyzed: October 22, 2009

Analytical Batch: 102209B

Investigation:

Total Iron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer

using EPA 200.7

Analytical Results Total Iron

TLI I.D.	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985819-1	CW-01D-022	11:57	13:31	μg/L	1.00	20.0	ND
985819-2	CW-01M-022	13:25	13:53	μg/L	1.00	20.0	25.1
985819-3	OW-01D-022	14:50	13:59	μ g/L	1.00	20.0	22.6
985819-4	OW-01M-022	15:44	14:19	μg/L	1.00	20.0	ND

QA/QC Summary

		QC ST) I.D.		boratory lumber	Concentr	Concentration		Concentration		Relative Percent Difference	Acceptance limits	QC Within Control	
_		Duplic	ate	9	85819-1	ND			ND	0.00%	≤ 20%	Yes		
G	C Std I.D.	Lab Number	Con- unsp sam	iked	Dilution Factor	Added Spike Conc,		MS nount	Measured Conc. of spiked sample		MS% Recovery	Acceptance limits	QC Within Control	
М	S	985819-1	0.0	00	1.00	2000	2	000	2090	2000	105%	75-125%	Yes	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<20.0		<20.0	Yés
MRCCS	5120	5000	102%	95% - 105%	Yes
MRCVS#1	5090	5000	102%	90% - 110%	Yes
MRCVS#2	5330	5000	107%	90% - 110%	Yes
MRCVS#3	5450	5000	109%	90% - 110%	Yes
ICS	2040	2000	102%	80% - 120%	Yes
LCS	5050	5000	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Ollution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Samples: Twelve (12) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Investigation: California Title 22, Section 26 Metals [dissolved]

Laboratory No.: 985819 Reported November 5, 2009 Collected: October 12 - 13, 2009 Received: October 13, 2009

Analyzed: See Below

Analytical Results

SAMPLE ID: CW-0	1D-022	Time Col	lected:	11:57		LAB ID:	985819-1	
		Reported		•		·	Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	µg/L	50.0	102209A	10/22/09	13:25
Antimony	EPA 200.8	ND	5.00	μ g/L	10.0	1019098	10/19/09	16:54
Arşeniç	EPA 200.8	1.69	5.00	μg/L	1.00	101909B	10/19/09	16:54
Barium	EPA 200.8	22.6	5.00	μ g/L	10.0	102209A	10/22/09	13:25
Beryllium	EPA 200.8	ND	5.00	μ g/L	1.00	101909B	10/19/09	16:54
Cadmium	EPA 200.8	ND	5.00	μ g/L	3.00	1019098	10/19/09	16:54
Chromium	EPA 200.8	1.41	5.00	μ g/L	1.00	101909B	10/19/09	16:54
Cobalt	EPA 200.8	ND	5.00	μι g/L	5.00	101909B	10/19/09	16:54
Copper	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	16:54
Lead	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:54
Magnesium	EPA 200.7	13200	20.0	μ g/L	200	102309A	10/23/09	14:31
Manganese	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:54
Mercury	EPA 200.8	ND	5.00	μg/L	1.00	101509A-Hg	10/15/09	12:34
Molybdenum	EPA 200.8	12.2	5.00	μg/L	10.0	101909B	10/19/09	16:54
Nickel	EPA 200.8	ND	5.00	µ g/ L	10.0	101909B	10/19/09	16:54
Selenium	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:54
Şilver	EPA 200.8	ND	5,00	μg/L	5.00	110209A	11/02/09	12:39
Thallium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	16:54
Vanadium	EPA 200.8	ND	5.00	μ g/ L	5.00	1019098	10/19/09	16;54
Zinc	EPA 200.8	ND	5.00	µg/L	10.0	102609A	10/26/09	13:30
Boron	EPA 200.7	1020	1.00	μg/L	200	102809B	10/28/09	15:30
Calcium	EPA 200.7	149000	.20.0	μg/L	4000	102309A	10/23/09	14:31
Iron	EPA 200.7	ND	1,00	μ 9/L	20.0	102809B	10/28/09	15:30
Potassium	EPA 200.7	11900	20.0	μ g/L	500	102309A	10/23/09	14:31
Sodium	EPA 200.7	1220000	500	μ g/L	100000	102309A	10/23/09	13:38

Report Continued

SAMPLE ID: CW-	01M-022	Time Co	llected: 13	3:25		LAB ID:	985819-2	····
_		Reported			· · · · · · · · · · · · · · · · · · ·		Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	μ g/L	50.0	102209A	10/22/09	13:31
Antimony	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	17:00
Arsenic	EPA 200.8	1.88	5.00	μ g/L	1.00	101909B	10/19/09	17:00
Barium	EPA 200.8	80.0	5.00	μg/L	10.0	102209A	10/22/09	13:31
Beryllium	EPA 200.8	ND	5.00	μ g/L	1.00	101909B	10/19/09	17:00
Cadmium	EPA 200.8	ND	5.00	μ g/L	3.00	101909B	10/19/09	17:00
Chromium	EPA 200.8	2.36	5.00	μ g/L	1.00	101909B	10/19/09	
Cobalt	EPA 200.8	ND	5.00	<u>μσ/L</u>	5.00	101909B	10/19/09	17:00
Copper	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	17:00
Lead	EPA 200.8	ND	`5.00	μ ġ/L	10.0	101909B	10/19/09	17:00
Magnesium	EPA 200.7	11200	20.0	μg/L	200	102309A	10/23/09	17:00
Manganese	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/23/09	14:53
Mercury	EPA 200.8	ND	5.00	μg/L	1.00	101509A-Hg	10/15/09	17:00
Molybdenum	EPA 200.8	11.9	5.00	μg/L	10.0	101909B	10/19/09	13:12
Nickel	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	17:00
Selenium	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	17:00
Silver	EPA 200.8	ND	5.00	<u>μg/L</u>	5.00	1102 09 A	11/02/09	17:00
Thallium	EPA 200.8	ND	5.00	<u>μg/L</u>	1.00	101909B		12:45
Vanadium	EPA 200.8	ND	5.00	μ g/L	5.00		10/19/09	17:00
Žinc	EPA 200.8	ND	5.00	μ <u>g/L</u>	10.0	101909B	10/19/09	17:00
Boron	EPA 200.7	1040	1.00	μg/L		102609A	10/26/09	13:36
Calcium	EPA 200.7	134000	20.0	μg/L	200 4000	102809B	10/28/09	16:05
Iron	EPA 200.7	29.0	1.00	• • • •		102309A	10/23/09	14:53
Potassium	EPA 200.7	12200	20.0	<u>μg/L</u>	20.0	102809B	10/28/09	16:05
Sodium	EPA 200.7	1210000	500	<u></u>	500	102309A	10/23/09	14:53
			200		100000	102 <u>309A</u>	10/23/09	13:59

Report Continued

SAMPLE ID:	OW-01D-022	Time Co	llected:	14:50	_	LAB ID:	985819-3	
		Reported					Date	Time
<u>Parameter</u>	Method	Value		Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	μց/∟	50.0	102209A	10/22/09	
Antimony	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	13:38 17:06
Arsenic	EPA 200.8	1.48	5.00	μg/L .	1.00	101909B	10/19/09	
Barium	EPA 200.8	36.4	5.00	μ g/ L	10.0	102209A	10/22/09	17:06
Beryllium	EPA 200.8	ND	5.00	μ g/L	1.00	101909B	10/19/09	13:38
Cadmium	EPA 200.8	ND	5.00	μ g/L	3.00	101909B	10/19/09	17:06 17:06
Chromium	EPA 200.8	1.51	5.00	μg/L	1.00	1019098	10/19/09	17:06
Cobalt	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	
Copper	EPA 200.8	ND	5.00	<u>μg/L</u>	5.00	101909B	10/19/09	17:06
Lead	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	17:06
Magnesium	EPA 200.7	14800	20.0	μ g/L	200	102309A	10/23/09	17:06
Manganese	EPA 200.8	ND	5.00	<u>μg/L</u>	10.0	101909B	10/23/09	14:58
Mercury	EPA 200.8	ND .	5.00	μg/L	1.00	101509A-Hg	10/15/09	17:06
Molybdenum	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	13:19
Nickel	EPA 200.8	ND	5.00	<u>μ</u> g/L	10.0	101909B	10/19/09	17:06
Selenium	EPA 200.8	ND	5.00	µg/L	10.0	101909B		17:06
Silver	EPA 200.8	ND	5.00	μ g/L	5.00	110209A	10/19/09	17:06 12:52
Thallium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	17:06
<u>Vanadium</u>	EPA 200.8	ND	5.00	μ g/L ,	5.00	101909B	10/19/09	
Żinc	EPA 200.8	ND	5.00	يو/L	10.0	102609A	10/26/09	17:06
Boron	EPA 200.7	1010	1.00	μg/L	200	102809B		13:43
Calcium	EPA 200.7	176000	20.0	μg/L	4000	102309A	10/28/09 10/23/09	16:11
Iron	EPA 200.7	23.9	1.00	μg/L	20.0	102809B		14:58
Potassium	EPA 200.7	13900	20,0	μ g/L	500	102809B	10/28/09	16:11
Sodium	EPA 200.7	1210000	500	μ 9/L	100000	102309A	10/23/09 10/23/09	14:58 14:05

Report Continued

SAMPLE ID:	OW-01M-022	Time Col	lected:	15:44		LAB ID:	985819-4	
		Reported		100			Date	Time
Parameter	<u>Method</u>	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	μg/L	50.0	102209A	10/22/09	13:44
Antimony	EPA 200.8	NĎ	5.00	μ g/L	10.0	101909B	10/19/09	17:12
Arsenic	EPA 200.8	1.11	5.00	μ g/L	1.00	101909B	10/19/09	17:12
Barium	EPA 200.8	91,0	5.00	μ g/L	10.0	102209A	10/22/09	13:44
Beryllium	EPA 200.8	ND	5.00	μ g/L	1.00	101909B	10/19/09	17:12
Cadmium	EPA 200.8	ND	5.00	μg/L	3.00	101909B	10/19/09	17:12
Chromium	EPA 200.8	2.14	5.00	μg/L	1.00	101909B	10/19/09	17:12
Cobalt	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	17:12
Соррег	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	17:12
Lead	EPA 200.8	ND	5.00	با /و بر	10.0	101909B	10/19/09	17:12
Magnesium	EPA 200.7	20200	20.0	μ g/L	200	102309A	10/23/09	15:03
Manganese	EPA 200.8	ND	5.00	µ g/ L	10.0	101909B	10/19/09	17:12
Mercury	EPA 200.8	ND	5.00	μ g/L	1.00	101509A-Hg	10/15/09	13:25
Molybdenum	EPA 200.8	11.6	5.00	μg/L	10.0	101909B	10/19/09	17:12
Nickel	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	17:12
Selenium	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	17:12 17:12
Silver	EPA 200.8	ND	5.00	µ g/L	5.00	110209A	11/02/09	12:58
Thallium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	17:12
Vanadium	EPA 200.8	ND	5.00	μ g /L	5.00	101909B	10/19/09	<u>17:12</u> . 17:12
Zinc	EPA 200.8	ND	5.00	µg/L	10.0	102609A	10/26/09	13:49
Boron	EPA 200.7	992	1.00	μ <u>α/L</u>	200	102809B	10/28/09	16:16
Calcium	EPA 200.7	198000	20.0	μg/L	4000	102309A	10/23/09	15:03
Iron	EPA 200.7	ND	1.00	μg/L	20.0	102809B	10/28/09	16:16
Potassium	EPA 200.7	14800	20.0	μg/L	500	102309A	10/23/09	15:03
Sodium	EPA 200.7	1150000	500	μ g/L	100000	102309A	10/23/09	14:26

ND: Not detected,or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

OW-01M-022

OW-01S-022

OW-87-022 OW-91-022

CW-01M-022 OW-01D-022

CW-01D-022

OW-02M-022

OW-02S-022 OW-05D-022 OW-05M-022 OW-05S-022

3 ÷

OW-02D-022

Approved by

OW-88-022

Sampled by

Received by

Received by

COC Number:

Task Order

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 10, 2009

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2009-CMP-022, GROUNDWATER MONITORING

PROJECT, TLI NO.: 985892

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2009-CMP-022 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on October 15, 2009, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Samples 985892-1 and 985892-2 were received and analyzed past the holding time for pH.

Mercury was analyzed by EPA 200.8 rather that EPA 245.1 due to instrument problems.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

K. R. P. gyc

K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009 Received: October 15, 2009

ANALYST LIST

МЕТНОР	PARAMETER	ANALYST			
EPA 120.1	Specific Conductivity	Tina Acquiat			
SM 4500- <u>H</u> B	рН	Tina Acquiat			
SM 2540C	Total Dissolved Solids	Tina Acquiat			
SM 2320B	Alkalinity	Iordan Stavrev			
SM 2130B	Turbidity	Gautam Savani			
EPA 300.0	Anions	Giawad Ghenniwa			
SM 4500-NH3 D	Ammonia	lordan Stavrev			
EPA 200.7	Metals by ICP	Kris Collins			
EPA 200.8	Metals by ICP/MS	Romuel Chaves			
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky			

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM.01

REPORT

Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009

Prep/ Analyzed: October 16, 2009

Analytical Batch: 10PH090

Investigation;

pH by SM 4500-H B

Analytical Results pH

<u>TLI I.D.</u>	<u>Field I.D.</u>	Run Time	Units	MDL	<u>RL</u>	Results
985892-1	CW-02D-022	08:20	Hq	0.017	2.00	8.19 J
985892-2	CW-02M-022	08:22	pН	0.017	2.00	8.00 J
985892-3	CW-03D-022	08:18	pН	0.017	2.00	8.16
985892-4	CW-03M-022	08:25	pН	0.017	2.00	7.83
985892-5	CW-04D-022	08:30	pН	0.017	2.00	8.02
985892-6	CW-04M-022	08:32	pН	0.017	2.00	7.90
985892-7	OW-90 - 022	08:15	pН	0.017	2.00	7.79

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	985892-6	7.90	7.91	0.01	+ 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
MRCVS	7.04	7.00	0.04	+ 0,100 Units	Yes
LCS	7.03	7.00	0.03	+ 0.100 Units	Yes
LCSD	7.02	7.00	0.02	<u>+</u> 0.100 Units	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009 Received: October 15, 2009 Analyzed: October 20, 2009

Analytical Batch: 10CrH09K

Investigation;

Hexavalent Chromium by IC Using Method EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985892-1 985892-2 985892-3 985892-4 985892-5	CW-02D-022 CW-02M-022 CW-03D-022 CW-03M-022 CW-04D-022	15:44 16:50 09:09 10:23 12:10	09:03 09:24 08:01 08:32 11:18	μg/L μg/L μg/L μg/L μg/L	5.25 5.25 5.25 5.25 5.25 10.5	1.05 1.05 1.05 1.05	ND 6.49 ND 11.4
985892-6 985892-7	CW-04M-022 OW-90-022	13:18 08:25	08:42 08:53	μg/L μg/L	5.25 5.25	2.10 1.05 1.05	ND 16.7 11.4

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Relative

Percent

Difference

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. + 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Laboratory

Number

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

QC STD I.D.

Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009 Received: October 15, 2009 Analyzed: October 20, 2009

QC Within

Control

Analytical Batch: 10CrH09K

Acceptance

limits

Investigation:

Hexavalent Chromium by IC Using Method EPA 218.6

QA/QC Summary

Concentration.

Duplicate

Concentration

	Duplica	ite 98:	5892-2	6.49		6.55	0,92%	≤ 20%	Yes	
QC Std I.D.	Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	985892-1	0.310	5.25	1.00	5.25	5.83	5.56	105%	90-110%	Yes
MS	985892-2	6.49	5.25	5.00	26.3	32.9	32.7	101%	90-110%	Yes
MS	985892-3	0.378	5.25	1.00	5.25	5.63	5.63	100%	90-110%	
MS	985892-4	11.4	5.25	5.00	26.3	40.0	37.7	109%	90-110%	Yes
MS	985892-5	1.90	10.5	1.00	10.5	12.5	12.4	101%		Yes
MS	985892-6	16.7	5.25	5.00	26.3	44.1			90-110%	Yes
MS	985892-7	11.4	5.25	5.00	26.3		43.0	104%	90-110%	Yes
			<u> </u>	3.00	د.0∠	38.9	37.7	105%	90-110%	Yes

7.11	3.00	20.3	30.9	37.7	105%
QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
BLANK	NO	<0.200		<0.200	Yes
MRCCS	5.16	5.00	103%	90% - 110%	Yes
MRCVS#1	10.2	10.0	102%	95% - 105%	Yes
MRCVS#2	10.2	10.0	102%	95% - 105%	Yes .
MRCVS#3	10.1	10.0	101%	95% - 105%	Yes
MRCVS#4	10.0	10.0	100%	95% - 105%	Yes
MRCVS#5	10.1	10.0	101%	95% - 105%	Yes
LCS	5.15	5.00	103%	90% - 110%	Vec

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367,MP.02,CM.01 P.O. No.: 370367,MP.02,CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009 Prep/ Analyzed: October 20, 2009

Analytical Batch: 10EC09K

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>MDL</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985892-1	CW-02D-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7140
985892-2	CW-02M-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7020
985892-3	CW-03D-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	7070
985892-4	CW-03M-022	μ mhos/cm	EPA 120.1	0.022	1.00	2.00	8600
985892-5	CW-04D-022	μ mhos/cm	EPA 120.1	0.022	1.00	2.00	8770
985892-6	CW-04M-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	6250
985892-7	OW-90-022	μmhos/cm	EPA 120.1	0.022	1.00	2.00	8670

QA/QC Summarv

QC STD I.D.	Laborator Number	y Concentratio	n	Duplicat Concentra		. 1	Relative Percent ifference		eptance Imits		Within ntrol
Duplicate	985892-6	6250	•	6270			0.32%	۲۱	10%	,	es/
	Cetalin	Measured	Theo	retical	Perce	∍nt	Acceptar	ice	QC With	ın	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<2,00		<2.00	Yes
CC\$	704	706	99.7%	90% - 110%	Yes
CVS#1	997	999	99.8%	90% - 110%	Yes
CVS#2	998	999	99.9%	90% - 110%	Yes
LCS	704	706	99.7%	90% - 110%	Yes
LCSD	704	706	99.7%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

OF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

fur

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01

P.O. No.: 370367.MP.02.CM.01

Laboratory No.: 985892

Date: November 10, 2009

Collected: October 14 - 15, 2009

Received: October 15, 2009 Prep/ Analyzed: October 20, 2009

Analytical Batch: 10TDS09E

Investigation:

Total Dissolved Solids by SM 2540C

REPORT

Analytical Results Total Dissolved Solids

TLI I.D.	Field I.D.	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
985892-1	CW-02D-022	mg/L	SM 2540C	250	4510
985892-2	CW-02M-022	mg/L	SM 2540C	250	4370
985892-3	CW-03D-022	mg/L	SM 2540C	250	4590
985892-4	CW-03M-022	mg/L	SM 2540C	250	5640
985892-5	CW-04D-022	mg/L	SM 2540C	250	5580
985892 <u>-</u> 6	CW-04M-022	mg/L	SM 2540C	125	3760
985892-7	OW-90-022	mg/L	SM 2540C	250	5080

QA/QC Summary

QC STD I,D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	985892-7	5080	5020	0.59%	≤ 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<10.0		<10.0	Yes
LCS 1	499	500	99.8%	90% - 110%	Yes
LCS 2	503	500	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: E2 Consulting Engineers, Inc.: 155 Grand Ave. Suite 1000

Oakland, CA 94612

Blank

LCS

ND

99.0

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project

Project No.: 370367,MP.02,CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009 Prep/ Analyzed: October 19, 2009

Analytical Batch: 10ALK09E

Investigation:

Alkalinity by SM 2320B

REPORT

Analytical Results Total Alkalinity, Bicarbonate, Carbonate

TLI I.D. <u>Fletd</u>	<u>I.D.</u>	<u>Units</u>	<u>RL</u>	Total Alkalinity	Bicarbonate	<u>Carbonate</u>
985892-1 CW-0	2D-022	mg/L	5.00	59.0	59.0	ND
985892-2 CW-0	2M-022 *	mg/L	5.00	49.0	49.0	ND
985892-3 CW-0	3D-022	mg/L	5.00	60.0	60.0	ND
985892-4 CW-0	3M-022	mg/L	5.00	47.0	47.0	ND
985892-5 CW-0	4D-022	mg/L	5.00	54.0	54.0	ND
985892-6 CW-0	4M-022	mg/L	5.00	53.0	53.0	ND
985892-7 OW-9	0-022	mg/L	5.00	46.0	46.0	ND

QA/QC Summary

-	QC STD	I.D.	Laborat Numb	•	Concentrati	on	Duplica Concentr		Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	985892	-1	59.0		61.0		3.33%	<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc.e unspike sampl	ed Dili	ition ctor	Added Spike Conc.	MS Amount		red Conc. ed sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
M\$	985892-6	53.0	1	.00	100	100		149	153	96.0%	75-125%	Yes
		QC :	Std I.D.		Wieasured Concentration		retical ntration	Percent	- I	ce QC Wit		

<5.00

100

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Yes

⁄ - Mona Nassimi, Manager Analytical Services

<5.00

90% - 110%

99.0%

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publiclty matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367,MP.02,CM.01 P.O. No.: 370367,MP.02,CM.01 Laboratory No.: 985892

Date: November 10, 2009 **Collected:** October 14 - 15, 2009

Received: October 15, 2009 Prep/ Analyzed: October 16, 2009

Analytical Batch: 10TUC09M

Investigation:

Turbidity by Method SM 2130B

REPORT

Analytical Results Turbidity

TLI I.D.	Field I.D.	Sample Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
985892-1	CW-02D-022	15:44	NTU	1.00	0.100	0.221
985892-2	CW-02M-022	16:50	NTU	1.00	0.100	0.251
985892-3	CW-03D-022	09:09	NTU	1.00	0.100	0.369
985892-4	CW-03M-022	10:23	NTU	1.00	0.100	0.205
985892-5	CW-04D-022	12:10	NTU	1.00	0.100	0.168
985892-6	CW-04M-022	13:18	NTU	1.00	0.100	0.176
985892-7	OW-90-022	08:25	NTU	1.00	0.100	0.229

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	985893-14	ND	ND	0.00%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND .	<0.100		<0.100	Yes
LCS	7.84	8.00	98.0%	90% - 110%	Yes
LCS	7,62	8.00	95.3%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009

Prep/ Analyzed: October 19, 2009 Analytical Batch: 10NH3-E09C

Investigation:

Arnmonia as N by Method SM 4500-NH3 D

REPORT

Analytical Results Ammonia as N

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Method</u>	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985892-1	CW-02D-022	15:44	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985892-2	CW-02M-022	16:50	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985892-3	CW-03D-022	09:09	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985892-4	CW-03M-022	10:23	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985892-5	CW-04D-022	12:10	SM 4500-NH3 D	mg/L	1.00	0.500	ND
985892-6+ 985892-7	CW-04M-022	13:18	SM 4500-NH3 D	mg/L	1.00	0.500	ND
903082-7	OW-90-022	08:25	SM 4500-NH3 D	mg/L	1.00	0.500	ND

QA/QC Summary

		-								,						
	QC ST) I.D.		aborate Numbe	•	Concentr	ation		olicate entration	F	Relative Percent Ifference		eptance limits	7	Control	
	Duplic	ate		985892	-7	ND			ND		0.0%		20%	\top	Yes	
QC Std I.D.	Lab Number	unsp	ic.of piked nple		ution ctor	Added Spike Conc.	1	MS nount	Measured Conc. of spiked sample	Ī	Theoretical Conc. of spiked sample	I .	MS% covery	Acce	ptance limits	QC Within Control
MS	985892-7	0.	00	1.	.00	6.00	Ű	3.00	6.04	I	6.00		101%		75-125%	Yes
+		C	QC Std	I.D.		easured centration		eoretica: centratio	,		Accepter Limits		QC Wit			
			Blan	k		NĎ		<0.500			<0.500)	Yes			
			MRC	cs		5.97		6.00	99.59	/ /	90% - 11	0%	Yes	_		
		"	MRCV	S#1	ļ	5.82		6.00	97.09	V.	000/ 11/		V			

10.0

104%

ND: Below the reporting limit (Not Detected).

L¢\$

10.4

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Yes

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009

Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985892-1	CW-02D-022	15:44	10:41	mg/L	5.00	0.500	4.92
985892-2	CW-02M-022	16:50	10:53	mg/L	5.00	0.500	2.88
985892-3	CW-03D-022	09:09	11:04	mg/L	5.00	0.500	6.28
985892-4	CW-03M-022	10:23	11:16	mg/L	5.00	0.500	2.81
985892-5	CW-04D-022	12:10	11:27	mg/L	5.00	0.500	4.26
985892-6	CW-04M-022	13:18	11:38	mg/L	5.00	0.500	1.96
985892-7	OW-90-022	08:25	11:50	ma/L	5.00	0.500	2.87

QA/QC Summarv

	_	QC STD	I.D. "	Number	Concent	ation	!	entration	Percent Difference	Ilmits	Control	l
		Duplica	te	985761	ND			ND	0.0%	≤ 20%	Yes	İ
	QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		VIS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sampi	MS% Recovery	Acceptance limits	QC Within Control
į	MS	985761	0.00	1.00	2.00	2	.00	2.13	2.00	107%	85-115%	Yes

QC Std 1.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	4.09	4.00	102%	90% - 110%	Yes
MRCVS#1	3.12	3.00	104%	90% - 110%	Yes
MRCVS#2	3.13	3.00	104%	90% - 110%	Yes
LCS	4.09	4.00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009 Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

Investigation:

Chloride by Ion Chromatography using EPA 300.0

Analytical Results Chloride

TLI I.D.	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985892-1 985892-2 985892-3 985892-4 985892-5 985892-6 985892-7	CW-02D-022 CW-02M-022 CW-03D-022 CW-03M-022 CW-04D-022 CW-04M-022 OW-90-022	15:44 16:50 09:09 10:23 12:10 13:18 08:25	16:56 17:07 17:18 17:53 18:04 18:15 18:27	mg/L mg/L mg/L mg/L mg/L mg/L	500 500 500 500 500	100 100 100 100 100 100	2110 2130 2070 2710 2700 1900
******	000 022	00.23	10.27	mg/L	500	100	2780

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009

Collected: October 14 - 15, 2009 Received: October 15, 2009

Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

Investigation:

Chloride by Ion Chromatography using EPA 300.0

REPORT

QA/QC Summary

	QC STD I.D.		Laboratory Number		Concentration		Duplicate Concentration		Relative Percent Difference		Acceptance limits		QC Within Control			
	Duplica	ate .	98576		1	ND			QZ	0.00%		_≤ 20%		T	Yes	
QC Std	Lab Number	l unsniker			ution	Added Spike Conc.	MS Amount		Measured Conc. of spiked sample	-	Theoretical Conc. of spiked sample	MS% Recovery		Acceptance limits		QC Within Control
MS	985761	0.0	0.00		.00	2.00	2	.00	2.01		2.00		101%		85-115%	Yes
			QC Std I.D.		Measured Concentration		Theoretical Concentration		Percent Recovery		Acceptance Limits		QC Within Control			
			Blank MRCCS			ND 3,97		<0.500			<0.500 90% - 110%					
								4.00	99.3	%						
			MRCVS#1		2.98			3.00		%	90% - 110%		Yes			

MRCVS#2 3.01 3.00 100% 90% - 110% Yes MRCVS#3 3.01 3.00 100% 90% - 110% Yes MRCVS#4 3.03 3.00 101% 90% - 110% Yes LCS 3.97 4.00 99.3% 90% - 110% Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

 \mathbb{R} Report

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009

Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

Investigation:

Sulfate by Ion Chromatography using EPA 300.0

Analytical Results Sulfate

<u>TLI I.D.</u>	Field I.D.	Sample Time	Run Time	<u>Units</u>	DF	<u>RL</u>	Results
985892-1	CW-02D-022	. 15:44	19:01	mg/L	25.0	12.5	491
985892-2	CW-02M-022	16:50	19:13	mg/L	25.0	12.5	436
985892-3	CW-03D-022	09:09	19:24	mg/L	25.0	12.5	484
985892-4	CW-03M-022	10:23	19:35	mg/L	25.0	12.5	415
985892-5	CW-04D-022	12:10	20:10	mg/L	25.0	12.5	527
985892-6	CW-04M-022	13:18	20:21	mg/L	25.0	12.5	331
985892-7	OW-90-022	08:25	20:32	mg/L	25.0	12.5	417

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

020

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009 Prep/ Analyzed: October 16, 2009

Analytical Batch: 10AN09K

Investigation:

Sulfate by Ion Chromatography using EPA 300.0

QA/QC Summary

	QC STD	1.D. I	aboratory Number	Concentr	Concentration		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplica	te	985761	ND	ND		ND	0.00%	<u>≾</u> 20%	Yes	
QC Std	Lab	Conc.of unspiked	Dilution	Added Spike		из	Measured Conc. of	Theoretical Conc. of	M3%	Acceptance	

	QC Std I,D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Conc. of spiked sample	Conc. of spiked sample	M3% Recovery	Acceptance limits	QC WithIn Control
Į	MS	985761	0.00	1.00	2.00	2.00	1.94	2.00	97.0%	85-115%	Yes
			"				-				

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.500		<0.500	Yes
MRCCS	20.2	20.0	101%	90% - 110%	Yes
MRCVS#1	15.0	15.0	100%	90% - 110%	Yes
MRCVS#2	15.0	15.0	100%	90% - 110%	Yes
MRCVS#3	15.1	15.0	101%	90% - 110%	Yes
MRCVS#4	15.0	15.0	100%	90% - 110%	Yes
MRCVS#5	15.0	15.0	100%	90% - 110%	Yes
LCS	20.2	20.0	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nasšimi, Manag Analytical Services

021

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009

Prep/ Analyzed: October 22, 2009

Analytical Batch: 102209B

Investigation:

Total Iron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

Analytical Results Total Iron

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
985892-1	CW-02D-022	15:44	15:10	μg/L	1.00	20.0	ND
985892-2	CW-02M-022	16:50	15:30	μ g /L	1,00	20.0	ND
985892-3+	CW-03D-022	09:09	15:36	μg/L	1.00	20.0	ND
985892-4	CW-03M-022	10:23	15:41 .	μg/L	1.00	20.0	ND
985892-5	CW-04D-022	12:10	15:47	μ g/L	1.00	20.0	ND
985892-6 985892-7	CW-04M-022	13:18	15:52	μ g/L	1.00	20.0	ND
903082-7	OW-90-022	08:25	15:58	μg/L	1.00	20.0	ND

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O.:No.: 370367.MP.02.CM.01 Laboratory No.: 985892

Date: November 10, 2009 Collected: October 14 - 15, 2009

Received: October 15, 2009

Prep/ Analyzed: October 22, 2009

Analytical Batch: 102209B

Investigation:

Total Iron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using EPA 200.7

QA/QC Summary

	QC STC		Labora Num 98581	ber	Concentration		Concentration		Relative Percent Difference 0.00%	Acceptance limits	QC Within Control Yes	
QC Std I.D.	Lab Number	Conc. unspik sampi	of Di	ilution actor	Added Spike Conc.			Measured Conc. of spiked sample			Acceptance limits	QC Within Control
MS	985819-1	0.00		1.00	2000	20	000	2090	2000	105%	75-125%	Yes
				140		74		T 5				

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<20.0		<20.0	Yes
MRCCS	5120	5000	102%	9 <u>5</u> % - 105%	Yes
MRCVS#1	5090	5000	102%	90% - 110%	Yes
MRCVS#2	5330	5000	107%	90% - 110%	Yes
MRCVS#3	5450	5000	109%	90% - 110%	Yes
ICS	2040	2000	102%	80% - 120%	Yes
LCS	5050	5000	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor

Respectfully submitted.

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

023

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Samples: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 370367.MP.02.CM.01 P.O. No.: 370367.MP.02.CM.01

Investigation: California Title 22, Section 26 Metals [dissolved]

Laboratory No.: 985892
Reported November 10, 2009
Collected: October 14 - 15, 2009
Received: October 15, 2009

Analyzed: See Below

Analytical Results

SAMPLE ID:	CW-02D-022	Time Col	llected: 15	:44		LAB ID: 985892-1					
		Reported	,				Date	Time			
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed			
Aluminum	EPA 200.8	ND	5.00	µg/L	50.0	102209A	10/22/09	13:50			
Antimony	FPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	15:32			
Arsenic	EPA 200.8	4.18	5.00	μg/L	1.00	101909B	10/19/09	15:32			
Barium	EPA 200.8	10.5	5.00	μ 9/ L	10.0	102209A	10/22/09	13:50			
Beryllium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	15:32			
Cadmium	EPA 200.8	ND	5.00	μ g/L	3.00	101909B	10/19/09	15:32			
Chromium	EPA 200.8	ND	5.00	μ ց/L	1.00	101909B	10/19/09	15:32			
Cobalt	EPA 200.8	ND	5.00	μ g/L	5.00	101909B	10/19/09	15:32			
Copper	EPA 200.8	ND	5.00	μg/L	5.00	1019098	10/19/09	15:32			
Lead	EPA 200.8	ND .	5.00	μg/L	10.0	101909B	10/19/09	15:32			
Magnesium	EPA 200.7	4250	20.0	μو/۲	200	110309A	11/03/09	10:32			
Manganese	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	15:32			
Mercury	EPA 200.8	ND	5.00	μg/L	1.00	102009A-Hg	10/20/09	10:09			
Molybdenum	EPA 200.8	17.6	5.00	μ g/ L	10.0	101909B	10/19/09	15:32			
Nickel -	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	15:32			
Selenium	EPA 200.8	ND "	5.00	μ g/ L.	10.0	101909B	10/19/09	15:32			
Silver	EPA 200.8	ND	5.00	μ g/L	5.00	110209A	11/02/09	13:24			
Thallium	EPA 200.8	ND	5.00	μg/L	1.00	1019098	10/19/09	15:32			
Vanadium	+ EPA 200.8	5.69	5.00	μg/L	5.00	101909B	10/19/09	15:32			
Zinc	EPA 200.8	ND	5.00	μ g/L	10.0	102609A	10/26/09	12:13			
Boron	EPA 200.7	1460	1.00	μg/L	200	110209A	11/02/09	14:07			
Calcium	EPA 200.7	76000	50.0	μg/L	10000	102609A	10/26/09	10:29			
Iron	EPA 200.7	ND	1.00	μg/L	20.0	110209A	11/02/09	14:07			
Potassium	EPA 200.7	11900	20.0	μ g/L	500	110309A	11/03/09	10:32			
Sodium	EPA 200.7	1290000	500	μ g/L	100000	102609A	10/26/09	12:21			

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

024

SAMPLE ID: CW-0	2M-022	Time Col	llected: 16	5:50		LAB ID:	985892-2	
D		Reported		1			Date	Time
Parameter	<u>Method</u>	Value	DF	Units	RL	Batch	Analyzed	Analyzed
<u>Al</u> uminum	EPA 200.8	ND	5.00	μg/L	50.0	102209A	10/22/09	13:57
Antimony	EPA 200.8	ND ND	5.00	µg/L	10.0	101909B	10/19/09	16:03
Arsenic	EPA 200.8	2.76	5.00	μ g/L	1.00	101909B	10/19/09	16:03
Barium	EPA 200.8	66.3	5.00	μ g /L	10.0	102209A	10/22/09	13:57
Beryllium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	
Cadmium	EPA 200.8	ND	5.00	μg/L	3.00	101909B	10/19/09	16:03
Chromium	EPA 200.8	6.70	5.00	µ g/L	1.00	101909B	10/19/09	16:03
Cobalt	EPA 200.8	ND	5.00	μ g/L	5.00	101909B		16:03
Copper	EPA 200.8	 ND	5.00	μg/L	5.00	101909B	10/19/09	16:03
Lead	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:03
Magnesium	EPA 200.7	10400	20.0	μ g/L	200		10/19/09	16:03
Manganese	EPA 200.8	ND	5.00			110309A	11/03/09	10:54
Mercury	EPA 200.8	ND	5.00	μ <u>g/L</u>	10.0	101909B	10/19/09	16:03
Molybdenum	EPA 200.8	25.8	5.00	<u>μ9/L</u>	1.00	102009A-Hg	10/20/09	10: <u>34</u>
Nickel	EPA 200.8	ND .	5.00	μg/L	10.0	1019098	10/19/09	16:03
Selenium	EPA 200.8	ND		<u>μ</u> g/L	10.0	10190 <u>9B</u>	10/19/09	16:03
Silver	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	16:03
Thallium	EPA 200.8	·	5.00	μ g/L	5.00	110209A	11/02/09	13:31
Vanadium _	EPA 200.8	ND	5.00	д д/L	1.00	101909B	10/19/09	16:03
Zinc		ND	5.00	_ µg/L	5.00	1019098	10/19/09	16:03
Boron	EPA 200.8	ND	5.00	μ9/L	10.0	102609A	10/26/09	12:39
Calcium	EPA 200.7	1080	1.00	<u>ا/ویر</u>	200	110309A	11/03/09	12:47
	EPA 200.7	129000	50.0	μ g/L	10000	102609A	10/26/09	10:51
ron	EPA 200.7	ND	1.00	μ g/L _	20.0	110309A	11/03/09	12:47
otassium	EPA 200.7	13100	20.0	μ g/L	500	110309A	11/03/09	10:54
Sodium	EPA 200.7	1310000	500	μ g/L	100000	102609A	10/26/09	12:43

SAMPLE ID: C	W-03D-022	Time Co	llected: 0	9:09		LAB ID:	985892-3	
Banawataa		Reported				-111	Date	Time
Parameter	Method	Value	<u>D</u> F	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	μg/L	50.0	102209A	10/22/09	14:03
Antimony	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	
<u>Arsenic</u>	EPA 200.8	2.09	5.00	μ g/L	1.00	101909B	10/19/09	16:10
Barium	EPA 200.8	ND	5.00	μ g/L	10.0	102209A	10/22/09	
Beryllium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	1 <u>4:03</u>
Cadmium	EPA 200.8	ND	5.00	μ <u>g/L</u>	3.00	101909B	10/19/09	16:10
Chromium	EPA 200.8	ND	5.00	μ g/L	1.00	101909B	10/19/09	. 1 <u>6:10</u>
Cobalt	EPA 200.8	ND	5.00	μg/L	5.00	101909B		16:10
Соррег	EPA 200.8	ND	5.00	μg/L	5.00		10/19/09	16:10
Lead	EPA 200.8	ND	5.00	μ g/L μ g/L	10.0	101909B	10/19/09	16:10
Magnesium	EPA 200.7	5620	20.0			101909B	10/19/09	16:10
Manganese	EPA 200.8	ND	5.00	μg/L	200	110309A	11/03/09	10:59
Mercury	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:10
Molybdenum	EPA 200.8	49.1	5.00	μ g/L	1.00	102009A-Hg	10/20/09	10:40
Nickel	EPA 200.8	ND	5.00	<u>μg/L</u>	10.0	101909B	10/19/09	16:10
Selenium	EPA 200.8	ND	5.00	μ <u>g/L</u>	10.0	101909B	10/19/09	16:10
Silver	EPA 200.8			μ g/L	10.0	101909B	10/19/09	16:10
Thallium	EPA 200.8	ND	5.00	<u>با/ویر</u>	5.00	110209A	11/02/09	13:38
√anadium	EPA 200.8	ND	5.00	μg/L	_1.00	101909B	10/19/09	16:10
Zinc		ND	5.00	μ g/L	5.00	10 <u>1909</u> B	10/19/09	16:10
Boron	. EPA 200.8	ND	5.00	<u> дg/L</u>	10.0	102609A	10/26/09	12:45
	EPA 200.7	1590	1.00	<u>μg/L</u>	200	110209A	11/02/09	14:34
Calcium	EPA 200.7	69300	50.0	μg/L	10000	102609A	10/26/09	11:12
ron	EPA 200.7	. ND	1.00	μ g/L	20.0	110209A	11/02/09	14:34
otassium	EPA 200.7	12 <u>800</u>	20.0	μ g/L	500	110309A	11/03/09	10:59
Sodium	EPA 200.7	1320000	500	μg/L_	100000	102609A	10/26/09	13:04

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

SAMPLE ID:	CW-03M-022	Time Co	llected: 10	0:23		LAB ID:	985892-4	- .
D		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL_	Batch	Analyzed	Analyzed
<u>Aluminum</u>	EPA 200.8	ND	5.00	μ g/L	50.0	102209A	10/22/09	14:09
Antimony	EPA 200.8	_ND	5.00	µg/L	10.0	101909B	10/19/09	16:28
Arsenic	EPA 200.8	1.34	5.00	μg/L	1.00	101909B	10/19/09	16:28
Barium	EPA 200.8	51.2	5.00	μ g/L	10.0	102209A	10/22/09	14:09
Beryllium	EPA 200.8	ND	5.00	μ g/L	1.00	101909B	10/19/09	16:28
Cad <u>mium</u>	EPA 200.8	ND	5.00	μg/L	3.00	101909B	10/19/09	
Chromium	EPA 200.8	11,4	5.00	<u>µg/L</u>	1.00	101909B	10/19/09	16:28 16:28
Cobalt	EPA 200.8	ND	5.00	<u></u> μ g/L	5.00	101909B	10/19/09	
Соррег	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	16:28 16:28
Lead	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	
Mag <u>nesium</u>	EPA 200.7	17700	20.0	μ g/L	200	110309A	11/03/09	16:28
Manganese	EPA 200.8	ND	5,00	μ g/L	10.0	101909B	10/19/09	11:15
Mercury_	EPA 200.8	ND	5.00	μ g/L	1.00	102009A-Hg	10/20/09	16:28
<u>Mo</u> lybdenum	EPA 200.8	21.1	5.00	μ g/L	10.0	101909B		11:37
Nickel	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09 10/19/09	16:28
Selenium	EPA 200.8	ND	5.00	μ 9/L	10.0	101909B		16:28
Silver	EPA 200.8	ND	5.00	μ g/L	5.00	110209A	10/19/09	16:28
Thallium	EPA 200.8	ND	5.00	μg/L	1.00		11/02/09	13:44
Vanadium	EPA 200.8	ND	5.00	μg/L	5.00	101909B 101909B	10/19/09	16:28
Zinc	EPA 200.8	44.2	5.00	µg/L	10.0	101909B 102609A	10/19/09	16:28
3oron	EPA 200.7	1120	1.00	μg/L	200		10/26/09	13:04
Calcium	EPA 200.7	208000	50.0		10000	110209A	11/02/09	14:55
ron	EPA 200.7	ND	1.00	μg/L ug/L		102609A	10/26/09	_ 11:17
otassium	EPA 200.7	17000	20.0	<u>μg/</u> L	20.0	110209A	11/02/09	14:55
Sodium	EPA 200.7	1470000	500	<u>μg/L</u>	500	110309A	11/03/09	11:15
				μ g/L	100000.	102609A	10/26/09	13:09

SAMPLE ID: CW-0	4D-022	Time Co	llected: 12	:10	_	LAB ID:	985892-5	
Barrer et -		Reported			***		Date	Time
Parameter	Method	<u>Value</u>	<u>DF</u> _	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5. 00	μ g/L	50.0	102209A	10/22/09	14:15
Antimony	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:35
Arsenic	EPA 200.8	4.06	5.00	μg/L	1.00	101909B	10/19/09	16:35
Barlum	EPA 200.8	23.8	5.00	μ g/L	10.0	102209A	10/22/09	14:15
<u>Beryllium</u>	EPA 200.8	ND	5.00	μ g /L	1.00	101909B	10/19/09	
Cadmium	EPA 200.8	ND	5.00	μg/L	3.00	101909B	10/19/09	16:35
Chromium	EPA 200.8	2.30	5.00	μ g/L	1.00	101909B	10/19/09	16:35
Cobalt	EPA 200.8	ND	5.00	μ g/L	5.00	101909B		16:35
Соррег	EPA 200.8	ND	5.00	<u>μ</u> 9/ L	5.00		10/19/09	16:35
Lead	EPA 200.8	ND	5.00	μg/L		101909B	10/19/09	16:35
Magnesium	EPA 200.7	9950	20.0		10.0	101909B	10/19/09	16:35
Manganese	EPA 200.8	ND	5.00	μ <u>g/L</u>	200	110309A	11/03/09	11:20
Mercury	EPA 200.8	ND		μ g/L	10.0	101909В	10/19/09	16:35
Molybdenum	EPA 200.8	32.8	5.00 5.00	μg/L	1.00	102009A-Hg	10/20/09	11:43
Nickel	EPA 200.8	ND	5.00	μg/ <u>L</u>	10.0	10 <u>1909B</u>	10/19/09	16:35
Selenium	EPA 200.8	ND		<u>μg/L</u>	<u>10.0</u>	1019 <u>09B</u>	10/19/09	16:35
Silver	EPA 200.8	ND ND	5.00	μ g/L	10.0	101909B	10/19/09	16:35
Thallium	EPA 200.8		5.00	µ g/L	5.00	110209A	11/02/09	13:51
Vanadium	EPA 200.8	ND.	5.00	μ g/L	1.00	101909B	10/19/09	16:35
Zinc -		ND	5.00	μ g/L	5.00	101909B	10/19/09	16:35
Boron	EPA 200.8	ND	5.00	<u>µg/L</u>	10.0	102609A	10/26/09	13:11
	EPA 200.7	1470	1.00	μ <u>9/</u> L ·	200	110209A	11/02/09	15:00
<u>Calcium</u>	EPA 200.7	148000	50. <u>0</u> _	μ g/L	10000	102609A	10/26/09	11:23
ron	EPA 200.7	ND	1.00	μ g/L	20.0	110209A	11/02/09	15:00
otassium	EPA 200.7	15000	20.0	μg/L	500	110309A	11/03/09	11:20
Sodium	EPA 200.7	1560000	500	μ g/L	100000	102609A	10/26/09	13:15

SAMPLE ID:	CW-04M-022	Time C	ollected:	13:18		LAB ID:	985892-6	
		Reported				· · · · · · · · · · · · · · · · · · ·	Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 200.8	ND	5.00	μ g/L	50.0	102209A	10/22/09	14;35
Antimony	EPA 200.8	ND	5.00	μ g/L	10.0	101909B	10/19/09	16:41
Arsenic	EPA 200.8	2.36	5.00	<u></u> µ g/L	1.00	101909B	10/19/09	16:41
Barium	EPA 200.8	80.0	5.00	μg/L	10.0	102209A	10/22/09	14:35
Beryllium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	16:41
Cadmium	EPA 200.8	ND	5.00	μ g/L	3.00	101909B	10/19/09	16:41
Chromium	EPA 200.8	16.6	5.00	با/وبر	1.00	101909B	10/19/09	16:41
Cobalt	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	16:41
Соррег	EPA 200.8	ND	5.00	μ g/L	5.00	101909B	10/19/09	
Lead	EPA 200.8	ND	5,00	μ g /L	10.0	101909B	10/19/09	16:41
Magnesium	EPA 200.7	13000	20.00	µg/L	200	110309A	11/03/09	16:41
Manganese	EPA 200.8	ND	5.00	µg/L	10.0	101909B		11:26
Mercury	EPA 200.8	ND	5.00	μg/L	1.00	102009А-на	10/19/09	16:41
Molybdenum	EPA 200.8	11,4	5.00	μg/L	10.0		10/20/09	11:49
Nickel	EPA 200.8	ND	5.00	μ g/L	10.0	1019098	10/19/09	16:41
Selenium	EPA 200.8	ND	5.00	<u>μg/L</u>	10.0	101909B	10/19/09	16:41
Silver	EPA 200.8	ND	5.00	μ g/L	5.00	101909B	10/19/09	16:41
Thallium	EPA 200.8	ND	5.00	μg/L	1.00	110209A	11/02/09	13:57
Vanadium	EPA 200.8	ND	5.00			101909B	10/19/09	16:41
Zinc	EPA 200.8	ND		<u>μg/L</u>	5.00	101909B	10/19/09	16:41
Boron	EPA 200.7	846	<u>5.0</u> 0 1.00	μ g/L 	10.0	102609A	10/26/09	13:17
Calcium	EPA 200.7	146000		µ g/L	200	110 <u>209A</u>	11/02/09	15:06
Iron	· · · · · · · · · · · · · · · · · · ·		50.0	<u>µg/L</u>	10000	102609A	10/26/09	11:28
Potassium	EPA 200.7	ND	1.00	μg/L	20.0	110209A	11/02/09	15:06
	EPA 200.7	13000	20.0	μg/L	500	110309A	11/03/09	11:26
Sodium	EPA 200.7	1080000	500	μ g/L	100000	102609A	10/26/09	13:20

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

SAMPLE ID: OW-9	0-022	Time Col	lected:	08:25		LAB ID:	985892-7	
Parameter		Reported		•			Date	Time
	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Alumi <u>num</u>	EPA 200.8	ND	5.00	μg/L	50.0	102209A	10/22/09	14:41
Antimony_	EPA 200.8	ND .	5.00	μ g/L	10.0	101909B	10/19/09	16:47
Arsenic	EPA 200.8	1.32	5.00	μ g/L	1.00	101909B	10/19/09	16:47
Barium	EPA 200.8	50.8	5.00	μg/L	10.0	102209A	10/22/09	14:41
Beryllium	EPA 200.8	ND	5.00	μg/L	1.00	101909B	10/19/09	
Cadmium	EPA 200.8	ND	5.00	μ g/L	3.00	101909B	10/19/09	16:47
Chromium	EPA 200.8	11.6	5.00	μg/L	1.00	101909B	10/19/09	16:47
Cobalt	EPA 200.8	ND ND	5.00	μg/L	5.00	1019098	10/19/09	16:47
Copper	EPA 200.8	ND	5.00	μg/L	5.00	101909B	10/19/09	16:47
Lead	EPA 200.8	ND	5.00	μ g/L	10.0	101909B		16:47
Magnesium 🔔	EPA 200.7	19000	20.0	<u>µg/L</u>	200	110309A	10/19/09	16:47
<u>Manganese</u>	EPA 200.8	ND	5.00	<u>μ</u> g/L	10.0	101909B	11/03/09	11:31
Mercury	EPA 200.8	ND	5.00	μ g/L	1.00		10/19/09	16:47
Molybdenum	EPA 200.8	20.6	5.00	μg/L	10.0	102009A-Hg	10/20/09	11:56
Nickel T	EPA 200.8	ND	5.00	μg/L	10.0	101909B	10/19/09	16:47
Selenium	EPA 200.8	ND	5.00	<u>μ</u> σ/L	10.0	101909B	10/19/09	16:47
Silver	EPA 200.8	ND	5.00	µg/L µg/L	5.00	101909B	10/19/09	16:47
Thallium	EPA 200.8	ND	5.00			110209A	11/02/09	14:04
Vanadium	EPA 200.8	ND	5.00	μg/L	1,00	101909B	10/19/09	16:47
Zinc	EPA 200.8	ND	5.00	μ g/L	5.00	101909B	10/19/09	16:47
Boron	EPA 200.7	1090	1.00	μ g/L	10.0	102609A	10/26/09	13:23
Calcium	EPA 200.7	212000		μ g/L	200	110209A	11/02/09	15:12
Iron	EPA 200.7	12000	<u>50.0</u>	µg/L	10000	102609A	10/26/09	11:33
Potassium	EPA 200.7	17900	1.00	µg/L	20.0	110209A	11/02/09	15:12
Sodium	EPA 200.7		20.0	µ g/L	500	110309A	11/03/09	11:31
	EFA 200./	1470000	500	<u> μ9/L</u>	100000	102609A	10/26/09	13:26

ND: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

TLI CMP Day 3+4 985 892

CH2MHILL

10/15/2009 2:48:03 PM

Page 1 OF

				COMMENTS	9,	, 9	ploth		6 L	و. د	9	و	1 400
		_/	<u></u>	Number of Containers	7	X	1	1	Ý	1	ŕ	4	\$
	ALE	12110)	\ 7:3M		0		DW22 <	, (1	TOTAL NUMBER OF CONTAINERS
1 Lifer Poly	H_500, pH<2, 4°C	ž	28	Ammonia (SM4500NH3)	×	×		×	×	×	×	×	
1 Liter Poly	4 .℃	ž	82	Turbidity (SM2100)	.×	×		×	×	×	×	×	
1 Litter Poly	4.C	ž	28	Alkalinity (SM2320B)	×	×		×	×	×	×	×	
1 Liter Poty) 1	ž	2	Anions (E300.0) CI, FI, SQ4	×	×		×	×	×	×	×	
1L Poly:	4 •€	ž	۲-	TDS (SM2540C)	×	×		×	×	×	×	×	
Pot et	÷	¥	28	PH (SM4500HE)	×	×		×	×	×	×	×	
1 Liter Poly		¥	38	Specific Conductance (E120.1)	×	×	<u></u>	×	×	×	×	×	
500 mil Poly	HNO	ž	8	Metals (E200.77) Total Iron, unfiltered	×	×		×	×	×	×	×	
500 md Poly	DONH	Field	7	Metals (E200.7FF) Field Filtered Title 22,Al,B,Ca,Mg,K,Na,Mn,Fe	×	×		×	×	×	×	×	
1	(NHD)3S ODMHD OH, 4°C	Fied	82	Cr6 (E218.6) Field Filtered	×	×	×	×	×	×	×	×	×
Container 250 ml	Preservatives: ODNHD SONHD	Filtered:	Holding Time:	Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Ţ
.8	Presen		Holdin		15:44	16.50	17:16	9:09	10:23		13:18	8:25	1355
	2.CM.01			DATE.	10/14/2009	10/14/2009	10/14/2009	10/15/2009	10/15/2009	10/15/2009 12:10	10/15/2009	10/15/2009	851 30-51-01
Project Name PGE Topock	Location Topock Project Number 370367.MP.02.CM.01	Project Manager Jay Piper	Sample Manager Matt Ringier	Task Order Project 2009-CMP-022 Turnaround Time 10 Days Shipping Date: 10/15/2009 COC Number: 5	, CW-02D-022	CW-02M-022	, OW-89-022	-3, CW-03D-022	1 CW-03M-022	CW-04D-022	~[, CW-04M-022	-7. OW-90-022	CW-98-022
					-	4	}	3	7	. Y	و ،	4	

For Sample Conditions

	Special Instructions:	Oct 13-15, 2009		Report Conv to	Shawn Duffy	(530) 229-3303
A STATE OF THE PROPERTY OF THE		ATTN:	Sample Custody			
	Shipping Details	Method of Shipment: courier	Onice: yes / no	Airbili No:	to-17. w 2030 Lab Name: Truesdail Laboratories, Inc.	415109 20:2 Lab Phone: (714) 730-6239
	Data/Time	1	- 055/	10-15-09 15'30 Airbill No:	to-15.4' 2030	1915/09 20:5
_	Signatures			Bondows Dayog	cio Dayar	white
`	\	1			Bould	Nebu
		Approved by	Sampled by Relinguished by	Received by	Relinquished by 80.x	Received by

CHZMHILL CH. 0408.

09/198

•	CH2MHILL CH. 0408.	.80%				CHAIN OF CUSTODY RECORD	10/13/2009 3:29:17 PM	Page	1 OF 1
	Project Name PGE Topock		ប័	Container	1 Liter Poly			_	
	Location Topock			, COSCH	HOSO_				
	Project Number 370367.MP.02.CM.01	2.CM.01	Prese	vatives:	H<2, 4°C				
	Project Manager Jay Piper			Filtered:	¥				
	Sample Manager Matt Ringier		Holdir	Holding Time:	28				
	Task Order Project 2009-CMP-022 Turnaround Time 12 Days Shipping Date: 10/13/2009				Nitrate/Nitrite (\$			Number	
	COC Number: 2			177.4 - 12 - 14 - 14 - 1	SM4500NO3			r of Contair	
		DATE	TIME	Matrix	-E)			iers	COMMENTS
~	CW-01D-022	10/12/2009	11:57	Water	×			<u> </u>	
0	CW-01M-022	10/12/2009	13:25	Water	×			<u> </u>	
10	OW-01D-022	10/12/2009	14:50	Water	×				
4	OW-01M-022	10/12/2009	15:44	Water	×			-	
4	OW-01S-022	10/12/2009 16:27	_	Water	×			-	
હ	OW-91-022	10/12/2009	12:32	Water	×			_	
7	OW-02D-022	10/13/2009	12:40	Water	×			\ <u>\</u>	
90	OW-02M-022	10/13/2009	13:46	Water	×			-	
0-	OW-02S-022	10/13/2009	14:26	Water	×				
	OW-05D-022	10/13/2009	9:08	Water	×			-	
*	OW-05M-022	10/13/2009	10:07	Water	×			-	
12	OW-06S-022	10/13/2009	10:55	Water	×			_	
							TOTAL NUMBER OF CONTAINERS	12	

7= 2.8°C

Special Instructions: Oct 13-15, 2009		Report Copy to	Shawn Duffy (530) 229-3303
ATTN:	Sample Custody		
Shipping Details Method of Shipment: courier	On Ice: yes / no	Airbiil No: Lata Name:	Lab Phone:
20	4	00:3//0/	and 10/14/09 955
Signatures	1000	Hafay Laville	establant to
Approved by Sampled by	Relinquished by	Received by Relinquished by	Received by

Keith Start 10/14/04 1455

SS#1 60/h1/01 -

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 09J198

METHOD SM4500NO3 NITRATE/NITRITE-N

A total of twelve (12) water samples were received on 10/14/09 for Nitrate/Nitrite as N analysis, Method SM4500NO3 in accordance with Standard Methods for the Examination of Water and Wastewater, 20th Edition.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAJ002WL/C were all within QC limits.

Matrix QC Sample

Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recovery for J198-01M was within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated OC parameter.

SAMPLE ID SAMPLE ID (mg/L) (m	EMAX SAMPLE 1D 	RESULTS (mg/L) ND 0.507		I				61 11 14 11 11 11 11 11 11	14 		: (L	
SAMPLE ID	SAMPLE 1D NAJOGZWB NAJOGZWL NAJOGZWC NAJOGZWC	(mg/L) ND 0.507		~	MDL	Analvsis	Extraction				Collection	Received
1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NAJOOZWE NAJOOZWE NAJOOZWE NAJOOZWE	ND 0.507 0.514	DLF MOIST	(mg/L)	(mg/L)	DATETIME	DATETIME	LFID	CAL REF	PREP BATCH	DATETIME	DATETIME
	NAJOOZWE NAJOOZWE NAJOOZWC	NO 0.507 0.514	1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; () () () () () () () () () () () () ()				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MBLK1W	NAJOOZWL NAJOOZWC	0.507	- NA	0.100	0.0200	10/22/0915:46	ΝΑ	NAJ00211	NAJ00208	NAJOOZW	¥.	¥.
I CS1W	NAJOOZWC	0.514	1 AN	00.100	0.0200	10/22/0915:46	Ą	NAJ00212	NAJ00208	NAJOOSA	NA	A A
10012	108-01		1 NA	0.100	0.0200	10/22/0915:46	ΑN	NAJ00213	NAJ00208	NAJ002W	Ą	NA
CW-010-022	20.00	3.19	5 NA		0.100	10/22/0915:46	ΑN	NAJ00214	NAJ00208	NAJOOZM	10/12/0911:57	10/14/09
CU-010-022818	J198-010	3.18	5 NA	0.500	0.100	10/22/0915:47	AN	NAJ00215	NAJ00208	NAJ002W	10/12/0911:57	10/14/09
CU-010-022MS	M198-01M	3,65	5 NA		0.100	10/22/0915:47	ΑN	NAJ00216	NAJ00208	NAJ00ZW	10/12/0911:57	10/14/09
CM-01M-022	1198-02	2.78	5 NA	0.500	0.100	10/22/0915:48	٨A	NAJ00217	NAJ00208		10/12/0913:25	10/14/09
OW-010-022	J198-03	2.73	5 NA	0.500	0.100	10/22/0915:50	ΑN	NAJ00218	NAJ00208		10/12/0914:50	10/14/09
OW-01M-022	1198-04	2.77	5 NA		0.100	10/22/0915:51	NA	NAJ00221	NAJ00219	_	10/12/0915:44	10/14/09
OW-015-022	J198-05	2.70	5 NA		0.100	10/22/0915:51	ΑN	NAJ00222	NAJ00219		10/12/0916:27	10/14/09
OU-91-022	J198-06	2.54	5 NA		0.100	10/22/0915:53	NA	NAJ00223	NAJ00219	_	10/12/0912:32	10/14/09
04-020-025	1198-07	2.95	S NA	0.500	0.100	10/22/0915:54	NA	NAJ00224	NAJ00219		10/13/0912:40	10/14/09
OU-02M-022	J198-08	2.73	5 NA	0.500	0.100	10/22/0915:54	ΑN	NAJ00225	NAJ00219	_	10/13/0913:46	10/14/09
OH-025-022	1198-09	3.54	5 NA	00:200	0.100	10/22/0915:54	AN	NAJ00226	NAJ00219	NAJ002W	10/13/0914:26	10/14/09
OW-050-022	J198-10	2.84	5 NA	0.500	0.100	10/22/0915:54	ΥN	NAJ00227	NAJ00219	NAJ002W	10/13/0909:08	10/14/09
OW-05M-022	J198-11	2.64	S NA	0.500	0.100	10/22/0915:55	Ą	NAJ00228	NAJ00219	NAJ002W	10/13/0910:07	10/14/09
OW-05S-022	J198-12	3.56	S NA	0.500	0.100	10/22/0915:55	¥.	NAJ00229	NAJ00219	NAJ002W	10/13/0910:55	10/14/09

EMAX Day 3+4

CHAIN OF CUSTODY RECORD

097239 10/15/2009 2:46:21 PM Pag

CH2MHILL CH-0408	400		_	CHAIN OF CUSTODT RECORD	10/15/2009 2:46:21 FM	Fage	- -
Project Name PGE Topock		Container: 1 Liter	1 Liter Polv				
Location Topock	Ó	1.108.H	H. 800:				
Project Number 370367.MP.02.CM.01		esel valives.	> + · · · · · · · · · · · · · · · · · ·				
Project Manager Jay Piper		Filtered:	NA				
Sample Manager Matt Ringier		Holding Time:	28			_	
Task Order Project 2009-CMP-022 Turnaround Time 12 Days Shipping Date: 10/15/2009 COC Number: 6			Nitrate/Nitrite (SM4500NO3-E)			Number of Containers	
	DATE TH	TIME Matrix				\dashv	COMMENTS
CW-02D-022	10/14/2009 15:44 Water	:44 Water	×			_	

Special Instructions:	Oct 13-15, 2009	tody		Spawn Duffy	(530) 229-3303
į	<u> </u>	Sample Custody			
Shipping Details	Method of Shipment: courier	On Ice: yes I no 7 = 2.8°C		Lab Name:	Lab Phone:
Date/Time		(520	10-13-09 1530 Airbill No:	10 45.09 200	0-16-09 9:15
Signatures		7	Bon facto Duyor	Bom for Dayag	Keith Stant 16-16 09 Pis Lab Phone:
Appropriate hy	Sampled by	Relinquished by	Received by	Relinquished by	Received by

TOTAL NUMBER OF CONTAINERS

10/15/2009 12:10 Water 10/15/2009 13:18 Water 10/15/2009 8:25 Water

4 CW-03M-022 S CW-04D-022 6 CW-04M-022

7 OW-90-022

10/14/2009 16:50 Water 10/15/2009 9:09 Water 10/15/2009 10:23 Water

2. CW-02M-022 3. CW-03D-022

1001

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 09J239

METHOD SM4500NO3 NITRATE/NITRITE-N

A total of seven (7) water samples were received on 10/16/09 for Nitrate/Nitrite as N analysis, Method SM4500NO3 in accordance with Standard Methods for the Examination of Water and Wastewater, 20th Edition.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAJ002WL/C were all within QC limits.

Matrix QC Sample

No matrix QC sample was designated for this SDG.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

Client : CH2M HILL Project : PG&E'S TO Batch No. : 09,1239	POCK GAS COMP	RESSOR STAT	 		·					Matrix Instru	Matrix : WATER Instrument ID : 70	TER
		RESULTS		RL	MDL	. ∀	Extraction				Collection	Received
SAMPLE ID	SAMPLE ID	(mg/L)	DLF MOIST	(mg/L)	(mg/L)	DATETIME	DATETIME	LFID	CAL REF	PREP BATCH	DATETIME	DATETIME
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 4 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	; ; ; ;	1 1 1 1 1
MBLK1W	NAJOOZWB	Q	1 NA	0.100	0.0200	10/22/0915:46	NA	NAJ00211	NAJ00208	NAJ002W	AN	AN
LCS1W	NAJOOZWL	0.507	1 NA	0.100	0.0200	10/22/0915:46	NA	NAJ00212	NAJ00208	NAJOOZW	NA	NA
LCD1W	NAJOOSMC	0.514	1 NA	0.100	0.0200	10/22/0915:46	NA	NAJ00213	NAJ00208	NAJOOZW	NA	NA
CW-02D-022	J239-01	3.65	5 NA	0.500	0.100	10/22/0915:59	NA	NAJ00232	NAJ00230	NAJ002W	10/14/0915:44	10/16/09
CW-02M-022	J239-02	1.78	5 NA	005.0	0.100	10/22/0916:00	NA	NAJ00233	NAJ00230	NAJOOSW	10/14/0916:50	10/16/09
CW-03D-022	J239-03	2.33	5 NA	0.500	0.100	10/22/0916:00	NA	NAJ00234	NAJ00230	NAJOOZW	10/15/0909:09	10/16/09
CW-03M-022	1239-04	1.23	2 NA	0.200	00,0400	10/22/0916:00	NA	NAJ00235	NAJ00230	NAJOOSW	10/15/0910:23	10/16/09
CW-04D-022	J239-05	1.76	5 NA	0.500	0.100	10/22/0916:02	NA	NAJ00236	NAJ00230	NAJ002W	10/15/0912:10	10/16/09
CW-04M-022	J239-06	1.25	2 NA	0.200	0.0400	10/22/0916:02	NA	NAJ00237	NAJ00230	NAJ002W	10/15/0913:18	10/16/09
OW-90-022	1239-07	1.01	2 NA	0.200	0.0400	10/22/0916:03	NA	NAJ00238	NAJ00230	NAJ002W	10/15/0908:25	10/16/09

Revised Report

\$002

CLIENT: CH2M HILL TOPOCK

SDG: 09J198

Analyst names:

1. SM4500NO3: Elena Robles

CLIENT: CH2M HILL TOPOCK

SDG: 09J239

Analyst names:

1. SM4500NO3: Elena Robles

										Topock S	Sampling Log
Project I		Topock CMP 67.MP.02.CM.01					Sampling		2009-CM	P-021	
Sampler	1. Abbott	Field Team	1 Field	f Conditions	unny, cles	ar, ~110%	will	Page	/ of	11/04	
1	n Rau	OW-01D-021			-	mple ID NA	>6		7	OC Cample	Time N/A
Purge Sta	. /	42 for 7	17)			Method Tun		Ded. Pur	np N	QC Sample	11me 70/77
	Flow Celf: Y	N N	~1/	Min	. Purge Volume		1/2	rge Rate (g	-	_	_
								(
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity MS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity	TDS g/L	Eh/ORP mv	Comments (See description below
94.95	1649	@/018	7.55	6547	0.6	5.26	29.65	3.55	4.25	24.5	272.61 Hz
94.95	11054	4036	7.56	6552	0.4		29.92	3.55	4.26	29.1	
9497	1700	6254	7,61	6598	0.9	10.05	29,96	.3.58		34,9	
94.96	1700	80 n	7.62	6598	3.4	10,10	29.92			-	
95.05	1712	CP CP	7-62	6596	4.0	10.10		3.58			
95,06	(715	98699	7.62	6596	2.1	10.11	29.86	3.58		37.8	
		¥									
						~					
Parameter S	tabilization Cri	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/-2°	NA	NA	+/- 10 mV	
Did Parameters	Stablize prior to a	sampling?	Ý	V	V	\/	MAY	_		V	
Previous Field r	measurement	(1/6/2009)	7.86	732	0.8	AGY.	29.66	0.47		-3/8.2	
Are measureme	ents consistent wit	h previous?	Y	У	Ψ.	higher	NA			Y	
Sample Time	1718	Sample Location	n: pu	nnp tubing 💢	well part	/ spigot		bailer	other		
Comments: _											
Initial Depth to	Water (ft BTO	C): 9	2.01		Measu	re Point: Well	TOC Ste	el Casing	WATE	RIEVELMET	ER SERIAL NUMBER: PGE-2005 OF B
		of Well Depth (ft b		_				or odding	******		ransducer
WD (Well Dep	oth - from databa	ase) ft bloc (2)			Initial DTW	/ / Before Remo	val A	pprox. 5 mir	n After Rein		Time of Removal
	_) = WD-Initial Dep		4.99	Time	Initial DTV	٧	Time	Fin	al DTW	Time of Reinstallation (43) 736 173
		"= 0.17, 4"= 0.66,		(2 in)	1625	92.0	1 1	1745	92	2.05	
970	olume = D*SWI	Η	94.3		_ Comments:						
Three Casing		own, black, cloudy				autobus	atha-		C-114		Mad Ou Loren Ou Badie late Sill Cond
Join Clear,) yellow, bro	WII, DIACK, CIOUDY	, green		Odor: none,	sulphur, organic	, other	;	oolids: /us	ce sman Qu,	Med Qu, Large Qu, Particulate, Silt, Sand Page 1 of

Job N	f	TOPOCK CMP					Sampling	g Event	2009-ÇM	P-021	
	37030	67.MP.02.CM.01			5	MA SON	high	Date	7/8/	09	
Sampler s	ROOUN	Field Team	1Field	d Conditions 🖳	sunary E	, 5 kgs ~	905.	Page	of		
Well/San	nple Number	OW-01M-021			QC Sar	mple ID NA				QC Sample	Time N/A
Purge Sta	rt Time	831-69	:08		Purge	Method Tun	4.00	Ded. Pu	mp No		N. 19/A
	Flow Cell: Y	/ N		Min	. Purge Volume	(gal)(L) 47.	7 PI	urge Rate	pm)/(mLpm	2	
Water Level	Time	Vol. Purged gallons / liters	∙pH	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity	TDS g/L	El/ORP mv	Comments (See description below
92.87	0841	8	7.51	7315	2.9	8.83	29.41	4.04	479	125.0	252 Hz
72.88	0845	16	7.52	7.39	0.5	11.99	29.28	4.04	4.80	117.4	
92.89	0849	24	7.53	7.38	0.2	12.32	29.27	4.04	4.79	115,9	
92.89	0853	32	7.54	7.38	0.3	12.57	29.26	4.04	4.79	113.6	
92.89	US 550	40 pm	7.55	7.39	0.2	12.52	29.24	7.725	4.80	112.2	
92.89	0901	48	7.55	7.39	0.4	12.56	29.26	4,04	-	111.0	Transdurer seems
											to have tight Lit.
											to have tight fit, which might indicate
											bend in the casing.
Parameter St	tabilization Cri	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
Did Parameters	Stablize prior to s	ampling?	¥	v	V	V	NA	_	_	4	Bulbles (Sampling
Previous Field n	neasurement	(1/6/2009)	7.75(7290	0.5	6.11	29.68	0.47		57.9	7.3
Are measureme	ents consistent with	previous?	V	V	_ Y	higher	NA			higher	
Sample Time	9:03	Sample Location	n: pu	mp tubing 🗶	well port	ð spigot		bailer	other	1	
Comments:											
Initial Depth to		92 22			* ***				A1 *		Ot do not
		3): 92.73			Measur	e Point Well	TOC Ste	el Casing	WATER	R LEVEL MET	ER SERIAL NUMBER: PGE - 2005-01
		of Well Depth (ft b	-		- 1					If T	ransducer
		= WD-Initial Dep		5 +	Time	/ Before Remov	A		After Reins		Time of Removal 0821
		'= 0.17, 4"= 0,66,			817	92.13	9	Time /	4	73 -	Time of Reinstallation
	olume = D*SWH			7	Comments:	10.10			7~	. 1-	
Three Casing		47.3	A) 47	******	- Committee						
Color clean g	jrey, yellow, bro	wn, black, cloudy,	green		Odor: none s	ulphur, organio,	, other	5	Solids: Trac	, Small Qu,	Med Qu, Large Qu, Particulate, Silt, Sand Page 2 of 9

Topock Sampling Log

			Topock	Sampling Log
Project Name PGE Topock CMP Job Number 370367.MP.02.CM.01 Sampler	- 1 hinthe	Sampling Event	2009-CMP-021 17/8/109	
Well/Sample Number OW-015-021 Purge Start Time 0955 - 10:18	QC Sample ID NA	erryo Ded. Pun Purge Rate (g	\sim 1 .	a Time
104 361.17	urbidity NTU Diss. Oxygen mg/L	Temp. Salinity	TDS Eh/ORP	Comments (See description below
93.08 0957 2 6.97 3.29		30.02 1.98	2.46 119.5	222 Hz
93.08 0959 4 7.53 3.90		29.70 2.07	2.56 75.2	
93 08 1001 b 7.52 3.90 93 08 1003 8 7.51 3.79	5.9 4.01	29.85 2.03	2.5265.3	-
93.08 1005 10 7.53 3.72	2.3 4.21	29.93 1.92	2.39 58.1	
93.08 1007 12 7.55 3.62 93.08 1009 14 7.56 3.59	1.6 4.29	29.94 1.89 30.20 1.87	2.36 56.1	
93.08 1011 16 7.56 3.54	1.4 4-27		2.29 53.9	
Parameter Stabilization Criteria pH units	+/- 10% NTU +/- 0.3 units mg/L when >10 NTUs	+1.2°C NA	NA +/- 10 mV	
Did Parameters Stablize prior to sampling?	4 4	NA	- y	
Previous Field measurement (1/6/2009) 7.75 2979	3 2.98	28.84 0.19	-80	
Are measurements consistent with previous?	yes yes	NA	- yes	
0 /	well port splgot eart Blanks 1	nw - 89 -03	other	
Initial Depth to Water (ft BTOC): 92.9.7 Field measured confirmation of Well Depth (ft btoc):	Measure Point: Well	TOC Steel Casing		Transducer
WD (Well Depth - from database) ft bloc (113.5)	Initial DTW / Before Remo	val Approx 5 mi	n After Reinstallation	Time of Removal
SWH (Standing Water Height) = WD-Initial Depth 20.53	Time Initial DTV	1-1	Final DTW	Time of Reinstallation
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)	9:49 90.91	1 10:27	92.98	
One Casing Volume = D*SWH 3.5	Comments:			
Three Casing Volumes = 10.5 Color: clear, grey, yellow, brown, black, cloudy, green	Odor: none sulphur, organio	o, other	Solids: Trace, Small Qu	u, Med Qu, Large Qu, Particulate, Silt, Sand Page 3 of 9

Project I		Topock CMP					Sampling	- Event	2009-CM	P-021	
Job N	Number 37036	7.MP.02.CM.01					- 0-	Date _		18/08	
Sampler_	Abbott	Field Team	1 Field	d Conditions	sunny, 11	10°, avind	homst	Page _	1 of		
Well/San	mple Number	OW-02D-021			QC Sa	mple ID NA	NOF	9		QC Sample	Time N/A
Purge Sta	rt Time	425			Purge	Method	emp_	Ded. Pu	mp ~		
	Flow Cell: Y	/ N		Min	. Purge Volum	(gal)/(L) /2	70 P		pm)/(mLpm) 3	
								. (
Water Level	Time	VoluPurged gallens / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. ℃	Salinity	TDS g/L	Eh/ORP mv	Comments (See description below
91.07	1432	21	7.54	7.27	0.4	7.77	29.52		4.73	103.3	270Hz
91.07	1439	42	7.53	7.35	2.4	9.51	30.45	4.02	4.79	91.5	
91.07	1446	63	7.49	7.45	0.9	11.72	30.58	4.07	4.84	94.7	
91.07	1453	84	7.50	7.46	0.5	11.68	30.60	4-07	4.85	95.5	
91.07	7500 SOI	705 108	7.51	7.46	0.4	11.64	30.62	1	4.85	93.4	
91.07	1507	12007	7.51	7,45	0,4	11.66		4.07		91.7	
							:				
Parameter S	tabilization Crit	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/-2°c	NA	NA	+/- 10 mV	
-	Stablize prior to sa	ampling?	yes	Yes	yes	yes	NA		-	Yes	
Previous Field r	measurement	(1/6/2009)	7.9	7302	0.5	4.81	27.55	0.47		-47.4	
	ents consistent with		yes	y25	yes	higher	NA	_	_	yes	
Sample Time	1509	Sample Location	n: pu	mp tubing	well port	spigot		bailer	other		
Comments:											
Initial Depth to	Water (ft BTOC	C):	90.9	10.	Measur	re Point: Well	TOC Ste	el Casing	WATE	R LEVEL MET	TER SERIAL NUMBER: PGE -2015-071
Field measure	ed confirmation o	of Well Depth (ft b	toc):	_	_ [ransducer
WD (Well Dep	oth - from databa	ise) ft btoc(34	-		Initial DTW	/ Before Remo	val A	pprox. 5 ml	n After Rein	-1-H-41	Time of Removal
SWH (Standin	ng Water Height)	- WD-Initial Dep	ith 29	91	Time	Initial DTV	V	Time	Fin	al DTW	Time of Reinstallation 15/16
D (Volume as	per diameter) 2"	'= 0.17, 4"= 0.66,			1414	90.90) /	522	90	1.83	Time of Reinstaliation
One Casing Vo	olume = D*SWH		42	.3	Comments:						
Three Casing	Volumes =		27-0		-					\	
Color: clear, g	grey, yellow, bro	wn, black, cloudy	, green		Odor none,	sulphur, organic	, other		Solids: Tha	ce, Small Qu,	Med Qu, Large Qu, Particulate, Silt, Sand

Topock Sampling Log

										Topock S	Sampling Log
Project N		Topock CMP				<i>.</i> 1 .	Sampling	Event	2009-CM	P-021	
	· / · · · · ·	7.MP.02.CM.01				not 15-40	58, 1	Date	7/8	99	
Sampler_	Xayott_	_ Field Team	Fleic	Conditions _	Sunny Few	- Mongy	CE VI	Page _	of		
Well/San	nple Number	OW-02M-021		***	,	mple ID NA	~			QC Sample	Time N/A
Purge Sta	rt Time 15	47 - 162	20		Purae	Method		Ded. Pur	mp	QO Gampio	
	Flow Cell: Y	(N		Min	. Purge Volume		/ PI	urge Rate (g	_	3	-
	Tiow Con. T	IN .			g	(300)/(4)		and a ratio (is		,	
Water	Time	Vol. Purged	рН	Conductivity	Turbidity NTU	Diss. Oxygen	Temp.	Salinity	TDS	Eh/ORP	Comments
Level	Time	gallons / liters	p	m\$/cm	Turbidity 141 d	mg/L	. ℃	pp +	g/L	mv	Comments (See description below
91.21	1551	12	7.54	7.29	0.4	6.94	29-55	3.99	4.74	154.0	2881-12
91-21	1555	24	7.57	7.38	0.4	11.84	28.95	4.04	4.80	160.2	200118
91.21	1559	36	7.56	7.38	0.1	11-99	28.88	-	-	156.7	
91-21	1603	48	7.55	7.39	0.3	11.98	28.87	4.04	4.80	152.0	
91.21	16008	(dt sm	7.57	7.38	0.4	11.98	2.8.90	-	4.80	143.3	
91.21	1611	73	7.57	7.39	0.3	12.00	28.97	4.04	4.80	139.8	
91.21	1614	82	7.58	7.39	0.3	12.04	28.89	_	-	137.0	-= missed
			+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	***	NA	NA	+/- 10 mV	
Parameter S	tabilization Crit	eria	pH units		units when >10 NTUs	mg/L	+/-2°C		15.000	,, ,,,,,,,	1.111. 11
Did Parameters	Stablize prior to sa	ampling?	425	425	yes	ves	NA	_		Yes	Bubbles while
Previous Field r		(1/6/2009)	7.82	7271	0.4	5.97	28.9	0.47	1	-37,1	Sampling
Are measureme	ents consistent with		Tower	425	425		NA NA	0.47			
Sample Time	1/0/10	Sample Locatio		1 1/		higher		-		higher	·
Comments:		oumpic Locatio	pu	mp tubingX	well port	spigot	·	bailer	other		
Initial Depth to	Water (ft BTOC	c): - 9	9.5°M 9	0.75	_ Measur	e Point: Well	TOC Ste	el Casing	WATE	R LEVEL METI	ER SERIAL NUMBER: PGE -2005-01
Field measure	ed confirmation o	f Well Depth (ft b	otoc):	50 % to	_					If Tr	ansducer
WD (Well Dep	oth - from databa	se) ft btoc (2			Initial DTW	/ Before Remo	val A	pprox. 5 mir	n After Rein	-1-II-I' I	Time of Removal /538
		= WD-Initial Dep		7,35	Time	Initial DTV	V	Time		WTO Is	Fime of Reinstallation 1630
D (Volume as	per diameter) 2"	= 0.17, 4"= 0.66,		2 in)	- 1531	94-5	90.95	1636	76		The or remarkable of the control of
One Casing Vo	olume – D*SWH		3		Comments:	•					
Three Casing	Volumes =	60.9			- 7				=	`	
Color: clear, g	grey, yellow, brov	wn, black, cloudy	, green		Odor none,	sulphur, organic	, other		Solids: Tra	Small Qu, M	Med Qu, Large Qu, Particulate, Silt, Sand

Project I	Name PGET	opock CMP				****	Sampling	Event	2009-CM		sampling Log
Job N	umber 37036	7.MP.02.CM.01					Sampuni	Date	2003-0101	1/2/10	
Sampler_	Abbott	Field Team	1 Fiek	d Conditions	Sunny H	at NUS	calm	Page	/ of	2/9/	
Well/San	nple Number				QC Sat	nple ID MV	V-91-021			QC Sample	Time _/4/1
Purge Sta	rt Time	7:00 00	7:09	vestart	Purge	Method	emp	Ded. Pur	np 1	2	
	Flow Cell: Y		737		. Purge Volume	(gal)(L)	2P	urge Rate (d	pm))(mLpm)	
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity	TDS g/L	El/ORP mv	Comments (See description below
91.89	1703/2	3	7.96	1.80	17.3	8.61	29.84	1 1	1.17	155.4	230 Hz
91.90	170015	6	7.91	1.80	6.1	8.63	29.93	0.90	1.17	142.5	1502 pump
91,91	17 18	9	7.92	1.80	4.4	8.63	29.87	0.90		128.5	
91.91	17/22/	12	7.43	1.80	3.7	8.68	29.85	0.90	1.17	115.6	Stopped because
91.91	17/524	15	7.95	1.80	2.7	8.68	29.74	0.90	1.17	107.3	
91,91	1726	17	7.94	1.80	2.2	8.65	29.92	0.90	1.17	101.6	
91-91	1728	19	7.95	1.80	1.7	8.69	29.96	0.90	1-17	98.1	
Parameter S	tabilization Crit	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	±20	NA	NA	+/- 10 mV	
Did Parameters	Stablize prior to sa	ampling?	Y	У	У	У	-NA Y			4	
Previous Field		(1/6/2009)	8.17	1807	3	5.11	28.29	0.11		-54.7	
	ents consistent with		yes	Yes	425	yes	NA	Continue	-	higher	
Sample Time Comments:	1730	Sample Locatio	n: pı	imp tubing X	well port	spigot		bailer	_ other	J	
	Water (ft BTOC		.52		Measur	e Point: Well	TOC Ste	el Casing	WATE	R LEVEL MET	ER SERIAL NUMBER: PGE - 2005-07
	d confirmation o		10 12		- [If Tr	ansducer
	ith - from databa ig Water Helght)			.48	_	/ Before Remo		pprox. 5 mir			Time of Removal /652
	per diameter) 2"				Time 	Initial DTV	/	750		al DTW	Time of Reinstallation
	olume = D*SWH	e- 4	0.041		Comments:	41. 10	/	170	11.	71	
Three Casing		15,0					0				4.00
Color Clear, g	grey, yellow, brov	wn, black, cloudy	, green		Odor: none, s	sulphur, organic	, other		Solids: Tra	de, Small Qu, M	Med Qu, Large Qu, Particulate, Silt, Sand Page 6 of

Topock Sampling Log **Project Name** PGE Topock CMP Sampling Event 2009-CMP-021 Job Number Wind Date 370367.MP.02.CM.01 1/8/09 sunny, cless Field Team Field Conditions 1570m Page 6 1 3 Eners Well/Sample Number OW-05D-021 QC Sample ID QC Sample Time Purge Start Time (05) Purge Method Ded. Pump 3 30 Min. Purge Volume (gal)/(L) Purge Rate/(gpm)/(mLpm) Water Vol. Purged Turbidity NTU Diss. Oxygen Conductivity Salinity Eh/ORP Temp. TDS Comments Time gallons / liters Level mS/cm mg/L (See description below g/L mv 1059 94.86 281 Hz 7,27 7.56 0.9 6.07 28.73 3.98 132.8 1106 94.88 7.55 7.39 7.72 29.08 119.6 63 94.82 29.30 7.48 8.73 7.56 110.3 94.82 120 7.57 7.48 0.5 8.77 29.30 4.09 4.86 110.8 .87 105 7.58 8.78 4.10 4.86 7.48 0.3 29.31 107.5 130 7.48 82 7.58 8.76 29.31 4.10 4.86 0.4 104,1 +/- 0.1 +/- 3% +/- 10% NTU +/- 0.3 -NA NA NA +/- 10 mV Parameter Stabilization Criteria pH units units mg/L +1-2°C when >10 NTUs Did Parameters Stablize prior to sampling? Ye5 res 4.25 NA 405 405 Previous Field measurement 7.78 (1/6/2009) 0.3 4.73 7316 -32.729,45 0.47 Are measurements consistent with previous? Ves VES yes hicker NA Migher Sample Time 1137 Sample Location: pump tubing spigot bailer other Comments: 94.54 WATER LEVEL METER SERIAL NUMBER: PGL - 2005-01B Initial Depth to Water (ft BTOC): Measure Point: Well TOC Steel Casing Field measured confirmation of Well Depth (ft btoc): If Transducer WD (Well Depth - from database) ft bloc Initial DTW / Before Removal Approx. 5 mln After ReInstallation Time of Removal 255.46 SWH (Standing Water Height) = WD-Initial Depth Time Initial DTW Time Final DTW Time of Reinstallation 10:46 94.54 D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in) 1151 One Casing Volume = D'SWH_ Comments: 130.3 Three Gasing Volumes = Color(clear, grey, yellow, brown, black, cloudy, green Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand Odgr: none, sulphur, organic, other Page 7 of 9

										Topock 5	Sampling Log
Project I	Lumber -	Topock CMP			-		Samplin	g Event	2009-CM	P-021 ,	
	44.	67.MP.02.CM.01				- windf	าบทว	Date	7	18/09	
Sampler_	Abbott	_ Field Team _	Field	Conditions S	sunny 1081	, W.S	tts	Page	of		
Well/Sar	mple Number	OW-05M-021			QC Sa	mple ID NA				QC Sample	Time #1/1
Purge Sta	art Time /2	:06		\	Purge		Temp.	Ded. Pu	mp ()		10/14
	Flow Cell: Y) N		Min	. Purge Volume		- /		pm)/mLpm		-
	1.5.1. 00.	, ,,						(1)			
Water	Time	Vol. Purged	pH	Conductivity	Turbidity NTLL	Diss. Oxygen	Temp.	Salinity	TDS	Eh/ORP	S
Level	riiile	gallons / liters	,	mS/cm	variously 1410	mg/L	€	Pot	g/L	mv	Comments (See description below
94.29	12:11	13.5	7.54	7.28	0.5	5.43	28.89		4.73	143.7	212 Hz
94.28	12:16	27	7.54	7.37	3.8	6.75	28.77	404	4.81	116.7	
94,28	1	40.5	7.53	7.46	1,8	7,74	28,72		4.85	118.1	-
94.28		54	7.54	7.47	2.4	7.80	28.67		4.86	103.9	
94.28		67.5	7.55	7.47	1	-	1	-			
		81			0.9	7.80	28.67	-	4.86	102.7	
94.28	12:33	01	7.65	7.46	0.4	7.81	28.68	4,10	4.86	102.8	
	1										
Parameter 9	Stabilization Cri	toria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU	+/- 0.3	-104	NA	NA	+/- 10 mV	
	TOO THE AUTO TO OT	torra	priums		units when >10 NTUs	mg/L	+/-202				
Did Parameters	s Stablize prior to s	ampling?	426	425	405	425	NΛ	_	_	Yes	
Previous Field	measurement	(1/6/2009)	7.78	7347	0.3	4.33	29.9	0.47		-57.4	
Are measureme	ents consistent with	h previous?	1105	yes	Yes	yes	NA		_	Yes	
Sample Time	1234	Sample Locatio	n: Towar pu	mp tubing X	well port	spigot		bailer	other		
Comments: _			10,001		# No. 1						
			0200	,			-				
	o Water (ft BTO)		93.85		Measur	e Point: Well	TOC Ste	el Casing	WATER	R LEVEL METE	ER SERIAL NUMBER: PGE ZOOS-018
		of Well Depth (ft b	AN-		Monitial DTW	n offer ins	stall (Dinin	hal	If Tr	ansducer
	oth - from databa	120 c 1	50.3000						After Reins	naliation	Time of Removal /2:0/
) = WD-Initial Dep		2 in	Time	Initial DTV	- V-1113	Time		d DTW	Time of Reinstallation 10:41
	per diameter) 2' /olume = D*SWH	"= 0.17, 4"= 0.66,	1"=0.041 _!	c 11)	1248	93.85	right	1200	93	85	,
	Volumes = U*SWF	80	(4)		Comments:						
\(\)		wn, black, cloudy	aroac			udahua '	-ab		T)	
Joiot, Fical	Aray, Yellow, Dro	wu, brack, cloudy	, green		Odor: none) s	sulphur, organic	, other	1	Bolids: Trad	g, Small Qu, N	Med Qu, Large Qu, Particulate, Silt, Sand

				Topock Sampling Log	
Project Name PGE Topock CMP		A Sampling Ev	ent 2009-CMP-02	21	
Job Number 370367.MP.02.CM.01		Windfrom E, D.	ate7/8/	09	
Sampler A Worth Field Team 1 Field C	onditions SUNMALLO	-, ~7 kts Pa	ge/ of		
Well/Sample Number OW-05S-021	QC Sample			C Sample Time N/A	
Purge Start Time /304	Purge Met	thod Temp D	ed. Pump // O		
Flow Cell: Y N	Min. Purge Volume (gal	NYL) 8, (Purge	Rate (gpm) (mLpm)		
Water Time Vol-Rurged pH C	Conductivity Turbidity NTU DismS/cm		alinity TDS I		ments iption below
94.53 1306 2 7.77	2.17 34.6	7.51 29.33 1.	08 1.38 1	66.7	
94.54 1308 4 7.78	2.09 43.7 7	1.57 29.61 1.	05 1.35 14	49.7	
1 000				2.7	
ANN CO			1	31.9	220
				30.3	
77.57					3
		-			
+/- 0.1	+/- 3% +/- 10% NTU	+/- 0.3 NA	NA NA +	-/- 10 mV	
Parameter Stabilization Criteria pH units	units when >10 NTUs	mg/L + 3° C			
Did Parameters Stablize prior to sampling?	12 12			<u>\</u>	
Previous Field measurement (1/6/2009) 8.05	1785 5	5.25 28.26).11	-48.6	
Are measurements consistent with previous?	V V	V NA		VI .	
Sample Time 13/6 Sample Location: pump	tubing well port	spigot baile	r other		
Comments:					
au un	*				PGE - 2005-0
Initial Depth to Water (ft BTOC): 94.40	Measure P	Point: Well TOC Steel C	asing WATER L	EVEL METER SERIAL NUMBER:	1010-2000
Field measured confirmation of Well Depth (ft bloc):	Initial DTM / F	Poteza Remount		If Transducer	1200
WD (Well Depth - from database) ft btoc (110.3000 SWH (Standing Water Height) = WD-Initial Depth 15-9	Time	Before Removal Appro	x. 5 min After Reinstal	TW	1325
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2	1	94.40 /33		Time of Reinstallation	1060
One Casing Volume = D*SWH 2.7	Comments:	1.1.2.	7,10		
Three Casing Volumes = 8. /					
Color: clea), grey, yellow, brown, black, cloudy, green	Odor: none sul	phur, organic, other	Solider Trace.	Small Qu, Med Qu, Large Qu, Part	iculate, Silt, Sand

Color: (clea), grey, yellow, brown, black, cloudy, green

Project Na Job Num		Topock CMP 57.MP.02.CM.01	wind from Date 10/12/09								
Sampler A		Field Team	1 Field	Conditions CI		npie ID NA	~ 23mp	hPage	f of	QC Sample	Time N/A
		CW-01D-022	.0			Method Team		Ded Pur	_{ຫລ} ີ <i>ໄ</i> ໄວ	QO Oampio	15/10
Purge Start	Flow Celf:	1/9 -12:0	, •	Min	. Purge Volume	(fa)/(L) /0	7.4 PL	rge Rate (pm)/(mLpm	3	
Water Level	Time	Vol. Purged	рр	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
109.51	1125	18	7.54	7235	4 -	4.15	28.48	3.96	4,706	140.8	
09.50	11 31	36	7.74	7.325	4	7.29	28.25	4,01	4.761	117.5	
109,51	1137	54	7.74	7.328	Z	7.62	28,19	4.01	4.764	109.8	_
09.51	1143	72	7.73	7.330	1	7.68	28.22	4.01	4.764	106.0	
109.50	1149	90	7.73	7.331	1	7.72			4.765	103.7	
109,49	1155	108	7.74	7.332	1	7.74	Z8.25	4,02	4,766	100.8	
Parameter St	abilization Ci	riteria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	1 2°C	NA	NA	+/- 10 mV	
id Parameters	Stablize prior to	sampling?	V	У	V	V	HAY	_	-	У	
revious Field m		(4/8/2009)	7.74	7430	0.7	5.77	29.16	0.48		78.8	
re measureme	nts consistent w	ith previous?	N	All And And	D V	higher	NA			higher	
ample Time omments:	1159	Sample Locati	ion: p	ump tubing X	well part	spigo	xt	bailer	other		
	Water (ft BTC		109.42		Measu	re Point: (We	птос) ѕы	eel Casing	WATE		TER SERIAL NUMBER: PGE-2005_
		of Well Depth (fi			Initial DTV	V / Botore Rem	oval		in Attention	775.50	Transducer Time of Removal //:84
WD (Well Depth - from database) ft bloc (320) SWH (Standing Water Height) = WD-Initial Depth 2/0.58			- Time	Initial DTW / Before Removal Time Initial DTW		Time	in Atter Rein	nal DTW	A		
		2"= 0.17, 4"= 0.6		(2 in)	11:02			2:13	1	09.41	Time of Reinstallation /2:08
	olume = D*SV	vн3 <i>5</i>	5. 8		Comments:						
hree Casing		/0.7			Odor: Tone	sulphur, organi	ic, other		Sollds: Tra	c. Small Qu	ı, Med Qu, Large Qu, Particulate, Silt, Sand

36p
03:
8
5
Oot

Ducinat	Inma DCF	Tanank Cita								Topock	Sampling Log
Project N Job No		Topock CMP 67.MP.02.CM.01			-		Samplin	g Event _	2009-CM		
Sampler_	W. C.		1		londy ~80%	wind from		Date	10/12	-/09	
		Field Team	Fiel	d Conditions	lonay ~ ou r	. East. 2-	soup h	Page _	_tof		<u> </u>
		CW-01M-022			QC Sa	mple ID NA	١ _			QC Sample	e TimeN /A
Purge Star	t Time 12:	35-1329			Purge	Method Te	I .			****	
	Flow Cell (Y)) N		Mir	n. Purge Volume	@/(L) 41	.7 P	urge Rate (pm)/(mLpm	1) 2	
101-4		·	, ,,	7			-				
Water Level	Time	Vol. Purged gallons / liters	pH	Conductivity mS/cm	Turbidity NTU	mg/L	°C	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
109.35	1238	17	7.81	7,310		7.02	28,33	4.00	4.751	96,5	
109.35	1292	14	7.79	7.298	1	7.12	28,41	3.99	4.744	93.3	
109,35	1245	21	7.79	7,301	1	7.17			4,745	The second secon	
109.35	1249	28	7.78	7301	0,3	7.16		1	4.745	1 - /	
109.35	1252	35	7.78	7.298	0.9	7.16	28,46	13.99	4,744	89.9	
09.35	1256	42	7.78	7,300	0.4	7.17	28.46	4.00	4.745	88.7	12:57 pump stopped
	-										
											Switching pumps Ress
				1							1325.
Parameter Str	abilization Crit	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	1.2°C	NA	NA	+/- 10 mV	
oid Parameters	Stablize prior to sa	ampling?	_ У	У	_у	У	-NA V			V	
revious Field m	casurement	(4/8/2009)	7.75	7467	1.7	5.2	29.74	0.48		78.5	
	its consistent with	previous?	У	У	У	- Y	NA	-	-	Slighth	
ample Time	1325	Sample Location	n: / pu	Imp tubing	_ well port	spigot		bailer	other _	- 8	
	Water (ft BTOC		109.	28	_ Measure	e Point Well	TOO Ste	el Casing	WATER	R LEVEL MET	ER SERIAL NUMBER: PGE - 2005-01
		of Well Depth (ft b									ransducer
		= WD-Initial Dep		72	- Initial DTW	/ Before Remov	, A	pprox. 5 min	After Reins		Time of Removal /2:27
		= 0.17, 4"= 0.66,			12:25	109.28		3 5 4 N	- Th	1.53	Time of Reinstallation 1334
ne Casing Vol	lume = D*SWH				Comments:	1		340	70.		
ree Casing V			gallons	7	2				~		
olor: (clear) gr	ey, yellow, brov	wn, black, cloudy.	green		Odor: (none), s	ulphur, organic,	, other	9	Solida: (Trac	, Small Qu, I	Med Qu, Large Qu, Particulate, Silt, Sand
					_						Page 2 o

Project N Job No		Topack CMP 37.MP.02.CM.01				Min	Samplin	g Event _ Date	2009-CM	AT DEDUCATION OF	BU
Sampler_	WHOTT	Field Team	1 Field	d Conditions C	lear sky ?	90F cal	E ~ 3 my	Page _	of		
Well/Sam Purge Star	•	CW-02D-022 54 - 15	ዛ ባ]		mple ID NA	2. Pump	Ded. Pt	ımp No	QC Sample	e Time N/A
	Flow Cell(Y)	/ N		Mir	n. Purge Volume				gpm)/(mLpm	3	
Water Level	Time	(gallon) / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
92.55	1503	27	8.23	7.513	1	6.12	28.64	4.12	4.884	-42.7	
92.55	1512	54	8.51	7,515	7	6,52	29.24	4.12	4.886	-33.9	
92.56	1521	18.	8.21	7.504	2	4.50	29.24	4.11	4.880	-27.0	
92.55	1530	108_	8.20	7.501	2	6.48	29.39	4.11	4.895.	-19.8	
92.55	1539	135	8,19	7.497		6.48	100 mm			-13,8	
92.55	1545	144	8,19	7,499	2	6.48	29.38 29.39	4.11	4.874		T
	1547	+500	pin	to de	8						
Parameter Sta	abilization Crit	oria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA tze	NA .	NΛ	+/- 10 mV	
	Stablize prior to sa	ampling?	У		У	У	-NA Y		_	У	
Previous Field m		(4/7/2009)	7.79	7769	1,7	6.45	30.79	0.5		# 6	
	ts consistent with		y				NA- IN	HUN -		lover	
Sample Time	1544	Sample Locatio	n: ' pu	mp tubing	well por	sbigat		bailer	other		
	Water (ft BTOC): f Well Depth (ft b	92.55 toc):		Measure	Point Well	TOC Ste	el Casing	WATER		ER SERIAL NUMBER: PAE - 2005 - 01
	n - from databa				Initial DTW	/ Before Remov	al A.	nerov 5 mir	n After Reins		ransducer
WH (Standing	Water Height)	= WD-Initial Dep	th 262	2:45	Time	Initial DTW		Time .		MTOTAL	Time of Removal
		= 0.17, 4"= 0.66,	1"=0.041(2	2 in)	14:39	92.55	1	6:00	92	*****	Time of Reinstallation
	ume = D*SWH		7		Comments:						
an anna anna anna an an com	olumes = cy, yellow, brov	<u>133.1</u> wn, black, cloudy			Odor: nanc, s	ulphur, organic,	other		Sollda: Trace	, Small Qu, I	Med Qu, Large Qu, Particulate, Silt, Sund Page 3 o

Topock Sampling Log

	200	
	3	
0	3	
	Ω	
	CO	

Project N Job No Sampler_		opock CMP 7.MP.02.CM.01 Field Team	1 Flek	d Conditions	10°F. ewin	dfan Ersinghic	Sampling	Date	2009-CM	P-022 1 4]09	
Well/Sam Purge Star	t Time	6:18-11	6:54	Min		mple ID NA Method I Cro (faly(I)	up.	Ded. Pu	gpm)(mLpm	QC Samp	le Time N/K
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss, Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
93.11	16:2365	9814	7.98	7.380	2	4.08	28.38	4.04	4.797	-1.3	
93-11	16:28	20	1.98	7.375	5 3	4.09	28.39	4.04	4.793	-1.1	
93.11	16:33.	. 30	7.98	7.368	.3	4.11	28.40	4.04	4.791	-0.5	
93.11	16:38	40	7.99	7.314	2	4.12	28.41	4.04	4.792		
93.11	16:43	50	7.99	7.367	3	4.11	28-42		4.784	Ø.3	
93.11	16:49	Oď	7.99	7.366	2	4.13	28.42	4.03	4.788	0.9	
	16:54	Sump	200	<i>j.</i>							
Parameter St	tabilization Crite	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	1 NA	NA	NA	+/- 10 mV	
Did Parameters	Stablize prior to sa	mpling?	Y	y	У	У	WAT Y	_	Ī	Y	
revious Field n	neasurement ((4/7/2009)	7.54	7713	1,3	3.44	29.7	0.5		42.4	
re measureme	ents consistent with	previous?	Y_	<u> </u>	Y	higher	-NAC 10	mar—		lower	
ample Time comments:	٠	Sample Locatio		Mente Leak		9 - 022 re Point: Well		bailer el Casing	other	R LEVEL ME	ETER SERIAL NUMBER: PHE -2005 - 01
ield measure	d confirmation of	f Well Depth (ft t	otoc):		_					lf "	Transducer
	th - from databas		05.5)	1 -1		// Before Remo			n After Rein	stallation	Time of Removal 6:07
327 33	g Water Height) per diameter) 2":			2 · 52 (2 in)	Time	Initial DTV		Time		al DTW	Time of Reinstallation
	olume = D*SWH		19.1		Comments:	92.99	• [7:04		2.98	
	grey, yellow, brov	vn, black, cloudy	, green		Odor: none.	sulphur, organic	, other		Solids: Tra	Small Qu	ı, Med Qu, Large Qu, Particulate, Silt, Sand Page 4 of

37p
1
ú
03
0
8
5
Oct

										Topoc	k Sampling Log
Project N Job No		opeck CMP					Samplin	g Event	2009-CMF		ζ.
		7.MP.02.CM.01				****		Date	10/13	109	BEC
Sampler	phon	_Field Team	1 Fiek	Conditions C	lear sky,	1991 cal	On .	Page	U of		
Well/Sam	ple Number	CW-03D-022			QC Sa	mple ID NA				QC Samp	le Time N (A
Purge Star	tTime 8:	19-9:1	19.			Method Te		Dad Du	mp No	QC Samp	ie rine 10 PC
	Flow Cell(Y)		~	Mir	n. Purge Volume		•	_	ipm)/(mLpm)	3	_
	1 low Cell (1)	IN.		2222				a. Bo managi	(cp)		
Water	Time	Vol. Purged	pH	Conductivity	Turbidity NTU	Diss. Oxygen	Temp.	Salinity	TDS	Eh/ORP	0
Level	Time	gallons' liters		mS/cm	Taiblary 1110	mg/L	°C	%	g/L	mv	Comments (See description below
77.35	8:28	21	8.09	7.308	7	4.29	28.23	4.00	4,752	147.0	
77,35	8:37	54	8.09	7324		6.34			4 759		
77.35	8:46		12		3 3 2		29.06		-	127.3	
	***	81	8.08	7.320		6.37		4.00	4.755	115.7	
77.35	8:56	_100 @M	8.07	7.317	ب ب	6.38	27.18	4.00	4.75	106.3	S
f7,35	9:04	1.35	8,07	7.318		6.40	29.19	4,00	4, 75%	· 100.	6
77.35	9:07	144	807	7.319	1	6.39	29.70	4.00	41:78	78.7	2
	9:12		-01100	n of	7						
			1	00				**			
	-		-			-		-			
	1		+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	NA	NA	NA	10 -11	<u> </u>
Parameter Sta	abilization Crite	oria	pH units		units when >10 NTUs	mg/L	±20c	NA NA	NΛ	+/- 10 mV	
Did Parameters !	Stablize prior to sa	mplinu?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		WIET > 1014108		= NA V			. ,	
Previous Field m		(4/7/2009)	7.77	7643	1,1	6.21	30.73	0.49		40.2	
te measuremen	nts consistent with	·		ON JOHN		0.21					
Sample Time	0.00	Sample Location	n: \(\frac{1}{2} \)	43 1	- 1		-MA. 10	hin _		higher	1
Comments:		Sample Cocado	п. ри	np tubing X	well port	tspigut		hailer	other		
Tommerits.		. ,	77			· · · · ·		-		-	
itial Depth to	Water (ft BTOC)	. 7	17.29		Measur	e Point: Well	TOC Ste	el Casing	MATER	LEVEL ME	TER SERIAL NUMBER: PGE - 2005 - 01
	confirmation of	State of the state	32			. r one Cres	100 516	er Casing	VALER		
	h - from databas		40)		Initial DTW	/ Before Remov	/al				ransducer
	Water Height) =		75	2.71.		Initial DTW	. 1 /1	Time	After Reinst	allation DTW	Time of Removal _ 0 80 9
	er diameter) 2"=				8:06-00	77.29		19:25	77.		Time of Reinstallation 7:19
	lume = D*SWH_		14.66		Comments:	u [1 · <u>4 ·</u>]	1 1		1	-0	
hree Casing V	olumes =		134				- 1				
olor: (lea(, gr	ey, yellow, brow	n, black, cloudy	, green		Odor none. s	ulphur, organic,	other	9	olids: Trace	. Small On	Med Qu, Large Qu, Particulate, Silt, Sand
					7			,,, <u>-</u>	J		Page 5 of

(
1	-
C)
S	5
00	
4	
t	3
C)

Prolect	Name PGE	Topock CMP								Торс	ock Sampling Log	
		367.MP.02.CM.01					Samplin	g Event	2009-CN	IP-022		
Sampler	Abbott	Field Team						Date	_ 10/1	5/2000	7	Bac
1002 - N. 100 Mary - 100 - 100 Mary - 100 Ma			FIG	eld Conditions (clear sky, calm, 80 F Page 1 of							
1		CW-03M-022			QC Sa	mple ID O	W-90-022			OC San	ple Time OA	1.0
Purge St	art Time	946 -10:	28		Purge	Method Te	APAP.	Ded. Pr	ımp No	QC Sain	ple Time 08 2	05
	Flow Cell Y			Mir	n. Purge Volume	(gal)/JL) W			gpm)/(mLpm			
	~					O - •						
Water Level	Time	Vol. Purged	pH	Conductivity	Turbidity NTU	Diss. Oxygen	Temp.	Salinity	TDS	L		
	ļ	gallons)/ liters	<u></u>	mS/cm		mg/L	*C	%	g/L	Eh/ORF mv	100 M	omments scription below
78.15	0954	16	7.62	9.141	.Z.	0.42	28.15	5-10	5.960	83.7		
78.15	1002	32	7.66	9,054	1-1-	0.76	7817	5.00	5.760	67.7	·	
78.15	1010	1	7,66	8.939			2076	03	5,876	64. 7	<u> </u>	
78.15	900 lo	48	7/00	0.737	ر ا ا	0.82	20,44	4.76	5,807	57.1		
	700 10			8,905		0.83	28.48	4.74	5739	5%.6		
78.15	1054	70	7.66	8.91)	7.	0,81	28.37	4.95	5.792	50.5	=	
	1028		Regungo	M				-			 	
		/	7	00	-						- 	
							I			·		
_			+/- 0.1	+/- 3%	1/ 400/ NT1							
Parameter S	tabilization Crit	teria	pH units	17- 370	+/- 10% NTU units	+/- 0.3 mg/L	+ 001	NA	NA	+/- 10 mV		
Did Parameters	Stablize prior to se	ampling?			when >10 NTUs		+2°C					
Previous Field r		(4/7/2009)	7.43	9630	- 1.2 \		NA Y	_=		4		
	ints consistent with		2.43	9630		0.51	29.8	0.62		27/3		
		Sample Location	<u> </u>	7		У.	- Ja:	MOV		Y .		
Comments:	10	Sample Location	1: pur	mp tubing	well port	spigot	b	ailer	other	7		
		· · · · · · · · · · · · · · · · · · ·										7
nitlal Depth to	Water (ff BTOC): 1	10.81									
		Well Depth (ft bt			Measure	Point: (Well 1	Stee	I Casing	WATER	LEVEL ME	TER SERIAL NUMBER:	PGE -2005-018
	h - from databas							-		If T	ransducer	
		= WD-Initial Depti		99 -	Initial DTW /	- Vhi		After Reinstallation		Time of Removal	0932	
		= 0.17, 4"= 0.66, 1		9:30		Initial DTW Time		Final		Time of Reinstallation	1037	
	lume = D*SWH		-08		Comments:	78.01		0.42	78.0	1		1021
nree Casing V		43.			Comments:							
olor: clear, gr	ey, yellow, brow	n, black, cloudy, s	green	V V	Odor	hhur ar			\bigcap			
		71 :			Odor none, su	pnur, organic, o	uner	Sc	lids: Trave,	Small Qu,	Mcd Qu, Large Qu, Part	iculate, Silt, Sand
					CONTRA							Page 6 of 1

Ω.
385
3
(4)
03
0
8
40
*
33
O
Oct
-

Well/Sample Number CW-04D-022		GE Topock CMP 70367.MP.02.CM.0 Field Team		ield Conditions	Sunay ~90	- West		Date Page	, .	1P-022		- 6-6
Purge Start Time	ell/Sample Numb	er CW-04D-022						1 age	of		1 228	A) // ·
Water Time Vol. Purged pH Conductivity Turbidity NTU Diss. Daygen Tump, Salinity TDS ENORP Comments Section No. 1	rge Start Time	11:23 -	12:12			1	4	Ded Pu	d'A	QC Sample	Time	NA
Level 1 1 1 2 1 2 1 3 2 1 4 5 1 3 1 2 1 7 8 1 7 4 9 1 1 5 7 7 28.35 9 1 1 9 8 6 59.5 1 1 1 3 1 2 1 7 8 1 7 4 9 1 1 5 7 7 28.35 9 1 1 1 4 8 6 59.5 1 6 2 1 6 2 1 6 1 2 1 9 1 1 2 3 7 8 6 9 1 0 4 8 2 1 6 1 2 1 9 1 1 2 2 7 8 6 9 1 0 6 3 1 1 1 6 2 2 1 9 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 2 2 2 1	Flow Cel	Ŋ, N		Mi			23 P			3		
11:31	evel	Vol. Purged gallon: / liters	рН	Conductivity mS/cm	Turbidity NTU				100		T -	
62.16 11:34 48 7.85 7.599 4 6.17 29.02 4.21 4.999 53.2 62.16 11:59 96 7.86 9.003 2 4.61 29.16 5.00 5.855 32.4 62.16 12:04 12.3 7.86 9.048 2 4.61 29.19 5.03 5.881 28.1 62.16 12:07 132 7.86 9.063 1 4.62 29.19 5.03 5.881 28.1 62.16 12:07 132 7.86 9.063 1 4.62 29.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 32 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 32 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.62 39.19 5.03 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 62.16 12:07 132 7.86 9.063 1 4.61 30.3 5.891 27.0 6	11:31	1 24	7.81	7,494		577	7835	1 1 11	U861		 	=
11:41 72 783 8.923 7 4.61 79.11 4.95 5.805 37.1 7.86 7.			_		+ +	1 1			- Y			
11:55 90 7.86 9.003 2 4.61 29.16 5.00 5.855 32.4	16 11:4		783		 						 	
22.16 12:04 12.3 7.86 9.048 2 4.61 29.19 5.03 5.88] 28.1 22.16 12:07 13.2 7.86 9.063 1 4.62 29.19 5.03 5.89] 27.0 12:12 proper of file Parameter Stabilization Criteria pH units when >10 NTUs mg/L = 27.0 proper of file Parameters Stabilize prior to sampling? revious Field measurement (4/7/2009) 7.56 9437 1 4.62 30.49 0.61 36.2 remeasurements consistent with previous? Y DWW Y NAX IOWW	A CONTRACTOR OF THE PARTY OF TH			9.003	1	4.61	100 1					
2. 16 12:07 132 7.86 9, 063 1 4.62 29.19 5:03 5.89 27.0 12:12	16 12:00	4 123	7.86					5.03				
Parameter Stabilization Criteria ##-0.1 #-10% NIU units when >10 NTUs mg/L +-2.2 ##-10% NIU units when >10 NTUs mg/L +-2.2 ##-10 mV	16 12:0		7.86		1	4.62	100	5.03				
Parameter Stabilization Criteria ##-0.1 pH units ##-0.1 pH units ##-0.3 mg/L ##-10% NIU units mg/L ##-22C ##-10% NIU units mg/L ##-10 mV #	17:12	?		pus	10 of				3.017			
id Parameters Stabilize prior to sampling? Y NA Y revicus Field measurement (4/7/2009) 7.56 9437 1 4.62 30.49 0.61 36.2 The measurements consistent with previous? Y NAY	eter Stabilization C	Criteria		+/- 3%		100.0.000000000		NA	NA	+/- 10 mV		
revious Field measurement (4/7/2009) 7.56 9437 1 4.62 30.49 0.61 36.2 The measurements consistent with previous 7	ameters Stablize prior to	sampling?	ļ	+	when >10 NTUs	mg/L	= 200					
e measurements consistent with previous? DWW Y NATED LEVEL MUTED OF DUM Seed Casing WATED LEVEL MUTED OF DUM WATED LEVEL MUTED OF DUM NATED LEVEL MUTED OF DUM WATED LEVEL MUTED OF DUM NATED DUM			7.56	9437	<u> </u>	- Y		-		_ y		
imple Time 12: 10 Sample Location: pump tubing X well port splgot beiler other beiler other tial Depth to Water (ft BTOC): 6/. 75 Measure Point: Well TOC) Steel Casing WATER LEVEL MUTTER CERTAIN METER AND	surements consistent w	vith previous?	V	1	\\	4.02				36.2		
tial Depth to Water (ft BTOC): 61.75 Measure Point: Well TOC) Steel Casing WATER LEVEL MUTTER CERTAIN THE ACCUMANCE OF THE AC		Sample Locatio	n: T		well part	splgat		V/III——————	ather	7		
THEODOTE I UIII. (VIIII I III.) STEPLI ASION WATER CERTAL LUCIONES DE LA PARENTE DE LA												
w measured commination of your Depth (it bloc):			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Measure	Point: Well	TOC) Stee	el Casing	WATER	LEVEL METE	R SERIAL NU	JMBER: PGE -2005-C
Mell Doubt from databases						-	T			If Tra	insducer	
/H (Standing Water Height) = WD-Initial Depth 241.25 Approx. 5 min After Reinstallation Time of Removal				41.25						allation		al /1:15
Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)		2"= 0.17, 4"= 0.66,	1"=0.041				120			170 Ti		
Comments:						41.12		120/1.7	1 01.	150		• • • • • • • • • • • • • • • • • • •
of clear, grey, yellow, brown, black, cloudy, green Odor pore sulphur organic other											·	

Project N	lame PGE	Topock CMP		•						Торо	ck Sampling L	og	
Job N	1000,00000 1000,000	67.MP.02,CM.01				ent A	Samplir	ig Event	2009-CA	MP-022			
Sampler _	- 11 -				1 A A-9	(Mid)		Date	10/	15 09			BEC
		_ Field Team	Fiel	d Conditions (lew, 195	towest .	- 2 mph	Page	of		-	-	VIC
		CW-04M-022			QC Sa	mple ID N	۹		7	QC Sam	ele Tim	01/0	
Purge Star	t Time	1:48 -	13:21		Purge	Method	Temp.	Ded. Pu	mp No		pu: rime	N/R	
	Flow Cell (Y)			Mir	n. Purge Volume		1.	_	gpm))/(mLpn		-		
								2(3,,,,,,,	"			
Water Level	Time	Vol. Purged	ρH	Conductivity	Turbidity NTU	Diss. Oxygen	Temp.	Salinity	TDS	FLOOR			
		gallons / liters		mS/cm		mg/L	°C	%	g/L	EMORP mv		Comments (See description below)	nw
80.59	1252	8	7.78	6.658	5	1.98	78.21	362	1177-	70.			
6217	12 56	14	774	6,588		1.9)			4.327				
62.15	13:00	24	7.73		<u> </u>		Z&37			575			
62.15		· · · · · · · · · · · · · · · · · · ·		6,532		1.76	78.37		4.245	52.8			
	13:04	32		6.525		1.73	28.36	3.54	4-240	243			
6214	13:08	40.	7.73	6.520	2	1.70	28,39	3,54	7:240	22.9	1		
62.14	13:12	48	7.73	6.515	2	1,69	28.40	3.54	4.236	717			
<i>छ</i> ्।।५।	13:16	56	7.73	6.516	3	1,69	28,41		4.237	-			
	13:21	,		- 1			25,7(13.01	1.631	21.0	-		
			Som	12 of									
			+/- 0.1										
Parameter Sta	bllization Crite	ria	pl f units	+/- 3%	+/- 10% NTU units	+/- 0.3 mg/L	NA TOP	NA	NA	+/- 10 mV			
Did Parameters S	tablize prior to san	nnling?			when >10 NTUs		75.0						
Previous Field me		4/7/2009)	7.47		- Y		-NA Y			_У			
Are measurement		The second second		675	1.2	1.38	29.9	0.43		28.7			
Sample Time		Sample Location	<u> </u>			7	-44-A1	°L		A -			
		set al		p tubing X	well port	spigot	ь	ailer _	other				
				211-8	low xu	erfore	(n 2	2000	below	WL			
nitial Depth to W	ater (# BTOC):	egun pent b	61.8	10 - 00 -	02201								
				·	Measure	Point: Well 1	OC) Stee	I Casing	WATER	LEVEL MET	TER SERIAL N	IUMBER: PGE -2	005-011
										If T	ransducer		
WH (Standing V	(Well Depth - from database) ft btoc (169.8000 H (Standing Water Height) = WD-Initial Depth 108					Initial DTW / Before Remova Time Initial DTW			After Reinsta	allation	Time of Remo	val 17:	40
	olume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)					Initial DTW	1	ime	Final	DTW	Time of Reins		30
ne Casing Volu			18.36	·	12:39	61.80		:34:		o tro			: 09
ree Casing Vol			55.1		Comments:		/2	:35	61.	75			
olor: glear, grey	r, yellow, brown	, black, cloudy, g			Odor (\wedge			· · · · · · · · · · · · · · · · · · ·	
					Odor: hone, sui	pnur, organic, c	other	So	lids: Wrace	Small Qu, I	Med Qu, Large	Qu, Particulate, Silt, S	Sand
													Page 8 of

39p
03:3
5 09
٠-
Oct

Project I Job N	lumber 3703	Topock CMP 67.MP.02.CM.01				or Wind	Samplin	g Event Date	2009-CM		C Sampling Log	BRC
Sampler	Aldrott	_ Field Team _	1 Fie	ld Conditions (loudy, ~ 75	24, E, 51	E 8mph	Page _	/_ of	11		Y
Well/Sar	nple Number	OW-01D-022			•	mple ID NA	\	-		QC Sampl	le Time N/A	
Purge Sta	rt Time	14:13 - 14	63		Purge	Method Ten	mp .	Ded. Pu	ump /	<u> </u>	/_	
	Flow Cell)/ N		Mir	ı. Purge Volume	(ga))/(L) 9	<i>y</i>	urge Rate	(gpm))(mLpm	3		
Water Level	Time	Vol. Purged gallons / liters	pН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP my	Transaction of the Control of the Co	nments ription below
15.93	1421	24	7.67	7.266	7	7.13	28.32	3.98	4.726	80,2		
6.02	1429	48	7.60	7.344	3	11.26	28.06	1-	4.772		SMALL AMOULE	TOF AIR IN L
6.02	1437	72	7.60	7.339	8 0		78.06	+	4.770		Beens to get	more air in
16.02	14 45	94	7,60	7.326	2	11, 33	28.06	4.01	4.760	100.7	terre once it	goes through
96,02	1448	105	7.61	7.326	2	1), 35	28.06	4.01		[67.]	1(0 W COM.)	
arameter S	tabilization Cr	İteria	+/- 0.1 pl l units	+/- 3%	+/- 10% NTU units when > 10 NTUs	+/- 0.3 mg/L	+ 2°C	NA	NA	+/- 10 mV	lot of air	ale sa dia
d Parameters	Stablize prior to	sampling?	V	Y	У	<u> </u>	NAY		1-	_у_	in li	when sampley
-	neasurement	(7/7/2009)	7.62	6596	2.1	10.1	29.86	0.43		37.8		
	ents consistent wit		<u> </u>	У	Y	higher	NA			4		
mple Time mments:	-14.70	Sample Locatio		ump tubing X	well port	spigot		bailer	other _			
	Water (ft BTO)	C): of Well Depth (ft b	92.79		Measur	e Point: Well	10C) Ste	el Casing	WATER	R LEVEL ME	TER SERIAL NUMBER:	PGE -2005-0
	th - from databa	V 2012/03/04 - 15/69	77)		 WTO leitin!	/ Refore Romo	val				ransducer	xr
) = WD-Initial Dep	oth	1.21	Time	Initial DTW / Before Removal Time Initial DTW			n After Reins Fina	tallation	Time of Removal	1408
Volume as	per diameter) 2	"= 0.17, 4"= 0.66,			1405	92.79		Time 505	92.	Andrew Control of the	Time of Reinstallation	1458
	olume = D*SWł	04 6	31.3		Comments:					- (.		
ee Casing '		94 ga			Odor: hong, s	sulphur, organic	, other		Solids: Pizo	e, Small Qu,	Med Qu, Large Qu, Partio	culate, Silt, Sand Page 9 of

Project	Mama DCF	Topock CMP								Topock	Sampling Log		
		67.MP.02.CM.01	<u> </u>				Samplin	g Event	2009-CN				
Sampler	Abbott	_ Field Team			Loudy, 82	.c wind.	fram	Date _	10/12	2009			Bee
				eld Conditions C	willing, UL	CEN	1-2mph	- Page	of				
1		OW-01M-022				mple ID NA				QC Sample	c Time _///	A	
Purge Sta	rt Time	518-15	147			Method	/	Ded. Pu	ump 1	10			
	Flow Cell.(1)	/ N		Mi	n, Purge Volume	(ga)/(L) _ 4	8 P	urge Rate (gpm)/(mLpn	1)_2	,		
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP mv	(See	Comments description below	
13.5[1522	8	7.55	7.254	1	9.26	28.09	3.97	4.718	98.7	 		
93.54	15246	16	7,54	7. 275	2	11.2.2	7803	3,98	4.726		Air Lin	.0.	
93.54	1530	24	7.54	7.273	1	11.16	28,02	3.97	4.720	98.2	air in his	<u> </u>	
93.54	1534	32	7.54	7.260	j	11.31	78,05	3.97	4.717	98.3	<u>"</u>		
93.54	1538	40	7.54	7.245	i	11.35	28.05	3.96	4.704		11		
9359	1542	48	7.54	7.268	1	11.32	78.05	3.98	4.718	98.7	(1		
										110.7			
Parameter St	abilization Crit	eria	+/- 0.1 p) { units	+/- 3%	+/- 10% NTU units	+/- 0.3 mg/L	NA	NA .	NA	+/- 10 mV			
Did Parameters	Stablize prior to sa	mpling?		<u> </u>	when >10 NTUs		± 2°€		_	•			
Previous Field m		(7/8/2009)	7.55	7390	0.4	—- } —-	-NAY						
Are measuremen	nts consistent with		V	- 330	0.4	1.1	29.26	0,48		111			
	12 1314	Sample Location		Imp tubing X	well port	higher	NA						
Comments:						spigot		bailer	other				
	Water (ft BTOC)):	3.3.2.		Measure	Point: Well	Stee	el Casing	WATER	LEVEL MET	ER SERIAL NUMBE	R: PAE-Zu	5-01B
		e) ft btoc (18	The state of the s		Initial DTW	/ Refore Remov	31				ansducer		
SWH (Standing	Water Height) •	■ WD-Initial Dep	2.48	Time	al DTW / Before Removal Approx. 5 min			T	DTW 1	ime of Removal	1510		
		0.17, 4"= 0.66,		2 in)	15:09	93.32	16:0	-	93.	-00000000000000000000000000000000000000	ime of Reinstallatio	n_ 15 55	
	ume = D*SWH_				Comments:								
hree Casing Vo Color: clear, gro		n, black, cloudy,			Oda Coo				6				
0			armur.		Odon none, si	ulphur, organic,	other	S	olids: Trace	. Small Qu, M	led Qu, Large Qu, I		end age 11 of 1

2
4
8
60
5
Oot

				·						Торос	ck Sampling Log	
Project N	-	Topock CMP					Samplin	g Event _	2009-CM			4-
	3703	67.MP.02.CM.01				- wind	from .	Date _	10/12	109		Bac
Sampler_	Abboth	Field Team	1 Fiel	d Conditions	ordy,~73	17, Soul	n,~4-	S Plage	lof			
Well/San	nple Number	OW-015-022			QC Sa	mple ID OY	V-91-022			QC Sarnp	ole Time /232	
Purge Sta	rt Time 161	1-1429			Purge	Method Ja	Myp.	Ded. Pu	ma N		72200	_
	Flow Cell: Y	y N		Min	. Purge Volume	A .		urge Rate (1) 1 GK	PM	
		/										
Water Level	Time	Vol. Purged gallon / liters	ρН	Conductivity mS/cm	Turbidity N1U	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	Comm (See descrip	
93,74	1613	2	7.56	3.900	94	4.38	7.7.50	2.02	7.488	89.4		The second of th
93:45	1615	4	7.61	3.560	79	4.80	27.95	184	2,288			- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
97,75	F131	86	7.62	3,322	6	4.99	78.13	173		81.1		
93,75	1619	8	7.64	3,230	3	5,13	28,16	117	2.090	77.0		F
93.75	1621	10.1	7.65	3 143	3	5.27	28,70	16/2	2.050			
93 75	1623		7.62	3.103	2	5.29	28,20		2,0/5			
73,75	1625	12		3.070	2			1.59			+	
1), 17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/	. 03	5,0.0		0,07	20,22	1107		146		
	-											·
		1	+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	NA	NA NA	NA NA	+/- 10 mV	,	
Parameter St	tabilization Cri	iteria	pH units		units when >10 NTUs	mg/L	2.01.0	257.7				
Did Parameters	Stablize prior to s	sampling?	4	4	4	Y	NA	Y		y		
Previous Field n	neasurement	(7/8/2009)	7.56	3540	1.4	4.27	30.24	0.23		53.9		
Are measureme	nta consistent wit	h previous?	ч	4	Ч	4	NA	higher		Y		
Sample Time	1427	Sample Locatio	n: pi	ump tubing X	well port	spigot		bailer	other	/	·	
Comments:	Pump &	ut at ~	1 foot	and tubing X	tal Dept	h.						
1646		Zampmen	r 016	nk Ou	1-87-0	22,			ALL			
	Water (ft BTO		93.61		Measur	e Point: Well	TOC Ste	eel Casing	WATER	R LEVEL ME	TER SERIAL NUMBER:	PUE -2005-011
		of Well Depth (ft b								lf '	Transducer	
		ase) ft btoc(1		20		/ Before Remov	^	pprox. 5 min			Time of Removal	16:85
) = WD-Initial Dep "= 0.17, 4"= 0.66,			Time	Initial DTV 93.6/		Time		IDTW	Time of Reinstallation	16:36
	lume = D*SWI				/6:04 Comments:	10.01		14/	7:	3.65	1	
Three Casing V		10.1	_		Comments:	•			1000			
		wn, black, cloudy	. areen		Ddor non	sulphur, organic,	other		olide T	a Small O	ı, Med Qu, Large Qu, Particu	data Cilt Ce-d
0.						raipriar, organio,	, omer		Ullus Ullus	e, Smail Gu	, med Qu, Laige Qu, Partict	Page 13 of 19

		Topock CMP 67.MP.02.CM.01 Field Team	1 Fie	d Conditions	sunny, 859	wind to	Samplin San Bangah	g Event Datc Page	2009-CM			_	BEC
Well/San Purge Star		OW-02D-022 : ちち) N			QC Sa	mple ID NA	imp. Pur	p Ded. Pu	mp_ <i>No</i>	QC Sample	e Time	1/4	
Water Level	Time	Vol. Purged gallons liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP mv	(S	Comments ee description	
91.61	12:02	21	7.62	7.361	2	8,47	28.46	4.03	4.785	984			
91.61	12:09	42	7.64	7.427	1	9,34	27.92			97.2	Air i	n line	
71,66	12:16	63	7.63	7,810	1	9,73	27.78	4,30	每5.07	the second secon	11		
91.68	12:23	84	7,63	7.813	i	9,25				974	t ₄		***************************************
91.66	12:30	105	7.63	7.817	1	9.24	27.77				11	-	
91.66	12:37	121	7.63	7.817		9.26	27.77	4.30	5.081	96.4	la la		-
	abilization Crit		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when > 10 NTUs	+/- 0,3 mg/L	NA ± 2℃	NA	NA	+/- 10 mV			
d Parameters evious Field m	Stablize prior to sa		- Y_	Y	Y	у	-NA-Y			Y _	lots of	air in	line
	neasurement nts consistent with	(7/8/2009)	7.51 V	7450	0.4		30.63 ^f	0.48		91.7			
ample Time omments:	12:40	Sample Location	$-\leftarrow$	mp tubing	well part	hi ghen spigot	NA	baller	other _	<u> </u>			
	Water (IL BTOC	f Well Depth (ft b	/.33 loc): -		Measure	Point: Well	TOO Stee	el Casing	WATER		ER SERIAL NUM	IBER: PG	€-2015-0
O (Well Dept	h - from databas	se) ft btoc (34	0)	79	Initial DTW	/ Before Remov	/al An	prox. 5 min	After Reinet		ansducer		/
		= WD-Initial Dep	18.67	Time	Initial DTW	7	Approx. 5 min After Time		VITO	Time of Removal Time of Reinstall		150	
	lume = D'SWH	= 0.17, 4"= 0.66,	1"=0.041 <u>(</u> 42.3	2 m)	//: 48 Comments:	91.33	_ 12	:5 <u>le</u>	91.	38		ation 12	
()		vn, black, cloudy,	green		Odor: none, s	ulphur, organic,	other	8	olids: Trace	, Small Qu, I	∕led Qu, Large Q	u, Particulate,	Silt, Sand Page 14

42p
03.
60
5
Oot

Project N Job N		Topock CMP 67.MP.02.CM.01			. O A.u		Samplin	g Event _ Date	2009-CM 10/13		BEC-
Sampler_	Abbott	Field Team _	1 Fie	Id Conditions _	wind from	East, ~859		Page	l of		Bec
Well/San	nple Number	OW-02M-022			QC Sa	mple ID NA				QC Sample	e Time N/A
Purge Star	it Time \ 3	311 - 13	१९		Purge	Method Ten	p. Pum	Ded. Pu	mp_No		
	Flow Celi(Y)	N		Min	n. Purge Volume	(ga)/(L) (<u>C</u>).6P	urge Rate (gpm)/(mLpm) 7	<u></u>
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
91.58	1316	10	7,65	7.333	6.3	7.84	28,03	4.01	4.767	90,0	
91,58	1321	20	7,50	7.399	0,2	9,74	78,66	4.05	4.808	85,0	dir in line
91.58	1326	30	7.57	7.390	0.7	7, 17	28,75	4,06	4.819	96.4	и
91,58	1331	40	7,53	7,419	0,9	9,97	20,79	4.06	4,815	86.8	1,
91.53	139	50	7.63	7.391	0,4	16.00	28,82	4.04	4.804	90.8	11
91,58	13410		7.66	7.410	0,3	10,00	28,90	4.06	4,814	87.7	11
91.58	1344	66	7.65	7.402	0.4	9,98	28,88	4,05	4.803	86,3	in
	-			1		** ***********************************					
Parameter St	tabilization Crit	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+NA -2°C	NA	NA	+/- 10 mV	
Did Parameters	Stablize prior to sa	ampling?	Y	_у	4	У	NA: Y			Y ₃₇	Lots of Aar in line
Previous Field n	neasurement	(7/8/2009)	7.58	7390	0.3	·	28.89	0.48		137	0
	1346		1	1.1		higher	NA .		<u> </u>	<u> </u>	
Sample Time Comments:		Sample Locatio		below w	well port	spigot	-	bailer	other _		
	Water (ft BTOC	\$9900 STREET OF VICTOR	91.46		Measur	e Point: Well	TOC Ste	el Casing	WATER	R LEVEL MET	TER SERIAL NUMBER: PGE -2005 -01B
		f Well Depth (ft b			-					1f T	ransducer
	th - Irom databa o Water Height)	= WD-Initial Dep	10.3000)	18.84	_ Initial DTW _ Time	/ Before Remov	^	pprox. 5 mir Time	n After Reins	tallation al DTW	Time of Removal 1302
		= 0.17, 4"= 0.66,		(2 ln)	12:59	91.46		4:06	91.4		Time of Reinstallation/401
One Casing Vo	olume = D*SWH		20.	2	Comments:			_		•	
Three Sasing \	Volumes =	-10-	606	- Carrotte	>				2		
Color: clear, g	rey, yellow, brov	wn, black, cloudy	, green		Odol none, s	ulphur, organic,	, other	:	Solids: Trad	e, Small Qu,	Med Qu, Large Qu, Particulate, Silt, Sand Page 15 of

Topock Sampling Log

:42p
03:
8
5
Oct

										Topoc	k Sampling Log	
Project I		Topock CMP				127	Samplin	g Event	2008-CN	1P-022		
	0100	67.MP.02.CM.01			wind	fram a		Date	10/13/2	009		BC
Sampler_	Abbott	_ Field Team _	Fie.	d Conditions C	loudy E.S	E, ~1/m	ph,~80°	Page _	_Lof	1		
Well/San	nple Number	OW-02S-022			QC Sa	mple ID NA	_ .		-	QC Samp	le TimeN/A	
Purge Sta	rt Time 16	:20 -19:	280		Purge	Method Tem		Ded Pu	mp No	QC Samp		
	Flow Cell(Y))/ N		Mir	n. Purge Volume		,	urge Rate((*******	
	O					W	•		, (p.	ــــــــــــــــــــــــــــــــــــــ		
Water	Time	Vol. Purged	T pH	Conductivity	Turbidity NTU	Diss. Oxygen	Temp.	Salinity	TOS	Eh/ORP	Comment	
l evel	ļ.,	gallons / liters	ļ	mS/cm		rng/L	*C	%	g/L	mv	Comments (See description belo	w
LHG	1621	0,0	8.33	1,775	43	8.37	7677	A ca	1,149	(7)		
2.76	1622	2.0	8,20	1.764	11	8.20		0,89		67,1		
2.76	1623	3.0			1,1	The second secon	27,49	0,89	1.146	67.0		
7.70		3.0	8.17	1.761	5	8.15	77.08	0,89	1.145	5,00		
4.17	1,624	4,0	8.17	1.761	1 4	8.16	24,76	0.89	1.194	65.6		
2.76	625	5,6	8.16	1,759	2	8.10	27,92	0 88	1.143	65,1		_
								0.00_	15112	0.517		
					 						 	
							-		_			
		L										
rameter St	abilization Crit	leria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units	+/- 0.3 mg/L	NA-	NA	NA	+/- 10 mV		
Parameters	Stablize prior to se				when >10 NTUs		tre					
vious Field m			<u> </u>	Y	- 4-		- NA -y			Y_		
	-	(8/5/2009)				7.6 29.32			61.5			
	nts consistent with		1	Y	<u> </u>	<u> </u>	-NA- 10	₩ (II) ~		Y		-
nple Time	14: 26	Sample Location	Pu	mp tubing 📉	well port	spigot		baller	other			
iments:	[mulp	set ~ 1 -f	bot al	DOVE Total	al Depth	3.						
al Denth to	Water (ft BTOC	72.	41 —									
		f Well Depth (ft b		***	Measure	e Point: (Well	TOC) Ste	el Casing	WATER	R LEVEL MET	TER SERIAL NUMBER: PGE-2	1505-0
	h - from databa	- W			-					If T	ransducer	-
		se) ft btoc (10 = WD-Initial Dep		•	-	/ Before Remov		prox. 5 min	After Reins	tallation	Time of Removal 1413	
		= VVD-Initial ()ep = 0.17, 4"= 0.66,			Time Initial DTW Time 14/0 92.42 /4:39				IDTW	Time of Reinstallation 14:33		
	lume = D*SWH	1999		1				92	.43			
c Casing Vo		4.4			Comments:							
~		vn, black, cloudy,			15				2			
ere wince ; ill	o, yenow, brov	ин, выск, сюваў,	green		Odor: hone, s	ulphur organic	other	Q	alide tran	Casall A.	Med Qu, Large Qu, Particulate, Silt,	22 1157:

_
43p
03
60
5
Oct

Project	Name PGE	Topock CMP								Торс	ock Sampling Log	
Job	Number 3703	367.MP.02.CM.01				15°F	Sampli	ng Event Date	2009-CN			0.0
Sampler	_Abbott_	Field Team	1 Fie	eld Conditions	_	portion. I	m	Page _	1 of	ا ا		BE
Well/Sa	imple Number	OW-05D-022			d oc s	ample ID NA	<u> </u>					
Purge St	art Time D	823 - 9:	11			e Method Tex		Ded P	ump Alb	QC Sam	nple Time N	<u>A</u>
	Flow Cell(Y)/ N		Mil	n. Purge Volume				(mLpn	1) 3		
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/l	Temp.	Salinity %	TDS g/L	Eh/ORF		omments escription below
95.61	0830	21	7.74	7.330	2	6.43	28.30	4.02	4767	173.7		
95,61	0831	42	7.73	7.342	ì	6.76	78.84	4.02	4.772	157.5	, †	· -
95.61	0845	6366	7.73	7.347		7.19	28.91	4.02	4.776	1350		
95,61	0852	187	7.72	7.352	1	7.22	28.96	4.02	4.778	1289		
95.61	0859	105/08	7.72	7.356	1	7.22	28.97	4.02	4.780	125,5		- 1 - was
75.61	0907	132	7.71	7.358	1	7.22	29.00	4.03	4.783	121.0		
Parameter S	tabilization Crit	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when > 10 NTUs	+/- 0.3 mg/L	-NA- + 2°C	NA	NA	+/- 10 mV	,	
Old Parameters	Stablize prior to sa	ampling?	V	V	\/		NA V	~				
Previous Field n	measurement	(7/8/2009)	7.58	7480	0.4	8.76	29.31	0.48		104.1	+	
	ents consistent with	previous?	- ¥	γ	V.	- y	NA v			Es. I.a.		
Sample Time Comments:	09:08	Sample Location): pu	ump tubing X	well port	spigot		bailer	other		<u> </u>	
	Water (ft BTOC	c):f Well Depth (ft bt	45.28		Measure	Ppint: Well	roc) Ste	el Casing	WATER	LEVEL ME	TER SERIAL NUMBER:	PGE-2005-01
	th - from databas				Initial DTW	/ Before Remov	al .				Transducer	
		= WD-Initlal Dept		1.72	Time	Initial DTW	_ _ ^F	prox. 5 min Time	After Reinst		Time of Removal	08/6
ne Casing Vo	lume = D*SWH	= 0.17, 4"= 0.66, 43	3.3	2 in)	813 Comments:	95.28		20	95.		Time of Reinstallation _	_0915
hree Casing V olor. claar, gr		vn, black, cloudy,	A CONTRACTOR OF THE PARTY OF TH		Odor: none, se	ulphur, organic, o	other	S	ollds: Rade,	, Small Qu,	Med Qu, Large Qu, Part	iculate, Silt, Sand

	And the second second	Topock CMP 67.MP.02.CM.01 Field Team	1 Fie	ld Conditions	Sunny . Lew high el	ouds, Eas	Samplin I from	Date	2009-CMF /0//3		BEL
		39 ~10:0		Mir		mple ID NA Method Ten	ip. Pum	Ded. Pu	mp		e TimeN/A
Water Level	Time	Val. Purged pallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS g/L	Eh/ORP	Comments (See description below
95.15	9:43	12	7.61	7.405	2_	5.83	28,44	4.06	4.812	115.1	
45,14	0948	27	7,65	7.40G	0,4	6,30	28.36	4.06	4.814	1105	
95,14	0952	39	7.66	7.405	3,4	6.20	28.34	4.06		107,7	
95,14	0957	54	7.66	7.407	6,3	6.40	28.34	1	4.813	104.8	
75.14	1001	66	7.65	7.407	0.4	6,40		4.06	4.814		
95.14	1006	81	7,66	7.407	0,5	6.41	28.37	4.06	4.816	100,2	
Parameter S	Stabilization Cr	iteria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	± 2°C	NA	NA	+/- 10 mV	
Did Parameter	s Stablize prior to	sampling?	4	у	у	1/	-NA-V		1	У.	
Previous Field	measurement	(7/8/2009)	7/55	7460	0.4	7.81	28.68	0.48		102.8	
Are measurem Sample Time Comments: _	ents consistent wit	th previous? Sample Locatio	n: p	ump tubing X	well port	spigot	MA y	bailer	other	- }	
		C): <u> </u>	otoc):		Measur	e Point: (Wall	TOC St	eel Casing	WATER		TER SERIAL NUMBER: PGE -2005 - 01-
		ase) ft btoc (2:	50.25)		Initial DTW	/ Before Remo	val A	pprox. 5 mi	n After Reinst		ransducer Fine of Removal 9: 32
WH (Standir	ng Water Height	t) = WD-Initial Dep		55.54		Initial DTV	000	Time	Fina	DTW	Time of Removal 9.32
		2"= 0.17, 4"= 0.66,		(2 in)	9:31	94.71	ji	5:21	94.	71 -	
hree Casing			26.44	-	Comments:			-	(.)		Med Qu, Large Qu, Particulate, Silt, Sand

Project N Job Nu Sampler	imber 37036	Topock CMP 7.MP.02.CM.01 Field Team	1 Field	Conditions A	umay, ~75,	wind from	Sampling and 10 mg	Date	2009 CMF 10/(3) 1 of		
	ple Number	OW-055-022			QC Sar	Method Tell	y . Purp	Ded. Pur	pm)/(mcpm	QC Sample	
Water Level	Time	Vol. Purged gallons// liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. *C	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
15,44	1044	2	8,02	2.062	67	7.05	27.17	1.05	1.340	92.3	
15.44	1046	ч	796	2.055	35	6.89	7781	1.04_	1332	85.7	
15,44	1048	6	7.95	2.633	13 9 7	6.92	27.90	1.03_	1.320	81.9	
95,44	1050	ğ	7.95	2,067	9	6.92	77.98	1.02	1,304	80,3	
15,44	5201	10	7.90	1.1.970	<u> </u>	6.96	27,93	0,99	1,278	78.8	
15.44	1054	12	7.90	1,952	3	6,99	28.00	0.99	1,267	78,6	
Parameter S	Stabilization Cr	riterla	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	i/- 0.3 mg/L	₹2°C	NA NA	NA	+/- 10 mV	
Did Parameter	s Stablize prior to	sampling?			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	NA Y			•	
	measurement	(7/8/2009)	7.79	1990	1.9	7.65	29.56	0.13		130.3	
Are measuren	ents consistent w	ith previous?	1 4	V	3	N	-NA	oner -		17	<u> </u>
Sample Time Comments:	pump A Collect	Sample Locati ut at ~ Lgus pal	1 Yest	at. OW.	well port OTAL DUM - 88 - 022	·		bailer	other	R LEVEL ME	TER SERIAL NUMBER: PGE-2008-0
nitial Depth :	to Water (ft 8T0	of Well Depth (fl						-	¥8		Transducer
VD (Well De	epth - from date	base) ft btoc (110.25)	•	Initial DTV	W / Before Rem	oval		in After Rei		Time of Removal 10:29
SWH (Stand	ing Water Heigi	ht) = WD-Initial D		,93	Time			Time		nal DTW	Time of Reinstallation//.0 4
		2"= 0.17, 4"= 0.6	6, 1"=0.041 _	(2 in)	1028	95.3.	2 1	1:09	73	5.33	L
1970	Volume = D*SV	VH 2.6			Comments	:					
(1)	g Volumes = -	prown, black, clou		700	Odarchoo	, sulphur, organ	ic other		Solids: Tr	ace, Small Qu	ı, Med Qu, Large Qu, Particulate, Sllt, Sand