
| Topock Project I                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Executive Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date of Document: July 15, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compliance Monitoring Program, Semiannual Groundwater<br>Monitoring Report, First Half 2014 (PGE20140715A)                                                                                                                                                                                                                                                                                                                                                                                | Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Submitting Agency: DOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Final Document? X Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Priority Status: HIGH MED LOW Is this time critical? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                               | Action Required:  Information Only Review & Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Type of Document:  Draft Report Letter Memo                                                                                                                                                                                                                                                                                                                                                                                                                                               | Return to:  By Date:  Other / Evalsing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other / Explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other / Explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| What does this information pertain to?  Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA)  RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment)  Corrective Measures Study (CMS)/Feasibility Study (FS)  Corrective Measures Implementation (CMI)/Remedial Action  California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR)  Interim Measures  Other / Explain:               | Is this a Regulatory Requirement?  ☑ Yes ☐ No If no, why is the document needed?                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| What is the consequence of NOT doing this item? What is the consequence of DOING this item? Submittal of this report is a compliance requirement under DOI's enforcement as an ARARs beginning August 2011.                                                                                                                                                                                                                                                                               | Other Justification/s: Permit Other / Explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and/or water quality of the aquifer in the injection well area and affected by the injected water. The monitoring network consists (CW series) screened in the shallow, middle, and/or deep zones area began in 2005. As of the First Half 2014, wells that exhibite the middle- and deep-zone observation wells, two out of three deep-zone compliance wells. Only one well (a shallow-zone obsinjected water quality.  This report presents groundwater analytical results and grounds. | s of multiple observation wells (OW series) and compliance wells of the alluvial aquifer. The injection of treated groundwater in the water quality consistent with the injected water quality include all shallow observation wells and five of the eight middle- and all ervation well) has not yet shown any characteristics indicative of water level data collected from the First Half 2014 CMP monitoring oring event, no samples exceeded the water quality objectives for vent is scheduled to occur in October 2014. |
| Submittal of this report is a compliance requirement under DOI Other requirements of this information?                                                                                                                                                                                                                                                                                                                                                                                    | enforcement's as ARARs beginning August 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Version 9



Yvonne J. Meeks Manager

**Environmental Remediation** 

Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 E-Mail: <u>YJM1@pge.com</u>

July 15, 2014

Pamela Innis
DOI Topock Remedial Project Manager
U.S. Department of the Interior
Office of Environmental Policy and Compliance
P.O. Box 2507-D (D-108)
Denver Federal Center, Building 56
Denver, CO 80225-0007

Subject: Interim Measures No. 3, Compliance Monitoring Program, Semiannual Groundwater

Monitoring Report, First Half 2014, PG&E Topock Compressor Station, Needles, California

(PGE20130715A)

Dear Ms. Innis:

Enclosed is the Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2014 for the Interim Measures No. 3 at the Pacific Gas and Electric Company [PG&E] Topock Compressor Station. This monitoring report presents the results of the First Half 2014 Compliance Monitoring Program groundwater monitoring event and has been prepared in accordance with the United States Department of the Interior's August 18, 2011 letter stating that the Interim Measures No. 3 Waste Discharge Requirements are applicable or relevant and appropriate requirements.

The current contingency plan specifies the concentrations and values for hexavalent chromium [Cr(VI)], chromium, total dissolved solids (TDS), and pH to be used to determine whether contingency plan actions are necessary based on sample results. The water quality objectives concentrations used to trigger the contingency plan are Cr(VI) greater than 32.6 micrograms per liter ( $\mu$ g/L), chromium greater than 28.0  $\mu$ g/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

No samples exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS during the First Half 2014 sampling event. The next Compliance Monitoring Program event is scheduled to occur in October 2014.

Please contact me at (805) 234-2257 if you have any questions on the Compliance Monitoring Program.

Sincerely,

Yvonne Meeks

**Topock Remediation Project Manager** 

fronne Meks

Cc: Robert Perdue, Water Board Jose Cortez, Water Board Aaron Yue, DTSC Christopher Guerre, DTSC

Enclosure

ES061814003139BAO

# Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2014, Interim Measure No. 3, PG&E Topock Compressor Station, Needles, California

Document ID: PGE20140715A

Prepared for

United States Department of the Interior

On behalf of

Pacific Gas and Electric Company

July 15, 2014

CH2MHILL.

155 Grand Avenue, Suite 800 Oakland, CA 94612

# Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2014,

PG&E Topock Compressor Station, Needles, California

Prepared for

**United States Department of the Interior** 

On behalf of

**Pacific Gas and Electric Company** 

July 15, 2014

SERENA PANZAR NO. 8259

This report was prepared under the supervision of a California

Professional Geologist

Serena Panzar

Professional Geologist, P.G. #8259

# **Contents**

| 1 Introduction                                                                                  | <b>2-1 3-1</b> 3-1 3-1   |
|-------------------------------------------------------------------------------------------------|--------------------------|
| 3 First Half 2014 Results                                                                       | 3-1<br>3-1<br>3-1<br>3-1 |
|                                                                                                 | 3-1<br>3-1<br>3-1<br>3-1 |
| 3.1 Analytical Results                                                                          | 3-1<br>3-1<br>3-1        |
| J. Taliary dear results                                                                         | 3-1<br>3-1               |
| 3.1.1 Hexavalent Chromium and Chromium                                                          | 3-1                      |
| 3.1.2 Other Metals and General Chemistry                                                        |                          |
| 3.2 Analytical Data Quality Review                                                              | 3-2                      |
| 3.2.1 Matrix Interference                                                                       |                          |
| 3.2.2 Matrix Spike Samples                                                                      |                          |
| 3.2.3 Quantitation and Sensitivity                                                              |                          |
| 3.2.4 Holding-time Data Qualification                                                           |                          |
| 3.2.5 Field Duplicates                                                                          |                          |
| 3.2.6 Method Blanks                                                                             |                          |
| 3.2.7 Equipment Blanks                                                                          |                          |
| 3.2.8 Laboratory Duplicates                                                                     |                          |
| 3.2.9 Laboratory Control Sample                                                                 |                          |
| 3.2.10 Calibration                                                                              |                          |
| 3.2.11 Conclusion                                                                               |                          |
| 3.3 Influence of Treated Water                                                                  |                          |
| 3.3.1 Post-injection versus Pre-injection                                                       |                          |
| 3.3.2 Water Quality Hydrographs                                                                 |                          |
| 3.4 Water Level Measurements                                                                    |                          |
| 3.4.1 Groundwater Gradient Characteristics                                                      |                          |
| 3.5 Field Parameter Data                                                                        |                          |
| 3.6 ARAR Monitoring Requirements                                                                | 3-5                      |
| 4 Status of Monitoring Activities                                                               | 4-1                      |
| 4.1 Semiannual Monitoring                                                                       | 4-1                      |
| 4.2 Annual Monitoring                                                                           | 4-1                      |
| 5 References                                                                                    | 5-1                      |
| 6 Certification                                                                                 | 6-1                      |
| Tables                                                                                          |                          |
| 1 Operational Status of Interim Measures No. 3 Injection Wells from July 2005 through June 2014 |                          |
| 2 Well Construction and Sampling Summary for Groundwater Samples, First Half 2014               |                          |
| 3 Chromium Results for Groundwater Samples, First Half 2014                                     |                          |
| 4 Metals and General Chemistry Results for Groundwater Samples, First Half 2014                 |                          |
| 5 Treated Water Quality Compared to OW and CW Pre-injection Water Quality                       |                          |
| 6 Treated Water Quality Compared to First Half 2014 Sampling Event Water Quality                |                          |
| 7 Manual Water Level Measurements and Elevations, First Half 2014                               |                          |
| 8 Vertical Gradients within the OW and CW Clusters, First Half 2014                             |                          |
| 9 Field Parameter Measurements for Groundwater Samples, First Half 2014                         |                          |
| 10 ARAR Monitoring Information for Groundwater Samples, First Half 2014                         |                          |

# **Figures**

| 1  | Site Location and Layout                                                 |
|----|--------------------------------------------------------------------------|
| 2  | Monitoring Locations for CMP                                             |
| 3A | OW-1S, OW-2S, OW-5S Water Quality Hydrographs                            |
| 3B | OW-1M, OW-2M, OW-5M Water Quality Hydrographs                            |
| 3C | OW-1D, OW-2D, OW-5D Water Quality Hydrographs                            |
| 3D | CW-1M, CW-2M, CW-3M, CW-4M Water Quality Hydrographs                     |
| 3E | CW-1D, CW-2D, CW-3D, CW-4D Water Quality Hydrographs                     |
| 4A | OW-1S Groundwater Elevation Hydrograph                                   |
| 4B | OW-2S Groundwater Elevation Hydrograph                                   |
| 4C | OW-5 Groundwater Elevation Hydrographs                                   |
| 5A | Average Groundwater Elevations for Shallow Wells, June 5, 2014           |
| 5B | Average Groundwater Elevation Contours for Mid-Depth Wells, June 5, 2014 |
| 5C | Average Groundwater Elevation Contours for Deep Wells, June 5, 2014      |

# **Appendices**

- A Laboratory Reports, First Half 2014
- B Field Data Sheets, First Half 2014

vi ES061814003139BAO

# **Acronyms and Abbreviations**

μg/L micrograms per liter

ARAR applicable or relevant and appropriate requirement

CMP Compliance Monitoring Program

Cr(VI) hexavalent chromium

CW compliance well

DOI United States Department of the Interior

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

IM Interim Measure

IM-3 Interim Measure No. 3

IW injection well

mg/L milligrams per liter

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

OW observation well

QAPP quality assurance project plan

TDS total dissolved solids

Water Board California Regional Water Quality Control Board, Colorado River Basin Region

WDR Waste Discharge Requirement

WQO water quality objective

ES061814003139BAO vii

#### **SECTION 1**

# Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM-3). Currently, the IM-3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM-3 extraction, conveyance, treatment, and injection facilities. (All figures and tables are provided at the end of this report.)

The Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, Topock Compressor Station, Needles, California (CH2M HILL, 2005a) (herein referred to as the Compliance Monitoring Plan) was submitted to the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) and the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) on June 17, 2005. The Compliance Monitoring Plan and its addendum (CH2M HILL, 2005b) provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the Compliance Monitoring Program (CMP). Several modifications of the sampling and reporting procedures have been approved since 2005, as outlined in Exhibit 1.

EXHIBIT 1
Historical Modifications to the Compliance Monitoring Program
PG&E Topock Compliance Monitoring Program

| Modification                                                                                                 | Approval Date                                                                      | Reference                                           |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|
| Modification of reporting requirements                                                                       | DTSC: June 9, 2006                                                                 | DTSC, 2006                                          |
| Reduction of constituents analyzed during quarterly sampling of CMP observation wells                        | Water Board: January 23, 2007<br>DTSC: January 22, 2007                            | Water Board, 2007a<br>DTSC, 2007<br>CH2M HILL, 2006 |
| Change from laboratory pH to field collected pH for reporting                                                | Water Board: October 16, 2007<br>DTSC: January 22, 2008                            | Water Board, 2007b<br>DTSC, 2008a                   |
| Modification of hexavalent chromium analytical methods to extend hold time to 28 days                        | Water Board: November 13, 2007<br>DTSC: January 22, 2008                           | Water Board, 2007c<br>DTSC, 2008a                   |
| Modification of sampling and reporting frequency and the field pH trigger range for the CMP contingency plan | Water Board: August 28, 2008<br>DTSC: December 12, 2008 (pH),<br>September 3, 2009 | Water Board, 2008<br>DTSC, 2008b, 2009              |

From July 2005 through September 2011, PG&E was operating the IM-3 groundwater treatment system as authorized by Water Board Order No. R7-2004-0103 (issued October 13, 2004), Order No. R7-2006-0060 (issued September 20, 2006), and the revised Monitoring and Reporting Program (MRP) under Order No. R7-2006-0060 (issued August 28, 2008).

PG&E is currently performing the CMP as authorized by the United States Department of the Interior (DOI) waste discharge applicable or relevant and appropriate requirements (ARARs). The Waste Discharge Requirements (WDR Order No. R7-2006-0060) expired on September 20, 2011 and was replaced by DOI enforcement of the ARARs, as documented in correspondence among the Water Board, DOI, and PG&E during the summer of 2011. Specifically, the letter agreement issued July 26, 2011 from the Water Board to DOI (Water Board, 2011) requested:

ES061814003139BAO 1-1

- DOI concurrence that the WDRs are ARARs under the Comprehensive Environmental Response,
   Compensation and Liability Act of 1980 response action ongoing at the site.
- DOI confirmation that it will enforce these WDRs pursuant to the Administrative Consent Agreement entered into by DOI and PG&E in 2005 in lieu of the Water Board's adoption of a new Board Order to replace the expiring Board Order that set forth the WDRs.
- DOI concurrence with the roles and responsibilities between DOI and the Water Board for monitoring and enforcement.

In its letter dated August 18, 2011, the DOI provided concurrence and confirmation as requested (DOI, 2011). PG&E confirmed these changes with a letter to the DOI and the Water Board dated September 7, 2011 (PG&E, 2011). These changes add the DOI as the receiving regulatory agency for the CMP reports, with the Water Board continuing to receive report copies. Work described in this report was performed in accordance with the ARARs established in the July 26, 2011 letter (Water Board, 2011).

The ARARs specify effluent limitations, prohibitions, specifications, and provisions for subsurface injection. The MRP contained within the ARARs specifies the requirements for the CMP to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality.

The injection system consists of two injection wells (IWs): IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005), and injection into IW-2 began on July 31, 2005. Table 1 provides a summary of the history of injection for IM-3.

Figure 2 shows the locations of the injection wells and the groundwater monitoring wells (observation wells [OWs] and compliance wells [CWs]) in the CMP. Table 2 provides a summary of information on well construction and sampling methods for all wells in the CMP.

As of April 2014, samples are collected from OWs and CWs, shown on Figure 2, according to the following schedule:

- Three OWs (OW-1S, OW-2S, and OW-5S) located near the IM-3 injection well field are sampled semiannually (during the second and fourth quarters) for a limited suite of constituents.
- Six OWs (OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D) are:
  - Sampled annually for a limited suite of constituents during the fourth quarter.
  - Sampled for a full suite of constituents one cluster at a time on a triennial (once every 3 years) schedule.
     Within each 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents.
     The triennial sampling will occur during the annual event (fourth quarter).
- Eight CWs are sampled semiannually for a limited suite of constituents and annually (during the fourth quarter) for a full suite of constituents.

For semiannual events, laboratory analyses include total dissolved solids (TDS), turbidity, specific conductance, a reduced suite of metals, and several inorganic cations and anions. Annual and triennial sampling events for CWs and select OWs include dissolved chromium, hexavalent chromium [Cr(VI)], metals, specific conductance, TDS, turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data—including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity—are also measured during each monitoring event (CH2M HILL, 2005a).

This report presents the results of the First Half 2014 CMP groundwater monitoring event.

1-2 ES061814003139BAO

#### **SECTION 2**

# <sub>2</sub> First Half 2014 Activities

This section provides a summary of the monitoring and sampling activities completed during the First Half 2014. The First Half 2014 event was a semiannual event conducted from April 7 through 8, 2014 and consisted of the following:

- Three observation and eight compliance monitoring wells were sampled for water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at wells CW-3M and OW-2S to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005c) and addendums.

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and CH2M HILL Applied Sciences Laboratory in Corvallis, Oregon, both California-certified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California (CH2M HILL, 2005c) and addendums. Data validation and management were conducted in accordance with the PG&E Program Quality Assurance Project Plan [QAPP] (CH2M HILL, 2012) and QAPP addendum (CH2M HILL, 2008).

ES061814003139BAO 2-1

# 3 First Half 2014 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the First Half 2014. Figure 2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), chromium, specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the First Half 2014 monitoring event are presented in Appendices A and B, respectively.

# 3.1 Analytical Results

Three observation wells and eight compliance wells were sampled during the First Half 2014 sampling event. Analytical results for Cr(VI), chromium, other metals, and general chemistry parameters are presented in Tables 3 and 4 and are discussed below. Interim action levels/ water quality objectives (WQOs) were last updated on August 8, 2006, when PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), chromium, TDS, and pH to be used to determine if contingency plan actions were necessary based on sample results. A modification of the CMP contingency plan pH range was approved by the Water Board and DTSC in 2008 (Water Board, 2008; DTSC, 2008b).

#### 3.1.1 Hexavalent Chromium and Chromium

Table 3 presents the Cr(VI) and chromium analytical results for groundwater in the shallow, middle, and deep wells from the First Half 2014 CMP sampling event. For shallow wells, the maximum detected Cr(VI) concentration was 19.8 micrograms per liter ( $\mu$ g/L) in well OW-2S on April 8, 2014. For the middle wells, the maximum detected Cr(VI) concentration was 7.0  $\mu$ g/L in well CW-3M on April 8, 2014. For the deep wells, Cr(VI) was not detected [ND (1.0)] in any samples. During the First Half 2014 sampling event, no Cr(VI) sample result exceeded the WQO trigger level of 32  $\mu$ g/L.

For shallow wells, the maximum detected chromium concentration was 20.2  $\mu$ g/L in well OW-2S on April 8, 2014. For the middle wells, the maximum detected chromium concentration was 7.9  $\mu$ g/L in well CW-3M on April 8, 2014. For the deep wells, the maximum detected chromium concentration was 1.1  $\mu$ g/L in well CW-1D on April 7, 2014. During the First Half 2014 sampling event, no chromium sample result exceeded the WQO trigger level of 28  $\mu$ g/L. Therefore, the contingency plan was not triggered for Cr(VI) or chromium.

# 3.1.2 Other Metals and General Chemistry

Table 4 presents the metals and general chemistry results for the CMP groundwater wells sampled during the First Half 2014. Metals and ions detected in the First Half 2014 sampling event included chloride, fluoride, sulfate, nitrate/nitrite as nitrogen, dissolved sodium, and dissolved molybdenum. In general, concentrations of metals and ions detected during the First Half 2014 sampling event are similar to those detected in previous sampling events.

Table 4 presents other inorganic analyte results from the CMP wells. During the First Half 2014, the sampling results from all wells were within the WQOs for TDS (less than 10,800 milligrams per liter [mg/L]) and pH (between 6.2 and 9.2). Sampling results for TDS varied from 1,140 mg/L in well OW-2S to 5,420 mg/L in well CW-3M. Field pH varied from 7.2 in well OW-1S to 7.7 in wells CW-2D, CW-3D, CW-4D and OW-2S.

# 3.2 Analytical Data Quality Review

The laboratory analytical data generated from the First Half 2014 CMP monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP (CH2M HILL, 2012) and QAPP addendum (CH2M HILL, 2008). A detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

ES061814003139BAO 3-1

## 3.2.1 Matrix Interference

Matrix interference can affect the sensitivity for Cr(VI) when using Method E218.6 and result in elevated reporting limits for nondetect samples. Five nondetect samples exhibited a matrix interference issue that required a dilution to achieve satisfactory matrix spike recovery, resulting in elevated reporting limits. No flags were applied.

# 3.2.2 Matrix Spike Samples

All matrix spike acceptance criteria were met.

# 3.2.3 Quantitation and Sensitivity

With the exception of the matrix interference issues discussed in Section 3.2.1, method and analyte combinations met the project reporting limit objectives.

# 3.2.4 Holding-time Data Qualification

All Environmental Protection Agency recommended holding-times were met.

# 3.2.5 Field Duplicates

All field duplicate acceptance criteria were met.

### 3.2.6 Method Blanks

All method blank acceptance criteria were met.

# 3.2.7 Equipment Blanks

All equipment blank acceptance criteria were met.

# 3.2.8 Laboratory Duplicates

All laboratory duplicate acceptance criteria were met.

# 3.2.9 Laboratory Control Sample

All laboratory control sample acceptance criteria were met.

#### 3.2.10 Calibration

Initial and continuing calibrations were performed as required by the methods. All calibration criteria were met.

#### 3.2.11 Conclusion

For the First Half 2014 CMP sampling event, the completeness objectives were met for all method and analyte combinations. The analyses and data quality met the QAPP and laboratory method quality control criteria. Overall, the analytical data are considered acceptable for the purpose of the CMP.

# 3.3 Influence of Treated Water

# 3.3.1 Post-injection versus Pre-injection

Injection of treated water began on July 31, 2005. Originally, under WDR No. R7-2006-0060 for the IM-3 groundwater treatment system and now the DOI's affirmation of the WDR as an ARAR, PG&E is required to submit semiannual monitoring reports regarding operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water quality of the treated water being injected into the IM-3 injection well field. Table 5 provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, April 7, 2010, and April 8, 2014. While there are differences among some parameters in these samples, a number of parameters show relatively consistent concentrations in the effluent over time. Analytes that are relatively consistent over the injection time period include Cr(VI), chromium, fluoride, dissolved molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. The consistency of these seven constituents provide a characterization of the effluent that can serve as a basis for determining if a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of August 2005 through April 2014 effluent characteristics):

3-2 ES061814003139BAO

- Cr(VI): typically nondetect (or below 1.0 μg/L)
- Chromium: typically nondetect (or below 1.0 μg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 15 μg/L
- Nitrate/nitrite as nitrogen: approximately 3 mg/L
- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 5 also lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contained no detectable Cr(VI) or chromium, which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents but observable differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 6 presents a comparison between the treated water quality and the results from the most recent sampling event (the First Half 2014 sampling event). These samples were collected after approximately 8.7 years of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the First Half 2014 sample results show a marked similarity to the treated water results. Based on past and current sample results, the following wells display the general characteristics of treated water: OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, OW-5D, CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are at locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Wells OW-1S, OW-5S, CW-2M, CW-3M, and CW-4M have chemical characteristics approaching that of treated water. To date, shallow observation well OW-2S shows little or no water quality effects due to injection of treated water, indicating that injected water has not yet reached the screened intervals at this location.

# 3.3.2 Water Quality Hydrographs

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM-3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, chromium, fluoride, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, lab pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each OW and CW sampled during First Half 2014 within the IM-3 injection well field are presented in Figures 3A through 3E.

Observation well water quality hydrographs are presented in Figures 3A through 3C. These hydrographs show the same overall patterns: wells that are identified as affected by treated water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no similar shift in water quality. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, it is inferred that the movement of treated water is nonuniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth well OW-2S shows little

ES061814003139BAO 3-3

water quality variation over time. Sodium, chloride, vanadium, and molybdenum are particularly consistent with baseline pre-injection concentrations and show that the local groundwater quality at these shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 3D and 3E. Wells CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D show trends in TDS, sulfate, nitrate/nitrite as nitrogen, chromium, molybdenum, and Cr(VI) similar to the treated water. Wells CW-2M and CW-4M show decreasing trends in Cr(VI) and chromium, and increasing trends in sulfate. These changes are attributed to the arrival of treated injection water. Similarly, CW-3M is showing a more subtle decrease in Cr(VI) and a rise in sulfate that both suggest the influence of treated water beginning to arrive at this well.

# 3.4 Water Level Measurements

Table 7 presents the manual water level measurements and groundwater elevations from First and Second Quarter 2014 per the DOI ARAR requirements (DOI, 2011). In compliance with Condition No. 2 of DTSC's 2009 conditional approval letter (DTSC, 2009), confirmation was obtained from the IM-3 Plant Manager that the IM-3 plant was operating normally on both the day before and the days of CMP water level collection, with no backwash or unplanned shutdowns.

Water level measurements were collected continuously (measurements collected every half hour) with pressure transducers to produce hydrographs for select wells. Figures 4A through 4C present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the First Half 2014 reporting period at specified observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 5A through 5C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The date is noted on each figure.

#### 3.4.1 Groundwater Gradient Characteristics

The monitoring wells in the middle and deep zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation; therefore, the groundwater contours in Figures 5B and 5C should be viewed as approximate.

The injection well field is located in the East Mesa area of the Topock site, as shown on Figure 2. Overall sitewide water level contour maps for shallow wells are prepared annually under a separate report, with flow consistently being shown to move to the east/northeast across the uplands portions of the site (CH2M HILL, 2014).

The effects of injection in the IM-3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection wells IW-2 and IW-3. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 8.7 years of injection, the mound increased and then stabilized in height at several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the snapshot groundwater elevation of the mound within the middle and deep wells using June 5, 2014 groundwater elevations. As expected with a mound, the potentiometric surface of the deep wells is slightly broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection wells. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM-3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 8 presents the vertical gradient data calculated using the June 5, 2014 groundwater elevations. The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is generally of the

3-4 ES061814003139BAO

same order of magnitude throughout the injection area. A component of the vertical gradients calculated in the vicinity of the IM-3 injection well field is likely related to the injection of treated water in the lower portions of the aquifer. The observed groundwater gradients in the IM-3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

# 3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, salinity, and water level elevations before sampling. Table 9 presents a summary of the field water quality data measured during the First Half 2014 monitoring event. Field data sheets for the First Half 2014 event are presented in Appendix B.

# 3.6 ARAR Monitoring Requirements

Table 10 identifies the laboratory that performed each analysis and lists the following information as required by the ARARs for the First Half 2014 monitoring event:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

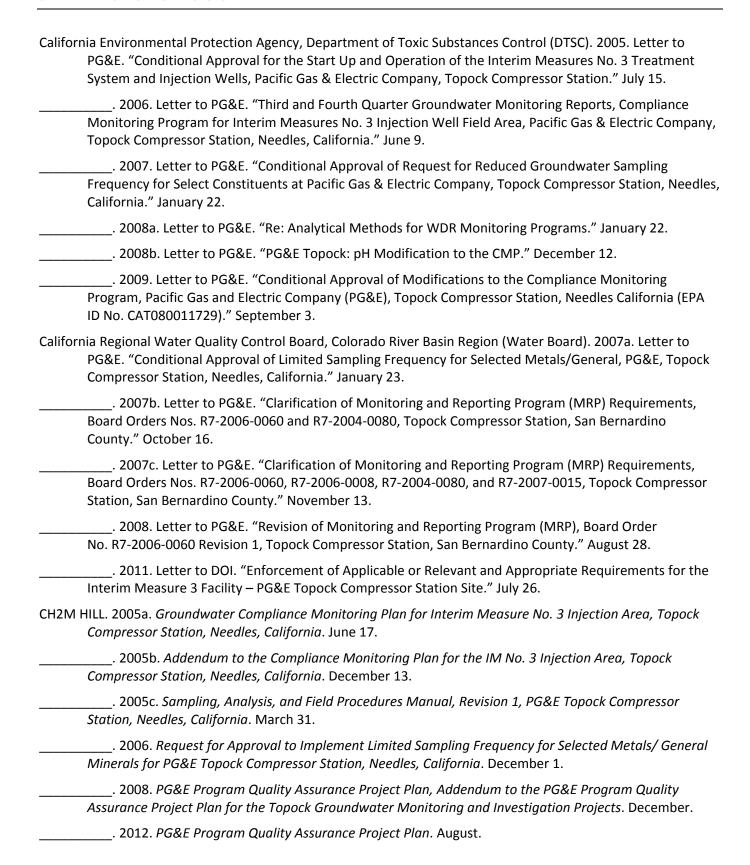
ES061814003139BAO 3-5

#### **SECTION 4**

# Status of Monitoring Activities

# 4.1 Semiannual Monitoring

The next semiannual monitoring event will occur in October during the second half of 2014. This CMP monitoring event will include the sampling and analysis scope presented in Attachment A of DOI November 18, 2011 letter (DOI, 2011). The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2015.


# 4.2 Annual Monitoring

The next annual monitoring event, which is also a semiannual event, will occur in October during the second half of 2014. The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2015.

ES061814003139BAO 4-1

#### **SECTION 5**

# References



ES061814003139BAO 5-1

- \_\_\_\_\_\_. 2014. Fourth Quarter 2013 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 14.
- Pacific Gas and Electric Company (PG&E). 2011. Letter to DOI and Water Board. "Re: Applicable or Relevant and Appropriate Requirements (ARARs) for the Waste Discharge associated with Interim Measure 3 Facility at PG&E's Topock Compressor Station." September 7.
- \_\_\_\_\_. 2014. Letter to DOI and Water Board. "Signature Delegation for Discharger Monitoring Reports, ARAR Monitoring Requirements, Pacific Gas and Electric Company, Topock Compressor Station, Interim Measures No. 3, Needles, California." July 9.
- United States Department of the Interior (DOI). 2011. Letter to PG&E and Water Board. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility PG&E Topock Compressor Station Site." August 18.

5-2 ES061814003139BAO

#### **SECTION 6**

# 6 Certification

PG&E submitted a signature delegation letter to the DOI and the Water Board on July 9, 2014 (PG&E, 2014). The letter delegated PG&E signature authority to Mr. Kevin Sullivan, Ms. Yvonne Meeks, and Mr. Curt Russell for correspondence regarding required ARARs.

#### **Certification Statement:**

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:

Name:

Yvonne J. Meeks

Company: Pacific Gas and Electric Company

Title: <u>Topock Environmental Remediation Project Manager</u>

Date: July 15, 2014

ES061814003139BAO 6-1



TABLE 1 Operational Status of Interim Measures No. 3 Injection Wells From July 2005 through June 2014 PG&E Topock Compliance Monitoring Program

| Time Period                          | Injection Status                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July 31, 2005 to Fourth Quarter 2005 | Injection occurred at IW-2.                                                                                                                                                                                                                                                                                                                                                                                                      |
| First Quarter 2006                   | Injection occurred primarily at IW-2 except during intervals of operational testing, when injection was divided equally between IW-2 and IW-3.                                                                                                                                                                                                                                                                                   |
| Second Quarter 2006                  | Injection occurred at IW-2.                                                                                                                                                                                                                                                                                                                                                                                                      |
| Third Quarter 2006                   | In August 2006, IW-2 went offline for routine maintenance, and injection commenced at IW-3.                                                                                                                                                                                                                                                                                                                                      |
| Fourth Quarter 2006                  | Injection occurred at IW-3, except during routine maintenance.                                                                                                                                                                                                                                                                                                                                                                   |
| First Quarter 2007                   | Injection occurred at IW-3 and transitioned over to IW-2 on March 8.                                                                                                                                                                                                                                                                                                                                                             |
| Second Quarter 2007                  | Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.                                                                                                                                                                                                                                                                                              |
| Third Quarter 2007                   | Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.                                                                                                                                                                                                                                                                               |
| Fourth Quarter 2007                  | Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.                                                                                                                                                                                                                                                                                        |
| First Quarter 2008                   | Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.                                                                                                                                                                                                                                                                                                        |
| Second Quarter 2008                  | Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing was performed at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.                                                                                                                                                                                                                   |
| Third Quarter 2008                   | Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short interval on July 25 and from August 12 – August 31, 2008. Backwashing was performed at IW-3 on June 17, June 27, July 9, July 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing was performed at IW-2 on September 9 - September 11, 2008.                                                             |
| Fourth Quarter 2008                  | Injection occurred at IW-3 and then switched to IW-2 on September 23. Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued at IW-2 until December 16, 2008 and occurred concurrently and continued at IW-3 on December 11, 2008.                                         |
| First Quarter 2009                   | Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events were performed periodically during the intervals when each injection well was offline. Routine and scheduled maintenance occurred December 18, 2008 through January 21, 2009 at which time both wells were offline.                                                                                      |
| Second Quarter 2009                  | Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.                                                                               |
| Third Quarter 2009                   | IM-3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned. |
| Fourth Quarter 2009                  | Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.                                                                                                                                                                                                                                                                            |
| First Half 2010                      | Injection occurred mainly at IW-3 until March 3, 2010. Beginning March 3, 2010, IM-3 injection alternated between the two wells approximately every two weeks until April 20, 2010 for a planned shutdown. On April 22, 2010, injection resumed at IW-3 and alternated between the two                                                                                                                                           |

TABLE 1
Operational Status of Interim Measures No. 3 Injection Wells From July 2005 through June 2014
PG&E Topock Compliance Monitoring Program

| Time Period      | Injection Status                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | wells approximately every two weeks. Backwashing was performed periodically during the intervals when each injection well was offline.                                                                                                                                                                                                                                                     |
| Second Half 2010 | Injection occurred primarily at IW-2 with the exception of the following periods when it primarily occurred at IW-3: July 22 - August 25, August 30 - September 7, September 16 - October 15, November 5 -18, and December 17- 31, 2010.                                                                                                                                                   |
| First Half 2011  | Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 27 - February 10, February 23 - March 7, March 30 - April 20, May 6 – June 7, and June 22-28, 2011. Backwashing was performed periodically during the intervals when each injection well was offline. A planned shutdown occurred April 25-29 and June 28-30. |
| Second Half 2011 | Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 14 through August 3, August 10 through 13, September 11 through 22, October 6 through 10; and October 27 Through December 31. Backwashing was performed periodically during the intervals when each injection well was offline.                                  |
| First Half 2012  | Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 1 through January 6, 2012; February 2 through February 16, 2012; March 2 through April 5, 2012; May 10 through May 21, 2012; May 29 through June 1, 2012, June 14,2012 and June 21 through June 27, 2012.                                                     |
| Second Half 2012 | Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 18 through July 25, 2012; August 1 through August 13, 2012; August 17 through August 22, 2012; August 31 through September 26, 2012; and September 29 through October 9, 2012.                                                                                   |
| First Half 2013  | Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: March 5 through March 14, 2013; April 8 through May 22, 2013, June 24 through June 25, 2013, and June 29 through June 30, 2013.                                                                                                                                       |
| Second Half 2013 | Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 1 - 9, 2013; July 31 through August 12, 2013, October 22 through November 6, 2013, November 26 through December 12, 2013, and December 28 - 31, 2013.                                                                                                            |
| First Half 2014  | Injection occurred primarily at IW-2 with the exception of the following periods when it primarily occurred at IW-3: January 6, 2014, January 16 through January 29, 2014, April 17 - 23, 2014, and May 10 through June 22, 2014, and June 25, 2014.                                                                                                                                       |

TABLE 2 Well Construction and Sampling Summary for Groundwater Samples, First Half 2014 PG&E Topock Compliance Monitoring Program

| Well ID     | Site Area | Measuring<br>Point<br>Elevation<br>(ft amsl) | Screen<br>Interval<br>(ft bgs) | Well<br>Casing<br>(inches) | Well Depth<br>(ft btoc) | Depth to<br>Water<br>(ft btoc) | Sampling        | Typical<br>Purge Ra<br>(gpm) |      |       |        | Remarks |
|-------------|-----------|----------------------------------------------|--------------------------------|----------------------------|-------------------------|--------------------------------|-----------------|------------------------------|------|-------|--------|---------|
| IM Compliar | nce Wells |                                              |                                |                            |                         |                                |                 |                              |      |       |        |         |
| CW-01M      | East Mesa | 566.07                                       | 140 - 190                      | 2 (PVC)                    | 190.0                   | 108.2                          | Temp Redi-Flo   | AR 2                         | 42   | 165   |        |         |
| CW-01D      | East Mesa | 566.46                                       | 250 - 300                      | 2 (PVC)                    | 300.2                   | 108.3                          | Temp Redi-Flo   | AR 3                         | 98   | 180   |        |         |
| CW-02M      | East Mesa | 549.45                                       | 152 - 202                      | 2 (PVC)                    | 208.3                   | 91.7                           | Temp Redi-Flo   | AR 2                         | 56   | 195   |        |         |
| CW-02D      | East Mesa | 549.43                                       | 285 - 335                      | 2 (PVC)                    | 355.0                   | 91.3                           | Temp Redi-Flo   | AR 3                         | 134  | 159   |        |         |
| CW-03M      | East Mesa | 534.10                                       | 172 - 222                      | 2 (PVC)                    | 222.0                   | 76.6                           | Temp Redi-Flo   | AR 2                         | 74   | 180   |        |         |
| CW-03D      | East Mesa | 534.14                                       | 270 - 320                      | 2 (PVC)                    | 340.0                   | 76.0                           | Temp Redi-Flo   | AR 3                         | 134  | 143   |        |         |
| CW-04M      | East Mesa | 518.55                                       | 119.5 - 169.5                  | 2 (PVC)                    | 169.8                   | 60.5                           | Temp Redi-Flo   | AR 2                         | 56   | 160   |        |         |
| CW-04D      | East Mesa | 518.55                                       | 233 - 283                      | 2 (PVC)                    | 303.0                   | 60.4                           | Temp Redi-Flo / | AR 3                         | 124  | 134   |        |         |
| IM Observat | ion Wells | •                                            |                                |                            | •                       |                                |                 |                              |      |       |        |         |
| OW-01S      | East Mesa | 550.21                                       | 83.5 - 113.5                   | 2 (PVC)                    | 113.5                   | 92.6                           | Temp Redi-Flo   | AR 1                         | 10.2 | 100   | Active |         |
| OW-01M      | East Mesa | 550.36                                       | 165 - 185                      | 2 (PVC)                    | 185.8                   | 92.4                           | Temp Redi-Flo   | AR 3                         | 48   | 109.6 |        |         |
| OW-01D      | East Mesa | 550.36                                       | 257 - 277                      | 2 (PVC)                    | 277.3                   | 92.1                           | Temp Redi-Flo   | AR 3                         | 94   | 111.4 |        |         |
| OW-02S      | East Mesa | 548.88                                       | 71 - 101                       | 2 (PVC)                    | 103.6                   | 91.3                           | Temp Redi-Flo   | AR 1                         | 15   | 100   | Active |         |
| OW-02M      | East Mesa | 548.52                                       | 190 - 210                      | 2 (PVC)                    | 210.3                   | 90.6                           | Temp Redi-Flo   | AR 2                         | 61   | 111.4 |        |         |
| OW-02D      | East Mesa | 549.01                                       | 310 - 330                      | 2 (PVC)                    | 340.0                   | 90.6                           | Temp Redi-Flo   | AR 2                         | 127  | 110.3 |        |         |
| OW-05S      | East Mesa | 551.83                                       | 70 - 110                       | 2 (PVC)                    | 110.3                   | 94.1                           | Temp Redi-Flo   | AR 1                         | 8    | 100   | Active |         |
| OW-05M      | East Mesa | 551.81                                       | 210 - 250                      | 2 (PVC)                    | 250.3                   | 93.1                           | Temp Redi-Flo   | AR 2                         | 80   | 112.5 | Active |         |
| OW-05D      | East Mesa | 552.41                                       | 300 - 320                      | 2 (PVC)                    | 350.0                   | 93.8                           | Temp Redi-Flo   | AR 3                         | 131  | 113.2 | Active |         |

amsl above mean sea level bgs below ground surface

btoc below top of polyvinyl chloride (PVC) casing

gpm

gallons per minute adjustable-rate electric submersible pump Redi-Flo AR

Temp temporary

Depth to water for each well was collected on June 2014. All wells were purged and sampled using 3 well-volume method.

TABLE 3
Chromium Results for Groundwater Samples, First Half 2014
PG&E Topock Compliance Monitoring Program

|                | Method:        | E218.6                           | E200.8             |  |
|----------------|----------------|----------------------------------|--------------------|--|
| Location<br>ID | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Chromium<br>(µg/L) |  |
| CW-01M         | 4/7/2014       | ND (1.0)                         | 1.1                |  |
| CW-01D         | 4/7/2014       | ND (1.0)                         | 1.1                |  |
| CW-02M         | 4/7/2014       | 2.2                              | 2.5                |  |
| CW-02D         | 4/7/2014       | ND (1.0)                         | ND (1.0)           |  |
| CW-03M         | 4/8/2014       | 6.4                              | 7.9                |  |
| CW-03M         | 4/8/2014 (FD)  | 7.0                              | 7.9                |  |
| CW-03D         | 4/8/2014       | ND (1.0)                         | ND (1.0)           |  |
| CW-04M         | 4/8/2014       | 4.9                              | 4.9                |  |
| CW-04D         | 4/8/2014       | ND (1.0)                         | ND (1.0)           |  |
| OW-01S         | 4/8/2014       | 5.8                              | 6.7                |  |
| OW-02S         | 4/8/2014       | 19.8                             | 19.4               |  |
| OW-02S         | 4/8/2014 (FD)  | 19.8                             | 20.2               |  |
| OW-05S         | 4/8/2014       | 15.4                             | 15.7               |  |

FD field duplicate

ND parameter not detected at the listed reporting limit

μg/L micrograms per liter

Hexavalent Chromium and Chromium are field filtered.

TABLE 4 Metals and General Chemistry Results for Groundwater Samples, First Half 2014 PG&E Topock Compliance Monitoring Program

|                | Method:        | E120.1                                | Field       | SM2540C                                | SM2130B            | E300.0             | E300.0             | E300.0            | SM4500NH3D                       | SM4500NO3                                | E200.7 | E200.8                            |
|----------------|----------------|---------------------------------------|-------------|----------------------------------------|--------------------|--------------------|--------------------|-------------------|----------------------------------|------------------------------------------|--------|-----------------------------------|
| Location<br>ID | Sample<br>Date | Specific<br>Conductance<br>(µmhos/cm) | Field<br>pH | Total<br>Dissolved<br>Solids<br>(mg/L) | Turbidity<br>(NTU) | Chloride<br>(mg/L) | Fluoride<br>(mg/L) | Sulfate<br>(mg/L) | Ammonia<br>as Nitrogen<br>(mg/L) | Nitrate/Nitrite<br>as Nitrogen<br>(mg/L) |        | Dissolved<br>Molybdenum<br>(µg/L) |
| CW-01M         | 4/7/2014       | 6680                                  | 7.6         | 4400                                   | 0.101              | 2060               | 2.13               | 468               | ND (0.5)                         | 3.08                                     |        |                                   |
| CW-01D         | 4/7/2014       | 6850                                  | 7.5         | 4520                                   | 0.107              | 2140               | 2.36               | 480               | ND (0.5)                         | 3.15                                     |        |                                   |
| CW-02M         | 4/7/2014       | 6820                                  | 7.5         | 4340                                   | 0.165              | 2390               | 2.99               | 477               | ND (0.5)                         | 3.11                                     |        |                                   |
| CW-02D         | 4/7/2014       | 6810                                  | 7.7         | 4390                                   | 0.852              | 2400               | 2.44               | 472               | ND (0.5)                         | 3.26                                     |        |                                   |
| CW-03M         | 4/8/2014       | 8220                                  | 7.5         | 4540                                   | ND (0.1)           | 3020               | 2.93               | 451               | ND (0.5)                         | 1.73                                     |        |                                   |
| CW-03M         | 4/8/2014 (FD)  | 8260                                  | FD          | 5420                                   | ND (0.1)           | 3010               | 2.93               | 464               | ND (0.5)                         | 1.71                                     |        |                                   |
| CW-03D         | 4/8/2014       | 6910                                  | 7.7         | 4400                                   | 0.157              | 2080               | 3.66               | 486               | ND (0.5)                         | 3.20                                     |        |                                   |
| CW-04M         | 4/8/2014       | 6510                                  | 7.5         | 4120                                   | ND (0.1)           | 2250               | 1.88               | 448               | ND (0.5)                         | 2.93                                     |        |                                   |
| CW-04D         | 4/8/2014       | 6800                                  | 7.7         | 4740                                   | 0.102              | 2340               | 3.21               | 483               | ND (0.5)                         | 3.14                                     |        |                                   |
| OW-01S         | 4/8/2014       | 5810                                  | 7.2         | 4240                                   | 1.100              | 2020               | 1.48               | 410               |                                  | 3.27                                     | 774    | 4.8                               |
| OW-02S         | 4/8/2014       | 2050                                  | 7.7         | 1140                                   | 0.483              | 526                | 4.07               | 98.5              |                                  | 3.73                                     | 374    | 29.0                              |
| OW-02S         | 4/8/2014 (FD)  | 2050                                  | FD          | 1170                                   | 0.565              | 587                | 4.30               | 95.2              |                                  | 3.69                                     | 362    | 28.8                              |
| OW-05S         | 4/8/2014       | 3890                                  | 7.3         | 2590                                   | 0.317              | 1330               | 1.67               | 233               |                                  | 3.35                                     | 486    | 14.4                              |

not sampled or required for this event

field duplicate FD

parameter not detected at the listed reporting limit Nephelometric Turbidity Unit ND

NTU micro-mhos per centimeter µmhos/cm

mg/L milligrams per liter μg/L micrograms per liter

TABLE 5
Treated Water Quality Compared to OW and CW Pre-injection Water Quality
PG&E Topock Compliance Monitoring Program

| Location ID   | Sample Date | Hexavalent<br>Chromium<br>(µg/L) | Chromium<br>(µg/L) | Fluoride<br>(mg/L) | Molybdenum<br>(μg/L) | Nitrate/Nitrite as<br>Nitrogen<br>(mg/L) | Sulfate<br>(mg/L) | Total Dissolved<br>Solids<br>(mg/L) |
|---------------|-------------|----------------------------------|--------------------|--------------------|----------------------|------------------------------------------|-------------------|-------------------------------------|
| Treated Water | 8/29/2005   | ND (1.0)                         | ND (2.1)           | 1.95               | 8.3                  | 3.70                                     | 450               | 3,620                               |
| Treated Water | 4/7/2010    | 0.29                             | ND (1.0)           | 1.82               | 18.6                 | 2.87                                     | 512               | 4,270                               |
| Treated Water | 4/8/2014    | ND (0.2)                         | ND (1.0)           | 1.98               | 18.7                 | 2.38                                     | 478               | 4,440                               |
| CW-01M        | 9/15/2005   | 18.1                             | 17.8               | 2.34               | 21.6                 | 1.11                                     | 318               | 2,990                               |
| CW-01D        | 9/15/2005   | ND(1.0)                          | 1.6                | 0.951              | 32.1                 | 0.972                                    | 379               | 6,230                               |
| CW-02M        | 9/15/2005   | 15.8                             | 15.5               | 2.3                | 23.1                 | 0.908                                    | 342               | 3,500                               |
| CW-02D        | 9/15/2005   | ND(1.0)                          | 1.6                | 0.982              | 41.6                 | 0.28                                     | 601               | 8,770                               |
| CW-03M        | 9/15/2005   | 8.8                              | 8.1                | 2.57               | 24.2                 | 0.642                                    | 464               | 4,740                               |
| CW-03D        | 9/15/2005   | ND(1.0)                          | ND(1.0)            | 1.4                | 29.2                 | 0.304                                    | 672               | 9,550                               |
| CW-04M        | 9/15/2005   | 19.2                             | 19                 | 1.5                | 12.3                 | 1.18                                     | 240               | 3,310                               |
| CW-04D        | 9/15/2005   | ND(1.0)                          | ND(1.0)            | 1.01               | 26                   | 0.188                                    | 534               | 7,470                               |
| OW-01S        | 7/28/2005   | 19.4                             | 23.5               | 2.45               | 17.2                 | 3.2                                      | 114               | 1,320                               |
| OW-01M        | 7/27/2005   | 16.3                             | 18.9               | 2.31               | 27                   | 1.01                                     | 311               | 3,450                               |
| OW-01D        | 7/27/2005   | ND(1.0)                          | ND(1.3)            | 1.14               | 46.1                 | 0.321                                    | 441               | 6,170                               |
| OW-02S        | 7/28/2005   | 15.3                             | 14.8               | 3.79               | 35.6                 | 3.81                                     | 126               | 1,090                               |
| OW-02M        | 7/28/2005   | 5.4                              | 5.7                | 2.19               | 32.4                 | 0.735                                    | 342               | 4,380                               |
| OW-02D        | 7/28/2005   | ND(1.0)                          | ND(1.2)            | 0.966              | 51.2                 | 0.1                                      | 616               | 9,550                               |
| OW-05S        | 7/28/2005   | 23.4                             | 25.6               | 2.3                | 17.1                 | 3.55                                     | 105               | 1,060                               |
| OW-05M        | 7/28/2005   | 8.6                              | 8.8                | 2.74               | 35.4                 | 0.621                                    | 417               | 5,550                               |
| OW-05D        | 7/28/2005   | ND(1.0)                          | ND(1.2)            | 1.11               | 57                   | 0.151                                    | 480               | 8,970                               |

#### NOTES:

ND = Not detected at the listed reporting limit.

mg/L = milligrams per liter.

 $\mu$ g/L = micrograms per liter.

Hexavalent chromium samples were analyzed using Method 7199 in 2005 and then by Method E218.6.

Chromium samples were analyzed using method 6020A for samples collected on 7/28/2005, by Method 6010B for samples collected on 9/15/2005, by Method 6020B for samples collected on 8/29/2005 and by Method E200.8 for all other chromium samples.

Chromium samples of the treated water were unfiltered.

TABLE 6
Treated Water Quality Compared to First Half 2014 Sampling Event Water Quality
PG&E Topock Compliance Monitoring Program

| Location<br>ID | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Chromium<br>(µg/L) | Fluoride<br>(mg/L) | Molybdenum<br>(μg/L) | Nitrate/Nitrite<br>as Nitrogen<br>(mg/L) | Sulfate<br>(mg/L) | Total Dissolved<br>Solids<br>(mg/L) |
|----------------|----------------|----------------------------------|--------------------|--------------------|----------------------|------------------------------------------|-------------------|-------------------------------------|
| Treated Water  | 4/3/2012       | ND (0.2)                         | ND (1.0)           | 2.11               | 18.9                 | 3.06                                     | 564               | 4,430                               |
| Treated Water  | 4/1/2013       | ND (0.2)                         | ND (1.0)           | 2.14               | 17.2                 | 2.84                                     | 501               | 4,230                               |
| Treated Water  | 4/8/2014       | ND (0.2)                         | ND (1.0)           | 1.98               | 18.7                 | 2.38                                     | 478               | 4,440                               |
| CW-01M         | 4/7/2014       | ND (1.0)                         | 1.1                | 2.13               |                      | 3.08                                     | 468               | 4,400                               |
| CW-01D         | 4/7/2014       | ND (1.0)                         | 1.1                | 2.36               |                      | 3.15                                     | 480               | 4,520                               |
| CW-02M         | 4/7/2014       | 2.2                              | 2.5                | 2.99               |                      | 3.11                                     | 477               | 4,340                               |
| CW-02D         | 4/7/2014       | ND (1.0)                         | ND (1.0)           | 2.44               |                      | 3.26                                     | 472               | 4,390                               |
| CW-03M         | 4/8/2014       | 6.4                              | 7.9                | 2.93               |                      | 1.73                                     | 451               | 4,540                               |
| CW-03M         | 4/8/2014 (FD)  | 7.0                              | 7.9                | 2.93               |                      | 1.71                                     | 464               | 5,420                               |
| CW-03D         | 4/8/2014       | ND (1.0)                         | ND (1.0)           | 3.66               |                      | 3.20                                     | 486               | 4,400                               |
| CW-04M         | 4/8/2014       | 4.9                              | 4.9                | 1.88               |                      | 2.93                                     | 448               | 4,120                               |
| CW-04D         | 4/8/2014       | ND (1.0)                         | ND (1.0)           | 3.21               |                      | 3.14                                     | 483               | 4,740                               |
| OW-01S         | 4/8/2014       | 5.8                              | 6.7                | 1.48               | 4.8                  | 3.27                                     | 410               | 4,240                               |
| OW-02S         | 4/8/2014       | 19.8                             | 19.4               | 4.07               | 29.0                 | 3.73                                     | 98.5              | 1,140                               |
| OW-02S         | 4/8/2014 (FD)  | 19.8                             | 20.2               | 4.30               | 28.8                 | 3.69                                     | 95.2              | 1,170                               |
| OW-05S         | 4/8/2014       | 15.4                             | 15.7               | 1.67               | 14.4                 | 3.35                                     | 233               | 2,590                               |

--- not sampled or required for this event

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter  $\mu g/L$  micrograms per liter

All hexavalent chromium samples were analyzed with Method E218.6.

All chromium and molybdenum samples were analyzed with Method E200.8. Chromium and molybdenum samples were field filtered, except for the treated water.

Fluoride and sulfate samples were analyzed with Method E300.0.

All nitrate/nitrite as nitrogen samples were analyzed with Method SM4500NO3E, except for treated water which used Method E300.0. All total dissolved solid samples were analyzed with Method SM2540C.

TABLE 7

Manual Water Level Measurements and Elevations, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location<br>ID | Well<br>Depth<br>(feet btoc) | Measuring Point<br>Elevation<br>(feet amsl) | t<br>Monito<br>Date & | •        | Water Level<br>Measurement<br>(feet btoc) | Salinity<br>(%) | Groundwater/Water<br>Elevation<br>Adjusted for Salinity<br>(feet amsl) |
|----------------|------------------------------|---------------------------------------------|-----------------------|----------|-------------------------------------------|-----------------|------------------------------------------------------------------------|
| CW-01M         | 190.0                        | 566.07                                      | 21-Jan-14             | 11:36 AM | 110.36                                    | 0.49            | 455.65                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:21 AM  | 108.23                                    | 0.49            | 457.78                                                                 |
| CW-01D         | 300.2                        | 566.46                                      | 21-Jan-14             | 11:38 AM | 110.43                                    | 0.50            | 455.91                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:23 AM  | 108.34                                    | 0.50            | 458.00                                                                 |
| CW-02M         | 208.3                        | 549.45                                      | 21-Jan-14             | 11:41 AM | 94.02                                     | 0.53            | 455.36                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:27 AM  | 91.74                                     | 0.53            | 457.64                                                                 |
| CW-02D         | 355.0                        | 549.43                                      | 21-Jan-14             | 11:44 AM | 93.50                                     | 0.53            | 455.75                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:30 AM  | 91.35                                     | 0.53            | 457.90                                                                 |
| CW-03M         | 222.0                        | 534.10                                      | 21-Jan-14             | 11:46 AM | 78.90                                     | 0.60            | 455.20                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:33 AM  | 76.57                                     | 0.60            | 457.53                                                                 |
| CW-03D         | 340.0                        | 534.14                                      | 21-Jan-14             | 11:48 AM | 78.19                                     | 0.53            | 455.76                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:35 AM  | 75.98                                     | 0.53            | 457.96                                                                 |
| CW-04M         | 169.8                        | 518.55                                      | 21-Jan-14             | 11:53 AM | 62.74                                     | 0.49            | 455.74                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:41 AM  | 60.52                                     | 0.49            | 457.96                                                                 |
| CW-04D         | 303.0                        | 518.55                                      | 21-Jan-14             | 11:54 AM | 62.53                                     | 0.51            | 455.82                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:43 AM  | 60.37                                     | 0.51            | 457.98                                                                 |
| OW-01S         | 113.5                        | 550.21                                      | 21-Jan-14             | 11:58 AM | 94.97                                     | 0.32            | 455.21                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:48 AM  | 92.63                                     | 0.32            | 457.54                                                                 |
| OW-01M         | 185.8                        | 550.36                                      | 21-Jan-14             | 12:00 PM | 94.65                                     | 0.49            | 455.63                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:50 AM  | 92.44                                     | 0.49            | 457.84                                                                 |
| OW-01D         | 277.3                        | 550.36                                      | 21-Jan-14             | 12:02 PM | 94.27                                     | 0.51            | 455.96                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:52 AM  | 92.12                                     | 0.51            | 458.11                                                                 |
| OW-02S         | 103.6                        | 548.88                                      | 21-Jan-14             | 12:04 PM | 93.62                                     | 0.13            | 455.23                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:54 AM  | 91.26                                     | 0.13            | 457.58                                                                 |
| OW-02M         | 210.3                        | 548.52                                      | 21-Jan-14             | 12:06 PM | 92.79                                     | 0.49            | 455.62                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:57 AM  | 90.59                                     | 0.49            | 457.82                                                                 |
| OW-02D         | 340.0                        | 549.01                                      | 21-Jan-14             | 12:08 PM | 92.84                                     | 0.52            | 455.98                                                                 |
|                |                              |                                             | 05-Jun-14             | 9:59 AM  | 90.62                                     | 0.52            | 458.20                                                                 |
| OW-05S         | 110.3                        | 551.83                                      | 21-Jan-14             | 12:10 PM | 96.40                                     | 0.27            | 455.40                                                                 |
|                |                              |                                             | 05-Jun-14             | 10:01 AM | 94.13                                     | 0.27            | 457.66                                                                 |
| OW-05M         | 250.3                        | 551.81                                      | 21-Jan-14             | 12:12 PM | 95.27                                     | 0.50            | 456.53                                                                 |
|                |                              |                                             | 05-Jun-14             | 10:04 AM | 93.08                                     | 0.50            | 458.62                                                                 |
| OW-05D         | 350.0                        | 552.41                                      | 21-Jan-14             | 12:14 PM | 95.95                                     | 0.52            | 456.53                                                                 |
|                |                              |                                             | 05-Jun-14             | 10:06 AM | 93.85                                     | 0.52            | 458.39                                                                 |

amsl above mean sea level

btoc below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

TABLE 8
Vertical Gradients within the OW and CW Clusters, First Half 2014
PG&E Topock Compliance Monitoring Program

| Well Pairs       | Vertical Gradient (ft/ft) <sup>a</sup> |
|------------------|----------------------------------------|
| CW-01D to CW-01M | 0.0020                                 |
| CW-02D to CW-02M | 0.0020                                 |
| CW-03D to CW-03M | 0.0044                                 |
| CW-04D to CW-04M | 0.0002                                 |
| OW-01M to OW-01S | 0.0039                                 |
| OW-01D to OW-01M | 0.0029                                 |
| OW-02M to OW-02S | 0.0021                                 |
| OW-02D to OW-02M | 0.0032                                 |
| OW-05M to OW-05S | 0.0069                                 |

<sup>&</sup>lt;sup>a</sup> Positive value signifies an upward gradient.

Gradients calculated using June 5, 2014 groundwater levels.

TABLE 9
Field Parameter Measurements for Groundwater Samples, First Half 2014
PG&E Topock Compliance Monitoring Program

| Location<br>ID | Sampling | Specific<br>Conductance<br>(µmhos/cm) | Temperature | pН  | ORP  | Dissolved<br>Oxygen<br>(mg/L) | Turbidity | Salinity | Depth To<br>Water<br>(feet btoc) |
|----------------|----------|---------------------------------------|-------------|-----|------|-------------------------------|-----------|----------|----------------------------------|
|                | Date     | (риноз/сиг)                           | (°C)        | рп  | (mV) | (IIIg/L)                      | (NTU)     | (%)      | (leet bloc)                      |
| CW-01M         | 4/7/2014 | 6,776                                 | 29.29       | 7.6 | 110  | 7.76                          | 1         | 0.44     | 108.85                           |
| CW-01D         | 4/7/2014 | 6,913                                 | 28.21       | 7.5 | 108  | 7.02                          | 1         | 0.45     | 108.91                           |
| CW-02M         | 4/7/2014 | 6,744                                 | 30.45       | 7.5 | 69   | 7.60                          | 1         | 0.44     | 91.98                            |
| CW-02D         | 4/7/2014 | 6,820                                 | 30.45       | 7.7 | 22   | 7.33                          | 1         | 0.44     | 91.70                            |
| CW-03M         | 4/8/2014 | 9,282                                 | 30.37       | 7.5 | 41   | 3.47                          | 1         | 0.60     | 76.89                            |
| CW-03D         | 4/8/2014 | 7,757                                 | 30.49       | 7.7 | 63   | 6.96                          | 1         | 0.50     | 76.31                            |
| CW-04M         | 4/8/2014 | 7,272                                 | 29.99       | 7.5 | 58   | 7.17                          | 1         | 0.47     | 61.05                            |
| CW-04D         | 4/8/2014 | 7,627                                 | 30.66       | 7.7 | 50   | 8.26                          | 1         | 0.49     | 59.94                            |
| OW-01S         | 4/8/2014 | 6,647                                 | 29.56       | 7.2 | 47   | 7.39                          | 2         | 0.43     | 93.73                            |
| OW-02S         | 4/8/2014 | 2,288                                 | 29.70       | 7.7 | 26   | 8.11                          | 2         | 0.15     | 92.35                            |
| OW-05S         | 4/8/2014 | 4,458                                 | 29.57       | 7.3 | 23   | 6.74                          | 1         | 0.29     | 94.44                            |

µmhos/cm micro-mhos per centimeter

°C degree centigrade

ORP oxidation reduction potential

mV millivolts

mg/L milligrams per liter

NTU Nephelometric Turbidity Unit

% percentage

btoc below top of polyvinyl chloride (PVC) casing

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

Date printed: 5/2/2014

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab     | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician               | Units    | Result   | RL    | MDL    |
|----------|------------|-----------------|----------------|----------------|---------|--------------------|-----------|------------------|---------------------------------|----------|----------|-------|--------|
| CW-01D   | CW-01D-031 | Barry Collom    | 4/7/2014       | 10:17:00 AM    | TLI     | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6850     | 2.0   | 0.606  |
|          |            |                 |                |                | TLI     | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 1.1      | 1.0   | 0.14   |
|          |            |                 |                |                | TLI     | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | ND (1.0) | 1.0   | 0.03   |
|          |            |                 |                |                | TLI     | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2140     | 50.0  | 17.4   |
|          |            |                 |                |                | TLI     | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2.36     | 0.5   | 0.104  |
|          |            |                 |                |                | TLI     | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 480      | 25.0  | 1.54   |
|          |            |                 |                |                | СНМС    | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 3.15     | 0.04  | 0.0112 |
|          |            |                 |                |                | TLI     | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | 0.107    | 0.1   | 0.014  |
|          |            |                 |                |                | TLI     | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4520     | 125   | 1.76   |
|          |            |                 |                |                | TLI     | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5   | 0.0318 |
| CW-01M   | CW-01M-031 | Barry Collom    | 4/7/2014       | 10:57:00 AM    | TLI     | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6680     | 2.0   | 0.606  |
|          |            |                 |                |                | TLI     | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 1.1      | 1.0   | 0.14   |
|          |            |                 |                |                | TLI     | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | ND (1.0) | 1.0   | 0.03   |
|          |            |                 |                |                | TLI     | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2060     | 50.0  | 17.4   |
|          |            |                 |                |                | TLI     | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2.13     | 0.5   | 0.104  |
|          |            |                 |                |                | TLI     | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 468      | 25.0  | 1.54   |
|          |            |                 |                |                | СНМС    | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 3.08     | 0.04  | 0.0112 |
|          |            |                 |                | TLI            | SM2130B | TRB                | 4/8/2014  | Felipe Mendoza   | NTU                             | 0.101    | 0.1      | 0.014 |        |
|          |            |                 |                |                | TLI     | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4400     | 125   | 1.76   |

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab  | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician               | Units    | Result   | RL                                                                            | MDL    |
|----------|------------|-----------------|----------------|----------------|------|--------------------|-----------|------------------|---------------------------------|----------|----------|-------------------------------------------------------------------------------|--------|
| CW-01M   | CW-01M-031 | Barry Collom    | 4/7/2014       | 10:57:00 AM    | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5                                                                           | 0.0318 |
| CW-02D   | CW-02D-031 | Barry Collom    | 4/7/2014       | 2:20:00 PM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6810     | 2.0                                                                           | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | ND (1.0) | 1.0                                                                           | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | ND (1.0) | 1.0                                                                           | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2400     | 50.0                                                                          | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2.44     | 0.5                                                                           | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 472      | 25.0                                                                          | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 3.26     | 0.04                                                                          | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | 0.852    | 0.1                                                                           | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4390     | 125                                                                           | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5  2.0  1.0  1.0  50.0  0.5  25.0  0.04  0.1                                | 0.0318 |
| CW-02M   | CW-02M-031 | Barry Collom    | 4/7/2014       | 3:07:00 PM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6820     | 50.0<br>0.5<br>25.0<br>0.04<br>0.1<br>125<br>0.5<br>2.0<br>1.0<br>50.0<br>0.5 | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 2.5      | 1.0                                                                           | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | 2.2      | 1.0                                                                           | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2390     | 50.0                                                                          | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2.99     | 0.5                                                                           | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 477      | 25.0                                                                          | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 3.11     | 0.04                                                                          | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | 0.165    | 0.1                                                                           | 0.014  |

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab  | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician               | Units    | Result   | RL                                                      | MDL    |
|----------|------------|-----------------|----------------|----------------|------|--------------------|-----------|------------------|---------------------------------|----------|----------|---------------------------------------------------------|--------|
| CW-02M   | CW-02M-031 | Barry Collom    | 4/7/2014       | 3:07:00 PM     | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4340     | 125                                                     | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5                                                     | 0.0318 |
| CW-03D   | CW-03D-031 | Barry Collom    | 4/8/2014       | 7:37:45 AM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6910     | 2.0                                                     | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | ND (1.0) | 1.0                                                     | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | ND (1.0) | 1.0                                                     | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2080     | 50.0                                                    | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 3.66     | 0.5                                                     | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 486      | 25.0                                                    | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 3.20     | 0.04                                                    | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | 0.157    | 0.1                                                     | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4400     | 125                                                     | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 1.0 1.0 50.0 0.5 25.0 0.04 0.1 125 0.5 2.0 1.0 50.0 0.5 | 0.0318 |
| CW-03M   | OW-90-031  | Barry Collom    | 4/8/2014       | 6:50:00 AM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 8260     | 2.0                                                     | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 7.9      | 1.0                                                     | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | 7.0      | 1.0                                                     | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 3010     | 50.0                                                    | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2.93     | 0.5                                                     | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 464      | 25.0                                                    | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 1.71     | 0.04                                                    | 0.0112 |

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab  | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician               | Units    | Result   | RL   | MDL    |
|----------|------------|-----------------|----------------|----------------|------|--------------------|-----------|------------------|---------------------------------|----------|----------|------|--------|
| CW-03M   | OW-90-031  | Barry Collom    | 4/8/2014       | 6:50:00 AM     | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | ND (0.1) | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 5420     | 250  | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5  | 0.0318 |
| CW-03M   | CW-03M-031 | Barry Collom    | 4/8/2014       | 8:55:45 AM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 8220     | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 7.9      | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | 6.4      | 1.0  | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 3020     | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2.93     | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 451      | 25.0 | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 1.73     | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | ND (0.1) | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4540     | 125  | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5  | 0.0318 |
| CW-04D   | CW-04D-031 | Barry Collom    | 4/8/2014       | 10:57:00 AM    | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6800     | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | ND (1.0) | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | ND (1.0) | 1.0  | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2340     | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 3.21     | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 483      | 25.0 | 1.54   |

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab  | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician               | Units    | Result   | RL   | MDL    |
|----------|------------|-----------------|----------------|----------------|------|--------------------|-----------|------------------|---------------------------------|----------|----------|------|--------|
| CW-04D   | CW-04D-031 | Barry Collom    | 4/8/2014       | 10:57:00 AM    | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 3.14     | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | 0.102    | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4740     | 125  | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5  | 0.0318 |
| CW-04M   | CW-04M-031 | Barry Collom    | 4/8/2014       | 11:42:00 AM    | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 6510     | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 4.9      | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/16/2014        | Naheed Eidinejad                | μg/L     | 4.9      | 1.0  | 0.03   |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 2250     | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 1.88     | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa                 | mg/L     | 448      | 25.0 | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell                    | mg/L     | 2.93     | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza                  | NTU      | ND (0.1) | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn               | mg/L     | 4120     | 125  | 1.76   |
|          |            |                 |                |                | TLI  | SM4500NH3D         | NH3N      | 4/16/2014        | Himani Viashnav/Maksim Gorbunov | mg/L     | ND (0.5) | 0.5  | 0.0318 |
| OW-01S   | OW-01S-031 | Barry Collom    | 4/8/2014       | 3:03:00 PM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn               | µmhos/cm | 5810     | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.7          | NAD       | 4/10/2014        | Ethel Suico                     | mg/L     | 774      | 50.0 | 5.98   |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico                     | μg/L     | 6.7      | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 200.8          | MOD       | 4/10/2014        | Ethel Suico                     | μg/L     | 4.8      | 2.0  | 0.25   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad                | μg/L     | 5.8      | 1.0  | 0.03   |

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2014

PG&E Topock Compliance Monitoring Program

| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab  | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician | Units    | Result | RL   | MDL    |
|----------|------------|-----------------|----------------|----------------|------|--------------------|-----------|------------------|-------------------|----------|--------|------|--------|
| OW-01S   | OW-01S-031 | Barry Collom    | 4/8/2014       | 3:03:00 PM     | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 2020   | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 1.48   | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 410    | 25.0 | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell      | mg/L     | 3.27   | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza    | NTU      | 1.100  | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn | mg/L     | 4240   | 125  | 1.76   |
| OW-02S   | OW-91-031  | Barry Collom    | 4/8/2014       | 10:42:00 AM    | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn | µmhos/cm | 2050   | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.7          | NAD       | 4/10/2014        | Ethel Suico       | mg/L     | 362    | 50.0 | 5.98   |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico       | μg/L     | 20.2   | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 200.8          | MOD       | 4/10/2014        | Ethel Suico       | μg/L     | 28.8   | 2.0  | 0.25   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad  | μg/L     | 19.8   | 0.2  | 0.006  |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 587    | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 4.30   | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 95.2   | 25.0 | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell      | mg/L     | 3.69   | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza    | NTU      | 0.565  | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn | mg/L     | 1170   | 50.0 | 1.76   |
| OW-02S   | OW-02S-031 | Barry Collom    | 4/8/2014       | 2:32:00 PM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn | µmhos/cm | 2050   | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.7          | NAD       | 4/10/2014        | Ethel Suico       | mg/L     | 374    | 50.0 | 5.98   |

TABLE 10

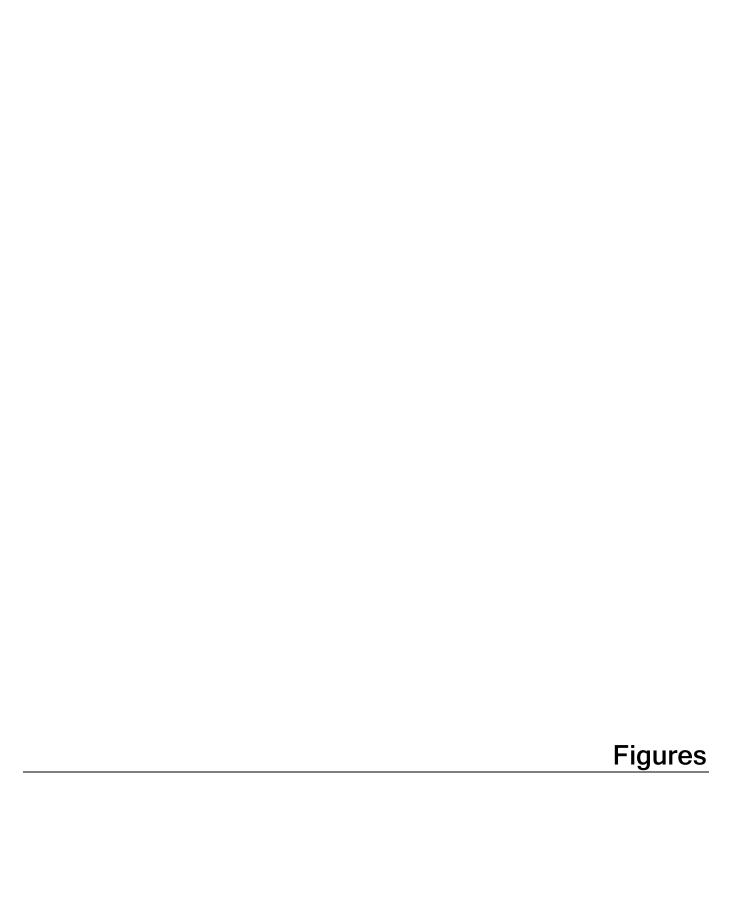
ARAR Monitoring Information for Groundwater Samples, First Half 2014

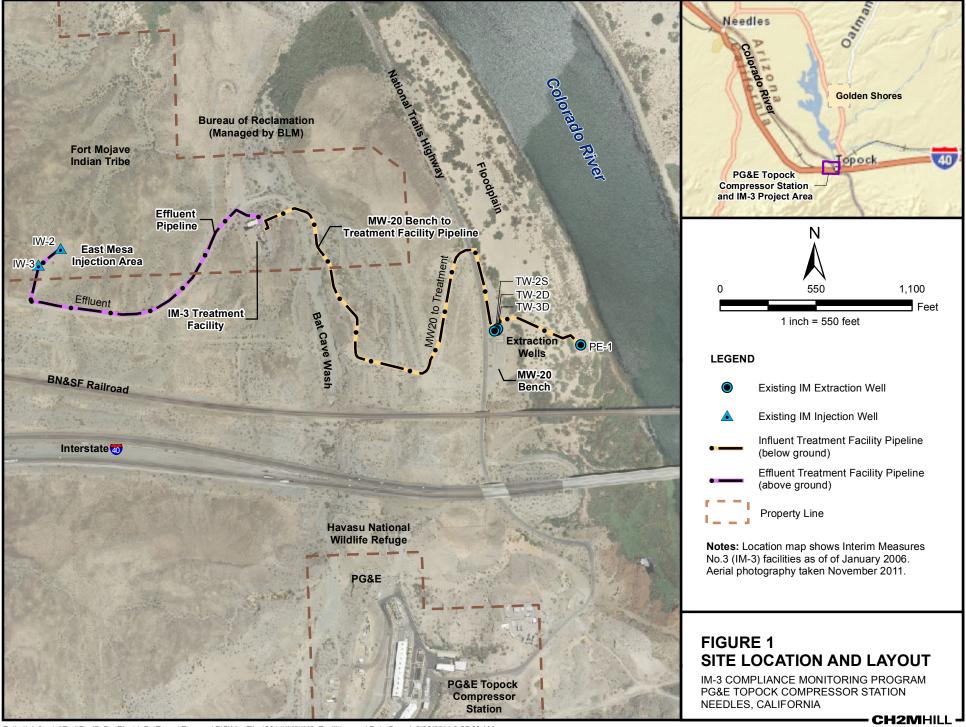
PG&E Topock Compliance Monitoring Program

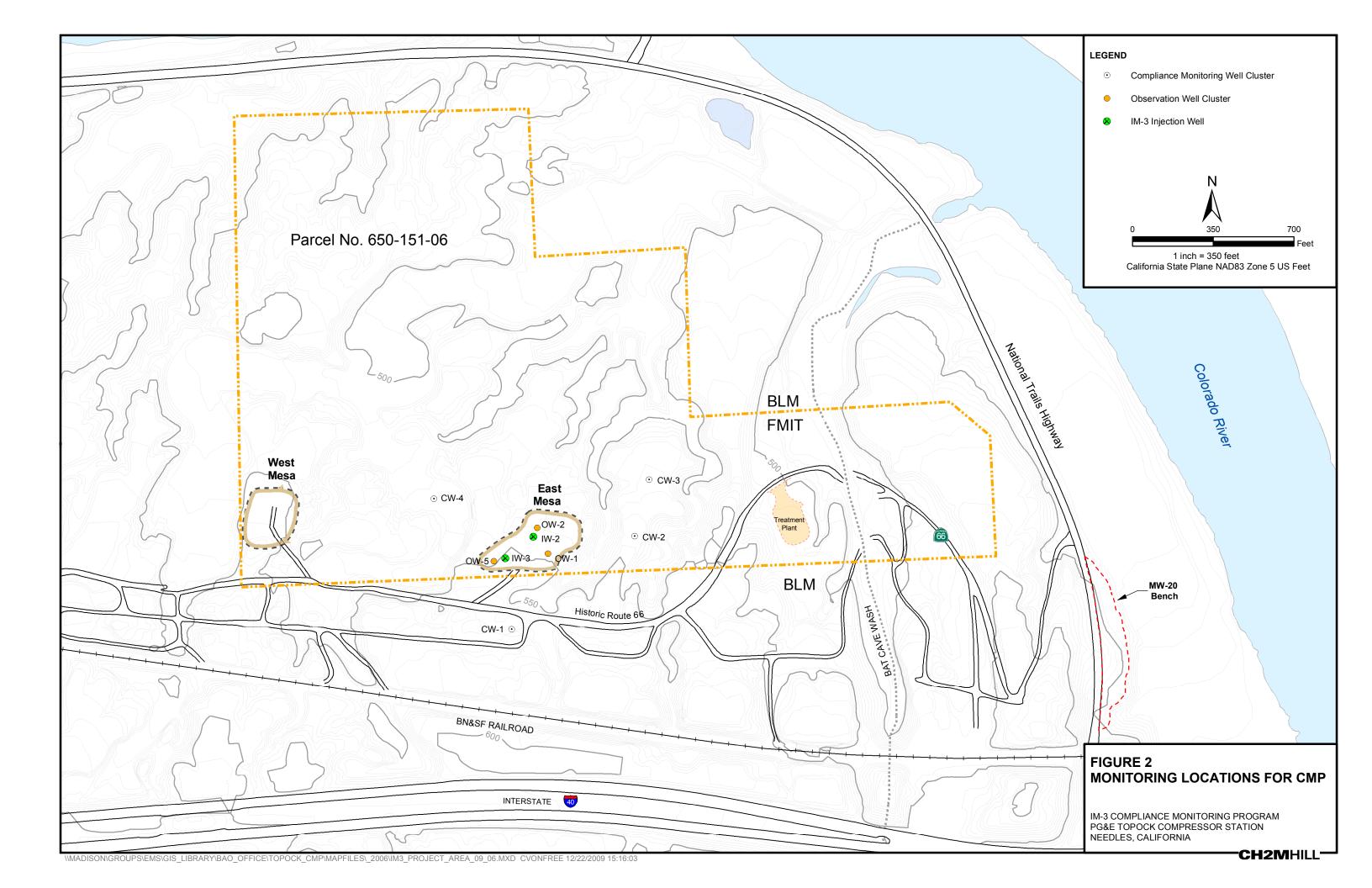
| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab  | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician | Units    | Result | RL   | MDL    |
|----------|------------|-----------------|----------------|----------------|------|--------------------|-----------|------------------|-------------------|----------|--------|------|--------|
| OW-02S   | OW-02S-031 | Barry Collom    | 4/8/2014       | 2:32:00 PM     | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico       | μg/L     | 19.4   | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 200.8          | MOD       | 4/10/2014        | Ethel Suico       | μg/L     | 29.0   | 2.0  | 0.25   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad  | μg/L     | 19.8   | 0.2  | 0.006  |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 526    | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 4.07   | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 98.5   | 25.0 | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell      | mg/L     | 3.73   | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza    | NTU      | 0.483  | 0.1  | 0.014  |
|          |            |                 |                |                | TLI  | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn | mg/L     | 1140   | 50.0 | 1.76   |
| OW-05S   | OW-05S-031 | Barry Collom    | 4/8/2014       | 1:38:00 PM     | TLI  | EPA 120.1          | SC        | 4/14/2014        | Jenny Tankunakorn | µmhos/cm | 3890   | 2.0  | 0.606  |
|          |            |                 |                |                | TLI  | EPA 200.7          | NAD       | 4/10/2014        | Ethel Suico       | mg/L     | 486    | 50.0 | 5.98   |
|          |            |                 |                |                | TLI  | EPA 200.8          | CRTD      | 4/9/2014         | Ethel Suico       | μg/L     | 15.7   | 1.0  | 0.14   |
|          |            |                 |                |                | TLI  | EPA 200.8          | MOD       | 4/10/2014        | Ethel Suico       | μg/L     | 14.4   | 2.0  | 0.25   |
|          |            |                 |                |                | TLI  | EPA 218.6          | CR6       | 4/10/2014        | Naheed Eidinejad  | μg/L     | 15.4   | 0.2  | 0.006  |
|          |            |                 |                |                | TLI  | EPA 300.0          | CL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 1330   | 50.0 | 17.4   |
|          |            |                 |                |                | TLI  | EPA 300.0          | FL        | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 1.67   | 0.5  | 0.104  |
|          |            |                 |                |                | TLI  | EPA 300.0          | SO4       | 4/9/2014         | Giawad Ghenniwa   | mg/L     | 233    | 25.0 | 1.54   |
|          |            |                 |                |                | СНМС | EPA 353.2          | NO3NO2N   | 4/22/2014        | Katie O'Dell      | mg/L     | 3.35   | 0.04 | 0.0112 |
|          |            |                 |                |                | TLI  | SM2130B            | TRB       | 4/8/2014         | Felipe Mendoza    | NTU      | 0.317  | 0.1  | 0.014  |

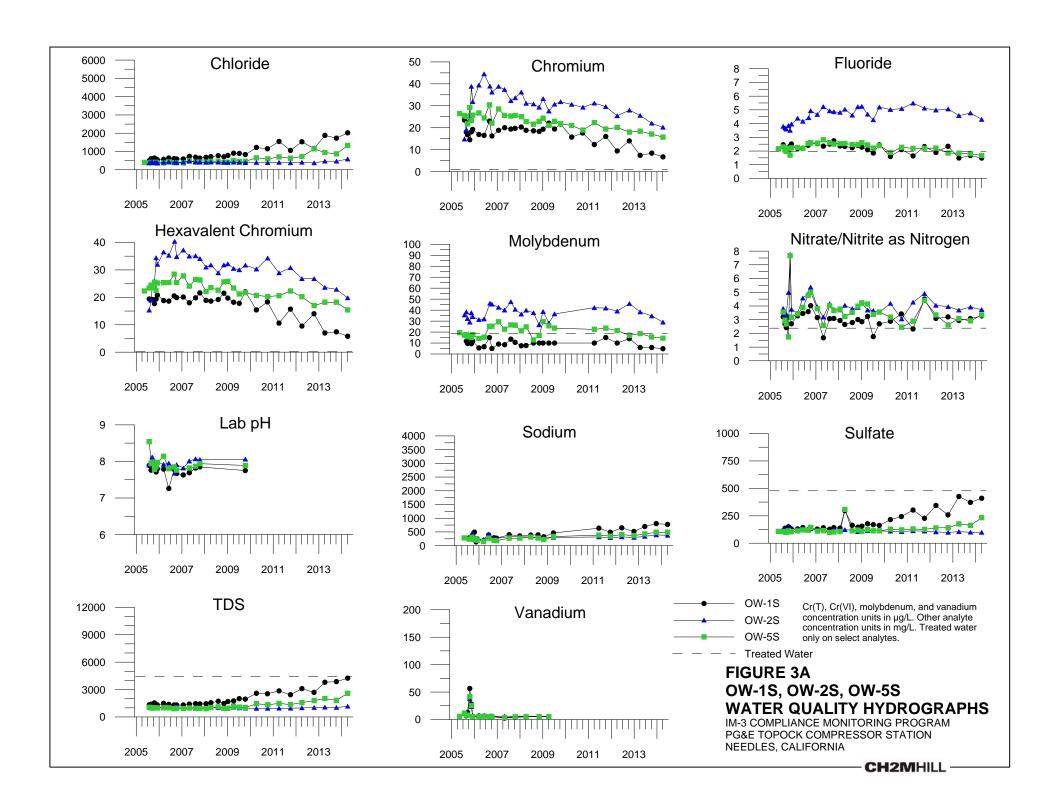
TABLE 10 ARAR Monitoring Information for Groundwater Samples, First Half 2014 PG&E Topock Compliance Monitoring Program

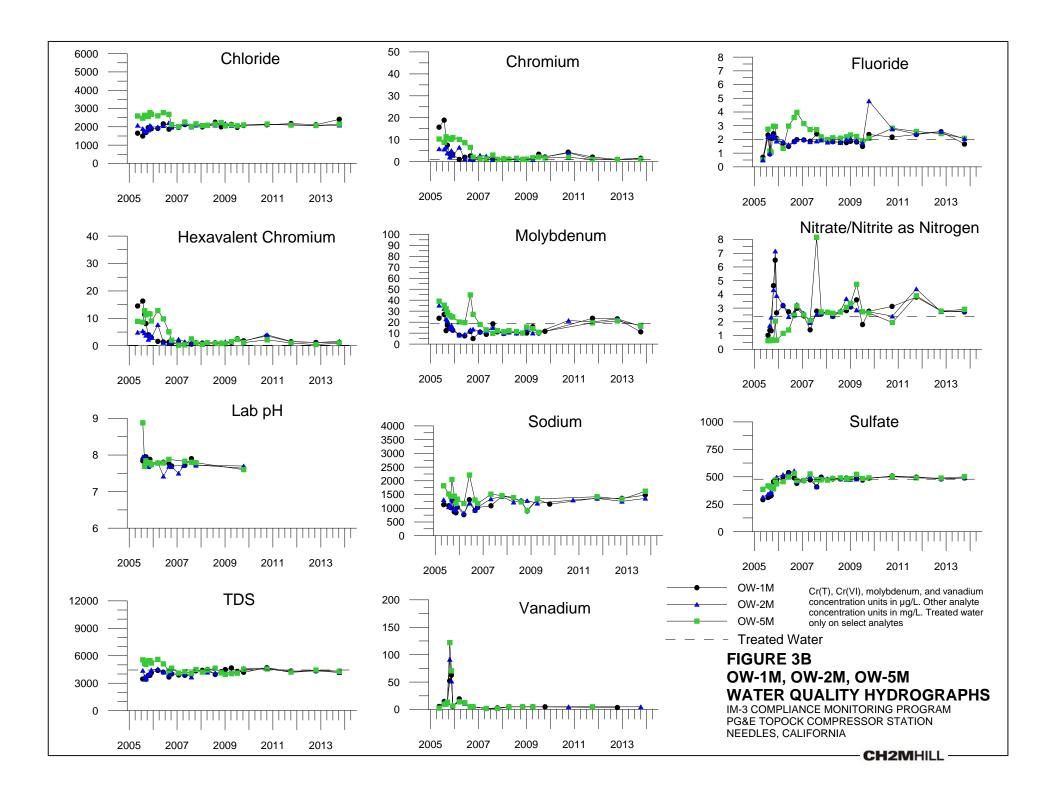
| Location | Sample ID  | Sampler<br>Name | Sample<br>Date | Sample<br>Time | Lab | Analysis<br>Method | Parameter | Analysis<br>Date | Lab<br>Technician | Units | Result | RL   | MDL  |
|----------|------------|-----------------|----------------|----------------|-----|--------------------|-----------|------------------|-------------------|-------|--------|------|------|
| OW-05S   | OW-05S-031 | Barry Collom    | 4/8/2014       | 1:38:00 PM     | TLI | SM2540C            | TDS       | 4/14/2014        | Jenny Tankunakorn | mg/L  | 2590   | 50.0 | 1.76 |

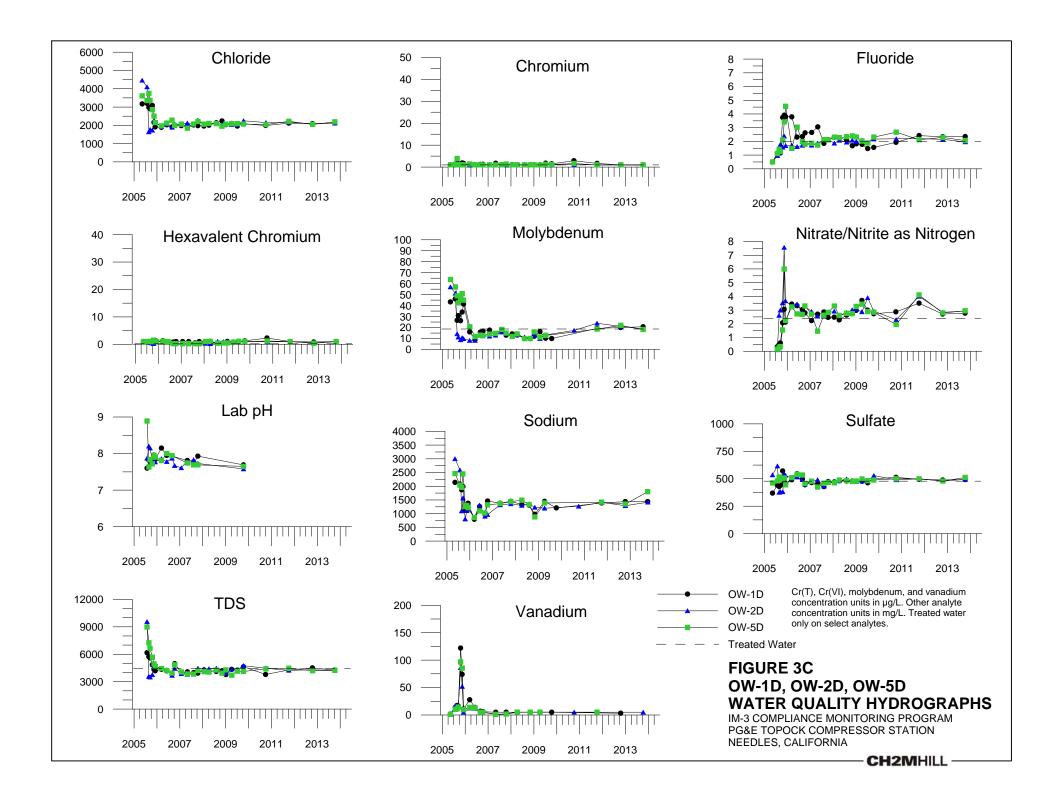

#### NOTES:

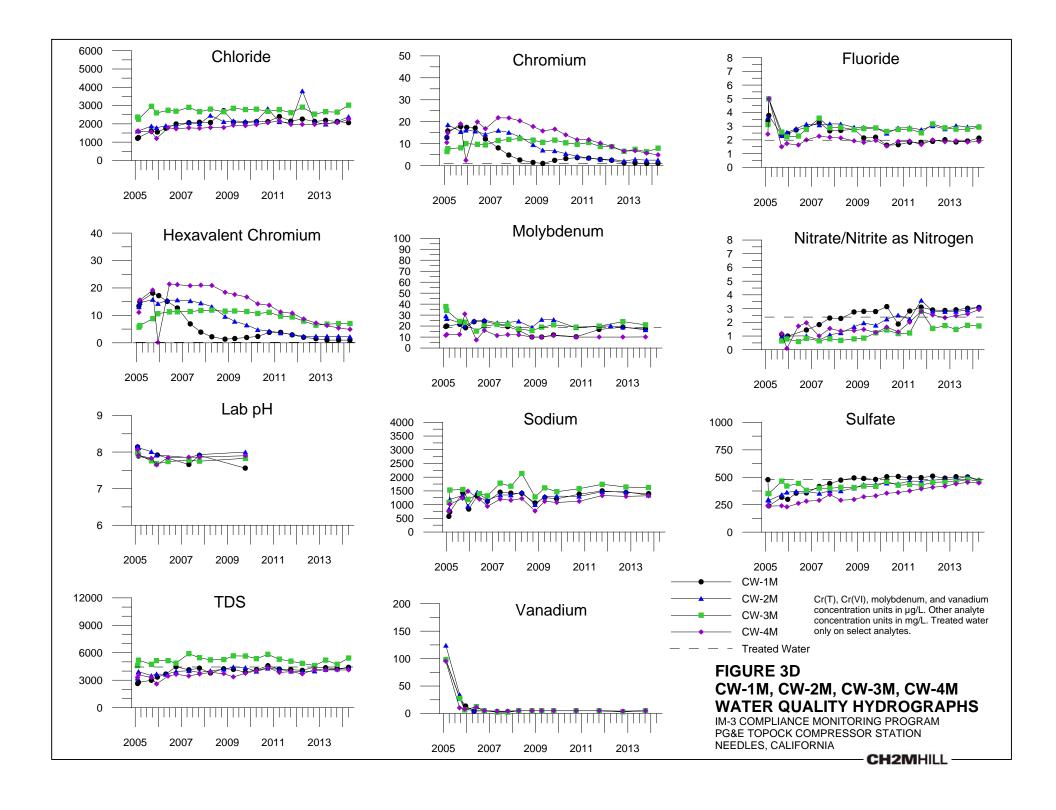

MDL method detection limit corrected for sample dilution reporting limit corrected for sample dilution RLparameter not detected at the listed reporting limit ND µmhos/cm micro-mhos per centimeter NTU Nephelometric Turbidity Unit milligrams per liter mg/L μg/L J micrograms per liter concentration estimated by laboratory or data validation

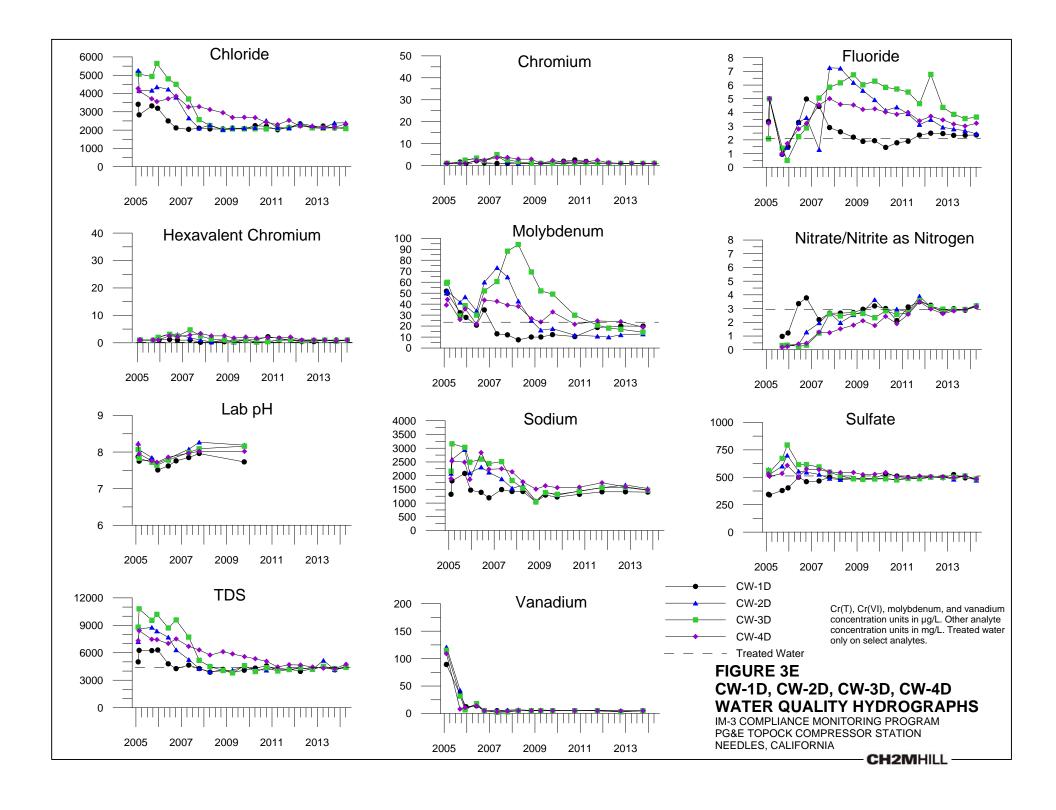

**ARAR** applicable or relevant and appropriate requirements

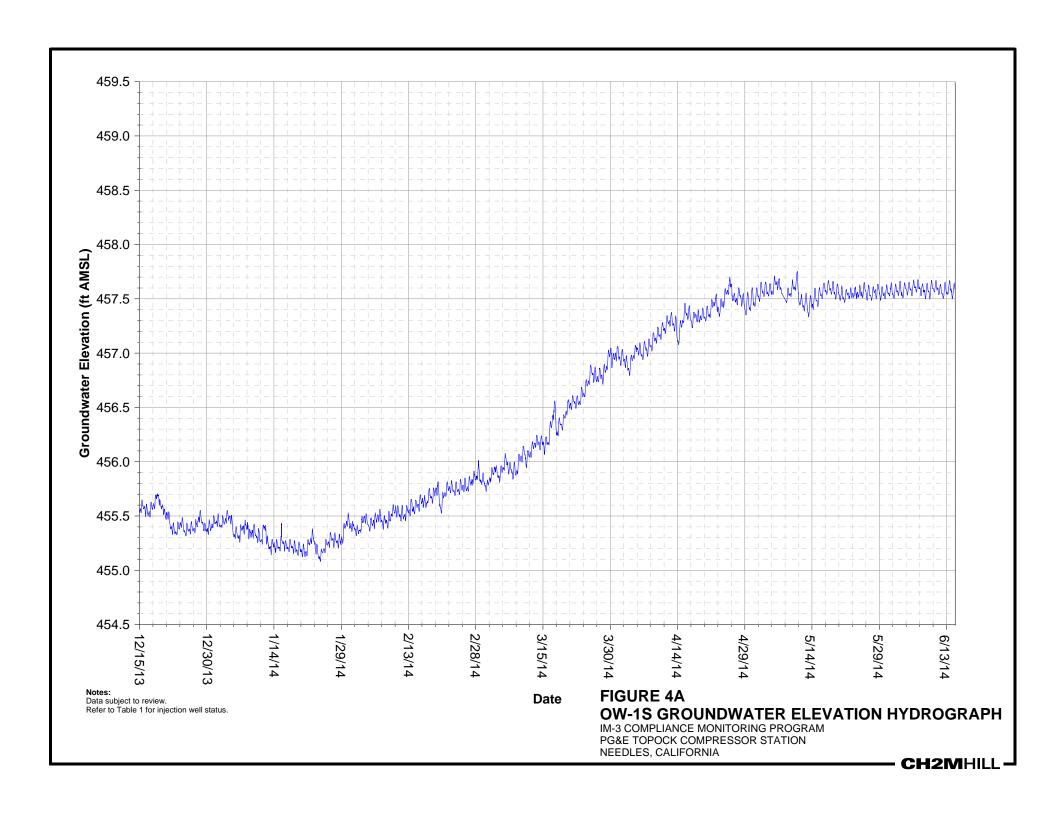

Truesdail Laboratories, Inc. TLI CHMC Advanced Sciences, Corvallis, OR

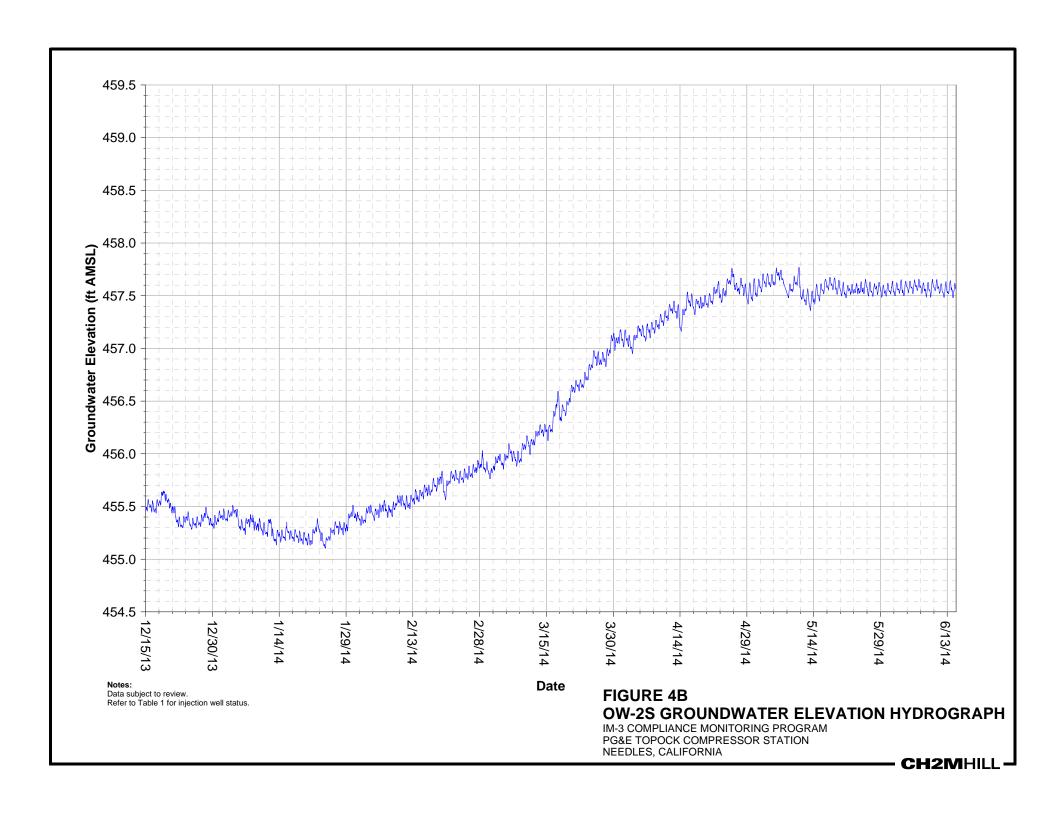

| ALKC ALKT ALKB ALD AGD ASD BD BAD BED CAD CDD CL COBD CRTD CR6 CUD FE FETD | alkalinity, as carbonate alkalinity, total as CaCO3 alkalinity, bicarbonate as CaCO3 aluminum, dissolved silver, dissolved arsenic, dissolved boron, dissolved barium, dissolved beryllium, dissolved calcium, dissolved cadmium, dissolved cadmium, dissolved chloride cobalt, dissolved chromium, dissolved hexavalent chromium copper, dissolved iron iron, dissolved | HGD KD MGD MND MOD NAD NID NH3N NO3NO2N PBD SBD SC SED SO4 TLD TDS TRB VD | mercury, dissolved potassium, dissolved magnesium, dissolved manganese, dissolved molybdenum, dissolved sodium, dissolved nickel, dissolved ammonia (as Nitrogen) nitrate/nitrite (as Nitrogen) lead, dissolved antimony, dissolved specific conductance selenium, dissolved sulfate thallium, dissolved total dissolved solids turbidity vanadium, dissolved |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FETD<br>FL                                                                 | iron, dissolved fluoride                                                                                                                                                                                                                                                                                                                                                 | VD<br>ZND                                                                 | vanadium, dissolved zinc, dissolved                                                                                                                                                                                                                                                                                                                           |

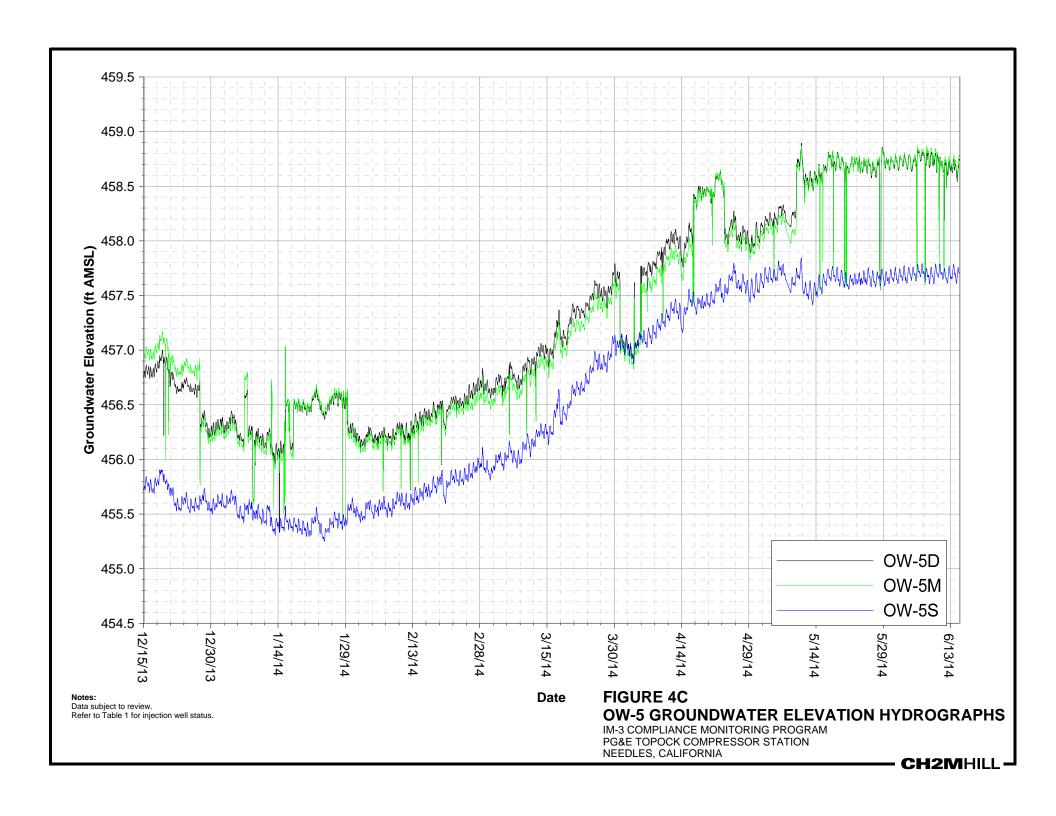


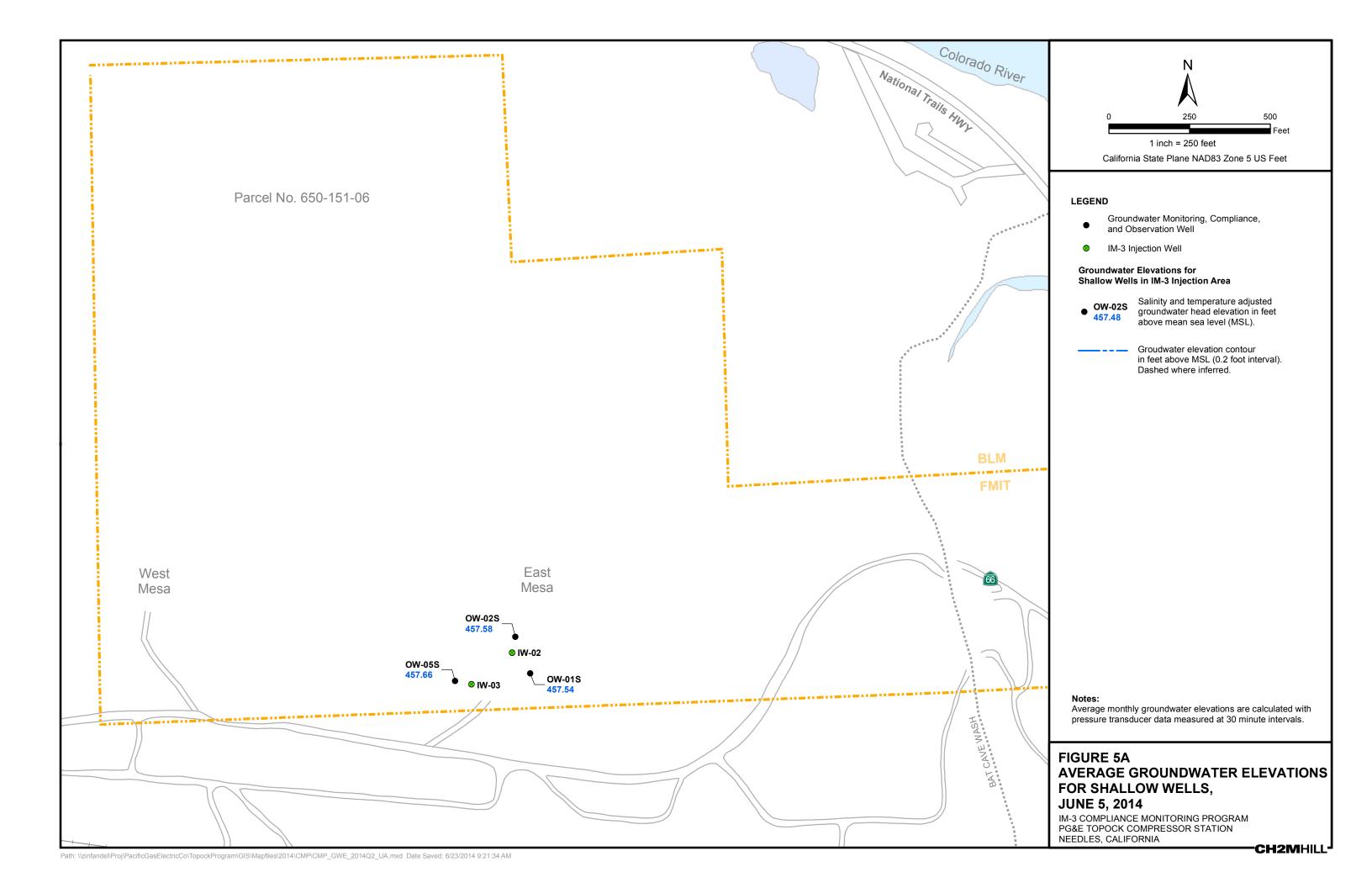



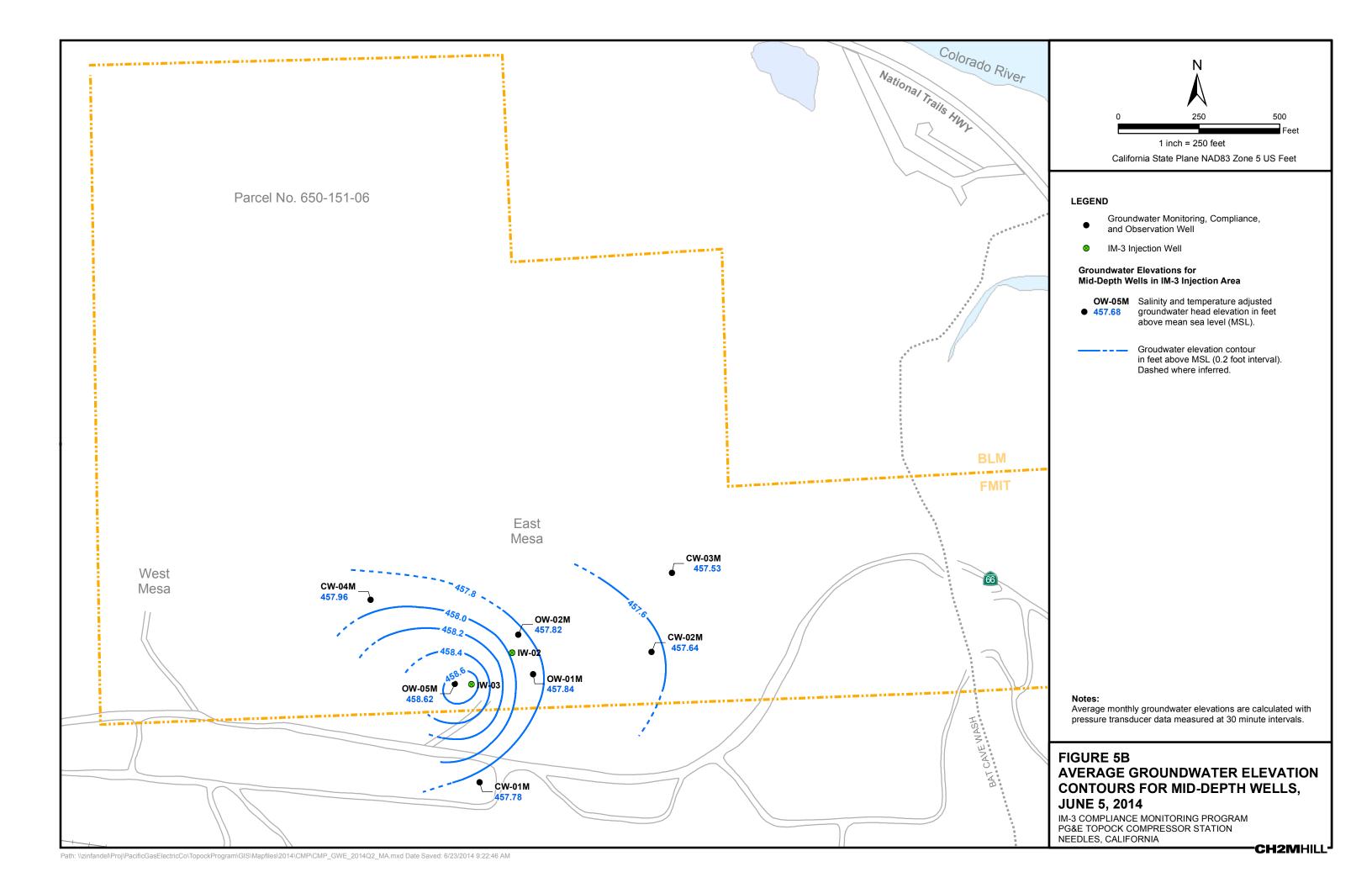



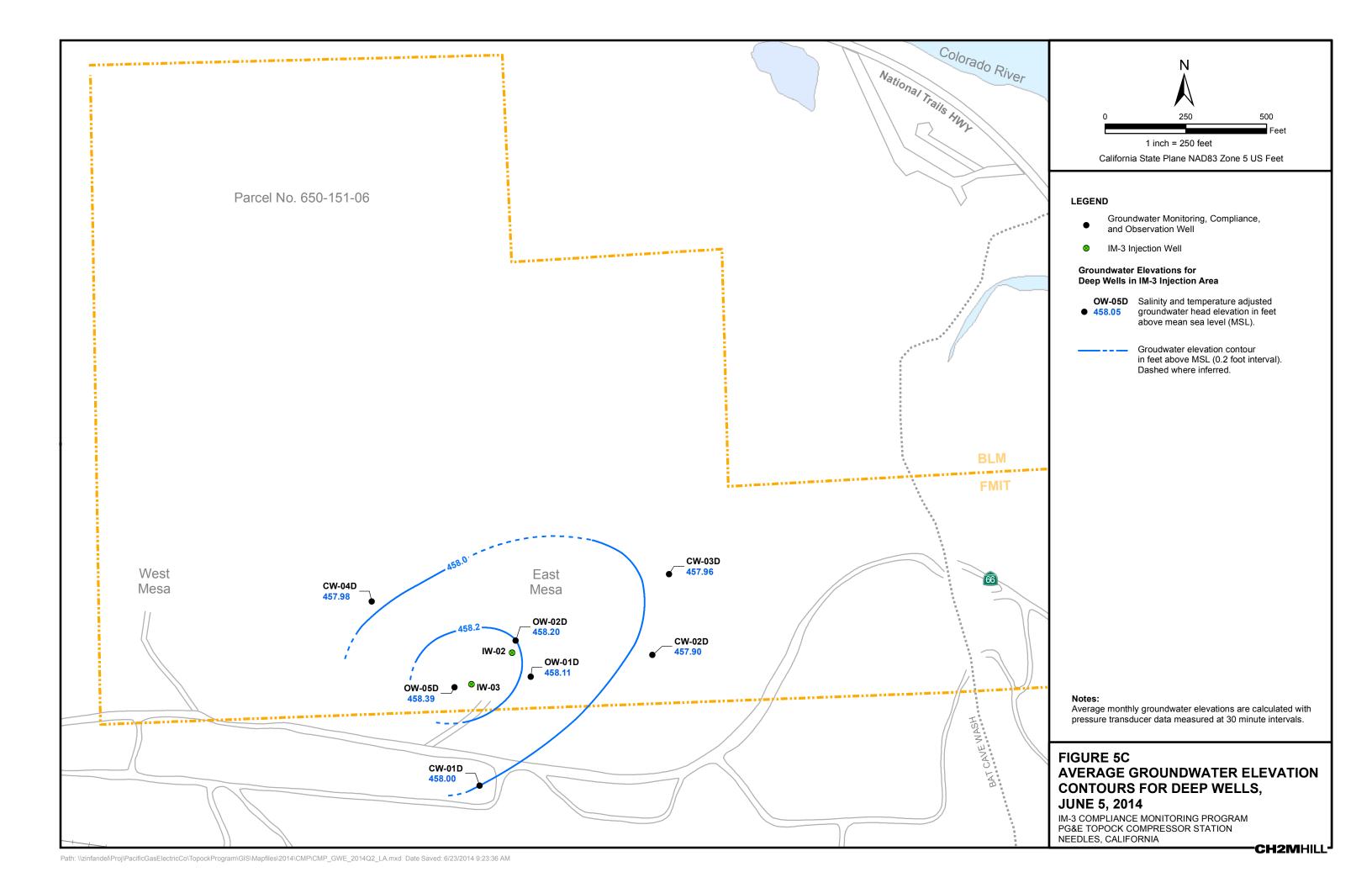



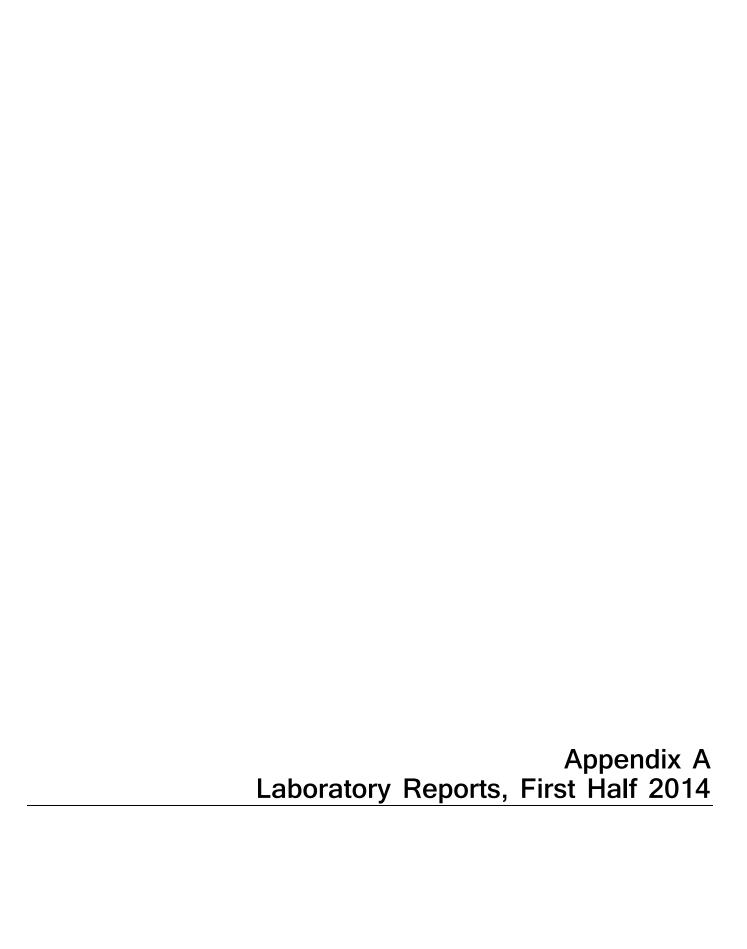
















## E2 Consulting Engineers, Inc.

PG&E Topock Project

Laboratory Number: 812967 Received: April 8, 2014

2014-CMP-031

Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM



Prepared for:

E2 Consulting Engineers, Inc.
Attn: Shawn Duffy
2525 Airpark Dr.
Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

# Table of Contents TLI Laboratory Data Package

For Laboratory Number: 812967

| ITEM                                                                                | Section |
|-------------------------------------------------------------------------------------|---------|
| Case Narrative and Analyst List                                                     | 1.0     |
| Summary Table of Final Results                                                      | 2.0     |
| Final Reports                                                                       | 3.0     |
| Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records | 4.0     |
| Established Retention Time Window and Analytical Raw Data                           | 5.0     |

### Section 1.0

# Case Narrative



14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

April 22, 2014

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2014-CMP-031, GROUNDWATER MONITORING

PROJECT, TLI No.: 812967

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2014-CMP-031 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody April 8, 2014, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

### TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: Fifteen (15) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM

Laboratory No.: 812967
Date: April 22, 2014
Collected: April 7 - 8, 2014
Received: April 8, 2014

#### **ANALYST LIST**

| METHOD        | PARAMETER              | ANALYST                            |
|---------------|------------------------|------------------------------------|
| EPA 120.1     | Specific Conductivity  | Jenny Tankunakorn                  |
| SM 2540C      | Total Dissolved Solids | Jenny Tankunakorn                  |
| SM 2130B      | Turbidity              | Felipe Mendoza                     |
| EPA 300.0     | Anions                 | Giawad Ghenniwa                    |
| SM 4500-NH3 D | Ammonia                | Himanai Vaishnav / Maksim Gorbunov |
| EPA 200.7     | Metals by ICP          | Ethel Suico                        |
| EPA 200.8     | Metals by ICP/MS       | Ethel Suico                        |
| EPA 218.6     | Hexavalent Chromium    | Naheed Eidinejad                   |

### Section 2.0

# Summary Table of Final Results

#### TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 812967 Date Received: April 8, 2014

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

#### **Analytical Results Summary**

| Lab Sample ID | Field ID   | Analysis<br>Method | Extraction<br>Method | Sample Date | Sample<br>Time | Parameter              | Result | Units    | RL    |
|---------------|------------|--------------------|----------------------|-------------|----------------|------------------------|--------|----------|-------|
| 812967-001    | CW-01D-031 | E120.1             | NONE                 | 4/7/2014    | 10:17          | EC                     | 6850   | umhos/cm | 2.00  |
| 812967-001    | CW-01D-031 | E200.8             | FLDFLT               | 4/7/2014    | 10:17          | Chromium               | 1.1    | ug/L     | 1.0   |
| 812967-001    | CW-01D-031 | E218.6             | FLDFLT               | 4/7/2014    | 10:17          | Chromium, Hexavalent   | ND     | ug/L     | 1.0   |
| 812967-001    | CW-01D-031 | E300               | NONE                 | 4/7/2014    | 10:17          | Chloride               | 2140   | mg/L     | 50.0  |
| 812967-001    | CW-01D-031 | E300               | NONE                 | 4/7/2014    | 10:17          | Fluoride               | 2.36   | mg/L     | 0.500 |
| 812967-001    | CW-01D-031 | E300               | NONE                 | 4/7/2014    | 10:17          | Sulfate                | 480    | mg/L     | 25.0  |
| 812967-001    | CW-01D-031 | SM2130B            | NONE                 | 4/7/2014    | 10:17          | Turbidity              | 0.107  | NTU      | 0.100 |
| 812967-001    | CW-01D-031 | SM2540C            | NONE                 | 4/7/2014    | 10:17          | Total Dissolved Solids | 4520   | mg/L     | 125   |
| 812967-001    | CW-01D-031 | SM4500NH3D         | NONE                 | 4/7/2014    | 10:17          | Ammonia-N              | ND     | mg/L     | 0.500 |
| 812967-002    | CW-01M-031 | E120.1             | NONE                 | 4/7/2014    | 10:57          | EC                     | 6680   | umhos/cm | 2.00  |
| 812967-002    | CW-01M-031 | E200.8             | FLDFLT               | 4/7/2014    | 10:57          | Chromium               | 1.1    | ug/L     | 1.0   |
| 812967-002    | CW-01M-031 | E218.6             | FLDFLT               | 4/7/2014    | 10:57          | Chromium, Hexavalent   | ND     | ug/L     | 1.0   |
| 812967-002    | CW-01M-031 | E300               | NONE                 | 4/7/2014    | 10:57          | Chloride               | 2060   | mg/L     | 50.0  |
| 812967-002    | CW-01M-031 | E300               | NONE                 | 4/7/2014    | 10:57          | Fluoride               | 2.13   | mg/L     | 0.500 |
| 812967-002    | CW-01M-031 | E300               | NONE                 | 4/7/2014    | 10:57          | Sulfate                | 468    | mg/L     | 25.0  |
| 812967-002    | CW-01M-031 | SM2130B            | NONE                 | 4/7/2014    | 10:57          | Turbidity              | 0.101  | NTU      | 0.100 |
| 812967-002    | CW-01M-031 | SM2540C            | NONE                 | 4/7/2014    | 10:57          | Total Dissolved Solids | 4400   | mg/L     | 125   |
| 812967-002    | CW-01M-031 | SM4500NH3D         | NONE                 | 4/7/2014    | 10:57          | Ammonia-N              | ND     | mg/L     | 0.500 |



Report Continued

|   | Lab Sample ID | Field ID   | Analysis<br>Method | Extraction<br>Method | Sample Date | Sample<br>Time | Parameter              | Result | Units    | RL    |
|---|---------------|------------|--------------------|----------------------|-------------|----------------|------------------------|--------|----------|-------|
|   |               |            |                    |                      | <del></del> |                |                        |        |          |       |
|   | 812967-003    | CW-02D-031 | E120.1             | NONE                 | 4/7/2014    | 14:20          | EC                     | 6810   | umhos/cm | 2.00  |
|   | 812967-003    | CW-02D-031 | E200.8             | FLDFLT               | 4/7/2014    | 14:20          | Chromium               | ND     | ug/L     | 1.0   |
|   | 812967-003    | CW-02D-031 | E218.6             | FLDFLT               | 4/7/2014    | 14:20          | Chromium, Hexavalent   | ND     | ug/L     | 1.0   |
|   | 812967-003    | CW-02D-031 | E300               | NONE                 | 4/7/2014    | 14:20          | Chloride               | 2400   | mg/L     | 50.0  |
|   | 812967-003    | CW-02D-031 | E300               | NONE                 | 4/7/2014    | 14:20          | Fluoride               | 2.44   | mg/L     | 0.500 |
|   | 812967-003    | CW-02D-031 | E300               | NONE                 | 4/7/2014    | 14:20          | Sulfate                | 472    | mg/L     | 25.0  |
|   | 812967-003    | CW-02D-031 | SM2130B            | NONE                 | 4/7/2014    | 14:20          | Turbidity              | 0.852  | NTU      | 0.100 |
|   | 812967-003    | CW-02D-031 | SM2540C            | NONE                 | 4/7/2014    | 14:20          | Total Dissolved Solids | 4390   | mg/L     | 125   |
|   | 812967-003    | CW-02D-031 | SM4500NH3D         | NONE                 | 4/7/2014    | 14:20          | Ammonia-N              | ND     | mg/L     | 0.500 |
|   | 812967-004    | CW-02M-031 | E120.1             | NONE                 | 4/7/2014    | 15:07          | EC                     | 6820   | umhos/cm | 2.00  |
|   | 812967-004    | CW-02M-031 | E200.8             | FLDFLT               | 4/7/2014    | 15:07          | Chromium               | 2.5    | ug/L     | 1.0   |
|   | 812967-004    | CW-02M-031 | E218.6             | FLDFLT               | 4/7/2014    | 15:07          | Chromium, Hexavalent   | 2.2    | ug/L     | 1.0   |
|   | 812967-004    | CW-02M-031 | E300               | NONE                 | 4/7/2014    | 15:07          | Chloride               | 2390   | mg/L     | 50.0  |
|   | 812967-004    | CW-02M-031 | E300               | NONE                 | 4/7/2014    | 15:07          | Fluoride               | 2.99   | mg/L     | 0.500 |
|   | 812967-004    | CW-02M-031 | E300               | NONE                 | 4/7/2014    | 15:07          | Sulfate                | 477    | mg/L     | 25.0  |
|   | 812967-004    | CW-02M-031 | SM2130B            | NONE                 | 4/7/2014    | 15:07          | Turbidity              | 0.165  | NTU      | 0.100 |
|   | 812967-004    | CW-02M-031 | SM2540C            | NONE                 | 4/7/2014    | 15:07          | Total Dissolved Solids | 4340   | mg/L     | 125   |
|   | 812967-004    | CW-02M-031 | SM4500NH3D         | NONE                 | 4/7/2014    | 15:07          | Ammonia-N              | ND     | mg/L     | 0.500 |
|   | 812967-005    | CW-03D-031 | E120.1             | NONE                 | 4/8/2014    | 7:37           | EC                     | 6910   | umhos/cm | 2.00  |
|   | 812967-005    | CW-03D-031 | E200.8             | FLDFLT               | 4/8/2014    | 7:37           | Chromium               | ND     | ug/L     | 1.0   |
|   | 812967-005    | CW-03D-031 | E218.6             | FLDFLT               | 4/8/2014    | 7:37           | Chromium, Hexavalent   | ND     | ug/L     | 1.0   |
|   | 812967-005    | CW-03D-031 | E300               | NONE                 | 4/8/2014    | 7:37           | Chloride               | 2080   | mg/L     | 50.0  |
|   | 812967-005    | CW-03D-031 | E300               | NONE                 | 4/8/2014    | 7:37           | Fluoride               | 3.66   | mg/L     | 0.500 |
|   | 812967-005    | CW-03D-031 | E300               | NONE                 | 4/8/2014    | 7:37           | Sulfate                | 486    | mg/L     | 25.0  |
|   | 812967-005    | CW-03D-031 | SM2130B            | NONE                 | 4/8/2014    | 7:37           | Turbidity              | 0.157  | NTU      | 0.100 |
|   | 812967-005    | CW-03D-031 | SM2540C            | NONE                 | 4/8/2014    | 7:37           | Total Dissolved Solids | 4400   | mg/L     | 125   |
|   | 812967-005    | CW-03D-031 | SM4500NH3D         | NONE                 | 4/8/2014    | 7:37           | Ammonia-N              | ND     | mg/L     | 0.500 |
|   | 812967-006    | CW-03M-031 | E120.1             | NONE                 | 4/8/2014    | 8:55           | EC                     | 8220   | umhos/cm | 2.00  |
|   | 812967-006    | CW-03M-031 | E200.8             | FLDFLT               | 4/8/2014    | 8:55           | Chromium               | 7.9    | ug/L     | 1.0   |
|   | 812967-006    | CW-03M-031 | E218.6             | FLDFLT               | 4/8/2014    | 8:55           | Chromium, Hexavalent   | 6.4    | ug/L     | 1.0   |
|   | 812967-006    | CW-03M-031 | E300               | NONE                 | 4/8/2014    | 8:55           | Chloride               | 3020   | mg/L     | 50.0  |
|   | 812967-006    | CW-03M-031 | E300               | NONE                 | 4/8/2014    | 8:55           | Fluoride               | 2.93   | mg/L     | 0.500 |
|   | 812967-006    | CW-03M-031 | E300               | NONE                 | 4/8/2014    | 8:55           | Sulfate                | 451    | mg/L     | 25.0  |
|   | 812967-006    | CW-03M-031 | SM2130B            | NONE                 | 4/8/2014    | 8:55           | Turbidity              | ND     | NTU      | 0.100 |
| ` | 812967-006    | CW-03M-031 | SM2540C            | NONE                 | 4/8/2014    | 8:55           | Total Dissolved Solids | 4540   | mg/L     | 125   |
| 5 | 812967-006    | CW-03M-031 | SM4500NH3D         | NONE                 | 4/8/2014    | 8:55           | Ammonia-N              | ND     | mg/L     | 0.500 |

|               |            | Analysis   | Extraction |             | Sample |                        |        |          |        |
|---------------|------------|------------|------------|-------------|--------|------------------------|--------|----------|--------|
| Lab Sample ID | Field ID   | Method     | Method     | Sample Date | Time   | Parameter              | Result | Units    | RL     |
| 812967-007    | CW-04D-031 | E120.1     | NONE       | 4/8/2014    | 10:57  | EC                     | 6800   | umhos/cm | 2.00   |
| 812967-007    | CW-04D-031 | E200.8     | FLDFLT     | 4/8/2014    | 10:57  | Chromium               | ND     | ug/L     | 1.0    |
| 812967-007    | CW-04D-031 | E218.6     | FLDFLT     | 4/8/2014    | 10:57  | Chromium, Hexavalent   | ND     | ug/L     | 1.0    |
| 812967-007    | CW-04D-031 | E300       | NONE       | 4/8/2014    | 10:57  | Chloride               | 2340   | mg/L     | 50.0   |
| 812967-007    | CW-04D-031 | E300       | NONE       | 4/8/2014    | 10:57  | Fluoride               | 3.21   | mg/L     | 0.500  |
| 812967-007    | CW-04D-031 | E300       | NONE       | 4/8/2014    | 10:57  | Sulfate                | 483    | mg/L     | 25.0   |
| 812967-007    | CW-04D-031 | SM2130B    | NONE       | 4/8/2014    | 10:57  | Turbidity              | 0.102  | NŤU      | 0.100  |
| 812967-007    | CW-04D-031 | SM2540C    | NONE       | 4/8/2014    | 10:57  | Total Dissolved Solids | 4740   | mg/L     | 125    |
| 812967-007    | CW-04D-031 | SM4500NH3D | NONE       | 4/8/2014    | 10:57  | Ammonia-N              | ND     | mg/L     | 0.500  |
| 812967-008    | CW-04M-031 | E120.1     | NONE       | 4/8/2014    | 11:42  | EC                     | 6510   | umhos/cm | . 2.00 |
| 812967-008    | CW-04M-031 | E200.8     | FLDFLT     | 4/8/2014    | 11:42  | Chromium               | 4.9    | ug/L     | 1.0    |
| 812967-008    | CW-04M-031 | E218.6     | FLDFLT     | 4/8/2014    | 11:42  | Chromium, Hexavalent   | 4.9    | ug/L     | 1.0    |
| 812967-008    | CW-04M-031 | E300       | NONE       | 4/8/2014    | 11:42  | Chloride               | 2250   | mg/L     | 50.0   |
| 812967-008    | CW-04M-031 | E300       | NONE       | 4/8/2014    | 11:42  | Fluoride               | 1.88   | mg/L     | 0.500  |
| 812967-008    | CW-04M-031 | E300       | NONE       | 4/8/2014    | 11:42  | Sulfate                | 448    | mg/L     | 25.0   |
| 812967-008    | CW-04M-031 | SM2130B    | NONE       | 4/8/2014    | 11:42  | Turbidity              | ND     | NTU      | 0.100  |
| 812967-008    | CW-04M-031 | SM2540C    | NONE       | 4/8/2014    | 11:42  | Total Dissolved Solids | 4120   | mg/L     | 125    |
| 812967-008    | CW-04M-031 | SM4500NH3D | NONE       | 4/8/2014    | 11:42  | Ammonia-N              | ND     | mg/L     | 0.500  |
| 812967-009    | OW-01S-031 | E120.1     | NONE       | 4/8/2014    | 15:03  | EC                     | 5810   | umhos/cm | 2.00   |
| 812967-009    | OW-01S-031 | E200.7     | FLDFLT     | 4/8/2014    | 15:03  | Sodium                 | 774000 | ug/L     | 50000  |
| 812967-009    | OW-01S-031 | E200.8     | FLDFLT     | 4/8/2014    | 15:03  | Chromium               | 6.7    | ug/L     | 1.0    |
| 812967-009    | OW-01S-031 | E200.8     | FLDFLT     | 4/8/2014    | 15:03  | Molybdenum             | 4.8    | ug/L     | 2.0    |
| 812967-009    | OW-01S-031 | E218.6     | FLDFLT     | 4/8/2014    | 15:03  | Chromium, Hexavalent   | 5.8    | ug/L     | 1.0    |
| 812967-009    | OW-01S-031 | E300       | NONE       | 4/8/2014    | 15:03  | Chloride               | 2020   | mg/L     | 50.0   |
| 812967-009    | OW-01S-031 | E300       | NONE       | 4/8/2014    | 15:03  | Fluoride               | 1.48   | mg/L     | 0.500  |
| 812967-009    | OW-01S-031 | E300       | NONE       | 4/8/2014    | 15:03  | Sulfate                | 410    | mg/L     | 25.0   |
| 812967-009    | OW-01S-031 | SM2130B    | NONE       | 4/8/2014    | 15:03  | Turbidity              | 1.10   | NTU      | 0.100  |
| 812967-009    | OW-01S-031 | SM2540C    | NONE       | 4/8/2014    | 15:03  | Total Dissolved Solids | 4240   | mg/L     | 125    |
| 812967-010    | OW-02S-031 | E120.1     | NONE       | 4/8/2014    | 14:32  | EC                     | 2050   | umhos/cm | 2.00   |
| 812967-010    | OW-02S-031 | E200.7     | FLDFLT     | 4/8/2014    | 14:32  | Sodium                 | 374000 | ug/L     | 50000  |
| 812967-010    | OW-02S-031 | E200.8     | FLDFLT     | 4/8/2014    | 14:32  | Chromium               | 19.4   | ug/L     | 1.0    |
| 812967-010    | OW-02S-031 | E200.8     | FLDFLT     | 4/8/2014    | 14:32  | Molybdenum             | 29.0   | ug/L     | 2.0    |
| 812967-010    | OW-02S-031 | E218.6     | FLDFLT     | 4/8/2014    | 14:32  | Chromium, Hexavalent   | 19.8   | ug/L     | 0.20   |
| 812967-010    | OW-02S-031 | E300       | NONE       | 4/8/2014    | 14:32  | Chloride               | 526    | mg/L     | 50.0   |
| 812967-010    | OW-02S-031 | E300       | NONE       | 4/8/2014    | 14:32  | Fluoride               | 4.07   | mg/L     | 0.500  |
| 812967-010    | OW-02S-031 | E300       | NONE       | 4/8/2014    | 14:32  | Sulfate                | 98.5   | mg/L     | 25.0   |
| 812967-010    | OW-02S-031 | SM2130B    | NONE       | 4/8/2014    | 14:32  | Turbidity              | 0.483  | NTU      | 0.100  |
| 812967-010    | OW-02S-031 | SM2540C    | NONE       | 4/8/2014    | 14:32  | Total Dissolved Solids | 1140   | mg/L     | 50.0   |

| Lab Sample ID | Field ID   | Analysis<br>Method | Extraction<br>Method | Sample Date | Sample<br>Time | Parameter              | Result | Units    | RL    |
|---------------|------------|--------------------|----------------------|-------------|----------------|------------------------|--------|----------|-------|
| 812967-011    | OW-05S-031 | E120.1             | NONE                 | 4/8/2014    | 13:38          | EC                     | 3890   | umhos/cm | 2.00  |
| 812967-011    | OW-05S-031 | E200.7             | FLDFLT               | 4/8/2014    | 13:38          | Sodium                 | 486000 | ug/L     | 50000 |
| 812967-011    | OW-05S-031 | E200.8             | FLDFLT               | 4/8/2014    | 13:38          | Chromium               | 15.7   | ug/L     | 1.0   |
| 812967-011    | OW-05S-031 | E200.8             | FLDFLT               | 4/8/2014    | 13:38          | Molybdenum             | 14.4   | ug/L     | 2.0   |
| 812967-011    | OW-05S-031 | E218.6             | FLDFLT               | 4/8/2014    | 13:38          | Chromium, Hexavalent   | 15.4   | ug/L     | 0.20  |
| 812967-011    | OW-05S-031 | E300               | NONE                 | 4/8/2014    | 13:38          | Chloride               | 1330   | mg/L     | 50.0  |
| 812967-011    | OW-05S-031 | E300               | NONE                 | 4/8/2014    | 13:38          | Fluoride               | 1.67   | mg/L     | 0.500 |
| 812967-011    | OW-05S-031 | E300               | NONE                 | 4/8/2014    | 13:38          | Sulfate                | 233    | mg/L     | 25.0  |
| 812967-011    | OW-05S-031 | SM2130B            | NONE                 | 4/8/2014    | 13:38          | Turbidity              | 0.317  | NTU      | 0.100 |
| 812967-011    | OW-05S-031 | SM2540C            | NONE                 | 4/8/2014    | 13:38          | Total Dissolved Solids | 2590   | mg/L     | 50.0  |
| 812967-012    | OW-80-031  | E218.6             | FLDFLT               | 4/8/2014    | 6:00           | Chromium, Hexavalent   | ND     | ug/L     | 0.20  |
| 812967-013    | OW-81-031  | E218.6             | FLDFLT               | 4/8/2014    | 15:30          | Chromium, Hexavalent   | ND     | ug/L     | 0.20  |
| 812967-014    | OW-90-031  | E120.1             | NONE                 | 4/8/2014    | 6:50           | EC                     | 8260   | umhos/cm | 2.00  |
| 812967-014    | OW-90-031  | E200.8             | FLDFLT               | 4/8/2014    | 6:50           | Chromium               | 7.9    | ug/L     | 1.0   |
| 812967-014    | OW-90-031  | E218.6             | FLDFLT               | 4/8/2014    | 6:50           | Chromium, Hexavalent   | 7.0    | ug/L     | 1.0   |
| 812967-014    | OW-90-031  | E300               | NONE                 | 4/8/2014    | 6:50           | Chloride               | 3010   | mg/L     | 50.0  |
| 812967-014    | OW-90-031  | E300               | NONE                 | 4/8/2014    | 6:50           | Fluoride               | 2.93   | mg/L     | 0.500 |
| 812967-014    | OW-90-031  | E300               | NONE                 | 4/8/2014    | 6:50           | Sulfate                | 464    | mg/L     | 25.0  |
| 812967-014    | OW-90-031  | SM2130B            | NONE                 | 4/8/2014    | 6:50           | Turbidity              | ND     | NTU      | 0.100 |
| 812967-014    | OW-90-031  | SM2540C            | NONE                 | 4/8/2014    | 6:50           | Total Dissolved Solids | 5420   | mg/L     | 250   |
| 812967-014    | OW-90-031  | SM4500NH3D         | NONE                 | 4/8/2014    | 6:50           | Ammonia-N              | ND     | mg/L     | 0.500 |
| 812967-015    | OW-91-031  | E120.1             | NONE                 | 4/8/2014    | 10:42          | EC                     | 2050   | umhos/cm | 2.00  |
| 812967-015    | OW-91-031  | E200.7             | FLDFLT               | 4/8/2014    | 10:42          | Sodium                 | 362000 | ug/L     | 50000 |
| 812967-015    | OW-91-031  | E200.8             | FLDFLT               | 4/8/2014    | 10:42          | Chromium               | 20.2   | ug/L     | 1.0   |
| 812967-015    | OW-91-031  | E200.8             | FLDFLT               | 4/8/2014    | 10:42          | Molybdenum             | 28.8   | ug/L     | 2.0   |
| 812967-015    | OW-91-031  | E218.6             | FLDFLT               | 4/8/2014    | 10:42          | Chromium, Hexavalent   | 19.8   | ug/L     | 0.20  |
| 812967-015    | OW-91-031  | E300               | NONE                 | 4/8/2014    | 10:42          | Chloride               | 587    | mg/L     | 50.0  |
| 812967-015    | OW-91-031  | E300               | NONE                 | 4/8/2014    | 10:42          | Fluoride               | 4.30   | mg/L     | 0.500 |
| 812967-015    | OW-91-031  | E300               | NONE                 | 4/8/2014    | 10:42          | Sulfate                | 95.2   | mg/L     | 25.0  |
| 812967-015    | OW-91-031  | SM2130B            | NONE                 | 4/8/2014    | 10:42          | Turbidity              | 0.565  | NTU      | 0.100 |
| 812967-015    | OW-91-031  | SM2540C            | NONE                 | 4/8/2014    | 10:42          | Total Dissolved Solids | 1170   | mg/L     | 50.0  |

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

### Section 3.0

# Final Reports

#### Truesdail Laboratories, Inc. Metals Analysis Report

| Sample Name                               | Acq. Date-Time     | DF   | ٧      | %RSD   | Cr      | %RSD         | Mn      | %RSD     | Ni     | %RSD    | As     | %RSD         |
|-------------------------------------------|--------------------|------|--------|--------|---------|--------------|---------|----------|--------|---------|--------|--------------|
| MRCCS                                     | 4/9/2014 5:15 PM   | 1.0  | 19.243 | 0.760  | 19.032  | 1.083        | 19.109  | 4.041    | 18.858 | 1.447   | 19.313 | 1.247        |
| СВ                                        | 4/9/2014 5:35 PM   | 1.0  | -0.154 | N/A    | -0.021  | N/A          | 0.002   | 351.546  | -0.061 | N/A     | -0.046 | N/A          |
| ICSA                                      | 4/9/2014 5:51 PM   | 1.0  | -0.152 | N/A    | -0.015  | N/A          | 0.018   | 196.825  | -0.056 | N/A     | -0.040 | N/A          |
| ICSA+B                                    | 4/9/2014 5:57 PM   | 1.0  | -0.023 | N/A    | 19.162  | 0.828        | 18.974  | 1.413    | 19.314 | 3.173   | 19.070 | 0.945        |
| MB                                        | 4/9/2014 6:03 PM   | 1.0  | -0.135 | N/A    | -0.031  | N/A          | -0.029  | N/A      | -0.067 | N/A     | -0.057 | N/A          |
| LCS 040914B 2x                            | 4/9/2014 6:10 PM   | 2.0  | 49.015 | 0.564  | 48.945  | 1.686        | 47.846  | 0.690    | 47.452 | 0.749   | 48.655 | 2.323        |
| %LCS RECOVERY                             |                    |      | 98.03  |        | 97.89   |              | 95.69   |          | 94.90  |         | 97.31  |              |
| MB 040914B                                | 4/9/2014 6:16 PM   | 1.0  | 0.031  | 78.075 | -0.009  | N/A          | -0.028  | N/A      | -0.044 | N/A     | -0.009 | N/A          |
| 812966-1 TOT 040914B 2x                   | 4/9/2014 6:23 PM   | 2.0  | 0.480  | 15.156 | 0.205   | 20.191       | 4.185   | 4.314    | 1.352  | 9.955   | 0.156  | 19.769       |
| 812966-1DUP TOT 040914B 2x                | 4/9/2014 6:29 PM   | 2.0  | 0.566  | 28.514 | 0.214   | 29.689       | 3.921   | 4.901    | 1.626  | 10.280  | 0.185  | 21.089       |
| %RPD                                      |                    |      |        |        |         |              | 6.516   |          |        |         |        |              |
| 812966-1MS TOT 040914B 2x                 | 4/9/2014 6:36 PM   | 2.0  | 47.569 | 2.782  | 46.218  | 3.428        | 49.013  | 1.962    | 46.717 | 5.100   | 47.738 | 3.253        |
| %MS RECOVERY                              |                    |      | 95.14  |        | 92.44   |              | 89.66   |          | 93.43  |         | 95.48  |              |
| 812966-1MSD TOT 040914B 2x                | 4/9/2014 6:42 PM   | 2.0  | 47.407 | 4.010  | 45.468  | 5.279        | 47.503  | 3.888    | 43.938 | 4.256   | 47.243 | 4.581        |
| MRCVS                                     | 4/9/2014 6:55 PM   | 1.0  | 20.304 | 2.337  | 20.604  | 1.459        | 20.070  | 3.291    | 20.073 | 1.690   | 20.390 | 2.066        |
| СВ                                        | 4/9/2014 7:02 PM   | 1.0  | -0.137 | N/A    | -0.046  | N/A          | -0.026  | N/A      | -0.066 | N/A     | -0.052 | N/A          |
| 812966-2 TOT 040914B 2x                   | 4/9/2014 7:14 PM   | 2.0  | 8.095  | 4.239  | 611.390 | 2.310        | 6.418   | 5.170    | 0.285  | 16.701  | 3.375  | 5.560        |
| 812966-2 TOT 040914B 10x                  | 4/9/2014 7:21 PM   | 10.0 | 8.099  | 13.881 | 642.613 | 2.644        | 6.747   | 4.950    | 2.134  | 17.778  | 3.373  | 19.028       |
| 812966-2 TOT 040914B 50x                  | 4/9/2014 7:27 PM   | 50.0 | 6.532  | 12.133 | 640.683 | 3.425        | 6.249   | 30.511   | 5.135  | 36.571  | 2.368  | 15.000       |
| %RPD FOR 5 FOLD                           |                    |      |        |        | 0.301   | •            |         |          | 000    |         |        | 10.000       |
| 812966-3 TOT 040914B 2x                   | 4/9/2014 7:34 PM   | 2.0  | 1.838  | 5.468  | 1.597   | 8.294        | 32.995  | 4.884    | 9.358  | 8.019   | 0.811  | 0.863        |
| 812966-3 TOT 040914B 10x                  | 4/9/2014 7:40 PM   | 10.0 | 1.562  | 9.475  | 2.512   | 8.344        | 35.605  | 6.341    | 15.650 | 3.601   | 0.895  | 16.120       |
| %RPD FOR 5 FOLD                           |                    | 10.0 | 1100=  | 0,,,,  | 2.0.2   | 0.0          | 7.611   | 0.0      | 10.000 | 0.00.   | 0.000  | 10.120       |
| 812967-1 040914B 2x                       | 4/9/2014 7:47 PM   | 2.0  | 2.222  | 7.080  | 1.109   | 10.026       | -0.050  | N/A      | 0.094  | 82.854  | 1.097  | 7.488        |
| 812967-2 040914B.2x                       | 4/9/2014 7:53 PM   | 2.0  | 2.617  | 3.747  | 1.111   | 4.576        | 0.030   | 242.519  | 0.087  | 65.990  | 1.228  | 5.909        |
| 812967-3 040914B 2x                       | 4/9/2014 8:00 PM   | 2.0  | 4.827  | 1.691  | 0.764   | 1.846        | 0.481   | 14.519   | 0.368  | 19.639  | 3.163  | 3.904        |
| 812967-4 040914B 2x                       | 4/9/2014 8:06 PM   | 2.0  | 3.534  | 4.043  | 2.541   | 4.127        | -0.011  | N/A      | 0.266  | 69.449  | 1.750  | 4.298        |
| MRCVS                                     | 4/9/2014 8:19 PM   | 1.0  | 21.138 | 0.796  | 20.905  | 1.939        | 20.426  | 1.373    | 20.287 | 2.004   | 20.178 | 0.648        |
| CB                                        | 4/9/2014 8:25 PM   | 1.0  | -0.176 | N/A    | -0.005  | N/A          | 0.006   | 605.663  | -0.029 | N/A     | -0.042 | N/A          |
| 812967-5 040914B 2x                       | 4/9/2014 8:32 PM   | 2.0  | 2.683  | 3.444  | 0.826   | 8.056        | 0.037   | 74.487   | 0.237  | 17.016  | 1.371  | 3.418        |
| 812967-6 040914B 2x                       | 4/9/2014 8:38 PM   | 2.0  | 2.621  | 8.183  | 7.917   | 1.891        | 0.066   | 148.554  | 0.462  | 16.984  | 1.131  | 2.485        |
| 812967-7 040914B.2x                       | 4/9/2014 8:45 PM   | 2.0  | 3.785  | 5.818  | 0.813   | 10.136       | -0.012  | N/A      | 0.195  | 18.563  | 3.262  | 2.076        |
| 812967-8 040914B 2x                       | 4/9/2014 8:51 PM   | 2.0  | 3.382  | 3.850  | 4.865   | 2.539        | -0.012  | N/A      | 0.210  | 47.326  | 2.040  | 9.929        |
| 812967-9 040914B 2x                       | 4/9/2014 8:58 PM   | 2.0  | 2.281  | 8.275  | 6.670   | 6.170        | 0.291   | 24.087   | 3.076  | 1.531   | 0.637  | 16.394       |
| 812967-10 040914B 2x                      | 4/9/2014 9:11 PM   | 2.0  | 4.917  | 2.624  | 19.377  | 1.475        | 0.586   | 3.102    | 0.401  | 14.227  | 1.863  | 2.773        |
| 812967-11 040914B 2x                      | 4/9/2014 9:17 PM   | 2.0  | 2.472  | 6.585  | 15.672  | 1.652        | 0.159   | 4.552    | 1.565  | 9.093   | 0.673  | 8.464        |
| 812967-14 040914B 2x                      | 4/9/2014 9:23 PM   | 2.0  | 2.684  | 3.964  | 7.869   | 2.097        | -0.014  | N/A      | 0.854  | 8.418   | 1.125  | 0.602        |
| 812967-15 040914B 2x                      | 4/9/2014 9:30 PM   | 2.0  | 4.989  | 2.480  | 20.159  | 1.845        | 0.634   | 8.546    | 0.460  | 9.325   | 1.781  | 1.790        |
| MRCVS                                     | 4/9/2014 9:43 PM   | 1.0  | 21.731 | 0.729  | 21.435  | 1.934        | 20.828  | 2.572    | 20.935 | 2.298   | 20.604 | 1.247        |
| CB                                        | 4/9/2014 9:49 PM   | 1.0  | -0.170 | N/A    | -0.017  | N/A          | -0.051  | N/A      | -0.002 | N/A     | -0.049 | N/A          |
| MRCVS                                     | 4/9/2014 11:00 PM  | 1.0  | 21.162 | 2.257  | 21.279  | 2.921        | 19.986  | 3.800    | 21.615 | 2.089   | 20.815 | 1.685        |
| CB                                        | 4/9/2014 11:07 PM  | 1.0  | -0.174 | N/A    | -0.024  | N/A          | -0.015  | N/A      | -0.007 | N/A     | -0.056 | N/A          |
| LCS LAB.FILTERES 040914B                  | 4/9/2014 11:13 PM  | 1.0  | 50.188 | 1.128  | 50.038  | 0.426        | 48.098  | 1.000    | 50.709 | 1.573   | 48.996 | 0.380        |
| %LCS RECOVERY                             |                    | 1.0  | 00.100 |        | 100.08  | 020          | 96.20   | 1.000    | 00.700 | 1.070   | 10.000 | 0.000        |
| MB LAB.FILTERED 040914B                   | 4/9/2014 11:20 PM  | 1.0  | -0.100 | N/A    | 0.012   | 79.627       | 0.000   | 4516.207 | 0.140  | 39.517  | 0.003  | 471.280      |
| 812969-1 LAB.FILTERED 040914B 2x          | 4/9/2014 11:26 PM  | 2.0  | 7.015  | 3.142  | 4.250   | 3.932        | 66.289  | 0.742    | 0.918  | 13.580  | 3.245  | 0.533        |
| 812969-1DUP LAB.FILTERED 040914B 2x       | 4/9/2014 11:33 PM  | 2.0  | 6.798  | 0.871  | 3.905   | 1.436        | 63.035  | 1.857    | 1.448  | 20.642  | 3.316  | 2.228        |
| %RPD                                      |                    | 2.0  | 0., 00 | 0,07   | 8.451   | ,,,,,,       | 5.033   | 1.007    | 1.110  | 20.0.2  | 0.010  | 2.220        |
| 812969-1MS LAB.FILTERED 040914B 2x        | 4/9/2014 11:39 PM  | 2.0  | 56.452 | 3.368  | 51.522  | 2.043        | 112.326 | 2.698    | 47.632 | 3.977   | 53.445 | 1.886        |
| %MS RECOVERY                              |                    | 2.0  | 0002   | 0.000  | 94.544  | 2.070        | 92.074  | 2.000    | 17.002 | 0.077   | 00.110 | 1.000        |
| 812969-1MSD LAB.FILTERED 040914B 2x       | 4/9/2014 11:46 PM  | 2.0  | 57.326 | 1.290  | 52.690  | 1.305        | 111.600 | 3.250    | 48.101 | 4.138   | 53.258 | 1.463        |
| 812969-2 LAB.FILTERED 040914B 2x          | 4/9/2014 11:52 PM  | 2.0  | 7.939  | 1.760  | 766.454 | 1.334        | 7.012   | 5.932    | 0.356  | 39.573  | 3.257  | 1.829        |
| 812969-2 LAB.FILTERED 040914B 10x         | 4/9/2014 11:58 PM  | 10.0 | 7.269  | 3.744  | 772.367 | 2.162        | 6.594   | 16.800   | 1.077  | 3.392   | 3.906  | 7.549        |
| MRCVS                                     | 4/10/2014 12:24 AM | 1.0  | 20.994 | 2.697  | 21.561  | 2.691        | 19.761  | 0.839    | 21.617 | 2.076   | 20.456 | 4.100        |
| CB                                        | 4/10/2014 12:31 AM | 1.0  | -0.166 | N/A    | 0.007   | 424.265      | -0.006  | N/A      | 0.023  | 312.676 | -0.049 | 4.100<br>N/A |
| 0.2 LLCV                                  | 4/10/2014 12:37 AM | 1.0  | 0.135  | 32.585 | 0.297   | 17.665       | 0.182   | 19.792   | 0.023  | 21.840  | 0.218  | 1.720        |
| 0.5 LLCV                                  | 4/10/2014 12:50 AM | 1.0  | 0.486  | 14.063 | 0.532   | 7.250        | 0.383   | 10.628   | 0.507  | 6.566   | 0.465  | 9.223        |
| 1.0 LLCV                                  | 4/10/2014 1:09 AM  | 1.0  | 1.006  | 7.541  | 1.064   | 9.126        | 0.842   | 1.785    | 1.121  | 2.919   | 0.463  | 3.500        |
| ICSA                                      | 4/10/2014 1:29 AM  | 1.0  | -0.160 | N/A    | -0.009  | 9.120<br>N/A | -0.040  | N/A      | -0.020 | N/A     | -0.061 | 3.500<br>N/A |
| ICSA+B                                    | 4/10/2014 1:35 AM  | 1.0  | -0.100 | N/A    | 19.842  | 0.768        | 18.398  | 1.735    | 20.751 | 3.581   | 19.063 | 2.904        |
| Internal Std within QC Control? (70-130%) |                    | 1.0  | -0.040 | 111/7  | 10.042  | 0.700        | 10.000  | 1.700    | 20.701 | 0.001   | 10.000 | 2.504        |
| mena su wani do contoir (10-130%)         |                    |      |        |        |         |              |         |          |        |         |        |              |

Instrument: Agilent 7700X ICPMS

Method: EPA 200.8/6020A Reporting Limit: 1 ppb

Client Specific Reporting Limit: Hg = 0.2 ppb As, Be, Mn = 0.5 ppb; Cr, Cd, Pb, Tl, U = 1 ppb

Sb, Mo, Ni = 2 ppb

Ba, Co, Cu, Se, Ag, V = 5 ppb Al, Zn = 10 ppb

Unit for sample: ppb Batch : 040914A

Analyst: ETHEL S. Reviewer: KATIA K.

MRCCS, MRCVS = 20 ppb ± 10% Digested LCS = 50 ppb ± 15% Digested MS/MSD = 50 ppb ± 25% ICS A+B =20ppb ± 20%

LLCV = 0.2 ppb  $\pm$  30%; 0.5 ppb  $\pm$  30%

LLCV = 1.0 ppb ± 30%

Internal Standard Reference:

Ge / 72 [He] for V,As,Cr,Ni, Cu,Mn,Se,Ti

#### Truesdail Laboratories, Inc. Metals Analysis Report

| Onwell Name                                         | A Data Ti                             | DF.         | 70 Col He 1                | 0/10050           |
|-----------------------------------------------------|---------------------------------------|-------------|----------------------------|-------------------|
| Sample Name                                         | Acq. Date-Time<br>4/9/2014 5:15 PM    | DF<br>10    | 72 Ge[ He ]<br>28914.15    | %ISREC<br>98.60   |
| MRCCS                                               | 4/9/2014 5:35 PM                      | 1.0<br>1.0  | 29092.37333                | 99.20             |
| CB<br>ICSA                                          | 4/9/2014 5:51 PM                      | 1.0         | 29643.17667                | 101.08            |
| ICSA+B                                              | 4/9/2014 5:57 PM                      | 1.0         | 28546.61333                | 97.34             |
| MB                                                  | 4/9/2014 6:03 PM                      | 1.0         | 29104.84333                | 99.25             |
| LCS 040914B 2x                                      | 4/9/2014 6:10 PM                      | 2.0         | 28001.78667                | 95.49             |
| %LCS RECOVERY                                       |                                       |             |                            |                   |
| MB 040914B                                          | 4/9/2014 6:16 PM                      | 1.0         | 28478.6                    | 97.11             |
| 812966-1 TOT 040914B 2x                             | 4/9/2014 6:23 PM                      | 2.0         | 28003.86                   | 95.49             |
| 812966-1DUP TOT 040914B 2x                          | 4/9/2014 6:29 PM                      | 2.0         | 28087.38                   | 95.78             |
| %RPD                                                |                                       |             |                            |                   |
| 812966-1MS TOT 040914B 2x                           | 4/9/2014 6:36 PM                      | 2.0         | 28327.19667                | 96.60             |
| %MS RECOVERY                                        |                                       |             |                            |                   |
| 812966-1MSD TOT 040914B 2x                          | 4/9/2014 6:42 PM                      | 2.0         | 28398.19333                | 96.84             |
| MRCVS                                               | 4/9/2014 6:55 PM                      | 1.0         | 28764.85333                | 98.09             |
| СВ                                                  | 4/9/2014 7:02 PM                      | 1.0         | 29066.91667                | 99.12             |
| 812966-2 TOT 040914B 2x                             | 4/9/2014 7:14 PM                      | 2.0         | 28284.57333                | 96.45             |
| 812966-2 TOT 040914B 10x                            | 4/9/2014 7:21 PM                      | 10.0        | 28533.03                   | 97.30             |
| 812966-2 TOT 040914B 50x                            | 4/9/2014 7:27 PM                      | 50.0        | 28635.39                   | 97.65             |
| %RPD FOR 5 FOLD                                     | 4/9/2014 7:34 PM                      | 20          | 26781.58333                | 91.32             |
| 812966-3 TOT 040914B 2x<br>812966-3 TOT 040914B 10x | 4/9/2014 7:40 PM                      | 2.0<br>10.0 | 30130.83                   | 102.75            |
| %RPD FOR 5 FOLD                                     | 4/3/2014 7.401 10                     | 10.0        | 30 100.03                  | 102.70            |
| 812967-1 040914B 2x                                 | 4/9/2014 7:47 PM                      | 2.0         | 31710                      | 108.13            |
| 812967-2 040914B 2x                                 | 4/9/2014 7:53 PM                      | 2.0         | 31590.88667                | 107.72            |
| 812967-3 040914B 2x                                 | 4/9/2014 8:00 PM                      | 2.0         | 31931.10667                | 108.88            |
| 812967-4 040914B 2x                                 | 4/9/2014 8:06 PM                      | 2.0         | 31021.35667                | 105.78            |
| MRCVS                                               | 4/9/2014 8:19 PM                      | 1.0         | 32659.52333                | 111.37            |
| СВ                                                  | 4/9/2014 8:25 PM                      | 1.0         | 33015.25333                | 112.58            |
| 812967-5 040914B 2x                                 | 4/9/2014 8:32 PM                      | 2.0         | 31026.93333                | 105.80            |
| 812967-6 040914B 2x                                 | 4/9/2014 8:38 PM                      | 2.0         | 30320.28333                | 103.39            |
| 812967-7 040914B 2x                                 | 4/9/2014 8:45 PM                      | 2.0         | 30433.00667                | 103.78            |
| 812967-8 040914B 2x                                 | 4/9/2014 8:51 PM                      | 2.0         | 31168.47                   | 106.28            |
| 812967-9 040914B 2x                                 | 4/9/2014 8:58 PM                      | 2.0         | 30635.91667                | 104.47            |
| 812967-10 040914B 2x                                | 4/9/2014 9:11 PM                      | 2.0         | 30167.76                   | 102.87            |
| 812967-11 040914B 2x                                | 4/9/2014 9:17 PM                      | 2.0         | 30294.92333                | 103.31            |
| 812967-14 040914B 2x                                | 4/9/2014 9:23 PM                      | 2.0         | 29345.30333                | 100.07            |
| 812967-15 040914B 2x                                | 4/9/2014 9:30 PM                      | 2.0         | 30362.88                   | 103.54            |
| MRCVS                                               | 4/9/2014 9:43 PM                      | 1.0         | 30181.01667                | 102.92            |
| CB<br>NDOV6                                         | 4/9/2014 9:49 PM<br>4/9/2014 11:00 PM | 1.0         | 30857.43667<br>25618.65667 | 105.22<br>87.36   |
| MRCVS                                               | 4/9/2014 11:07 PM                     | 1.0<br>1.0  | 26089.83333                | 88.97             |
| CB<br>LCS LAB.FILTERES 040914B                      | 4/9/2014 11:13 PM                     | 1.0         | 25206.31333                | 85.95             |
| %LCS RECOVERY                                       | 47072014 11:101 14                    | 1.0         | 20200.01000                | 00.00             |
| MB LAB.FILTERED 040914B                             | 4/9/2014 11:20 PM                     | 1.0         | 25965.23667                | 88.54             |
| 812969-1 LAB.FILTERED 040914B 2x                    | 4/9/2014 11:26 PM                     | 2.0         | 25414.8                    | 86.66             |
| 812969-1DUP LAB.FILTERED 040914B 2x                 | 4/9/2014 11:33 PM                     | 2.0         | 25918.13                   | 88.38             |
| %RPD                                                |                                       |             |                            |                   |
| 812969-1MS LAB.FILTERED 040914B 2x                  | 4/9/2014 11:39 PM                     | 2.0         | 26717.12333                | 91.10             |
| %MS RECOVERY                                        |                                       |             |                            |                   |
| 812969-1MSD LAB.FILTERED 040914B 2x                 | 4/9/2014 11:46 PM                     | 2.0         | 26954.09667                | 91.91             |
| 812969-2 LAB.FILTERED 040914B 2x                    | 4/9/2014 11:52 PM                     | 2.0         | 28370.63                   | 96.74             |
| 812969-2 LAB.FILTERED 040914B 10x                   | 4/9/2014 11:58 PM                     | 10.0        | 29945.96667                | 102.12            |
| MRCVS                                               | 4/10/2014 12:24 AM                    | 1.0         | 26799.75333                | 91.39             |
| CB                                                  | 4/10/2014 12:31 AM                    | 1.0         | 26908.97333                | 91.76             |
| 0.2 LLCV                                            | 4/10/2014 12:37 AM                    |             |                            | 90.75             |
| 0.5 LLCV                                            | 4/10/2014 12:50 AM                    | 1.0         | 26043.38333                | 88.81             |
| 1.0 LLCV                                            | 4/10/2014 1:09 AM                     | 1.0         | 25536.46333                | 87.08<br>87.06    |
| ICSA                                                | 4/10/2014 1:29 AM                     | 1.0         | 25794.74<br>24980.63667    | 87.96<br>85.19    |
| ICSA+B                                              | 4/10/2014 1:35 AM                     | 1.0         | 24300.03007                | 85.18<br><b>Y</b> |
| Internal Std within QC Control? (70-130%)           |                                       |             |                            | Ŧ                 |

Instrument: Agilent 7700X ICPMS Method: EPA 200.8/6020A

Reporting Limit: 1 ppb

Client Specific Reporting Limit: Hg = 0.2 ppb As, Be, Mn = 0.5 ppb; Cr, Cd, Pb, Tl, U = 1 ppb

Sb, Mo, Ni = 2 ppb

Ba, Co, Cu, Se, Ag, V = 5 ppb

Al, Zn = 10 ppb Unit for sample: ppb Batch : 040914A
Analyst: ETHEL S.
Reviewer: KATIA K.

TV for:

MRCCS, MRCVS = 20 ppb ± 10% Digested LCS = 50 ppb ± 15% Digested MS/MSD = 50 ppb  $\pm$  25% ICS A+B =20ppb ± 20%

LLCV = 0.2 ppb ± 30%; 0.5 ppb ± 30%

LLCV = 1.0 ppb ± 30%

Internal Standard Reference:

Ge / 72 [He] for V,As,Cr,Ni, Cu,Mn,Se,Ti

| Sample Name                     | Acq. Date-Time       | DF    | Be     | %RSD     | Mn      | %RSD     | Co     | %RSD   | Cu     | %RSD         | Se     | %RSD         | Mo      | %RSD   |
|---------------------------------|----------------------|-------|--------|----------|---------|----------|--------|--------|--------|--------------|--------|--------------|---------|--------|
| MRCCS                           | 4/10/2014 12:18 PM   | 1.00  | 19.555 | 1.200    | 18.658  | 1.918    | 19.173 | 0.855  | 19,169 | 2.145        | 18.290 | 5.191        | 18.550  | 2.197  |
| СВ                              | 4/10/2014 12:24 PM   | 1.00  | 0.006  | 42.760   | 0.042   | 92.275   | 0.004  | 12.082 | -0.064 | N/A          | -0.018 | 0.191<br>N/A | 0.017   | 24.392 |
| ICSA                            | 4/10/2014 12:37 PM   | 1.00  | 0.014  | 42,478   | 0.014   | 171.164  | 0.009  | 6.020  | -0.028 | N/A          | -0.254 | N/A          | 0.366   | 2.836  |
| ICSA+B                          | 4/10/2014 12:43 PM   | 1.00  | 0.002  | 205.684  | 19.095  | 1.030    | 19.239 | 0.549  | 19.154 | 0.609        | -0.234 | N/A          | 0.377   | 2.836  |
| MB                              | 4/10/2014 12:50 PM   | 1.00  | 0.003  | 100.817  | 0.038   | 135.432  | 0.003  | 41.689 | -0.069 | 0.009<br>N/A | -0.035 | N/A          | 0.003   |        |
| LCS 040914B 2x                  | 4/10/2014 12:56 PM   | 2.00  | 47.188 | 0.418    | 46.591  | 1.603    | 46.871 | 0.857  | 50.480 | 1.889        | 47.379 | 5.077        |         | 49.138 |
| %LCS RECOVERY                   |                      |       | 94.4   | 0.110    | 93.2    | 1.005    | 93.7   | 0.837  | 101.0  | 1.009        | 94.8   | 5.077        | 46.879  | 0.294  |
| MB 040914B                      | 4/10/2014 1:03 PM    | 1.00  | 0.009  | 37.769   | 0.009   | 311.459  | 0.008  | 13.382 | 0.134  | 6.813        | -0.259 | N/A          | 93.8    | 40.000 |
| 812966-1 TOT 040914B 2x         | 4/10/2014 1:09 PM    | 2.00  | 0.042  | 47.351   | 4.308   | 1.307    | 0.279  | 4.964  | 0.134  | 2.100        | 4.202  | 6.440        | 0.017   | 13.838 |
| 812966-1D TOT 040914B 2x        | 4/10/2014 1:29 PM    | 2.00  | 0.040  | 34.366   | 4.369   | 2.466    | 0.278  | 0.669  | 0.934  |              |        |              | 18.732  | 2.499  |
| %RPD                            | 1                    |       | 0.010  | 07.000   | 1.411   | 2.400    | 0.230  | 0.005  | 0.575  | 9.520        | 2.491  | 27.480       | 18.144  | 1.781  |
| 812966-1MS TOT 040914B 2x       | 4/10/2014 1:35 PM    | 2.00  | 40.714 | 0.813    | 47.978  | 2.221    | 45.520 | 0.229  | 45.995 | 2.027        | 47.831 | 4 504        | 3.189   | 0.040  |
| %MS RECOVERY                    |                      | 2.00  | 81.4   | 0.010    | 87.3    | 2.22     | 91.0   | 0.225  | 92.0   | 2.027        | 95.7   | 4.581        | 63.185  | 0.918  |
| 812966-1MSD TOT 040914B 2x      | 4/10/2014 1:42 PM    | 2.00  | 40.271 | 0.551    | 48.653  | 4.257    | 44.390 | 1.083  | 47.605 | 4.612        |        | 0.000        | 88.9    |        |
| MRCVS                           | 4/10/2014 1:55 PM    | 1.00  | 20.044 | 0.530    | 19.836  | 4.429    |        |        |        |              | 46.426 | 3.263        | 62.042  | 0.912  |
| CB                              | 4/10/2014 2:01 PM    | 1.00  | 0.011  | 12.331   |         |          | 20.363 | 0.270  | 20.041 | 2.579        | 19.629 | 1.873        | 19.111  | 0.683  |
| 812966-2 TOT 040914B 2x         | 4/10/2014 2:08 PM    | 2.00  | 0.009  | 143.943  | -0.023  | N/A      | 0.005  | 29.906 | 0.051  | 139.476      | -0.383 | N/A          | 0.017   | 39.213 |
| 812966-2 TOT 040914B 10x        | 4/10/2014 2:14 PM    | 10.00 |        |          | 6.632   | 5.172    | 0.309  | 0.738  | 0.565  | 22.475       | 3.957  | 27.483       | 18.745  | 6.122  |
| %RPD FOR 5 FOLD                 | 4/ 10/20 14 2: 14 PW | 10.00 | 0.001  | 2835.603 | 6.557   | 12.831   | 0.308  | 8.620  | 2.484  | 18.766       | 3.245  | 34.928       | 19.311  | 1.510  |
| 812966-3 TOT 040914B 20x        | 4/10/2014 2:01 DM    | 20.00 | 0.050  |          | 0.4.055 |          |        |        |        |              |        |              |         |        |
| MRCVS                           | 4/10/2014 2:21 PM    | 20.00 | -0.058 | N/A      | 31.257  | 2.977    | 1.415  | 4.594  | 5.416  | 47.001       | 18.714 | 60.960       | 117.833 | 1.618  |
|                                 | 4/10/2014 2:40 PM    | 1.00  | 20.074 | 2.063    | 20.092  | 3.916    | 20.384 | 0.305  | 20.377 | 1.998        | 20.220 | 6.017        | 19.034  | 0.695  |
| CB                              | 4/10/2014 2:46 PM    | 1.00  | -0.001 | N/A      | 0.001   | 3495.586 | 0.004  | 46.732 | 0.027  | 208.006      | -0.457 | N/A          | 0.017   | 18.748 |
| MRCVS                           | 4/10/2014 3:46 PM    | 1.00  | 20.602 | 6.363    | 20.298  | 3.255    | 21.142 | 6.317  | 20.812 | 2.033        | 20.230 | 5.157        | 20.173  | 8.132  |
| СВ                              | 4/10/2014 3:52 PM    | 1.00  | 0.005  | 77.043   | -0.004  | N/A      | 0.004  | 31.461 | 0.043  | 97.558       | -0.542 | N/A          | 0.020   | 26.220 |
| 812967-9 040914B 5x             | 4/10/2014 3:58 PM    | 5.00  | 0.057  | 64.189   | 0.217   | 102.861  | 1.688  | 3.709  | 3.458  | 7.288        | 4.231  | 62.500       | 4.843   | 4.252  |
| 812967-10 040914B 5x            | 4/10/2014 4:05 PM    | 5.00  | 0.006  | 97.166   | 0.582   | 18.421   | 0.095  | 12.438 | 2.918  | 6.059        | 0.935  | 108.282      | 28.968  | 0.657  |
| 812967-10 040914B 25x           | 4/10/2014 4:11 PM    | 25.00 | 0.081  | 113.993  | -0.362  | N/A      | 0.131  | 35.437 | 4.938  | 14.707       | 6.350  | 170.535      | 29.095  | 2.381  |
| %RPD FOR 5 FOLD                 | 1                    |       |        |          |         |          |        |        |        |              |        |              | 0.437   |        |
| 812967-11 040914B 5x            | 4/10/2014 4:18 PM    | 5.00  | 0.004  | 666.226  | -0.022  | N/A      | 0.495  | 2.097  | 0.649  | 17.012       | 1.173  | 159.472      | 14.432  | 2.413  |
| 812967-15 040914B 5x            | 4/10/2014 4:24 PM    | 5.00  | 0.020  | 198.960  | 0.670   | 15.924   | 0.097  | 11.814 | 0.208  | 113.862      | 2.071  | 43.007       | 28.812  | 0.777  |
| MRCVS                           | 4/10/2014 4:43 PM    | 1.00  | 19.745 | 1.595    | 20.287  | 2.242    | 20.120 | 0.612  | 20.509 | 1.955        | 19.940 | 3.834        | 18.932  | 1.356  |
| СВ                              | 4/10/2014 4:50 PM    | 1.00  | 0.005  | 81.068   | -0.028  | N/A      | 0.003  | 80.690 | 0.069  | 76.788       | -0.118 | N/A          | 0.024   | 24.012 |
| 0.2 LLCV                        | 4/10/2014 4:56 PM    | 1.00  | 0.220  | 11.506   | 0.171   | 14.579   | 0.203  | 4.618  | 0.388  | 5.196        | -0.005 | N/A          | 0.193   | 2.841  |
| 0.5 LLCV                        | 4/10/2014 5:09 PM    | 1.00  | 0.499  | 3.213    | 0.433   | 5.020    | 0.494  | 1.850  | 0.625  | 9.900        | 0.036  | 557.143      | 0.475   | 5.598  |
| 1.0 LLCV                        | 4/10/2014 5:22 PM    | 1.00  | 0.993  | 4.905    | 0.914   | 10.698   | 0.998  | 1.728  | 1.015  | 0.267        | 0.810  | 42.752       | 0.921   | 5.206  |
| 2.0 LLCV                        | 4/10/2014 5:41 PM    | 1.00  | 1.970  | 5.671    | 1.953   | 6.472    | 1.937  | 1.538  | 2.131  | 3.714        | 2.117  | 9.397        | 1.858   | 3.367  |
| ICSA                            | 4/10/2014 5:54 PM    | 1.00  | 0.006  | 102.283  | -0.034  | N/A      | 0.005  | 16.860 | -0.001 | N/A          | -0.409 | N/A          | 0.350   | 1.086  |
| ICSA+B                          | 4/10/2014 6:01 PM    | 1.00  | 0.003  | 114.960  | 20.947  | 13.469   | 19.031 | 0.508  | 19.353 | 0.455        | 0.446  | 154.355      | 0.383   | 5.317  |
| 812966-3 TOT 040914B 2x         | 4/10/2014 6:20 PM    | 2.00  | -0.004 | N/A      | 31.765  | 2.319    | 1.614  | 1.929  | 4.852  | 5.793        | 24.558 | 1.930        | 119.800 | 0.642  |
| 812966-3 TOT 040914B 10x        | 4/10/2014 6:27 PM    | 10.00 | 0.137  | 32.792   | 32.848  | 4.540    | 2.008  | 1.942  | 11.304 | 3.342        | 23.231 | 17.421       | 120.365 | 1,265  |
| MRCVS                           | 4/10/2014 6:40 PM    | 1.00  | 18.676 | 0.768    | 20.802  | 3.253    | 20.704 | 0.857  | 19.536 | 3.516        | 21.060 | 6.893        | 18.353  | 0.565  |
| CB                              | 4/10/2014 6:46 PM    | 1.00  | 0.007  | 113.685  | -0.029  | N/A      | 0.004  | 29.132 | 0.094  | 39.853       | -0.199 | N/A          | 0.027   | 30.736 |
| 0.2 LLCV                        | 4/10/2014 6:59 PM    | 1.00  | 0.189  | 8.202    | 0.167   | 17.808   | 0.205  | 3.355  | 0.465  | 22.368       | 0.321  | 66.205       | 0.185   | 2.371  |
| 0.5 LLCV                        | 4/10/2014 7:12 PM    | 1.00  | 0.530  | 10.690   | 0.483   | 12.269   | 0.477  | 1.719  | 0.721  | 6.028        | 0.096  | 476.015      | 0.458   | 1.626  |
| 1.0 LLCV                        | 4/10/2014 7:25 PM    | 1.00  | 0.959  | 2.713    | 0.875   | 7.007    | 0.968  | 1.658  | 1.205  | 6.612        | 1.093  | 25.627       | 0.971   | 3.073  |
| 2.0 LLCV                        | 4/10/2014 7:31 PM    | 1.00  | 1.844  | 3.569    | 1.893   | 8.694    | 1.931  | 0.502  | 2.094  | 2.182        | 1.516  | 8.267        | 1.930   | 3.855  |
| ICSA                            | 4/10/2014 7:51 PM    | 1.00  | 0.001  | 774.065  | -0.032  | N/A      | 0.005  | 40.834 | -0.007 | N/A          | -0.169 | N/A          | 0.358   | 0.627  |
| ICSA+B                          | 4/10/2014 7:57 PM    | 1.00  | -0.003 | N/A      | 18.665  | 0.883    | 18.914 | 0.146  | 19.477 | 3.776        | -0.100 | N/A          | 0.364   | 4.871  |
| Internal Std within QC Control? | (70-130%)            |       |        |          |         |          |        |        |        |              |        |              | 0.00    | -1.077 |

Instrument: Agilent 7700X ICPMS
Method: EPA 200.8/6020A
Reporting Limit: 1 ppb
Client Specific Reporting Limit: Hg = 0.2 ppb
As, Be, Mn = 0.5 ppb; Cr, Cd, Pb, Tl, U = 1 ppb
Sb, Mo, Ni = 2 ppb
Ba, Co, Cu, Se, Ag, V = 5 ppb
Al, Zn = 10 ppb
Unit for sample: ppb
Batch: 041014A
Analyst: ETHEL S.
Reviewer: KATIA K.

TV for:

MRCCS, MRCVS = 20 ppb ± 10%

Digested LCS = 50 ppb ± 15%

Digested MS/MSD = 50 ppb ± 25%

ICS A+B = 20ppb ± 20%

LLCV = 0.2 ppb ± 30%; 0.5 ppb ± 30%

LLCV = 1.0 ppb ± 30%; 2.0 ppb ± 30%

| Internal Standard Reference:
| Ge / 72 [He] for V,As,Cr,Ni, Cu,Mri,Se,Ti | 25874 |
| Ge / 72 [NoGas] for ,Zn, Co, Al | 455636 |
| Y / 89 [No Gas] for Mo, Ag, Cd, Sn, Sr | 3312570 |
| Tb / 159 [No Gas] for Sb, Ba, Ti,Pb, Hg, U | 5476896 |
| Li / 6 [No Gass] for Be | 679689 |

| Sample Name                       | Acq. Date-Time     | DF    | 6 Li[ No Gas ] | %ISREC | 72Ge [ No Gas ] | %ISREC | 72Ge[ He ]  | %ISREC | 89Y[ No Gas ] | %ISREC | 159Tb[ No Gas ] | %ISREC         |
|-----------------------------------|--------------------|-------|----------------|--------|-----------------|--------|-------------|--------|---------------|--------|-----------------|----------------|
| MRCCS                             | 4/10/2014 12:18 PM | 1.00  | 614155.7533    | 90.36  | 447568.54       | 98.2   | 24987.84333 | 96.6   | 3236633.743   | 97.7   | 5797562.637     |                |
| СВ                                | 4/10/2014 12:24 PM | 1.00  | 670801.29      | 98.69  | 469165.6267     | 103.0  | 24344.61333 | 94.1   | 3437716.503   | 103.8  | 5807488.083     | 105.9          |
| ICSA                              | 4/10/2014 12:37 PM | 1.00  | 679044.1667    | 99.91  | 469182.7267     | 103.0  | 25963.42667 | 100.3  | 3437879.31    | 103.8  | 5802566.287     | 106.0          |
| ICSA+B                            | 4/10/2014 12:43 PM | 1.00  | 623072,4967    | 91.67  | 448563.5167     | 98.4   | 23620.68    | 91.3   | 3181067,127   | 96.0   | 5748314.047     | 105.9          |
| MB                                | 4/10/2014 12:50 PM | 1.00  | 681142.1367    | 100.21 | 473444.0967     | 103.9  | 24733.16667 | 95.6   | 3470742.72    | 104.8  | 5918998.357     | 105.0<br>108.1 |
| LCS 040914B 2x                    | 4/10/2014 12:56 PM | 2.00  | 585245.6133    | 86.10  | 438921.38       | 96.3   | 24108.51667 | 93.2   | 3135544.207   | 94.7   | 5783696.4       | 105.6          |
| %LCS RECOVERY                     |                    |       |                |        |                 |        |             |        |               | 3      | 5705050.4       | 100.6          |
| MB 040914B                        | 4/10/2014 1:03 PM  | 1.00  | 623521.4533    | 91.74  | 452810.71       | 99.4   | 24345.88333 | 94.1   | 3271355.867   | 98.8   | 5650910.127     | 103.2          |
| 812966-1 TOT 040914B 2x           | 4/10/2014 1:09 PM  | 2.00  | 794845.1667    | 116.94 | 468124.4767     | 102.7  | 23939.36    | 92.5   | 3364562.117   | 101.6  | 5703266.72      | 104.1          |
| 812966-1D TOT 040914B 2x          | 4/10/2014 1:29 PM  | 2.00  | 804088.4233    | 118.30 | 482522.0667     | 105.9  | 24155.13667 | 93.4   | 3532753.607   | 106.6  | 5788723.21      | 105.7          |
| %RPD                              |                    |       |                |        |                 |        |             |        |               |        | 0.00.20.21      | 105.7          |
| 812966-1MS TOT 040914B 2x         | 4/10/2014 1:35 PM  | 2.00  | 746582.8467    | 109.84 | 468649.33       | 102.9  | 24002.75667 | 92.8   | 3387138.01    | 102.3  | 5759733.737     | 105.2          |
| %MS RECOVERY                      |                    |       |                |        |                 |        |             |        |               |        |                 | 100.2          |
| 812966-1MSD TOT 040914B 2x        | 4/10/2014 1:42 PM  | 2.00  | 733326.6767    | 107.89 | 460933.21       | 101.2  | 25124.47    | 97.1   | 3373822.67    | 101.8  | 5731529.023     | 104.6          |
| MRCVS                             | 4/10/2014 1:55 PM  | 1.00  | 665660.64      | 97.94  | 486976.7367     | 106.9  | 25124.05667 | 97.1   | 3569426.883   | 107.8  | 6165474.877     | 112.6          |
| CB                                | 4/10/2014 2:01 PM  | 1.00  | 710043.36      | 104.47 | 498811.06       | 109.5  | 25332.65333 | 97.9   | 3670960.273   | 110.8  | 6183388.1       | 112.9          |
| 812966-2 TOT 040914B 2x           | 4/10/2014 2:08 PM  | 2.00  | 763369.2533    | 112.31 | 465891.6        | 102.3  | 24841.44    | 96.0   | 3415679.967   | 103.1  | 5678130.33      | 103.7          |
| 812966-2 TOT 040914B 10x          | 4/10/2014 2:14 PM  | 10.00 | 699717.89      | 102.95 | 499372.4733     | 109.6  | 24456.04    | 94.5   | 3632587.33    | 109.7  | 6154473.693     | 112,4          |
| %RPD FOR 5 FOLD                   |                    |       |                |        |                 |        |             | •      | 0000007.00    | 100.7  | 0104475.055     | 112,4          |
| 812966-3 TOT 040914B 20x          | 4/10/2014 2:21 PM  | 20.00 | 752116.12      | 110.66 | 491566.58       | 107.9  | 24576.35    | 95.0   | 3611792.457   | 109.0  | 6018460.72      | 109,9          |
| MRCVS                             | 4/10/2014 2:40 PM  | 1.00  | 659798.5767    | 97.07  | 486117.99       | 106.7  | 24852.55333 | 96.1   | 3580362.733   | 108.1  | 6183473.23      | 112.9          |
| CB                                | 4/10/2014 2:46 PM  | 1.00  | 704487.87      | 103.65 | 500047.09       | 109.7  | 26916.73667 | 104.0  | 3665442.307   | 110.7  | 6159550.75      | 112.5          |
| MRCVS                             | 4/10/2014 3:46 PM  | 1.00  | 611481.94      | 89.97  | 451398.4167     | 99.1   | 24060.76667 | 93.0   | 3294326.933   | 99.4   | 5776175.673     | 105.5          |
| CB                                | 4/10/2014 3:52 PM  | 1.00  | 660487.0733    | 97.17  | 465791.45       | 102.2  | 25860.63667 | 99.9   | 3406676.147   | 102.8  | 5806738.227     | 106.0          |
| 812967-9 040914B 5x               | 4/10/2014 3:58 PM  | 5.00  | 646067.5733    | 95.05  | 463925.4767     | 101.8  | 23860.12667 | 92.2   | 3462091.897   | 104.5  | 5893798.66      | 107.6          |
| 812967-10 040914B 5x              | 4/10/2014 4:05 PM  | 5.00  | 645089.03      | 94.91  | 478606.7        | 105.0  | 24372.42667 | 94.2   | 3507771.65    | 105.9  | 6086602.223     | 111.1          |
| 812967-10 040914B 25x             | 4/10/2014 4:11 PM  | 25.00 | 628491.8767    | 92.47  | 470872.0967     | 103.3  | 24664.37    | 95.3   | 3469923.61    | 104.8  | 6064925.26      | 110.7          |
| %RPD FOR 5 FOLD                   |                    |       |                |        |                 |        |             |        |               |        |                 | 110.7          |
| 812967-11 040914B 5x              | 4/10/2014 4:18 PM  | 5.00  | 628445.32      | 92.46  | 461080.89       | 101.2  | 24118.64    | 93.2   | 3350783.213   | 101.2  | 5927093.623     | 108.2          |
| 812967-15 040914B 5x              | 4/10/2014 4:24 PM  | 5.00  | 636138.4667    | 93.59  | 477291.0967     | 104.8  | 24011.46333 | 92.8   | 3500241.14    | 105.7  | 6045683.24      | 110.4          |
| MRCVS                             | 4/10/2014 4:43 PM  | 1.00  | 619017.66      | 91.07  | 462276.9        | 101.5  | 23660.88333 | 91.4   | 3426602.907   | 103.4  | 5991243.34      | 109.4          |
| CB                                | 4/10/2014 4:50 PM  | 1.00  | 676434.4       | 99.52  | 482808.0733     | 106.0  | 24619.76667 | 95.2   | 3558422.29    | 107.4  | 6065714.607     | 110.7          |
| 0.2 LLCV                          | 4/10/2014 4:56 PM  | 1.00  | 616558.4267    | 90.71  | 454072.4167     | 99.7   | 23324.50667 | 90.1   | 3326581.157   | 100.4  | 5912921.147     | 108.0          |
| 0.5 LLCV                          | 4/10/2014 5:09 PM  | 1.00  | 619013.9833    | 91.07  | 460991.6767     | 101.2  | 23632.86667 | 91.3   | 3440060.03    | 103.8  | 6049457.743     | 110.5          |
| 1.0 LLCV                          | 4/10/2014 5:22 PM  | 1.00  | 616716.9567    | 90.74  | 462721.38       | 101.6  | 23425.78333 | 90.5   | 3433637.677   | 103.7  | 6050318.193     | 110.5          |
| 2.0 LLCV                          | 4/10/2014 5:41 PM  | 1.00  | 611191.03      | 89.92  | 456858.1833     | 100.3  | 22901.29667 | 88.5   | 3348498.397   | 101.1  | 5933370.937     | 108.3          |
| ICSA                              | 4/10/2014 5:54 PM  | 1.00  | 681729.2467    | 100.30 | 482107.5333     | 105.8  | 24620.74667 | 95.2   | 3548752.537   | 107.1  | 5994308.543     | 109.4          |
| ICSA+B                            | 4/10/2014 6:01 PM  | 1.00  | 619961.9133    | 91.21  | 451496.1367     | 99.1   | 23497.22    | 90.8   | 3297481.703   | 99.5   | 5864284.983     | 107.1          |
| 812966-3 TOT 040914B 2x           | 4/10/2014 6:20 PM  | 2.00  | 1418740.93     | 208.73 | 422745.48       | 92.8   | 24131.99    | 93.3   | 2951802.467   | 89.1   | 4827198.99      | 88.1           |
| 812966-3 TOT 040914B 10x          | 4/10/2014 6:27 PM  | 10.00 | 1068769.66     | 157.24 | 542218.1733     | 119.0  | 27373.58    | 105.8  | 3923715.473   | 118.4  | 5960502.097     | 108.8          |
| MRCVS                             | 4/10/2014 6:40 PM  | 1.00  | 1023095.82     | 150.52 | 622986.89       | 136.7  | 26660.6     | 103.0  | 4461733.797   | 134.7  | 6936894.667     | 126.7          |
| CB                                | 4/10/2014 6:46 PM  | 1.00  | 985879.78      | 145.05 | 608101.82       | 133.5  | 26998.04667 | 104.3  | 4339056.093   | 131.0  | 6782772.38      | 123.8          |
| 0.2 LLCV                          | 4/10/2014 6:59 PM  | 1.00  | 838049.1433    | 123.30 | 558061.06       | 122.5  | 24701.12667 | 95.5   | 4049938.46    | 122.3  | 6618575.533     | 120.8          |
| 0.5 LLCV                          | 4/10/2014 7:12 PM  | 1.00  | 630579.1867    | 92.77  | 464931.0667     | 102.0  | 22931.41    | 88.6   | 3481083.683   | 105.1  | 6011645.253     | 109.8          |
| 1.0 LLCV                          | 4/10/2014 7:25 PM  | 1.00  | 579380.8667    | 85.24  | 439577.35       | 96.5   | 22809.93333 | 88.2   | 3116647.54    | 94.1   | 5891427.9       | 107.6          |
| 2.0 LLCV                          | 4/10/2014 7:31 PM  | 1.00  | 576513.4833    | 84.82  | 440347.6733     | 96.6   | 22752.04333 | 87.9   | 3169630.277   | 95.7   | 5886599.38      | 107.5          |
| ICSA                              | 4/10/2014 7:51 PM  | 1.00  | 608986.3633    | 89.60  | 453819.73       | 99.6   | 23600.59667 | 91.2   | 3313103.28    | 100.0  | 5817673.54      | 106.2          |
| ICSA+B                            | 4/10/2014 7:57 PM  | 1.00  | 586431.6167    | 86.28  | 443686.7767     | 97.4   | 22669.54667 | 87.6   | 3210660.437   | 96.9   | 5911701.81      | 107.9          |
| Internal Std within QC Control? ( | 70-130%)           |       |                | Y      |                 | Υ      |             | Υ      |               | Υ      |                 | Y              |
|                                   |                    |       |                |        |                 |        |             |        |               |        |                 |                |

Instrument: Agilent 7700X ICPMS Method: EPA 200.8/6020A Reporting Limit: 1 ppb Client Specific Reporting Limit: Hg = 0.2 ppb As, Be, Mn = 0.5 ppb; Cr, Cd, Pb, Tl, U = 1 ppb Sb, Mo, Ni = 2 ppb Ba, Co, Cu, Se, Ag, V = 5 ppb Al, Zn = 10 ppb Unit for sample: ppb Batch: 041014A Analyst: ETHEL S.

Reviewer: KATIA K.

TV for: MRCCS, MRCVS = 20 ppb ± 10% Digested LCS = 50 ppb ± 15% Digested MS/MSD = 50 ppb ± 25% ICS A+B =20ppb ± 20% LLCV = 0.2 ppb ± 30%; 0.5 ppb ± 30% LLCV = 1.0 ppb ± 30% ;2.0 ppb ± 30%

Internal Standard Reference:

Ge / 72 [He] for V,As,Cr,Ni, Cu,Mn,Se,Ti Ge / 72 [NoGas] for , Zn, Co, Al 3312570 Y / 89 [No Gas] for Mo, Ag, Cd, Sn, Sr Tb / 159 [No Gas] for Sb, Ba, TI,Pb, Hg, U 5476996 Li / 6 [No Gaas] for Be

25874

455636

#### Truesdail Laboratories, Inc. Metals Analysis Report

| SAMPLE                     | DATE/TIM    | IE         | DF  | Na5895 | %RSD   | Y_3710-2 | %ISREC |
|----------------------------|-------------|------------|-----|--------|--------|----------|--------|
| MRCCS                      | 4/10/2014   | 11:49:51AM | 1.0 | 5.176  | 0.5152 | 547930.  | 101.13 |
| СВ                         | 4/10/2014   | 12:03:13PM | 1.0 | <.0000 | 69.13  | 560120.  | 103.38 |
| LCS                        | 4/10/2014   | 12:09:04PM | 1.0 | 5.192  | 4.747  | 538830.  | 99.45  |
| ICSA                       | 4/10/2014   | 12:14:53PM | 1.0 | 2.039  | 1.976  | 571650.  | 105.51 |
| ICSA+B                     | 4/10/2014   | 12:20:41PM | 1.0 | 2.029  | 0.4029 | 569010.  | 105.02 |
| MB                         | 4/10/2014   | 12:26:22PM | 1.0 | .0128  | 5.486  | 569090.  | 105.04 |
| LCS 040914B                | 4/10/2014   | 12:36:33PM | 1.0 | 2.127  | 1.015  | 578080.  | 106.70 |
| %LCS RECOVERY              |             |            |     | 106.4  |        |          |        |
| MB 040914B                 | 4/10/2014   | 12:42:09PM | 1.0 | .0122  | 9.979  | 567650.  | 104.77 |
| 812966-2 TOTAL 500x        | 4/10/2014   | 1:03:26PM  | 500 | 1464.  | 0.1599 | 569100.  | 105.04 |
| 812966-2D TOTAL 500x       | 4/10/2014   | 1:09:18PM  | 500 | 1433.  | 0.2320 | 581200.  | 107.27 |
| %RPD                       |             |            |     | 2.140  |        |          |        |
| 812966-2MS TOT 500x        | 4/10/2014   | 1:15:13PM  | 500 | 1598.  | 1.486  | 573460.  | 105.84 |
| %MS RECOVERY               |             |            |     | 6700   |        |          |        |
| 812966-2PMS TOT 500x       | 4/10/2014   | 1:21:04PM  | 500 | 2427.  | 1.353  | 567960.  | 104.83 |
| %PMS RECOVERY              |             |            |     | 96.3   |        |          |        |
| MRCVS                      | 4/10/2014   | 1:28:11PM  | 1.0 | 4.967  | 0.3485 | 563080.  | 103.93 |
| СВ                         | 4/10/2014   | 1:35:33PM  | 1.0 | .0028  | 171.1  | 588680.  | 108.65 |
| 812967-9 100x              | 4/10/2014   | 1:41:25PM  | 100 | 773.7  | 1.070  | 572160.  | 105.60 |
| 812967-10 100x             | 4/10/2014   | 1:47:16PM  | 100 | 373.9  | 1.097  | 579290.  | 106.92 |
| 812967-11 100x             | 4/10/2014   | 1:53:08PM  | 100 | 486.2  | 0.1366 | 580730.  | 107.19 |
| 812967-15 100x             | 4/10/2014   | 1:59:00PM  | 100 | 361.8  | 0.5688 | 583820.  | 107.76 |
| MRCVS                      | 4/10/2014   | 2:06:22PM  | 1.0 | 4.883  | 1.016  | 567770.  | 104.79 |
| CB                         | 4/10/2014   | 2:13:45PM  | 1.0 | .0098  | 26.15  | 580980.  | 107.23 |
| ICSA                       | 4/10/2014   | 2:19:36PM  | 1.0 | 1.940  | 1.350  | 579870.  | 107.03 |
| ICSA+B                     | 4/10/2014   | 2:25:25PM  | 1.0 | 1.962  | 0.6300 | 577820.  | 106.65 |
| Internal Std within QC Cor | ntrol? (70- | 130%)      |     |        |        |          | Υ      |

Instrument: Thermo iCap ICP 6000 Method: EPA 200.7/6010BorC Reporting Limit: B;Fe;Zn= 0.02 ppm

Na = 0.500 ppm x DF Unit for sample: ppm

Digestion Batch : Analysis Batch :

040914B 041014A-Th1

Analyst: Reviewer:

ETHELS KATIA K.

TV for:

MRCCS, MRCVS = 5 ppm ( $\pm 10\%$ )

LCS = 5 ppm ( $\pm$  15%)

MS/MSD(3010A) = 2 ppm (± 25%); PMS(3010A) = 2 ppm x DF(± 25%) LCS(3010A) = 2 ppm (± 15%) ICSA,ICSA+B=2ppm (+/-20%)

Internal Std Reference:

Y\_371-2 for Ag, Al, Ba, Ca,K,Na,Sr,Ti 54180

#### TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

Page 1 of 21

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 4/22/2014

Laboratory No. 812967

#### REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG & E Topock
Project Number: 423575.MP.02.CM

P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 4/8/2014 8:05:00 PM

| Field ID   | Lab ID     | Collected        | Matrix |
|------------|------------|------------------|--------|
| CW-01D-031 | 812967-001 | 04/07/2014 10:17 | Water  |
| CW-01M-031 | 812967-002 | 04/07/2014 10:57 | Water  |
| CW-02D-031 | 812967-003 | 04/07/2014 14:20 | Water  |
| CW-02M-031 | 812967-004 | 04/07/2014 15:07 | Water  |
| CW-03D-031 | 812967-005 | 04/08/2014 07:37 | Water  |
| CW-03M-031 | 812967-006 | 04/08/2014 08:55 | Water  |
| CW-04D-031 | 812967-007 | 04/08/2014 10:57 | Water  |
| CW-04M-031 | 812967-008 | 04/08/2014 11:42 | Water  |
| OW-01S-031 | 812967-009 | 04/08/2014 15:03 | Water  |
| OW-02S-031 | 812967-010 | 04/08/2014 14:32 | Water  |
| OW-05S-031 | 812967-011 | 04/08/2014 13:38 | Water  |
| OW-80-031  | 812967-012 | 04/08/2014 06:00 | Water  |
| OW-81-031  | 812967-013 | 04/08/2014 15:30 | Water  |
| OW-90-031  | 812967-014 | 04/08/2014 06:50 | Water  |
| OW-91-031  | 812967-015 | 04/08/2014 10:42 | Water  |

| Anions By I.C EPA 300.0 |      | Batch 04AN14H    |      |       |       |        |
|-------------------------|------|------------------|------|-------|-------|--------|
| Parameter               | Unit | Analyzed         | DF   | MDL   | RL    | Result |
| 812967-001 Chloride     | mg/L | 04/09/2014 15:17 | 500  | 17.4  | 50.0  | 2140   |
| Fluoride                | mg/L | 04/09/2014 13:34 | 5.00 | 0.104 | 0.500 | 2.36   |
| Sulfate                 | mg/L | 04/09/2014 21:04 | 50.0 | 1.54  | 25.0  | 480    |
| 812967-002 Chloride     | mg/L | 04/09/2014 15:29 | 500  | 17.4  | 50.0  | 2060   |
| Fluoride                | mg/L | 04/09/2014 13:50 | 5.00 | 0.104 | 0.500 | 2.13   |
| Sulfate                 | mg/L | 04/09/2014 21:17 | 50.0 | 1.54  | 25.0  | 468    |
| 812967-003 Chloride     | mg/L | 04/09/2014 15:54 | 500  | 17.4  | 50.0  | 2400   |
| Fluoride                | mg/L | 04/09/2014 15:42 | 5.00 | 0.104 | 0.500 | 2.44   |
| Sulfate                 | mg/L | 04/09/2014 21:29 | 50.0 | 1.54  | 25.0  | 472    |
| 812967-004 Chloride     | mg/L | 04/09/2014 16:19 | 500  | 17.4  | 50.0  | 2390   |



Report Continued

| Client: E2 Consulting Engineers |        | oject Name: PG & E Top<br>oject Number: 423575.MP. |      |       | Printed 4/ | age 2 of 21<br>22/2014 |
|---------------------------------|--------|----------------------------------------------------|------|-------|------------|------------------------|
| 812967-004 Fluoride             | mg/L   | 04/09/2014 16:07                                   | 5.00 | 0.104 | 0.500      | 2.99                   |
| Sulfate                         | mg/L   | 04/09/2014 22:06                                   | 50.0 | 1.54  | 25.0       | 477                    |
| 812967-005 Chloride             | mg/L   | 04/09/2014 17:09                                   | 500  | 17.4  | 50.0       | 2080                   |
| Fluoride                        | mg/L   | 04/09/2014 16:31                                   | 5.00 | 0.104 | 0.500      | 3.66                   |
| Sulfate                         | mg/L   | 04/09/2014 22:19                                   | 50.0 | 1.54  | 25.0       | 486                    |
| 812967-006 Chloride             | mg/L   | 04/09/2014 17:33                                   | 500  | 17.4  | 50.0       | 3020                   |
| Fluoride                        | mg/L   | 04/09/2014 17:21                                   | 5.00 | 0.104 | 0.500      | 2.93                   |
| Sulfate                         | mg/L   | 04/09/2014 22:31                                   | 50.0 | 1.54  | 25.0       | 451                    |
| 812967-007 Chloride             | mg/L   | 04/09/2014 17:58                                   | 500  | 17.4  | 50.0       | 2340                   |
| Fluoride                        | mg/L   | 04/09/2014 17:46                                   | 5.00 | 0.104 | 0.500      | 3.21                   |
| Sulfate                         | mg/L   | 04/09/2014 22:44                                   | 50.0 | 1.54  | 25.0       | 483                    |
| 812967-008 Chloride             | mg/L   | 04/09/2014 18:23                                   | 500  | 17.4  | 50.0       | 2250                   |
| Fluoride                        | mg/L   | 04/09/2014 18:11                                   | 5.00 | 0.104 | 0.500      | 1.88                   |
| Sulfate                         | mg/L   | 04/09/2014 22:56                                   | 50.0 | 1.54  | 25.0       | 448                    |
| 812967-009 Chloride             | mg/L   | 04/09/2014 18:48                                   | 500  | 17.4  | 50.0       | 2020                   |
| Fluoride                        | mg/L   | 04/09/2014 18:35                                   | 5.00 | 0.104 | 0.500      | 1.48                   |
| Sulfate                         | mg/L   | 04/09/2014 23:08                                   | 50.0 | 1.54  | 25.0       | 410                    |
| 812967-010 Chloride             | mg/L   | 04/09/2014 19:37                                   | 500  | 17.4  | 50.0       | 526                    |
| Fluoride                        | mg/L   | 04/09/2014 19:00                                   | 5.00 | 0.104 | 0.500      | 4.07                   |
| Sulfate                         | mg/L   | 04/09/2014 23:21                                   | 50.0 | 1.54  | 25.0       | 98.5                   |
| 812967-011 Chloride             | mg/L   | 04/09/2014 20:02                                   | 500  | 17.4  | 50.0       | 1330                   |
| Fluoride                        | mg/L   | 04/09/2014 19:50                                   | 5.00 | 0.104 | 0.500      | 1.67                   |
| Sulfate                         | mg/L   | 04/09/2014 23:33                                   | 50.0 | 1.54  | 25.0       | 233                    |
| 812967-014 Chloride             | mg/L   | 04/09/2014 20:27                                   | 500  | 17.4  | 50.0       | 3010                   |
| Fluoride                        | mg/L   | 04/09/2014 20:15                                   | 5.00 | 0.104 | 0.500      | 2.93                   |
| Sulfate                         | mg/L   | 04/09/2014 23:46                                   | 50.0 | 1.54  | 25.0       | 464                    |
| 812967-015 Chloride             | mg/L   | 04/09/2014 20:52                                   | 500  | 17.4  | 50.0       | 587                    |
| Fluoride                        | mg/L   | 04/09/2014 20:40                                   | 5.00 | 0.104 | 0.500      | 4.30                   |
| Sulfate                         | mg/L   | 04/09/2014 23:58                                   | 50.0 | 1.54  | 25.0       | 95.2                   |
| Method Blank                    |        |                                                    |      |       |            |                        |
| Parameter Un                    | it DF  | Result                                             |      |       |            |                        |
| Chloride mg/                    | L 1.00 | ND                                                 |      |       |            |                        |
| Fluoride mg/                    |        | ND                                                 |      |       |            |                        |
| Sulfate mg/                     | L 1.00 | ND                                                 |      |       |            |                        |



| Client: E2 Consulting Engineers, Inc. |                              |                            | roject Name:<br>roject Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                              | Page 3 of 21<br>Printed 4/22/2014 |                                                      |
|---------------------------------------|------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|
| Duplicate                             |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | Lab ID = 812942-004                                  |
| Parameter<br>Chloride                 | Unit<br>mg/L                 | DF<br>25.0                 | Result<br>84.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>86.2                                                                                               | RPD<br>2.37                       | Acceptance Range<br>0 - 20                           |
| Duplicate                             |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | Lab ID = 812966-002                                  |
| Parameter<br>Fluoride<br>Sulfate      | Unit<br>mg/L<br>mg/L         | DF<br>5.00<br>100          | Result<br>2.27<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Expected<br>2.30<br>523                                                                                        | RPD<br>1.44<br>2.28               | Acceptance Range<br>0 - 20<br>0 - 20                 |
| Lab Control Sample                    |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                                      |
| Parameter Chloride Fluoride Sulfate   | Unit<br>mg/L<br>mg/L         | DF<br>1.00<br>1.00<br>1.00 | Result<br>3.84<br>3.97<br>19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>4.00<br>4.00<br>20.0                                                                               | Recovery<br>96.1<br>99.2<br>96.4  | Acceptance Range<br>90 - 110<br>90 - 110<br>90 - 110 |
| Sunate<br>Matrix Spike                | mg/L                         | 1.00                       | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | <b>90.4</b><br>1767a - Aristo     | Lab ID = 812942-004                                  |
| Parameter<br>Chloride                 | Unit<br>mg/L                 | DF<br>25.0                 | Result<br>185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Expected/Added<br>186(100)                                                                                     | Recovery<br>98.9                  | Acceptance Range<br>85 - 115                         |
| Matrix Spike                          |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | Lab ID = 812966-002                                  |
| Parameter<br>Fluoride<br>Sulfate      | Unit<br>mg/L<br>mg/L         | DF<br>5.00<br>100          | Result<br>21.8<br>1480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Expected/Added 22.3(20.0) 1520(1000)                                                                           | Recovery<br>97.4<br>95.4          | Acceptance Range<br>85 - 115<br>85 - 115             |
| MRCCS - Secondary                     |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                                      |
| Parameter Chloride Fluoride Sulfate   | Unit<br>mg/L<br>mg/L<br>mg/L | DF<br>1.00<br>1.00<br>1.00 | Result<br>4.02<br>4.14<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>4.00<br>4.00<br>20.0                                                                               | Recovery<br>100<br>103<br>100     | Acceptance Range<br>90 - 110<br>90 - 110<br>90 - 110 |
| MRCVS - Primary Parameter Chloride    | Unit<br>mg/L                 | DF<br>1.00                 | Result<br>2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>3.00                                                                                               | Recovery<br>99.7                  | Acceptance Range<br>90 - 110                         |
| MRCVS - Primary                       |                              |                            | on the control of the | iensi, ja minikuns simminin manka senti namas sittempa sentinga sentinga sentinga sentinga sentinga sentinga s |                                   |                                                      |
| Parameter<br>Chloride                 | Unit<br>mg/L                 | DF<br>1.00                 | Result<br>3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected 3.00                                                                                                  | Recovery<br>108                   | Acceptance Range<br>90 - 110                         |
| MRCVS - Primary                       |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                                      |
| Parameter<br>Chloride                 | Unit<br>mg/L                 | DF<br>1.00                 | Result<br>2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected 3.00                                                                                                  | Recovery<br>95.7                  | Acceptance Range<br>90 - 110                         |
| MRCVS - Primary                       |                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                                      |
| Parameter<br>Chloride                 | Unit<br>mg/L                 | DF<br>1.00                 | Result<br>2.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected 3.00                                                                                                  | Recovery<br>98.1                  | Acceptance Range<br>90 - 110                         |



| Client: E2 Consulting Engineers, Inc. | Project Name:   | PG & E Topock   | Page 4 of 21      |
|---------------------------------------|-----------------|-----------------|-------------------|
|                                       | Project Number: | 423575.MP.02.CM | Printed 4/22/2014 |

| 110010 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                    |                         |                                  |                    |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|-------------------------|----------------------------------|--------------------|---------------------------------|
| MRCVS - Primary Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF<br>4.00         | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Chloride MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.12                    | 3.00                             | 104                | 90 - 110                        |
| er uzuekungen kungsten erta er aum den er und er 💆 ertik e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                    | D4                      |                                  |                    |                                 |
| Parameter<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit<br>mg/L                   | DF<br>1.00         | Result<br>3.03          | Expected 3.00                    | Recovery<br>101    | Acceptance Range 90 - 110       |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 <b>9</b> 72<br>2004 - 2004 | 1.00<br>A 100 mars | 0.00<br>2020 sacressa   | 0.00<br>Til Stempettermin si     |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.03                    | 3.00                             | 101                | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.05                    | 3.00                             | 102                | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.04                    | 3.00                             | 101                | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.08                    | 3.00                             | 103                | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.05                    | 3.00                             | 102                | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                           | 1.00               | 3.05                    | 3.00                             | 102                | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF                 | Result                  | Expected                         | Recovery           | Acceptance Range                |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                           | 1.00               | 14.6                    | 15.0                             | 97.5               | 90 - 110                        |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  | _                  |                                 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                           | DF<br>1.00         | Result                  | Expected                         | Recovery<br>96.4   | Acceptance Range 90 - 110       |
| Sulfate MRCVS Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                           | 1.00               | 14.5                    | 15.0                             | 90,4<br>markata    | 90 - 110<br>                    |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                         |                                  |                    |                                 |
| Parameter<br>Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>mg/L                   | DF<br>1.00         | Result<br>14.7          | Expected<br>15.0                 | Recovery<br>97.7   | Acceptance Range 90 - 110       |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HIYE<br>HIYEL                  | 1.00               | 1 <b>4.7</b><br>2009: a | 1 <b>0.0</b><br>Midden 2000 - 20 | art.<br>1929-bigan | All Physics and a second second |
| The second of th | graff y yê e.<br>Helt          | DE                 | Poor#                   | Evnosted                         | Poor or            | Acceptance Barre                |
| Parameter<br>Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>mg/L                   | DF<br>1.00         | Result<br>14.8          | Expected<br>15.0                 | Recovery<br>98.9   | Acceptance Range<br>90 - 110    |
| Cunate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                           | 1.00               | 17.0                    | 10.0                             | 30.0               | 30 110                          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 5 of 21

Printed 4/22/2014

MRCVS - Primary

| Wittovo - 1 Timary |      |      |        |          |          |                  |
|--------------------|------|------|--------|----------|----------|------------------|
| Parameter          | Unit | DF   | Result | Expected | Recovery | Acceptance Range |
| Sulfate            | mg/L | 1.00 | 14.6   | 15.0     | 97.5     | 90 - 110         |
| MRCVS - Primary    |      |      |        |          |          |                  |
| Parameter          | Unit | DF   | Result | Expected | Recovery | Acceptance Range |
| Sulfate            | mg/L | 1.00 | 14.6   | 15.0     | 97.0     | 90 - 110         |
| MRCVS - Primary    |      |      |        |          |          |                  |
| Parameter          | Unit | DF   | Result | Expected | Recovery | Acceptance Range |
| Sulfate            | mg/L | 1.00 | 14.4   | 15.0     | 96.2     | 90 - 110         |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 6 of 21 Printed 4/22/2014

| <b>Specific Conductivity -</b>     | <b>EPA 120.1</b>                    |                    | Batch          | 04EC14C          |      |                  |                     |                 |
|------------------------------------|-------------------------------------|--------------------|----------------|------------------|------|------------------|---------------------|-----------------|
| Parameter                          |                                     | Unit               | Ana            | ılyzed           | DF   | MDL              | RL                  | Result          |
| 812967-001 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 04/14/2014       |      | 0.606            | 2.00                | 6850            |
| 812967-002 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 6680            |
| 812967-003 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 6810            |
| 312967-004 Specific Conductivity   |                                     | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 6820            |
| 812967-005 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 6910            |
| 812967-006 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 8220            |
| 812967-007 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 6800            |
| 812967-008 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 6510            |
| 812967-009 Specific Condu          | ctivity                             | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 5810            |
| 812967-010 Specific Conductivity   |                                     | umhos/d            | m 04/14        | 1/2014           | 1.00 | 0.606            | 2.00                | 2050            |
| 812967-011 Specific Conductivity   |                                     | umhos/d            | m 04/14        | 1/2014           | 1.00 | 0.606            | 2.00                | 3890            |
| 812967-014 Specific Conductivity   |                                     | umhos/cm 04/14/201 |                | 1/2014           | 1.00 | 0.606            | 2.00                | 8260            |
| 812967-015 Specific Conductivity   |                                     | umhos/d            | cm 04/14       | 1/2014           | 1.00 | 0.606            | 2.00                | 2050            |
| Specific Conductivity  Duplicate   | umhos                               | 1.00               | ND             |                  |      |                  | Lab ID =            | 812967-010      |
| Parameter<br>Specific Conductivity | Unit<br>umhos                       | DF<br>1.00         | Result<br>2010 | Expected 2050    | F    | RPD<br>1.97      | Accepta<br>0 - 10   | nce Range       |
| Lab Control Sample                 |                                     |                    |                |                  |      |                  |                     |                 |
| Parameter<br>Specific Conductivity | Unit<br>umhos                       | DF<br>1.00         | Result<br>694  | Expected<br>706  | F    | Recovery<br>98.3 | Accepta<br>90 - 110 | ance Range<br>) |
| MRCCS - Secondary                  | ti ti di energialia anda la treneti |                    |                |                  |      |                  |                     |                 |
| Parameter Specific Conductivity    | Unit<br>umhos                       | DF<br>1.00         | Result<br>697  | Expected<br>706  | F    | Recovery<br>98.7 | Accepta 90 - 110    | ance Range<br>) |
| MRCVS - Primary                    |                                     |                    |                |                  |      |                  |                     |                 |
| Parameter<br>Specific Conductivity | Unit<br>umhos                       | DF<br>1.00         | Result<br>973  | Expected<br>1000 | F    | Recovery<br>97.3 | Accepta<br>90 - 110 | ance Range<br>) |
| MRCVS - Primary                    |                                     |                    |                |                  |      |                  |                     |                 |
| Parameter Specific Conductivity    | Unit<br>umhos                       | DF<br>1.00         | Result<br>945  | Expected 1000    | F    | Recovery<br>94.5 | Accepta<br>90 - 110 | ance Range<br>) |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 7 of 21 Printed 4/22/2014

| Chrome VI by EPA 218.6               | 3            |                  | Batch            | 04CrH14 A   |         |          |          |           |
|--------------------------------------|--------------|------------------|------------------|-------------|---------|----------|----------|-----------|
| Parameter                            |              | Unit             | Ana              | lyzed       | DF      | MDL      | RL       | Result    |
| 812967-001 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 15:57 | 5.00    | 0.0300   | 1.0      | ND        |
| 812967-002 Chromium, Hex             | avalent      | ug/L             | 04/10/2014 16:07 |             | 5.00    | 0.0300   | 1.0      | ND        |
| 312967-003 Chromium, Hexavalent ug/L |              | ug/L             | 04/10            | /2014 16:18 | 5.00    | 0.0300   | 1.0      | ND        |
| 812967-004 Chromium, Hex             | _            |                  | 04/10            | /2014 16:28 | 5.00    | 0.0300   | 1.0      | 2.2       |
| 312967-005 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 16:38 | 5.00    | 0.0300   | 1.0      | ND        |
| 312967-006 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 16:49 | 5.00    | 0.0300   | 1.0      | 6.4       |
| 312967-007 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 17:20 | 5.00    | 0.0300   | 1.0      | ND        |
| 312967-009 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 17:41 | 5.00    | 0.0300   | 1.0      | 5.8       |
| 312967-010 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 13:52 | 1.00    | 0.00600  | 0.20     | 19.8      |
| 312967-011 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 14:02 | 1.00    | 0.00600  | 0.20     | 15.4      |
| 312967-012 Chromium, Hex             | avalent      | ug/L             | 04/10            | /2014 14:10 | 1.00    | 0.00600  | 0.20     | ND        |
| 812967-013 Chromium, Hexavalent ug/L |              | 04/10/2014 14:23 |                  | 1.00        | 0.00600 | 0.20     | ND       |           |
| 812967-014 Chromium, Hexavalent ug/L |              | ug/L             | 04/10            | /2014 14:34 | 5.00    | 0.0300   | 1.0      | 7.0       |
| 812967-015 Chromium, Hexavalent      |              | ug/L             | 04/10            | /2014 14:44 | 1.00    | 0.00600  | 0.20     | 19.8      |
| Method Blank                         |              |                  |                  |             |         |          |          |           |
| Parameter                            | Unit         | DF               | Result           |             |         |          |          |           |
| Chromium, Hexavalent                 | ug/L         | 1.00             | ND               |             |         |          |          |           |
| Duplicate                            |              |                  |                  |             |         |          | Lab ID = | 812967-01 |
| Parameter                            | Unit         | DF               | Result           | Expected    |         | RPD      | Accepta  | nce Rang  |
| Chromium, Hexavalent                 | ug/L         | 1.00             | 19.8             | 19.8        |         | 0.00707  | 0 - 20   |           |
| Low Level Calibration                | Verification |                  |                  |             |         |          |          |           |
| Parameter                            | Unit         | DF               | Result           | Expected    |         | Recovery | Accepta  | nce Rang  |
| Chromium, Hexavalent                 | ug/L         | 1.00             | 0.198            | 0.200       |         | 99.2     | 70 - 130 | )         |
| Lab Control Sample                   |              |                  |                  |             |         |          |          |           |
| Parameter                            | Unit         | DF               | Result           | Expected    |         | Recovery | Accepta  | ince Rang |
| Chromium, Hexavalent                 | ug/L         | 1.00             | 5.04             | 5.00        |         | 101      | 90 - 110 | )         |
| Matrix Spike                         |              |                  |                  |             |         |          | Lab ID = | 812966-00 |
| Parameter                            | Unit         | DF               | Result           | Expected/A  | dded    | Recovery | -        | nce Rang  |
| Chromium, Hexavalent                 | ug/L         | 5.00             | 5.35             | 5.10(5.00)  |         | 105      | 90 - 110 |           |
| Matrix Spike                         |              |                  |                  |             |         |          | Lab ID = | 812966-00 |
| Parameter                            | Unit         | DF               | Result           | Expected/A  | dded    | Recovery | •        | ince Rang |
| Chromium, Hexavalent                 | ug/L         | 1.00             | 1.17             | 1.12(1.00)  |         | 105      | 90 - 110 | )         |



| Client: E2 Consulting Er                    | ngineers, Ind                                          |            | Project Name:<br>Project Number                | 1                           | Page 8 of 21<br>Printed 4/22/2014 |                                                     |
|---------------------------------------------|--------------------------------------------------------|------------|------------------------------------------------|-----------------------------|-----------------------------------|-----------------------------------------------------|
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812966-002                                 |
| Parameter Chromium, Hexavalent Matrix Spike | Unit<br>ug/L                                           | DF<br>25.0 | Result<br>1260                                 | Expected/Added<br>1240(625) | Recovery<br>104                   | Acceptance Range<br>90 - 110<br>Lab ID = 812966-003 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>1.00 | Result<br>ND                                   | Expected/Added 1.00(1.00)   | Recovery                          | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812966-003                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>5.00 | Result<br>5.86                                 | Expected/Added 5.96(5.00)   | Recovery<br>98.1                  | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812966-003                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>10.0 | Result<br>11.6                                 | Expected/Added 10.8(10.0)   | Recovery<br>107                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-001                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>1.00 | Result<br>1.83                                 | Expected/Added 1.76(1.00)   | Recovery<br>107                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-001                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>5.00 | Result<br>5.94                                 | Expected/Added 5.63(5.00)   | Recovery<br>106                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-002                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>5.00 | Result<br>6.24                                 | Expected/Added 5.85(5.00)   | Recovery<br>108                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-002                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>1.00 | Result<br>2.02                                 | Expected/Added 1.92(1.00)   | Recovery<br>110                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-003                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>5.00 | Result<br>5.30                                 | Expected/Added 5.34(5.00)   | Recovery<br>99.3                  | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                | geografication of physical megaphoral and some process |            | oo kaan ka |                             |                                   | Lab ID = 812967-003                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>1.00 | Result<br>1.55                                 | Expected/Added 1.48(1.00)   | Recovery<br>107                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-004                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>5.00 | Result<br>7.59                                 | Expected/Added 7.24(5.00)   | Recovery<br>107                   | Acceptance Range<br>90 - 110                        |
| Matrix Spike                                |                                                        |            |                                                |                             |                                   | Lab ID = 812967-004                                 |
| Parameter<br>Chromium, Hexavalent           | Unit<br>ug/L                                           | DF<br>1.00 | Result<br>7.44                                 | Expected/Added 7.40(5.00)   | Recovery<br>101                   | Acceptance Range<br>90 - 110                        |



| Client: E2 Consulting En                                 | Client: E2 Consulting Engineers, Inc. |            |                | Project Name: PG & E Topock Project Number: 423575.MP.02.CM |                  |                                                                     |
|----------------------------------------------------------|---------------------------------------|------------|----------------|-------------------------------------------------------------|------------------|---------------------------------------------------------------------|
| Matrix Spike                                             |                                       |            |                |                                                             |                  | Lab ID = 812967-005                                                 |
| Parameter Chromium, Hexavalent Matrix Spike              | Unit<br>ug/L                          | DF<br>1.00 | Result<br>1.66 | Expected/Added 1.61(1.00)                                   | Recovery<br>105  | Acceptance Range<br>90 - 110<br>Lab ID = 812967-005                 |
| Parameter<br>Chromium, Hexavalent                        | Unit<br>ug/L                          | DF<br>5.00 | Result<br>5.84 | Expected/Added 5.49(5.00)                                   | Recovery<br>107  | Acceptance Range<br>90 - 110                                        |
| Matrix Spike Parameter Chromium, Hexavalent Matrix Spike | Unit<br>ug/L                          | DF<br>5.00 | Result<br>33.7 | Expected/Added 31.4(25.0)                                   | Recovery<br>109  | Lab ID = 812967-006  Acceptance Range 90 - 110  Lab ID = 812967-006 |
| Parameter Chromium, Hexavalent Matrix Spike              | Unit<br>ug/L                          | DF<br>1.00 | Result<br>17.3 | Expected/Added<br>17.3(10.0)                                | Recovery<br>99.7 | Acceptance Range<br>90 - 110<br>Lab ID = 812967-007                 |
| Parameter<br>Chromium, Hexavalent                        | Unit<br>ug/L                          | DF<br>5.00 | Result<br>5.96 | Expected/Added 5.62(5.00)                                   | Recovery<br>107  | Acceptance Range<br>90 - 110                                        |
| Matrix Spike Parameter Chromium, Hexavalent Matrix Spike | Unit<br>ug/L                          | DF<br>1.00 | Result<br>1.71 | Expected/Added 1.67(1.00)                                   | Recovery<br>104  | Lab ID = 812967-007  Acceptance Range 90 - 110  Lab ID = 812967-008 |
| Parameter<br>Chromium, Hexavalent                        | Unit<br>ug/L                          | DF<br>1.00 | Result<br>9.51 | Expected/Added 9.53(5.00)                                   | Recovery<br>99.6 | Acceptance Range<br>90 - 110                                        |
| Matrix Spike Parameter Chromium, Hexavalent              | Unit<br>ug/L                          | DF<br>5.00 | Result<br>9.91 | Expected/Added 9.30(5.00)                                   | Recovery<br>112  | Lab ID = 812967-008  Acceptance Range 90 - 110                      |
| Matrix Spike Parameter Chromium, Hexavalent              | Unit<br>ug/L                          | DF<br>1.00 | Result<br>15.9 | Expected/Added<br>15.8(10.0)                                | Recovery<br>101  | Lab ID = 812967-009 Acceptance Range 90 - 110                       |
| Matrix Spike                                             |                                       |            |                |                                                             |                  | Lab ID = 812967-009                                                 |
| Parameter<br>Chromium, Hexavalent                        | Unit<br>ug/L                          | DF<br>5.00 | Result<br>31.3 | Expected/Added 30.8(25.0)                                   | Recovery<br>102  | Acceptance Range<br>90 - 110                                        |
| Matrix Spike                                             |                                       |            |                |                                                             |                  | Lab ID = 812967-010                                                 |
| Parameter<br>Chromium, Hexavalent                        | Unit<br>ug/L                          | DF<br>1.00 | Result<br>39.8 | Expected/Added 39.8(20.0)                                   | Recovery<br>100. | Acceptance Range<br>90 - 110                                        |
| Matrix Spike                                             |                                       |            |                |                                                             |                  | Lab ID = 812967-011                                                 |
| Parameter<br>Chromium, Hexavalent                        | Unit<br>ug/L                          | DF<br>1.00 | Result<br>35.6 | Expected/Added 35.4(20.0)                                   | Recovery<br>101  | Acceptance Range<br>90 - 110                                        |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

023



| Client: E2 Consulting En                       | gineers, Inc                     |            | roject Name:<br>roject Numbe | 1                         | Page 10 of 21<br>Printed 4/22/2014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|----------------------------------|------------|------------------------------|---------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matrix Spike                                   |                                  |            |                              |                           |                                    | Lab ID = 812967-012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>1.06               | Expected/Added 1.00(1.00) | Recovery<br>106                    | Acceptance Range<br>90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Matrix Spike                                   |                                  |            |                              |                           |                                    | Lab ID = 812967-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter Chromium, Hexavalent                 | Unit<br>ug/L                     | DF<br>1.00 | Result<br>1.08               | Expected/Added 1.00(1.00) | Recovery<br>108                    | Acceptance Range<br>90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Matrix Spike                                   |                                  |            |                              |                           |                                    | Lab ID = 812967-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>17.4               | Expected/Added 17.3(10.0) | Recovery<br>101                    | Acceptance Range<br>90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Matrix Spike                                   |                                  |            |                              |                           |                                    | Lab ID = 812967-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter Chromium, Hexavalent Matrix Spike    | Unit<br>ug/L                     | DF<br>5.00 | Result<br>32.6               | Expected/Added 32.0(25.0) | Recovery<br>103                    | Acceptance Range<br>90 - 110<br>Lab ID = 812967-015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter Chromium, Hexavalent                 | Unit<br>ug/L                     | DF<br>1.00 | Result<br>39.7               | Expected/Added 39.8(20.0) | Recovery<br>99.6                   | Acceptance Range<br>90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Matrix Spike                                   |                                  |            |                              |                           |                                    | Lab ID = 812969-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>9.10               | Expected/Added 9.02(5.00) | Recovery<br>102                    | Acceptance Range<br>90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MRCCS - Secondary                              |                                  |            |                              |                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>5.04               | Expected 5.00             | Recovery<br>101                    | Acceptance Range<br>90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MRCVS - Primary                                |                                  |            |                              |                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>10.2               | Expected<br>10.0          | Recovery<br>102                    | Acceptance Range<br>95 - 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MRCVS - Primary                                |                                  |            |                              |                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>10.2               | Expected<br>10.0          | Recovery<br>102                    | Acceptance Range<br>95 - 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MRCVS - Primary                                | poles established for filled for |            | D                            |                           | 5                                  | and and the second control of the second con |
| Parameter Chromium, Hexavalent MRCVS - Primary | Unit<br>ug/L                     | DF<br>1.00 | Result<br>10.1               | Expected<br>10.0          | Recovery<br>101                    | Acceptance Range<br>95 - 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>10.1               | Expected<br>10.0          | Recovery<br>101                    | Acceptance Range<br>95 - 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MRCVS - Primary                                |                                  |            |                              |                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parameter<br>Chromium, Hexavalent              | Unit<br>ug/L                     | DF<br>1.00 | Result<br>10.1               | Expected<br>10.0          | Recovery<br>101                    | Acceptance Range<br>95 - 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Page 11 of 21

Project Number: 423575.MP.02.CM

Printed 4/22/2014

| MRCVS - Primary      |      |      |        |          |          |                  |  |  |  |
|----------------------|------|------|--------|----------|----------|------------------|--|--|--|
| Parameter            | Unit | DF   | Result | Expected | Recovery | Acceptance Range |  |  |  |
| Chromium, Hexavalent | ug/L | 1.00 | 10.1   | 10.0     | 101      | 95 - 105         |  |  |  |
| MRCVS - Primary      |      |      |        |          |          |                  |  |  |  |
| Parameter            | Unit | DF   | Result | Expected | Recovery | Acceptance Range |  |  |  |
| Chromium, Hexavalent | ug/L | 1.00 | 10.1   | 10.0     | 101      | 95 - 105         |  |  |  |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 12 of 21 Printed 4/22/2014

Chrome VI by EPA 218.6 Batch 04CrH14 C Parameter Unit Analyzed DF MDL RL Result 812967-008 Chromium, Hexavalent ug/L 04/16/2014 16:36 5.00 0.0300 1.0 4.9 Method Blank Parameter Unit DF Result Chromium, Hexavalent ug/L 1.00 ND **Duplicate** Lab ID = 813068-001 Parameter Unit DF Result Expected **RPD** Acceptance Range 0.162 Chromium, Hexavalent 5.00 0.123 0.123 0 - 20ug/L Low Level Calibration Verification Parameter Unit DF Result Expected Recovery Acceptance Range 0.199 0.200 99.3 70 - 130 Chromium, Hexavalent ug/L 1.00 Lab Control Sample DF Parameter Unit Result Expected Recovery Acceptance Range Chromium, Hexavalent ug/L 1.00 5.03 5.00 101 90 - 110 Matrix Spike Lab ID = 812967-008 Unit DF Result Expected/Added Recovery Acceptance Range Parameter 90 - 110 Chromium, Hexavalent ug/L 1.00 10.0 9.52(5.00) 110 Lab ID = 812967-008 Matrix Spike DF Expected/Added Parameter Unit Result Recovery Acceptance Range Chromium, Hexavalent ug/L 5.00 10.2 9.94(5.00) 104 90 - 110 Lab ID = 813068-001 Matrix Spike DF Expected/Added Recovery Acceptance Range Parameter Unit Result 106 90 - 110 1.00 1.18 1.12(1.00) Chromium, Hexavalent ug/L Lab ID = 813068-001 Matrix Spike Expected/Added Parameter Unit DF Result Recovery Acceptance Range ug/L 5.00 5.24 5.12(5.00) 102 90 - 110 Chromium, Hexavalent MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Range 5.00 5.00 100 90 - 110 ug/L 1.00 Chromium, Hexavalent MRCVS - Primary Unit DF Result Expected Recovery Acceptance Range Parameter 1.00 9.87 10.0 98.7 95 - 105 Chromium, Hexavalent ug/L



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Page 13 of 21

Project Number: 423575.MP.02.CM

Printed 4/22/2014

|  | M | R | C٧ | 'S | - F | Prir | nary |  |
|--|---|---|----|----|-----|------|------|--|
|--|---|---|----|----|-----|------|------|--|

| Parameter            | Unit | DF   | Result | Expected | Recovery | Acceptance Range |
|----------------------|------|------|--------|----------|----------|------------------|
| Chromium, Hexavalent | ug/L | 1.00 | 10.0   | 10.0     | 100      | 95 - 105         |

| Chromium, Hexavalent                                               | ug/L      | 1.00 | 10.0       | 10.0     |      | 100      | 95 - 10  | 5          |
|--------------------------------------------------------------------|-----------|------|------------|----------|------|----------|----------|------------|
| Total Dissolved Solids                                             | by SM 254 | 0 C  | Batch      | 04TDS14C |      |          |          |            |
| Parameter                                                          |           | Unit | Ana        | lyzed    | DF   | MDL      | RL       | Result     |
| 812967-001 Total Dissolved                                         | Solids    | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4520       |
| 812967-002 Total Dissolved                                         | Solids    | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4400       |
| 812967-003 Total Dissolved                                         | Solids    | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4390       |
| 812967-004 Total Dissolved                                         | Solids    | mg/L | 04/14/2014 |          | 1.00 | 1.76     | 125      | 4340       |
| 12967-005 Total Dissolved Solids                                   |           | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4400       |
| 2967-006 Total Dissolved Solids<br>2967-007 Total Dissolved Solids |           | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4540       |
| 12967-007 Total Dissolved Solids                                   |           | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4740       |
| 812967-008 Total Dissolved                                         | Solids    | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 125      | 4120       |
| 812967-009 Total Dissolved                                         | Solids    | mg/L | 04/14/2014 |          | 1.00 | 1.76     | 125      | 4240       |
| 12967-010 Total Dissolved Solids                                   |           | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 50.0     | 1140       |
| 12967-011 Total Dissolved Solids                                   |           | mg/L | 04/14      | /2014    | 1.00 | 1.76     | 50.0     | 2590       |
| 812967-014 Total Dissolved                                         | Solids    | mg/L | 04/14/2014 |          | 1.00 | 1.76     | 250      | 5420       |
| 812967-015 Total Dissolved                                         | Solids    | mg/L | 04/14/2014 |          | 1.00 | 1.76     | 50.0     | 1170       |
| Method Blank                                                       |           |      |            |          |      |          |          |            |
| Parameter                                                          | Unit      | DF   | Result     |          |      |          |          |            |
| Total Dissolved Solids                                             | mg/L      | 1.00 | ND         |          |      |          |          |            |
| Duplicate                                                          |           |      |            |          |      |          | Lab ID = | 812966-001 |
| Parameter                                                          | Unit      | DF   | Result     | Expected | F    | RPD      | Accepta  | ance Range |
| Total Dissolved Solids                                             | mg/L      | 1.00 | 4330       | 4440     |      | 2.51     | 0 - 10   |            |
| Duplicate                                                          |           |      |            |          |      |          | Lab ID = | 812966-003 |
| Parameter                                                          | Unit      | DF   | Result     | Expected | F    | RPD      | Accepta  | ance Range |
| Total Dissolved Solids                                             | mg/L      | 1.00 | 27900      | 27500    |      | 1.32     | 0 - 10   |            |
| Lab Control Sample                                                 |           |      |            |          |      |          |          |            |
| Parameter                                                          | Unit      | DF   | Result     | Expected | F    | Recovery | •        | ance Range |
| Total Dissolved Solids                                             | mg/L      | 1.00 | 499        | 500      |      | 99.8     | 90 - 110 | כ          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Page 14 of 21

Project Number: 423575.MP.02.CM

Printed 4/22/2014

| Ammonia Nitrogen by SI  | VI45UU-NF                       |      |                                       | 04NH314A<br>llyzed |                     |          |                               |                           |
|-------------------------|---------------------------------|------|---------------------------------------|--------------------|---------------------|----------|-------------------------------|---------------------------|
| Parameter               |                                 |      |                                       |                    | DF                  | MDL      | RL                            | Result                    |
| 812967-001 Ammonia as N |                                 | mg/L | 04/16                                 | 6/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| 812967-002 Ammonia as N |                                 | mg/L | 04/16/2014                            |                    |                     | 0.0318   | 0.500                         | ND                        |
| 812967-003 Ammonia as N |                                 | mg/L | 04/16                                 | 1.00               | 0.0318              | 0.500    | ND                            |                           |
| 812967-004 Ammonia as N |                                 | mg/L | 04/16                                 | 6/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| 812967-005 Ammonia as N | mg/L                            |      | 04/16                                 | 3/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| 812967-006 Ammonia as N | mg/L                            |      | 04/16                                 | 6/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| 812967-007 Ammonia as N |                                 | mg/L | 04/16                                 | 6/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| 812967-008 Ammonia as N |                                 | mg/L | 04/16                                 | 6/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| 812967-014 Ammonia as N |                                 | mg/L | 04/16                                 | 5/2014             | 1.00                | 0.0318   | 0.500                         | ND                        |
| Method Blank            |                                 |      |                                       |                    |                     |          |                               |                           |
| Parameter               | Unit                            | DF   | Result                                |                    |                     |          |                               | 11 41 11 41 41 41 4 4     |
| Ammonia as N            | mg/L                            | 1.00 | ND                                    |                    |                     |          |                               |                           |
| Lab Control Sample      |                                 |      |                                       |                    |                     |          |                               |                           |
| Parameter               | Unit                            | DF   | Result                                | Expected           | F                   | Recovery | Accepta                       | nce Range                 |
| Ammonia as N            | mg/L                            | 1.00 | 8.72                                  | 8.00               |                     | 109      | 90 - 110                      | _                         |
| Lab Control Sample Do   | uplicate                        |      |                                       |                    |                     |          |                               |                           |
| Parameter               | Unit                            | DF   | Result                                | Expected           | F                   | Recovery | Accepta                       | nce Range                 |
| Ammonia as N            | mg/L                            | 1.00 | 8.32                                  | 8.00               |                     | 104      | 90 - 110                      | _                         |
| Matrix Spike            |                                 |      |                                       |                    |                     |          | Lab ID = 8                    | 812967-00°                |
| Parameter               | Unit                            | DF   | Result                                | Expected/Add       | ed F                | Recovery | Accepta                       | nce Range                 |
| Ammonia as N            | mg/L                            | 1.00 | 9.80                                  | 10.0(10.0)         |                     | 98.0     | 75 - 125                      |                           |
| MRCCS - Secondary       |                                 |      |                                       |                    |                     |          |                               |                           |
| Parameter               | Unit                            | DF   | Result                                | Expected           | F                   | Recovery | Accepta                       | nce Range                 |
| Ammonia as N            | mg/L                            | 1.00 | 5.98                                  | 6.00               |                     | 99.7     | 90 - 110                      | -                         |
| MRCVS - Primary         | se gamentaga allande pergengal) |      | territarian susceptibili anno estatut |                    | SetSetSetSetSetSetS |          | giscopenio specialitico in mo | entropy and confidence of |
| Parameter               | Unit                            | DF   | Result                                | Expected           | F                   | Recovery | Accepta                       | nce Range                 |
| Ammonia as N            | mg/L                            | 1.00 | 6.17                                  | 6.00               |                     | 103      | 90 - 110                      |                           |
| MRCVS - Primary         |                                 |      |                                       |                    |                     |          |                               |                           |
| Parameter               | Unit                            | DF   | Result                                | Expected           | F                   | Recovery | Accepta                       | nce Range                 |
| Ammonia as N            | mg/L                            | 1.00 | 6.42                                  | 6.00               |                     | 107      | 90 - 110                      | _                         |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 15 of 21 Printed 4/22/2014

| Metals by EPA 200.8, D                                                                                        | issolved                                                               |                                  | Batch                             | 040914A                               |             |                                          |                                                                       |                                                           |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|-----------------------------------|---------------------------------------|-------------|------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|
| Parameter                                                                                                     |                                                                        | Unit                             | Anal                              | lyzed                                 | DF          | MDL                                      | RL                                                                    | Result                                                    |
| 812967-001 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 19:47                           | 2.00        | 0.142                                    | 1.0                                                                   | 1.1                                                       |
| 812967-002 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 19:53                           | 2.00        | 0.142                                    | 1.0                                                                   | 1.1                                                       |
| 812967-003 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 20:00                           | 2.00        | 0.142                                    | 1.0                                                                   | ND                                                        |
| 812967-004 Chromium                                                                                           |                                                                        | ug/L                             | 04/09/2014 20:06                  |                                       | 2.00        | 0.142                                    | 1.0                                                                   | 2.5                                                       |
| 812967-005 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 20:32                           | 2.00        | 0.142                                    | 1.0                                                                   | ND                                                        |
| 812967-006 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 20:38                           | 2.00        | 0.142                                    | 1.0                                                                   | 7.9                                                       |
| 812967-007 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 20:45                           | 2.00        | 0.142                                    | 1.0                                                                   | ND                                                        |
| 812967-008 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 20:51                           | 2.00        | 0.142                                    | 1.0                                                                   | 4.9                                                       |
| 812967-009 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 20:58                           | 2.00        | 0.142                                    | 1.0                                                                   | 6.7                                                       |
| 812967-010 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 21:11                           | 2.00        | 0.142                                    | 1.0                                                                   | 19.4                                                      |
| 812967-011 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 21:17                           | 2.00        | 0.142                                    | 1.0                                                                   | 15.7                                                      |
| 812967-014 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 21:23                           | 2.00        | 0.142                                    | 1.0                                                                   | 7.9                                                       |
| 812967-015 Chromium                                                                                           |                                                                        | ug/L                             | 04/09                             | /2014 21:30                           | 2.00        | 0.142                                    | 1.0                                                                   | 20.2                                                      |
| Chromium  Duplicate                                                                                           | ug/L                                                                   | 1.00                             | ND                                |                                       |             |                                          | Lab ID =                                                              | 812966-001                                                |
| Parameter                                                                                                     | Unit                                                                   |                                  |                                   |                                       |             |                                          |                                                                       |                                                           |
| Chromium                                                                                                      | Offit                                                                  | DF                               | Result                            | Expected                              |             | RPD                                      |                                                                       | ance Range                                                |
|                                                                                                               | ug/L                                                                   | DF<br>2.00                       | Result<br>ND                      | Expected<br>0                         | 1           | RPD<br>0                                 |                                                                       | ance Range                                                |
| Low Level Calibratio                                                                                          | ug/L                                                                   | 2.00                             |                                   |                                       |             |                                          | Accepta                                                               | ance Range                                                |
|                                                                                                               | ug/L                                                                   | 2.00                             |                                   |                                       |             |                                          | Accepta<br>0 - 20                                                     | ance Range<br>ance Range                                  |
| Low Level Calibratio                                                                                          | ug/L<br>n Verification                                                 | 2.00                             | ND                                | 0                                     |             | 0                                        | Accepta<br>0 - 20                                                     | ance Range                                                |
| Low Level Calibratio Parameter                                                                                | ug/L<br>n Verification<br>Unit                                         | 2.00<br>DF                       | ND<br>Result                      | 0<br>Expected                         |             | 0<br>Recovery                            | Accepta<br>0 - 20<br>Accepta                                          | ance Range                                                |
| Low Level Calibratio Parameter Chromium                                                                       | ug/L<br>n Verification<br>Unit                                         | 2.00<br>DF                       | ND<br>Result                      | 0<br>Expected                         |             | 0<br>Recovery                            | Accepta<br>0 - 20<br>Accepta<br>70 - 130                              | ance Range                                                |
| Low Level Calibratio Parameter Chromium Lab Control Sample                                                    | ug/L<br>n Verification<br>Unit<br>ug/L                                 | 2.00<br>DF<br>1.00               | ND<br>Result<br>0.532             | 0<br>Expected<br>0.500                |             | 0<br>Recovery<br>106                     | Accepta<br>0 - 20<br>Accepta<br>70 - 130                              | ance Range<br>)<br>ance Range                             |
| Low Level Calibratio Parameter Chromium Lab Control Sample Parameter                                          | ug/L<br>n Verification<br>Unit<br>ug/L<br>Unit                         | 2.00<br>DF<br>1.00<br>DF         | ND  Result 0.532  Result          | 0 Expected 0.500 Expected             |             | 0<br>Recovery<br>106<br>Recovery         | Accepta 70 - 130  Accepta 70 - 130  Accepta 85 - 118                  | ance Range<br>)<br>ance Range                             |
| Low Level Calibratio Parameter Chromium Lab Control Sample Parameter Chromium                                 | ug/L<br>n Verification<br>Unit<br>ug/L<br>Unit                         | 2.00<br>DF<br>1.00<br>DF         | ND  Result 0.532  Result          | 0 Expected 0.500 Expected             | ļ           | 0<br>Recovery<br>106<br>Recovery         | Accepta 70 - 130  Accepta 70 - 130  Accepta 85 - 118 Lab ID =         | ance Range<br>)<br>ance Range                             |
| Low Level Calibratio Parameter Chromium Lab Control Sample Parameter Chromium Matrix Spike                    | ug/L<br>n Verification<br>Unit<br>ug/L<br>Unit<br>ug/L                 | 2.00<br>DF<br>1.00<br>DF<br>2.00 | Result<br>0.532<br>Result<br>48.9 | Expected<br>0.500<br>Expected<br>50.0 | ļ           | 0<br>Recovery<br>106<br>Recovery<br>97.9 | Accepta 70 - 130  Accepta 85 - 118 Lab ID = Accepta 75 - 128          | ance Range<br>ance Range<br>5<br>812966-001<br>ance Range |
| Low Level Calibratio Parameter Chromium Lab Control Sample Parameter Chromium Matrix Spike Parameter          | ug/L<br>n Verification<br>Unit<br>ug/L<br>Unit<br>ug/L<br>Unit<br>ug/L | 2.00  DF 1.00  DF 2.00           | Result<br>0.532<br>Result<br>48.9 | 0 Expected 0.500 Expected 50.0        | ļ           | 0 Recovery 106 Recovery 97.9 Recovery    | Accepta 70 - 130  Accepta 85 - 118 Lab ID = Accepta 75 - 128          | ance Range<br>ance Range<br>5<br>812966-001<br>ance Range |
| Low Level Calibratio Parameter Chromium Lab Control Sample Parameter Chromium Matrix Spike Parameter Chromium | ug/L<br>n Verification<br>Unit<br>ug/L<br>Unit<br>ug/L<br>Unit<br>ug/L | 2.00  DF 1.00  DF 2.00           | Result<br>0.532<br>Result<br>48.9 | 0 Expected 0.500 Expected 50.0        | l<br>lded l | 0 Recovery 106 Recovery 97.9 Recovery    | Accepta 70 - 130  Accepta 85 - 118 Lab ID = Accepta 75 - 128 Lab ID = | ance Range ance Range 812966-001 ance Range 812966-001    |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 16 of 21 Printed 4/22/2014

MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Range Chromium ug/L 1.00 19.0 20.0 95.2 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Range Chromium ug/L 1.00 21.3 20.0 106 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Range Chromium ug/L 1.00 21.6 20.0 108 90 - 110 MRCVS - Primary Parameter Unit DF Result **Expected** Recovery Acceptance Range Chromium 20.0 ug/L 1.00 21.4 107 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Range Chromium ug/L 1.00 20.6 20.0 103 90 - 110 MRCVS - Primary Parameter Unit DF Result Expected Recovery Acceptance Range Chromium ug/L 1.00 20.9 20.0 104 90 - 110 Interference Check Standard A Unit DF Parameter Result **Expected** Recovery Acceptance Range Chromium ug/L 1.00 ND Interference Check Standard A DF Parameter Unit Result Expected Recovery Acceptance Range 1.00 ND 0 Chromium ug/L Interference Check Standard AB Acceptance Range Parameter Unit DF Result **Expected** Recovery Chromium ug/L 1.00 19.8 20.0 99.2 80 - 120 Interference Check Standard AB Parameter Unit DF Result Expected Recovery Acceptance Range Chromium ug/L 1.00 19.2 20.0 95.8 80 - 120



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 17 of 21

Printed 4/22/2014

| Metals by EPA 200.8, Di                                                                                       | ssolved       |            | Batch              | 041014A       |               |                  |                     |                                   |
|---------------------------------------------------------------------------------------------------------------|---------------|------------|--------------------|---------------|---------------|------------------|---------------------|-----------------------------------|
| Parameter                                                                                                     |               | Unit       | Ana                | lyzed         | DF            | MDL              | RL                  | Result                            |
| 812967-009 Molybdenum                                                                                         |               | ug/L       | 04/10              | /2014 15:58   | 5.00          | 0.250            | 2.0                 | 4.8                               |
| 812967-010 Molybdenum                                                                                         |               | ug/L       | 04/10/2014 16:05   |               | 5.00          | 0.250            | 2.0                 | 29.0                              |
| 812967-011 Molybdenum                                                                                         |               | ug/L       | L 04/10/2014 16:18 |               | 5.00          | 0.250            | 2.0                 | 14.4                              |
| 812967-015 Molybdenum                                                                                         |               | ug/L       | 04/10              | /2014 16:24   | 5.00          | 0.250            | 2.0                 | 28.8                              |
| Method Blank                                                                                                  |               |            |                    |               |               |                  |                     |                                   |
| Parameter                                                                                                     | Unit          | DF         | Result             |               |               |                  |                     |                                   |
| Molybdenum                                                                                                    | ug/L          | 1.00       | ND                 |               |               |                  |                     |                                   |
| Duplicate                                                                                                     |               |            |                    |               |               |                  | Lab ID =            | 812966-001                        |
| Parameter                                                                                                     | Unit          | DF         | Result             | Expected      | F             | RPD              | Accepta             | ance Range                        |
| Molybdenum                                                                                                    | ug/L          | 2.00       | 18.1               | 18.7          |               | 3.02             | 0 - 20              |                                   |
| Low Level Calibration                                                                                         | Verification  | 1          |                    |               |               |                  |                     |                                   |
| Parameter                                                                                                     | Unit          | DF         | Result             | Expected      | F             | Recovery         | •                   | ance Range                        |
| Molybdenum                                                                                                    | ug/L          | 1.00       | 0.193              | 0.200         |               | 96.5             | 70 - 130            | )                                 |
| Lab Control Sample                                                                                            |               |            |                    |               |               |                  |                     |                                   |
| Parameter                                                                                                     | Unit          | DF         | Result             | Expected      | F             | Recovery         | •                   | ance Range                        |
| Molybdenum                                                                                                    | ug/L          | 1.00       | 46.9               | 50.0          |               | 93.8             | 85 - 11             |                                   |
| Matrix Spike                                                                                                  |               |            |                    |               |               |                  | Lab ID =            | 812966-001                        |
| Parameter                                                                                                     | Unit          | DF         | Result             | Expected/Add  | ed F          | Recovery         | -                   | ance Range                        |
| Molybdenum                                                                                                    | ug/L          | 2.00       | 63.2               | 68.7(50.0)    |               | 89.0             | 75 - 129            |                                   |
| Matrix Spike Duplicat                                                                                         |               |            |                    |               |               |                  |                     | 812966-001                        |
| Parameter                                                                                                     | Unit          | DF         | Result             | Expected/Add  | ed F          | Recovery         | •                   | ance Range                        |
| Molybdenum                                                                                                    | ug/L          | 2.00       | 62.0               | 68.7(50.0)    |               | 86.7             | 75 - 12             |                                   |
| MRCCS - Secondary                                                                                             |               |            |                    |               |               |                  |                     |                                   |
| Parameter                                                                                                     | Unit<br>ug/L  | DF<br>1.00 | Result<br>18.6     | Expected 20.0 | ŀ             | Recovery<br>92.8 | Accepta<br>90 - 110 | ance Range                        |
| Molybdenum  MRCVS - Primary                                                                                   | ug/L          | 1.00       | 10.0               | 20.0          |               | <i>3</i> 2.0     | 90 - TIV            |                                   |
| <ul> <li>— For each or describe a firm from the colour for the ground and a colour for the colour.</li> </ul> | l lait        | DE         | Dooult             | Evacated      |               | Dagayan,         | A a a a m te        | anaa Banaa                        |
| Parameter<br>Molybdenum                                                                                       | Unit<br>ug/L  | DF<br>1.00 | Result<br>20.2     | Expected 20.0 | t             | Recovery<br>101  | 90 - 110            | ance Range<br>า                   |
| MRCVS - Primary                                                                                               | agre<br>Signa |            |                    |               |               |                  | 00 110              | <del>-</del><br>Mandalaithead 170 |
| Parameter                                                                                                     | Unit          | DF         | Result             | Expected      | en Maria<br>E | Recovery         | Accort              | ance Range                        |
| Molybdenum                                                                                                    | ug/L          | 1.00       | 18.9               | 20.0          | Г             | 94.7             | 90 - 110            | _                                 |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 18 of 21

Printed 4/22/2014

| MRCVS - Primary   | Parkana di Pergeranak |      |        |          |          |                     |
|-------------------|-----------------------|------|--------|----------|----------|---------------------|
| Parameter         | Unit                  | DF   | Result | Expected | Recovery | Acceptance Range    |
| Molybdenum        | ug/L                  | 1.00 | 19.1   | 20.0     | 95.6     | 90 - 110            |
| MRCVS - Primary   | <b>1</b> 6816888      |      |        |          |          |                     |
| Parameter         | Unit                  | DF   | Result | Expected | Recovery | Acceptance Range    |
| Molybdenum        | ug/L                  | 1.00 | 19.0   | 20.0     | 95.2     | 90 - 110            |
| Interference Chec | ck Standard A         |      |        |          |          |                     |
| Parameter         | Unit                  | DF   | Result | Expected | Recovery | Acceptance Range    |
| Molybdenum        | ug/L                  | 1.00 | ND     | 0        |          |                     |
| Interference Chec | ck Standard A         |      |        |          |          |                     |
| Parameter         | Unit                  | DF   | Result | Expected | Recovery | Acceptance Range    |
| Molybdenum        | ug/L                  | 1.00 | ND     | 0        |          |                     |
| Interference Chec | k Standard AB         |      |        |          |          |                     |
| Parameter         | Unit                  | DF   | Result | Expected | Recovery | Acceptance Range    |
| Molybdenum        | ug/L                  | 1.00 | ND     | 0        |          |                     |
| Interference Chec | k Standard AB         |      |        |          |          |                     |
| Parameter         | Unit                  | DF   | Result | Expected | Recovery | Acceptance Range    |
| Molybdenum        | ug/L                  | 1.00 | ND     | 0        |          |                     |
| Serial Dilution   |                       |      |        |          |          | Lab ID = 812967-010 |
| Parameter         | Unit                  | DF   | Result | Expected | RPD      | Acceptance Range    |
| Molybdenum        | ug/L                  | 25.0 | 29.1   | 29.0     | 0.327    | 0 - 10              |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Project Number: 423575.MP.02.CM

Page 19 of 21 Printed 4/22/2014

| Metals by 200.7, Disso | olved      |      | Batch   | 041014A-Th1   |    |          |            |            |
|------------------------|------------|------|---------|---------------|----|----------|------------|------------|
| Parameter              |            | Unit | Analy   | zed [         | )F | MDL      | RL         | Result     |
| 812967-009 Sodium      |            | ug/L | 04/10/2 | 2014 13:41    | 00 | 5980     | 50000      | 774000     |
| 812967-010 Sodium      |            | ug/L | 04/10/2 | 2014 13:47 10 | 00 | 5980     | 50000      | 374000     |
| 812967-011 Sodium      |            | ug/L | 04/10/2 | 2014 13:53 10 | 00 | 5980     | 50000      | 486000     |
| 812967-015 Sodium      |            | ug/L | 04/10/2 | 2014 13:59 10 | 00 | 5980     | 50000      | 362000     |
| Method Blank           |            |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  |               |    |          |            |            |
| Sodium                 | ug/L       | 1.00 | ND      |               |    |          |            |            |
| Duplicate              |            |      |         |               |    |          | Lab ID = 8 | 312966-002 |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | RPD      | Acceptai   | nce Range  |
| Sodium                 | ug/L       | 500  | 1430000 | 1460000       |    | 1.87     | 0 - 20     |            |
| Lab Control Sampl      | e          |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | Recovery | Accepta    | nce Range  |
| Sodium                 | ug/L       | 1.00 | 2130    | 2000          |    | 106      | 85 - 115   |            |
| Matrix Spike           |            |      |         |               |    |          | Lab ID = 8 | 312966-002 |
| Parameter              | Unit       | DF   | Result  | Expected/Adde |    | Recovery | •          | nce Range  |
| Sodium                 | ug/L       | 500  | 2430000 | 2460000(10000 | C  | 96.7     | 75 - 125   |            |
| MRCCS - Seconda        | ıry        |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | Recovery | -          | nce Range  |
| Sodium                 | ug/L       | 1.00 | 5180    | 5000          |    | 104      | 95 - 105   |            |
| MRCVS - Primary        |            |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | Recovery | •          | nce Range  |
| Sodium                 | ug/L       | 1.00 | 4880    | 5000          |    | 97.7     | 90 - 110   |            |
| MRCVS - Primary        |            |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | Recovery | •          | nce Range  |
| Sodium                 | ug/L       | 1.00 | 4970    | 5000          |    | 99.3     | 90 - 110   |            |
| Interference Check     | Standard A |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | Recovery |            | nce Range  |
| Sodium                 | ug/L       | 1.00 | 1940    | 2000          |    | 97.0     | 80 - 120   |            |
| Interference Check     | Standard A |      |         |               |    |          |            |            |
| Parameter              | Unit       | DF   | Result  | Expected      | F  | Recovery | -          | nce Range  |
| Sodium                 | ug/L       | 1.00 | 2040    | 2000          |    | 102      | 80 - 120   |            |



Client:E2 Consulting Engineers, Inc.Project Name:PG & E TopockPage 20 of 21Project Number:423575.MP.02.CMPrinted 4/22/2014

| Interference Check S | tandard AB |      |        |          |          |                  |
|----------------------|------------|------|--------|----------|----------|------------------|
| Parameter            | Unit       | DF   | Result | Expected | Recovery | Acceptance Range |
| Sodium               | ug/L       | 1.00 | 1960   | 2000     | 98.1     | 80 - 120         |
| Interference Check S | tandard AB |      |        |          |          |                  |
| Parameter            | Unit       | DF   | Result | Expected | Recovery | Acceptance Range |
| Sodium               | ug/L       | 1.00 | 2030   | 2000     | 101      | 80 - 120         |

| Turbidity by SM 2130 B |      | onthoga subscription (Fre | Batch 04TUB14F |      | errorgie regil appearage and |       | and officers studied |
|------------------------|------|---------------------------|----------------|------|------------------------------|-------|----------------------|
| Parameter              |      | Unit                      | Analyzed       | DF   | MDL                          | RL    | Result               |
| 812967-001 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | 0.107                |
| 812967-002 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | 0.101                |
| 812967-003 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | 0.852                |
| 812967-004 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | 0.165                |
| 812967-005 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | 0.157                |
| 812967-006 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | ND                   |
| 812967-007 Turbidity   |      | NTU                       | 04/08/2014     | 1.00 | 0.0140                       | 0.100 | 0.102                |
| Method Blank           |      |                           |                |      |                              |       |                      |
| Parameter              | Unit | DF                        | Result         |      |                              |       |                      |
| Turhidity              | NTH  | 1.00                      | ND             |      |                              |       |                      |

| 012001 001 Tarbianty |           | 1110 | 0 1700 | 72011    | 1100 0.0110 | 0.100 0.10L         |
|----------------------|-----------|------|--------|----------|-------------|---------------------|
| Method Blank         |           |      |        |          |             |                     |
| Parameter            | Unit      | DF   | Result |          |             |                     |
| Turbidity            | NTU       | 1.00 | ND     |          |             |                     |
| Duplicate            |           |      |        |          |             | Lab ID = 812956-004 |
| Parameter            | Unit      | DF   | Result | Expected | RPD         | Acceptance Range    |
| Turbidity            | NTU       | 1.00 | 0.141  | 0.158    | 11.4        | 0 - 20              |
| Lab Control Sample   |           |      |        |          |             |                     |
| Parameter            | Unit      | DF   | Result | Expected | Recovery    | Acceptance Range    |
| Turbidity            | NTU       | 1.00 | 8.16   | 8.00     | 102         | 90 - 110            |
| Lab Control Sample   | Duplicate |      |        |          |             |                     |
| Parameter            | Unit      | DF   | Result | Expected | Recovery    | Acceptance Range    |
| Turbidity            | NTU       | 1.00 | 8.22   | 8.00     | 103         | 90 - 110            |



Client: E2 Consulting Engineers, Inc.

Project Name: PG & E Topock

Page 21 of 21

Project Number: 423575.MP.02.CM

Printed 4/22/2014

| Turbidity by SM 2130 E | 3           |            | Batch           | 04TUB14G       |          | Bare Service |                          |            |
|------------------------|-------------|------------|-----------------|----------------|----------|--------------|--------------------------|------------|
| Parameter              |             | Unit       | Unit Analyzed   |                |          | MDL          | RL                       | Result     |
| 812967-008 Turbidity   |             | NTU        | 04/08           | 3/2014         | 1.00     | 0.0140       | 0.100                    | ND         |
| 812967-009 Turbidity   |             | NTU        | 04/08/2014      |                |          | 0.0140       | 0.100                    | 1.10       |
| 812967-010 Turbidity   |             | NTU        | 04/08           | 3/2014         | 1.00     | 0.0140       | 0.100                    | 0.483      |
| 812967-011 Turbidity   |             | NTU        | 04/08           | 3/2014         | 1.00     | 0.0140       | 0.100                    | 0.317      |
| 812967-014 Turbidity   |             | NTU        | 04/08           | 3/2014         | 1.00     | 0.0140       | 0.100                    | ND         |
| 812967-015 Turbidity   |             | NTU        | 04/08           | 3/2014         | 1.00     | 0.0140       | 0.100                    | 0.565      |
| Method Blank           |             |            |                 |                |          |              |                          |            |
| Parameter<br>Turbidity | Unit<br>NTU | DF<br>1.00 | Result<br>ND    |                |          |              |                          |            |
| Duplicate              |             |            |                 |                |          |              | Lab ID =                 | 812967-015 |
| Parameter<br>Turbidity | Unit<br>NTU | DF<br>1.00 | Result<br>0.597 | Expected 0.565 | F        | RPD<br>5.51  | Acceptance Ran<br>0 - 20 |            |
| Lab Control Sample     |             |            |                 |                |          |              |                          |            |
| Parameter              | Unit        | DF         | Result          | Expected       | F        | Recovery     | Accepta                  | nce Range  |
| Turbidity              | NTU         | 1.00       | 8.22            | 8.00           |          | 103          | 90 - 110                 | I          |
| Lab Control Sample     | Duplicate   |            |                 |                |          |              |                          |            |
| Parameter              | Unit        | DF         | Result Expected |                | Recovery |              | Acceptance Range         |            |
| Turbidity              | NTU         | 1.00       | 8.17            | 8.00           |          | 102          | 90 - 110                 | l          |

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

CH2MHILL

Location Topock

Task Order

**Shipping Date:** 

CW-01D-031

CW-01M-031

CW-02D-031

CW-02M-031

CW-03D-031

CW-03M-031

CW-04D-031

CW-04M-031

OW-01S-031

OW-02S-031

OW-05S-031

OW-80-031

OW-81-031

OW-90-031

Project Name PG&E Topock

Project Manager Jay Piper

Project 2014-CMP-031

Turnaround Time 10 Days

COC Number: TLI-CMP031

Sample Manager Shawn Duffy

Project Number 423575.MP.02.CM

DATE

4/7/2014

4/7/2014

4/7/2014

4/7/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

4/8/2014

CHAIN OF CUSTODY RECORD

4/8/2014 3:20:24 PM Page 1 OF 2 2 x Liter 2 x Liter Poly Poly 4°C H2SO4, pH<2, 4°C NA NΑ 2 28 Ammonia (SM4500NH3) Turbidity (SM2130) Number of Containers TDS (SM2540C) COMMENTS X X N A X Х X Х X X 4 X 4 X X X Х X X X -3 Х 3 Х Х

| Approved by |
|-------------|
| Sampled by  |
| inquished b |

Received by

Received by Relinquished by

Date/Time 4-8-14

250 ml

Poly

(NH4)2S

O4/NH4C

Field

28

Cr6 (E218.6) Field Filtered

X

X

X

X

Х

X

X

X

X

X

Х

X

X

X

Container:

Filtered:

Preservatives:

Holding Time

TIME Matrix

Water

Signatures

10:17

10:57

14:20

15:07

7:37

8:55

10:57

11:42

15:03

14:32

13:38

6:00

15:30

6:50

500 ml

Poly

HNO3.

4°C

Field

180

X

Х

Х

X

X

X

X

X

X

500 ml

Poly

HNO3.

Field

180

Filtered Cr,Mo,Na

2 x Liter 2 x Liter

Poly

NA

2

Specific Conductance (E120.1)

X

Х

X

X

X

X

X

X

X

X

Х

X

Poly

4°C

NA

2

X

X

Х

X

X

X

X

X

X

X

X

Х

Poly

NA

2

Anions (E300.0)

CI, FI, SO4

X

X

X

Х

X

X

X

X

X

X

X

Х

X

X

X

**Shipping Details** 

X

Х

Method of Shipment: FedEx Courier

On Ice: (yes) no

Airbill No:

Lab Name: Truesdail Laboratories, Inc.

Lab Phone: (714) 730-6239

Special Instructions:

ATTN: April 7-9, 2014

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303



812967

CH2MHILL

CHAIN OF CUSTODY RECORD

4/8/2014 3:20:25 PM

Page 2 OF 2

| Project Name PG&E Topock                                                                                                                | Container            | 250 ml<br>Poly                 | 500 ml<br>Poly                                    | 500 ml<br>Poly                                    | 2 x Liter<br>Poly  | 2 x Liter<br>Poly | 2 x Liter<br>Poly  | 2 x Liter<br>Poly | 1 Liter<br>Poly                         |                                   |                      |           |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------|-------------------|--------------------|-------------------|-----------------------------------------|-----------------------------------|----------------------|-----------|
| Location Topock Project Manager Jay Piper                                                                                               | Preservatives        | (NH4)2S<br>: O4/NH4O<br>H, 4°C | HNO3,<br>4°C                                      | HNO3,<br>4°C                                      | 4°C                | 4°C               | 4°C                | 4°C               | H2SO4,<br>pH<2,<br>4°C                  |                                   |                      |           |
| Sample Manager Shawn Duff                                                                                                               | / Filtered           | : Field                        | Field                                             | Field                                             | NA                 | NA                | NA                 | NA                | NA                                      |                                   |                      | *         |
|                                                                                                                                         | Holding Time         | : 28                           | 180                                               | 180                                               | 2                  | 2                 | 2                  | 2                 | 28                                      |                                   |                      |           |
| Project Number 423575.MP.0<br>Task Order<br>Project 2014-CMP-031<br>Turnaround Time 10 Days<br>Shipping Date:<br>COC Number: TLI-CMP031 | 02.CM<br>TIME Matrix | Cr6 (E218.6) Field Filtered    | Metals (E200.7-E200.8) Field<br>Filtered Chromium | Metals (E200.7-E200.8) Field<br>Filtered Cr.Mo,Na | s (E300.0) CI, FI, |                   | Turbidity (SM2130) | TDS (SM2540C)     | Ammonia (SM4500NH3)                     | Rec'd 04/08/14<br>S217 8 1 29 6 7 | Number of Containers | COMMENT ( |
| OW-91-031 4/8/2014                                                                                                                      | 10:42 Water          | х                              |                                                   | х                                                 | Х                  | х                 | х                  | х                 |                                         |                                   | _3_                  | 4 pl 2    |
|                                                                                                                                         |                      |                                |                                                   |                                                   | ·                  | <u> </u>          | ,                  | ·,                | , , , , , , , , , , , , , , , , , , , , | TOTAL NUMBER OF CONTAINERS        | 50                   | 63        |



| Approved by            | Signatures     | Date/Time      | Shipping Details                        |
|------------------------|----------------|----------------|-----------------------------------------|
| Approved by Sampled by |                | 9-8-19<br>1600 | Method of Shipment: FedEx Courier       |
| inquished by           | 016            | 14-8-14        | On Ice: yes / no                        |
| Received by            | Shail nyo      | 1600           | Airbill No: 1 (A                        |
| Relinquished by        | Elan Mas       | 48-14 200      | CLab Name: Truesdail Laboratories, Inc. |
| Received by            | Marcheal Brack | 48/14/19/2000  | Lab Phone: (714) 730-6239               |

Special Instructions:

ATTN: April 7-9, 2014

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303

# Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

| Date    | Lab Number   | Initial pH | Buffer Added (mL) | Final pH | Time Buffered | Initials                                     |  |
|---------|--------------|------------|-------------------|----------|---------------|----------------------------------------------|--|
| 3,26/19 | 8/2753       | 7.00       | 3ml/(00ml         | 9.5      | 7/30          | NE                                           |  |
| 419114  | 812966-1     | 7.00       | 2 hl/100 ml       | 9.5      | 7:20          | NE                                           |  |
|         | -2           |            | 1                 |          |               |                                              |  |
|         | V -3         | 1          | V                 |          | 1/            |                                              |  |
|         | 812967-1     | 9.5        | ~1.4              | NIA      | NA            |                                              |  |
|         | -2           |            |                   | 1        | 1             |                                              |  |
|         | 1 1          |            |                   |          |               |                                              |  |
|         | ~3<br>_~1    |            |                   |          |               |                                              |  |
|         | -5           |            |                   |          |               | O. T. C. |  |
|         | -6           |            |                   |          |               |                                              |  |
|         | -7           |            |                   |          |               |                                              |  |
|         | -8           |            |                   |          |               |                                              |  |
|         | -8           |            |                   |          |               |                                              |  |
|         | -10          |            |                   |          |               |                                              |  |
|         | <u>- 1.1</u> |            |                   |          |               |                                              |  |
|         | -12          |            |                   |          |               |                                              |  |
|         | -13          |            |                   |          |               |                                              |  |
|         | 14           |            |                   |          |               |                                              |  |
|         | V 15         |            |                   |          |               |                                              |  |
|         | 812968 CS    | 103)√      | <u> </u>          |          |               | <u> </u>                                     |  |
|         | 812969-1     | 7.00       | 2 ml/looml        | 9.5      | 7:20          | NE                                           |  |
| V       | V -2         | <u> </u>   | V                 |          |               |                                              |  |
| 4116114 | 813068       | 7,00       | 2ml/100ml         | 9.5      | 7;40          | NE                                           |  |
|         |              |            |                   |          |               |                                              |  |
|         |              |            |                   |          |               |                                              |  |
|         |              |            |                   |          |               |                                              |  |
|         |              |            |                   |          |               |                                              |  |
|         |              |            | ·                 |          |               |                                              |  |
|         |              |            |                   |          |               |                                              |  |
|         |              |            |                   |          |               |                                              |  |
|         |              |            |                   |          |               |                                              |  |

Ju 4117/14

C:\My Documents\Templates\Hexavalent Chromium\Cr6+ pH Log



### TRUESDAIL LABORATORIES, INC. Metals

Turbidity/pH Check

|                   |                                         |                                                                            | Turbi   | dity/pH ( | Check                |                                  |                              |                          |
|-------------------|-----------------------------------------|----------------------------------------------------------------------------|---------|-----------|----------------------|----------------------------------|------------------------------|--------------------------|
| Sample Number     | Turbidity                               | рН                                                                         | Date    | Analyst   | Need Digest<br>(Y/N) | Time of<br>Adjustment to<br>pH 2 | Date/Time of 2nd<br>pH check | Comments                 |
| 817.829           | 71                                      | 42                                                                         | 4/3/14  | 757       | Yes                  |                                  |                              |                          |
| 212830            | >1                                      | <2                                                                         |         |           | I                    |                                  |                              |                          |
| 8175833 (4)       | >1_                                     |                                                                            |         |           |                      |                                  |                              |                          |
| \$17\$A5X         | , , , , , , , , , , , , , , , , , , , , | <z <z<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td></z> |         |           |                      |                                  |                              |                          |
| 817849-4          | ラj<br>フl                                | <7                                                                         | 1       | 1         |                      |                                  |                              |                          |
| 817851 (1-2)      | >1                                      | 42                                                                         |         |           |                      |                                  |                              |                          |
| 812852            | احر                                     | 12                                                                         |         | V         | V                    |                                  |                              |                          |
| X17×1X            | >1                                      | <b>4</b> Z                                                                 | 4/3/14  | KD        | Yes                  |                                  |                              |                          |
| 817870<br>817820  | >1_                                     | 22                                                                         |         | , ,       |                      |                                  |                              |                          |
| 817821            | 71                                      | ZZ                                                                         |         |           |                      |                                  |                              |                          |
| 817823            | <1                                      | >7                                                                         | \/ .    | ile       | NO                   | 1110                             | 41414 17:30                  | 91122                    |
| 617859            | <u> </u>                                | 27                                                                         | 4/4/14  | KD        | NB                   |                                  |                              |                          |
| 812859            | 71                                      | <2                                                                         | . }     |           | Yes                  |                                  |                              |                          |
| 812866            | >1                                      | 77                                                                         | 4       | 1/4       | (EX-15)              |                                  |                              |                          |
| X12912            | 71                                      | 42                                                                         | 417114  | ES_       | Yes                  |                                  |                              |                          |
| 812922            | 41                                      | 47                                                                         | j       |           | 11                   |                                  |                              |                          |
| 8/2 423 (1-4)     | フリ                                      | LZ_                                                                        | 1       |           |                      |                                  |                              |                          |
| 9:2029(1-2)       | 71_                                     | 22                                                                         | 4/8/14  | ES        | No                   |                                  |                              |                          |
| 612977-6          | 21                                      | 77                                                                         |         |           | NO                   | lo: W                            |                              |                          |
| 812947 (1,2,4)    | 21                                      | >2                                                                         | 4/8/14  | R         | NO                   | 1305                             |                              |                          |
| 712944            | 41                                      | 42                                                                         | 419114  | ES        | yes                  |                                  |                              |                          |
| 812945            |                                         | ·                                                                          |         |           |                      |                                  |                              |                          |
| 812946            | フリ                                      |                                                                            |         |           |                      |                                  |                              |                          |
| 812947            | <b>1</b>                                |                                                                            |         |           |                      |                                  |                              |                          |
| 812949            | 41                                      |                                                                            |         |           |                      |                                  |                              |                          |
| 412950            | 1                                       |                                                                            |         | _         |                      |                                  |                              |                          |
| 812951            |                                         |                                                                            |         |           |                      |                                  |                              |                          |
| 812952            |                                         |                                                                            |         |           |                      |                                  |                              |                          |
| 812953            |                                         |                                                                            |         |           |                      |                                  |                              |                          |
| 812959            |                                         |                                                                            |         |           | V                    |                                  |                              |                          |
| 812965(1-2)       |                                         | 72                                                                         |         | <u> </u>  | No                   | 11:00                            |                              |                          |
| 812967(1-11,14-15 |                                         | 12                                                                         | 49114   | 马         | Yes                  |                                  |                              |                          |
| 812966(1,3)       | 41                                      | <u> </u>                                                                   |         |           |                      |                                  |                              |                          |
| 966-Z             |                                         | 72                                                                         |         |           |                      | 1700                             |                              | PH 22                    |
| 812969(1-2)       | <b>√</b>                                |                                                                            | 1       | 4         |                      | 1:00                             |                              | PH LZ<br>ilterather reid |
| 812984/10-12      | 41                                      | 72                                                                         | 4/10/14 | KD        | NO                   | 1220                             |                              |                          |
| 812991 P          | Spice                                   | 17                                                                         |         | 1         | Yes                  |                                  |                              |                          |
| 812991 7          | 71                                      | 27                                                                         |         |           | Yes<br>Yes<br>NO     |                                  |                              |                          |
| 8(2995(4)         | 71                                      | 17                                                                         |         |           | Yes                  |                                  |                              |                          |
| 512986 (1,2)      | 71                                      | フユ                                                                         |         |           | NO                   | 1770                             |                              |                          |
| 8/2007/1-4)       |                                         | 72                                                                         |         |           | MO                   | ¥                                |                              |                          |
| 813002            | <1                                      | <7_                                                                        |         |           | Yes                  |                                  |                              |                          |
|                   | <u>&gt;1</u>                            | <u> </u>                                                                   |         | 1         | Yes<br>Yes<br>Yes    |                                  |                              |                          |
| 813004            | <1                                      | <b>4</b> 7                                                                 |         | V         | Yes                  |                                  |                              |                          |

### Notes:

Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.



# Sample Integrity & Analysis Discrepancy Form

| Cli        | ent: <u>E2</u>                                                                                                              | Lab # <u>812 967</u>           |
|------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Dai        | te Delivered. ♀️ / ❷ / 14 Time: औटि By: □Mail ∞0                                                                            | Field Service                  |
| 1.         | Was a Chain of Custody received and signed?                                                                                 | ÆTYes □No □N/A                 |
| 2.         | Does Customer require an acknowledgement of the COC?                                                                        | □Yes ÆNo □N/A                  |
| <b>3</b> . | Are there any special requirements or notes on the COC?                                                                     | □Yes 12tNo □N/A                |
| 4.         | If a letter was sent with the COC, does it match the COC?                                                                   | □Yes □No ÆN/A                  |
| 5.         | Were all requested analyses understood and acceptable?                                                                      | ÆYes □No □N/A                  |
| <b>6</b> . | Were samples received in a chilled condition? Temperature (if yes)? $\underline{\delta \cdot \mathscr{L} \circ \mathbf{C}}$ | LYes UNO UNIA                  |
| 7.         | Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?                                                | ÆYes □No □N/A                  |
| 8.         | Were sample custody seals intact?                                                                                           | □Yes □No ∠IN/A                 |
| 9.         | Does the number of samples received agree with COC?                                                                         | ÆYes □No □N/A                  |
| 10.        | Did sample labels correspond with the client ID's?                                                                          | ĠYes □No □N/A                  |
| 11.        | Did sample labels indicate proper preservation? Preserved (if yes) by ⊅ Truesdail □ Client                                  | ÆYes □No □N/A                  |
| 12.        | Were samples pH checked? pH = <u>\$ee</u> C. o. C.                                                                          | ÆYes □No □N/A                  |
| 13.        | Were all analyses within holding time at time of receipt? If not, notify Project Manager.                                   | ☐Yes ☐No ☐N/A                  |
| 14.        | Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH 궏 Std                                      | ØYes □No □N/A                  |
| 15.        | Sample Matrix: □Liquid □Drinking Water □Ground □Sludge □Soil □Wipe □Paint □Solid                                            | Water □Waste Water Other Walle |
| 6.         | Comments:                                                                                                                   |                                |
| 7.         | Sample Check-In completed by Truesdail Log-In/Receiving:                                                                    | Luda                           |
|            | Level III QC                                                                                                                |                                |

## **ANALYTICAL REPORT**

For:

PGE Topock - 2014-CMP-031

ASL Report #: N1660

Project ID: 423575.MP.02.CM

**Attn: Jay Piper** 

cc:

Data Center/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

(541) 758-0235 ext.23144

May 05, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.



Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements.

### **Sample Cross-Reference**

| ASL       |                  | Date/Time      | Date     |  |
|-----------|------------------|----------------|----------|--|
| Sample ID | Client Sample ID | Collected      | Received |  |
| N166001   | CW-01D-031       | 04/07/14 10:17 | 04/15/14 |  |
| N166002   | CW-01M-031       | 04/07/14 10:57 | 04/15/14 |  |
| N166003   | CW-02D-031       | 04/07/14 14:20 | 04/15/14 |  |
| N166004   | CW-02M-031       | 04/07/14 15:07 | 04/15/14 |  |
| N166005   | CW-03D-031       | 04/08/14 07:37 | 04/15/14 |  |
| N166006   | CW-03M-031       | 04/08/14 08:55 | 04/15/14 |  |
| N166007   | CW-04D-031       | 04/08/14 10:57 | 04/15/14 |  |
| N166008   | CW-04M-031       | 04/08/14 11:42 | 04/15/14 |  |
| N166009   | OW-01S-031       | 04/08/14 15:03 | 04/15/14 |  |
| N166010   | OW-02S-031       | 04/08/14 14:32 | 04/15/14 |  |
| N166011   | OW-05S-031       | 04/08/14 13:38 | 04/15/14 |  |
| N166012   | OW-90-031        | 04/08/14 06:50 | 04/15/14 |  |
| N166013   | OW-91-031        | 04/08/14 10:42 | 04/15/14 |  |

### ASL Report #: N1660

### **Table of Contents**

|                                            | Page |
|--------------------------------------------|------|
| Nitrate, Nitrite Analysis by Method E353.2 | 6    |
| Chain of Custody/Shipping Documents        | 43   |



CH2M HILL

Applied Sciences Laboratory (ASL)

1100 NE Circle Blvd

Suite 300

Corvallis, OR 97330

Tel 541.768.3120

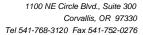
Fax 541.752.0276

### **Organic CLP-Like Data Qualifiers**

- U The analyte was analyzed for, but not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- P The primary and confirmation analyte result recoveries do not match.
- E The analyte was positively identified; the associated numerical value exceeded the instrument calibration range.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

#### **Inorganic CLP-Like Data Qualifiers**

- U The analyte was analyzed for, but not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- E The analyte was positively identified; the associated numerical value exceeded the instrument calibration range.
- N The matrix spike/matrix spike duplicate recovery for the analyte is outside of acceptance criteria—qualifier is applied to the native sample only.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.




### Applied Sciences Group QC Codes for Raw Data Mark Up

| Code | Description                                     |
|------|-------------------------------------------------|
|      | -                                               |
| R01  | Illegible entry                                 |
| R02  | Unnecessary entry                               |
| R03  | Туро                                            |
| R04  | Misspelled                                      |
| R05  | Page mis-numbered                               |
| R06  | Transcription error or incorrect entry          |
| R07  | Rounding error                                  |
| R08  | Unused code                                     |
| R09  | Unused code                                     |
| R10  | Wrong date entered                              |
| R11  | Wrong sample number                             |
| R12  | Wrong dilution factor                           |
| R13  | Wrong concentration                             |
| R14  | Wrong batch number                              |
| R15  | Wrong standard concentration                    |
| R16  | Wrong standard lot #                            |
| R17  | Unused code                                     |
| R18  | Unused code                                     |
| R19  | Unused code                                     |
| R20  | Re-calibration of equipment                     |
| R21  | Sample rerun                                    |
| R22a | Miscalculation                                  |
| R22b | Remake of standards                             |
| R23  | Wrong detection limit given                     |
| R24  | Less than reporting limit                       |
| R25  | Non-target compound                             |
| R26  | Unused code                                     |
| R27  | Unused code                                     |
| R28  | Includes dilution factor                        |
| R29  | Sample relogged-in under a different work order |
| R30  | Equipment malfunction                           |
| R31  | Unused code                                     |
| R32  | Unused code                                     |
| R33  | Manual integration of qualifying ion only       |
| R34  | Software split peak                             |
| R35  | Software included interfering peak              |
| R37  | Peak area enhanced by software                  |
| R38  | Peak area excluded by software                  |
| R39  | Peak misidentification by software              |
| R40  | Delete baseline noise                           |
| R41  | Unused code                                     |
| R42  | Unused code                                     |
| R43  | Unused code                                     |
| R44  | Reanalysis due to the failure of an ISTD        |
| R45  | Analysis didn't acquire                         |
|      | 1 1 1                                           |

# **ANALYSIS METHOD**

E353.2





### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1660

Project: PGE Topock Project #: 423575.MP.02.CM

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

#### **Method(s):**

E353.2

#### **Matrix Spike/Matrix Spike Duplicate(s):**

E353.2: MSD recovery of Total Nitrate/Nitrite (88.1%) in OW-01S-031 did not meet acceptance criteria of 90-110%.

# **SAMPLE DATA SUMMARY**

Field Sample ID:

CW-01D-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166001

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.15   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-01M-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166002

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.08   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-02D-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166003

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.26   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-02M-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166004

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.11   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-03D-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166005

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.20   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-03M-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166006

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.73   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-04D-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166007

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.14   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

CW-04M-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166008

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 2.93   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-01s-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166009

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.27   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   | 1     |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-01S-031MS

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166009MS

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.79   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-01S-031MSD

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166009MSD

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.71   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-02S-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166010

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.73   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-05S-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166011

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.35   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-90-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166012

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.71   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

OW-91-031

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N166013

| NO3NO2N Nitrate/Nitrite-N | Date<br>Analyzed | Analysis<br>Method | :        | Sample<br>Amount | DF | Units | Q | Result | PQL    | DL     | Analyte           | CAS No. |
|---------------------------|------------------|--------------------|----------|------------------|----|-------|---|--------|--------|--------|-------------------|---------|
|                           | 04/22/14         | E353.2             | ML       | 3 MI             | 4  | MG/L  |   | 3.69   | 0.0400 | 0.0112 | Nitrate/Nitrite-N | NO3NO2N |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | -        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | -        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | $\dashv$ |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    |          |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |
|                           |                  |                    | +        |                  |    |       |   |        |        |        |                   |         |

Field Sample ID:

WB4-042214

SDG No.: N1660 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB4-042214

Date Received: / /

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/22/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

## **QC SUMMARY**

SDG No.: N1660 Lab Name: CH2M HILL ASL
Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

OW-01S-031 OW-01S-031MS OW-01S-031MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Nitrate/Nitrite-N | 3.27   | 0.500 | 3.79   | 104 | 0.500 | 3.71   | 88  | 2    | 90-110 | 15     | * |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

#### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1660 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS4W0422

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 04/22/14

Matrix: (Soil/Water) WATER Time Analyzed: 1312

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q |
|-------------------|----------|-------|-----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.502 | 105 | 90-110          |   |
|                   |          |       | +   |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     | 1               | 1 |

<sup>\*</sup> Values outside of QC limits

Comments:

CHAIN OF CUSTODY/SHIPPING DOCUMENTS

**CH2MHILL** CHAIN OF CUSTODY RECORD 4/8/2014 3:20:54 PM Page 1 OF 1 125 ml Project Name PG&E Topock Container Poly Location Topock H2SO4 Preservatives: pH<2, **Project Manager Jay Piper** 4°C Sample Manager Shawn Duffy Filtered: NA **Holding Time:** 28 Project Number 423575.MP.02.CM Nitrate/Nitrite (SM4500NO3) Task Order Project 2014-CMP-031 Turnaround Time 12 Days **Shipping Date:** COC Number: CHMC-CMP031 Containers COMMENTS DATE TIME Matrix CW-01D-031 1 4/7/2014 10:17 Water X CW-01M-031 4/7/2014 10:57 Water Х 1 CW-02D-031 4/7/2014 14:20 Water X CW-02M-031 4/7/2014 15:07 Water X CW-03D-031 4/8/2014 7:37 Water 1 X CW-03M-031 4/8/2014 8:55 Water X CW-04D-031 4/8/2014 10:57 Water Х CW-04M-031 4/8/2014 11:42 Water Х OW-01S-031 4/8/2014 15:03 Water X OW-02S-031 4/8/2014 14:32 Water X OW-05S-031 4/8/2014 13:38 Water X OW-90-031 4/8/2014 6:50 Water X 17 OW-91-031 1.3 4/8/2014 10:42 Water X TOTAL NUMBER OF CONTAINERS 13 Signatures

Approved by Sampled by Relinquished by Receive by Relinguished by Received by

Shipping Details

Method of Shipment: FedEx

ATTN:

Special Instructions:

April 7-9, 2014

On Ice: (8)/ no 288,22

Sample Custody

and

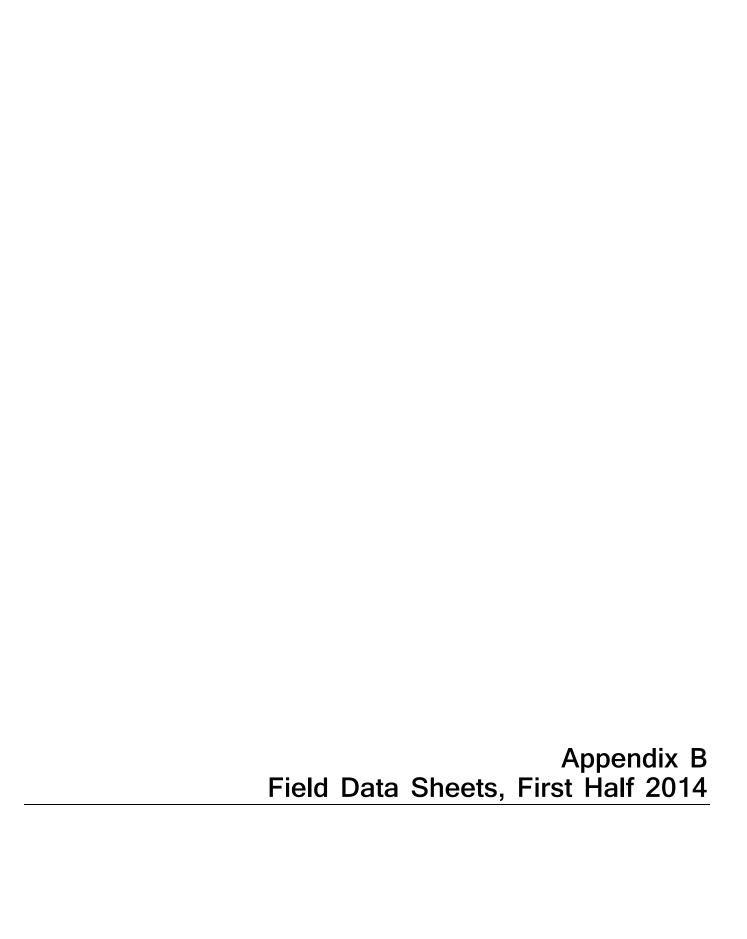
Report Copy to

Kathy McKinley

Shawn Duffy 75301 229-3303

Lab Phone (541) 752-4271

Airbill No:


Lab Name: CH2M HILL Applied Sciences Lab

三、医二、多种原因 医肾炎





| SDG ID: N1660                                                     |                                             | Date Received:         | 4/15/2014       |           |           |          |
|-------------------------------------------------------------------|---------------------------------------------|------------------------|-----------------|-----------|-----------|----------|
| Client/Project: Topock                                            |                                             | Received By:           | Carmen Cole     |           |           |          |
| Were custody seals intact and on the outsi                        | de of the cooler?                           |                        |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Shipping Record:                                                  |                                             |                        | ☐ Hand I        | Delivered | ✓ On File | □ coc    |
| Radiological Screening for DoD                                    |                                             |                        |                 | Yes       | No        | ✓ N/A    |
| Packing Material:                                                 |                                             |                        | Hand Delivered  | ✓ Ice     | Blue Ice  | Вох      |
| Temp OK? (<6C) Therm ID: TH173 E                                  | xp. <u>6/14</u>                             |                        | 1.6 °C          | √ Yes     | No        | □ N/A    |
| Was a Chain of Custody (CoC) Provided?                            |                                             |                        |                 | ✓ Yes     | No        | □ N/A    |
| Was the CoC correctly filled out (If No, doo                      | cument below)                               |                        |                 | ✓ Yes     | No        | □ N/A    |
| Did sample labels agree with COC? (If No,                         | document below)                             |                        |                 | ✓ Yes     | No        | □ N/A    |
| Did the CoC list a correct bottle count and                       | the preservative types                      | s (Y=OK, N=Correcte    | d on CoC)       | √ Yes     | No        | □ N/A    |
| Were the sample containers in good condi                          | tion (broken or leakin                      | g)?                    |                 | ✓ Yes     | No        | □ N/A    |
| Was enough sample volume provided for a                           | analysis? (If No, docu                      | ment below)            |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Containers supplied by ASL?                                       |                                             |                        |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Any sample with < 1/2 holding time remain                         | ing? If so contact LP                       | M                      |                 | Yes       | ✓ No      | □ N/A    |
| Samples have multi-phase? If yes, docume                          | ent on SRER                                 |                        |                 | Yes       | ✓ No      | □ N/A    |
| All water VOCs free of air bubbles? No, do                        | ocument on SRER                             |                        |                 | Yes       | ✓ No      | □ N/A    |
| pH of all samples met criteria on receipt? I                      | f "No", preserve and o                      | document below.        |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Dissolved/Soluble metals filtered in the fiel                     | d?                                          |                        |                 | Yes       | ☐ No      | ✓ N/A    |
| Dissolved/Soluble metals have sediment in                         | bottom of container?                        | ? If so document below | W.              | Yes       | No        | ✓ N/A    |
|                                                                   | Preservati                                  | on Adjustment          |                 |           |           |          |
|                                                                   | Doomont                                     | Reagent Lot N          | lumber          | Volun     | ne Added  | Initials |
| Sample ID                                                         | Reagent                                     |                        |                 |           |           |          |
| Sample ID                                                         | Reagent                                     |                        |                 |           |           |          |
| Sample ID                                                         | Reagent                                     |                        |                 |           |           |          |
| Sample ID                                                         | Keagent                                     |                        |                 |           |           |          |
| Sample                                                            | Exception Repor                             |                        | ons were noted) |           |           |          |
|                                                                   | Exception Repor                             |                        | ons were noted) |           |           |          |
| Sample                                                            | Exception Repor                             |                        | ons were noted) |           |           |          |
| Sample                                                            | Exception Repor                             |                        | ons were noted) |           |           |          |
| Sample                                                            | Exception Repor                             |                        | ons were noted) |           |           |          |
| Sample                                                            | Exception Repor                             |                        | ons were noted) |           |           |          |
| Sample                                                            | Exception Repor                             |                        | ons were noted) |           |           |          |
| Sample                                                            | Exception Repor                             | od E353.2.             | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL                         | e Exception Reportion will report by method | od E353.2.             | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL Client was notified on: | e Exception Reportion will report by method | od E353.2.             | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL Client was notified on: | e Exception Reportion will report by method | od E353.2.             | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL Client was notified on: | e Exception Reportion will report by method | od E353.2.             | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL Client was notified on: | e Exception Reportion will report by method | od E353.2.             | ons were noted) |           |           |          |



Topock Sampling Log Sampling Event 2014-CMP-031 **Project Name** PG&E Topock CMP Job Number Date 4-7-14 423575,MP.02,CM of 141 Field Conditions Property Samuel (1990) Page Field Team Sampler QC Sample ID Well/Sample Number CW-01D-031 QC Sample Time ATA Purge Method: 2-1761 Purge Start Time (5926 Ded. Pump and tubing Min. Purge Volume (gall)(L) Purge Rate (gpm) (mLpm) Pump Make and Model Flow Cell(Y) / N 7 min \*\*Hd Conductivity\*\* Turbidity Diss. Oxygen Temperature Eh/ORP Water Time Vol\_Purged Comments gallons liters uS/cm NTU mg/L Level mγ (See description below 28.28 6.44 -30 109.09 09 33 5.7 6927 moter malfunctioning - repaired 7.02 7.6(6923 28.22 109 68 1010 914 08 08 1015 7,57 6.2<pH<9.2 17,000 Parameter Compliance Criteria \*\*If pH or conductivity is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250), If B. Collom unavailable contact S. Duffy ((530) 510-2340), If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137), If J. Piper unavailable contact Christina Hong ((626) 703-4475 or (626) 297-5292), +/- 10% NTU +/- 0.3 +/- 0.1 +/- 3% +/- 2°C +/- 10 mV units ma/L Parameter Stabilization Criteria pH units when >10 NTUs Did last three Parameters Stablize prior to sampling? 7.33 29.13 Previous Field measurement 7427 7.96 155 (10/10/2013) Are measurements consistent with previous? Sample Time Sample Location: pump tubing 🞾 well port spigot bailer ather Comments: WQ METER MAKE and SERIAL NUMBER: Tu-Stu 9500 506/8 Initial Depth to Water (ft BTOC): Well TOC Steel Casing Measure Point: WATER LEVEL METER SERIAL NUMBER: Field measured confirmation of Well Depth (ft btoc): If Transducer WD (Well Depth - from database) ft btoc Initial DTW / Before Removal Approx. 5 min After Reinstallation ヘバヤ SWH (Standing Water Height) = WD-Initial Depth Time of Removal Initial DTW Time Time Final DTW D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 Time of Reinstallation One Casing Volume = D\*SWH Comments:

Odor: none) sulphur, organic, other

Three Casing Volumes =

Color: clean grey, yellow, brown, black, cloudy, green

Solids: Prace, Small Qu. Med Qu. Large Qu. Particulate, Silt, Sand

| Project Na<br>Job Nur           |                                      | Topock CMP                |                                                                                                    |                                       |                                          | San                                              | pg —                                                | 2014-CMP-031<br>4-7-14                           |                                                                  | 24/                                        |
|---------------------------------|--------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|
| Sampler (                       | ~ ~                                  | 5.MP.02.CM                | 1 Field                                                                                            | Canditions Ma                         | 01701 Ola                                | C 1.35 -                                         |                                                     | of 1                                             |                                                                  | BU V                                       |
|                                 | <i>'(<del></del></i><br>ple Number [ | Field Team                | - rielu                                                                                            | Conditions                            | QC Sample                                | W. Worm                                          | 1                                                   | <u> </u>                                         | ample Time WA                                                    |                                            |
| urge Start Time                 |                                      | O44-0 1111-031            |                                                                                                    | Durge Method                          | •                                        |                                                  |                                                     |                                                  | ample time A/ / /                                                |                                            |
| irge Start Timi                 | Flow Cell                            | ) N                       |                                                                                                    | Min. Purge Vo                         | olume (gal)/(L)                          | 2 Purge                                          | Acd two<br>Rate (gpmg)/(mLpm                        | )_2                                              | Pump Make and Model                                              | G#2                                        |
| Water<br>Level                  | Uw.n<br>Time                         | Vol. Purged               | pH**                                                                                               | Conductivity**<br>µS/cm               | Turbidity<br>NTU                         | Diss. Oxygen<br>mg/L                             | Temperature<br>°C                                   | Eh/ORP<br>mv                                     |                                                                  | mments<br>cription below                   |
| 108,90                          | 1039                                 | 8                         | 7.55                                                                                               | 6781                                  |                                          | 8.21                                             | 29.11                                               | 101                                              | HZ = 321                                                         |                                            |
| 108.89                          | 1043                                 | 16                        | 7,54                                                                                               | 6780                                  |                                          | 8.13                                             | 29.18                                               | 105                                              |                                                                  |                                            |
| 168,89                          | 1047                                 | 24                        | 7.55                                                                                               | 6772                                  | 1                                        | 8.06                                             | 29.24                                               | 105                                              |                                                                  |                                            |
| 108.89                          |                                      | 32                        | 757                                                                                                | 6767                                  | 1                                        |                                                  | 29.75                                               | 107                                              |                                                                  |                                            |
| 168.81                          | 1655                                 | 40                        | 757                                                                                                | 6776                                  |                                          | 7.76                                             | 29.29                                               | 110                                              |                                                                  |                                            |
|                                 |                                      |                           | . 200                                                                                              |                                       |                                          |                                                  |                                                     |                                                  |                                                                  |                                            |
| :                               |                                      |                           |                                                                                                    |                                       |                                          |                                                  |                                                     |                                                  |                                                                  | ·····                                      |
| Parameter Co                    | ompliance Crit                       | eria                      | 6.2 <ph<9.2< td=""><td>17,000</td><td></td><td></td><td></td><td></td><td></td><td></td></ph<9.2<> | 17,000                                |                                          |                                                  |                                                     |                                                  |                                                                  |                                            |
| If pH or conda                  | uctivity is out of                   | range check calib         | l<br>pration, take to<br>available conta                                                           | IM3 and check p<br>act J. Piper ((702 | I<br>>H, SC-get secor<br>) 953-1202 x366 | I<br>nd probe. If still ou<br>02 or (702) 525-11 | i<br>it of range immediat<br>137). If J. Piper unav | I<br>ely contact B. Collo<br>/ailable contact Ch | I<br>om ((541) 740-3250). If B. C<br>ristina Hong ((626) 703-447 | ollom unavailable<br>5 or (626) 297-5292). |
| arameter Sta                    | abilization Crit                     | eria                      | +/- 0,1<br>pH units                                                                                | +/- 3%                                | +/- 10% NTU<br>units<br>when >10 NTUs    | +/- 0.3<br>mg/L                                  | +/- 2°C                                             | +/- 10 mV                                        |                                                                  | -                                          |
| id last three Pa                | ırameters Stablize                   | prior to sampling?        | 4                                                                                                  | Ч                                     | 4                                        | V                                                | 4                                                   | 4                                                |                                                                  |                                            |
| revious Field m                 |                                      | (10/10/2013)              | 7.48                                                                                               | 7512                                  | 1                                        | 9.51                                             | 29.14                                               | 186                                              |                                                                  |                                            |
| re measuremei                   | nts consistent with                  | previous?                 | 9                                                                                                  | 4                                     | <u> </u>                                 | LY                                               | l V                                                 | L 4'                                             | <u></u>                                                          |                                            |
| ample Time<br>omments:          | 105 1 4                              | Sample Location           | n: pun                                                                                             | np tubing                             | well port                                | spigot                                           | bailer                                              | other                                            |                                                                  |                                            |
| :4:-1 D4- 4-                    | M-4 (A DTOC                          |                           | ×6.85                                                                                              |                                       |                                          |                                                  |                                                     | WO METER M                                       | AKE and SERIAL NUMBER                                            | the sil const                              |
| ınar Deptri (ö<br>İeld measured | vvater (II BTOC<br>diconfirmation o  | f Well Depth (ft bt       | oc):                                                                                               |                                       | Measure F                                | Point: Well TOC                                  | Steel Casing                                        |                                                  |                                                                  | Th-57 95005                                |
|                                 | h - from databa                      |                           | · -                                                                                                |                                       | :                                        |                                                  |                                                     |                                                  | If Transducer                                                    |                                            |
|                                 |                                      | = WD-Initial Dept         |                                                                                                    | 5                                     | Initial DTW / I                          | Before Removal                                   | Approx. 5 min                                       | After Reinstallation                             |                                                                  |                                            |
| •                               |                                      | = 0.17, <b>4"</b> = 0.66, | ·                                                                                                  | ? in)                                 | Time                                     | Initial DTW                                      | Time                                                | Final DTW                                        |                                                                  |                                            |
| •                               | olume = D*SWH                        |                           | 13.7                                                                                               | 101                                   | 0930                                     | 108.85                                           | <i>NH</i> -                                         |                                                  |                                                                  |                                            |
| ree Casing \                    |                                      |                           | 41.3                                                                                               | <i>-</i> €^\                          | Comments:                                | ,                                                |                                                     |                                                  |                                                                  |                                            |
| olor: clear, g                  | rey, yellow, bro                     | wn, black, cloudy,        | green                                                                                              |                                       | Odor: none, sul                          | phur, organic, othe                              | er <b>S</b>                                         | olids: Tace, Sma                                 | ıli Qu, Med Qu, Large Qu, Pa                                     | articulate, Silt, Sand                     |
| ndel\Pro\Padito0                | SasElectricCo\Topoc                  | kProgram\Database\Fx      | eldiFrontEnd2Kv34                                                                                  | 4_PaperWorkMIST.mid                   | db\rptPurgeFormCMP                       |                                                  |                                                     |                                                  |                                                                  | Page 2 of 11                               |

Topock Sampling Log PG&E Topock CMP 2014-CMP-031 **Project Name** Sampling Event Job Number Date 4-7-14 423575.MP.02.CM Page of Field Conditions Hot Broozy Clear Sampler Field Team QC Sample ID Well/Sample Number | CW-02D-031 NA QC Sample Time WA Purge Start Time 1317 Purge Method: 2-1/01 Ded, Pump Min. Purge Volume (gal)/(L) 135 Purge Rate (gpm)/(mLpm) Pump Make and Model Flow Cell 1 N a xxx Water Vol. Purged pH\*\* Conductivity\*\* Turbidity Diss. Oxygen Temperature **EN/ORP** Comments gallons liters (See description below Level uS/cm NTU ma/L mv 30.42 HZ =311 91,910 1330 30.42 30.43 7.31 7.38 than expected. ~ 140 gal 91.40 ~160ga Parameter Compliance Criteria 6.2<pH<9.2 \*\*If pH or conductivity is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B, Collom ((541) 740-3250). If B, Collom unavailable contact S. Duffy ((530) 510-2340), If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137). If J. Piper unavailable contact Christina Hong ((626) 703-4475 or (626) 297-5292). +/- 10% NTU +/- 0.3 +/- 0.1 +/- 3% +/- 2°C +/- 10 mV units Parameter Stabilization Criteria mg/L pH units when >10 NTUs Did last three Parameters Stablize prior to sampling? Previous Field measurement (10/8/2013) 7.86 7582 6.94 30.98 101 Are measurements consistent with previous? history Coll Sample Time Sample Location: spigot pump tubing well port bailer other Comments: WQ METER MAKE and SERIAL NUMBER: Initial Depth to Water (ft BTOC): WATER LEVEL METER SERIAL NUMBER: Measure Point: Steel Casing Field measured confirmation of Well Depth (ft btoc): If Transducer WD (Well Depth - from database) ft btoc (355) Initial DTW / Before Removal Approx. 5 min After Reinstallation SWH (Standing Water Height) = WD-Initial Depth Time of Removal Time Initial DTW Final DTW Time D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 Time of Reinstallation One Casing Volume = D\*SWH

Comments:

Odor: none, sulphur, organic, other

Three Casing Volumes =

Color: (lear), grey, yellow, brown, black, cloudy, green

|                       | ' '               |                                 |                     |                           |                                       | ( )                                  | و و و       |                         |                         | Topock :          | Sampling Log                       |
|-----------------------|-------------------|---------------------------------|---------------------|---------------------------|---------------------------------------|--------------------------------------|-------------|-------------------------|-------------------------|-------------------|------------------------------------|
|                       |                   | 3dE tope<br>23575 nu            |                     | M                         | ***********                           | •                                    | Samplin     | g Event<br>Date<br>Page | 20/4-1<br>4-7-)<br>1 01 | CMP-05<br>14<br>Z |                                    |
| Well/San<br>Purge Sta |                   | CLU-02<br>312<br>) N            | D-031               |                           | Purge                                 | mple ID NA<br>Method 3-<br>Many(L) 3 | vol         |                         |                         |                   | Time D                             |
| Water<br>Level        | Time              | Vol. Purged<br>gallons / liters | рН                  | Conductivity<br>gnS/cm    | Turbidity<br>NTU                      | Diss. Oxygen<br>mg/L                 | Temp.<br>oC | Salinity<br>%           | TDS<br>g/L              | Eh/ORP<br>mv      | Comments<br>(See description below |
| 91.90                 | 1418              | ~170                            | 7,74                | 6820                      |                                       | 7,33                                 | 30.45       |                         |                         | 22                |                                    |
|                       |                   |                                 |                     |                           |                                       |                                      |             |                         | •                       |                   |                                    |
|                       |                   |                                 |                     |                           |                                       |                                      |             |                         |                         |                   |                                    |
|                       |                   |                                 |                     |                           |                                       |                                      |             |                         |                         |                   |                                    |
|                       |                   |                                 |                     |                           | .,                                    |                                      |             |                         |                         |                   |                                    |
| Parameter S           | tabilization C    | riteria                         | +/- 0.1<br>pH units | +/- 3%                    | +/- 10% NTU<br>unils<br>when >10 NTUs | +/- 0.3<br>mg/L                      | NA NA       | NA                      | NA                      | +/- 10 mV         |                                    |
|                       | Stabilze prior to | <del></del>                     |                     | 1                         |                                       |                                      | NA NA       | -                       |                         | -^  <del></del>   |                                    |
| Provious Field        |                   | ()                              |                     | Hall                      |                                       |                                      |             |                         |                         |                   |                                    |
| Are measureme         | onis consistent w | ith previous?                   |                     |                           |                                       | <u> </u>                             | NA NA       |                         |                         |                   |                                    |
|                       | <u> </u>          | Sample Location                 | on: p               | ump lubing                | well port                             | splg                                 | ol          | baller                  | olhe                    |                   |                                    |
|                       | o Waler (It BTC   | ,                               | Pgļ                 |                           | Meast                                 | ure Point: We                        | all TOC S   | ileel Casing            | FAW                     | TER LEVEL ME      | TER SERIAL NUMBER: #31             |
|                       |                   | of Well Depth (ft               | btoc):              | ·····                     |                                       |                                      |             | ·                       | ****                    | If -              | Transducer /                       |
| •                     | oth - from data   |                                 |                     |                           |                                       | N / Before Rem                       | L           | Approx. 5 n             |                         |                   | Time of Removal                    |
|                       |                   | ht).≡.WD-Initlal.De             |                     | · Amelia i Alberta (1911) | Ime                                   | Inillal_D                            | IW.         | Time                    |                         | Inal DTW          | Time of Reinstellation             |
|                       |                   | 2"= 0.17, 4"= 0.60              | 1                   |                           |                                       | Pal                                  |             |                         |                         |                   | <u> </u>                           |
|                       |                   | VH                              |                     |                           | Comments                              | <u> </u>                             |             |                         |                         |                   |                                    |
| rmea Casmo            | Volumes ≈         | ·                               |                     |                           |                                       |                                      |             |                         |                         |                   |                                    |

| Project Name         PG&E Topock CMP         Sampling Event         2014-CMP-031           Job Number         423575.MP.02.CM         Date         CJ - 7 - J 4 |                     |                                 |                                                                                                   |                               |                              |                               |                                  |                           |                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------------|---------------------------|----------------------------------------------------|--|
| Sampler                                                                                                                                                         | () (23578<br>() (37 | Field Team                      | 1 Field                                                                                           | Conditions 🔾 .                | حدا ليمم                     | arm, wind                     |                                  | of 1                      | (su)                                               |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                           |                     | CW-02M-031                      | , ,514                                                                                            |                               | QC Sampl                     |                               | <u> </u>                         | OC S                      | ample Time MA                                      |  |
| Purge Start Time                                                                                                                                                |                     |                                 |                                                                                                   | Purge Method                  | 3-001                        | Ded. Pump                     | ded tub                          |                           | 0 // -                                             |  |
|                                                                                                                                                                 | Flow Cell: Y        | 75 N                            |                                                                                                   |                               |                              |                               | Rate (gpm)/(mLpm                 |                           | Pump Make and Model                                |  |
| Water<br>Level                                                                                                                                                  | (em.m<br>Time       | Vol. Purged<br>gallons / liters | pH**                                                                                              | Conductivity**<br>µS/cm       | Turbidity<br>NTU             | Diss. Oxygen<br>mg/L          | Temperature<br>°C                | Eh/ORP<br>mv              | Comments<br>(See description below                 |  |
| 92.07                                                                                                                                                           | 1441                | 12                              | (0.84                                                                                             | 6773                          | 1                            | 7,61                          | 35.46                            | 12                        | Hz =243                                            |  |
| 92.07                                                                                                                                                           | 1447                | 24                              | 7.18                                                                                              | 6T77                          | 1                            | 7.64                          | 30.48                            | 61                        |                                                    |  |
| 92.07                                                                                                                                                           | 1453                | 36                              | 7.44                                                                                              | 6763                          |                              | 7,57                          | 30.48                            | 70                        |                                                    |  |
| 97.00                                                                                                                                                           | 1459                | 48                              | 7.43                                                                                              | 6757                          | (                            | 7.44                          | 30.47                            | 71                        | ·<br>1                                             |  |
| 92.07                                                                                                                                                           | 1565                | 60                              | 7.45                                                                                              | 6744                          |                              | 7.60                          | 36.45                            | 69                        |                                                    |  |
|                                                                                                                                                                 |                     |                                 |                                                                                                   |                               |                              |                               |                                  |                           |                                                    |  |
|                                                                                                                                                                 |                     |                                 |                                                                                                   | <u></u> .                     | ·                            |                               | <u> </u>                         |                           |                                                    |  |
| Parameter Cor                                                                                                                                                   | mpliance Crit       | I<br>eria                       | 6.2 <ph<9.2< td=""><td>17,000</td><td></td><td><u> </u></td><td></td><td></td><td></td></ph<9.2<> | 17,000                        |                              | <u> </u>                      |                                  |                           |                                                    |  |
| **If pH or conduc                                                                                                                                               | ctivity is out of   | range check calib               | T<br>oration, take to                                                                             | i<br>IM3 and check p          | I<br>H, SC-get secor         | l<br>nd probe. If still ou    | <b>Ⅰ</b><br>t of range immediate | T<br>ely contact B. Collo | l<br>om ((541) 740-3250). If B. Collom unavailable |  |
| contact S. Duffy                                                                                                                                                | ((530) 510-23       | 40). If S. Duffy un             | available cont<br>+/- 0.1                                                                         | act J. Piper ((702)<br>+/- 3% | 953-1202 x366<br>+/- 10% NTU | 02 or (702) 525-11<br>+/- 0.3 | 1                                | 1                         | ristina Hong ((626) 703-4475 or (626) 297-5292).   |  |
| Parameter Stat                                                                                                                                                  | oilization Crite    | eria                            | pH units                                                                                          | +/- 3%                        | units<br>when >10 NTUs       | mg/L                          | +/- 2°C                          | +/- 10 mV                 |                                                    |  |
| Did last three Para                                                                                                                                             | ameters Stablize    | prior to sampling?              | Y                                                                                                 | Ч                             | Ч                            | 4                             | 4                                | 9                         |                                                    |  |
| Previous Field mea                                                                                                                                              |                     | (10/8/2013)                     | 7.76                                                                                              | 7454                          | 1                            | 7.76                          | 30.02                            | 179                       |                                                    |  |
| Sample Time /                                                                                                                                                   |                     | Sample Location                 | Mous                                                                                              |                               | <u> </u>                     | <u> </u>                      | 1 9                              | L7                        |                                                    |  |
| Comments:                                                                                                                                                       | <u> </u>            | Sample Location                 | <sup>1.</sup> pun                                                                                 | np tubing 🖊                   | well port                    | spigot                        | bailer                           | other                     | <u> </u>                                           |  |
|                                                                                                                                                                 |                     |                                 |                                                                                                   |                               |                              | <u></u>                       |                                  |                           |                                                    |  |
| Initial Depth to V                                                                                                                                              | Vater (ft BTOC      | ):                              | 91.98                                                                                             | <u> </u>                      |                              | $\sim$                        |                                  |                           | AKE and SERIAL NUMBER: In Stu 9500500              |  |
| Field measured of                                                                                                                                               | confirmation of     | f Well Depth (ft bt             | toc):                                                                                             |                               | Measure F                    | Point: Well TOC               | Steel Casing                     | WATER LEVEL               | METER SERIAL NUMBER: FGE-2005-03                   |  |
| WD (Well Depth                                                                                                                                                  |                     |                                 | 1/6                                                                                               | 102                           | Initial DTW / E              | Before Removal                | Annroy 5 min                     | After Reinstallation      | If Transducer                                      |  |
| , ,                                                                                                                                                             | υ,                  | ≃ WD-Initial Dept               |                                                                                                   | ? in)                         | Time                         | Initial DTW                   | Time                             | Final DTW                 | Title of Nemoval                                   |  |
| D (Volume as pe<br>One Casing Volume                                                                                                                            | •                   | = 0.17, 4"= 0.66,<br>           | 1"=0.041 _ <u>\</u><br>70                                                                         |                               | 1425                         | 91.98                         | vA.                              |                           | Time of Reinstallation                             |  |
| Three Casing Voic                                                                                                                                               |                     | \$1                             | 6.11                                                                                              |                               | Comments:                    |                               |                                  |                           |                                                    |  |
|                                                                                                                                                                 |                     | wп, black, cloudy,              | , green                                                                                           | 1                             | Odor: nane sulp              | phur, organic, othe           | r <b>S</b> e                     | olids: Trace, Smal        | II Qu, Med Qu, Large Qu, Particulate, Silt, Sand   |  |

Page 5 t



|                                                                                               |                     |                                             |                                                                                           |                         |                                                                                                        |                            |                           | 1 of                       | OOCK Sampling Log                               |
|-----------------------------------------------------------------------------------------------|---------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------|-------------------------------------------------|
| Project Na                                                                                    |                     | Topock CMP                                  |                                                                                           |                         |                                                                                                        | Sam                        | pling Event               | 2014-CMP-031               | 201                                             |
| Job Nu                                                                                        | mber 423578         | 5.MP.02.CM                                  |                                                                                           |                         |                                                                                                        |                            | Date 4/-                  | 8-14                       | Bee V                                           |
| Sampler                                                                                       | <u>Ch</u>           | Field Team                                  | 1 Field                                                                                   | Conditions Suv          | rny,                                                                                                   |                            | Page                      | of                         |                                                 |
| Well/Sam                                                                                      | ple Number          | CW-03M-031                                  |                                                                                           |                         | QC Sampl                                                                                               | •                          | 31                        | QC Sa                      | imple Time 0650                                 |
| Purge Start Tim                                                                               | ne 0814             |                                             |                                                                                           | Purge Method            | : 3-001                                                                                                | Ded. Pump                  | do                        |                            | 0.46                                            |
|                                                                                               | Flow Cell(Ŷ         | ) N                                         |                                                                                           | Min. Purge Vo           | lume (gal) (L)                                                                                         | 기니 Purge                   | Rate (gpm) (mLpm          | 2 1                        | Pump Make and Model (3 * 5                      |
| Water<br>Level                                                                                | 7 mme               | Vol. <del>Purg</del> ed<br>gallons / liters | pH**                                                                                      | Conductivity**<br>µS/cm | Turbidity<br>NTU                                                                                       | Diss. Oxygen<br>mg/L       | Temperature<br>°C         | Eh/ORP<br>mv               | Comments<br>(See description below              |
| 76.95                                                                                         | 0824                | 14                                          | 7.57                                                                                      | 9523                    |                                                                                                        | 3./8                       | 36.38                     | 9                          | Hz:269                                          |
| 76.45                                                                                         | 0831                | 28                                          | 7,53                                                                                      | 9462                    | ]                                                                                                      | 3.40                       | 30.38                     | 17                         |                                                 |
| 76.95                                                                                         | 0838                | 42                                          | 7.50                                                                                      | 9350                    | 1                                                                                                      | 3.37                       | 30.38                     | 32                         |                                                 |
| 77.02                                                                                         | l                   | 56                                          | 7.50                                                                                      | 9300                    |                                                                                                        | 3.46                       | 30.36                     | 39                         | ··· ·· · · · · · · · · · · · · · · · ·          |
| 77.02                                                                                         |                     | 70                                          | 7,50                                                                                      | _                       |                                                                                                        | 3.47                       | 30.37                     | 1 - 1                      |                                                 |
| (1.00                                                                                         | 0652                |                                             | 1,,00                                                                                     | 9282                    | . (                                                                                                    | 7.4 /                      | 50.71                     | 4(                         |                                                 |
|                                                                                               | <u>-</u>            |                                             |                                                                                           |                         |                                                                                                        |                            |                           |                            |                                                 |
|                                                                                               |                     |                                             |                                                                                           |                         |                                                                                                        |                            |                           |                            |                                                 |
|                                                                                               |                     | i                                           |                                                                                           |                         |                                                                                                        |                            | L                         |                            |                                                 |
| Parameter C                                                                                   | ompliance Crite     | eria                                        | 6.2 <ph<9,2< td=""><td>17,000</td><td></td><td></td><td></td><td></td><td></td></ph<9,2<> | 17,000                  |                                                                                                        |                            |                           |                            |                                                 |
| **If pH or condu                                                                              | uctivity is out of  | range check calib                           | ration, take to                                                                           | IM3 and check p         | ı<br>H, SC-get secon                                                                                   | ı<br>d probe. If still out | ।<br>: of range immediate | ı<br>ely contact B. Collor | n ((541) 740-3250). If B. Collom unavailable    |
| contact S. Duff                                                                               | y ((530) 510-234    | 40). If S. Duffy un                         | available conta                                                                           | act J. Piper ((702)     | 953-1202 x3660                                                                                         | 02 or (702) 525-11:        | 37). If J. Piper unav     | ailable contact Chri       | istina Hong ((626) 703-4475 or (626) 297-5292). |
| Parameter Sta                                                                                 | abilization Crite   | eria                                        | +/- 0.1<br>pH units                                                                       | +/- 3%                  | +/- 10% NTU<br>units<br>when >10 NTUs                                                                  | +/- 0.3<br>mg/L            | +/- 2°C                   | +/- 10 mV                  |                                                 |
| Did last three Pa                                                                             | rameters Stablize   | prior to sampling?                          | Ч                                                                                         | Ч                       | γ                                                                                                      | Y                          | V                         | 4                          |                                                 |
| Previous Field m                                                                              | neasurement         | (10/8/2013)                                 | 7.53                                                                                      | 8667                    | 0.5                                                                                                    | 4.03                       | 30.11                     | 167                        |                                                 |
|                                                                                               | nts consistent with | <u>/</u>                                    | Ч                                                                                         | У                       | \( \frac{1}{2} \)                                                                                      | ¥ ·                        | У                         | historical                 |                                                 |
|                                                                                               | US55V               | Sample Location                             | ): pun                                                                                    | np tubing               | well port                                                                                              | spigot                     | bailer                    | ather                      |                                                 |
| Comments:                                                                                     |                     | <u></u>                                     | ***                                                                                       |                         |                                                                                                        |                            |                           | <del></del>                |                                                 |
| Initial Denth to                                                                              | Water (ft BTOC      | · 7(0.                                      | 89                                                                                        |                         |                                                                                                        |                            |                           | WQ METER MA                | KE and SERIAL NUMBER: In-Sity 9500              |
|                                                                                               |                     | Well Depth (ft bt                           |                                                                                           |                         | Measure P                                                                                              | oint: (Well TOC)           | Steel Casing              | •                          | METER SERIAL NUMBER: PGE-20050                  |
|                                                                                               |                     |                                             |                                                                                           |                         | · · · · · · · · · · · · · · · · · · ·                                                                  |                            |                           |                            | If Transducer                                   |
| WD (Well Depth - from database) ft btoc (222)  SWH (Standing Water Height) = WD-Initial Depth |                     |                                             |                                                                                           |                         | Initial DTW / B                                                                                        | lefore Removal             | Approx. 5 min             | After Reinstallation       |                                                 |
| D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)                                |                     |                                             |                                                                                           |                         | Time                                                                                                   | Initial DTW                | Time                      | Final DTW                  | Time of Reinstallation                          |
| One Casing Vo                                                                                 |                     | 24.6                                        | 7                                                                                         |                         | 0650 7689 NA                                                                                           |                            |                           |                            |                                                 |
| Three Casing V                                                                                | /olumes =           | 74.0                                        |                                                                                           |                         | Comments:                                                                                              |                            |                           |                            |                                                 |
| Color: clear g                                                                                | rey, yellow, brov   | vn, black, cloudy,                          | green                                                                                     | (                       | Odor; hone, sulphur, organic, other Solids: (race) Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand |                            |                           |                            |                                                 |

| Project Na<br>Job Nu      |                     | Topock CMP<br>5.MP.02.CM  |                                                                                           |                                       | ·                                     | San                   | npling Event<br>Date | 2014-CMP-031                      | AGE V                                                                                             |
|---------------------------|---------------------|---------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------|----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|
| Sampler                   | ( <u>)</u>          | Field Team                | 1 Field                                                                                   | Conditions Su                         | nuy, Calu                             | n, warn               | Page                 | of                                |                                                                                                   |
| Wefl/Sam                  | ple Number          | CW-04D-031                |                                                                                           |                                       | QC Sampl                              | le ID NA              |                      | QC Sa                             | ample Time UA                                                                                     |
| Purge Start Tim           | 0955                |                           |                                                                                           | Purge Method                          | 1: 3-20                               | Ded. Pump             | NB                   |                                   | OKI                                                                                               |
|                           | Flow Cell: Y        | )/ N                      |                                                                                           | Min. Purge Vo                         | olume (ga)/(L)                        | <u>  24</u> Purge     | Rate (gpm)/(mLpm     | ) 3                               | Pump Make and Model 5 9 9                                                                         |
| Water<br>Level            | Surv<br>Time        | Vol-Purged gallons liters | рН**                                                                                      | Conductivity**<br>µS/cm               | Turbidity<br>NTU                      | Diss. Oxygen<br>mg/L  | Temperature<br>°C    | Eh/ORP<br>m <b>v</b>              | Comments<br>(See description below                                                                |
| 61.68                     | 1003                | 24                        | 7.65                                                                                      | 7602                                  | 1                                     | 8.01                  | 30.15                | 39                                | Hz281                                                                                             |
| 61.69                     | 101)                | 48                        | 7.69                                                                                      | 7612                                  | Į                                     | 8,29                  | 30.59                | .46                               |                                                                                                   |
| 61.50                     | 1019                | 72                        | 7.70                                                                                      | 7610                                  | 1 1                                   | 8,30                  | 30.65                | 46                                |                                                                                                   |
| 61.48                     | 1027                | 96                        | 7.70                                                                                      | 7617                                  | l i                                   | 8.26                  | 30.68                | 45                                |                                                                                                   |
| 61.48                     | _                   | 120                       | 7.70                                                                                      |                                       |                                       | 8.26                  | 36.66                | 50                                |                                                                                                   |
|                           |                     |                           |                                                                                           |                                       |                                       |                       |                      |                                   |                                                                                                   |
|                           |                     |                           |                                                                                           |                                       |                                       |                       |                      |                                   |                                                                                                   |
|                           |                     |                           |                                                                                           |                                       |                                       |                       |                      |                                   |                                                                                                   |
| Parameter C               | ompliance Crit      | eria                      | 6.2 <ph<9.2< td=""><td>17,000</td><td></td><td></td><td></td><td></td><td></td></ph<9.2<> | 17,000                                |                                       |                       |                      |                                   |                                                                                                   |
|                           |                     |                           |                                                                                           |                                       |                                       |                       |                      |                                   | nm ((541) 740-3250). If B. Collom unavailable<br>ristina Hong ((626) 703-4475 or (626) 297-5292). |
|                           | abilization Crite   |                           | +/- 0,1<br>pH units                                                                       | +/- 3%                                | +/- 10% NTU<br>units<br>when >10 NTUs | +/- 0.3<br>mg/L       | +/- 2°C              | +/- 10 mV                         | istina frong ((020) 103-4473 01 (020) 231-3232).                                                  |
| Did last three Pa         | arameters Stablize  | prior to sampling?        | - U                                                                                       | V                                     | Y                                     | Y                     | V                    | V                                 |                                                                                                   |
| Previous Field m          | neasurement         | (10/8/2013)               | 7.82                                                                                      | 7532                                  | 1                                     | 8.36                  | 31.04                | 133                               |                                                                                                   |
| Are measureme             | nts consistent with | previous?                 | V                                                                                         | V                                     | <u> </u>                              | <u> </u>              | <u> </u>             | Y                                 |                                                                                                   |
| Sample Time Comments:     | 1057                | Sample Location           | n: (                                                                                      | mp tubing                             | well port                             | spigot                | bailer               | (<br>other                        |                                                                                                   |
| Initial Depth to          | Water (ft BTOC      | 59                        | .94                                                                                       |                                       |                                       | A MAINTA              | Otaal Oastan         |                                   | AKE and SERIAL NUMBER: IN S. L. 9300                                                              |
|                           |                     | f Well Depth (ft bi       | toc ):                                                                                    |                                       | Measure F                             | Point: (Well TO)      | Steel Casing         | WATER LEVEL                       | METER SERIAL NUMBER: DGF-265-63                                                                   |
|                           | th - from databas   |                           |                                                                                           |                                       | Initial DTW / 8                       | Before Removal        | Annroy E min         | Affor Poinstellation              | If Transducer                                                                                     |
|                           |                     | = WD-Initial Dept         | - 10                                                                                      | 2 in)                                 | Time                                  | Initial DTW           | Time                 | After Reinstallation<br>Final DTW |                                                                                                   |
|                           | •                   | = 0.17, <b>4"=</b> 0.66,  | 1"=0.041 (<br>41.37                                                                       |                                       | 0940                                  | 54.94                 | 1/1                  |                                   | Time of Reinstallation                                                                            |
| _                         | olume = D*SWH       | ' j                       | 72 90                                                                                     | · · · · · · · · · · · · · · · · · · · | Comments:                             |                       |                      |                                   |                                                                                                   |
| Three Casing \            |                     | wn, black, cloudy,        | green                                                                                     |                                       | Odor doo sul                          | phur, organic, othe   | e                    | olids: Trace, Smal                | II Qu, Med Qu, Large Qu, Particulate, Silt, Sand                                                  |
| Vizinfandel\Proj\Pacific( |                     |                           |                                                                                           |                                       | 1 / 1                                 | oriar, organic, otric | 3                    | onus. (lace, Sala                 | Page 7 of 11                                                                                      |

| Project Na<br>Job Nui                   |                                                                               | Topock CMP                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                              | 2014-CMP-031                          |                                                          |                                                      |                                                               |                                       |                       |
|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|-----------------------|
|                                         | 72001                                                                         | 5.MP.02.CM                                  | 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>.</b>                | and ha                                                                       |                                       | Date //- Page                                            | 8-14<br>1 of 1                                       |                                                               | Bec                                   | V                     |
| Sampler                                 | <u>Ch</u>                                                                     | Field Team                                  | ' Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conditions Su           |                                                                              | cery, wa                              | /M rage                                                  | <del>`</del>                                         | Sample Time W                                                 |                                       |                       |
| 1                                       | ple Number                                                                    | CW-04M-031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | QC Sampl                                                                     |                                       |                                                          | qc:                                                  | Sample Time                                                   |                                       |                       |
| Purge Start Time                        | • •                                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purge Method            |                                                                              | Ded. Pump                             |                                                          | 0                                                    |                                                               | 140                                   |                       |
|                                         | Flow Cell: 🕎                                                                  | <i>)</i> N                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min, Purge Vo           | olume (gal) (L)                                                              | S6 Purge                              | Rate (Jpm) (mLpm)                                        | )                                                    | Pump Make and Model                                           | 6*2                                   |                       |
| Water<br>Level                          | Emin<br>Time                                                                  | Vol. Purged                                 | pH**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conductivity**<br>µS/cm | Turbidity<br>NTU                                                             | Diss. Oxygen<br>mg/L                  | Temperature<br>°C                                        | Eh/ORP<br>mv                                         | •                                                             | omments<br>scription below            |                       |
| 61.30                                   | 1116                                                                          | 12                                          | 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7288                    | 1                                                                            | 7.21                                  | 24.94                                                    | 46                                                   |                                                               |                                       |                       |
| 61.30                                   | 1122                                                                          | 24                                          | 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7281                    | i                                                                            | 7.21                                  | 29.96                                                    | 51                                                   |                                                               |                                       |                       |
| 61.30                                   | 1128                                                                          | 36                                          | 7.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7280                    | ţ                                                                            | 7.71                                  | 29.97                                                    | 55                                                   |                                                               |                                       |                       |
| 61.30                                   | 1134                                                                          | 48                                          | 7.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7277                    | 1 1                                                                          | 7.15                                  | 79.98                                                    | 57                                                   |                                                               |                                       |                       |
| 61.30                                   | l . * '                                                                       | 1                                           | 7.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŀ                       | 1                                                                            | 7.17                                  | 79.99                                                    |                                                      |                                                               |                                       |                       |
|                                         | 1140                                                                          | 60                                          | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7272                    | 1. 1                                                                         | ' · <u> </u>                          | 121.77                                                   | 58_                                                  |                                                               |                                       |                       |
| **If pH or condi<br>contact S. Duff     | ompliance Crit<br>uctivity is out of<br>y ((530) 510-23-<br>abilization Crite | range check calik<br>40). If S. Duffy un    | 6.2 <ph<9.2 +="" -="" 0.1="" available="" cont="" ph="" pration,="" take="" td="" to="" units<=""><td>I<br/>IM3 and check p</td><td>H, SC-get secon<br/>) 953-1202 x366i<br/>+/- 10% NTU<br/>units<br/>when &gt;10 NTUs</td><td>02 or (702) 525-11<br/>+/- 0.3<br/>mg/L</td><td>t of range immediate<br/>37). If J. Piper unav<br/>+/- 2°C</td><td>ely contact B. Col<br/>ailable contact C<br/>+/- 10 mV</td><td>lom ((541) 740-3250). If B. C<br/>hristina Hong ((626) 703-447</td><td>Collom unavailab<br/>'5 or (626) 297-5</td><td><b>le</b><br/>292).</td></ph<9.2> | I<br>IM3 and check p    | H, SC-get secon<br>) 953-1202 x366i<br>+/- 10% NTU<br>units<br>when >10 NTUs | 02 or (702) 525-11<br>+/- 0.3<br>mg/L | t of range immediate<br>37). If J. Piper unav<br>+/- 2°C | ely contact B. Col<br>ailable contact C<br>+/- 10 mV | lom ((541) 740-3250). If B. C<br>hristina Hong ((626) 703-447 | Collom unavailab<br>'5 or (626) 297-5 | <b>le</b><br>292).    |
| Did last three Pa                       | rameters Stablize                                                             | prior to sampling?                          | Ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                       | ¥                                                                            | 4                                     | 4                                                        | 4                                                    |                                                               |                                       |                       |
| Previous Field m                        |                                                                               | (10/9/2013)                                 | 7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7171                    | 1                                                                            | 6.32                                  | 29.68                                                    | 190                                                  |                                                               |                                       |                       |
|                                         | nts consistent with                                                           | previous?                                   | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ų                       | <u>Ly</u>                                                                    | <u> </u>                              | <u> </u>                                                 | 4                                                    |                                                               |                                       |                       |
| Sample Time Comments:                   | 11422                                                                         | Sample Location                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mp tubing               | well port                                                                    | spigot                                | bailer                                                   | other                                                |                                                               |                                       |                       |
| Initial Depth to                        | •                                                                             | f Well Depth (ft bt                         | 61.05<br>loc):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | Measure F                                                                    | Point: Well TOC                       | Steel Casing                                             |                                                      | MAKE and SERIAL NUMBER<br>L METER SERIAL NUMBE                | 3-64                                  | 4506<br>018<br>2005 0 |
| WD (Well Dept                           | h - from databa                                                               | se) ft btoc (16                             | 69.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                                                              |                                       |                                                          |                                                      | If Transducer                                                 |                                       |                       |
| SWH (Standing                           | g Water Height)                                                               | = WD-Initial Dept                           | th <i>  08.</i> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75                      |                                                                              | Before Removal                        | ···                                                      | After Reinstallation                                 | IIIIC OI NOITIOTAI                                            |                                       |                       |
| D (Volume as p                          | per diameter) 2"                                                              | = 0.17, 4"= 0.66,                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 in)                   | Time                                                                         | Initial DTW                           | Time<br>VA                                               | Final DTV                                            | /<br>Time of Reinstallation                                   | 1                                     |                       |
| One Casing Vo                           | olume ≃ D*SWH                                                                 | ı 19                                        | .γ8<br>.γ8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | //@                                                                          | 61.05                                 | / / / / /                                                | <u> </u>                                             |                                                               |                                       |                       |
| Three Casing \                          |                                                                               |                                             | 55,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Comments:                                                                    |                                       |                                                          |                                                      | -                                                             |                                       |                       |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                                               | wn, black, cloudy,<br>kProgram/Database/Fid | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14_PaperWorkMIST mo     |                                                                              | phur, organic, othe                   | r <b>S</b> o                                             | olids: Tace, Sm                                      | all Qu, Med Qu, Large Qu, F                                   | articulate, Silt, S                   | and<br>Page 8 of 11   |

| Project Na<br>Job Nu      | mber 423575.                         | opock CMP<br>MP.02.CM |                                                                                                  |                         |                                 |                            | Date 4-                  | 2014-CMP-031<br>8-14             | BEC                                                       |
|---------------------------|--------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----------------------------|--------------------------|----------------------------------|-----------------------------------------------------------|
| Sampler                   |                                      | Field Team            |                                                                                                  | Conditions Su           |                                 |                            | Page                     | of                               |                                                           |
| Well/Sam                  | ple Number 6                         | W 048 021             | OW-15                                                                                            | -03i_                   | QC Sample                       | e ID <u>OW-91-(</u>        | 31 ~~                    | qc s                             | Sample Time 🕡 🛱                                           |
| Purge Start Tim           | e 1451                               |                       |                                                                                                  | Purge Method            |                                 | Ded. Pump                  |                          |                                  |                                                           |
|                           | Flow Cell:                           | 7 N                   |                                                                                                  | Min, Purge Vo           | olume (gal)/(L) _               | /C Purge                   | Rate (gpm)/(mLpm)        |                                  | Pump Make and Model                                       |
| Water<br>Level            | Zurn<br>Time                         | Vol. Purged           | рН**                                                                                             | Conductivity**<br>µS/cm | Turbidity<br>NTU                | Diss. Oxygen<br>mg/L       | Temperature<br>°C        | Eh/ORP<br>mv                     | Comments<br>(See description below                        |
| 42.85                     | 4/1453                               | 2                     | 6.74                                                                                             | 6817                    | 16                              | 7.40                       | 29.64                    | 39                               |                                                           |
| 92.85                     | sy 1455                              | 4                     | 7.25                                                                                             | 6701                    | 16                              | 7.29                       | 29.64                    | 41                               |                                                           |
| 97.85                     | l 12 l                               | 6                     | 7.23                                                                                             | 6683                    | 5                               | 7.39                       | 29.65                    | 38                               |                                                           |
| 9285                      | 8 8 1454                             | 8                     | 7.23                                                                                             | 6655                    | 3                               | 7.28                       | 29.64                    | 40                               |                                                           |
| 92.85                     | 4/015                                | 10                    | 7.21                                                                                             | 6647                    | 2                               | 7.39                       | 29.56                    | 47                               |                                                           |
|                           |                                      |                       |                                                                                                  |                         |                                 |                            |                          | ,                                |                                                           |
|                           |                                      |                       |                                                                                                  |                         |                                 |                            |                          |                                  |                                                           |
| Parameter C               | ompliance Crite                      | ria                   | 6.2 <ph<9.2< td=""><td>17,000</td><td></td><td></td><td></td><td><u></u></td><td></td></ph<9.2<> | 17,000                  |                                 |                            |                          | <u></u>                          |                                                           |
| **If pH or cond           | uctivity is out of ra                | ange check calib      | l<br>pration, take to                                                                            | l<br>IM3 and check p    | I<br>⊪H, SC-get secon           | l<br>d probe. If still out | <br>t of range immediate | <br>ely contact B. Coll          | <br> <br>  lom ((541) 740-3250). If B. Collom unavailable |
| contact S. Duff           | y ((530) 510-234                     | 0). If S. Duffy un    | available cont                                                                                   | act J. Piper ((702)     | ) 953-1202 x3660<br>+/- 10% NTU | 02 or (702) 525-11         | 37). If J. Piper unav    | ailable contact Ch               | nristina Hong ((626) 703-4475 or (626) 297-5292).         |
| Parameter St              | abilization Crite                    | ria                   | +/- 0.1<br>pH units                                                                              | +/- 3%                  | units<br>when >10 NTUs          | +/- 0.3<br>mg/L            | +/- 2°C                  | +/- 10 mV                        |                                                           |
| Did last three Pa         | arameters Stablize p                 | prior to sampling?    | 4                                                                                                | . 4                     | 4                               | 4                          | Y                        | 4                                |                                                           |
| Previous Field m          | <del>\</del>                         | 10/10/2013)           | 7.88                                                                                             | 1965                    | 3                               | 8.23                       | 28.61                    | 118                              | -NA, these are for 6W-62S                                 |
| Ļ                         | nts consistent with                  |                       | NH -                                                                                             |                         |                                 |                            |                          |                                  |                                                           |
| Sample Time               | 1505 ·                               | Sample Location       | Դ: pur                                                                                           | np tubing               | well port                       | spigot                     | bailer                   | other                            |                                                           |
| Comments:                 |                                      |                       |                                                                                                  |                         |                                 |                            |                          |                                  |                                                           |
| Initial Depth to          | Water (ft BTOC):                     | 93.7                  | 13                                                                                               |                         |                                 |                            |                          |                                  | MAKE and SERIAL NUMBER: In-S. 44 1506                     |
| Field measured            | d confirmation of                    | Well Depth (ft bi     |                                                                                                  |                         | Measure P                       | oint: Well TOO             | Steel Casing             | WATER LEVE                       | L METER SERIAL NUMBER: PC. E-2005-03                      |
|                           | th - from database                   |                       | 47/1 <b>3</b> .3                                                                                 |                         | Initial DTW / P                 | efore Removal              | A 5                      | A4 D-:                           | If Transducer                                             |
| · ·                       | g Water Height) =                    |                       |                                                                                                  | .57                     | Time                            | Initial DTW                | Time                     | After Reinstallatio<br>Final DTW | IIIIC OF NOTICOVAL                                        |
|                           | per diameter) 2"=                    | e                     | 1"=0.041<br>19-57                                                                                | 2 in)<br>2 2 2 2        | 1444                            | 93.73                      | 1512                     | 93.72                            | Time of Reinstallation _/508                              |
| _                         | olume = D*SWH                        |                       | 1.98                                                                                             | ر بر                    | Comments:                       |                            |                          | 1.0.1.                           | - · · · · · · · · · · · · · · · · · · ·                   |
| Three Casing Color: clear | Volumes =<br>)<br> rey, yellow, brow |                       |                                                                                                  | '                       | Odor: Mane, sulp                | ohur, organic, othe        | г \$6                    | olids: Trace, Sma                | all Qu, Med Qu, Large Qu, Particulate, Silt, Sand         |

| Project Na<br>Job Nu               |                                         | Topock CMP                                 |                                                                                                    |                                          |                                                  | San                                         | npling Event<br>Date 4                         | 2014-CMP-031<br>-8-13                        |                                                              | 1016                  |
|------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|-----------------------|
|                                    | (C)                                     | 5.MP.02.ÇM                                 | 1 =                                                                                                |                                          |                                                  | _                                           | Page /                                         | of I                                         | l                                                            | / BIC                 |
| Sampler                            | <del></del>                             | Field Team                                 | ' Field                                                                                            | Conditions 5                             | <u>へいらょりんりん</u><br>QC Sampl                      | ()                                          |                                                | <del></del> '                                | 16112                                                        | <u> </u>              |
|                                    | ple Number                              | OW-075-031                                 |                                                                                                    |                                          |                                                  | <del></del>                                 | W-91-031                                       | QC Sa                                        | ample Time <i>1</i> 0リス                                      |                       |
| Purge Start Tim                    | • •                                     |                                            |                                                                                                    | Purge Method                             | <del></del>                                      | Ded. Pump                                   |                                                |                                              |                                                              | 344                   |
|                                    | Flow Cell:                              | <u> </u>                                   |                                                                                                    | Min. Purge Vo                            | olume (ga)/(L)                                   | Purge                                       | Rate (gpm)/(mLpm                               | ) [                                          | Pump Make and Model (                                        | <u> </u>              |
| Water<br>Level                     | Time                                    | Vol. Purged                                | <br>  pH**                                                                                         | Conductivity**<br>µS/cm                  | Turbidity<br>NTU                                 | Diss. Oxygen<br>mg/L                        | Temperature<br>°C                              | Eh/ORP<br>mv                                 |                                                              | ments<br>iption below |
| 91.70                              | 1408                                    | 3                                          | 7.70                                                                                               | 2329                                     | 37                                               | 8.15                                        | 29.47                                          | 16                                           | HZ=259                                                       |                       |
| 91.72                              | 1412                                    | 6                                          | 7.72                                                                                               | 7319                                     | 8                                                | 8.09                                        | 29.59                                          | 19                                           |                                                              |                       |
| 91.72                              | 1415                                    | 9                                          | 7.73                                                                                               | 2303                                     | 3333                                             | 8.12                                        | 29.67                                          | 23                                           |                                                              |                       |
| 1 91.72                            | 1418                                    | 12                                         | 17.73                                                                                              | 2292                                     | 3                                                | 8.16                                        | 29.70                                          | 25                                           |                                                              |                       |
| 94.72                              | 1421                                    | 15                                         | 7.73                                                                                               | 2288                                     | 2                                                | 8.11                                        | 29.70                                          | 26                                           |                                                              |                       |
|                                    |                                         |                                            | <i>1</i>                                                                                           |                                          |                                                  |                                             |                                                | 1                                            |                                                              | <del></del>           |
|                                    |                                         |                                            |                                                                                                    |                                          |                                                  |                                             | <u> </u>                                       |                                              |                                                              | =                     |
|                                    |                                         |                                            |                                                                                                    |                                          |                                                  |                                             |                                                | - <b></b>                                    |                                                              |                       |
| D                                  | Out                                     | <u> </u>                                   | 6,2 <ph<9.2< td=""><td>17,000</td><td></td><td></td><td></td><td></td><td></td><td></td></ph<9.2<> | 17,000                                   |                                                  |                                             |                                                |                                              |                                                              |                       |
|                                    | ompliance Crit                          |                                            |                                                                                                    | 1                                        |                                                  |                                             |                                                |                                              | <b> </b>                                                     |                       |
| **If pH or cond<br>contact S. Duff | juctivity is out of<br>fy ((530) 510-23 | f range check call<br>840). If S. Duffy un | bration, take to<br>available cont                                                                 | o IM3 and check p<br>tact J. Piper ((702 | )H, SC-get secon<br>) 953-1202 x366              | nd probe. It still of<br>02 or (702) 525-11 | it of range immedial<br>137). If J. Piper unav | ely contact B. Collo<br>vailable contact Chr | m ((541) 740-3250). If B. Col<br>istina Hong ((626) 703-4475 | or (626) 297-5292).   |
| Parameter St                       | abilization Crit                        | eria                                       | +/- 0.1<br>pH units                                                                                | +/- 3%                                   | +/- 10% NTU<br>units<br>when >10 NTUs            | +/- 0.3<br>mg/L                             | +/- 2°C                                        | +/- 10 mV                                    |                                                              |                       |
| Did last three Pa                  | arameters Stabliz                       | e prior to sampling?                       | 4                                                                                                  | ¥                                        | 4                                                | 4                                           |                                                |                                              |                                                              |                       |
| Previous Field n                   |                                         | (10/9/2013)                                | 7.32                                                                                               | 6129                                     |                                                  | 7.05                                        | 28.72                                          | 183                                          | These are the for                                            | cow-ols               |
| i                                  | nts consistent wit                      | · /                                        | MA                                                                                                 |                                          | <del>                                     </del> |                                             | <del> </del>                                   |                                              |                                                              |                       |
| Sample Time Comments:              | 1432 V                                  | Sample Location                            | n: pur                                                                                             | mp tubing                                | well port                                        | spigot                                      | bailer                                         | other                                        |                                                              |                       |
|                                    |                                         | 60.0                                       | · · ·                                                                                              | <del></del>                              |                                                  |                                             |                                                | · ·                                          |                                                              | In-5'tu 9500          |
| Initial Depth to                   | Water (ft BTO)                          | o): 92.3                                   | 2                                                                                                  |                                          |                                                  |                                             | ,                                              |                                              | AKE and SERIAL NUMBER:                                       | 50618                 |
| Field measure                      | d confirmation o                        | of Well Depth (ft b                        | toc ):                                                                                             |                                          | Measure P                                        | oint: Well TOO                              | Steel Casing                                   | WATER LEVEL                                  | METER SERIAL NUMBER:                                         | PGE-7005-0            |
| WD (Well Dep                       | th - from databa                        | ise) ft btoc                               |                                                                                                    | <del></del>                              | Initial DTM ( F                                  | ofero Domousi                               |                                                |                                              | If Transducer                                                |                       |
| SWH (Standing                      | g Water Height)                         | = WD-Initial Dep                           |                                                                                                    | 28.65                                    |                                                  | Before Removal                              |                                                | After Reinstallation                         | Time of Removal                                              | 1352                  |
| D (Volume as                       | per diameter) 2'                        | "= 0.17, 4"= 0.66,                         | 1"=0.041                                                                                           | 2 in)                                    | /354                                             | 9235                                        | 143a                                           | Final DTW                                    | Time of Reinstallation                                       | 1434                  |
| One Casing Vo                      | olume = D*SWI                           | 1 S                                        | 754.                                                                                               | <u>81</u>                                |                                                  | 7200                                        | المريد ا                                       | 71.53                                        |                                                              |                       |
| Three Casing                       | Volumes =                               | . 40                                       | 10 14                                                                                              | .6                                       | Comments:                                        |                                             |                                                | F                                            |                                                              |                       |
| Color: (ear)                       | grey, yellow, bro                       | wn, black, cloudy                          | , green                                                                                            |                                          | Odor: none, sul                                  | phur, organic, othe                         | er <b>S</b>                                    | olids: Trace) Smal                           | l Qu, Med Qu, Large Qu, Par                                  |                       |
| -\tantandel\Proj\Pacific           | GasElectricCoVTopo:                     | :«Program\Database\Fi                      | aldiFrontEnd2Kv3                                                                                   | 44_Paper\VorkMiST.nii                    | abkrptPurgeFormCM⊇                               |                                             |                                                | $\mathbf{C}$                                 |                                                              | Page 9 of             |

| Project Na<br>Job Nur | mber 423575                              | opock CMP<br>MP.02.CM |                                                                                                       |                                               |                                       |                                                  |                                                      | 2014-CMP-031<br>[-8-14                          |                                                                    | BEL                                        |
|-----------------------|------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|--------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|
| Sampler               | <u>('h</u>                               | Field Team            | ' Field                                                                                               | Conditions Su                                 |                                       |                                                  | Page (                                               | of /                                            |                                                                    | <del></del>                                |
| Well/Samp             | pie Number 🤇                             | OW-05S-031            |                                                                                                       |                                               | QC Sampl                              |                                                  |                                                      | l qcs                                           | ample Time VM                                                      |                                            |
| Purge Start Time      | • 1 <i>39</i> 0 ⁄                        |                       |                                                                                                       | Purge Method                                  |                                       | Ded. Pump                                        |                                                      |                                                 |                                                                    | CXI                                        |
|                       | Flow Cell(Y)                             | / N                   |                                                                                                       | Min. Purge Vo                                 | olume (gal)/(L) _                     | Purge                                            | Rate (gpm)/(mLpm)                                    |                                                 | Pump Make and Model                                                | UT 2                                       |
| Water<br>Level        | Time                                     | Vol. Purged           | pH**                                                                                                  | Conductivity**  µS/cm                         | Turbidity<br>NTU                      | Diss. Oxygen<br>mg/L                             | Temperature<br>°C                                    | Eh/ORP<br>mv                                    |                                                                    | mments<br>cription below                   |
| 94.48                 | 1322                                     | 2                     | 7.77                                                                                                  | 5149                                          | 63                                    | 6.10                                             | 29.62                                                | -15                                             | HZ= 255                                                            |                                            |
| 9450                  | 1324                                     | 4                     | 7.49                                                                                                  | 5014                                          | 17                                    | 6.30                                             | 29.73                                                | ~5                                              |                                                                    |                                            |
| 94.50                 | 1326                                     | 6                     | 7.39                                                                                                  | 4898                                          | 6                                     | 6.35                                             | 29.65                                                | <u> </u>                                        |                                                                    |                                            |
| 94.50                 | 1378                                     | 8                     | 7.44                                                                                                  | 4767                                          | 14                                    | 6.51                                             | 29.63                                                | 13                                              |                                                                    |                                            |
| 94.50                 | 1330                                     | 10                    | 7.33                                                                                                  | 4654                                          | 4                                     | 6.51                                             | 79.62                                                | 16_                                             |                                                                    |                                            |
| <b>Q</b> 4.50         | 1332                                     | 12                    | 7.36                                                                                                  | 4592                                          | 3                                     | 6.68                                             | 254                                                  | 19                                              |                                                                    |                                            |
| 94.50                 | 1334                                     | 14                    | 7.31                                                                                                  | 4478                                          | 1 1                                   | 6.64                                             | 29.56                                                | 20                                              | <del>-</del>                                                       |                                            |
| 94.50                 | 1336                                     | ico_                  | 7.33                                                                                                  | 4458                                          | \                                     | 6.74                                             | 29.57                                                | 23                                              | Conductivity out &                                                 | of 4 yskin. Simple<br>Ase Stable.          |
| Parameter Co          | ompliance Crite                          | ria                   | 6.2 <ph<9.2< td=""><td>17,000</td><td></td><td></td><td></td><td></td><td>· ·</td><td></td></ph<9.2<> | 17,000                                        |                                       |                                                  |                                                      |                                                 | · ·                                                                |                                            |
| **If pH or condu      | uctivity is out of i<br>y ((530) 510-234 | ange check calib      | ration, take to<br>available cont                                                                     | ι<br>s IM3 and check ρ<br>act J. Piper ((702) | H, SC-get secor<br>9 953-1202 x366    | '<br>ad probe. If still ou<br>02 or (702) 525-11 | •<br>it of range immediate<br>I37). If J. Piper unav | i<br>ely contact B. Colli<br>ailable contact Ch | u<br>om ((541) 740-3250). If B. Co<br>ristina Hong ((626) 703-4475 | ollom unavailable<br>5 or (626) 297-5292). |
| Parameter Sta         | abilization Crite                        | ria                   | +/- 0.1<br>pH units                                                                                   | +/- 3%                                        | +/- 10% NTU<br>units<br>when >10 NTUs | +/- D.3<br>mg/L                                  | +/- 2°C                                              | +/- 10 mV                                       |                                                                    |                                            |
| Did last three Pa     | rameters Stablize                        | prior to sampling?    | Ч                                                                                                     | 9                                             | 4                                     | Y                                                | V                                                    | 4                                               |                                                                    |                                            |
| Previous Field m      | ·                                        | 10/9/2013)            | 7.57                                                                                                  | 3487                                          | 1                                     | 6.62                                             | 28.72                                                | 164                                             |                                                                    |                                            |
| Are measuremer        | nts consistent with                      | previous?             | $\psi$                                                                                                | Y                                             | <u> </u>                              | LY_                                              | 4                                                    | historical                                      |                                                                    |                                            |
| Sample Time           | _1338 /                                  | Sample Location       | n: pun                                                                                                | np tubing 🖊                                   | well port                             | spigot                                           | bailer                                               | other                                           |                                                                    |                                            |
| Comments:             |                                          |                       |                                                                                                       | <u></u>                                       |                                       |                                                  | <del></del>                                          |                                                 |                                                                    |                                            |
| Initial Depth to      |                                          | 94                    | 1.44                                                                                                  |                                               |                                       |                                                  |                                                      | WQ METER M                                      | AKE and SERIAL NUMBER                                              | - 506/ <i>K</i>                            |
| Field measured        | d confirmation of                        | Well Depth (ft bt     | oc):                                                                                                  |                                               | Measure F                             | Point: Well TOC                                  | Steel Casing                                         | WATER LEVE                                      | L METER SERIAL NUMBER                                              | 76E-7005.03                                |
| WD (Well Dept         | h - from databas                         | e) ft btoc(11         | 10.3)                                                                                                 |                                               |                                       |                                                  |                                                      |                                                 | If Transducer                                                      |                                            |
| SWH (Standing         | Water Height)                            | = WD-Initial Dept     | ~ ,                                                                                                   |                                               | ļ,                                    | Before Removal                                   | <u> </u>                                             | After Reinstallation                            |                                                                    | /3//                                       |
| D (Volume as p        | oer diameter) 2"=                        | 0.17, 4"= 0.66,       | 1"=0.041(                                                                                             | 2 in)                                         | Time                                  | Initial DTW<br>GY.YY                             | Time                                                 | Final DTW                                       | — time of Reinstallation                                           | 1342                                       |
| One Casing Vo         | lume = D*SWH                             | 7.6                   | 9                                                                                                     |                                               | Comments:                             | -14.44                                           | 19511 15                                             | 1 95.39                                         | ·                                                                  |                                            |
| Three Casing \        |                                          | 8.09                  |                                                                                                       |                                               | · /_                                  |                                                  |                                                      |                                                 |                                                                    |                                            |
| Color: (člea), g      | rey, yellow, brov                        | л, black, cloudy      | , green                                                                                               |                                               | Odor: none, sul                       | phur, organic, othe                              | er Se                                                | olids: (Trace) Sma                              | ıll Qu, Med Qu, Large Qu, Pa                                       | articulate, Silt, Sand                     |

# Personnel: B. Collom / CHA M

WLI serial number: PGE 2005- 01B

|        | Depth to Water |         |      |          |
|--------|----------------|---------|------|----------|
| Loc ID | (ft BTOC)      | Date    | Time | Comments |
| CW-1M  | 110.36         | 1-21-14 | 1136 |          |
| CW-1D  | 110.43         |         | 1138 |          |
| CW-2M  | 94.02          |         | 1141 |          |
| CW-2D  | 93.50          |         | 1144 |          |
| CW-3M  | 78.90          |         | 1146 |          |
| CW-3D  | 78.19          |         | 1148 |          |
| CW-4M  | 62,74          |         | 1153 |          |
| CW-4D  | 62.53          |         | 1154 |          |
| OW-1S  | 94.97          |         | 1158 |          |
| OW-1M  | 94.65          |         | 1200 |          |
| OW-1D  | 94,27          |         | 1202 |          |
| OW-2S  | 93.62          |         | 1204 |          |
| OW-2M  | 92,79          |         | 1306 |          |
| OW-2D  | 92.84          |         | 1208 |          |
| OW-5S  | 96,40          |         | iaio |          |
| OW-5M  | 95.27          | 1       | 1212 |          |
| OW-5D  | 95,95          |         | 1214 |          |
|        |                |         |      |          |
|        |                |         |      |          |

IM-3 Staff confirm that 1~18-14, 1-19-14, and 1-20-14 were normal operation days with no backwashing or plant down time prior to snapshot collection.

## Personnel: B. Collow / CHam

WLI serial number: PGE 2014-001

|        | Depth to Water |        |              |          |
|--------|----------------|--------|--------------|----------|
| Loc ID | (ft BTOC)      | Date   | Time         | Comments |
| CW-1M  | 108.23         | 6-5-14 | 0421         |          |
| CW-1D  | 108.34         |        | <b>ወ</b> ያል3 |          |
| CW-2M  | 91.74          |        | 0927         |          |
| CW-2D  | 91.35          |        | 0930         |          |
| CW-3M  | 76.57          |        | 0933         |          |
| CW-3D  | 75.48          |        | 0935         | `        |
| CW-4M  | 60.52          |        | 0941         |          |
| CW-4D  | 60.37          |        | 0943         |          |
| OW-1S  | 92.63          |        | 0948         |          |
| OW-1M  | 92.44          |        | 0950         |          |
| OW-1D  | 92.12          |        | 0952         |          |
| OW-2S  | 91.26          |        | 0954         |          |
| OW-2M  | 90.59          |        | 0957         |          |
| OW-2D  | 90.62          |        | 0959         |          |
| OW-5S  | 94.13          |        | 1001         |          |
| OW-5M  | 93,08          |        | 1004         |          |
| OW-5D  | 93.85          |        | 1006         |          |
|        |                |        |              |          |

IM-3 Staff confirm that 6-2-14, 6-3-14, and 6-4-14 were normal operation days with no backwashing or plant down time prior to snapshot collection.