

Yvonne J. Meeks Manager

Environmental Remediation Gas Transmission & Distribution Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 Fax: 805.546.5232 E-mail: <u>YJM1@pqe.com</u>

July 15, 2010

Aaron Yue Senior Hazardous Substance Engineer California Department of Toxic Substances Control 5796 Corporate Avenue Cypress, California 90630

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, California 92260

Subject: Board Order R7-2006-0060, WDID No. 7B 36 2033 001 - Interim Measures No. 3, Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2010, PG&E Topock Compressor Station, Needles, California

Dear Mr. Yue and Mr. Perdue:

Enclosed is the *Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2010* for the Interim Measure No. 3 at the Pacific Gas and Electric Company (PG&E) Topock Compressor Station. This monitoring report presents the results of the first half 2010 Compliance Monitoring Program (CMP) groundwater monitoring event and has been prepared in conformance with the California Regional Water Quality Board (Water Board) Order No. R7-2006-0060, MRP No. R7-2006-0060 Revision 1, the Department of Toxic Substances Control (DTSC)'s July 15, 2005 letter approving the Compliance Monitoring Plan, and subsequent letters modifying the reporting requirements.

The current contingency plan specifies the concentrations and values for hexavalent chromium (Cr[VI]), chromium, total dissolved solids (TDS), and pH to be used to determine if contingency plan actions were necessary based on sample results. The water quality objectives (WQO) concentrations used to trigger the contingency plan are as follows: Cr(VI) greater than 32.6 micrograms per liter (μ g/L), chromium greater than 28.0 μ g/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

During the first half 2010 monitoring event, a sample from the well OW-2S ($30.6 \mu g/L$) exceeded the chromium WQO. A review of the water quality parameters indicative of

Mr. Aaron Yue Mr. Robert Purdue Page 2 July 15, 2010

treated groundwater injection (Cr(VI), TDS, sulfate, molybdenum, nitrate/nitrite, and fluoride) confirm that injected water has not yet reached OW-2S and that the concentration of chromium is not related to injected water (which consistently has significantly lower chromium concentrations than those measured at well OW-2S), but instead is related to the natural variability within the shallower portions of the aquifer.

In a letter data January 5, 2007, DTSC stated that it was not necessary to follow contingency plan requirements for Cr(VI) and chromium with respect to OW-2S and OW-5S. The Water Board concurred with this decision in a letter dated March 2, 2007. As such, the contingency plan was not triggered due to the chromium concentration detected in OW-2S during the first half 2010.

No other samples exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS during first half 2010 sampling event. The next CMP event is scheduled to occur in October 2010.

Please contact me at (805) 546-5243 if you have any questions on the CMP.

Sincerely,

Geonne Make

Yvonne Meeks Topock Remediation Project Manager

Cc: Cliff Raley, Water Board Christopher Guerre, DTSC

Enclosure

Final Report

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2010

Interim Measure No. 3 PG&E Topock Compressor Station Needles, California Board Order R7-2006-0060 WDID No. 7B 36 2033 001 Document ID: PGE20100715A

Prepared for

California Department of Toxic Substances Control and the California Regional Water Quality Control Board, Colorado River Basin Region

On behalf of **Pacific Gas and Electric Company**

July 15, 2010

CH2MHILL

155 Grand Avenue, Suite 1000 Oakland, CA 94612

Compliance Monitoring Program Semiannual Groundwater Monitoring Report First Half 2010

PG&E Topock Compressor Station Needles, California Board Order R7-2006-0060, WDID No. 7B 36 2033 001

Prepared for

California Department of Toxic Substance Control and the California Regional Water Quality Control Board, Colorado River Basin Region

On behalf of

Pacific Gas and Electric Company

July 15, 2010

This report was prepared under the supervision of a California Professional Geologist

Serena Lee Professional Geologist, P.G. #8259

iii

Contents

Acrony	yms and	d Abbre	eviations	.vii						
1.0	Introd	uction		1-1						
2.0	First Half 2010 Activities									
3.0	First Half 2010 Results									
	3.1	Analyt	ical Results	3-1						
		3.1.1	Hexavalent Chromium and Chromium	3-1						
		3.1.2	Other Metals and General Chemistry	3-2						
	3.2	Analyt	ical Data Quality Review	3-2						
		3.2.1	Matrix Interference	3-2						
		3.2.2	Matrix Spike Samples	3-2						
		3.2.3	Quantitation and Sensitivity	3-2						
		3.2.4	Holding Time Data Qualification	3-2						
		3.2.5	Field Duplicates	3-2						
		3.2.6	Method Blanks	3-3						
		3.2.7	Equipment Blanks	3-3						
		3.2.8	Laboratory Duplicates	3-3						
		3.2.9	Calibration	3-3						
		3.2.10	Conclusion	3-3						
	3.3	Influer	nce of Treated Water	3-3						
		3.3.1	Post-injection Versus Pre-injection	3-3						
		3.3.2	Water Quality Hydrographs	3-4						
	3.4	Water	Level Measurements							
		3.4.1	Groundwater Gradient Characteristics	3-5						
	3.5	Field P	arameter Data	3-6						
	3.6	WDR N	Monitoring Requirements	3-6						
4.0	Status		itoring Activities							
	4.1 Semiannual Monitoring									
	4.2	Annua	l Monitoring	4-1						
5.0	Refere	nces		5-1						
6.0	Certification									

Tables

- 1 Operational Status of Interim Measures No. 3 Injection Wells from Inception of Injection through First Half 2010
- 2 Well Construction and Sampling Summary for Groundwater Samples, First Half 2010
- 3 Chromium Results for Groundwater Samples, First Half 2010

- 4 Metals and General Chemistry Results for Groundwater Samples, First Half 2010
- 5 Treated Water Quality Compared to OW and CW Pre-Injection Water Quality
- 6 Treated Water Quality Compared to First Half 2010 Sampling Event Water Quality
- 7 Manual Water Level Measurements and Elevations, First Half 2010
- 8 Vertical Gradients within the OW and CW Clusters
- 9 Field Parameter Measurements for Groundwater Samples, First Half 2010
- 10 Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010

Figures

- 1 Site Location and Layout
- 2 Monitoring Locations for CMP
- 3A OW-1S, OW-2S, OW-5S Water Quality Hydrographs
- 3B OW-1M, OW-2M, OW-5M Water Quality Hydrographs
- 3C OW-1D, OW-2D, OW-5D Water Quality Hydrographs
- 3D CW-1M, CW-2M, CW-3M, CW-4M Water Quality Hydrographs
- 3E CW-1D, CW-2D, CW-3D, CW-4D Water Quality Hydrographs
- 4A OW-1S Groundwater Elevation Hydrograph
- 4B OW-2S Groundwater Elevation Hydrograph
- 4C OW-5 Groundwater Elevation Hydrographs
- 5A Groundwater Elevations for Shallow Wells, June 2, 2010
- 5B Groundwater Elevation Contours for Mid-Depth Wells, June 2, 2010
- 5C Groundwater Elevation Contours for Deep Wells, June 2, 2010

Appendices

- A Laboratory Reports, First Half 2010
- B Field Data Sheets, First Half 2010

Acronyms and Abbreviations

μg/L	micrograms per liter
СМР	Compliance Monitoring Program
Cr(VI)	hexavalent chromium
CW	compliance well
DTSC	California Environmental Protection Agency, Department of Toxic Substances Control
IM	Interim Measure
IM No. 3	Interim Measure No. 3
IW	injection well
mg/L	milligrams per liter
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
OW	observation well
QAPP	Quality Assurance Project Plan
TDS	total dissolved solids
USEPA	United States Environmental Protection Agency
Water Board	California Regional Water Quality Control Board, Colorado River Basin Region
WDR	Waste Discharge Requirements
WQO	water quality objective

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM No. 3). Currently, the IM No. 3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM No. 3 extraction, conveyance, treatment, and injection facilities. (All figures are provided at the end of this report.)

The *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, Topock Compressor Station, Needles, California* (CH2M HILL, 2005a) was submitted to the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) and the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) on June 17, 2005 (herein referred to as the Compliance Monitoring Plan). The Compliance Monitoring Plan and its addendum provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the Compliance Monitoring Program (CMP). In a letter dated June 9, 2006, DTSC modified the reporting requirements of the Compliance Monitoring Plan (DTSC, 2006).

On October 13, 2004, the Water Board adopted Waste Discharge Requirements (WDR) Order No. R7-2004-0103. This WDR authorized PG&E to inject treated groundwater into wells located in the East Mesa area of the Topock site. This WDR was superseded on September 20, 2006 by WDR No. R7-2006-0060, which has similar terms. Work described in this report was performed in accordance with the WDR No. R7-2006-0060.

The WDR specifies effluent limitations, prohibitions, specifications, and provisions for subsurface injection. Monitoring and Reporting Program (MRP) No. R7-2004-0103 specified the requirements for the CMP to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality. As with the WDR, MRP No. R7-2004-0103 was superseded on September 20, 2006 by MRP No. R7-2006-0060 with similar requirements.

The injection system consists of two injection wells (IWs): IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005), and injection into IW-2 began on July 31, 2005. Table 1 is a summary of the history of injection for IM No. 3. (All tables are provided at the end of this report.)

Figure 2 shows the locations of the injection wells and the groundwater monitoring wells (observation wells [OWs] and compliance wells [CWs]) in the CMP. Table 2 is a summary of information on well construction and sampling methods for all wells in the CMP.

On January 22, 2007 (DTSC, 2007), DTSC approved a reduction of constituents analyzed during quarterly sampling of the CMP observation wells (details are provided in

CH2M HILL, 2006). The Water Board concurred in a letter dated January 23, 2007 (Water Board, 2007a).

On October 16, 2007, the Water Board approved collecting pH measurements in the field rather than through laboratory analysis due to the change to 15-minute holding time for laboratory measurements specified by United States Environmental Protection Agency (USEPA) Method 150.1 (Water Board, 2007b). DTSC provided concurrence for the field pH change in an e-mail dated January 22, 2008 (DTSC, 2008a). This change became effective with the first quarter 2008 sampling event.

On November 13, 2007, the Water Board approved a modification to hexavalent chromium (Cr[VI]) analytical methods, which extended the holding time from 24 hours to 28 days (Water Board, 2007c). DTSC provided concurrence for the 28-day holding time for Cr(VI) analyses in an e-mail dated January 22, 2008 (DTSC, 2008a). The first quarter 2008 sampling event was the first event to incorporate the new 28-day holding time for analyzing Cr(VI).

PG&E proposed modifications to the CMP, including the sampling and reporting frequency and the field pH trigger range for the CMP contingency plan, to the Water Board and the DTSC on July 3, 2008. On August 28, 2008, the Water Board approved these modifications as Revision 1 to the MRP (Water Board, 2008). On December 12, 2008, the modification of the CMP contingency plan pH range to a field pH range of 6.2 to 9.2 was also approved by the DTSC (DTSC, 2008b). The remaining MRP modifications were approved by DTSC on September 3, 2009 (DTSC, 2009).

With the approval of the MRP modifications, quarterly sampling is no longer required.

As of April 2010, samples are collected from OWs and CWs (Figure 2) according to the following schedule:

- Three OWs (OW-1S, OW-2S, and OW5S) located near the IM No. 3 injection well field are sampled semiannually (during the second and fourth quarters) for a limited suite of constituents.
- Six OWs (OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D) are:
 - Sampled annually for a limited suite of constituents during the fourth quarter.
 - Sampled for a full suite of constituents one cluster at a time on a triennial (once every 3 years) schedule. Within a 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents. The triennial sampling will occur during the annual event (fourth quarter).
- Eight CWs are sampled semiannually for a limited suite of constituents and annually (during the fourth quarter) for a full suite of constituents.

For semiannual events, laboratory analyses include total dissolved solids (TDS), turbidity, specific conductance, and a reduced suite of metals. For annual events for select OWs, laboratory analyses include TDS, turbidity, specific conductance, and a reduced suite of metals. Annual and triennial sampling events for CWs and select OWs include dissolved chromium, Cr(VI), metals, specific conductance, TDS, turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data – including specific

conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity – are also measured during each monitoring event (CH2M HILL, 2005a).

This report presents the results of the first half 2010 CMP groundwater monitoring event.

2.0 First Half 2010 Activities

This section provides a summary of the monitoring and sampling activities completed during the first half 2010. The first half 2010 event was a semiannual event conducted on April 7-8, 2010 and consisted of:

- Three observation and eight compliance monitoring wells were sampled for water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at wells CW-3M and OW-1S to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005b) and addendums.

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and EMAX Laboratories, Inc. in Torrance, California, both California-certified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005b) and addendums. Data validation and management were conducted in accordance with the *Quality Assurance Project Plan* [QAPP] *Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects* (CH2M HILL, 2008).

3.0 First Half 2010 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the first half 2010. Figure 2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), chromium, specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the First Half 2010 monitoring event are presented in Appendices A and B, respectively.

3.1 Analytical Results

Three observation wells and eight compliance wells were sampled during the first half 2010 sampling event. Analytical results for Cr(VI), chromium, other metals, and general chemistry parameters are presented in Tables 3 and 4 and are discussed below. Interim action levels/water quality objectives (WQOs) were updated on August 8, 2006, when PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), chromium, TDS, and pH to be used to determine if contingency plan actions were necessary based on sample results.

3.1.1 Hexavalent Chromium and Chromium

Table 3 presents the Cr(VI) and chromium analytical results for groundwater in the shallow, middle, and deep wells from the first half 2010 CMP sampling event. For shallow wells, the maximum detected Cr(VI) concentration was 30.3 micrograms per liter (μ g/L) in well OW-2S on April 8, 2010. For the middle wells, the maximum detected Cr(VI) concentration was 14.2 μ g/L in well CW-4M on April 7, 2010. For the deep wells, the maximum detected Cr(VI) concentration was 1.68 μ g/L in well CW-4D on April 7, 2010.

During the first half 2010 sampling event, none of the samples exceeded the WQO of $32.6 \ \mu g/L$ for Cr(VI).

For shallow wells, the maximum detected chromium concentration was 30.6 μ g/L in well OW-2S on April 8, 2010. For the middle wells, the maximum detected chromium concentration was 14.0 μ g/L in well CW-4M on April 7, 2010. For the deep wells, the maximum detected chromium concentration was 1.97 μ g/L in well CW-1D on April 8, 2010.

During the first half 2010 sampling event, a sample from one well exceeded the WQO of $28 \ \mu g/L$ for chromium. The April 8, 2010 sample from well OW-2S had a chromium concentration of 30.6 $\mu g/L$. For this exceedance, the results are not considered to be the result of injection of treated groundwater since the average effluent concentration of chromium from the IM No. 3 treatment plant is normally non-detect with a reporting limit of 0.2 $\mu g/L$ (CH2M HILL, 2010a). Chromium and Cr(VI) concentrations at OW-2S have been consistently above the WQOs since November 2005. This exceedance of chromium is thus considered

reflective of the natural variance in background water quality. The contingency plan was not triggered due to the chromium concentration detected in OW-2S during the first half 2010.

3.1.2 Other Metals and General Chemistry

Table 4 presents the other metals and general chemistry results for the CMP groundwater wells sampled during the first half 2010. Metals and ions detected in the first half 2010 sampling event included chloride, fluoride, nitrate/nitrite as nitrogen, and sulfate. In general, concentrations of metals and ions detected during the first half 2010 sampling event are similar to those detected in previous sampling events.

During the first half 2010, the sampling results from all wells were within the WQOs for TDS (10,800 milligrams per liter [mg/L]) and pH (6.2 to 9.2). Sampling results for TDS varied from 936 mg/L in well OW-2S to 5,350 mg/L in well CW-3M. Field pH varied from 7.48 in well OW-1S to 8.07 in well CW-3D.

3.2 Analytical Data Quality Review

The laboratory analytical data generated from the first half 2010 CMP monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the *PG&E Program Quality Assurance Project Plan* (CH2M HILL, 2008) *Addendum to the PG&E Program QAPP for the Topock Groundwater Monitoring and Investigation Projects*.

3.2.1 Matrix Interference

For the first half 2010 sampling event, matrix interference was encountered in five groundwater samples that affected the sensitivity for Cr(VI) when using Method E218.6. The Cr(VI) sample results from CW-1D, CW-1M, CW-3M, CW-3M field duplicate, and CW-4M reflect an adjusted reporting limit of 1 μ g/L as a result of the serial dilution that was required to overcome the matrix interference and provide an acceptable matrix spike recovery. No qualifier flags were applied.

3.2.2 Matrix Spike Samples

For the first half 2010 sampling event, matrix spike acceptance criteria were met.

3.2.3 Quantitation and Sensitivity

For the first half 2010 sampling event, with the exception of the matrix interference issues discussed in Section 3.2.1, all method and analyte combinations met the project reporting limit objectives.

3.2.4 Holding Time Data Qualification

For the first half 2010 sampling event, all method holding time requirements were met.

3.2.5 Field Duplicates

For the first half 2010 sampling event, all field duplicate acceptance criteria were met.

3.2.6 Method Blanks

For the first half 2010 sampling event, method blank acceptance criteria were met.

3.2.7 Equipment Blanks

For the first half 2010 sampling event, equipment blank acceptance criteria were met.

3.2.8 Laboratory Duplicates

For the first half 2010 sampling event, laboratory duplicate acceptance criteria for the methods were met.

3.2.9 Calibration

For the first half 2010 sampling event, initial and continuing calibrations were performed as required by the methods. All calibration criteria were met.

3.2.10 Conclusion

For the first half 2010 sampling event, the completeness objectives were met for all method and analyte combinations. The analyses and data quality met the QAPP and laboratory method quality control criteria except as noted above. Overall, the analytical data are considered acceptable for the purpose of the CMP.

3.3 Influence of Treated Water

3.3.1 Post-injection Versus Pre-injection

Injection of treated water began on July 31, 2005. Under WDR No. R7-2006-0060 for the IM No. 3 groundwater treatment system, PG&E is required to submit WDR monitoring reports on the operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water quality of the treated water being injected into the IM No. 3 injection well field. Table 5 provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, July 2, 2007, and April 7, 2010. While there are differences among some parameters in these samples, a number of parameters show relatively consistent over the injection time period include Cr(VI), chromium, fluoride, molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. These seven constituents provide a characterization of the effluent that does not appear to vary greatly over time and can serve as a basis for determining if a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of December 2005 through April 2010 effluent characteristics):

- Cr(VI): typically non-detect (0.2 µg/L)
- Chromium: typically non-detect (1.0 µg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 15 µg/L
- Nitrate/nitrite as nitrogen: approximately 3.0 mg/L

- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 5 also lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contain no detectable Cr(VI) or chromium, which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 6 presents a comparison between the treated water quality and the results from the most recent sampling event (the first half 2010 sampling event). These samples were collected after approximately 59 months of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the first half 2010 sample results show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are at locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Wells CW-2M and CW-4M have chemical characteristics approaching that of treated water. To date, all shallow observations wells (wells OW-1S, OW-2S, and OW-5S) and compliance well CW-3M do not show water quality effects due to injection of treated water, indicating that injected water has not yet reached these depths and locations.

3.3.2 Water Quality Hydrographs

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM No. 3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, chromium, fluoride, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each observation well during the first half 2010 within the IM No. 3 injection well field are presented in Figures 3A through 3E.

Observation well water quality hydrographs are presented in Figures 3A through 3C. These hydrographs show the same overall patterns: wells that are identified as affected by treated

water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no net trends. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, it is inferred that the movement of treated water is non-uniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth wells (OW-1S, OW-2S, and OW-5S) show little water quality variation over time and generally have no net trends over time. TDS, sodium, chloride, vanadium, and molybdenum are particularly consistent with baseline pre-injection concentrations and show that the local groundwater quality at shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 3D and 3E. Wells CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D show trends in TDS and chloride similar to the treated water. Wells CW-1M, CW-2M, and CW-4M show decreasing trends in Cr(VI) and chromium. These changes are attributed to the arrival of treated injection water.

3.4 Water Level Measurements

Table 7 presents the manual water level measurements and groundwater elevations for the first half 2010 monitoring event.

As a requirement of the conditional approval by DTSC (DTSC, 2005) and subsequent modifications (DTSC, 2009), water level measurements were collected continuously (measurements collected every half hour) with pressure transducers to produce hydrographs for select wells. Figures 4A through 4C present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the first half 2010 reporting period at select observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 5A through 5C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The date is noted on each figure.

3.4.1 Groundwater Gradient Characteristics

The monitoring wells in the middle and deep zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the relationships of groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation. Therefore, the groundwater contours on Figures 5B and 5C should be viewed as approximate.

The injection well field is located in the East Mesa area of the Topock site (Figure 2). Overall sitewide water level contour maps for shallow wells are prepared annually, with flow consistently being shown to move to the east, northeast across the uplands portions of the site (CH2M HILL, 2010b).

The effects of injection in the IM No. 3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection well IW-3. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 59 months of injection, the mound increased and then stabilized in height at several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the average groundwater elevation of the mound within the middle and deep wells using June 2, 2010 groundwater elevations. As expected with a mound, the potentiometric surface of the deep wells is slightly broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection wells. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM No. 3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 8 presents the vertical gradient data calculated using the June 2, 2010 groundwater elevations. The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is of the same order of magnitude throughout the injection area. A component of the vertical gradients calculated to the injection of the IM No. 3 injection well field is undoubtedly related to the injection of treated water in the lower portions of the aquifer. The observed groundwater gradients in the IM No. 3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, and salinity. Table 9 presents a summary of the field water quality data measured during the first half 2010 monitoring event. Field data sheets for the first half 2010 event are presented in Appendix B.

3.6 WDR Monitoring Requirements

Table 10 identifies the laboratory that performed each analysis and lists the following information as required by the WDR for the first half 2010 monitoring event:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis

- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

4.1 Semiannual Monitoring

The next semiannual monitoring event will occur in October during the second half 2010 and also serves as the annual monitoring event. This CMP monitoring event will include the sampling and analysis scope presented in the Compliance Monitoring Plan (CH2M HILL, 2005a, c) and subsequent approved scope revisions (DTSC, 2007, 2008a-b, 2009; Water Board, 2007a-b, 2008). The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2011.

4.2 Annual Monitoring

The next annual monitoring event will occur in October during the second half 2010. The groundwater monitoring report for this annual CMP monitoring event will be submitted by January 15, 2011.

California Department of Toxic Substances Control (DTSC). 2005. Letter to PG&E. "Conditional Approval for the Start Up and Operation of the Interim Measures No. 3 Treatment System and Injection Wells, Pacific Gas & Electric Company, Topock Compressor Station." July 15.

_____. 2006. Letter to PG&E. "Third and Fourth Quarter Groundwater Monitoring Reports, Compliance Monitoring Program for Interim Measures No. 3 Injection Well Field Area, Pacific Gas & Electric Company, Topock Compressor Station, Needles, California." June 9.

_____. 2007. Letter to PG&E. "Conditional Approval of Request for Reduced Groundwater Sampling Frequency for Select Constituents at Pacific Gas & Electric Company, Topock Compressor Station, Needles, California." January 22.

_____. 2008a. Letter to PG&E. "Re: Analytical Methods for WDR Monitoring Programs." January 22.

_____. 2008b. Letter to PG&E. "PG&E Topock: pH Modification to the CMP" December 12.

_____. 2009. Letter to PG&E. "Conditional Approval of Modifications to the Compliance Monitoring Program, Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles California (EPA ID No. CAT080011729)" September 3.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board). 2007a. Letter to PG&E. "Conditional Approval of Limited Sampling Frequency for Selected Metals/General, PG&E, Topock Compressor Station, Needles, California." January 23.

_____. 2007b. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060 and R7-2004-0080, Topock Compressor Station, San Bernardino County." October 16.

_____. 2007c. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060, R7-2006-0008, R7-2004-0080, and R7-2007-0015, Topock Compressor Station, San Bernardino County." November 13.

_____. 2008. Letter to PG&E. "Revision of Monitoring and Reporting Program (MRP), Board Order No. R7-2006-0060 Revision 1, Topock Compressor Station, San Bernardino County." August 28.

CH2M HILL. 2005a. Groundwater Compliance Monitoring Plan for Interim Measure No. 3 Injection Area, Topock Compressor Station, Needles, California. June 17.

_____. 2005b. Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California. March 31. _____. 2005c. Addendum to the Compliance Monitoring Plan for the IM No. 3 Injection Area, Topock Compressor Station, Needles, California. December 13.

_____. 2006. Request for Approval to Implement Limited Sampling Frequency for Selected Metals/General Minerals for PG&E Topock Compressor Station, Needles, California. December 1.

_____. 2008. PG&E Program Quality Assurance Project Plan, Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects. December.

____. 2010a. First Quarter 2010 Monitoring Report for Interim Measure No. 3 Groundwater Treatment System, Document ID: PGE20100415A, Waste Discharge Requirements Board Order No. R7-2006-0060, PG&E Topock Compressor Station, Needles, California. April 15.

_____. 2010b. Fourth Quarter 2009 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.

6.0 Certification

PG&E submitted a signature delegation letter to the Water Board on September 20, 2006. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2006-0060.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	thonne Mucks
Name:	Yvonne J. Meeks
Company:	Pacific Gas and Electric Company
Title:	Topock Project Manager
Date:	July 15, 2010

Tables

Operational Status of Interim Measures No. 3 Injection Wells From Inception of Injection Through First Half 2010 PG&E Topock Compliance Monitoring Program

Time Period	Injection Status
July 31, 2005 to Fourth Quarter 2005	Injection occurred at IW-2.
First Quarter 2006	Injection occurred primarily at IW-2 except during periods of operational testing, when injection was divided equally between IW-2 and IW-3.
Second Quarter 2006	Injection occurred at IW-2.
Third Quarter 2006	In August 2006, IW-2 went offline for routine maintenance, and injectio commenced at IW-3.
Fourth Quarter 2006	Injection occurred at IW-3, except during routine maintenance.
First Quarter 2007	Injection occurred at IW-3 and transitioned over to IW-2 on March 8.
Second Quarter 2007	Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.
Third Quarter 2007	Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.
Fourth Quarter 2007	Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.
First Quarter 2008	Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.
Second Quarter 2008	Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing occurred at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.
Third Quarter 2008	Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short period on July 25 and from August 12 – August 31, 2008. Backwashing events occurred at IW-3 on June 17, June 27, July 9, Jul 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing events occurred at IW-2 on September 9 - September 11, 2008.
Fourth Quarter 2008	Injection occurred at IW-3 and then switched to IW-2 on September 23 Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued a IW-2 until December 16, 2008 and occurred concurrently and continue at IW-3 on December 11, 2008.
First Quarter 2009	Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events occurred periodically during the periods when each injection well was offline. Routine and scheduled maintenance occurred 12/18/08 and 1/21/09 at which time both wells were offline.
Second Quarter 2009	Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.

Operational Status of Interim Measures No. 3 Injection Wells From Inception of Injection Through First Half 2010 PG&E Topock Compliance Monitoring Program

Time Period	Injection Status
Third Quarter 2009	IM3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned.
Fourth Quarter 2009	Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.
First Half 2010	Injection occurred mainly at IW-3 until March 3, 2010. Beginning March 3, 2010, IM3 injection alternated between the two wells approximately every two weeks until April 20, 2010 for a planned shutdown. On April 22, 2010, injection resumed at IW-3 and alternated between the two wells approximately every two weeks. Backwashing events occurred periodically during the periods when each injection well was offline.

Well Construction and Sampling Summary for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Well ID	Site Area	Measuring Point Elevation (ft AMSL)	Screen Interval	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typi Purge (gp	Rate			Transducer Status	Remarks
IM Complian	nce Wells												
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	192.7	108.5	Temp Redi-Flo	AR	3	42	124	Active	
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	322.7	108.7	Temp Redi-Flo	AR	3	110	125	Active	
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	208.3	92.1	Temp Redi-Flo	AR	2	56	108	Active	
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	357.7	91.7	Temp Redi-Flo	AR	3	135	108	Active	
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	224.6	77.0	Temp Redi-Flo	AR	2	75	93	Active	
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	342.6	76.4	Temp Redi-Flo	AR	3	140	93	Active	
CW-04M	East Mesa	518.55	119.5 - 169.8	2 (PVC)	172.5	60.9	Temp Redi-Flo	AR	3	56	77	Active	
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	305.6	60.8	Temp Redi-Flo	AR	3	126	77	Active	
IM Observat	ion Wells												
OW-01S	East Mesa	550.21	83.5 - 113.5	2 (PVC)	116.1	92.9	Temp Redi-Flo	AR	1	12	109	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	188.4	92.8	Temp Redi-Flo	AR	2	48	109	Active	
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	279.6	92.5	Temp Redi-Flo	AR	3	94	108	Active	
OW-02S	East Mesa	548.88	71 - 101	2 (PVC)	103.6	91.6	Temp Redi-Flo	AR	1	8	108	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	212.9	90.9	Temp Redi-Flo	AR	3	61	107	Active	
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	342.3	91.1	Temp Redi-Flo	AR	3	127	107	Active	
OW-05S	East Mesa	551.83	70 - 110	2 (PVC)	112.9	94.4	Temp Redi-Flo	AR	1	8	110	Active	
OW-05M	East Mesa	551.81	210 - 250	2 (PVC)	253.0	93.5	Temp Redi-Flo	AR	3	81	110	Active	
OW-05D	East Mesa	552.41	300 - 320	2 (PVC)	352.8	94.3	Temp Redi-Flo	AR	3	132	110	Active	

Notes:

AMSLabove mean sea levelBGSbelow ground surfaceBTOCbelow top of polyvinyl chloride (PVC) casingRedi-Flo ARadjustable-rate electric submersible pumpTemptemporarygpmgallons per minute

Depth to water for each well was collected on June 2, 2010. All wells were purged and sampled using 3 well-volume method.

Chromium Results for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

	Method	E218.6	E200.8	
Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	
CW-01M	4/8/2010	2.33	3.23	
CW-01D	4/8/2010	1.12	1.97	
CW-02M	4/7/2010	4.79	5.44	
CW-02D	4/7/2010	0.23	ND (1.0)	
CW-03M	4/7/2010	10.7	10.4	
CW-03M	4/7/2010 (FD)	10.5	10.3	
CW-03D	4/7/2010	0.24	ND (1.0)	
CW-04M	4/7/2010	14.2	14.0	
CW-04D	4/7/2010	1.68	1.75	
OW-01S	4/8/2010	15.4	15.7	
OW-01S	4/8/2010 (FD)	15.2	15.7	
OW-02S	4/8/2010	30.3	30.6	
OW-05S	4/8/2010	20.7	21.0	

Notes:

FD field duplicate

parameter not detected at the listed reporting limit micrograms per liter ND

µg/L

Hexavalent Chromium and Chromium are field filtered.

Metals and General Chemistry Results for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

	Method:	E120.1	Field	SM2540C	SM2130B	E300.0	E300.0	E300.0	SM4500NO3	E200.7	E200.8
Location ID	Sample Date	Specific Conductance (µmhos/cm)	Field pH	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Boron (mg/L)	Dissolved Molybdenum (µg/L)
CW-01M	4/8/2010	7210	7.70	4140	ND (0.1)	2120	1.61	505	3.14		
CW-01D	4/8/2010	7360	7.61	4320	0.124	2240	1.45	532	3.00		
CW-02M	4/7/2010	7010	7.84	3970	0.114	2160	2.48	446	2.23		
CW-02D	4/7/2010	7120	8.04	4180	0.170	2130	4.15	489	2.81		
CW-03M	4/7/2010	8730	7.73	5350	ND (0.1)	2800	2.62	429	1.24		
CW-03M	4/7/2010 (FD)	8810	FD	5090	0.136	2800	2.54	461	1.44		
CW-03D	4/7/2010	7060	8.07	3940	ND (0.1)	2070	5.83	486	2.84		
CW-04M	4/7/2010	6390	7.72	4040	0.120	1960	1.55	354	1.65		
CW-04D	4/7/2010	8780	7.87	5340	ND (0.1)	2680	4.03	543	2.43		
OW-01S	4/8/2010	4040	7.48	2590	0.918	1210	1.38	215	2.72		
OW-01S	4/8/2010 (FD)	4080	FD	2550	0.882	1220	1.60	207	2.88		
OW-02S	4/8/2010	1700	7.91	936	0.402	398	5.02	109	4.18		
OW-05S	4/8/2010	2330	7.68	1450	2.540	655	1.89	128	3.18		

Notes:

FDfield duplicateµmhos/cmmicro-mhos per centimeterNTUNephelometric Turbidity Unitmg/Lmilligrams per literµg/Lmicrograms per literNDparameter not detected at the listed reporting limit

--- not sampled or required for this event

Treated Water Quality Compared to OW and CW Pre-injection Water Quality *PG&E Topock Compliance Monitoring Program*

Location ID	Sample Date	Hexavalent Chromium	Chromium	Fluoride	Dissolved Molybdenum	Nitrate/ Nitrite as Nitrogen	Sulfate	TDS
		(µg/L)	(µg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
Treated Water	8/29/2005	ND(1.0)	ND(2.1)	1.95	8.3	3.7	450	3620
Treated Water	7/2/2007	ND(0.2)	ND(1.0)	2.18	17.5	2.60	477	3980
Treated Water	4/7/2010	0.29	ND(1.0)	1.82	18.6	2.87	512	4270
OW-01S	7/28/2005	19.4	23.5	2.45	17.2	3.2	114	1320
OW-01M	7/27/2005	16.3	18.9	2.31	27	1.01	311	3450
OW-01D	7/27/2005	ND(1.0)	ND(1.3)	1.14	46.1	0.321	441	6170
OW-02S	7/28/2005	15.3	14.8	3.79	35.6	3.81	126	1090
OW-02M	7/28/2005	5.4	5.7	2.19	32.4	0.735	342	4380
OW-02D	7/28/2005	ND(1.0)	ND(1.2)	0.966	51.2	0.1	616	9550
OW-05S	7/28/2005	23.4	25.6	2.3	17.1	3.55	105	1060
OW-05M	7/28/2005	8.6	8.8	2.74	35.4	0.621	417	5550
OW-05D	7/28/2005	ND(1.0)	ND(1.2)	1.11	57	0.151	480	8970
CW-01M	9/15/2005	18.1	17.8	2.34	21.6	1.11	318	2990
CW-01D	9/15/2005	ND(1.0)	1.6	0.951	32.1	0.972	379	6230
CW-02M	9/15/2005	15.8	15.5	2.3	23.1	0.908	342	3500
CW-02D	9/15/2005	ND(1.0)	1.6	0.982	41.6	0.28	601	8770
CW-03M	9/15/2005	8.8	8.1	2.57	24.2	0.642	464	4740
CW-03D	9/15/2005	ND(1.0)	ND(1.0)	1.4	29.2	0.304	672	9550
CW-04M	9/15/2005	19.2	19	1.5	12.3	1.18	240	3310
CW-04D	9/15/2005	ND(1.0)	ND(1.0)	1.01	26	0.188	534	7470

NOTES:

ND Not detected at the listed reporting limit.

mg/L milligrams per liter

µg/L micrograms per liter

Hexavalent chromium samples were analyzed using method 7199 in 2005 and then by method E218.6.

Chromium samples were analyzed using method 6020A for samples collected on 7/28/2005, by method 6010B for samples collected on 9/15/2005, by method 6020B for samples collected on 8/29/2005 and by method E200.8 for all other chromium samples.

Chromium samples of the treated water were unfiltered.

Treated Water Quality Compared to First Half 2010 Sampling Event Water Quality PG&E Topock Compliance Monitoring Program

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Molybdenum (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	9/2/2009	ND (0.2)	ND (1.0)	2.47	24.6	2.84	485	4220
Treated Water	12/2/2009	ND (0.2)	ND (1.0)	2.40	14.2	3.12	521	4490
Treated Water	4/7/2010	0.29	ND (1.0)	1.82	18.6	2.87	512	4270
CW-01M	4/8/2010	2.33	3.23	1.61		3.14	505	4140
CW-01D	4/8/2010	1.12	1.97	1.45		3.00	532	4320
CW-02M	4/7/2010	4.79	5.44	2.48		2.23	446	3970
CW-02D	4/7/2010	0.23	ND (1.0)	4.15		2.81	489	4180
CW-03M	4/7/2010	10.7	10.4	2.62		1.24	429	5350
CW-03M	4/7/2010 (FD)	10.5	10.3	2.54		1.44	461	5090
CW-03D	4/7/2010	0.24	ND (1.0)	5.83		2.84	486	3940
CW-04M	4/7/2010	14.2	14.0	1.55		1.65	354	4040
CW-04D	4/7/2010	1.68	1.75	4.03		2.43	543	5340
OW-01S	4/8/2010 (FD)	15.2	15.7	1.60		2.88	207	2550
OW-01S	4/8/2010	15.4	15.7	1.38		2.72	215	2590
OW-02S	4/8/2010	30.3	30.6	5.02		4.18	109	936
OW-05S	4/8/2010	20.7	21.0	1.89		3.18	128	1450

Notes:

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter

µg/L micrograms per liter

--- not sampled or required for this event

All hexavalent chromium samples were analyzed with method E218.6

All chromium and molybdenum samples were analyzed with method E200.8. Chromium and molybdenum samples were field filtered, except for the treated water.

Fluoride and Sulfate samples were analyzed with method E300.0.

All nitrate/nitrite as nitrogen samples were analyzed with method SM4500NO3E, except for treated water which used method E300.

All total dissolved solid samples were analyzed with method SM2540C.

Manual Water Level Measurements and Elevations, First Half 2010 PG&E Topock Compliance Monitoring Program

Location ID	Well Depth (feet BTOC)	Measuring Point Elevation (feet AMSL)	Monito Date &		Water Level Measurement (feet BTOC)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
CW-01M	192.7	566.07	02-Jun-10	9:38 AM	108.53	0.47	457.47
CW-01D	322.7	566.46	02-Jun-10	9:41 AM	108.71	0.49	457.60
CW-02M	208.3	549.45	02-Jun-10	9:24 AM	92.08	0.50	457.31
CW-02D	357.7	549.43	02-Jun-10	9:20 AM	91.73	0.51	457.51
CW-03M	224.6	534.10	02-Jun-10	9:33 AM	76.96	0.60	457.15
CW-03D	342.6	534.14	02-Jun-10	9:31 AM	76.40	0.55	457.61
CW-04M	172.5	518.55	02-Jun-10	9:51 AM	60.87	0.45	457.58
CW-04D	305.6	518.55	02-Jun-10	9:48 AM	60.85	0.58	457.63
OW-01S	116.1	550.21	02-Jun-10	9:58 AM	92.95	0.26	457.21
OW-01M	188.4	550.36	02-Jun-10	10:01 AM	92.77	0.49	457.50
OW-01D	279.6	550.36	02-Jun-10	10:03 AM	92.53	0.49	457.66
OW-02S	103.6	548.88	02-Jun-10	10:11 AM	91.56	0.09	457.22
OW-02M	212.9	548.52	02-Jun-10	10:14 AM	90.90	0.49	457.51
OW-02D	342.3	549.01	02-Jun-10	10:07 AM	91.08	0.50	457.69
OW-05S	112.9	551.83	02-Jun-10	10:18 AM	94.45	0.14	457.33
OW-05M	253.0	551.81	02-Jun-10	10:21 AM	93.47	0.67	458.40
OW-05D	352.8	552.41	02-Jun-10	10:25 AM	94.31	0.76	458.34

Notes:

AMSL above mean sea level

BTOC below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

Well Pairs	Vertical Gradient (ft/ft)ª
CW-01D to CW-01M	0.0012
CW-02D to CW-02M	0.0015
CW-03D to CW-03M	0.0047
CW-04D to CW-04M	0.0004
OW-01M to OW-01S	0.0038
OW-01D to OW-01M	0.0017
OW-02M to OW-02S	0.0025
OW-02D to OW-02M	0.0015
OW-05M to OW-05S	0.0077

TABLE 8	
Vertical Gradients within the OW and CW Clusters	
PG&E Topock Compliance Monitoring Program	

^a Positive value signifies an upward gradient.

Gradients calculated using June 2, 2010 groundwater levels.

Field Parameter Measurements for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Location ID	Sampling Date	Specific Conductance (µmhos/cm)	Temperature (°C)	рН	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Salinity (%)
CW-01M	4/8/2010	7820	29.22	7.7	64.1	6.29	1.9	0.5
CW-01D	4/8/2010	7888	29.12	7.61	98.7	7.9	2.3	0.51
CW-02M	4/7/2010	7714	29.62	7.84	42	4.02	2	0.5
CW-02D	4/7/2010	7831	30.68	8.04	51.8	6.62	1.9	0.51
CW-03M	4/7/2010	9613	29.22	7.73	26.6	1.43	2.2	0.62
CW-03D	4/7/2010	7787	30.35	8.07	91.8	6.48	1.9	0.5
CW-04M	4/7/2010	7007	29.16	7.72	35.4	2.56	2.3	0.45
CW-04D	4/7/2010	9677	30.06	7.87	53.6	4.94	1.9	0.62
OW-01S	4/8/2010	4438	29.15	7.48	37.4	4.56	3	0.29
OW-02S	4/8/2010	1844	28.85	7.91	32.1	7.77	2.4	0.12
OW-05S	4/8/2010	2568	28.82	7.68	46.3	6.23	9.1	0.17

Notes:

µmhos/cm ℃ ORP mV mg/L	micro-mhos per centimeter degree centigrade oxidation reduction potential millivolts milligrams per liter
mg/L	milligrams per liter
NŤU	Nephelometric Turbidity Unit
%	percentage

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-023	Barry Collom	4/8/2010	9:39:00 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	7360	2.0	0.038
					TLI	EPA 200.8	CRTD	4/12/2010	Romuel Chaves	µg/L	1.97	1.0	0.075
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	1.12	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2240	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	1.45	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	532	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.124	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	4320	250	43.4
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	3.00	0.5	0.10
CW-01M	CW-01M-023	Barry Collom	4/8/2010	10:20:36 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	7210	2.0	0.038
					TLI	EPA 200.8	CRTD	4/12/2010	Romuel Chaves	µg/L	3.23	1.0	0.075
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	2.33	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2120	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	1.61	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	505	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	4140	250	43.4
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	3.14	0.5	0.10
CW-02D	CW-02D-023	Barry Collom	4/7/2010	10:00:14 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	7120	2.0	0.038
					TLI	EPA 200.8	CRTD	4/22/2010	Romuel Chaves	µg/L	ND (1.0)	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	0.23	0.2	0.02
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2130	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	4.15	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	489	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.17	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	4180	250	43.4
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	2.81	0.5	0.10

Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02M	CW-02M-023	Barry Collom	4/7/2010	11:26:21 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	7010	2.0	0.038
					TLI	EPA 200.8	CRTD	4/15/2010	Romuel Chaves	μg/L	5.44	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	μg/L	4.79	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2160	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	2.48	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	446	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.114	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	3970	250	43.4
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	2.23	0.5	0.10
CW-03D	CW-03D-023	Barry Collom	4/7/2010	1:43:18 PM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	7060	2.0	0.038
					TLI	EPA 200.8	CRTD	4/22/2010	Romuel Chaves	μg/L	ND (1.0)	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	μg/L	0.24	0.2	0.02
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2070	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	5.83	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	486	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	3940	250	43.4
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	2.84	0.5	0.10
CW-03M	OW-90-023	Barry Collom	4/7/2010	12:13:02 PM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	8810	2.0	0.038
					TLI	EPA 200.8	CRTD	4/15/2010	Romuel Chaves	μg/L	10.3	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	μg/L	10.5	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2800	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	2.54	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	461	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.136	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	5090	250	43.4
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	1.44	0.5	0.10

Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	CW-03M-023	Barry Collom	4/7/2010	2:58:01 PM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	8730	2.0	0.038
					TLI	EPA 200.8	CRTD	4/15/2010	Romuel Chaves	µg/L	10.4	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	10.7	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2800	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	2.62	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	429	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	5350	250	43.4
					EMXT	SM4500NO3-I	E NO3NO2N	4/20/2010	Elena Robles	mg/L	1.24	0.5	0.10
CW-04D	CW-04D-023	Barry Collom	4/7/2010	4:28:24 PM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	8780	2.0	0.038
					TLI	EPA 200.8	CRTD	4/22/2010	Romuel Chaves	µg/L	1.75	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	1.68	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	2680	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	4.03	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	543	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	5340	250	43.4
					EMXT	SM4500NO3-I	E NO3NO2N	4/20/2010	Elena Robles	mg/L	2.43	0.5	0.10
CW-04M	CW-04M-023	Barry Collom	4/7/2010	5:27:55 PM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	6390	2.0	0.038
					TLI	EPA 200.8	CRTD	4/15/2010	Romuel Chaves	µg/L	14.0	1.0	1.00
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	14.2	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	1960	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	1.55	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	354	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.12	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	4040	125	21.7
					EMXT	SM4500NO3-I	E NO3NO2N	4/20/2010	Elena Robles	mg/L	1.65	0.5	0.10

TABLE 10

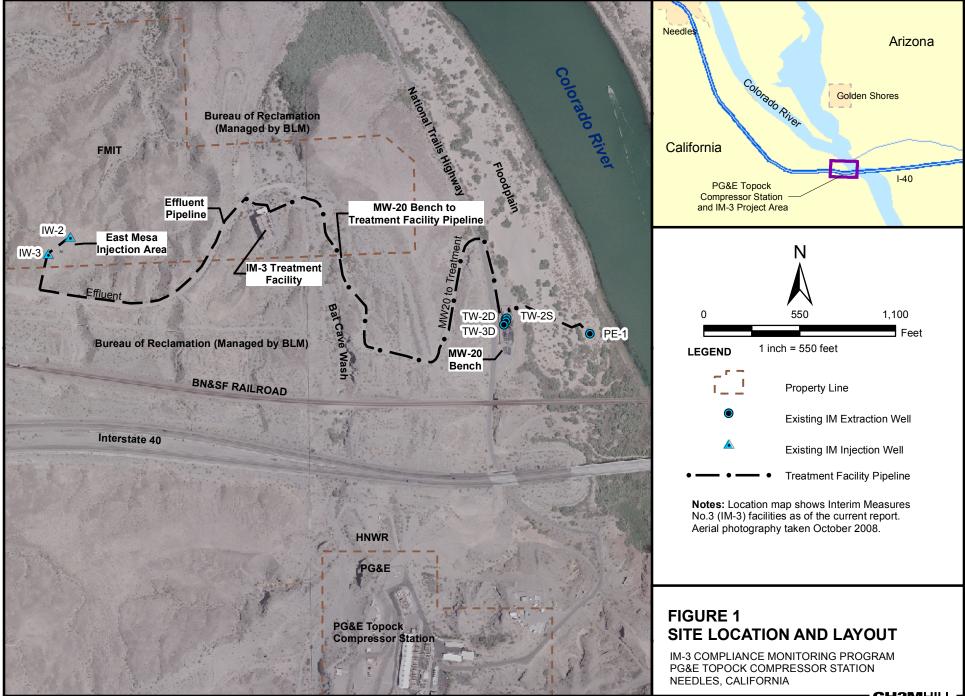
Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01S	OW-91-023	Barry Collom	4/8/2010	8:55:37 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	4080	2.0	0.038
					TLI	EPA 200.8	CRTD	4/12/2010	Romuel Chaves	μg/L	15.7	1.0	0.075
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	15.2	0.2	0.02
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	1220	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	1.60	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	207	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.882	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	2550	125	21.7
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	2.88	0.5	0.10
OW-01S	OW-01S-023	Barry Collom	4/8/2010	11:50:05 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	4040	2.0	0.038
					TLI	EPA 200.8	CRTD	4/12/2010	Romuel Chaves	μg/L	15.7	1.0	0.075
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	μg/L	15.4	0.2	0.02
					TLI	EPA 300.0	CL	4/13/2010	Giawad Ghenniwa	mg/L	1210	100	12.0
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	1.38	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	215	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.918	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	2590	125	21.7
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	2.72	0.5	0.10
OW-02S	OW-02S-023	Barry Collom	4/8/2010	12:36:08 PM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	1700	2.0	0.038
					TLI	EPA 200.8	CRTD	4/12/2010	Romuel Chaves	μg/L	30.6	1.0	0.075
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	μg/L	30.3	1.1	0.0998
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	398	20.0	2.40
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	5.02	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	109	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	0.402	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	936	50.0	8.68
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	4.18	0.5	0.10

TABLE 10

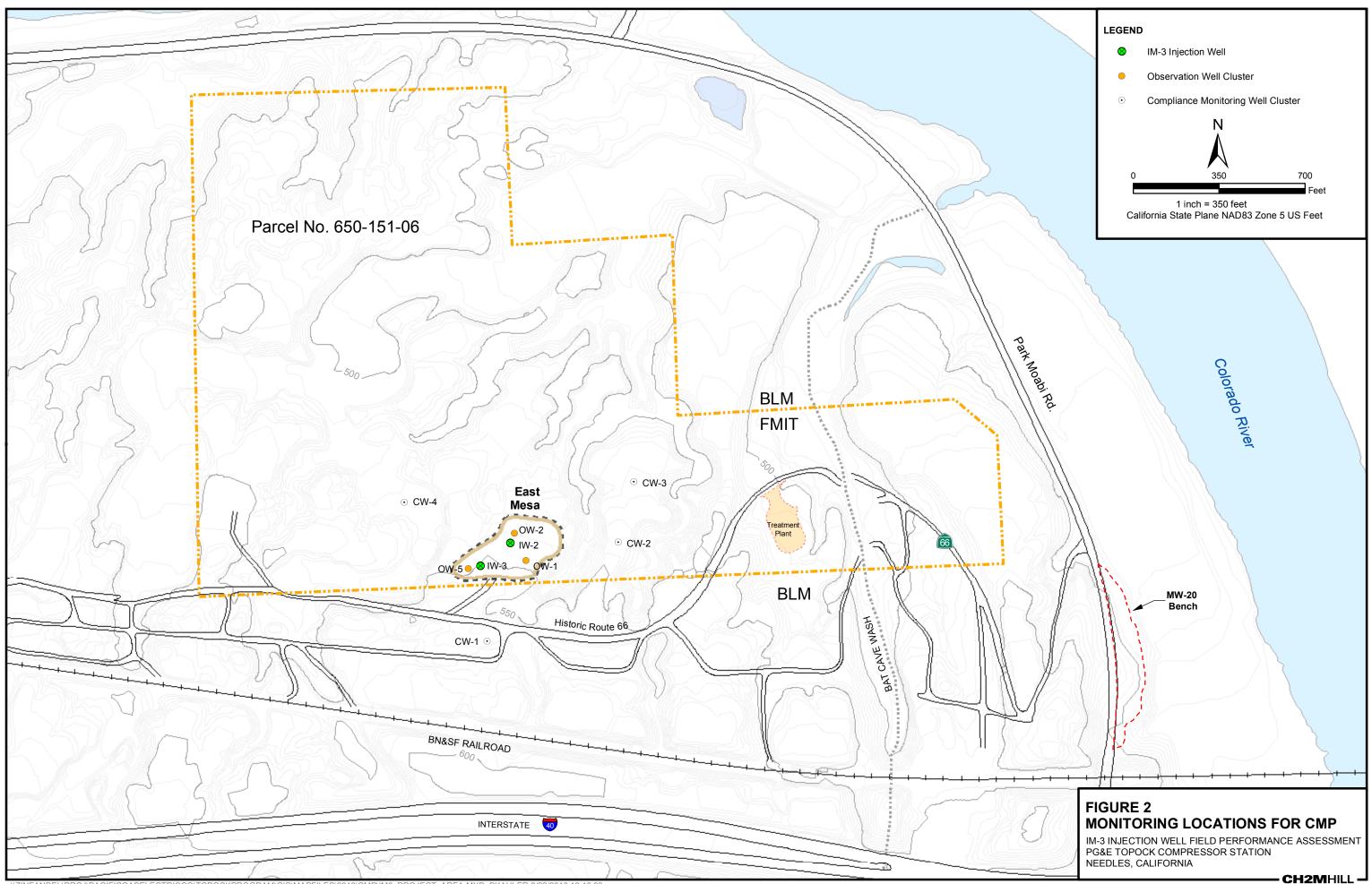
Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05S	OW-05S-023	Barry Collom	4/8/2010	11:07:01 AM	TLI	EPA 120.1	SC	4/12/2010	Tina Acquiat	µmhos/cm	2330	2.0	0.038
					TLI	EPA 200.8	CRTD	4/12/2010	Romuel Chaves	µg/L	21.0	1.0	0.075
					TLI	EPA 218.6	CR6	4/15/2010	Sonya Bersudsky	µg/L	20.7	0.2	0.02
					TLI	EPA 300.0	CL	4/12/2010	Giawad Ghenniwa	mg/L	655	20.0	2.40
					TLI	EPA 300.0	FL	4/9/2010	Giawad Ghenniwa	mg/L	1.89	0.5	0.06
					TLI	EPA 300.0	SO4	4/9/2010	Giawad Ghenniwa	mg/L	128	25.0	2.00
					TLI	SM2130B	TRB	4/9/2010	Gautam Savani	NTU	2.54	0.1	0.014
					TLI	SM2540C	TDS	4/12/2010	Tina Acquiat	mg/L	1450	50.0	8.68
					EMXT	SM4500NO3-E	NO3NO2N	4/20/2010	Elena Robles	mg/L	3.18	0.5	0.10

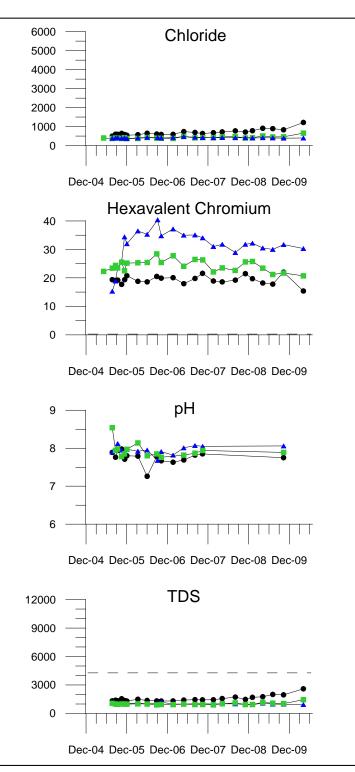

TABLE 10

Board Order No. R7-2006-0060 WDR Monitoring Information for Groundwater Samples, First Half 2010 PG&E Topock Compliance Monitoring Program

NOTES: MDL method detection limit corrected for sample dilution reporting limit corrected for sample dilution RL ND parameter not detected at the listed reporting limit µmhos/cm micro-mhos per centimeter Nephelometric Turbidity Unit NTU milligrams per liter mg/L µg/L micrograms per liter Concentration estimated by laboratory or data validation J TLI Truesdail Laboratories, Inc. EMXT Emax Laboratories WDR Waste Discharge Requirements

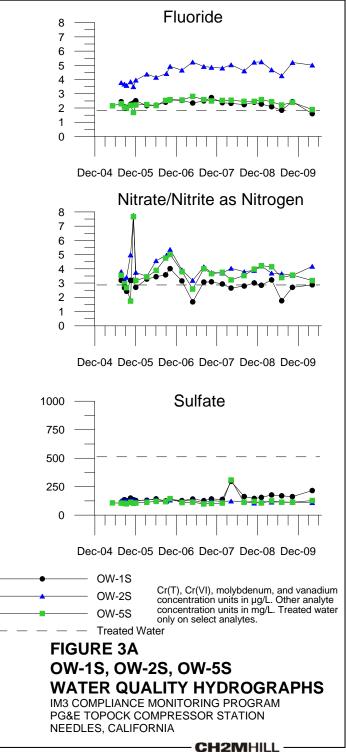

ALKCalkalinity, as carbonateALKTalkalinity, total as CaCO3ALKBalkalinity, bicarbonate as CaCO3ALDalmunium, dissolvedAGDsilver, dissolvedASDarsenic, dissolvedBDboron, dissolvedBDbarium, dissolvedBDberyllium, dissolvedCADcalcium, dissolvedCDDcadmium, dissolvedCLchlorideCOBDcobalt, dissolvedCRTDchromium, dissolvedCREironFEironFETDiron, dissolvedFLfluoride	KD MGD MND MOD NAD NID NH3N NO3NO2N PBD SBD SC SED SC SED SC4 TLD TDS TRB VD ZND	potassium, dissolved magnesium, dissolved manganese, dissolved molybdenum, dissolved sodium, dissolved nickel, dissolved ammonia (as Nitrogen) nitrate/nitrite (as Nitrogen) lead, dissolved antimony, dissolved specific conductance selenium, dissolved sulfate thallium, dissolved total dissolved solids turbidity vanadium, dissolved zinc, dissolved
--	---	---

Figures

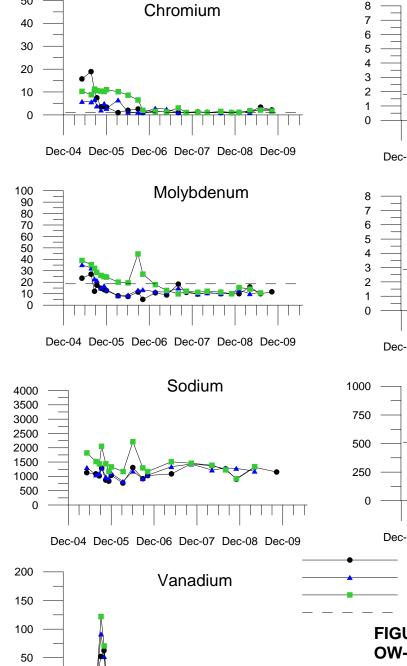


\\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MAPFILES\2010\IM3\IM3_FACILITIES_LOCS.MXD BKAHLER 6/22/2010 12:43:36

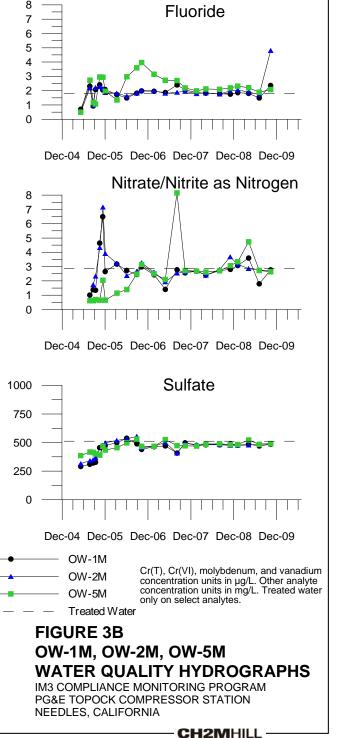
CH2MHILL

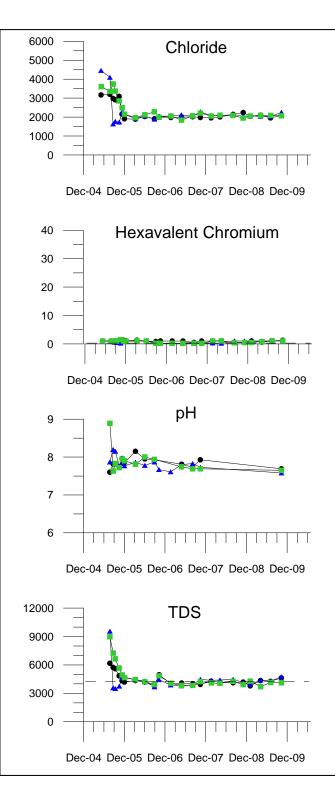

\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MAPFILES\2010\CMP\IM3_PROJECT_AREA.MXD_BKAHLER 6/22/2010 13:16:33

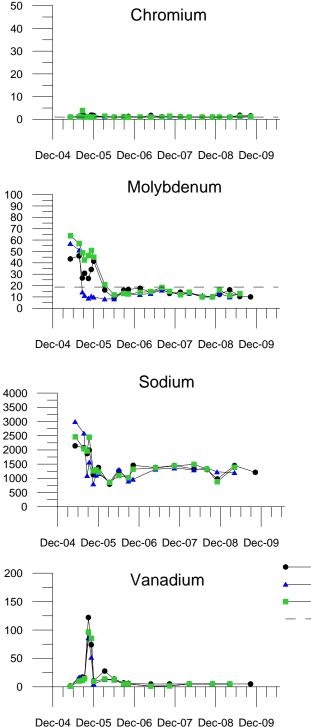


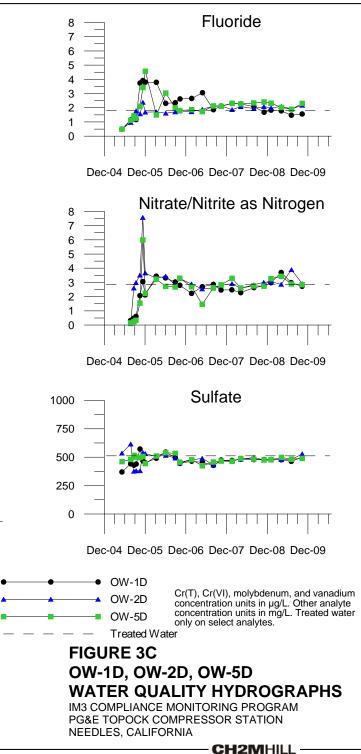

Chromium

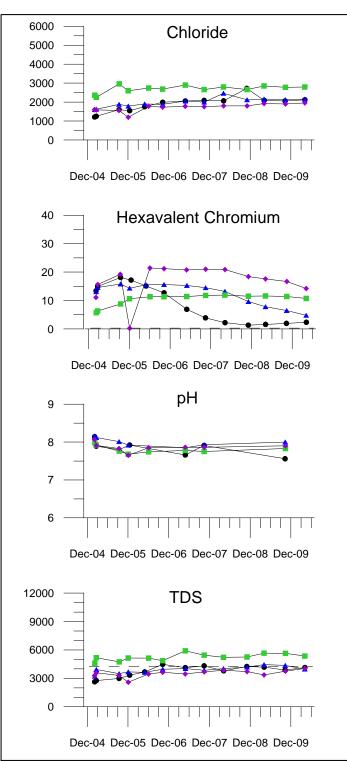
50

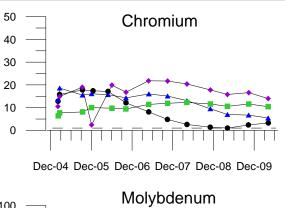

Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

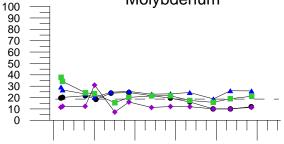


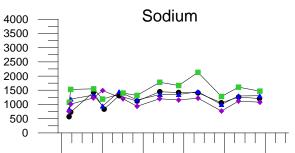

Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

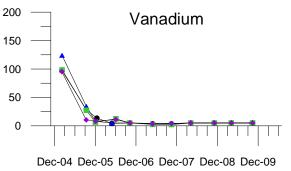

50

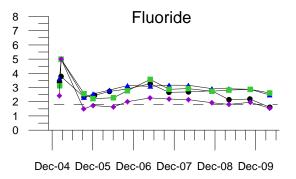

0

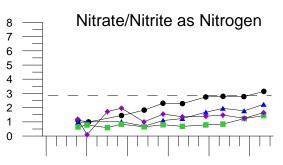


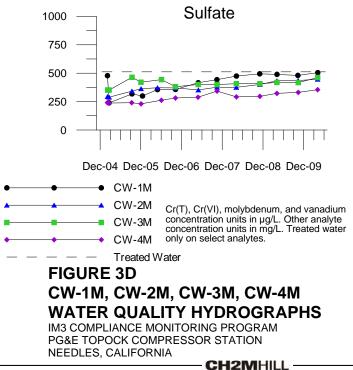


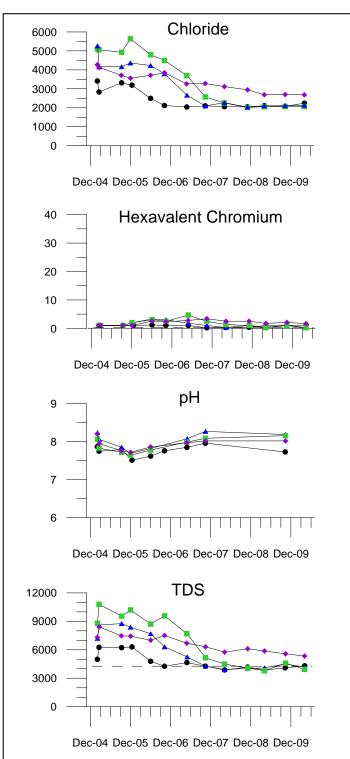


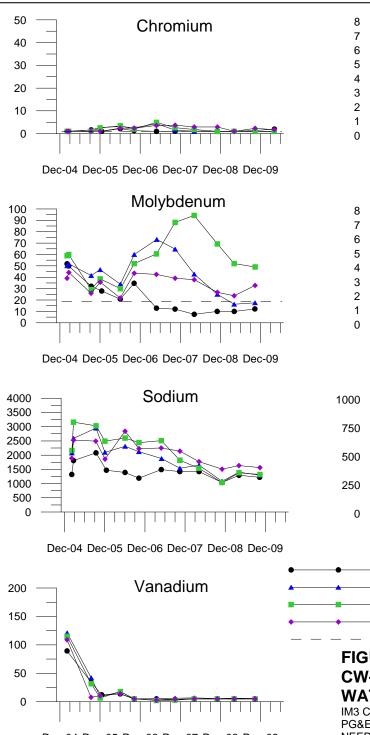


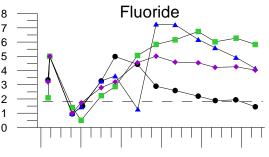


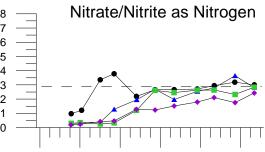

Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

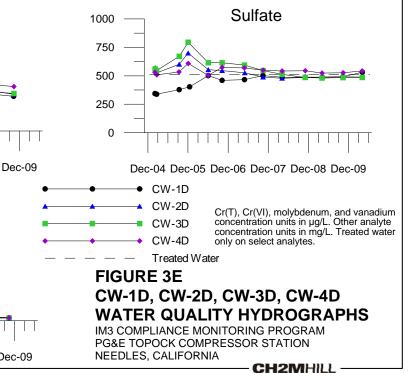

Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

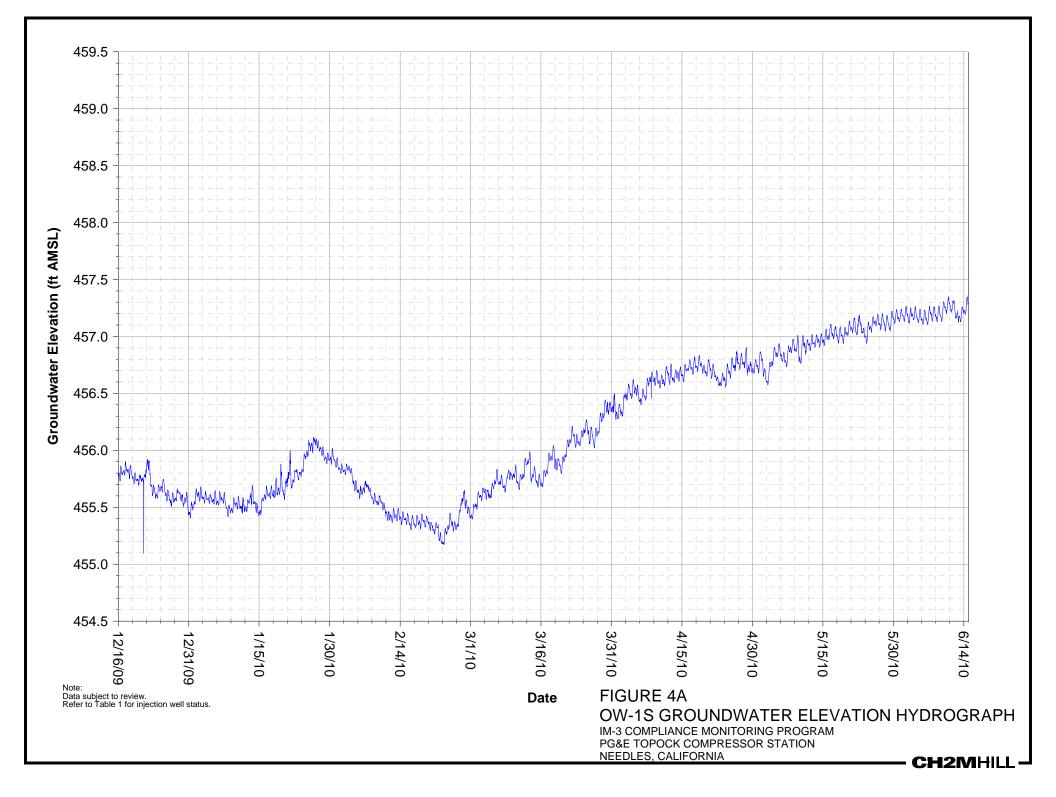


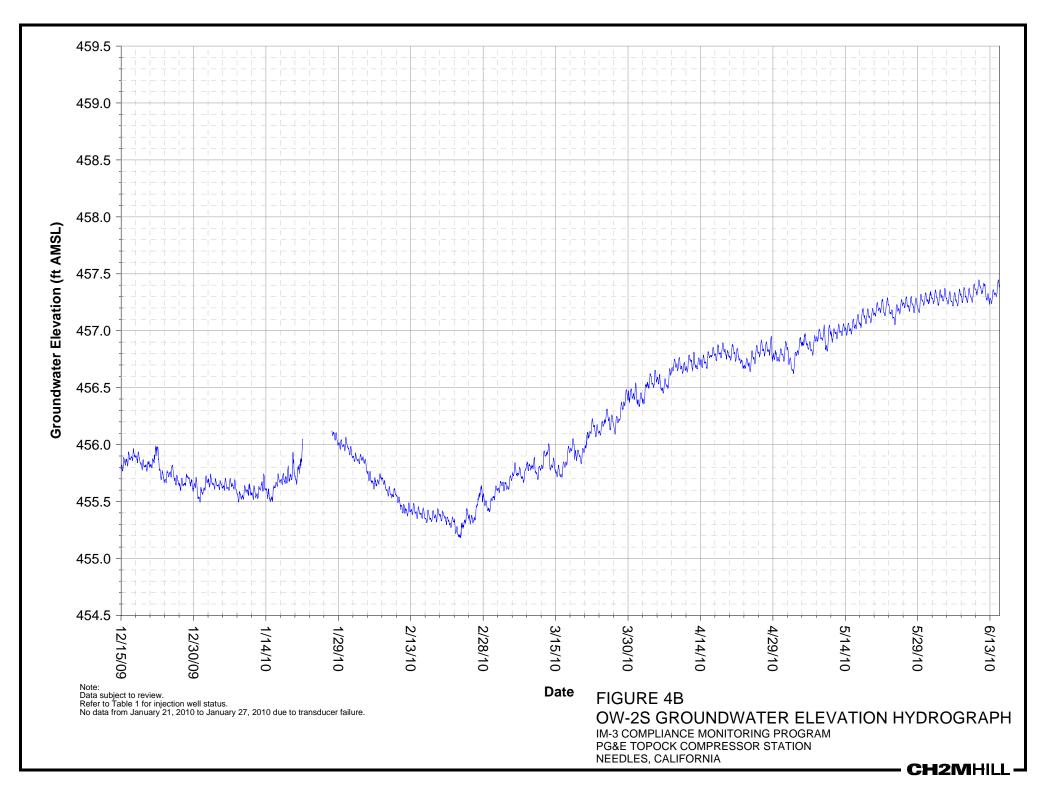


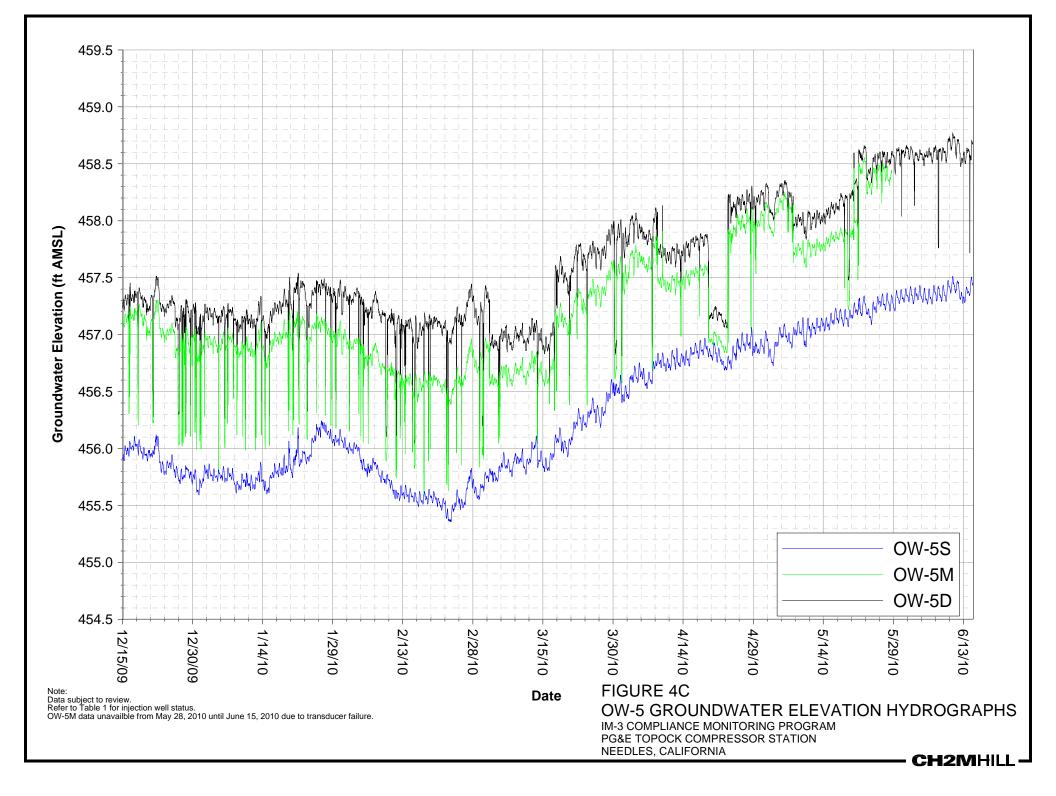

Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

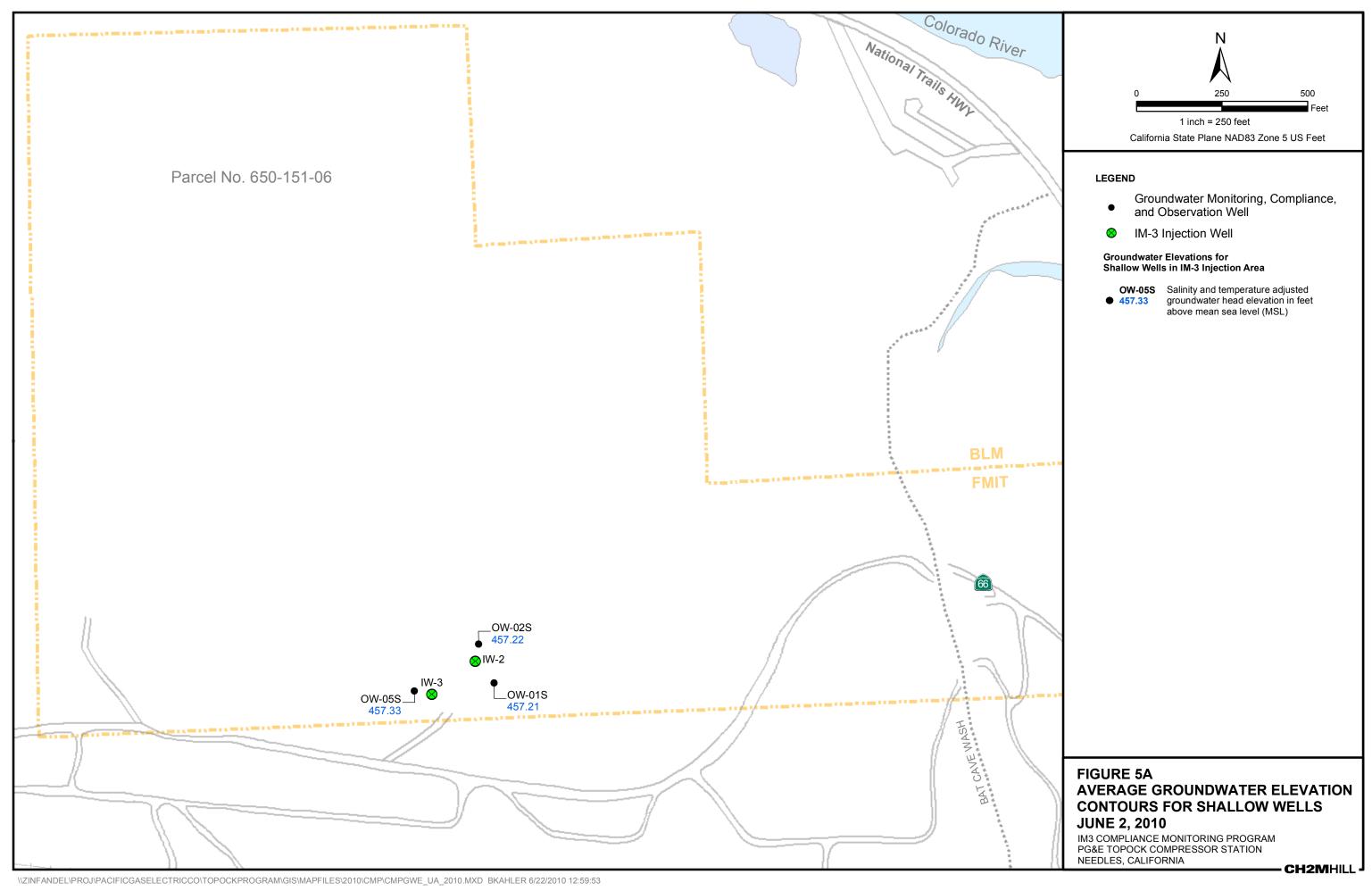


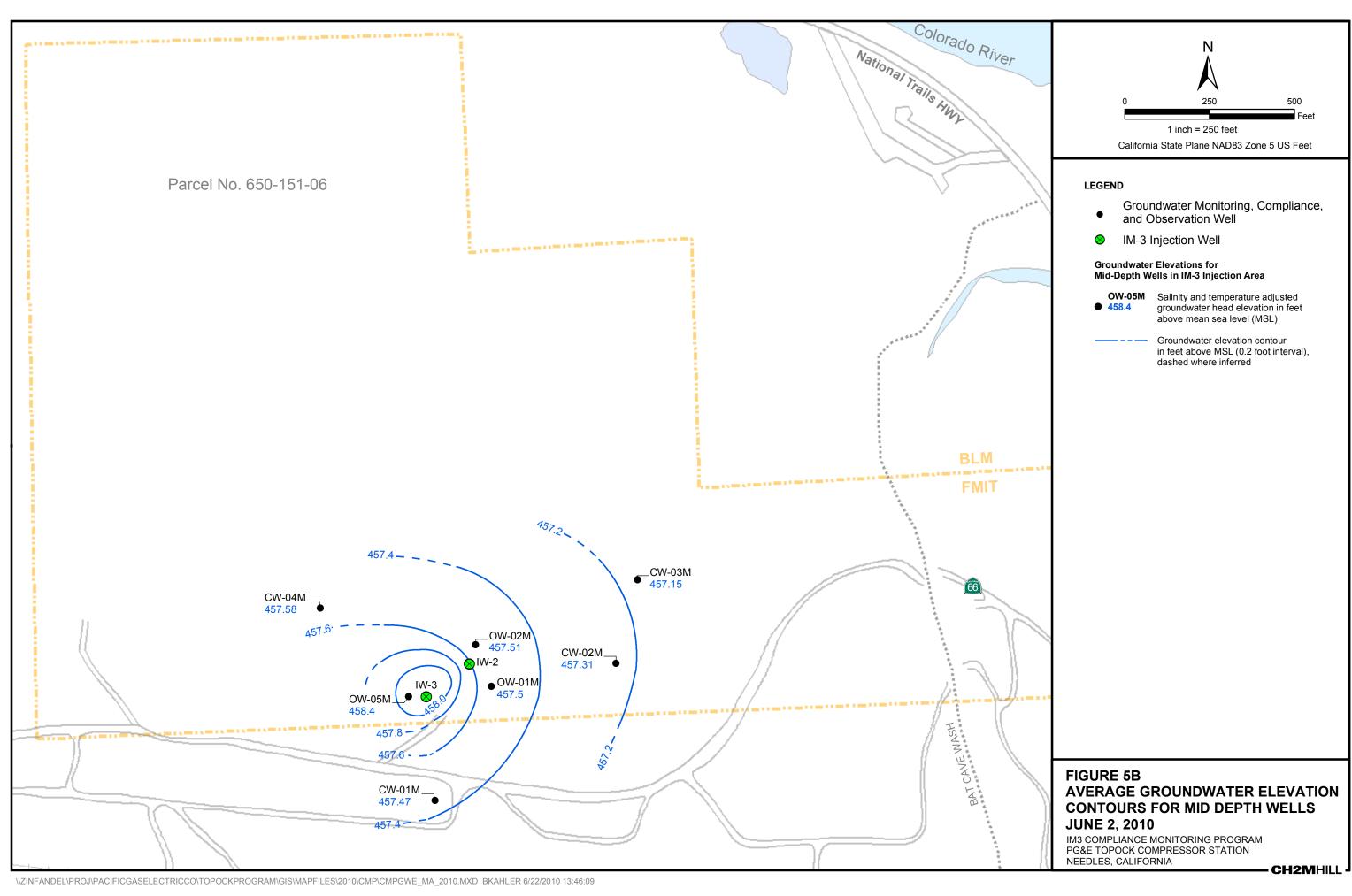

Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

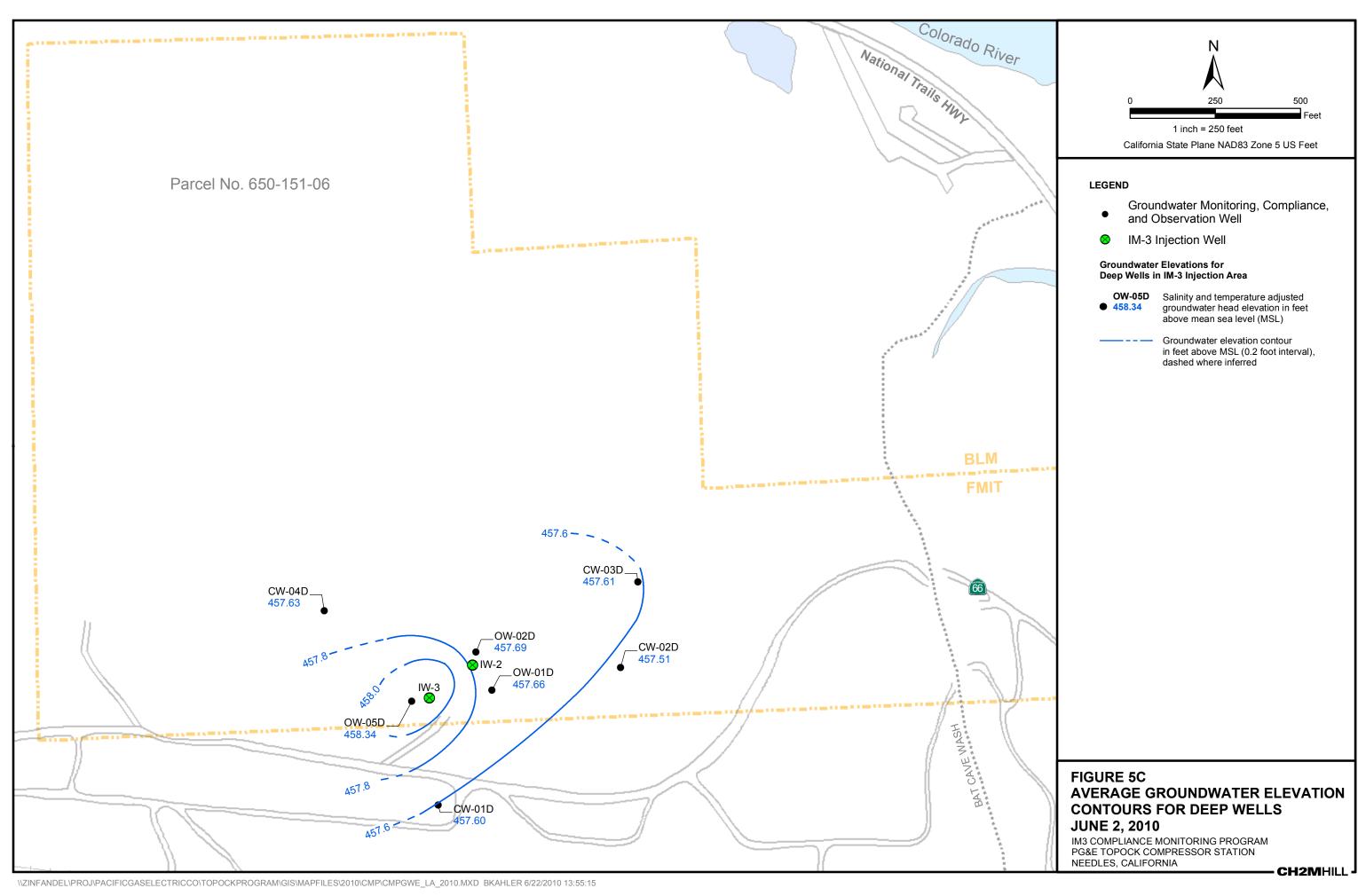



Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09




Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09





Appendix A Laboratory Reports, First Half 2010

LABORATORIES, INC. 1835 W. 205th Street Torrance, CA 90501 Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 04-22-2010 EMAX Batch No.: 10D087

Attn: Priya Kumar

CH2M HILL 155 Grand, Suite 1000 Oakland CA 94612

Subject: Laboratory Report Project: PG&E's Topock Gas Compressor Stat

Enclosed is the Laboratory report for samples received on 04/09/10. The data reported relate only to samples listed below :

Sample ID	Control #	Col Date	Matrix	Analysis
CW-02D-023	D087-01	04/07/10	WATER	NITRATE/NITRITE AS N
CW-02M-023	D087-02	04/07/10	WATER	NITRATE/NITRITE AS N
CW-03D-023	D087-03	04/07/ 10	WATER	NITRATE/NITRITE AS N
CW-03M-023	D087-04	04/07/10	WATER	NITRATE/NITRITE AS N
CW-04D-023	D087-05	04/07/10	WATER	NITRATE/NITRITE AS N
CW-04M-023	D087-06	04/07/10	WATER	NITRATE/NITRITE AS N
ow-90-023	D087-07	04/07/10	WATER	NITRATE/NITRITE AS N
CW-01D-023	D087-08	04/08/10	WATER	NITRATE/NITRITE AS N
CW-01M-023	D087-09	04/08/10	WATER	NITRATE/NITRITE AS N
OW-015-023	D087-10	04/08/10	WATER	NITRATE/NITRITE AS N
OW-025-023	D087-11	04/08/10	WATER	NITRATE/NITRITE AS N
OW-05s-023	D087-12	04/08/10	WATER	NITRATE/NITRITE AS N
ow-91-023	D087-13	04/08/10	WATER	NITRATE/NITRITE AS N

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that the results included in this report meet all NELAC requirements unless noted in the Case Narrative.

CMP EMAX #1 100087 CHAIN OF CUSTODY RECORD CH2MHILL Page 1 OF 1 4/8/2010 8:38:34 AM 1 Liter Project Name PG&E Topock Container Poly Location Topock H2SO4, Preservatives: pH<2, 4°C Project Number 390378.MP.02.CM.01 Project Manager Jay Piper Filtered: NA Sample Manager Matt Ringier Holding Time: 28 Nitrate/Nitrite (SM4500NO3-E) Task Order Project 2010-CMP-023 Number of Containers Turnaround Time 12 Days Shipping Date: 4/8/2010 COC Number: 2 COMMENTS DATE TIME Matrix 1 CW-02D-023 10:00 Water 4/7/2010 X 1 2 CW-02M-023 4/7/2010 11:26 Water X 1 3 CW-03D-023 4/7/2010 13:43 Water X 1 CW-03M-023 4/7/2010 14:58 Water Х A 5 CW-04D-023 4/7/2010 16:28 Water 1 x 6 1 CW-04M-023 4/7/2010 17:27 Water х 1 OW-90-023 4/7/2010 12:13 Water х -TOTAL NUMBER OF CONTAINERS 7

T= 2.7°C

Approved by	Signatures	Date/Time	Shipping	•	ATTN:	Special Instructions: April 5-9, 2010
Sampled by Relinquished by		1600	Method of Shipment: On Ice: yes / no	courier	Sample Custody	
Received by	Higelito	1 1 10 100	Airbill No:			Report Copy to
Relinquished by	HIROKIO	48-10 CIS	O Lab Name:			Shawn Duffy
Received by	L. Shakuny		Lab Phone:		2 EAVID BY	(530) 229-3303

CMP CMAX

100087

	CH2MHILL					CHAIN OF CUSTODY RECORD 4/8/2010 2:17:46 PM	Page	_1	OF 1
	Project Name PG&E Topock Location Topock			container:	Poly H2SO4				
	Project Number 390378.MP.02.CN Project Manager Jay Piper	1. 01	Prese	Filtered:	pH≪2, 4°C				
	Sample Manager Matt Ringier		Hold	ing Time:					
	Task Order Project 2010-CMP-023 Turnaround Time 12 Days Shipping Date: 4/8/2010 COC Number: 2	DATE	TIME	Matrix	Nitrate/Nitrite (SM4500NO3-E)		Number of Containers	со	OMMENTS
8	CW-01D-023 4/8	8/2010	9:39	Water	x		1		
		8/2010	10:20	Water	x		1		
10	1	8/2010	11:50	Water	x		1		
H		8/2010	12:36	Water	x		1		
		8/2010	11:07	Water	x		1		
13	OW-91-023 4/8	8/2010	8:55	Water	x		1		
				•	• • • • •	TOTAL NUMBER OF CONTAINERS	6		

Approved by	Signatures	Date/Time	Shipping Details	· · · · · · · · · · · · · · · · ·	Special Instructions:
sampled by		1690	Method of Shipment: courier	ATTN:	April 5-9, 2010
Relinquished by	PK-	/650	On Ice: yes / no	Sample Custody	ļ
Received by	Aliato	4-8-10 1600	Airbill No:	Ì	i Banari Canuta
Relinquished by		8-10 230	Lab Name:	ļ.	Report Copy to Shawn Duffy
Received by	2 Shaleuning	2 18/10 21:50	Lab Phone:		(530) 229-3303
11 - is n			· · · · · · · · · · · · · · · · · · ·	Z lal.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

•

T	Type of Delivery	Defile	ered By/Airbill	ECN 100087			
DEMAX Courier			0	Reception I-LUNB			
Client Delivery				Date 4 -9-10			
D Third Party				Time 1425			
		COC lnsp	ection				
Client Name	Client PM/FC	Sampler Name	Sampling Date/Time/Locati	ion Sample ID Matrix			
□ Address	🖸 Tel # / Fax #	Courier Signature	Inalysis Required	Preservative (if any)			
Safety Issues	None	High concentrations expected	Superfund Site samples	Rad screening required			
Comments:							
		Packaging In	spection				
Container	Cooler	D Box	□ Other				
Condition	Custody Seal	Intact	Damaged				
ackaging	Bubble Pack	Styrofoam	— Рорсотп				
lemperatures	Cooler 2.7 °C	Cooler 2°C	Cooler 3 °C	□ Cooler 4 °C □ Cooler 5 °C			
Cool, ≤6 °C but not frozen) Cooler 6°C	□ Cooler 7°C	□ Cooler 8°C	□ Cooler 9°C □ Cooler 10°C			
о . При							
Comments: LJ PIVI Wa	is informed on non-comp	liant coolers imediately.					
			NCIES	· · · · · · · · · · · · · · · · · · ·			
LSID	LSCID	DISCREPA		Corrective Action Code			
LSID		Sample Label ID/COC ID	Discrepancy Code	Coffective Action Code			
		· · · · · · · · · · · · · · · · · · ·					
		·					
			·				
<u>. </u>							
	K.		1				
REVIEWS							
Sample La	the way	K s		PM RK-for No			
	Date A S/10		hate UIAL	Date 4/12/W.			
	THE -	·X					
EGEND:	/		11				
ode Description-Sample	e Management	Code Description-Sample Manageme	ent Co	ode Description-Project Management			
A1 Analysis is not indica	ated in COC	D1 Date and/or time is not indicated	in COC	R1 Hold sample(s); wait for further instructions			
A2 Analysis is not indice	ated in label	D2 Date and/or time is not indicated	in label	R2 Proceed as indicated in COC			
A3 Analysis is inconsiste	ent in COC vis-à-vis label	D3 Date and/or time is inconsistent in	n COC vis-à-vis label	R3 Refer to attached instruction			
A4		E1 Insuficient preservative		R4 Cancel the analysis			
	icated in COC	E2 Improper preservation					
BI Sample ID is not indicated in COC		F1 Insufficient Sample		RS			
	CALCE III JAUCI	TT RESOLUCIENT SAMPLE		R6			
B2 Sample ID is not indi	stant in COC via it sin total	ED Dubble iss C					
B2 Sample ID is not indi B3 Sample ID is inconsis	stent in COC vis-à-vis label	F2 Bubble is> 6mm					
B2 Sample ID is not indi B3 Sample ID is inconsis B4	stent in COC vis-à-vis label	G1 Temperature is out of range					
B2 Sample ID is not indi B3 Sample ID is inconsis B4 C1 Wrong container		G1 Temperature is out of range G2 Out of Holding Time					
 B2 Sample ID is not indi B3 Sample ID is inconsis B4 C1 Wrong container C2 Broken container 		G1 Temperature is out of range					
B2 Sample ID is not indi B3 Sample ID is inconsis B4 C1 Wrong container		G1 Temperature is out of range G2 Out of Holding Time					

CLIENT: CH2M HILL TOPOCK

SDG: 10D087

Analyst names:

1. SM4500NO3: Elena Robles

1003A

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 10D087

METHOD SM4500NO3 NITRATE/NITRITE-N

A total of thirteen (13) water samples were received on 04/09/10 for Nitrate/Nitrite as N analysis, Method SM4500NO3 in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAD005WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recovery for 10D087WM was within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD SM4500NO3 NITRATE/NITRITE-N

,

.

Client : CH2M H Project : PG&E'S Batch No. : 10D087	TOPOCK GAS COMPRE	SSOR STAT									Matı Ins	ix : W trument ID : I	ATER 70
SAMPLE ID	EMAX Sample ID	RESULTS (mg/L)		MOIST	RL (mg/L)	MDL (mg/l)	•	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NAD005WB	ND.		NA	0.100	0.0200	04/20/1015:59	NA	NAD00511	NAD00508	NAD005W	NA	NA
LCS1W	NADOO5WL	0.515	1	NA	0.100	0.0200	04/20/1015:59	NA	NAD00512	NAD00508	NAD005W	NA	NA
LCD1W	NADOO5WC	0.501	1	NA	0.100	0.0200	04/20/1016:00	NA	NAD00513	NAD00508	NAD005W	NA	NA
CW-02D-023	D087-01	2,81	5	NA	0.500	0,100	04/20/1016:00	NA	NAD 00514	NAD00508	NAD005W	04/07/1010:00	04/09/10
CW-02D-023DUP	D087-01D	2.79	5	NA	0.500	0.100	04/20/1016:01	NA	NAD00515	NAD00508	NA0005W	04/07/1010:00	04/09/10
CW-02D-023MS	D087-01M	3.27	5	NA	0.500	0.100	04/20/1016:01	NA	NAD00516	NAD00508	NAD005W	04/07/1010:00	04/09/10
CV-02M-023	D087-02	2.23	5	NA	0.500	0.100	04/20/1016:01	NA	NA000517	NAD00508	NAD005W	04/07/1011:26	04/09/10
CW-030-023	D087-03	2.84	5	NA	0.500	0.100	04/20/1016:02	NA	NAD00518	NA000508	NAD005W	04/07/1013:43	04/09/10
CW-03M-023	D087-04	1.24	5	NA	0.500	0.100	04/20/1016:03	NA	NAD00519	NAD00508	NADO05W	04/07/1014:58	04/09/10
CW-04D-023	0087-05	2.43	5	NA	0.500	0.100	04/20/1016:04	NA	NAD00522	NAD00520	NAD005W	04/07/1016:28	04/09/10
CW-04M-023	0087-06	1.65	5	NA	0.500	0.100	04/20/1016:05	NA	NAD00523	NAD00520	NAD005W	04/07/1017:27	04/09/10
OW-90-023	D087-07	1.44	5	NA	0.500	0.100	04/20/1016:05	NA	NAD00524	NAD00520	NAD005W	04/07/1012:13	04/09/10
CW-01D-023	D087-08	3.00	5	NA	0.500	0.100	04/20/1016:06	NA	NAD00525	NAD00520	NAD005W	04/08/1009:39	04/09/10
CW-01M-023	0087-09	3.14	5	NA	0.500	0.100	04/20/1016:07	NA	NAD00526	NAD00520	NAD005W	04/08/1010:20	04/09/10
OW-015-023	D087-10	2.72	5	NA	0.500	0.100	04/20/1016:08	NA	NAD00527	NAD00520	NAD 005W	04/08/1011:50	04/09/10
OW-02S-023	D087-11	4.18	5	NA	0.500	0.100	04/20/1016:10	NA	NAD00528	NAD00520	NAD005W	04/08/1012:36	04/09/10
OW-05S-023	D087-12	3.18	5	NA	0.500	0.100	04/20/1016:10	NA	NAD00529	NAD00520	NAD005W	04/08/1011:07	04/09/10
ow-91-023	D087-13	2.88	5	NA	0.500	0.100	04/20/1016:11	NA	NAD 00530	NAD00520	NAD005W	04/08/1008:55	04/09/10

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: METHOD: MATRIX: % MOISTURE:	CH2M HILL PG&E'S TOPOCK GAS METHOD SM4500NO3 WATER NA	COMPRESSOR	STAT							
BATCH NO.: SAMPLE ID: CONTROL NO.:	10D087 LCS1W/LCD1W NAD005WL/WC					DATE REC Date ext Date ana	RACTED:	NA NA D4/20/10 15:	59/ 16:00	
ACCESSION:										
PARAMETER	BLNK RSLT (mg/l)	SPIKE AMT (mg/L)	BS RSLT (mg/l)	BS % REC	SPIKE AMT (mg/L)	BSD RSLT (mg/L)	BSD % REC	RPD %	QC LIMIT %	RPD LIMIT %
NITRATE/NITRITE	-N ND	0.500	0.515	103	0.500	0.501	100	0 3	85-115	20

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:CH2M HILLPROJECT:PG&E'S TOPOCK GAS COMPRESSOR STATMETHOD:METHOD SM4500NO3MATRIX:WATER% MOISTURE:NA

BATCH NO.:	100087	DATE RECEIVED:	04/09/10
SAMPLE ID:	CW-02D-023MS	DATE EXTRACTED:	NA
CONTROL NO.:	D087-01M	DATE ANALYZED:	04/20/10 16:01

ACCESSION:

	SMPL RSLT	SPIKE AMT	MS RSLT	MS	QC LIMIT
PARAMETER	(mg/L)	(mg/L)	(mg/L)	% REC	(%)
				•••••	
NITRATE/NITRITE-N	2.81	0.500	3.27	92	75-125

EMAX QUALITY CONTROL DATA DUPLICATE ANALYSIS

CLIENT: PROJECT: METHOD: MATRIX: % MOISTURE:	CH2M HILL PG&E'S TOPOCK GAS COM METHOD \$M4500NO3 WATER NA	PRESSOR STAT		
BATCH NO.:	10D087	DATE	RECEIVED:	04/09/10
SAMPLE ID:	CW-02D-023DUP		EXTRACTED:	NA
CONTROL NO.:	D087-01D		ANALYZED:	04/20/10 16:01
ACCESSION:				
PARAMETER	SAMPLE	DUP. SAMPLE	RPD	RPD LIMIT
	(mg/L)	(mg/L)	(%)	(%)

2.79 1

20

2.81

,

NITRATE/NITRITE+N

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

April 22, 2010

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK 2010-CMP-023, GROUNDWATER MONITORING PROJECT, TLI NO.: 988698

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2010-CMP-023 groundwatermonitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on April 8, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Dissolved Chromium, for samples CW-01D-023 and CW-01M-023, were re-analyzed due to the discrepancy between the Total Dissolved Chromium and Hexavalent Chromium results. The results from the re-analysis, 1.65 ug/L and 3.28 ug/L respectively, matched those from the original run (1.97 and 3.23 ug/L). Therefore, sample from the Hexavalent Chromium sample containers were analyzed for Total Dissolved Chromium. The results were 1.22 and 1.97 ug/L respectively, which matched the results from the Hexavalent Chromium analysis (1.12 and 2.33 ug/L). Therefore, the results from the original runs are reported.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

SanCan

40- Mona Nassimi Manager, Analytical Services

K. R. P. Ine

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01

Laboratory No.: 988698

Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
EPA 200.8	Metals by ICP/MS	Romuel Chaves
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

 i^{*}

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE • TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 • www.truesdait.com

Laboratory No.: 988698 Date Received: April 8, 2010

Attention: Shawn Duffy Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01

P.O. No.: 390378.MP.02.CM.01

Analytical Results Summary

<u>Lạb I.D.</u>	<u>Sample I.D.</u>	<u>Sample Time</u>	EPA 120.1 EC	<u>SM 2540C</u> TDS	<u>SM 2130B</u> Turbidity	<u>EPA 218.6</u> Chromium Hexavalent	EPA 200,8 Chromium Dissolved	
000000.4			μmhos/cm	mg/L	NTU	μ g/ L	μg/L	
988698-1	CW-01D-023	09:39	7360	4320	0.124	1.12	1.97	
988698-2	CW-01M-023	10:20	7210	4140	ND	2.33	3.23	
988698-3	OW-01S-023	11:50	4040	2590	0.918	15,4	15.7	
988698-4	OW-02S-023	12:36	1700	936	0.402			· ·
988698-5	OW-05S-023	11:07	2330			30.3	30.6	
988698-6	OW-87-023		2330	1450	2.54	20.7	21.0	
··· · · · · · · · · · · · · · · · · ·	·····	13:05				ND		
988698-7	OW-91-023	08:55	4080	2550	0.882	15.2	15.7	

<u>Lab I.D.</u>	<u>Sample I.D.</u>	<u>Sample Time</u>	<u>EPA 300.0</u> Fluoride	<u>EPA 300.0</u> Sulfate	EPA 300.0 Chloride	
			mg/L	mg/L	mg/L	
988698-1	CW-01D-023	09:39	1.45	532	2240	
988698-2	CW-01M-023	10:20	1.61	505	2120	
988698-3	OW-01S-023	11:50	1.38	215	1210	
988698-4	OW-02S-023	12:36	5.02	109	398	
988698-5	OW-05S-023	11:07	1.89	128	655	
988698-7	OW-91-023	08:55	1.60	207	1220	

ND: Non Detected (below reporting fimit)

mg/L: Miligrams per liter,

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.001ppm will have two (2) significant figures.

Result above or equal to 0.001ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988698

Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 15, 2010 Analytical Batch: 04CrH10F

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>,TLI I.D.</u>	<u>Fleid I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Reșults</u>
988698-1	CW-01D-023	09:39	12:13	μ g/L	5.25	1.05	1.12
988698-2 988698-3	CW-01M-023 OW-01S-023	10:20 11:50	12:23 11:00	μ 9/L μg/L	5.25 1.05	1.05 0.20	2.33 15.4
988698-4	OW-02S-023	12:36	10:39	μg/L	5.25	1.05	30.3
988698-5 988698-6	OW-05S-023 OW-87-023	11:07 13:05	12:34 12:44	μg/L μg/L	1.05 1.05	0.20 0.20	20,7 ND
988698-7	OW-91-023	08:55	12:54	μg/L	1.05	0.20	15.2

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

007

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 988698

Collected: April 8, 2010

Received: April 8, 2010

Prep/ Analyzed: April 15, 2010 Analytical Batch: 04CrH10F

Date: April 22, 2010

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Investigation:

Hexavalent Chromium by EPA 218.6

	_				<u>_</u>	V G	<u>L 3</u>	<u>umm</u> ai	ry			
	QC STO	D I.D.		oratory umber	Concentrati	on	_	plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	98	8698-4	30.3			30.2	0.33%	<u>< 20%</u>	Yes	
QC Std I.O.	Lab Number	Conc. unspik samp	æd	Dilution Factor	Added Spike Conc.		MS Yount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	988698-1	1.12	:	5.25	1.00	5	5.25	6.43	6.37	101%	90-110%	Yes
MŞ	988698-2	2.33		5.25	1.00	5	5.25	7.92	7.58	106%	90-110%	Yes
MS	988698-3	15.4		1.08	20.0	2	1.6	37.3	37.0	101%	90-110%	Yes
M\$	988698-4	30.3		5.25	10.0	5	2.5	78.8	82.8	92.4%	90-110%	Yes
MŞ	988698-5	20.7		1.11	25.0	2	7.8	48.5	48.5	100%	90-110%	Yes
MS	988698-6	0.00		1.06	1.00	1	.06	1.13	1.06	107%	90-110%	Yes
MS	988698-7	15.2		1.08	20.0	2	1.6	36.6	36.8	99.1%	90-110%	Yes

OA/OC Summan

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200	•	<0.200	Yes
MRCCS	4.84	5.00	96.8%	90% - 110%	Yes
MRCVS#1	9,85	10.0	98.5%	95% - 105%	Yes
MRCVS#2	10.2	10.0	102%	95% - 105%	Yes
MRCVS#3	10.4	10.0	104%	95% - 105%	Yes
MRCVS#4	10.2	10.0	102%	95% - 105%	Yes
MRCVS#5	9.96	10.0	99.6%	95% - 105%	Yes
MRCVS#6	10.4	10.0	104%	95% - 105%	Yes
LĊS	5.41	5.00	108%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🦶 – Moña Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 800

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988698

Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04TUC10F

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	DF	<u>RL</u>	Results
988698-1	CW-01D-023	09:39	NTU	1.00	0.100	0.124
988698-2	CW-01M-023	10:20	NTU	1.00	0,100	ND
988698-3	OW-015-023	11:50	NTU	1.00	0.100	0.918
988698-4 988698-5	OW-025-023	12:36	NTU	1.00	0.100	0.402
988698-5 988698-7	OW-05S-023 OW-91-023	11:07	NTU	1.00	0.100	2.54
300030-7	044-91-023	08:55	NTU	1.00	0.100	0.882

QA/QC Summary

	QC STD I.D. Laboratory Number		Concentra	ntration i		Duplicate Concentration		Relative Percent Difference		eptance limits	QC Within Control
Ę	Ouplicate	988699	1 ND		N	D	0.	.00%		<u><</u> 20%	Yes
		QC Std I.D.	Measured Concentration		oretical entration	Percer Recove		Accepta Limit		QC Within Control	n
		Blank	ND	<	0.100		· · ·	<0.10	0	Yes	-1
		LCS	7.80	-	B.00	97.5%	6	90% - 11		Yes	
		LĊS	7.73		B. O O	96.6%	<u>.</u>	90% - 11	0%	Yes	
	L	LCS	7,70		3.00	96.3%	5	90% - 11	0%	Yes	

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Neme: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.; 390378.MP.02.CM.01

REPORT

14201 FRANKLIN AVENUE STIN, CALIFORNIA 92780-7008

Established 1931

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 988698

Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 04EC10D

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	MDL	DF	<u>RL</u>	Results
988698-1	CW-01D-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	7360
988698-2	CW-01M-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	7210
988698-3	OW-01S-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	4040
988698-4 988698-5	OW-02S-023 OW-05S-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	1700
988698-7	OW-91-023	µmhos/cm µmhos/cm	EPA 120.1 EPA 120.1	0.038	1.00	2.00	2330
	011-01-020	μπισσιστη	EPA 120.1	0.038	1.00	2.00	4080

QA/QC Summary	/
---------------	---

QC 5 1.D.		1 Concontrati	ion	Duplica Concentra		I	Relative Percent ifference		ceptance limits	QC Within Control
Duplic	ate 988698-	4 1700		1700			0.00%		<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration		heoretical ncentration	Perco Recov		Acceptar Limits		QC Withi Control	
	Blank	ND		<2.00			<2.00		Yes	-
ļ	CCS	704		706	99.7	%	90% - 11(0%	Yes	-
	CVS#1	992		1000	99.2	%	90% - 11(0%	Yes	1
Ļ	CVS#2	993		1000	99.3	%	90% - 110	0%	Yes	-1
Ļ	LCS	704		706	99.7	%	90% - 110	0%	Yes	-
L	LCSD	704		706	99.7	%	90% - 110	0%	Yes	1

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

010

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 Client: E2 Consulting Engineers, Inc. REPORT www.truesdail.com 155 Grand Ave, Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Laboratory No.: 988898 Sample: Seven (7) Groundwater Samples Date: April 22, 2010

Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 04TDS10E

Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Investigation:

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLH.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
988698-1	CW-01D-023	mg/L	SM 2540C	250	4320
988698-2	CW-01M-023	mg/L	SM 2540C	250	4140
988698-3	OW-01S-023	mg/L	SM 2540C	125	2590
988698-4	OW-02S-023	mg/L	SM 2540C	50.0	936
968698-5	OW-058-023	mg/L	SM 2540C	50.0	1450
988698-7	OW-91-023	mg/L	SM 2540C	125	2550

QA/QC Summary

QC STD I	.D.	Laborator Number	1 L Concentr	ation	Duplic Concent			Percent ifference		ceptance límits	QC Within Control
Duplicate 988698-7		2550	2550		2540		0.20%		<u><</u> 5%	Yes	
	Q	C Std I.D.	Measured Concentration		eoretical centration	Perces Recove		Accepta Limit		QC Within Control	n
		Blank	ND		<25.0			<25.0)	Yes	-
		LCS 1	497		500	99.4%	6	90% - 11	0%	Yes	1
		LCS 2	498		500	99.6%	6	90% - 1 ⁻	0%	Yes	7

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378,MP.02,CM.01

Laboratory No.: 988698 Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Anelyzed: April 9, 2010 Analytical Batch: 04AN10G

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

		/ tital y tiotal	<u>iteaula</u> t	Junale			
<u>TĻĮ I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	Units	DF	<u>RL</u>	<u>Results</u>
988698-1 988698-2 988698-3 988698-4 988698-5 988698-5 988698-7	CW-01D-023 CW-01M-023 OW-01S-023 OW-02S-023 OW-05S-023 OW-91-023	09:39 10:20 11:50 12:36 11:07 08:55	13:51 17:52 18:03 18:14 18:26 18:37	mg/L mg/L mg/L mg/L mg/L	50.0 50.0 50.0 50.0 50.0 50.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0	532 505 215 109 128 207

QA/QC Summary

	QC STE			borat		Concentr	ation		licate ntration	F	Relative Percent Ifference		eptance imits		QC Within Control	
	Duplic	ate	. 9	88698	3-1	532] 5	18		2.67%	<	20%		Yes	
·	Lab Number	unsp	ic.of piked nple	_	ution Ictor	Added Spike Conc.		M9 nount	Measured Conc. of Spiked sample		Theoretical Conc. of spiked sample	1	M8% covery	,	Acceptance limits	QC Withir Control
	988698-1	5	32	5	0.0	10.0		500	1010		1032	. 9	95.6%		85-115%	Yes
		٩	C Std	I.D.		asured		eoretical centratio	Perce n Recov		Acceptar Limits		QC Wit Contro			
			Blanl	(ND		<0.500			<0.500	,	Yes			
			MRCC	\$		20.2	, ,	20.0	1019	6	90% - 11	0%	Yés			
		۸	IRCV5	<u>#1</u>		15.6		15.0	1049	6	90% - 110	0%	Yes			
		N	RCVS	#2		15.4		15.0	1039	6	90% - 110	0%	Yes			
		M	IRCVS	#3		15.4		15.0	1039	6	90% - 110	0%	Yes			
		N	RCVS	#4		15,4	-	15.0	1039	6	90% - 110)%	Yes			
		N	IRCVS	#5	<u> </u>	15.3		15.0	102%	6	90% - 110)%	Yes			
			LCS			20.2		20.0	1019	6	90% - 110	5%	Yes			

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 988698

Collected: April 8, 2010

Received: April 8, 2010

Prep/ Analyzed: April 12, 2010 Analytical Batch: 04AN10H

Date: April 22, 2010

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Chloride by Method EPA 300.0

Analytical Results Chloride

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
988698-1	CW-01D-023	09:39	12:35	mg/L	500	100	2240
988698-2	CW-01M-023	10:20	12:46	mg/L	500	100	2120
988698-4	OW-02S-023	12:36	13:09	mg/L	100	20.0	398
988698-5	OW-05S-023	11:07	13:21	mg/L	100	20.0	655
988698-7	OW-91-023	08:55	13:32	mg/L	500	100	1220

QA/QC Summary

	QC ST	QC STD I.D. Laboratory Number Duplicate 988717		Concentration Duplicate Concentration					Relative Percent ifference	Acceptance		QC Within Control			
	Duplic	ate		98871	7	301			302	. –	0.33%	۲	20%	Yes	
QC 915 I.D.). Number		nc.of piked mple		ution Ictor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample		M8% covery	Acceptance limits	QC Within Control
M\$	98871 7	3	01		00	4.00		400	690		701	9	7.3%	85-115%	Yes
		G	C Std	1.D.		easured centration		eoretical			Acceptar Limits		QC With Contro		
			Blani	(ND		<0.500			<0.500)	Yes		
			MRCC	<u>s_</u>		3.99		4.00		%	90% - 11	0%	Yes		
			MRCVS	\$#1		2.96		3.00	98.7	%	90% - 110	0%	Yes		
			MRCVS	;#2		2,99		3.00	99.7	%	90% - 11	0%	Yeş		
			LCS			3,97		4.00	99.3	%	90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected). DF: Dilution Factor,

DF: Dilution Factor,

Investigation:

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager
 Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 988698

Collected: April 8, 2010

Received: April 8, 2010

Prep/ Analyzed: April 13, 2010 Analytical Batch: 04AN10

Date: April 22, 2010

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390376.MP.02.CM.01 P.O. No.: 390376.MP.02.CM.01

Investigation:

Chloride by Method EPA 300.0

Analytical Results Chloride

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988698-3	OW-01S-023	11:50	13:02	mg/L	500	100	1210

QA/QC Summary

	QC STE		۱	-sboratory Number 988698-3		r Concentr		Concenti		Pe	elative ercent ference		eptance imite		QC Within Control			
	Duplic	ate	9	88698	-3	1210	<u> </u>	12	00	Ó	.83%	۲. ۲	20%		Yes			
QC Std I.D.	Lab Number	Con- unsp sam	iked	Dilution Factor		Added Spike Conc.		M8 1ount			heoretical Conc. of spiked sample		MS% Icovery	4	CCeptance limits	QC Within Control		
MS .	988698-3	12	10	5	00	4.00	4.00 2000		3340	3210		107%			85-115%	Yes		
		Q	QC Std I.D.				Measured Concentration			eoretical centration	Percei Recove		Acceptar Limits		QC With Contro			
			Blank	<u>د</u>		ND		<0.500			<0.500)	Yes	_				
		ľ	<u>MRÇC</u>	S		3.96		4.00	99.0%	6	90% - 11	0%	Yes	_				
		M	RCVS	#1		3.06		3.00	00 102%		90% - 11	0%	Yes					
		M	RCVS	#2		2.98		3.00	99.3%	6	90% - 11	0%	Yes					
.		L	LCS			3.97		4.00	99.3%		90% - 11	0%	Yes					

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, Investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04AN10G

Laboratory No.: 988698

Date: April 22, 2010

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>ŤĽI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988698-1	CW-01D-023	09:39	12:53	mg/L	5.00	0.500	1.45
988698-2	CW-01M-023	10:20	13:39	mg/L	5.00	0.500	1.61
988698-3	OW-01S-023	11:50	15:23	mg/L	5.00	0.500	1.38
988698-4	OW-02S-023	12:36	15:35	mg/L	5.00	0.500	5.02
988698-5	OW-05S-023	11:07	15:46	mg/L	5.00	0.500	1.89
988698-5	OW-91-023	08:55	15:58	mg/L	5.00	0.500	1.60

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988698

Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04AN10G

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

								<u>v v</u> u	minai	y				
	QC ST	Number		Concentration Duplicate Concentration				Relative Percent Difference		ceptance limits	QC Within Control			
	Duplic	ate	9	88698	3-1	1.45		1	.47	1 37%		<u>< 20%</u>	Yes	
QC 5td I.D.	Lab Number	บกระ	nc.of biked hpie	ſ	ution actor	Added Spike Conc.		MS 10unt	Measured Conc. of spiked sample	Theoreti Conc. d spiked sample	of I F	MS% Recovery	Acceptance limits	QC Within Control
MS	988698-1	1.	45	6	5.00	4.00	2	20.0	21.7	21.5		101%	85-115%	Yes
		Q	C Std	I.D.		asured		eoretical centratio	Percen Recover		tance nits	QC With	n	
			Blank	د		ND		<0.500		<0.	500	Yeş	-	
			MRÇÇ	s		4,14		4.00	104%		110%	Yes	-	
		M	IRCCS	<u>#1</u>		3.13		3.00	104%	90% -	110%	Yes		
		_	IRCCS			3.14		3.00	105%	90% -	110%	Yes		
			IRCVS			3.15		3.00	105%	90% -	110%	Yes	-1	
		N	IRCVS			3.16		3.00	105%	90% -	110%	Yes		
			LCS			4.13		4.00	103%	90% -	110%	Yes		

QA/QC Summary

ND: Below the reporting limit (Not Detected), DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01 Prep. Batch: 041210A

Laboratory No.: 988698 Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 041210A

Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer Investigation: using EPA 200.8

Analytical Results Total Dissolved Chromium

<u>TLI 1.D.</u>	Field I.D.	<u>Sample Time</u>	Method	<u>Run Time</u>	<u>Unitş</u>	DF	<u>RL</u>	<u>Results</u>
988698-1	CW-01D-023	09:39	EPA 200.8	13:22	μg/L	5.00	1.00	1.97
988698-2	CW-01M-023	10:20	EPA 200.8	13:29	μg/L	5.00	1.00	3.23
988698-3	OW-01S-023	11:50	EPA 200.8	13:36	μg/L	5.00	1.00	15.7
988698-4	OW-02S-023	12:36	EPA 200.8	13:42	μg/L	5.00	1.00	30.6
988698-5	OW-05S-023	11:07	EPA 200.8	13:49	μg/L	5.00	1.00	21.0
988698-7	OW-91-023	08:55	EPA 200.8	13:56	μg/L	5.00	1.00	15.7

ND: Below the reporting limit (Not Detected). DF: Ollution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01 Prep. Batch: 041210A

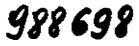
Laboratory No.: 988698 Date: April 22, 2010 Collected: April 8, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 041210A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

						Q/	AV LL	<u>c a</u> u	ILLIII	nar	У						
	QC STD	1.D.		iborat Numb	-	Concentr	-oncentration i			Concentration		lative rcent erence		eptance limits		Within ontrol	
	Duplic	ate _	. 9	88683	3-1	ND		1	10		0.	00%		<u><</u> 20%		Yeş	
QC Std I.D.	Lab Number	unsp	nc.of piked nple		ution Ictor	Added Spike Conc.		MS Iount	Meaa Con spil sam	c. of ked	C	eoretical Conc. of spiked sample		MS% covery	Acc	eptance limits	QC Within Control
MŞ	988683-1	0.	.00	5	.00	50.0	:	250	25	8		250		103%	70	-130%	Yes
		a	C Std	I.D.		easured		eoretical centratio		ercent ecover		Acceptar Limite		QC With Contro	· •		
			Blank	<		ND		<1.00			╈	<1.00		Yeş	\neg		
			MRCC	s		52.0		50.0		104%		90% - 11	0%	Yes			
		_ ^	ARCVS	;#1		51.8		50.0		104%		90% - 11	0%	Yes			
			/ RCV	3#2		51.9		50.0		104%		90% - 11	2%	Yes			
		<u>^</u>	IRĊV \$	\$#3		51.4		50.0		103%		90% - 11	₽%	Yes			
			ICS			52.2		50.0		104%		80% - 12	0%	Yes			
		L	LCS			52.3		50.0		105%		90% - 11	0%	Yes			

QA/QC Summary

ND: Below the reporting limit (Not Detected). DF: Dilution Factor,


> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Fe-

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

CMP TLI

CH2MHILL							CHAIN	OF C	CUSTO	DY RECORD 4/8/2010 2:18:19 PM	Page	1 0	DF 1
Project Name PG&E Topock Location Topock		C	Container	Pohy	250 ml Poły	1 Liter Poly	1L Poly	Poly	1 Liler Poly		Τ	Γ	
Project Number 390378.MP.0	2.CM.01	Pres	ervatives:	(NH4)2SC 4/NH4OH 4°C	HN03, 4°C	4°C	4°C	4°C	4°C				
Project Manager Jay Piper			Filtered:	Field	Field	NA	NA	NA	NA			1	
Sample Manager Matt Ringier		Hold	ing Time:	28	180	28	7	28	28				
Task Order Project 2010-CMP-023 Turnaround Time 10 Oays Shipping Date: 4/8/2010 COC Number: 1	DATE	TIME	Matrix	- w		Specific Conductance (E120.1)	TDS (SM2540C)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)		Number of Containers		
CW-01D-023	4/8/2010		Water	x	x	X	x	x	x		+	COMN	IENTS
CW-01M-023	4/8/2010	-	Water	x	X	x	x	x	x		5.	4	
OW-01S-023	4/8/2010		Water	x	x	x	x		ŝ		5	<u> </u>	
OW-025-023	4/8/2010		Water	x	x	×	x	x	x	· · · · · · · · · · · · · · · · · · ·	5	1 14	-2
OW-05S-023	4/8/2010		Water	x	x	×	x	x	x		5	l'	
	4/8/2010		Water	x	^	^	^	^	^		- 5	1	
OW-87-023											1		
OW-91-023	4/8/2010	8:55	Water	X	X	X	X	X	X	f	5	ри	=2,
										TOTAL NUMBER OF CONTAINERS	31	•	

Approved by Campled by	Signatures	Date/Time 4-8-10 1600	Shipping Details Method of Shipment: courier	ATTN:	Special Instructions: April 5-9, 2010
Received by	the to y	1-8-10 16:0 0	On ice: yes / no • Airbill No:	Sample Custody	
Relinquished by Received by	Hipshito 4- Shakeensus	8 70 2130 APR 08 2010	Lab Name: Truesdail Laboratories, Inc. Lab Phone: (714) 730-6239		Report Copy to Shawn Duffy (530) 229-3303
		11:30	· · · · · · · · · · · · · · · · · · ·	······	· · · · · · · · · · · · · · · ·

WMATRIX\unv\Discrp.FormBlaak.doc

Sample Integrity & Analysis Discrepancy Form

Clien	tr CH2M HILL	Lab # 988698
Date	Delivered: <u>4/8</u> /10 Time: <u>21:3</u> 0 By: DMail DiField	Service DClient
1.	Was a Chain of Custody received and signed?	AYes No N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ten/A
3 .	Are there any special requirements or notes on the COC?	□Yes □No CHN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ŒN/A
5	Were all requested analyses understood and acceptable?	DYes No N/A
б.	Were samples received in a chilled condition? Temperature (if yes)? <u></u> <u>4° C</u>	Mes INO IN/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Wes ONO ON/A
8.	Were sample custody seals intact?	□Yes □No □N/A
9.	Does the number of samples received agree with COC?	Ves INO IN/A
10.	Did sample labels correspond with the client ID's?	Taryes DNO DN/A
11.	Did sample:labels indicate proper preservation? Preserved (if yes) by: Urruesdail □Client	WarYes □No □N/A
12,	Were samples pH checked? pH = <u>5ee</u> C.o.C	DAYes INO IN/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	DAYes INO IN/A
14.	Have Project due dates been checked and sccepted? Turn Around Time (TAT): C RUSH W Std	Vies INO IN/A
15.	Sample Matrix: Liquid Drinking Water Ground Water Solid Wipe Solid Wipe Solid Oth	ter □Waste Water er_ <u>U/A-TER</u>
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	afael Davila

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

April 23, 2010

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy;

SUBJECT: CASE NARRATIVE PG&E TOPOCK 2010-CMP-023, GROUNDWATER MONITORING PROJECT, TLI NO.: 988699

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2010-CMP-023 groundwatermonitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on April 8, 2010, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for samples CW-02D-023 and CW-03D-023 and the associated matrix spikes for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike recoveries were within acceptable limits and the results from the 5x dilutions agree with those from the straight runs, the data from the straight runs are reported.

Total Dissolved Chromium, for samples CW-02D-23, CW-03D-023, and CW-04D-023, were re-analyzed due to the discrepancy between the Total Dissolved Chromium and Hexavalent Chromium results. The results from the re-analysis are reported.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

 Mona Nassimi Manager, Analytical Services

K. R. P. goza

K.R.P. Iyer Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Tina Acquiat
SM 2540C	Total Dissolved Solids	Tina Acquiat
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
EPA 200.8	Metals by ICP/MS	Romuel Chaves
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA, 92780-7008 [714] 730-6239 · FAX [714] 730-6462 · www.truesdail.com

_.

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Laboratory No.: 988699 Date Received: April 8, 2010

Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Analytical Results Summary

<u>Lab I.D.</u>	<u>Sample I.D.</u>	Sample Time	EPA 120.1 EC	<u>SM 2540C</u> TDS	<u>SM 2130B</u> Turbidity	<u>EPA 218.6</u> Chromium Hexavalent	EPA 200.8 Chromium Dissolved
			µmhos/cm	ma/L	NTU	μg/L	μ g /L
988699-1	CW-02D-023	10:00	7120	4180	0.170	0.23	ND
988699-2	CW-02M-023	11:26	7010	3970	0.114	4.79	5.44
988699-3	CW-03D-023	13:43	7060	3940	ND	0.24	ND
988699-4	CW-03M-023	14:58	8730	5350	ND	10.7	10.4
988699-5	CW-04D-023	16:28	8780	5340	ND	1.68	1.75
988699-6	CW-04M-023	17:27	6390	4040	0.120	14.2	14.0
988699-7	OW-90-023	12:13	8810	5090	0.136	10.5	10.3

<u>Lab I.D.</u>	<u>Sample I.D.</u>	Sample Time	<u>EPA 300.0</u> Fluoride	EPA 300.0	EPA 300.0			
			riuuiide	Sulfate	Chloride			
·			mg/L	mg/L	mg/L			
988699-1	CW-02D-023	10:00	4.15	489	2130	-		-
988699-2	CW-02M-023	11:26	2.48	446	2160			
988699-3	CW-03D-023	13:43	5.83	486	2070			
988699-4	CW-03M-023	14:58	2.62	429	2800			
988699-5	CW-04D-023	16:28	4.03	543	2680			
988699-6	CW-04M-023	17:27	1.55	354	1960			
988699-7	OW-90-023	12:13	2.54	461	2800		· · · · · · · · · · · · · · · · · · ·	

ND: Non Detected (below reporting limit)

mg/L Meligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.001 ppm will have two (2) significant figures.

Result above or equal to 0 001ppm will have three (3) significant figures.

Quality Control data wil aways have three (3) significant figures.

This report applies only to the sample, or samples, investigated and is not necesserily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 15, 2010 Analytical Batch: 04CrH10F

Investigation:

Hexavalent Chromium by EPA 218.6

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	<u>Results</u>
988699-1	CW-02D-023	10:00	14:29	μg/L	1.05	0.20	0.23
988699-2	CW-02M-023	11:26	17:16	μġ/L	5.25	1.05	4,79
988699-3	CW-03D-023	13:43	14:49	µg/Լ	1.05	0.20	0.24
988699-4	CW-03M-023	14:58	17:58	μg/L	5.25	1.05	10.7
988699-5	CW-04D-023	16:28	19:42	μġ/L	5.25	1.05	1.68
986699-6	CW-04M-023	17:27	19:52	μg/L	5.25	1.05	14.2
988699-7	OW-90-023	12:13	20:03	μg/L	5.25	1.05	10.5

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

4, - Mona Nassimi, Manager

Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 15, 2010 Analytical Batch: 04CrH10F

Investigation:

Hexavalent Chromium by EPA 218.6

GA/QC Summary																
	QC STE) I.D.		oratory umber	Concentrati	on		plicate entration	Per	ative cent rence		ptance nits		Within ontrol		
	Duplic	ate	98	8698-4	30.3			30.2	0.3	33%	<u><</u> 2	20%	,	Yes		
QC Std I.D.	Lab Number	Conc unspil samp	ked	Dilution Factor	Added Spike Conc.	-	MS nount	Measured Conc. of spiked sample	C	eoretical onc. of spiked sample	M	S% overy	Accept	ance limi	its	QC Within Control
MS	988699-1	0.23	3	1.06	1.00	1	.06	1.39		1.29	10)9%	90)-110%		Yes
MS	988699-2	4.7	9	5.25	1.00	5	5.25	10.0		10.0	99	.2%	90)-110%		Yes
MS	988699-3	0.24	4	1.06	1.00		.06	1.40	_	1,30	10)9%	90	-110%		Yes
MS	988699-4	10.	7	5.25	5.00		26.3	38.2		37.0	10)5%	90)-110%		Yes
MS	988699-5	1.6	8	5.25	1.00	•,	5.25	6.93		6.93	1()0%	90)-110%	i	Yes
MS	988699-6	14.3	2	5.25	5.00		26.3	40.3		40.5	99	.4%	90)-110%		Yes
MS	988699-7	10.:	5	5.25	5.00	2	26.3	37.3		36.8	1()2%	90	<u>)-110%</u>		Yes

QA/QC Summary

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
Blank	ND	<0.200		<0.200	Yes
MRCCS	4.84	5.00	96.8%	90% - 110%	Yes
MRCV\$#1	9.85	10.0	98.5%	95% - 105%	Yes
MRCVS#2	10.2	10.0	102%	95% - 105%	Yes
MRCVS#3	10.4	10.0	104%	95% - 105%	Yes
MRCVS#4	10.2	10.0	102%	9 5 % - 105%	Yes
MRCVS#5	9.96	10.0	99.6%	95% - 105%	Yes
MRCVS#6	10.4	10.0	104%	95% - 105%	Yes
LCS	5.41	5.00	108%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

L, .- Mona Nassimi, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04TUC10F

Investigation:

Turbidity by Method SM 2130B

Analytical Results Turbidity

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988699-1	CW-02D-023	10:00	NTU	1.00	0.100	0.170
988699-2	CW-02M-023	11:26	NTU	1.00	0.100	0.114
988699-3	CW-03D-023	13:43	NTU	1.00	0.100	ND
988699-4	CW-03M-023	14:58	NTU	1.00	0.100	ND
988899-5	CW-04D-023	16:28	NŤU	1.00	0.100	ND
988699-6	CW-04M-023	17:27	NTU	1.00	0.100	0.120
988699-7	OW-90-023	12:13	NTU	1.00	0,100	0.136

QA/QC Summary

QC STD I	.D. Laborato Number	- I Concontrat	Concentration		Duplicate Concentration		Relative Percent Difference		eptance limits	QC Within Control
Duplicat	e 988699-4	L ND		ND 0.00%		• •	<u><</u> 20%	Yes		
	QC Std I.D.	Measured Concentration		oretical entration	Percent Recovery		Acceptance Limits		QC Within Control	n
	Blank	ND	<	0.100			<0.10)0	Yes	
	LCS	7.80		3.00	97.5%		90% - 1	10%	Yes	
	LCS	7.73	7.73 6		96.6%	5	90% - 1	10%	Yes	
	LCS	7.70		3.00	96.3%	b	90% - 1	10%	Yes	

ND; Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Se Con

Los Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 04EC10D

Investigation:

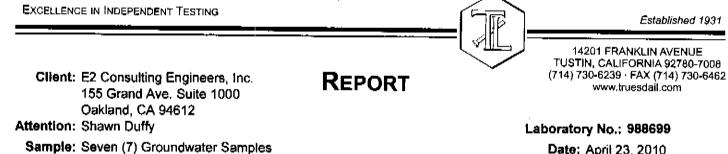
Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>MQL</u>	DF	<u>RL</u>	Results
988699-1	CW-02D-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	7120
988699-2	CW-02M-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	7010
988699-3	CW-03D-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	7060
988699-4	CW-03M-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	8730
988699-5	CW-04D-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	8780
988699-6	CW-04M-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	6390
988699-7	OW-90-023	µmhos/cm	EPA 120.1	0.038	1.00	2.00	8810

QA/QC Summary

QC STO I.D.	D Laboratory Number	Concentratio	Concentration		Duplicate Concentration		Relative Percent lifference	Acceptance limits		QC Within Control
Duplicat	e 988699-7	8810		8810		0.00%			<u><</u> 10%	Yes
	QC Std I.D.	Measured Concentration	-	heoretical	Perco Recov				QC Withi Control	
	Blank	ND		<2.00			<2.00		Yes	
	CCS	704		706	99.7	%	90% - 11	0%	Yes	
	CVS#1	992		1000	99.2	%	90% - 11	0%	Yes	7
	CV\$#2	993		1000	99.3	%	90% - 11	0%	Yes	1
	LCS	704		706	99.7	%	90% - 11	0%	Yes	7
L	LCSD	704		706	99.7	%	90% - 11	0%	Yes	1


DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

So Carl

f or Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 04TDS10E

Investigation:

Project Name: PG&E Topock Project

Project No.: 390378.MP.02.CM.01

P.O. No.: 390378.MP.02.CM.01

Total Dissolved Solids by SM 2540C

Analytical Results Total Dissolved Solids

<u>TLI 1.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
988699-1	CW-02D-023	mg/L	SM 2540C	250	4180
988699-2	CW-02M-023	mg/L	SM 2540C	250	3970
988699-3	CW-03D-023	mg/L	SM 2540C	250	3940
988699-4	CW-03M-023	mg/L	SM 2540C	250	5350
988699-5	CW-04D-023	mg/L	SM 2540C	250	5340
988699-6	CW-04M-023	mg/L	SM 2540C	125	4040
988699-7	OW-90-023	mg/L	SM 2540C	250	5090

QA/QC Summary

QC STD I	uplicate 98869	Laborator Number	· 1	Concentra	tion	Duplic Concent		-	Percent Ifference		ceptance limits	QC Within Control
Duplicat	e	988698-7	,	2550		254	Ó		0.20%		<u>< 5%</u>	Yes
	q	988698- QC Std I.D. Blank		Measured Incentration		eoretical centration	Percei Recove		Accepta Limit		QC Within Control	
		Blank		ND		<25.0			<25.0)	Yes	
		LCS 1		497		500	99.4%	٥,	90% - 11	10%	Yes	
		LCŞ 2		498		500	99.6%	6	90% - 1 ⁴	10%	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

REPORT

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699 Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04AN10G

Inveetigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

<u>TLI 1.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DE	<u>RL</u>	<u>Results</u>
988699-1 988699-2 988699-3 988699-4 988699-5 988699-6	CW-02D-023 CW-02M-023 CW-03D-023 CW-03M-023 CW-04D-023 CW-04M-023	10:00 11:26 13:43 14:58 16:28 17:27	18:49 19:00 19:11 19:23 19:57 20:09	mg/L mg/L mg/L mg/L mg/L, mg/L	50.0 50.0 50.0 50.0 50.0 50.0 50.0	25.0 25.0 25.0 25.0 25.0 25.0	489 446 486 429 543 354
988699-7	OW-90-023	12:13	20:20	mg/L	50.0	25.0	461

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

f., Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Laboratory No.: 988699

Collected: April 7, 2010

Received: April 8, 2010

Prep/ Analyzed: April 9, 2010 Analytical Batch: 04AN10G

Date: April 23, 2010

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92760-7006 (714) 730-6239 · FAX (714) 730-6462 www.truesdall.com

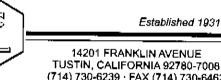
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Investigation:

Sulfate by Method EPA 300.0

	QC STD I.D. Laboratory Number Concentration Duplicate Concentration Relative Percent Difference Acceptance limits QC Within Control Duplicate 988698-1 532 518 2.67% ≤ 20% Yes Lab Number Conc. of unspiked sample Dilution Factor Added Spike Conc. MS Amount Measured spiked sample Theoretical spiked MS% Recovery Acceptance limits Acceptance limits 988698-1 532 50.0 10.0 500 1010 1032 95.6% 85-115% 988698-1 532 50.0 10.0 500 1010 1032 95.6% 85-115% 988698-1 532 50.0 10.0 500 1010 1032 95.6% 85-115% 988698-1 532 50.0 10.0 500 <0.500 Yes MCCS 20.2 20.0 1010 1032 95.6% 85-115% MRCVS#1 15.6 15.0 104% 90% - 110% Yes MRCVS#2 15.4 15.0 103% 90% - 110% Yes <t< th=""><th></th></t<>															
	QC STD) I.D.				Concentr	ation			F	ercent		•			
	Duplic	ate	9	<u>8869</u> 8	3-1	532		51	8		2.67%	<	20%		Yes	
I.D. Number	unsp	piked			Spike	_	MS	Conc. of spiked		Conc. of spiked			A	•	QC Within Control	
MS	988698-1	5	32	5	0,0	10.0	Ę	500	1010		1032		95.6%		85-115%	Yes
		Q	C Std	I.D.	_				•							
			Blank	(ND		<0.500			<0.500		Yes	_		
			MRCC	s		20.2	_	20.0	1019	6	90% - 110	%	Yes			
		N	<u>/IRCVS</u>	;#1		15.6		15.0	1049	6	90% - 110	%	Yes			
		N	IRCVS	;#2		15,4		15.0	103%	6	90% - 110)%	Yes			
		N	ARCVS	;#3		15.4		15.0	1039	6	90% - 110	%	Yes			
		N	/RCVS	;# 4		15.4		15.0	1039	6	90% - <u>110</u>	1%	Yes			
		N	IRCVS	;#5		15.3		15.0	1029	6	90% - <u>1</u> 10	%	Yes			
			LÇŞ			20.2		20.0	1019	6	90% - 110)%	Yes			

OA/OC Summary


ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖅 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Laboratory No.: 988699

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 12, 2010 Analytical Batch: 04AN10H

Investigation:

Chloride by Method EPA 300.0

Analytical Results Chloride

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988699-1	CW-02D-023	10:00	13:43	mg/L	500	100	2130
988699-2	CW-02M-023	11:26	13:55	mg/L	500	100	2160
988699-3	CW-03D-023	13:43	14:52	mg/L	500	100	2070
988699-4	CW-03M-023	14:58	15: 03	mg/L	500	100	2800
988699-5	CW-04D-023	16:28	15:49	mg/L	500	100	2680
988699-6	CW-04M-023	17:27	16:00	mg/L	500	100	1960
988699-7	OW-90-023	12:13	16:12	mg/L	500	100	2800

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

fu- Mona Nassimi, Manager **Analytical Services**

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratorics, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Laboratory No.: 988699

Collected: April 7, 2010

Received: April 8, 2010

Prep/ Analyzed: April 12, 2010 Analytical Batch: 04AN10H

Date: April 23, 2010

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

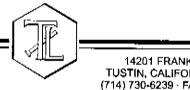
Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Chloride by Method EPA 300.0

A 100 0

Investigation:

	LD. Number unspiked sample Factor Spike Conc. Amount spiked sample spiked sample spiked sample spiked sample spiked sample spiked sample spiked sample Recovery Imits Acceptance Imits MS 988717 301 100 4.00 400 690 701 97.3% 85-115% QC Std I,D. Measured Concentration Theoretical Concentration Percent Recovery Acceptance Limits QC Within Control Blank ND <0.500 <0.500 Yes MRCCS 3.99 4.00 99.8% 90% - 110% Yes																
	QC 8TI) I.D .				Concentr	ation			ion	P	ercent			1		
	Duplic	ate		98871	7	301			302		(0.33%	<	20%		Yes	
QC 914 I.D.		uns	piked			Spike			Cor sp	ic. of iked	T	Conc. of spiked	1		•	•	QC Within Control
MS988717	3	01		00	4.00	4	400	6	90		701	ç	7.3%		85-115%	Yes	
		G	IC Std	i.D.								•	CO .				
			Blank	(NĎ		<0.500				<0.500		Yes			
			MRCC	ŝ		3.99		4.00		99.8%		90% - 110)%	Yes			
			ARCVS	i#1		2.96		3.00		98.7%		90% - 110)%	Yes			
			//RCV \$	#2		2.99		3.00		99.7%		90% - 110)%	Yes			
	Number u		LCS			3.97		4.00		99.3%		90% - 110)%	Yes			


ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

fo, Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom It is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories,

EXCELLENCE IN INDEPENDENT TESTING

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04AN10G

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988699-1	CW-02D-023	10:00	16:09	mg/L	5,00	0,500	4,15
988699-2	CW-02M-023	11:26	16:20	mg/L	5.00	0.500	2.48
988699-3	CW-03D-023	13:43	16:32	mg/L	5.00	0.500	5.83
988699-4	CW-03M-023	14:58	16:43	mg/L	5.00	0.500	2.62
988699-5	CW-04D-023	16:28	16:55	mg/L	5.00	0.500	4.03
988699-8	CW-04M-023	17:27	17:06	mg/L	5,00	0.500	1.55
988699-7	OW-90-023	12:13	17:40	mg/L	5.00	0.500	2.54

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

✓-✓ Mona Nassimi, Manager Analytical Services

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01

Laboratory No.: 988699

Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 9, 2010 Analytical Batch: 04AN10G

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

		Number Factor Spike Conc. Amount spiked sample spiked sample spiked sample spiked sample Recovery limits Control 88698-1 1.45 5.00 4.00 20.0 21.7 21.5 101% 85-115% Yes QC Std I.D. Measured Concentration Theoretical Concentration Percent Recovery Acceptance Limits QC Within Control Blank ND <0.500 <0.500 Yes MRCCS 4.14 4.00 104% 90% - 110% Yes MRCCS#1 3.13 3.00 104% 90% - 110% Yes													
					Concentr	ation			<u>an</u>	Percent		•			
	Duplic	ate	9	88698	3-1	1.45		1	,4 7				<u><</u> 20%	Yes	
QC Std I.D.	Lab Number	unsp	olkod			Spike			Cor sp	nc. of Iked	Conc. of spiked			• • • •	QC Within Control
MS 988698-1	1.4	45	5	6.00	4.00	2	0.0	2	1.7	21.5		101%	85-115%	Yes	
		٩	C Std	I.D.			_								
			Blank	¢		ND		<0.500			<0.50	0	Yes	-	
			MRCC	s		4.14		4,00		104%	90% - 1	10%	Yes		
			IRCCS	汫1	L	3.13		3.00		104%	90% - 1	10%	Yes		
		N	IRCCS	;#2		3.14		3.00		105%	90% - 1	10%	Yes		
			IRCVS	# 3		3.15		3.00		105%	90% - 1	10%	Yes		
		<u>_</u> ∧	RCVS	;#4		3.16		3.00		105%	90% - 1	10%	Yes		
			LCS			4.13		4.00		103%	90% - 1	10%	Yes		

OA/OC Summany

ND: Below the reporting limit (Not Detected). **DF:** Dilution Factor,

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

🖅 Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92760-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01 Prep. Batch: 0415108

Laboratory No.: 988699 Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 15, 2010 Analytical Batch: 041510B

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Dissolved Chromium

<u>ŢĻĻĮ.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	Method	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988699-2	CW-02M-023	11:26	EPA 200.8	17:46	μg/L	5.00	1.00	5.44
988699-4	CW-03M-023	14:58	EPA 200.8	18:00	μg/L	5.00	1.00	10.4
988699-6	CW-04M-023	17:27	EPA 200.8	18:13	μg/L	5.00	1.00	14.0
988699-7	OW-90-023	12:13	EPA 200.8	18:20	μg/L	5.00	1.00	10.3

QA/QC Summary

	QC STD	I.D.		iborai Numb	-	Concentr	ation		licate ntration		Relative Percent lifference		eptance imits	QC Within Control	
	Duplic	ate	φ	88700)-1	1900		18	60		2.13%	1	<u><</u> 20%	Yes	
QC Std I.D,	Lab Number	uns	nc.of piked nple		ution Ictor	Added Spike Conc.		MŠ nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample		M8% covery	Acceptance limits	QC Within Control
MS 988700-1	19	900		.00	50.0		250	2140		2150		96.0%	70-130%	Yes	
	•	C Std	I.D.		entration		eoretical centration	Perce n Recov		Acceptar Limits		QC With Control			
			Biani	ĸ		ND		<1.00			<1.00		Yes	-	
			MRCO	s		50.3		50.0	1019	%	90% - 11	0%	Yes		
			/RCV6	}#1		49.0		50.0	98.0	%	90% - 11	0%	Yes		
			ARCVS	5#2		49.6		50.0	99.2	%	90% - 11	0%	Yes		
			IRCV	\$#3		48.1		50.0	96.2	%	90% - 11	0%	Yes		
			IĊŚ			49.8		50.0	99.6	%	80% - 12	0%	Yes		
			LCS			50.4		50.0	1019	%	90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

fo > Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Seven (7) Groundwater Samples Project Name: PG&E Topock Project Project No.: 390378.MP.02.CM.01 P.O. No.: 390378.MP.02.CM.01 Prep. Batch: 042210A

Laboratory No.: 988699 Date: April 23, 2010 Collected: April 7, 2010 Received: April 8, 2010 Prep/ Analyzed: April 22, 2010 Analytical Batch: 042210A

Investigation: Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer using EPA 200.8

Analytical Results Total Dissolved Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Method</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
988699-1	CW-02D-023	10:00	EPA 200.8	11:48	μg/L	5.00	1.00	ND
988699-3	CW-03D-023	13:43	EPA 200.8	11:55	μg/L	5.00	1.00	ND
988699-5	CW-04D-023	16:28	EPA 200.8	12:22	μg/L	5.00	1.00	1. 75

QA/QC Summary

	QC STD) I.D.		abora Numb		Concentr	ation	Dupli Concen		Per	ative cent rence		teptance limits	QC Within Control	
	Duplic	ate	9	8869	∂-1	ND		N)	0.0	00%		<u>⊊</u> 20%	Yes	
1.D, Nu	Lab Number	uns	nc.of piked nple		ution Ictor	Added Spike Conc.			Veasured Conc. of spiked sample	C.	oretical onc. of piked ample		MS% covery	Acceptance limits	QC Within Control
	988699-1	0	.00	5	.00	50.0		250	244		250		97.6%	70-130%	Yes
	988699-1	9	C Std	I.D.		easured centration		eoretical centration	Percer Recove		Accepta: Limits		QC Withi Control		
			Blan	k .		ND		<1.00			<1.00		Yes		
			MRCC)S		51.3		50.0	103%		90% - 11	0%	Yes		
			MRCVS	5#1		51.7		50. 0	103%		90% - 11	0%	Yes		
			MRCV	\$#2		51.2		50.0	102%		90% - 11	0%	Yes		
			ICS			56.1		50.0	112%		80% - 12	0%	Yes		
			LCS			50.4		50.0	101%		90% - 11	0%	Yes		

ND: Below the reporting limit (Not Detected).

OF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Se Cont

√ √ Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

CMP TLI #1

• --

988699 CHAIN OF CUSTODY RECORD

						CHAI	NOFC	USTODY RECOR	RD 4/8/	2010 8:53:59 AM	Page	_1	_ OF	1
Project Name PG&E Topock Location Topock Project Number 390378.MP.02		Containe Preservatives	Poly (NH4)2S0		1 Liter Poly 4°C	1L Poly	1 Liter Poły 4°C	1 Liter Poly 4°C						
Project Manager Jay Piper		Filtered		Field	NA	NA	NA	NA						
Sample Manager Matt Ringier		Holding Time	28	180	28	7	28	28						
Task Order Project 2010-CMP-023 Turnaround Time 10 Days Shipping Date: 4/8/2010 COC Number: 1			Cr6 (E218.6) Field Filtered	A E 🗆	Specific Conductance (E120.1)	TDS (SM2540C)	Anions (E300.0) Cl, Fl, SO4	Turbidity (SM2130)			Number of Containers		OMME	
CW-02D-023	DATE 4/7/2010	TIME Matrix 10:00 Water	x	x	X	x	X	X			5	- .		113
CW-02M-023	4/7/2010	11:26 Water	x	x	x	 X		x			<u> </u>	4	-+	
CW-03D-023	4/7/2010	13:43 Water	x	x	x	×	x	x				$\frac{1}{4}$		M:
CW-03M-023	4/7/2010	14:58 Water	x	x	x	x	X	x			5			T
CW-04D-023	4/7/2010	16:28 Water	X	X	x	x	x	X			8			
CW-04M-023	47/2010	17:27 Water	x	x	x	x	x	x			-8	4	₿¥	7
OW-86-023	4/7/2010	18:19 Water	x								1	Ĺ	Hold	j –
OW-90-023	4/7/2010	12:13 Water	x	X	x	x	x	x	· • • • • • • • •		5			1=2
		•	•	··					TOTA	AL NUMBER OF CONTAINERS	38	ľ	T.	

 29

Л		For Sam See Fo	pie Conditi: orm Attache	d <u>ALERT !!</u>
Approved by Sampled by	Date/Time 4-8-10 1. 600	Shipping Details Method of Shipment: courier On Ice: yes / no	ATTN: Sample Custody	Special Instructions: Level III-GU
Received by A100/1/0 48-10 Relinquished by A100/1/0 4-8-10 Received by L. Stunduume	18:0 0 2130 APR 08 2010 24:30			Report Copy to Shawn Duffy (530) 229-3303

I.

Clien	t: CH2M HILL	Lab # 988699
Date	Delivered: <u>4</u> / <u>8</u> /10 Time: <u>21:3</u> 0 By: □Mail IField	Service DClient
1.	Was a Chain of Custody received and signed?	DAYes INO IN/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No dun/A
З.	Are there any special requirements or notes on the COC?	Yes No DNA
4.	If a letter was sent with the COC, does it match the COC?	Yes No 21N/A
5.	Were all requested analyses understood and acceptable?	es DNo DN/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4° C</u>	Dres ONO ON/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Erves INO IN/A
8 .	Were sample custody seals intact?	□Yes □No □N/A
9 .	Does the number of samples received agree with COC?	Over INO IN/A
10.	Did sample labels correspond with the client ID's?	ZYYes INO IN/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Intruesdail Inclient	Wes INO IN/A
12.	Were samples pH checked? pH = <u>SEE</u> C.O.C	TAYes INO IN/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Derfes DNO DN/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): \[D]RUSH \[D] Std	Ves INO IN/A
15.	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground Wa □Sludge □Soil □Wipe □Paint □Solid ⊡Oth	ter 🛛 Waste Water her <u>ULATER</u>
16.	Comments:	A
17.	Sample Check-tn compteted by Truesdall Log-In/Receiving:	afail Davila

Appendix B Field Data Sheets, First Half 2010

Ċ	1	- 	7	÷						Торо	ock Sampling Log
Sampler _	umber 3903 Mobett	E Topock CMP 78.MP.02.CM.01 Field Team	<u>1</u> Fiel	d Conditions	Sunny, 73	of breeze		DatePage	2010-CM 4/8/ 1 of	IP-023	- Bhi
· ·	t Time <u>9:0</u> Flow Cell) N		/	Purge n. Purge Volume		perary		imp <u>N/</u> gpn)/(mLpm	>	N/A
Level	Time	Vol. Purged gallons / liters	pH	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
109.38 109.39	9:07 9:13	18	7.37 7.62	7.703	3.8 3.5	4.14	29,28	4.23 4.34	5.001 5.125	104.2	300 Hz
109.39	9:19 9:25	54	7.63	7.891 7.881	2.2 2.5	7.87	29.12	4.34	5.129	100.8	
109.39	9:31	90	7.62	7. 889	2.8	7.89	29.13	4.34	5.124 5.128	100.0	
109.51	9:31 094/	108 	7.61 ump	7. 8 88 -/5	2.3	1.90	29.12	4.34	5. 126	98.7	
Parameter Sta		P.	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	tz·c	NA	NA	+/- 10 mV	
Did Parameters S Previous Field me		ampling? (10/12/2009)	7.74 Y	Y 7332	γ	7.74	-NA 4 28.25	0.47		Y 100.8	
Are measurement Sample Time		previous? Sample Location	lower	<u> </u>	<u> </u>	<u>y</u>	<u>у</u> ан	-		Y	-
Comments:			109.28	np tubing	well port	spigot	~	pailer	other		
	confirmation of	Well Depth (ft bto):	-	[Point: Well T		Casing	WATER		TER SERIAL NUMBER: PLJE - 2005-018
SWH (Standing V	Vater Height) = r diameter) 2"=	WD-Initial Depth 0.17, 4"= 0.66, 1	21	0.72 in)	Time 8:45 Comments:	Initial DTW	P	lime 🛛	After Reinsta Final		Time of Reinstallation
Three Casing Vol	lumes =		.5	- D	2	Ilphur, organic, c	other	Sc	blids: Trace	, Small Qu,	Med Qu, Large Qu, Particulate, Silt, Sand Page 1 of 11

.

Job Ni Sampler	111	78.MP.02.CM.01 _ Field Team	1 Fiel	d Conditions	<u>Sunny, 78</u>	F. Windf	Samplin VVM Zomyth	Date	2010-CM		······································	- Bel
		CW-01M-023				ample ID N		Page	of			NT /R
Purge Star	t Time / C	1:03				Method	1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 -	Ded. Pu	imp "	QC Sampl	e l'ime	N/A
	Flow Cell	'N	υ.	Mir ¥	n. Purge Volume	(gal) (L) _4	1.2 P	urge Rate	gpm))(mLpm	3		ε.
Water Level	Time	Vol-Purged gallons / liters	рH	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	(S	Comments ee description below
109.28		7	7.71	7.843		6.36	29.09	4.31	5.098	9.6		
109.28	10:07		7.72	7.840	20	6.29.	29.17	431	5.095	27.0		
109.28		21 .	7.73	7.840	1.8	6.30	29.22		5.095			
		28	7.70	7.840	2.0	6.31	29.23		5.095			
109.28		35 .	7.69	7.838		6.30	29.24		5.094			
109.28	10:17	42		7.835		6.31	29.24		5.095		4 m	3
109.28	10:19	49	7.70	7.820	1.9	6.29	29.22	4.30	5.086	64.1		
	10:22	· · · · · ·	purp	- H	5 6 70 70							1
Parameter Sta	bilization Crite	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units	+/- 0.3 mg/L	NA ±2°E	NA	NA	+/- 10 mV		1
Did Parameters S	itablize prior to sa	impling?	V		when >10 NTUs	11.	NAV					
Previous Field me	easurement (10/12/2009)	7.78	7300	0.4 Mightly	7.17	28.46	0.47		88.7	-	
Are measurement			V · *	¥ .	higher	M	-NAV			V		
Sample Time Comments:	1020	Sample Location	; / pur	np tubing	well port	J spigot		oailer	other			
Initial Depth to W			109,19	<u>1</u>	Measure	e Point: Well	TOC) Stee	el Casing	WATER	LEVEL MET	ER SERIAL NUN	IBER: PGE-ZOUS-
Field measured o				· · ·				0 - <u>99 - 10 Mar 107 -</u>		lf Ti	ransducer	1
SWH (Standing \				041	Time	Refore,Remov	- Ah		After Reinst		Time of Removal	NA
D (Volume as pe				in)	0955	109.19		Time /	V/A	DTW	Time of Reinstalla	ation
One Casing Volu		-	-13.1		Comments:				Y0			
Three Casing Vol		n, black, cloudy,	41.2		2				0			

Ć		-1 15 - 12 14	°.	- ¹ -2 ¹ -	е с в с в 3		a a r		⁵ 0x	Торос	k Sampling Log	()
Project N Job Nu		E Topock CMP			×	avin & f. a.	Samplin	g Event	2010-CM	State of the second		an a	
Sampler_		78.MP.02.CM.01	1 Eigh	d Conditions	learsky, n	NW		Date		4/1/10		_	Bec
		CW-02D-023				ust moto 4	Simola.	Page	_/ of				
Purge Start		1:13				1	a standard and			QC Samp	le Time	N/A_	e
r dige otan		•				Method Hen					<u> </u>		
	Flow Cell	/ N		MIT	n. Purge Volume	(gal)/(L) _ [2	<u> </u>	urge Rate	gpm)/(mLpm)3_			
Water Level	Time	Vol. Purged galloris / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	10	Comments	· · · · · ·
72.84	9:20	2321	6								the second s	See description belo	N
			8.00	7.839	2.8	5.73	29.71	4.31	5.096	86.2	294 4	12	
12.85	928	45	8.04	7,840	2.7	6.31	30.55	4.30	5.093	67.0			
12.85	9:32	66	8.04	7.826	2.4	6.61	30.61	4.29	5.087	59.7		2	
72.86		90	8.05	7.828	2.1	6.62	30.67	4.29	5.089	55.8		19 ⁹ 0.5% 1947 994	
2.87	9:4450	> 111	8.04	7.829	2.6	6.63			5.090				
72.88	9:58	135	8.04	1.831	1.9	6.62	30.68		to the second second second			and the second s	<u> </u>
	1003		unp o	H				1.0.		1.0		e provinci de la composition d	
	E.		1 0	10			A -54 III - 14 - 14 - 14 - 14 - 14 - 14 - 14			· · · · · · · · · · · · · · · · · · ·			~~ <u>~~</u>
													- <u></u>
			+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	NA	NA	NA	+/- 10 mV			
arameter Sta	bilization Crit	eria	pH units		units when >10 NTUs	mg/L	+22	10/3	00				
d Parameters S	tablize prior to s	ampling?	L L	И	V		NAV			11		3 	
evious Field me	asurement	(10/14/2009)	8.19	7499	2 1	6.48 Y	29.39	0.48		-12		- <u></u>	
e measurement	s consistent with	previous?	V	V		V	+	_		V			
mple Time	1000	Sample Location	i: T pun	np tubing X	well port			pailer	other	¥			
mments:	201 					opigor						())	
ial Depth to W	/ater (ft BTOC)):	92	.36	Measure	Point: Well	TOC Stee	el Casino	WATER			MBER: <u>PGE-2</u>	005
d measured o	confirmation of	Well Depth (ft bto	DC):	-0 -0.0									Ois
	 from databas 	and the second s			Initial DTW	Before Remova	al An	prox. 5 min	After Reins	Station 1	ransducer		R.
		WD-Initial Depth		62.64	Time	Initial DTW		Time		IDTW	Time of Remova	75	T
		= 0.17, 4"= 0.66, 1	(C)200 - 100	in)	0858	92.36			N/A		Time of Reinstal		
	me = D*SWH		446	2	Comments:				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1
ee Casing Vol					A				C		ž		
or: clear, gre	y, yellow, brow	n, black, cloudy, g	green		Odor: none, su	Iphur, organic, o	other	S	olide Traci	Small Ou	Med Ou Large C	u, Particulate, Silt, 8	Second .

	· · · · ·	E Topock CMP 78.MP.02.CM.01 _ Field Team	1 Fiel	d Conditions	lear duy	wind. from NW.~15mp	Samplin gust h, mush	-	2010-CN 4/7	1P-023 /2010	
	nple Number rt Time /0 Flow Cell	3	1	Mir	QC Sa	mple ID NA	mporany	Ded. Pu	mp No gpm))(mLpn	QC Sample ded. pur	
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
92.97	1057	10	7.84	7.721	2.4	4.24	29.48	4.24	5.016	23.3	
92.97	1102	20	7.85	7.701	2.1	4.12	29.57				Sheet M. to resited of
92.91	1109	30	7.86	7.709	2.4	4.09	29.57				shit of to switch + 11:04 restart.
92.97	11124	48	779	7722	2.2	Contraction and the second	29.60				
92.97	1119	50	7.84	7.715	2.3	4.04	29.63		and the second		
92.97	11224	60	184	7.714	2.0	and the second se	2262				
	1/28	pur	p of	28							-
	abilization Crite	a a	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	t2°C	NA	NA	+/- 10 mV	
1.102.84	Stablize prior to sa		¥	¥	Y	Y	TNA Y			Y	6
Previous Field m	· · · · · · · · · · · · · · · · · · ·	10/14/2009)	7.99	7366	2	4.13	28.42	0.48		0.9	
Name and Address of the Owner, which the	ts consistent with		<u> </u>	<u> </u>	<u> </u>	<u> </u>	-NA V			higher	
Comments:		Sample Location	: pun	np tubingX	well port	spigot	[bailer	other	1	
	Water (ft BTOC): confirmation of	Well Depth (ft btd	<u>92.89</u>	5	Measure	Point: Well	TOC Stee	el Casing	WATER	R LEVEL MET	ER SERIAL NUMBER: <u>PG E - 20</u>
) - from database		P		Initial DTW /	Before Remova		anau Fasta	Affen D-1		ransducer
SWH (Standing	Water Height) =	WD-Initial Depth	1 <i>.</i> //.	2.65	Time	Initial DTW		prox. 5 min Time	After Reins Fina	IDTW	Time of Removal
		0.17, 4"= 0.66, 1	"=0.041	in)	1044	92.85		÷			Time of Reinstallation
One Casing Vol	ume = D*SWH _		19 57. 45		Comments:						2

				Ć.					(^{**}
Project Name Job Number 390378.MP.02.CM. Sampler <u>Abbott</u> Field Team	1 Field	Conditions S	unny ~1!	SF, WIN	1 hours	Date	2010-CM 4/- 0 of	IP-023	k Sampling Log
Well/Sample Number CW-93D-02 Purge Start Time 12 Flow Cell: 7/ N	AR) 20 125	3	QC Sa	Method Lang	porang	Ded. Pu		QC Samp Led Jour) 3	
Water Time Vol-Purged sallons / liter	S	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
77.15 1301 24 77.12 1309 48 77.10 13187 72	8.05	7.764 7.787	2.4	6.44	30.13	4.27		112.0	
77.09 1325 96 77.08 1333 120		7.790 7.784 7.787	167 2.0 2.1		30,26 30.34 30.32		5,061 5.059 5.062	98.2	. ,
77.67 1341 144	8.07	7.787	1.9	6.48.	30:35	T		010	C
Parameter Stabilization Criteria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
Did Parameters Stablize prior to sampling? Previous Field measurement (10/15/2009)	8.07	Y 7319	- <u>'</u>	6.89	NA 29.2	Y 0.47		98.7	
Are measurements consistent with previous? Sample Time <u>/343</u> Sample Location Comments:	on: pum	p tubing X	well port	spigot	NA	night night	_ other _	98.7 	
Initial Depth to Water (ft BTOC): Field measured confirmation of Well Depth (ft I	77.40		Measure	Point: Well T	TOC Stee	I Casing	WATER	LEVEL METI	ER SERIAL NUMBER: PGE - 2005-01B
WD (Well Depth - from database) ft btoc(3 SWH (Standing Water Height) = WD-Initial Dep D (Volume as per diameter) 2"= 0.17, 4"= 0.66	140) 1"=0.041 (2 1	2.54 n)	Initial DTW / Time /208	Before Remova Initial DTW 77, 46		prox. 5 min / Fime	After Reinsta Final	allation -	Time of Removal
One Casing Volume = D*SWH/ 39 Three Casing Volumes =/ 39 Color: Clear grey, yellow, brown, black, cloudy	44.6 , green		Comments: Odor none, su	lphur, organic, c	other	So	lids:Trace	Small Qu, N	led Qu, Large Qu, Particulate, Silt, Sand

Page 5 of 11

Project I		E Topock CMP				gusts	10 45 m				Sampling Log	~
Job N	umber 3903	78.MP.02.CM.01	r.			Winde	Samplin	g Event Date	2010-CN		n	
Sampler _	Abbott	Field Team	1 Fiel	d Conditions	Sunny, cle	hont	w ph, -75°	-	4/1	//0		Bee
Well/San	nple Number	CW-03M-023						Page	of			pre
	t Time /4						W-90-023	NE DESTRUCTION		QC Sample	Time 1213	×
	Flow Cell Y			₿ <i>₼</i> ir	Purge Durge Velume	e Method	1	Ded. PL	imp	-		1917 - 1915-191
				(VII)	. ruige volume	(ga)/(L) _7	<u>/</u> Р	urge Rate (gpin)/(mLpm)_2		
Water	Time	Vol: Purged	pH	Conductivity	Turbidity NTU	Dine Organiza		1				
Level		gallons / liters	<u>.</u>	mS/cm		Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv		nments ription below
77.70	1425	12	7.67	9.374	4.4	0 (7	20 - 6					
77.71	1431	21	7.72		and the second s	0.57	20.17	5.22	6.091	19.06	245Hz	
17.72	1-137	37	7.72	10 0	3.2					24.	5	·
77.71	1443	49		9.810	2.8				6.369			
				2688	3.0	1.27	29.26		6.295			
77.70	1449		7.71	9.642	- 141	1.33	29.24	5.38	6.267	26.1		
77.70	1456	74	273	9.613	2.2	1.43	29.22	536		26.6		10 10 10 10 10 10 10 10 10 10 10 10 10 1
	1302	put	np of	K		N					;	
			/ 0	U								
2												
arameter Sta	bilization Crite	ria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU	+/- 0.3	NA	NA	NA	+/- 10 mV		
		~			units when >10 NTUs	mg/L	±2°C					
d Parameters S evious Field me	Stablize prior to sa			- Y	V	Y	NAV	-		V		
		10/15/2009)	7.66	8911 '	2	0.81	28.37	0.58		50.5	· · · · · · · · · · · · · · · · · · ·	
	ts consistent with		<u>y</u>	V	Y	V	-NA V			U I		
	730_	Sample Location	: pum	p tubing	well port	/ spigot		ailer	other			
nments:												
al Depth to V	Vater (ft BTOC):	7	1.57				3					
		Well Depth (ft bto	the second second second		Measure	Point: Well 1	OG Stee	I Casing	WATER	LEVEL METER	R SERIAL NUMBER:	PGE-2005
	- from database		· · · · · · · · · · · · · · · · · · ·			Before Remova					nsducer	
H (Standing \	Water Height) =	WD-Initial Depth	14.	4.43	Time	Initial DTW	Ah	orox. 5 min . Time	After Reinsta		ne of Removal	AA)
		0.17, 4"= 0.66, 1		in)	1410	71.57		A	Final		ne of Reinstallation	
	me = D*SWH _	24		· · · · ·	Comments:			/	In_			
e Casing Vol			74 gal	ons	$\overline{\lambda}$							
or: clear, gre	y, yellow, browr	, black, cloudy, g	reen 🖌		Odor: none, su	Iphur, organic, c	ther	6.			d Qu, Large Qu, Particu	

Project Name PG&E Topock CMP		2		<u> </u>	-			Topoc	k Sampling Log	<u> </u>
Job Number 390378.MP.02.CM.01			£	Winda	Samplin		2010-CM		1. 	16.1
Sample A. Abbott Field Team			Zuna Ala	6 11 1	Form and	Date		7/10		680
			sunny, cle	<u>u</u>	west	Page	of	<u></u>		
Well/Sample Number CW-04D-023			5-80 dc sa	mple ID N/		0	7	QC Sampl	eTime WHA	
Purge Start Time			Purge	Method	morary	Ded. Pu	mp No		//	- x
Flow Cell: YY N		Mir	n. Purge Volume	(gal)/(L) _ 2	3 P	urge Rate (g	pm)/(mLpm)	3		
Water Time Vol-Purged	pH	Conductivity	Turbidity NTU		Temp.	Salinity	TDS	Eh/ORP	Comme	nts
story more		mS/cm	ч н с	mg/L	°C	%	g/L	mv	(See descripti	
6.80 1553 21	7.86	7.931	2.8	5.91	28.99	4.36	5 154	39.1	. 255 Hz	
61.84 1600 42	7.90	8.126	the second s	6.49	29: 10	11117	5.274			
61.87 1607 103	7.88	9120	2.4	5.39	29.97	J.9 /	5.219			
61.88 1614 . 84	7.87	096 BG			21.91	79.10		57.5	Conductivity was	9.618
11 Cel II Allan	1000	0115	2.1	4.97 (\$ 30,03	536	6.249	55.1	Conduct IN. 19 W	. 610
61.88 10201 105	7.87	9.650		4.94		5.39	6.280		N	
61.87 16207 -+ 200	7.87	9.677	1.9	494	30.06	5.39	6.291	53.6		
123								5 A	e	
1631	unp	off.		C.		100			к.	
		00			-					
Parameter Stabilization Criteria	+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	NA	NA	NA	+/- 10 mV		
and the stabilization chiefia	pH units	6	units when >10 NTUs	mg/L	+2°C					
Did Parameters Stablize prior to sampling?	Y Y	Y	V	4	-NA- 1/			11		en de la companya
Previous Field measurement (10/15/2009)	7.86	9063	1	4.62	29.19	0.59		/27		. <u> </u>
Are measurements consistent with previous?	Y	Y	V	V	TNA V		~	V		
Sample Time 46/628 Sample Locatio	ייי (ר	np tubing	well port	{spigot				-{		·
Comments:				spigot	•	pailer	other			
	1.1.1	J					3			
Initial Depth to Water (ft BTOC):		-1	Measure	Point: Well	TOC) Stee	el Casing	WATER	LEVEL MET	ER SERIAL NUMBER: PE	7E-2005
Field measured confirmation of Well Depth (ft b	oc):		- 1- 		<u> </u>				ransducer	
WD (Well Depth - from database) ft btoc(30		1	Initial DTW /	Before Remova	al Ap	prox. 5 min	After Reinsta		and the second second second second second	174
SWH (Standing Water Height) = WD-Initial Dep		11.56	Time	Initial DTW		Time	The second se	DTW		U/A
O (Volume as per diameter) 2"= 0.17, 4"= 0.66,		<u>in)</u>	1540	61.44		^	/A		Time of Reinstallation	
Dne Casing Volume = D*SWH	23 gall	<u>.</u>	Comments:				~~~~			
Three Casing Volumes =/ Color: clear, grey, yellow, brown, black, cloudy,	A		X				$\mathbf{\lambda}$			

ĩ

	-		5 4	7 as			н			Торос	k Sampling Log
Project I Job N Sampler	Kritera-B-arcan	E Topock CMP 78.MP.02.CM.01 _ Field Team _	1 Fiel	d Conditions	Sunny, clear	-7-30°F	Samplin Inds from NN 5-7m Gusts ~ 35,	oh Date	2010-CM 4 - 7- 1 of		Bec
T	n ple Number nt Time Flow Cell:(①			Mir		mple ID NA Method 2" G	rvun difos	Ded. Pu	mp <u>^</u>	QC Samp	le Time N/A
Water Level	Time	Vol-Rurged geillons / liters	pН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
61.84	1710	9 1819	7.86	7.273	4.2	3.11 3.06	28.78 29.09		4.722 4.720	-6.1 10.1	
61.83	1716	23	7.74	7.136	1.9	2.73	29.13	3.89	4.629	19.7	
41.83	1722	38	7.74	7.015	1.9 2.1	2.57	29.11 29.11	3.82		26.1 30.6	/
61.83	1726	57 - pe	7.72 unp	7.007 M	2.3	2.56	29.16	3.82	4.555	<u>35.</u> 4	
			+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	NA	NÀ	NA	+/- 10 mV	
	abilization Crit Stablize prior to s		pH units	м	units when >10 NTUs	mg/L	NA	- <u>y</u>		<u> </u>	
Previous Field m Are measureme	neasurement nts consistent with	(10/15/2009) h previous?	7.73 V	65t6 higher	3	1.69 higher	28.41	0.42		21-	
Sample Time Comments:	· · · · · · · · · · · · · · · · · · ·			mp tubing X	well port	spigot		bailer	other		
Initial Depth to Field measured	Water (ft BTOC confirmation o	:):61.44 f Well Depth (ft bt	p oc): —		Measur	e Point: Well		el Casing	WATER	-	TER SERIAL NUMBER: PGE- 2005 - 01 B
WD (Well Dept	h - from databa		9.8000	34	- Initial DTW	/ Before Remov		prox. 5 min Time	After Reinst Final	allation	Time of Removal
One Casing Vo	lume = D*SWH		110,000	2 in)		61.46		٨	11A		Time of Reinstallation
Three Casing V Color: clean gr		SS.5 wn, black, cloudy,	green		Odor: none, s	ulphur, organic,	other	S	olids:	, Small Qu,	Med Qu, Large Qu, Particulate, Silt, Sand Page 8 of 11

				× .			Toposk	Sampling Lo	_
Project Name PG&E Topock CMP				Sampling I	Event a	2010-CM		Sampling L	<u>J</u> g
Job Number 390378.MP.02.CM.0			L	15 <u>1</u>	Date		1010		De. c
Sampler	1 Field Conditions	Sunny cle	an, 287 N	0 1	Page /	1 of	1		- AC
Well/Sample Number OW-01S-023	A 4	7	051-	/-91-023					800
Purge Start Time 11:38		_	Method In	and the second se	Ded Bump	No	QC Sample	e Time	855
Flow Cell	, ,	Min. Purge Volume			e Rate (gpn	1717 - A 1	1		location verified by
Water Time Vol Burged	pH Conductiv mS/cm	ty Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv		Comments (See description below
93.50 001 4 2	7.44 4.45	4 6.2	4.66	28.38 2	2.362	2. 906			
93,50 11:42 4	7.49 4.47	8 83	11 01	28.93 2			20.5		
93,50 11:44 6	7.48 4.43	0 4.8		29.09			26.9		
93.50 11:46 8	7.48 4.44	2 4.8		29.13				-	ala a constanti
93.50 11:48 10	7.47 4.440	3.4	4.59	29.122	35 2	891	36.6		
93.50 11:49 421	7.48 4.43		4.56	29.15 2	1250	885	314		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
11:53 pu	mp off						р		1000 ¹⁰ 4.
Parameter Stabilization Criteria	+/- 0.1 +/- 3% pH units	+/- 10% NTU units	+/- 0.3 mg/L	-NA	NA	NA	+/- 10 mV		
Did Parameters Stablize prior to sampling?		when >10 NTUs		±22			4		
Previous Field measurement (10/12/2009)	7.65 3070	- <u>y</u>	<u> </u>	MAY			<u> </u>		
re measurements consistent with previous?	lower high	4	5.34	28.22	0.2		72.2		
ample TimeSO Sample Locatio		well port		<u>NA y</u> bail	er	other	<u> </u>		
itial Depth to Water (ft BTOC):	93.40	Measure	e Point: Well T	OC Steel C	Casing	WATER	LEVEL MET	ER SERIAL M	IUMBER: _ <u>PGE-2005-</u>
eld measured confirmation of Well Depth (ft b D (Well Depth - from database) ft btoc (1	· · · · · · · · · · · · · · · · · · ·						lf Tr	ansducer	
WH (Standing Water Height) = WD-Initial Dep		Initial DTW	/ Before Remova	Appic	ox. 5 min Aft			Time of Remo	oval 11:32
(Volume as per diameter) 2"= 0.17, 4"= 0.66,			93.40	Tin 12:	100 million (100 m	in the line of the	отw 40	Time of Reins	tallation
ne Casing Volume = D*SWH 경.나		Comments:	10.10	1001		12.	10	A. B	
ree Casing Volumes = (0,3			200 No. 100 No. 100						
olor clear, grey, yellow, brown, black, cloudy		\neg				~	`		

. .

()		ب ۲	-		e.				2) 2	Торос	k Sampling Log	· · · ·
Project N Job Nu	make an	Topock CMP					Samplin	g Event	2010-CM	IP-023		-
	11	78.MP.02.CM.01	4	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Annal	stor li	west	Date	4/8	12010	2. 2.	BEC
Sampler		Field Team	Field	d Conditions	sunny, cle		~Impt	Page	of			pa
		OW-025-023	-		QC Sa	mple ID NA	1]	QC Samp	le Time N/A	-
Purge Star	-	2:27					unp.	Ded. Pu	~	No		
	Flow Cell: Y)	N		Mit	n. Purge Volume	(gal)/(L)5)P	urge Rate (g	pry/(mLpm)		
Water	Time	Vol Purged	pH	Conductivity	Turbidity MTU	Diss Oreman	-		-			
Level		gallons / liters	pii	mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv		nents iption below
92.39	12:29	み	7.92	1.843	6.1	7.92	28.15	0.93	1.128	-14.1		
12.39	12:30	3	1.92	1.843	3.9	7.80	28.46	0.93	1.198	0.5		
72.39	12:31	4	7.92	1843	2.7	7.80	28.61		1.198	10.4		
12.39	12:32	5	7.94	1.844	2.7	7.77	28,70	1293	1.198	17.0		
72,39	12:33	6	7.92	1.844	2.3	7.18	28.80		1.199	23.4		
2.39	12:34	7	7.92	1.844	2.9		28.84		1.199	29.7		
2.39	12:35	8	7.91	1.844	24	277	28,85		1. 199			
	12:37	-10	unp	oth			-0.0-					******
		1	/	off							12	
	bilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		-
	tablize prior to sa	mpling?	Y		4	1	NA	4		V		
vious Field me		10/13/2009)	8.16	1759	2(8.1	27.92	0.11		65.1		
measurement	s consistent with	the second s	<u> </u>	7	Y	4	NA	nigher		lower		
nments:		Sample Location	Collec	t EB	_ well port	spigot 87-023		bailer 305	other			
		92			_ Measure	Point: Well	TOC Ste	el Casing	WATER	LEVEL MET	TER SERIAL NUMBER:	0GE-2005-01B
		Well Depth (ft bt	The second se		- [n	221-000	ransducer	
VD (Well Depth - from database) ft btoc(101) WH (Standing Water Height) = WD-Initial Depthろ?				Initial DTW / Before Removal Approx. 5 min After Reinstallation Time of Removal 1218					1218			
(Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)				Lime Initial DTW Time Einel DTW				12:45				
Casing Volu	me = D*SWH _	1.5			Comments:	10.00	~ /	x.00	1_7d	.000		
e Casing Vol		4.6			5	(mar)				1		
or: clear, grey	y, yellow, browr	n, black, cloudy,	green		Odor: norte, si	Ilphur, organic,	other	S	olids: Trace	, Small Qu,	Med Qu, Large Qu, Particu	late, Silt, Sand Page 10 of 11
					(4), A,	×						

Ċ.					2 2 2	Ċ			* ***	-		
Project I	Name PG&	E Topock CMP		and the second						N	k Sampling Log	
Job N		78.MP.02.CM.01	······				Samplin Wre	g Event _ Date	2010-CM			
Sampler _	Abbott	Field Team	1 Field	d Conditions	tunny cle	U. 78°4	- from	Page	-7/8	2010	8	
Well/San	ople Number	OW-05S-023			0		NNOS	rage	of			
Purge Star		2:56					the second second			QC Samp	le Time N/A	<u> </u>
	Flow Cell: Y)			Min	Purge N. Purge Volume	Method ben		Ded. Pu		Vo	/ x 8	
	riow cell.	/ N		IVIII	i. Fuige volume	(gau)/(L)	<u> </u>	Irge Rate (g	pp)/(mLpm)		
Water	Time	Vol. Purged	PH	Conductivity	Turbidity NTU	Dias Orange	1 +	<u> </u>	1	1	-	
Level	Time	gallons / liters		mS/cm		Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS g/L	Eh/ORP mv		nments cription below
95,07	1058	2	7.68	2.616	22.3	5.88	28.32	1.34	1.700	18.0	238 Hz	2
95.08	1059	3	7.67	2.632	27.4	5.97	28.54	1.35	1.708	24.6		
95.09	1100	4	7.68:	2.628	28.8	And the second second	28.63	1.35	1	29.4	· · · · · · · · · · · · · · · · · · ·	
95.09	1101	5	7.69.	2597	19.6	6.28	2871	1.33	1.685			
95.09	1102	6	7.67	2.599	16.0	6.25	2875	1.34	1.698	37.6		
95.09	11:03	7	7.68	1.580	12.6	6.22	28 79	127	11.77	40.2		
95.09	11:04	8	7.67	2,576	10.7	6.26	28.80	1.32	1191	42.4		
95.09	11:05	9	7.68	2.568	8.6				1. 601	44.2		
95.09	11:06	10	7.68	2.568	9.1		28.80 28.82	1.31	1001			·
	11:09	sump	+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	NA	1.32 NA	1.678 NA	46.3 +/- 10 mV		
Parameter Sta	abilization Crit	eria /	PH units		units when >10 NTUs	mg/L	122		-	1/	÷	
Did Parameters	Stablize prior to s	ampling?	V	V	V	V	TNAL/			1-		1
Previous Field m	easurement	(10/13/2009)	7.9	1952	3	6.99	28	0.13		78.6		
Are measuremen	ts consistent with	n previous?		higher	higher	М	-NA V			V		
Sample Time	1107	Sample Location	n: (pur	mp tubing X	well port	/ spigot		pailer	other	1	<u>, تحکیر میں عالمیں الے الے </u>	
Comments:	Pix	mp set	approx	2 10	feet t	selon wa	ter so	we do	n't hit	t bottos	n and Caus	e perbulance
Initial Depth to V	Nater (ft BTOC)):9 4. 4	15		Measure	Point: Well	TOC Stee	Casing				96E-2005-01B
		Well Depth (ft bt										4F
WD (Well Depth		12 12 12 12 12 12 12 12 12 12 12 12 12 1		9	Initial DTW	Before Remov	al An	prox. 5 min	After Reinst		ransducer	10:10
		= WD-Initial Dept			Time Initial DTW Time			in After Reinstallation Time of Removal 10:40 Final DTW				
		= 0.17, 4"= 0.66, 1		? in)	1039	94.95	11:	21	94.	95	Time of Reinstallation _	1113
One Casing Vol		2.60	the second se		Comments:				- 11.4			
Three Casing Vo Color: clear, gre		n, black, cloudy,			Odor: none, se	ulphur, organic,	other	S	olids: Trac	e, Small Qu,	Med Qu, Large Qu, Parti	culate, Silt, Sand Page 11 of 11

PGE Topock	Groundwater	Monitoring
Dec 11-15, 2006	Water Level	Measurments

Sample Location	Sample Date	Time	Depth to Water (feet below MP)	Comment	ProjectCode	Event measured q	
OW-01S	6-2-10	0958	92.95		CMP		
OW-01M	1	1001	92.77		CMP	measured o	
OW-01D		1003	92.53		CMP	measured o	
OW-02S		1011	91,56		CMP	measured q	
OW-02M		1014	90.90	************************************	CMP	measured q	
OW-02D		i007	91.08	**************************	CMP	measured q	
OW-05S		1018	94,45	••••••••••••••••••••••••••••••••••••••	CMP	measured q	
OW-05M		1021	93.47		CMP	measured q	
OW-05D		1025	94.31		CMP	measured q	
CW-01M		0938	108.53		CMP	measured q	
CW-01D		0941	108.71		CMP	measured g	
CW-02M		0924	92.08		CMP	measured q	
CW-02D		0920	91.73		CMP	measured q	
CW-03M	- 	0933	76.96		CMP	measured q	
CW-03D	<u> </u>	0931	76.40		CMP	measured q	
CW-04M	_ _ 	0957	60.87		CMP	measured q	
CW-04D	<u></u>	0948	60.85		CMP	measured q	

* Confirmed w/ Scott O'Donnell/IM-3 that yesterday (6-1-10) was a normal operation day - no backwashing or other activities that affected the injection rate.

B Collom/CHAM WLI # PGE-2005-\$3 6-2-10