Topock Project I	Executive Abstract
Document Title:	Date of Document: January 15, 2014
Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half 2013 (PGE20140115B)	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E
Monitoring Report, Second Hair 2013 (PGE20140113B)	PGAE
Submitting Agency: DOI	
Final Document? Xes No	
Priority Status: HIGH MED Z LOW	Action Required:
Is this time critical? Yes No	☐ Information Only ☐ Review & Comment Return to:
Type of Document: ☐ Draft ☐ Report ☐ Letter ☐ Memo	Neturn to.
	By Date:
Other / Explain:	Other / Explain:
What does this information pertain to?	Is this a Regulatory Requirement?
Resource Conservation and Recovery Act (RCRA) Facility	⊠ Yes
Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI)	□ No
(including Risk Assessment)	If no, why is the document needed?
Corrective Measures Study (CMS)/Feasibility Study (FS)	
Corrective Measures Implementation (CMI)/Remedial Action	
California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR)	
Other / Explain:	
What is the consequence of NOT doing this item? What is the	Other Justification/s:
consequence of DOING this item?	Permit Other / Explain:
Submittal of this report is a compliance requirement under	
DOI's enforcement as an ARARs beginning August 2011.	
Brief Summary of attached document:	
The purpose of the Topock Compliance Monitoring Program (CI	MP) is twofold: (1) monitor changes in groundwater hydraulics
	nd (2) ensure that the quality of the aquifer is not adversely affected
	iple observation wells (OW series) and compliance wells (CW series)
	vial Aquifer. The injection of treated groundwater in the area began
•	ality similar to the injected water include the middle- and deepompliance wells. Two of the three shallow-zone observation wells
have not yet shown characteristics approaching injected water	
, , , , , , , , , , , , , , , , , , , ,	• ,
This report presents groundwater analytical results and ground	
monitoring event conducted in October 2013. During the Secon	· · · · · · · · · · · · · · · · · · ·
April 2014.	total dissolved solids. The next CMP event is scheduled to occur in
Written by: PG&E Recommendations:	
This report is for your information only.	
How is this information related to the Final Remedy or Regulator	ory Requirements:
Submittal of this report is a compliance requirement under DOI	enforcement's as ARARs beginning August 2011.
Other requirements of this information?	
None.	

1

Yvonne J. Meeks Manager

Environmental Remediation

Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257

E-Mail: YJM1@pge.com

January 15, 2014

Pamela Innis Department of the Interior Topock Remedial Project Manager United States Department of the Interior, Office of Environmental Policy and Compliance P.O. Box 2507-D (D-108) Denver Federal Center, Building 56 Denver, CO 80225-0007

Subject: Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half

2013, Interim Measures No. 3, PG&E Topock Compressor Station, Needles, California

(PGE20140115B)

Dear Ms. Innis:

Enclosed is the Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, Second Half 2013, Interim Measures No. 3, Pacific Gas and Electric Company [PG&E] Topock Compressor Station. This monitoring report presents the results of the Second Half 2013 Compliance Monitoring Program groundwater monitoring event and has been prepared in accordance with the United States Department of the Interior's August 18, 2011 letter stating that the Interim Measures No. 3 Waste Discharge Requirements are applicable or relevant and appropriate requirements.

The current contingency plan specifies the concentrations and values for hexavalent chromium [Cr(VI)], chromium, total dissolved solids (TDS), and pH to be used to determine if contingency plan actions are necessary based on sample results. The water quality objectives concentrations that are used to trigger the contingency plan are Cr(VI) greater than 32.6 micrograms per liter (µg/L), chromium greater than 28.0 μg/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

No samples exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS during the Second Half 2013 sampling event. The next CMP event is scheduled to occur in April 2014.

Please contact me at (805) 234-2257 if you have any questions regarding the Compliance Monitoring Program.

Sincerely,

Yvonne Meeks

Topock Remediation Project Manager

fronne Mceks

Cc: Robert Perdue, Water Board Jose Cortez, Water Board Aaron Yue, DTSC

Christopher Guerre, DTSC

Enclosure

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2013

Interim Measure No. 3
PG&E Topock Compressor Station,
Needles, California
Document ID: PGE20140115B

United States Department of the Interior

Pacific Gas and Electric Company

January 15, 2014

CH2MHILL

155 Grand Avenue, Suite 800 Oakland, CA 94612

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, Second Half 2013

PG&E Topock Compressor Station, Needles, California

Prepared for

United States Department of the Interior

On behalf of

Pacific Gas and Electric Company

January 15, 2014

This report was prepared under the supervision of a California Professional Geologist

Serena Panzar

Professional Geologist, P.G. #8259

Contents

Section	l		Page
Acrony	ms and Abl	breviations	vi
1.0	Introduction	on	1-1
2.0	Second Ha	If 2013 Activities	2-1
3.0	Second Ha	ılf 2013 Results	3-1
	3.1 An	nalytical Results	3-1
	3.2	1.1 Hexavalent Chromium and Chromium	3-1
		1.2 Other Metals and General Chemistry	
	3.2 An	nalytical Data Quality Review	
		2.1 Matrix Interference	
		2.2 Matrix Spike Samples	
		2.3 Quantitation and Sensitivity	
		2.4 Holding-time Data Qualification	
		2.5 Field Duplicates	
		2.6 Method Blanks	
		2.7 Equipment Blanks	
		2.8 Laboratory Duplicates	
		2.9 Laboratory Control Sample	
	0	2.10 Calibration	
	_	2.11 Conclusion	_
		fluence of Treated Water	
		3.1 Post-injection versus Pre-injection	
		3.2 Water Quality Hydrographs	
		ater Level Measurements	
		eld Parameter Data	
		RAR Monitoring Requirements	
	3.0 Ar	AK Montoning Requirements	3-3
4.0	Status of N	Monitoring Activities	4-1
	4.1 Se	miannual Monitoring	4-1
	4.2 An	nnual Monitoring	4-1
5.0	Reference	s	5-1
6.0	Certification	on	6-1
Tables			
1	•	al Status of Interim Measures No. 3 Injection Wells from July 2005 through December 2	2013
2		truction and Sampling Summary for Groundwater Samples, Second Half 2013	
3		Results for Groundwater Samples, Second Half 2013	
4		sults for Groundwater Samples, Second Half 2013	
5		ganics Results for Groundwater Samples, Second Half 2013	
6		ater Quality Compared to OW and CW Pre-injection Water Quality	
7 8		ater Quality Compared to Second Half 2013 Sampling Event Water Quality ater Level Measurements and Elevations, Second Half 2013	
9		radients within the OW and CW Clusters, Second Half 2013	

- 10 Field Parameters and Manual Water Level Measurements for Groundwater Samples, Second Half 2013
- 11 ARAR Monitoring Information for Groundwater Samples, Second Half 2013

Figures

- 1 Site Location and Layout
- 2 Monitoring Locations for CMP
- 3A OW-1S, OW-2S, OW-5S Water Quality Hydrographs
- 3B OW-1M, OW-2M, OW-5M Water Quality Hydrographs
- 3C OW-1D, OW-2D, OW-5D Water Quality Hydrographs
- 3D CW-1M, CW-2M, CW-3M, CW-4M Water Quality Hydrographs
- 3E CW-1D, CW-2D, CW-3D, CW-4D Water Quality Hydrographs
- 4A OW-1S Groundwater Elevation Hydrograph
- 4B OW-2S Groundwater Elevation Hydrograph
- 4C OW-5 Groundwater Elevation Hydrographs
- 5A Average Groundwater Elevations for Shallow Wells, October 21, 2013
- 5B Average Groundwater Elevation Contours for Mid-Depth Wells, October 21, 2013
- 5C Average Groundwater Elevation Contours for Deep Wells, October 21, 2013

Appendices

- A Laboratory Reports, Second Half 2013
- B Field Data Sheets, Second Half 2013

Acronyms and Abbreviations

μg/L micrograms per liter

ARAR applicable or relevant and appropriate requirement

CMP Compliance Monitoring Program

Cr(VI) hexavalent chromium

CW compliance well

DOI United States Department of the Interior

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

IM Interim Measure

IM-3 Interim Measure No. 3

IW injection well

mg/L milligrams per liter

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

OW observation well

QAPP quality assurance project plan

TDS total dissolved solids

Water Board California Regional Water Quality Control Board, Colorado River Basin Region

WDR Waste Discharge Requirement

WQO water quality objective

Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM-3). Currently, the IM-3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM-3 extraction, conveyance, treatment, and injection facilities. (All figures and tables are provided at the end of this report.)

The Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, Topock Compressor Station, Needles, California (CH2M HILL, 2005a) (herein referred to as the Compliance Monitoring Plan) was submitted to the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) and the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) on June 17, 2005. The Compliance Monitoring Plan and its addendum (CH2M HILL, 2005b) provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the Compliance Monitoring Program (CMP). Several modifications of the sampling and reporting procedures have been approved since 2005, as outlined in Exhibit 1.

EXHIBIT 1
Historical Modifications to the Compliance Monitoring Program
PG&E Topock Compliance Monitoring Program

Modification	Approval Date	Reference
Modification of reporting requirements	DTSC: June 9, 2006	DTSC, 2006
Reduction of constituents analyzed during quarterly sampling of CMP observation wells	Water Board: January 23, 2007 DTSC: January 22, 2007	Water Board, 2007a DTSC, 2007 CH2M HILL, 2006
Change from laboratory pH to field collected pH for reporting	Water Board: October 16, 2007 DTSC: January 22, 2008	Water Board, 2007b DTSC, 2008a
Modification of hexavalent chromium analytical methods to extend hold time to 28 days	Water Board: November 13, 2007 DTSC: January 22, 2008	Water Board, 2007c DTSC, 2008a
Modification of sampling and reporting frequency and the field pH trigger range for the CMP contingency plan	Water Board: August 28, 2008 DTSC: December 12, 2008 (pH), September 3, 2009	Water Board, 2008 DTSC, 2008b, 2009

From July 2005 through September 2011, PG&E was operating the IM-3 groundwater treatment system as authorized by Water Board Order No. R7-2004-0103 (issued October 13, 2004), Order No. R7-2006-0060 (issued September 20, 2006), and the revised Monitoring and Reporting Program (MRP) under Order No. R7-2006-0060 (issued August 28, 2008).

PG&E is currently performing the CMP as authorized by the United States Department of the Interior (DOI) waste discharge applicable or relevant and appropriate requirements (ARARs). The Waste Discharge Requirements (WDR Order No. R7-2006-0060) expired on September 20, 2011 and was replaced by DOI enforcement of the ARARs, as documented in correspondence among the Water Board, DOI, and PG&E during the summer of 2011. Specifically, the letter agreement issued July 26, 2011 from the Water Board to DOI (Water Board, 2011) requested:

• DOI concurrence that the WDRs are ARARs under the Comprehensive Environmental Response Compensation and Liability Act of 1980 response action ongoing at the site.

- DOI confirmation that it will enforce these WDRs pursuant to the Administrative Consent Agreement entered into by DOI and PG&E in 2005 in lieu of the Water Board's adoption of a new Board Order to replace the expiring Board Order that set forth the WDRs.
- DOI concurrence with the roles and responsibilities between DOI and the Water Board for monitoring and enforcement.

In its letter dated August 18, 2011, the DOI provided concurrence and confirmation as requested (DOI, 2011). PG&E confirmed these changes with a letter to the DOI and the Water Board dated September 7, 2011 (PG&E, 2011). These changes add the DOI as the receiving regulatory agency for the CMP reports, with the Water Board continuing to receive report copies. Work described in this report was performed in accordance with the ARARs established in the July 26, 2011 letter (Water Board, 2011).

The ARARs specify effluent limitations, prohibitions, specifications, and provisions for subsurface injection. The MRP contained within the ARARs specifies the requirements for the CMP to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality.

The injection system consists of two injection wells (IWs): IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005), and injection into IW-2 began on July 31, 2005. Table 1 provides a summary of the history of injection for IM-3.

Figure 2 shows the locations of the injection wells and the groundwater monitoring wells (observation wells [OWs] and compliance wells [CWs]) in the CMP. Table 2 provides a summary of information on well construction and sampling methods for all wells in the CMP.

As of October 2013, samples are collected from OWs and CWs, shown on Figure 2, according to the following schedule:

- Three OWs (OW-1S, OW-2S, and OW-5S) near the IM-3 injection well field are sampled semiannually (during the second and fourth quarters) for a limited suite of constituents.
- Six OWs (OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D) are:
 - Sampled annually for a limited suite of constituents during the fourth quarter.
 - Sampled for a full suite of constituents one cluster at a time on a triennial (once every 3 years) schedule.
 Within each 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents.
 The triennial sampling will occur during the annual event (fourth quarter).
- Eight CWs are sampled semiannually for a limited suite of constituents and annually (during the fourth quarter) for a full suite of constituents.

For semiannual events, laboratory analyses include total dissolved solids (TDS), turbidity, specific conductance, a reduced suite of metals, and several inorganic cations and anions. Annual and triennial sampling events for CWs and select OWs include chromium, hexavalent chromium [Cr(VI)], metals, specific conductance, TDS, turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data—including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity—are also measured during each monitoring event (CH2M HILL, 2005a).

This report presents the results of the Second Half 2013 CMP groundwater monitoring event.

1-2

SECTION 2.0

Second Half 2013 Activities

This section provides a summary of the monitoring and sampling activities completed during the Second Half 2013. The Second Half 2013 event was a semiannual event, an annual event, and a triennial event (hereafter referred to as an annual event) conducted from October 8 through 10, 2013 and consisted of the following:

- Water quality samples were collected from nine observation and eight compliance monitoring wells.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at wells CW-4M and OW-2S to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005c) and addendums.

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and CH2M HILL Applied Sciences Laboratory in Corvallis, Oregon, both California-certified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California (CH2M HILL, 2005c) and addendums. Data validation and management were conducted in accordance with the quality assurance and quality control requirements in the PG&E Program Quality Assurance Project Plan, Revision 2 (QAPP) (CH2M HILL, 2012) and QAPP Addendum (CH2M HILL, 2008).

Second Half 2013 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the Second Half 2013. Figure 2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), chromium, specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the Second Half 2013 monitoring event are presented in Appendices A and B, respectively.

3.1 Analytical Results

Three observation wells and eight compliance wells were sampled during the Second Half 2013 sampling event. Analytical results for Cr(VI), chromium, other metals, and general chemistry parameters are presented in Tables 3, 4, and 5, as discussed below. Interim action levels/water quality objectives (WQOs) were updated on August 8, 2006, when PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), chromium, TDS, and pH to be used to determine whether contingency plan actions were necessary based on sample results. A modification of the CMP contingency plan pH range was approved by the Water Board and DTSC in 2008 (Water Board, 2008; DTSC, 2008b).

3.1.1 Hexavalent Chromium and Chromium

Table 3 presents the Cr(VI) and chromium analytical results for groundwater in the shallow, middle, and deep wells from the Second Half 2013 CMP sampling event. For shallow wells, the maximum detected Cr(VI) concentration was 22.9 micrograms per liter (μ g/L) in well OW-2S on October 10, 2013. For the middle wells, the maximum detected Cr(VI) concentration was 7.0 μ g/L in well CW-3M on October 8, 2013. For the deep wells, the maximum detected Cr(VI) concentration was 0.66 μ g/L in well CW-3D on October 8, 2013. During the Second Half 2013 sampling event, no Cr(VI) sample result exceeded the WQO trigger level of 32 μ g/L.

For shallow wells, the maximum detected chromium concentration was 22.0 μ g/L in well OW-2S on October 10, 2013. For the middle wells, the maximum detected chromium concentration was 6.3 μ g/L in well CW-3M on October 8, 2013. For the deep wells, chromium was not detected in any sample. During the Second Half 2013 sampling event, no chromium sample result exceeded the WQO trigger level of 28 μ g/L. Hence, the contingency plan was not triggered for Cr(VI) nor chromium.

3.1.2 Other Metals and General Chemistry

Table 4 presents the other metals results for the CMP groundwater wells sampled during the Second Half 2013. Metals detected in the Second Half 2013 sampling event included arsenic, barium, boron, calcium, magnesium, molybdenum, nickel, potassium, sodium, and vanadium. In general, concentrations of metals detected during the Second Half 2013 sampling event are similar to those detected in previous sampling events.

Table 5 presents other inorganic analyte results from the CMP wells. During the Second Half 2013, the sampling results from all wells were within the WQOs for TDS (less than 10,800 milligrams per liter [mg/L]) and pH (between 6.2 and 9.2). Sampling results for TDS varied from 1,030 mg/L in well OW-2S to 4,740 mg/L in well CW-3M. Field pH varied from 7.1 in well CW-4M to 7.9 in wells CW-2D and OW-2S.

3.2 Analytical Data Quality Review

The laboratory analytical data generated from the Second Half 2013 CMP monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP (CH2M HILL, 2012) and QAPP Addendum (CH2M HILL, 2008). A detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

3.2.1 Matrix Interference

Matrix interference can affect the sensitivity for Cr(VI) when using Method E218.6 and can result in elevated reporting limits for nondetect samples. Six nondetect samples exhibited a matrix interference issue that required a dilution to achieve satisfactory matrix spike recovery, resulting in an elevated reporting limit. The sample results were qualified, but no flags were added.

3.2.2 Matrix Spike Samples

Matrix spike acceptance criteria were met.

3.2.3 Quantitation and Sensitivity

With the exception of the matrix interference issues discussed in Section 3.2.1, all method and analyte combinations met the project reporting limit objectives.

3.2.4 Holding-time Data Qualification

Method holding-time requirements were met.

3.2.5 Field Duplicates

One field duplicate pair had a relative percent difference greater than the upper control limit for iron (SW6010B, 20 percent), the results were qualified during validation as estimated (flagged "J"). All other field duplicate acceptance criteria were met.

3.2.6 Method Blanks

All method blank criteria were met.

3.2.7 Equipment Blanks

Equipment blank acceptance criteria were met.

3.2.8 Laboratory Duplicates

One laboratory duplicate for dissolved iron (E200.7) had a recovery that differed from the parent sample by more than 20 percent relative difference. The nondetect parent sample result was qualified during data validation as estimated (flagged "J"). All other laboratory duplicate acceptance criteria were met.

3.2.9 Laboratory Control Sample

All laboratory control sample acceptance criteria were met.

3.2.10 Calibration

Initial and continuing calibrations were performed as required by the methods. All calibration criteria were met.

3.2.11 Conclusion

For the Second Half 2013 CMP sampling event, the completeness objectives were met for all method and analyte combinations. The analyses and data quality met the QAPP and laboratory method quality control criteria, except as noted above. Overall, the analytical data are considered acceptable for the purpose of the CMP.

3.3 Influence of Treated Water

3.3.1 Post-injection versus Pre-injection

Injection of treated water began on July 31, 2005. Originally, under WDR No. R7-2006-0060 for the IM-3 groundwater treatment system and now the DOI's affirmation of the WDR as an ARAR, PG&E is required to submit monitoring reports semiannually regarding operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water quality of the treated water being injected into the IM-3 injection well field. Table 6 provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, April 7, 2010, and October 1, 2013. While there are differences among some parameters in these samples, a number of parameters show relatively

3-2 PDX/133510003 ES121713093421BAO

consistent concentrations in the effluent over time. Analytes that are relatively consistent over the injection time period include Cr(VI), chromium, fluoride, dissolved molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. The consistency of these seven constituents provide a characterization of the effluent that can serve as a basis for determining whether a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of August 2005 through October 2013 effluent characteristics):

- Cr(VI): typically nondetect (or below 1.0 μg/L)
- Chromium: typically nondetect (or below 1.0 μg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 15-20 μg/L
- Nitrate/nitrite as nitrogen: approximately 3 mg/L
- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 6 also lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contain no detectable Cr(VI) or chromium, which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents but observable differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 7 presents a comparison between the treated water quality and the results from the most recent sampling event (the Second Half 2013 sampling event). These samples were collected after approximately 8.2 years of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the Second Half 2013 sample results show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, OW-5D, CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are at locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Wells OW-1S, CW-2M, CW-3M, and CW-4M have chemical characteristics approaching that of treated water. To date, shallow observation wells OW-2S and OW-5S show little or no water quality effects due to injection of treated water, indicating that injected water has not yet reached the screened intervals at these locations.

3.3.2 Water Quality Hydrographs

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM-3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, chromium, fluoride, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, lab pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each OW and CW during Second Half 2013 within the IM-3 injection well field are presented in Figures 3A through 3E.

Observation well water quality hydrographs are presented in Figures 3A through 3C. These hydrographs show the same overall patterns: wells that are identified as affected by treated water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no similar shift in water

quality. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, it is inferred that the movement of treated water is non-uniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth wells (OW-2S and OW-5S) show little water quality variation over time. Sodium, chloride, molybdenum, sulfate, and TDS are particularly consistent with baseline pre-injection concentrations and show that the local groundwater quality at these shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 3D and 3E. Wells CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D show trends in chromium, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS similar to the treated water. Wells CW-2M, and CW-4M show decreasing trends in Cr(VI) and chromium. These changes are attributed to the gradual arrival of treated injection water. Similarly, CW-3M is showing a more subtle decrease in Cr(VI) and a rise in sulfate that both suggest the influence of treated water beginning to arrive at this well.

3.4 Water Level Measurements

Table 8 presents the manual water level measurements and groundwater elevations from Fourth Quarter 2013 per the DOI ARAR requirements (DOI, 2011). In compliance with Condition No. 2 of DTSC's 2009 conditional approval letter (DTSC, 2009), confirmation was obtained from the IM-3 Plant Manager that the IM-3 plant was operating normally on both the day before and the days of CMP water level collection, with no backwash or unplanned shutdowns.

Water level measurements were collected continuously (measurements collected every half hour) with pressure transducers to produce hydrographs for select wells. Figures 4A through 4C present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the Second Half 2013 reporting period at specified observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 5A through 5C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The date is noted on each figure.

3.4.1 Groundwater Gradient Characteristics

The monitoring wells in the middle and deep zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation; therefore, the groundwater contours in Figures 5B and 5C should be viewed as approximate.

The injection well field is in the East Mesa area of the Topock site, as shown on Figure 2. Overall sitewide water level contour maps for shallow wells are prepared annually under a separate report, with flow consistently being shown to move to the east/northeast across the uplands portions of the site (CH2M HILL, 2013).

The effects of injection in the IM-3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection wells IW-2 and IW-3. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 8.2 years of injection, the mound increased and then stabilized in height at several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the snapshot groundwater elevation of the mound within the middle and deep wells using October 21, 2013 groundwater elevations. As expected with a mound, the potentiometric surface of the deep wells is slightly broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection wells. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis

3-4 PDX/133510003 ES121713093421BAO

are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM-3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 9 presents the vertical gradient data calculated using the October 21, 2013 groundwater elevations. The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is generally of the same order of magnitude throughout the injection area. A component of the vertical gradients calculated in the vicinity of the IM-3 injection well field is likely related to the injection of treated water in the lower portions of the aquifer. The observed groundwater gradients in the IM-3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, salinity, and water level elevations before sampling. Table 10 presents a summary of the field water quality data measured during the Second Half 2013 monitoring event. Field data sheets for the Second Half 2013 event are presented in Appendix B.

3.6 ARAR Monitoring Requirements

Table 11 identifies the laboratory that performed each analysis and lists the following information as required by the ARARs for the Second Half 2013 monitoring event:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

Status of Monitoring Activities

4.1 Semiannual Monitoring

The next semiannual monitoring event will occur in April during the First Half of 2014. This CMP monitoring event will include the sampling and analysis scope presented in Attachment A of DOI November 18, 2011 letter (DOI, 2011). The groundwater monitoring report for this CMP monitoring event will be submitted by July 15, 2014.

4.2 Annual Monitoring

The next annual monitoring event, which is also a semiannual event, will occur in October during the second half of 2014. The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2015.

References

California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2005. Letter to PG&E. "Conditional Approval for the Start Up and Operation of the Interim Measures No. 3 Treatment System and Injection Wells, Pacific Gas & Electric Company, Topock Compressor Station." July 15.
2006. Letter to PG&E. "Third and Fourth Quarter Groundwater Monitoring Reports, Compliance Monitoring Program for Interim Measures No. 3 Injection Well Field Area, Pacific Gas & Electric Company Topock Compressor Station, Needles, California." June 9.
2007. Letter to PG&E. "Conditional Approval of Request for Reduced Groundwater Sampling Frequency for Select Constituents at Pacific Gas & Electric Company, Topock Compressor Station, Needle California." January 22.
2008a. Letter to PG&E. "Re: Analytical Methods for WDR Monitoring Programs." January 22.
2008b. Letter to PG&E. "PG&E Topock: pH Modification to the CMP." December 12.
2009. Letter to PG&E. "Conditional Approval of Modifications to the Compliance Monitoring Program, Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles California (EPA ID No. CAT080011729)." September 3.
California Regional Water Quality Control Board, Colorado River Basin Region (Water Board). 2007a. Letter to PG&E. "Conditional Approval of Limited Sampling Frequency for Selected Metals/General, PG&E, Topock Compressor Station, Needles, California." January 23.
2007b. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060 and R7-2004-0080, Topock Compressor Station, San Bernardino County." October 16.
2007c. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060, R7-2006-0008, R7-2004-0080, and R7-2007-0015, Topock Compressor Station, San Bernardino County." November 13.
2008. Letter to PG&E. "Revision of Monitoring and Reporting Program (MRP), Board Order No. R7-2006-0060 Revision 1, Topock Compressor Station, San Bernardino County." August 28.
2011. Letter to DOI. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility – PG&E Topock Compressor Station Site." July 26.
CH2M HILL. 2005a. Groundwater Compliance Monitoring Plan for Interim Measure No. 3 Injection Area, Topock Compressor Station, Needles, California. June 17.
2005b. Addendum to the Compliance Monitoring Plan for the IM No. 3 Injection Area, Topock Compressor Station, Needles, California. December 13.
2005c. Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California. March 31.
2006. Request for Approval to Implement Limited Sampling Frequency for Selected Metals/ General Minerals for PG&E Topock Compressor Station, Needles, California. December 1.
2008. PG&E Program Quality Assurance Project Plan, Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects. December.
2012 PG&F Program Quality Assurance Project Plan Revision 2 August

- _______. 2013. Fourth Quarter 2012 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.

 Pacific Gas and Electric Company (PG&E). 2011. Letter to DOI and Water Board. "Re: Applicable or Relevant and Appropriate Requirements (ARARs) for the Waste Discharge associated with Interim Measure 3 Facility at PG&E's Topock Compressor Station." September 7.

 _______. 2013. Letter to DOI and Water Board. "Signature Delegation for Discharger Monitoring Reports, ARAR Monitoring Requirements, Pacific Gas and Electric Company, Topock Compressor Station, Interim Measures No. 3, Needles, California." February 27.
- United States Department of the Interior (DOI). 2011. Letter to PG&E and Water Board. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility PG&E Topock Compressor Station Site." August 18.

5-2

SECTION 6.0

Certification

PG&E submitted a signature delegation letter to the DOI and the Water Board on February 27, 2013 (PG&E, 2013). The letter delegated PG&E signature authority to Ms. Sheryl Bilbrey, Ms. Yvonne Meeks, and Mr. Curt Russell for correspondence regarding required ARARs.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:

Name: Yvoi

Yvonne J. Meeks

Company:

Pacific Gas and Electric Company

Title:

Topock Environmental Remediation Project Manager

Date:

January 15, 2014

TABLE 1
Operational Status of Interim Measures No. 3 Injection Wells From July 2005 through December 2013
PG&E Topock Compliance Monitoring Program

Time Period	Injection Status
July 31, 2005 to Fourth Quarter 2005	Injection occurred at IW-2.
First Quarter 2006	Injection occurred primarily at IW-2 except during intervals of operational testing, when injection was divided equally between IW-2 and IW-3.
Second Quarter 2006	Injection occurred at IW-2.
Third Quarter 2006	In August 2006, IW-2 went offline for routine maintenance, and injection commenced at IW-3.
Fourth Quarter 2006	Injection occurred at IW-3, except during routine maintenance.
First Quarter 2007	Injection occurred at IW-3 and transitioned over to IW-2 on March 8.
Second Quarter 2007	Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.
Third Quarter 2007	Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.
Fourth Quarter 2007	Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.
First Quarter 2008	Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.
Second Quarter 2008	Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing was performed at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.
Third Quarter 2008	Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short interval on July 25 and from August 12 – August 31, 2008. Backwashing was performed at IW-3 on June 17, June 27, July 9, July 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing was performed at IW-2 on September 9 - September 11, 2008.
Fourth Quarter 2008	Injection occurred at IW-3 and then switched to IW-2 on September 23. Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued at IW-2 until December 16, 2008 and occurred concurrently and continued at IW-3 on December 11, 2008.
First Quarter 2009	Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events were performed periodically during the intervals when each injection well was offline. Routine and scheduled maintenance occurred 12/18/08 and 1/21/09 at which time both wells were offline.
Second Quarter 2009	Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.
Third Quarter 2009	IM-3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned.
Fourth Quarter 2009	Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.
First Half 2010	Injection occurred mainly at IW-3 until March 3, 2010. Beginning March 3, 2010, IM-3 injection alternated between the two wells approximately every two weeks until April 20, 2010 for a

TABLE 1

Operational Status of Interim Measures No. 3 Injection Wells From July 2005 through December 2013

PG&E Topock Compliance Monitoring Program

Time Period	Injection Status
	planned shutdown. On April 22, 2010, injection resumed at IW-3 and alternated between the two wells approximately every two weeks. Backwashing was performed periodically during the intervals when each injection well was offline.
Second Half 2010	Injection occurred primarily at IW-2 with the exception of the following periods when it primarily occurred at IW-3: July 22 - August 25, August 30 - September 7, September 16 - October 15, November 5 -18, and December 17- 31, 2010.
First Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 27 - February 10, February 23 - March 7, March 30 - April 20, May 6 – June 7, and June 22-28, 2011. Backwashing was performed periodically during the intervals when each injection well was offline. A planned shutdown occurred April 25-29 and June 28-30.
Second Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 14 through August 3, August 10 through 13, September 11 through 22, October 6 through10; and October 27 Through December 31. Backwashing was performed periodically during the intervals when each injection well was offline.
First Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 1 through January 6, 2012; February 2 through February 16, 2012; March 2 through April 5, 2012; May 10 through May 21, 2012; May 29 through June 1, 2012, June 14,2012 and June 21 through June 27, 2012.
Second Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 18 through July 25, 2012; August 1 through August 13, 2012; August 17 through August 22, 2012; August 31 through September 26, 2012; and September 29 through October 9, 2012.
First Half 2013	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: March 5 through March 14, 2013; April 8 through May 22, 2013, June 24 through June 25, 2013, and June 29 through June 30, 2013.
Second Half 2013	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 1 - 9, 2013; July 31 through August 12, 2013, October 22 through November 6, 2013, November 26 through December 12, 2013, and December 28 - 31, 2013.

TABLE 2
Well Construction and Sampling Summary for Groundwater Samples, Second Half 2013
PG&E Topock Compliance Monitoring Program

Well ID	Site Area	Measuring Point Elevation (ft amsl)	Screen	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typica Purge R (gpm	ate Volume	Pump Depth		Remarks
IM Compliar	nce Wells	•										
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	190.0	109.0	Temp Redi-Flo	AR 2	42	165		
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	300.2	109.1	Temp Redi-Flo	AR 3	98	180		
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	208.3	92.6	Temp Redi-Flo	AR 2	56	195		
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	355.0	92.2	Temp Redi-Flo	AR 3	134	159		
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	222.0	77.5	Temp Redi-Flo A	AR 2	74	180		
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	340.0	76.9	Temp Redi-Flo A	AR 3	134	143		
CW-04M	East Mesa	518.55	119.5 - 169.5	2 (PVC)	169.8	61.4	Temp Redi-Flo A	AR 2	56	160		
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	303.0	61.3	Temp Redi-Flo A	AR 3	124	134		
IM Observat	ion Wells				_							
OW-01S	East Mesa	550.21	83.5 - 113.5	2 (PVC)	113.5	93.5	Temp Redi-Flo	AR 1	10.2	100	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	185.8	93.3	Temp Redi-Flo	AR 3	48	109.6		
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	277.3	93.0	Temp Redi-Flo	AR 3	94	111.4		
OW-02S	East Mesa	548.88	71 - 101	2 (PVC)	103.6	92.2	Temp Redi-Flo	AR 1	15	100	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	210.3	91.4	Temp Redi-Flo	AR 2	61	111.4		
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	340.0	91.4	Temp Redi-Flo	AR 2	127	110.3		
OW-05S	East Mesa	551.83	70 - 110	2 (PVC)	110.3	95.0	Temp Redi-Flo	AR 1	8	100	Active	
OW-05M	East Mesa	551.81	210 - 250	2 (PVC)	250.3	93.9	Temp Redi-Flo	AR 2	80	112.5	Active	
OW-05D	East Mesa	552.41	300 - 320	2 (PVC)	350.0	94.7	Temp Redi-Flo	AR 3	131	113.2	Active	

Notes:

amsl above mean sea level bgs below ground surface

btoc below top of polyvinyl chloride (PVC) casing

gpm gallons per minute

Redi-Flo AR adjustable-rate electric submersible pump

Temp temporary

Depth to water for each well was collected on April 2013. All wells were purged and sampled using 3 well-volume method.

TABLE 3
Chromium Results for Groundwater Samples, Second Half 2013
PG&E Topock Compliance Monitoring Program

	Method:	E218.6	E200.8	
Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	
CW-01M	10/10/2013	ND (1.0)	ND (1.0)	
CW-01D	10/10/2013	ND (1.0)	ND (1.0)	
CW-02M	10/8/2013	2.40	2.50	
CW-02D	10/8/2013	0.54	ND (1.0)	
CW-03M	10/8/2013	7.00	6.30	
CW-03D	10/8/2013	0.66	ND (1.0)	
CW-04M	10/9/2013	5.40	5.60	
CW-04M	10/9/2013 (FD)	5.40	5.70	
CW-04D	10/8/2013	0.63	ND (1.0)	
OW-01S	10/9/2013	7.40	8.40	
OW-01M	10/9/2013	1.20	1.50	
OW-01D	10/9/2013	ND (1.0)	ND (1.0)	
OW-02S	10/10/2013	22.9	22.0	
OW-02S	10/10/2013 (FD)	22.8	21.7	
OW-02M	10/10/2013	1.60	1.60	
OW-02D	10/10/2013	ND (1.0)	ND (1.0)	
OW-05S	10/9/2013	18.2	17.1	
OW-05M	10/9/2013	ND (1.0)	ND (1.0)	
OW-05D	10/9/2013	ND (1.0)	ND (1.0)	

Notes:

FD field duplicate

ND parameter not detected at the listed reporting limit

μg/L micrograms per liter

Hexavalent Chromium and Chromium are field filtered.

TABLE 4 Metals Results for Groundwater Samples, Second Half 2013 PG&E Topock Compliance Monitoring Program

	Method:												Dissol	ved E200.7, I	E200.8											
Location ID	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Copper	Lead I μg/L	Manganes	e Mercury	Molybdenu	m Nickel	Seleniun	n Silver	Thallium	Vanadium	Zinc	Boron	Calciu	m Iron ^a	Iron^b Po mg,	_	Magnesiun	n Sodium
CW-01M	10/10/2013	ND (20)	ND (2.0)	1.60	84.0	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	17.2	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.912	175	ND (0.02)	ND (0.02)	15.5	14.6	1400
CW-01D	10/10/2013	ND (20)	ND (2.0)	1.30	21.6	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	19.9	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.90	164	ND (0.02)	ND (0.02)	13.9	16.3	1400
CW-02M	10/8/2013	ND (20)	ND (2.0)	2.10	63.9	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	16.6	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.12	130	ND (0.02)	ND (0.02)J	14.6	10.3	1340
CW-02D	10/8/2013	ND (20)	ND (2.0)	3.50	11.3	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	12.8	3.10	ND (5.0)	ND (5.0)	ND (1.0)	5.30	ND (20)	0.964	79.2	ND (0.02)	ND (0.02)	13.7	4.20	1530
CW-03M	10/8/2013	ND (20)	ND (2.0)	1.30	44.2	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	21.1	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.07	198	ND (0.02)	ND (0.02)	17.3	15.8	1620
CW-03D	10/8/2013	ND (20)	ND (2.0)	1.60	13.2	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	14.4	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.01	75.0	ND (0.02)	ND (0.02)	14.0	5.37	1470
CW-04M	10/9/2013	ND (20)	ND (2.0)	2.20	87.1	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	10.1	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.857	177	ND (0.02)J	ND (0.02)	15.6	14.5	1300
CW-04M	10/9/2013 FD	ND (20)	ND (2.0)	2.20	90.4	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	9.60	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.854	173	0.0775 J	ND (0.02)	15.9	14.8	1320
CW-04D	10/8/2013	ND (20)	ND (2.0)	3.60	16.2	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	19.0	2.80	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.07	116	ND (0.02)	ND (0.02)	14.1	7.57	1480
OW-01S	10/9/2013												5.90													801
OW-01M	10/9/2013												11.1													1480
OW-01D	10/9/2013												20.7													1440
OW-02S	10/10/2013												34.7													391
OW-02S	10/10/2013 FD												34.6													375
OW-02M	10/10/2013	ND (20)	ND (2.0)	1.60	41.0	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	16.3	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.992	134	ND (0.02)	ND (0.02)	16.6	22.8	1360
OW-02D	10/10/2013	ND (20)	ND (2.0)	3.50	15.8	ND (0.5)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (0.5)	ND (0.4)	18.7	ND (2.0)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.917	119	ND (0.02)	ND (0.02)	17.5	28.2	1420
OW-05S	10/9/2013												15.5													486
OW-05M	10/9/2013												17.0													1620
OW-05D	10/9/2013												18.2													1800

NOTES:

FD field duplicate
ND parameter not detected at the listed reporting limit
mg/L milligrams per liter

µg/L micrograms per liter

--- data not collected or available
J concentration estimated by laboratory or data validation

b Dissolved Iron

^a Total Iron

TABLE 5 Other Inorganics Results for Groundwater Samples, Second Half 2013 PG&E Topock Compliance Monitoring Program

	Method:	E120.1	Field	SM2540C	SM2130B	E300.0	E300.0	E300.0	E353.2	SM2320B	SM4500NH3D
Location ID	Sample Date	Specific Conductance (µmhos/cm)	pH (pH units)	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Alkalinity, total as CaCo3 (mg/L)	Ammonia as Nitrogen (mg/L)
CW-01M	10/10/2013	6660	7.5	4250	ND (0.1)	2130	1.92	503	3.02	50.0	ND (0.5)
CW-01D	10/10/2013	6460	7.3	4130	ND (0.1)	2110	2.34	494	2.88	47.0	ND (0.5)
CW-02M	10/8/2013	6590	7.8	4200	0.103	2120	2.95	507	2.90	54.0	ND (0.5)
CW-02D	10/8/2013	6680	7.9	4140	0.130	2390	2.67	518	2.93	55.0	ND (0.5)
CW-03M	10/8/2013	7840	7.5	4740	ND (0.1)	2640	2.78	481	1.78	48.0	ND (0.5)
CW-03D	10/8/2013	6600	7.7	4260	ND (0.1)	2130	3.55	512	2.94	58.0	ND (0.5)
CW-04M	10/9/2013	6360	7.1	4100	ND (0.1)	2060	1.84	454	2.59	54.0	ND (0.5)
CW-04M	10/9/2013 (FD)	6260	FD	4120	ND (0.1)	2060	1.77	454	2.61	50.0	ND (0.5)
CW-04D	10/8/2013	6710	7.8	4260	0.110	2150	3.01	511	2.92	50.0	ND (0.5)
OW-01S	10/9/2013	5190	7.3	3870	0.212	1730	1.67	372	3.08		
OW-01M	10/9/2013	6530	7.4	4320	ND (0.1)	2410	1.66	489	2.72		
OW-01D	10/9/2013	6470	7.5	4270	0.415	2130	2.35	493	2.77		
OW-02S	10/10/2013	1760	7.9	1040	2.100	468	4.74	99.8	3.85		
OW-02S	10/10/2013 (FD)	1740	FD	1030	2.250	469	4.77	93.7	3.92		
OW-02M	10/10/2013	6450	7.6	4160	ND (0.1)	2090	2.04	490	2.80	76.0	ND (0.5)
OW-02D	10/10/2013	6570	7.4	4240	ND (0.1)	2120	1.96	494	2.93	30.0	ND (0.5)
OW-05S	10/9/2013	2880	7.6	1820	0.238	865	1.80	163	2.91		
OW-05M	10/9/2013	6650	7.6	4300	ND (0.1)	2150	2.08	500	2.91		
OW-05D	10/9/2013	6710	7.6	4240	0.138	2190	2.06	512	2.95		

NOTES:

ND parameter not detected at the listed reporting limit FD field duplicate

µmhos/cm micro-mhos per centimeter

NTU Nephelometric Turbidity Unit mg/L milligrams per liter

--- data not collected or available

concentration estimated by laboratory or data validation

TABLE 6 **Treated Water Quality Compared to OW and CW Pre-injection Water Quality** *PG&E Topock Compliance Monitoring Program*

Location ID	Sample Date	Hexavalent Chromium (μg/L)	Chromium (µg/L)	Fluoride (mg/L)	Dissolved Molybdenum (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Treated Water	8/29/2005	ND (1.0)	ND (2.1)	1.95	8.3	3.70	450	3,620
Treated Water	4/7/2010	0.29	ND (1.0)	1.82	18.6	2.87	512	4,270
Treated Water	10/1/2013	ND (0.2)	ND (1.0)	2.10	23.5	2.92	512	4,410
OW-01S	7/28/2005	19.4	23.5	2.45	17.2	3.2	114	1,320
OW-01M	7/27/2005	16.3	18.9	2.31	27	1.01	311	3,450
OW-01D	7/27/2005	ND(1.0)	ND(1.3)	1.14	46.1	0.321	441	6,170
OW-02S	7/28/2005	15.3	14.8	3.79	35.6	3.81	126	1,090
OW-02M	7/28/2005	5.4	5.7	2.19	32.4	0.735	342	4,380
OW-02D	7/28/2005	ND(1.0)	ND(1.2)	0.966	51.2	0.1	616	9,550
OW-05S	7/28/2005	23.4	25.6	2.3	17.1	3.55	105	1,060
OW-05M	7/28/2005	8.6	8.8	2.74	35.4	0.621	417	5,550
OW-05D	7/28/2005	ND(1.0)	ND(1.2)	1.11	57	0.151	480	8,970
CW-01M	9/15/2005	18.1	17.8	2.34	21.6	1.11	318	2,990
CW-01D	9/15/2005	ND(1.0)	1.6	0.951	32.1	0.972	379	6,230
CW-02M	9/15/2005	15.8	15.5	2.3	23.1	0.908	342	3,500
CW-02D	9/15/2005	ND(1.0)	1.6	0.982	41.6	0.28	601	8,770
CW-03M	9/15/2005	8.8	8.1	2.57	24.2	0.642	464	4,740
CW-03D	9/15/2005	ND(1.0)	ND(1.0)	1.4	29.2	0.304	672	9,550
CW-04M	9/15/2005	19.2	19	1.5	12.3	1.18	240	3,310
CW-04D	9/15/2005	ND(1.0)	ND(1.0)	1.01	26	0.188	534	7,470

NOTES:

ND = Not detected at the listed reporting limit.

mg/L = milligrams per liter.

 μ g/L = micrograms per liter.

Hexavalent chromium samples were analyzed using method 7199 in 2005 and then by method E218.6.

Chromium samples were analyzed using method 6020A for samples collected on 7/28/2005, by method 6010B for samples collected on 9/15/2005, by method 6020B for samples collected on 8/29/2005 and by method E200.8 for all other chromium samples.

Chromium samples of the treated water were unfiltered.

TABLE 7
Treated Water Quality Compared to Second Half 2013 Sampling Event Water Quality
PG&E Topock Compliance Monitoring Program

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Molybdenum (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	10/4/2011	ND (1.0)	ND (1.0)	2.09	18.6	2.92	501	4,260
Treated Water	10/2/2012	0.21	ND (1.0)	2.10	20.4	3.00	497	4,350
Treated Water	10/1/2013	ND (0.2)	ND (1.0)	2.10	23.5	2.92	512	4,410
CW-01M	10/10/2013	ND (1.0)	ND (1.0)	1.92	17.2	3.02	503	4,250
CW-01D	10/10/2013	ND (1.0)	ND (1.0)	2.34	19.9	2.88	494	4,130
CW-02M	10/8/2013	2.40	2.50	2.95	16.6	2.90	507	4,200
CW-02D	10/8/2013	0.54	ND (1.0)	2.67	12.8	2.93	518	4,140
CW-03M	10/8/2013	7.00	6.30	2.78	21.1	1.78	481	4,740
CW-03D	10/8/2013	0.66	ND (1.0)	3.55	14.4	2.94	512	4,260
CW-04M	10/9/2013 (FD)	5.40	5.70	1.77	9.60	2.61	454	4,120
CW-04M	10/9/2013	5.40	5.60	1.84	10.1	2.59	454	4,100
CW-04D	10/8/2013	0.63	ND (1.0)	3.01	19.0	2.92	511	4,260
OW-01S	10/9/2013	7.40	8.40	1.67	5.90	3.08	372	3,870
OW-01M	10/9/2013	1.20	1.50	1.66	11.1	2.72	489	4,320
OW-01D	10/9/2013	ND (1.0)	ND (1.0)	2.35	20.7	2.77	493	4,270
OW-02S	10/10/2013 (FD)	22.8	21.7	4.77	34.6	3.92	93.7	1,030
OW-02S	10/10/2013	22.9	22.0	4.74	34.7	3.85	99.8	1,040
OW-02M	10/10/2013	1.60	1.60	2.04	16.3	2.80	490	4,160
OW-02D	10/10/2013	ND (1.0)	ND (1.0)	1.96	18.7	2.93	494	4,240
OW-05S	10/9/2013	18.2	17.1	1.80	15.5	2.91	163	1,820
OW-05M	10/9/2013	ND (1.0)	ND (1.0)	2.08	17.0	2.91	500	4,300
OW-05D	10/9/2013	ND (1.0)	ND (1.0)	2.06	18.2	2.95	512	4,240

Notes:

--- not sampled or required for this event

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter µg/L micrograms per liter

All hexavalent chromium samples were analyzed with method E218.6.

All chromium and molybdenum samples were analyzed with method E200.8. Chromium and molybdenum samples were field filtered, except for the treated water.

Fluoride and Sulfate samples were analyzed with method E300.0.

All nitrate/nitrite as nitrogen samples were analyzed with method SM4500NO3E, except for treated water which used method E300.0. All total dissolved solid samples were analyzed with method SM2540C.

TABLE 8

Manual Water Level Measurements and Elevations, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location ID	Well Depth (feet btoc)	Measuring Point Elevation (feet amsl)	t Monito Date &		Water Level Measurement (feet btoc)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet amsl)
CW-01M	190.0	566.07	08-Jul-13	10:36 AM	108.35	0.49	457.66
			21-Oct-13	10:30 AM	109.04	0.49	456.97
CW-01D	300.2	566.46	08-Jul-13	10:38 AM	108.55	0.50	457.78
			21-Oct-13	10:32 AM	109.14	0.50	457.19
CW-02M	208.3	549.45	08-Jul-13	10:43 AM	91.84	0.53	457.54
			21-Oct-13	10:35 AM	92.60	0.53	456.78
CW-02D	355.0	549.43	08-Jul-13	10:45 AM	91.52	0.53	457.73
			21-Oct-13	10:37 AM	92.19	0.53	457.06
CW-03M	222.0	534.10	08-Jul-13	10:48 AM	76.73	0.60	457.37
			21-Oct-13	10:40 AM	77.50	0.60	456.60
CW-03D	340.0	534.14	08-Jul-13	10:50 AM	76.20	0.53	457.74
			21-Oct-13	10:41 AM	76.89	0.53	457.06
CW-04M	169.8	518.55	08-Jul-13	11:01 AM	60.73	0.49	457.75
			21-Oct-13	10:47 AM	61.40	0.49	457.08
CW-04D	303.0	518.55	08-Jul-13	11:03 AM	60.67	0.51	457.68
			21-Oct-13	10:49 AM	61.26	0.51	457.10
OW-01S	113.5	550.21	08-Jul-13	11:10 AM	92.76	0.32	457.42
			21-Oct-13	10:53 AM	93.51	0.32	456.67
OW-01M	185.8	550.36	08-Jul-13	11:12 AM	92.36	0.49	457.92
			21-Oct-13	10:55 AM	93.28	0.49	457.00
OW-01D	277.3	550.36	08-Jul-13	11:14 AM	92.00	0.51	458.23
			21-Oct-13	10:57 AM	92.96	0.51	457.27
OW-02S	103.6	548.88	08-Jul-13	11:16 AM	91.40	0.13	457.45
			21-Oct-13	11:00 AM	92.17	0.13	456.68
OW-02M	210.3	548.52	08-Jul-13	11:18 AM	90.26	0.49	458.15
			21-Oct-13	11:02 AM	91.42	0.49	456.99
OW-02D	340.0	549.01	08-Jul-13	11:27 AM	90.31	0.52	458.51
			21-Oct-13	11:04 AM	91.43	0.52	457.39
OW-05S	110.3	551.83	08-Jul-13	11:21 AM	94.26	0.27	457.54
			21-Oct-13	11:07 AM	94.97	0.27	456.83
OW-05M	250.3	551.81	08-Jul-13	11:23 AM	93.82	0.50	457.97
			21-Oct-13	11:09 AM	93.89	0.50	457.90
OW-05D	350.0	552.41	08-Jul-13	11:25 AM	94.45	0.52	458.00
			21-Oct-13	11:11 AM	94.72	0.52	457.75

Notes:

amsl above mean sea level

btoc below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

TABLE 9 **Vertical Gradients within the OW and CW Clusters, Second Half 2013** *PG&E Topock Compliance Monitoring Program*

Well Pairs	Vertical Gradient (ft/ft) ^a
CW-01D to CW-01M	0.0020
CW-02D to CW-02M	0.0021
CW-03D to CW-03M	0.0047
CW-04D to CW-04M	0.0002
OW-01M to OW-01S	0.0043
OW-01D to OW-01M	0.0029
OW-02M to OW-02S	0.0027
OW-02D to OW-02M	0.0033
OW-05M to OW-05S	0.0076

^a Positive value signifies an upward gradient.

Gradients calculated using October 21, 2013 groundwater levels.

TABLE 10

Field Parameter Measurements for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location ID	Sampling Date	Specific Conductance (µmhos/cm)	Temperature (°C)	рН	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Salinity (%)	Depth To Water (feet btoc)
CW-01M	10/10/2013	7,512	29.14	7.5	186	9.51	1	0.49	109.01
CW-01D	10/10/2013	7,427	29.13	7.3	155	7.96	1	0.48	109.10
CW-02M	10/8/2013	7,454	30.02	7.8	179	7.76	1	0.46	92.50
CW-02D	10/8/2013	7,582	30.98	7.9	101	6.94	1	0.49	92.03
CW-03M	10/8/2013	8,667	30.11	7.5	167	4.03	0.5	0.56	77.35
CW-03D	10/8/2013	7,570	30.50	7.7	189	6.91	0.3	0.49	76.67
CW-04M	10/9/2013	7,171	29.68	7.1	190	6.32	1	0.46	61.24
CW-04D	10/8/2013	7,532	31.04	7.8	133	8.36	1	0.49	61.01
OW-01S	10/9/2013	6,129	28.72	7.3	183	7.05	1	0.40	93.47
OW-01M	10/9/2013	7,391	28.90	7.4	169	7.69	1	0.48	93.18
OW-01D	10/9/2013	7,328	28.89	7.5	150	6.98	1	0.47	92.74
OW-02S	10/10/2013	1,965	28.61	7.9	118	8.23	3	0.13	92.08
OW-02M	10/10/2013	7,277	29.35	7.6	145	7.63	1	0.47	91.38
OW-02D	10/10/2013	7,392	29.22	7.4	56	7.45	1	0.48	91.35
OW-05S	10/9/2013	3,487	28.72	7.6	164	6.62	1	0.23	94.85
OW-05M	10/9/2013	7,554	28.33	7.6	175	7.54	1	0.49	94.77
OW-05D	10/9/2013	7,656	29.58	7.6	147	6.40	1	0.50	94.85

Notes:

µmhos/cm micro-mhos per centimeter

°C degree centigrade

ORP oxidation reduction potential

mV millivolts

mg/L milligrams per liter

NTU Nephelometric Turbidity Unit

% percentage

btoc below top of polyvinyl chloride (PVC) casing

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

Date printed: 12/19/2013

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-030	Barry Collom	10/10/2013	8:25:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6460	2.0	0.606
					TLI	EPA 200.7	ALD	10/21/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.90	0.20	0.0041
					TLI	EPA 200.7	CAD	10/19/2013	Denise Chauv	mg/L	164	10.0	0.34
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	13.9	5.00	0.952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	16.3	10.0	4.68
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1400	500	59.8
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/18/2013	Ethel Suico	μg/L	1.30	0.5	0.10
					TLI	EPA 200.8	BAD	10/18/2013	Ethel Suico	μg/L	21.6	5.0	0.59
					TLI	EPA 200.8	BED	10/21/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/18/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	CUD	10/21/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/21/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	19.9	2.0	0.05

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-030	Barry Collom	10/10/2013	8:25:00 AM	TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/18/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2110	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	2.34	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	494	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.88	0.04	0.0112
					TLI	EPA 6010B	FE	10/17/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	47.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	47.0	5.0	1.68
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4130	125	1.76
					TLI	SM4500NH3D	NH3N	10/22/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-01M	CW-01M-030	Barry Collom	10/10/2013	8:58:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6660	2.0	0.606

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01M	CW-01M-030	Barry Collom	10/10/2013	8:58:00 AM	TLI	EPA 200.7	ALD	10/21/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.912	0.20	0.0041
					TLI	EPA 200.7	CAD	10/19/2013	Denise Chauv	mg/L	175	10.0	0.34
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	15.5	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	14.6	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1400	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/21/2013	Ethel Suico	μg/L	1.60	0.5	0.10
					TLI	EPA 200.8	BAD	10/18/2013	Ethel Suico	μg/L	84.0	5.0	0.59
					TLI	EPA 200.8	BED	10/21/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/18/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/21/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	CUD	10/21/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/21/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	17.2	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01M	CW-01M-030	Barry Collom	10/10/2013	8:58:00 AM	TLI	EPA 200.8	PBD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/18/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2130	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.92	0.5	0.104
					TLI	EPA 300.0	SO4	10/16/2013	Giawad Ghenniwa	mg/L	503	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	3.02	0.04	0.0112
					TLI	EPA 6010B	FE	10/17/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	50.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	50.0	5.0	1.68
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4250	125	1.76
					TLI	SM4500NH3D	NH3N	10/22/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-02D	CW-02D-030	Barry Collom	10/8/2013	11:59:00 AM	TLI	EPA 120.1	SC	10/11/2013	Maksim Gorbunov	µmhos/cm	6680	2.0	0.606
					TLI	EPA 200.7	ALD	10/28/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-030	Barry Collom	10/8/2013	11:59:00 AM	TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.964	0.20	0.0041
					TLI	EPA 200.7	CAD	10/18/2013	Denise Chauv	mg/L	79.2	5.00	0.17
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	13.7	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	4.20	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1530	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/9/2013	Ethel Suico	μg/L	3.50	0.5	0.10
					TLI	EPA 200.8	BAD	10/9/2013	Ethel Suico	μg/L	11.3	5.0	0.59
					TLI	EPA 200.8	BED	10/9/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	CUD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/9/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	12.8	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	3.10	2.0	0.24
					TLI	EPA 200.8	PBD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-030	Barry Collom	10/8/2013	11:59:00 AM	TLI	EPA 200.8	SBD	10/9/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	5.30	5.0	0.07
					TLI	EPA 218.6	CR6	10/10/2013	Naheed Eidinejad	μg/L	0.54	0.2	0.006
					TLI	EPA 300.0	CL	10/11/2013	Giawad Ghenniwa	mg/L	2390	50.0	17.4
					TLI	EPA 300.0	FL	10/9/2013	Giawad Ghenniwa	mg/L	2.67	0.5	0.104
					TLI	EPA 300.0	SO4	10/9/2013	Giawad Ghenniwa	mg/L	518	50.0	3.07
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.93	0.04	0.0112
					TLI	EPA 6010B	FE	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	55.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	55.0	5.0	1.68
					TLI	SM2130B	TRB	10/9/2013	Kim Luck	NTU	0.13	0.1	0.014
					TLI	SM2540C	TDS	10/9/2013	Himani Vaishnav	mg/L	4140	125	1.76
					TLI	SM4500NH3D	NH3N	10/29/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-02M	CW-02M-030	Barry Collom	10/8/2013	1:24:00 PM	TLI	EPA 120.1	SC	10/11/2013	Maksim Gorbunov	µmhos/cm	6590	2.0	0.606
					TLI	EPA 200.7	ALD	10/28/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	1.12	0.20	0.0041

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02M	CW-02M-030	Barry Collom	10/8/2013	1:24:00 PM	TLI	EPA 200.7	CAD	10/18/2013	Denise Chauv	mg/L	130	25.0	0.85
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)J	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	14.6	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	10.3	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1340	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/9/2013	Ethel Suico	μg/L	2.10	0.5	0.10
					TLI	EPA 200.8	BAD	10/10/2013	Ethel Suico	μg/L	63.9	5.0	0.59
					TLI	EPA 200.8	BED	10/9/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/17/2013	Ethel Suico	μg/L	2.50	1.0	0.14
					TLI	EPA 200.8	CUD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/9/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	16.6	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/9/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02M	CW-02M-030	Barry Collom	10/8/2013	1:24:00 PM	TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	2.40	1.0	0.03
					TLI	EPA 300.0	CL	10/11/2013	Giawad Ghenniwa	mg/L	2120	50.0	17.4
					TLI	EPA 300.0	FL	10/9/2013	Giawad Ghenniwa	mg/L	2.95	0.5	0.104
					TLI	EPA 300.0	SO4	10/9/2013	Giawad Ghenniwa	mg/L	507	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.90	0.04	0.0112
					TLI	EPA 6010B	FE	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	54.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	54.0	5.0	1.68
					TLI	SM2130B	TRB	10/9/2013	Kim Luck	NTU	0.103	0.1	0.014
					TLI	SM2540C	TDS	10/9/2013	Himani Vaishnav	mg/L	4200	125	1.76
					TLI	SM4500NH3D	NH3N	10/29/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-03D	CW-03D-030	Barry Collom	10/8/2013	9:12:00 AM	TLI	EPA 120.1	SC	10/11/2013	Maksim Gorbunov	µmhos/cm	6600	2.0	0.606
					TLI	EPA 200.7	ALD	10/28/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	1.01	0.20	0.0041
					TLI	EPA 200.7	CAD	10/18/2013	Denise Chauv	mg/L	75.0	5.00	0.17

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-030	Barry Collom	10/8/2013	9:12:00 AM	TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	14.0	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	5.37	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1470	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/9/2013	Ethel Suico	μg/L	1.60	0.5	0.10
					TLI	EPA 200.8	BAD	10/9/2013	Ethel Suico	μg/L	13.2	5.0	0.59
					TLI	EPA 200.8	BED	10/9/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	CUD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/9/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	14.4	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/9/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-030	Barry Collom	10/8/2013	9:12:00 AM	TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/10/2013	Naheed Eidinejad	μg/L	0.66	0.2	0.006
					TLI	EPA 300.0	CL	10/11/2013	Giawad Ghenniwa	mg/L	2130	50.0	17.4
					TLI	EPA 300.0	FL	10/9/2013	Giawad Ghenniwa	mg/L	3.55	0.5	0.104
					TLI	EPA 300.0	SO4	10/9/2013	Giawad Ghenniwa	mg/L	512	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.94	0.04	0.0112
					TLI	EPA 6010B	FE	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	58.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	58.0	5.0	1.68
					TLI	SM2130B	TRB	10/9/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/9/2013	Himani Vaishnav	mg/L	4260	125	1.76
					TLI	SM4500NH3D	NH3N	10/29/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-03M	CW-03M-030	Barry Collom	10/8/2013 1	10:12:00 AM	TLI	EPA 120.1	SC	10/11/2013	Maksim Gorbunov	µmhos/cm	7840	2.0	0.606
					TLI	EPA 200.7	ALD	10/28/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	1.07	0.20	0.0041
					TLI	EPA 200.7	CAD	10/18/2013	Denise Chauv	mg/L	198	10.0	0.34
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	CW-03M-030	Barry Collom	10/8/2013	10:12:00 AM	TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	17.3	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	15.8	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1620	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/9/2013	Ethel Suico	μg/L	1.30	0.5	0.10
					TLI	EPA 200.8	BAD	10/10/2013	Ethel Suico	μg/L	44.2	5.0	0.59
					TLI	EPA 200.8	BED	10/9/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/9/2013	Ethel Suico	μg/L	6.30	1.0	0.14
					TLI	EPA 200.8	CUD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/9/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	21.1	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/9/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03M	CW-03M-030	Barry Collom	10/8/2013	10:12:00 AM	TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	7.00	1.0	0.03
					TLI	EPA 300.0	CL	10/11/2013	Giawad Ghenniwa	mg/L	2640	50.0	17.4
					TLI	EPA 300.0	FL	10/9/2013	Giawad Ghenniwa	mg/L	2.78	0.5	0.104
					TLI	EPA 300.0	SO4	10/9/2013	Giawad Ghenniwa	mg/L	481	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	1.78	0.04	0.0112
					TLI	EPA 6010B	FE	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	48.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	48.0	5.0	1.68
					TLI	SM2130B	TRB	10/9/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/9/2013	Himani Vaishnav	mg/L	4740	250	1.76
					TLI	SM4500NH3D	NH3N	10/29/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-04D	CW-04D-030	Barry Collom	10/8/2013	3:02:00 PM	TLI	EPA 120.1	SC	10/11/2013	Maksim Gorbunov	µmhos/cm	6710	2.0	0.606
					TLI	EPA 200.7	ALD	10/28/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	1.07	0.20	0.0041
					TLI	EPA 200.7	CAD	10/18/2013	Denise Chauv	mg/L	116	5.00	0.17
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	14.1	0.50	0.0952

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-030	Barry Collom	10/8/2013	3:02:00 PM	TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	7.57	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1480	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/9/2013	Ethel Suico	μg/L	3.60	0.5	0.10
					TLI	EPA 200.8	BAD	10/9/2013	Ethel Suico	μg/L	16.2	5.0	0.59
					TLI	EPA 200.8	BED	10/9/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	CUD	10/9/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/9/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	19.0	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	2.80	2.0	0.24
					TLI	EPA 200.8	PBD	10/9/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/9/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-030	Barry Collom	10/8/2013	3:02:00 PM	TLI	EPA 218.6	CR6	10/10/2013	Naheed Eidinejad	μg/L	0.63	0.2	0.006
					TLI	EPA 300.0	CL	10/11/2013	Giawad Ghenniwa	mg/L	2150	50.0	17.4
					TLI	EPA 300.0	FL	10/9/2013	Giawad Ghenniwa	mg/L	3.01	0.5	0.104
					TLI	EPA 300.0	SO4	10/9/2013	Giawad Ghenniwa	mg/L	511	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.92	0.04	0.0112
					TLI	EPA 6010B	FE	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	50.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	50.0	5.0	1.68
					TLI	SM2130B	TRB	10/9/2013	Kim Luck	NTU	0.11	0.1	0.014
					TLI	SM2540C	TDS	10/9/2013	Himani Vaishnav	mg/L	4260	125	1.76
					TLI	SM4500NH3D	NH3N	10/29/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-04M	CW-04M-030	Barry Collom	10/9/2013	8:10:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6360	2.0	0.606
					TLI	EPA 200.7	ALD	10/21/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.857	0.20	0.0041
					TLI	EPA 200.7	CAD	10/19/2013	Denise Chauv	mg/L	177	10.0	0.34
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	15.6	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	14.5	1.00	0.468

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	CW-04M-030	Barry Collom	10/9/2013	8:10:00 AM	TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1300	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/18/2013	Ethel Suico	μg/L	2.20	0.5	0.10
					TLI	EPA 200.8	BAD	10/18/2013	Ethel Suico	μg/L	87.1	5.0	0.59
					TLI	EPA 200.8	BED	10/21/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/18/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	5.60	1.0	0.14
					TLI	EPA 200.8	CUD	10/21/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/21/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.04
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	10.1	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/18/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	5.40	1.0	0.03

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	CW-04M-030	Barry Collom	10/9/2013	8:10:00 AM	TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2060	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.84	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	454	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.59	0.04	0.0112
					TLI	EPA 6010B	FE	10/17/2013	Denise Chauv	mg/L	ND (0.02)J	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	54.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	54.0	5.0	1.68
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4100	125	1.76
					TLI	SM4500NH3D	NH3N	10/22/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
CW-04M	OW-70-030	Barry Collom	10/9/2013	10:00:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6260	2.0	0.606
					TLI	EPA 200.7	ALD	10/21/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.854	0.20	0.0041
					TLI	EPA 200.7	CAD	10/19/2013	Denise Chauv	mg/L	173	10.0	0.34
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	15.9	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	14.8	1.00	0.468
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1320	100	12.0

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	OW-70-030	Barry Collom	10/9/2013	10:00:00 AM	TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/18/2013	Ethel Suico	μg/L	2.20	0.5	0.10
					TLI	EPA 200.8	BAD	10/18/2013	Ethel Suico	μg/L	90.4	5.0	0.59
					TLI	EPA 200.8	BED	10/21/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/18/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	5.70	1.0	0.14
					TLI	EPA 200.8	CUD	10/21/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/21/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	9.60	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/18/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	5.40	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2060	50.0	17.4

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	OW-70-030	Barry Collom	10/9/2013	10:00:00 AM	TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.77	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	454	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.61	0.04	0.0112
					TLI	EPA 6010B	FE	10/17/2013	Denise Chauv	mg/L	0.0775 J	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	50.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	50.0	5.0	1.68
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4120	125	1.76
					TLI	SM4500NH3D	NH3N	10/22/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
OW-01D	OW-01D-030	Barry Collom	10/9/2013	10:14:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6470	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	1440	100	12.0
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	MOD	10/18/2013	Ethel Suico	μg/L	20.7	2.0	0.10
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2130	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	2.35	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	493	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.77	0.04	0.0112

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01D	OW-01D-030	Barry Collom	10/9/2013	10:14:00 AM	TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	0.415	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4270	125	1.76
OW-01M	OW-01M-030	Barry Collom	10/9/2013	10:42:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6530	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	1480	100	12.0
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	1.50	1.0	0.14
					TLI	EPA 200.8	MOD	10/18/2013	Ethel Suico	μg/L	11.1	2.0	0.10
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	1.20	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2410	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.66	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	489	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.72	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4320	125	1.76
OW-01S	OW-01S-030	Barry Collom	10/9/2013	11:35:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	5190	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	801	100	12.0
					TLI	EPA 200.8	CRTD	10/21/2013	Ethel Suico	μg/L	8.40	1.0	0.14
					TLI	EPA 200.8	MOD	10/18/2013	Ethel Suico	μg/L	5.90	2.0	0.10
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	7.40	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	1730	50.0	17.4

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01S	OW-01S-030	Barry Collom	10/9/2013	11:35:00 AM	TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.67	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	372	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	3.08	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	0.212	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	3870	125	1.76
OW-02D	OW-02D-030	Barry Collom	10/10/2013	10:36:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6570	2.0	0.606
					TLI	EPA 200.7	ALD	10/21/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.917	0.20	0.0041
					TLI	EPA 200.7	CAD	10/19/2013	Denise Chauv	mg/L	119	10.0	0.34
					TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	17.5	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	28.2	2.00	0.936
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1420	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/18/2013	Ethel Suico	μg/L	3.50	0.5	0.10
					TLI	EPA 200.8	BAD	10/18/2013	Ethel Suico	μg/L	15.8	5.0	0.59
					TLI	EPA 200.8	BED	10/21/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02D	OW-02D-030	Barry Collom	10/10/2013	10:36:00 AM	TLI	EPA 200.8	COBD	10/18/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	CUD	10/21/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/21/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	18.7	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/18/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2120	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.96	0.5	0.104
					TLI	EPA 300.0	SO4	10/16/2013	Giawad Ghenniwa	mg/L	494	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.93	0.04	0.0112
					TLI	EPA 6010B	FE	10/17/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	30.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02D	OW-02D-030	Barry Collom	10/10/2013	10:36:00 AM	TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	30.0	5.0	1.68
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4240	125	1.76
					TLI	SM4500NH3D	NH3N	10/22/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
OW-02M	OW-02M-030	Barry Collom	10/10/2013	11:13:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6450	2.0	0.606
					TLI	EPA 200.7	ALD	10/21/2013	Denise Chauv	μg/L	ND (20)	20.0	7.20
					TLI	EPA 200.7	BD	10/18/2013	Denise Chauv	mg/L	0.992	0.20	0.0041
					TLI	EPA 200.7	CAD	10/19/2013	Denise Chauv	mg/L	134	10.0	0.34
			TLI	EPA 200.7	FETD	10/18/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003		
					TLI	EPA 200.7	KD	11/7/2013	Denise Chauv	mg/L	16.6	0.50	0.0952
					TLI	EPA 200.7	MGD	11/7/2013	Denise Chauv	mg/L	22.8	2.00	0.936
					TLI	EPA 200.7	NAD	11/7/2013	Denise Chauv	mg/L	1360	100	12.0
					TLI	EPA 200.7	ZND	11/7/2013	Denise Chauv	μg/L	ND (20)	20.0	5.10
					TLI	EPA 200.8	AGD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.029
					TLI	EPA 200.8	ASD	10/18/2013	Ethel Suico	μg/L	1.60	0.5	0.10
					TLI	EPA 200.8	BAD	10/18/2013	Ethel Suico	μg/L	41.0	5.0	0.59
					TLI	EPA 200.8	BED	10/21/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.072
					TLI	EPA 200.8	CDD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.08
					TLI	EPA 200.8	COBD	10/18/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.08

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02M	OW-02M-030	Barry Collom	10/10/2013	11:13:00 AM	TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	1.60	1.0	0.14
					TLI	EPA 200.8	CUD	10/21/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.38
					TLI	EPA 200.8	HGD	10/21/2013	Ethel Suico	μg/L	ND (0.4)	0.4	0.08
					TLI	EPA 200.8	MND	11/7/2013	Ethel Suico	μg/L	ND (0.5)	0.5	0.06
					TLI	EPA 200.8	MOD	11/7/2013	Ethel Suico	μg/L	16.3	2.0	0.05
					TLI	EPA 200.8	NID	11/7/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.24
					TLI	EPA 200.8	PBD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.29
					TLI	EPA 200.8	SBD	10/18/2013	Ethel Suico	μg/L	ND (2.0)	2.0	0.07
					TLI	EPA 200.8	SED	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.21
					TLI	EPA 200.8	TLD	11/7/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 200.8	VD	11/7/2013	Ethel Suico	μg/L	ND (5.0)	5.0	0.07
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	1.60	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2090	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	2.04	0.5	0.104
					TLI	EPA 300.0	SO4	10/16/2013	Giawad Ghenniwa	mg/L	490	25.0	1.54
					CHMC	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.80	0.04	0.0112
					TLI	EPA 6010B	FE	10/17/2013	Denise Chauv	mg/L	ND (0.02)	0.02	0.003
					TLI	SM 2320B	ALKB	10/17/2013	Kim Luck	mg/L	76.0	5.0	1.68
					TLI	SM 2320B	ALKC	10/17/2013	Kim Luck	mg/L	ND (5.0)	5.0	1.68
					TLI	SM 2320B	ALKT	10/17/2013	Kim Luck	mg/L	76.0	5.0	1.68

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02M	OW-02M-030	Barry Collom	10/10/2013	11:13:00 AM	TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4160	125	1.76
					TLI	SM4500NH3D	NH3N	10/22/2013	Kim Luck/Maria Mangarova	mg/L	ND (0.5)	0.5	0.0318
OW-02S	OW-71-030	Barry Collom	10/10/2013	7:00:00 AM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	1740	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	375	100	12.0
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	21.7	1.0	0.14
					TLI	EPA 200.8	MOD	10/21/2013	Ethel Suico	μg/L	34.6	2.0	0.10
					TLI	EPA 218.6	CR6	10/21/2013	Naheed Eidinejad	μg/L	22.8	0.2	0.006
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	469	10.0	3.49
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	4.77	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	93.7	50.0	3.07
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	3.92	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	2.25	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	1030	50.0	1.76
OW-02S	OW-02S-030	Barry Collom	10/10/2013	12:04:00 PM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	1760	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	391	100	12.0
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	22.0	1.0	0.14
					TLI	EPA 200.8	MOD	10/21/2013	Ethel Suico	μg/L	34.7	2.0	0.10
					TLI	EPA 218.6	CR6	10/21/2013	Naheed Eidinejad	μg/L	22.9	0.2	0.006

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02S	OW-02S-030	Barry Collom	10/10/2013	12:04:00 PM	TLI	EPA 300.0	CL	10/16/2013	Giawad Ghenniwa	mg/L	468	10.0	3.49
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	4.74	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	99.8	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	3.85	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	2.10	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	1040	50.0	1.76
OW-05D	OW-05D-030	Barry Collom	10/9/2013	1:56:00 PM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6710	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	1800	100	12.0
					TLI	EPA 200.8	CRTD	10/21/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	MOD	10/18/2013	Ethel Suico	μg/L	18.2	2.0	0.10
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2190	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	2.06	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	512	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.95	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	0.138	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4240	125	1.76
OW-05M	OW-05M-030	Barry Collom	10/9/2013	2:44:00 PM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	6650	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	1620	100	12.0

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05M	OW-05M-030	Barry Collom	10/9/2013	2:44:00 PM	TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	ND (1.0)	1.0	0.14
					TLI	EPA 200.8	MOD	10/18/2013	Ethel Suico	μg/L	17.0	2.0	0.10
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	ND (1.0)	1.0	0.03
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	2150	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	2.08	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	500	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.91	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	4300	125	1.76
OW-05S	OW-05S-030	Barry Collom	10/9/2013	3:12:00 PM	TLI	EPA 120.1	SC	10/17/2013	Jenny Tankunakorn	µmhos/cm	2880	2.0	0.606
					TLI	EPA 200.7	NAD	10/21/2013	Denise Chauv	mg/L	486	100	12.0
					TLI	EPA 200.8	CRTD	10/18/2013	Ethel Suico	μg/L	17.1	1.0	0.14
					TLI	EPA 200.8	MOD	10/18/2013	Ethel Suico	μg/L	15.5	2.0	0.10
					TLI	EPA 218.6	CR6	10/19/2013	Naheed Eidinejad	μg/L	18.2	0.2	0.006
					TLI	EPA 300.0	CL	10/15/2013	Giawad Ghenniwa	mg/L	865	50.0	17.4
					TLI	EPA 300.0	FL	10/14/2013	Giawad Ghenniwa	mg/L	1.80	0.5	0.104
					TLI	EPA 300.0	SO4	10/15/2013	Giawad Ghenniwa	mg/L	163	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	10/16/2013	Emily Clark	mg/L	2.91	0.04	0.0112
					TLI	SM2130B	TRB	10/11/2013	Kim Luck	NTU	0.238	0.1	0.014

TABLE 11

ARAR Monitoring Information for Groundwater Samples, Second Half 2013

PG&E Topock Compliance Monitoring Program

Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05S-030	Barry Collom	10/9/2013	3:12:00 PM	TLI	SM2540C	TDS	10/16/2013	Jenny Tankunakorn	mg/L	1820	50.0	1.76
reporting lim parameter n micro-mhos Nephelomet milligrams p micrograms	nit corrected for ot detected at per centimeter ric Turbidity Ur er liter per liter	r sample dil the listed re r nit	ution eporting limit									
Truesdail La	boratories, Inc).	requirement	S								
alkalinity, to alkalinity, bid aluminum, di silver, dissol arsenic, dissol boron, dissol barium, dissol calcium, discolation, di cadmium, di chloride cobalt, dissol chromium, di copper, dissoliron	tal as CaCO3 carbonate as C lissolved lved solved solved ssolved ssolved ssolved ssolved stolved blved lissolved chromium olved	CaCO3	PBD SBD SC SED SO4 TLD TDS TRB	po ma ma so nic an N nitt lea an sp se su tha tot	tassium, dissagnesium, disagnesium, disanganese, disolybdenum, dissolved dium, dissolved timony, dissolved timony, dissolved timony, dissolved timony, dissolved dissolved dissolved sal	olved ssolved ssolved ed d ditrogen) s Nitrogen) lved tance lved						
	method deterporting limparameter numicro-mhos Nephelomet milligrams puricrograms concentration applicable on Truesdail La Advanced Sulkalinity, as alkalinity, to alkalinity, bid aluminum, discipler, dissobarium, dissobarium, discobarium, d	Sample ID OW-05S-030 Barry Collom method detection limit corr reporting limit corrected for parameter not detected at micro-mhos per centimete Nephelometric Turbidity U milligrams per liter micrograms per liter concentration estimated by applicable or relevant and Truesdail Laboratories, Inc Advanced Sciences, Corva alkalinity, as carbonate alkalinity, total as CaCO3 alkalinity, total as CaCO3 alkalinity, bicarbonate as Caluminum, dissolved silver, dissolved barium, dissolved barium, dissolved barium, dissolved calcium, dissolved cadmium, dissolved cadmium, dissolved chloride cobalt, dissolved chromium, dissolved hexavalent chromium copper, dissolved	Sample ID Name Date OW-05S-030 Barry Collom 10/9/2013 method detection limit corrected for sa reporting limit corrected for sample dil parameter not detected at the listed remicro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter micrograms per liter concentration estimated by laboratory applicable or relevant and appropriate Truesdail Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate alkalinity, total as CaCO3 alkalinity, bicarbonate as CaCO3 aluminum, dissolved silver, dissolved boron, dissolved barium, dissolved beryllium, dissolved beryllium, dissolved calcium, dissolved cadmium, dissolved chloride cobalt, dissolved chromium, dissolved hexavalent chromium copper, dissolved iron	Sample IDNameDateTimeOW-05S-030Barry Collom10/9/20133:12:00 PMmethod detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeterNephelometric Turbidity Unit milligrams per liter micrograms per liter concentration estimated by laboratory or data valid applicable or relevant and appropriate requirement Truesdail Laboratories, Inc.Advanced Sciences, Corvallis, ORalkalinity, as carbonate alkalinity, total as CaCO3 alkalinity, bicarbonate as CaCO3 alkalinity, bicarbonate as CaCO3 alkalinity, dissolved mND silver, dissolved mND silver, dissolved mND silver, dissolved mND barium, dissolved mND barium, dissolved mNAD beryllium, dissolved mNAD beryllium, dissolved mNAD modulation, dissolved modula	Method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter concentration estimated by laboratory or data validation applicable or relevant and appropriate requirements Truesdail Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate alkalinity, total as CaCO3 alkalinity, bicarbonate as CaCO3 MGD malaluminum, dissolved MND malaluminum, dissolved MND malaluminum, dissolved NAD solved NAD solved NAD solved NAD solved NASN and beryllium, dissolved NASN and beryllium, dissolved SBD and calcium, dissolved SBD and calcium, dissolved SBD and chloride SC spc cobalt, dissolved SED secondated iron TRB turi	OW-05S-030 Barry Collom 10/9/2013 3:12:00 PM TLI SM2540C method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter micrograms per liter concentration estimated by laboratory or data validation applicable or relevant and appropriate requirements Truesdail Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate HGD mercury, dissolval alkalinity, total as CaCO3 KD potassium, dissalkalinity, bicarbonate as CaCO3 MGD magnesium, disaluminum, dissolved MND manganese, dissilver, dissolved NAD sodium, dissolved NAD sodium, dissolved boron, dissolved NAD sodium, dissolved NH3N ammonia (as NH3N ammo	Sample ID Name Date Time Lab Method Parameter OW-05S-030 Barry Collom 10/9/2013 3:12:00 PM TLI SM2540C TDS method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter concentration estimated by laboratory or data validation applicable or relevant and appropriate requirements Truesdail Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate HGD mercury, dissolved alkalinity, total as CaCO3 KD potassium, dissolved alkalinity, bicarbonate as CaCO3 MGD magnesium, dissolved silver, dissolved MND manganese, dissolved silver, dissolved NAD sodium, dissolved arsenic, dissolved NAD sodium, dissolved barium, dissolved NH3N ammonia (as Nitrogen) beryllium, dissolved SBD antimony, dissolved cadmium, dissolved SBD antimony, dissolved chloride SC specific conductance cobalt, dissolved SED selenium, dissolved chromium, dissolved SCO4 sulfate hexavalent chromium TLD thallium, dissolved solids iron TRB turbidity	Sample ID Name Date Time Lab Method Parameter Date OW-05S-030 Barry Collom 10/9/2013 3:12:00 PM method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter concentration estimated by laboratory or data validation applicable or relevant and appropriate requirements Truesdail Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate HGD potassium, dissolved alkalinity, bicarbonate as CaCO3 MGD magnesium, dissolved alkalinity, bicarbonate as CaCO3 MGD molybdenum, dissolved arsenic, dissolved NAD sodium, dissolved barium, dissolved NAD sodium, dissolved barium, dissolved NH3N ammonia (as Nitrogen) beryllium, dissolved Cadmium, dissolved SBD antimony, dissolved cadmium, dissolved SBD antimony, dissolved chloride SC specific conductance cobalt, dissolved SCD selenium, dissolved chloride SC specific conductance selenium, dissolved hexavalent chromium TLD thallium, dissolved cologer, dissolved TDS total dissolved solids turbidity	Sample ID Name Date Time Lab Method Parameter Date Technician OW-05S-030 Barry Collom 10/9/2013 3:12:00 PM TLI SM2540C TDS 10/16/2013 Jenny Tankunakorn method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mbos per centimeter Nephelometric Turbidity Unit milligrams per liter micrograms per liter solved barium, dissolved MDD manganese, dissolved alkalinity, total as CaCO3 KD potassium, dissolved manganese, dissolved manganese, dissolved molybdenum, dissolved barium, dissolved NID nickel, dissolved barium, dissolved NDD nickel, dissolved barium, dissolved NDD nickel, dissolved lead, dissolved lead, dissolved calcium, dissolved SBD antimony, dissolved calcium, dissolved SBD antimony, dissolved heavalent chromium TLD thallium, dissolved total dissolved solids liton TRB turbidity	Sample ID Name Date Time Lab Method Parameter Date Technician Units OW-05S-030 Barry Collom 10/9/2013 3:12:00 PM TLI SM2540C TDS 10/16/2013 Jenny Tankunakorn mg/L method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter concentration estimated by laboratory or data validation applicable or relevant and appropriate requirements Truesdail Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate alkalinity, total as CaCO3 MGD potassium, dissolved alkalinity, total as CaCO3 MGD manganese, dissolved molybdenum, dissolved sodium, dissolved or selimated by laboratory or data validation manganese, dissolved molybdenum, dissolved sodium, dissolved NAD nickel, dissolved nickel, dissolved nickel, dissolved animum, dissolved NAD nickel, dissolved nickel, dissolved nickel, dissolved nitrate/nitritite (as Nitrogen) lead, dissolved cadmium, dissolved SBD animony, dissolved sulfate conductance specific conductance specific conductance specific conductance specific conductance specific conductance selenium, dissolved solids it urbidity to total dissolved solids it urbidity to total dissolved solids it urbidity to the turbidity to the	Sample ID Name Date Time Lab Method Parameter Date Technician Units Result OW-06S-030 Barry Collom 10/9/2013 3:12:00 PM TLI SM2540C TDS 10/16/2013 Jenny Tankunakom mg/L 1820 method detection limit corrected for sample dilution reporting limit corrected for sample dilution parameter not detected at the listed reporting limit micro-mhos per centimeter Nephelometric Turbidity Unit milligrams per liter concentration estimated by laboratory or data validation applicable or relevant and appropriate requirements Truesdall Laboratories, Inc. Advanced Sciences, Corvallis, OR alkalinity, as carbonate alkalinity, total as CaCO3 MGD manganesum, dissolved alkalinity, dissolved Siever, dissolved MND manganese, dissolved arsenic, dissolved NAD sodium, dissolved arsenic, dissolved NAD sodium, dissolved NASN ammonia (as Nitrogen) nitrate/nitrite (as Nitrogen) elead, dissolved commin, dissolved SBD antimony, dissolved solids united (assolved commin, dissolved commin, dissolved antimony, dissolved antimony	Sample ID Name Date Time Lab Method Parameter Date Technician Units Result RL OW-05S-030 Barry Collom 10/9/2013 3:12:00 PM method detection limit corrected for sample dilution reporting limit reporting limi

ZND

zinc, dissolved

FL

fluoride

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 8, 2013

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2013-CMP-030, GROUNDWATER MONITORING

PROJECT, TLI NO.: 810321

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2013-CMP-030 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody October 8, 2013, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Thallium by EPA 200.8 in batch 110613C was detected in the method blank just above the reporting limit. Because the sample results were all below the reporting limit and all other QA/QC were within acceptable limits, the data was accepted.

The straight run for the sample and associated matrix spike for samples CW-02D-030, CW-03D-030, and CW-04D-030 for Hexavalent Chromium analysis by EPA 218.6 were just outside the retention time window. Because the matrix spike recovery and all other QA/QC were within acceptable limits and the results from the straight run agreed with those of the 5x dilutions, the results from the straight runs were reported.

On November 5, 2013, Mr. Duffy provided an updated metals list via email.

Due to the discrepancy between the Total Dissolved Chromium (4.0 ug/L) and Hexavalent Chromium (2.4 ug/L) results for sample CW-02M-030, sample from the Total Dissolved Chromium and Hexavalent Chromium sample containers were digested and analyzed for Total Dissolved Chromium. The results were 2.5 ug/L and 2.4 ug/L, respectively. The original Total Dissolved Chromium digestate was re-analyzed for confirmation and yielded a result of 4.2 ug/L. After discussing the results with Mr. Duffy, the result from the re-digested Total Dissolved Chromium was reported as it more closely matched the Hexavalent Chromium result.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Six (6) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM

Laboratory No.: 810321

Date: November 8, 2013 **Collected:** October 8, 2013 **Received:** October 8, 2013 Revision 1; December 9, 2013

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Maksim Gorbunov
SM 2540C	Total Dissolved Solids	Himani Vaishnav
SM 2320B	Total Alkalinity	Kim Luck
SM 2130B	Turbidity	Kim Luck
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Kim Luck / Maria Mangarova
EPA 200.7	Metals by ICP	Denise Chauv
SW 6010B	Metals by ICP	Denise Chauv
EPA 200.8	Metals by ICP/MS	Ethel Suico
EPA 218.6	Hexavalent Chromium	Naheed Eidinejad

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 810321

Date Received: October 8, 2013

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810321-001	CW-02D-030	E120.1	NONE	10/8/2013	11:59	EC	6680	umhos/cm	2.00
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Aluminum	ND	ug/L	20.0
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	BORON	964	ug/L	200
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Calcium	79200	ug/L	5000
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Iron	ND	ug/L	20.0
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Magnesium	4200	ug/L	1000
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Potassium	13700	ug/L	500
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Sodium	1530000	ug/L	100000
810321-001	CW-02D-030	E200.7	FLDFLT	10/8/2013	11:59	Zinc	ND	ug/L	20.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Antimony	ND	ug/L	2.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Arsenic	3.5	ug/L	0.50
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Barium	11.3	ug/L	5.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Beryllium	ND	ug/L	0.50
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Cadmium	ND	ug/L	1.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Chromium	ND	ug/L	1.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Cobalt	ND	ug/L	5.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Copper	ND	ug/L	5.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Lead	ND	ug/L	1.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Manganese	ND	ug/L	0.50
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Mercury	ND	ug/L	0.40
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Molybdenum	12.8	ug/L	2.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Nickel	3.1	ug/L	2.0

006

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Selenium	ND	ug/L	5.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Silver	ND	ug/L	5.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Thallium	ND	ug/L	1.0
810321-001	CW-02D-030	E200.8	FLDFLT	10/8/2013	11:59	Vanadium	5.3	ug/L	5.0
810321-001	CW-02D-030	E218.6	FLDFLT	10/8/2013	11:59	Chromium, Hexavalent	0.54	ug/L	0.20
810321-001	CW-02D-030	E300	NONE	10/8/2013	11:59	Chloride	2390	mg/L	50.0
810321-001	CW-02D-030	E300	NONE	10/8/2013	11:59	Fluoride	2.67	mg/L	0.500
810321-001	CW-02D-030	E300	NONE	10/8/2013	11:59	Sulfate	518	mg/L	50.0
810321-001	CW-02D-030	SM2130B	NONE	10/8/2013	11:59	Turbidity	0.130	NTU	0.100
810321-001	CW-02D-030	SM2320B	NONE	10/8/2013	11:59	Alkalinity	55.0	mg/L	5.00
810321-001	CW-02D-030	SM2320B	NONE	10/8/2013	11:59	Alkalinity, Bicarbonate (As	55.0	mg/L	5.00
810321-001	CW-02D-030	SM2320B	NONE	10/8/2013	11:59	Alkalinity, Carbonate (As C	ND	mg/L	5.00
810321-001	CW-02D-030	SM2540C	NONE	10/8/2013	11:59	Total Dissolved Solids	4140	mg/L	125
810321-001	CW-02D-030	SM4500NH3D	NONE	10/8/2013	11:59	Ammonia-N	ND	mg/L	0.500
810321-001	CW-02D-030	SW6010B	NONE	10/8/2013	11:59	Iron	ND	ug/L	20.0

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810321-002	CW-02M-030	E120.1	NONE	10/8/2013	13:24	EC	6590	umhos/cm	2.00
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Aluminum	ND	ug/L	20.0
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	BORON	1120	ug/L	200
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Calcium	130000	ug/L	25000
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Iron	ND	ug/L	20.0
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Magnesium	10300	ug/L	1000
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Potassium	14600	ug/L	500
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Sodium	1340000	ug/L	100000
810321-002	CW-02M-030	E200.7	FLDFLT	10/8/2013	13:24	Zinc	ND	ug/L	20.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Antimony	ND	ug/L	2.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Arsenic	2.1	ug/L	0.50
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Barium	63.9	ug/L	5.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Beryllium	ND	ug/L	0.50
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Cadmium	ND	ug/L	1.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Chromium	2.5	ug/L	1.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Cobalt	ND	ug/L	5.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Copper	ND	ug/L	5.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Lead	ND	ug/L	1.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Manganese	ND	ug/L	0.50
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Mercury	ND	ug/L	0.40
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Molybdenum	16.6	ug/L	2.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Nickel	ND	ug/L	2.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Selenium	ND	ug/L	5.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Silver	ND	ug/L	5.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Thallium	ND	ug/L	1.0
810321-002	CW-02M-030	E200.8	FLDFLT	10/8/2013	13:24	Vanadium	ND	ug/L	5.0
810321-002	CW-02M-030	E218.6	FLDFLT	10/8/2013	13:24	Chromium, Hexavalent	2.4	ug/L	1.0
810321-002	CW-02M-030	E300	NONE	10/8/2013	13:24	Chloride	2120	mg/L	50.0
810321-002	CW-02M-030	E300	NONE	10/8/2013	13:24	Fluoride	2.95	mg/L	0.500
810321-002	CW-02M-030	E300	NONE	10/8/2013	13:24	Sulfate	507	mg/L	25.0
810321-002	CW-02M-030	SM2130B	NONE	10/8/2013	13:24	Turbidity	0.103	NTU	0.100
810321-002	CW-02M-030	SM2320B	NONE	10/8/2013	13:24	Alkalinity	54.0	mg/L	5.00
810321-002	CW-02M-030	SM2320B	NONE	10/8/2013	13:24	Alkalinity, Bicarbonate (As	54.0	mg/L	5.00
810321-002	CW-02M-030	SM2320B	NONE	10/8/2013	13:24	Alkalinity, Carbonate (As 0	ND	mg/L	5.00
810321-002	CW-02M-030	SM2540C	NONE	10/8/2013	13:24	Total Dissolved Solids	4200	mg/L	125
810321-002	CW-02M-030	SM4500NH3D	NONE	10/8/2013	13:24	Ammonia-N	ND	mg/L	0.500
810321-002	CW-02M-030	SW6010B	NONE	10/8/2013	13:24	Iron	ND	ug/L	20.0

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810321-003	CW-03D-030	E120.1	NONE	10/8/2013	9:12	EC	6600	umhos/cm	2.00
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Aluminum	ND	ug/L	20.0
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	BORON	1010	ug/L	200
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Calcium	75000	ug/L	5000
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Iron	ND	ug/L	20.0
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Magnesium	5370	ug/L	1000
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Potassium	14000	ug/L	500
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Sodium	1470000	ug/L	100000
810321-003	CW-03D-030	E200.7	FLDFLT	10/8/2013	9:12	Zinc	ND	ug/L	20.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Antimony	ND	ug/L	2.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Arsenic	1.6	ug/L	0.50
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Barium	13.2	ug/L	5.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Beryllium	ND	ug/L	0.50
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Cadmium	ND	ug/L	1.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Chromium	ND	ug/L	1.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Cobalt	ND	ug/L	5.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Copper	ND	ug/L	5.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Lead	ND	ug/L	1.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Manganese	ND	ug/L	0.50
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Mercury	ND	ug/L	0.40
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Molybdenum	14.4	ug/L	2.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Nickel	ND	ug/L	2.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Selenium	ND	ug/L	5.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Silver	ND	ug/L	5.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Thallium	ND	ug/L	1.0
810321-003	CW-03D-030	E200.8	FLDFLT	10/8/2013	9:12	Vanadium	ND	ug/L	5.0
810321-003	CW-03D-030	E218.6	FLDFLT	10/8/2013	9:12	Chromium, Hexavalent	0.66	ug/L	0.20
810321-003	CW-03D-030	E300	NONE	10/8/2013	9:12	Chloride	2130	mg/L	50.0
810321-003	CW-03D-030	E300	NONE	10/8/2013	9:12	Fluoride	3.55	mg/L	0.500
810321-003	CW-03D-030	E300	NONE	10/8/2013	9:12	Sulfate	512	mg/L	25.0
810321-003	CW-03D-030	SM2130B	NONE	10/8/2013	9:12	Turbidity	ND	NTU	0.100
810321-003	CW-03D-030	SM2320B	NONE	10/8/2013	9:12	Alkalinity	58.0	mg/L	5.00
810321-003	CW-03D-030	SM2320B	NONE	10/8/2013	9:12	Alkalinity, Bicarbonate (As	58.0	mg/L	5.00
810321-003	CW-03D-030	SM2320B	NONE	10/8/2013	9:12	Alkalinity, Carbonate (As (ND	mg/L	5.00
810321-003	CW-03D-030	SM2540C	NONE	10/8/2013	9:12	Total Dissolved Solids	4260	mg/L	125
810321-003	CW-03D-030	SM4500NH3D	NONE	10/8/2013	9:12	Ammonia-N	ND	mg/L	0.500
810321-003	CW-03D-030	SW6010B	NONE	10/8/2013	9:12	Iron	ND	ug/L	20.0

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810321-004	CW-03M-030	E120.1	NONE	10/8/2013	10:12	EC	7840	umhos/cm	2.00
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Aluminum	ND	ug/L	20.0
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	BORON	1070	ug/L	200
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Calcium	198000	ug/L	10000
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Iron	ND	ug/L	20.0
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Magnesium	15800	ug/L	1000
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Potassium	17300	ug/L	500
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Sodium	1620000	ug/L	100000
810321-004	CW-03M-030	E200.7	FLDFLT	10/8/2013	10:12	Zinc	ND	ug/L	20.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Antimony	ND	ug/L	2.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Arsenic	1.3	ug/L	0.50
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Barium	44.2	ug/L	5.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Beryllium	ND	ug/L	0.50
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Cadmium	ND	ug/L	1.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Chromium	6.3	ug/L	1.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Cobalt	ND	ug/L	5.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Copper	ND	ug/L	5.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Lead	ND	ug/L	1.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Manganese	ND	ug/L	0.50
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Mercury	ND	ug/L	0.40
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Molybdenum	21.1	ug/L	2.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Nickel	ND	ug/L	2.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Selenium	ND	ug/L	5.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Silver	ND	ug/L	5.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Thallium	ND	ug/L	1.0
810321-004	CW-03M-030	E200.8	FLDFLT	10/8/2013	10:12	Vanadium	ND	ug/L	5.0
810321-004	CW-03M-030	E218.6	FLDFLT	10/8/2013	10:12	Chromium, Hexavalent	7.0	ug/L	1.0
810321-004	CW-03M-030	E300	NONE	10/8/2013	10:12	Chloride	2640	mg/L	50.0
810321-004	CW-03M-030	E300	NONE	10/8/2013	10:12	Fluoride	2.78	mg/L	0.500
810321-004	CW-03M-030	E300	NONE	10/8/2013	10:12	Sulfate	481	mg/L	25.0
810321-004	CW-03M-030	SM2130B	NONE	10/8/2013	10:12	Turbidity	ND	NTU	0.100
810321-004	CW-03M-030	SM2320B	NONE	10/8/2013	10:12	Alkalinity	48.0	mg/L	5.00
810321-004	CW-03M-030	SM2320B	NONE	10/8/2013	10:12	Alkalinity, Bicarbonate (As	48.0	mg/L	5.00
810321-004	CW-03M-030	SM2320B	NONE	10/8/2013	10:12	Alkalinity, Carbonate (As C	ND	mg/L	5.00
810321-004	CW-03M-030	SM2540C	NONE	10/8/2013	10:12	Total Dissolved Solids	4740	mg/L	250
2 810321-004	CW-03M-030	SM4500NH3D	NONE	10/8/2013	10:12	Ammonia-N	ND	mg/L	0.500
810321-004	CW-03M-030	SW6010B	NONE	10/8/2013	10:12	Iron	ND	ug/L	20.0

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810321-005	CW-04D-030	E120.1	NONE	10/8/2013	15:02	EC	6710	umhos/cm	2.00
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Aluminum	ND	ug/L	20.0
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	BORON	1070	ug/L	200
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Calcium	116000	ug/L	5000
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Iron	ND	ug/L	20.0
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Magnesium	7570	ug/L	1000
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Potassium	14100	ug/L	500
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Sodium	1480000	ug/L	100000
810321-005	CW-04D-030	E200.7	FLDFLT	10/8/2013	15:02	Zinc	ND	ug/L	20.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Antimony	ND	ug/L	2.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Arsenic	3.6	ug/L	0.50
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Barium	16.2	ug/L	5.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Beryllium	ND	ug/L	0.50
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Cadmium	ND	ug/L	1.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Chromium	ND	ug/L	1.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Cobalt	ND	ug/L	5.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Copper	ND	ug/L	5.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Lead	ND	ug/L	1.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Manganese	ND	ug/L	0.50
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Mercury	ND	ug/L	0.40
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Molybdenum	19.0	ug/L	2.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Nickel	2.8	ug/L	2.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Selenium	ND	ug/L	5.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Silver	ND	ug/L	5.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Thallium	ND	ug/L	1.0
810321-005	CW-04D-030	E200.8	FLDFLT	10/8/2013	15:02	Vanadium	ND	ug/L	5.0
810321-005	CW-04D-030	E218.6	FLDFLT	10/8/2013	15:02	Chromium, Hexavalent	0.63	ug/L	0.20
810321-005	CW-04D-030	E300	NONE	10/8/2013	15:02	Chloride	2150	mg/L	50.0
810321-005	CW-04D-030	E300	NONE	10/8/2013	15:02	Fluoride	3.01	mg/L	0.500
810321-005	CW-04D-030	E300	NONE	10/8/2013	15:02	Sulfate	511	mg/L	25.0
810321-005	CW-04D-030	SM2130B	NONE	10/8/2013	15:02	Turbidity	0.110	NTU	0.100
810321-005	CW-04D-030	SM2320B	NONE	10/8/2013	15:02	Alkalinity	50.0	mg/L	5.00
810321-005	CW-04D-030	SM2320B	NONE	10/8/2013	15:02	Alkalinity, Bicarbonate (As	50.0	mg/L	5.00
810321-005	CW-04D-030	SM2320B	NONE	10/8/2013	15:02	Alkalinity, Carbonate (As (ND	mg/L	5.00
810321-005	CW-04D-030	SM2540C	NONE	10/8/2013	15:02	Total Dissolved Solids	4260	mg/L	125
⊃ 810321-005	CW-04D-030	SM4500NH3D	NONE	10/8/2013	15:02	Ammonia-N	ND	mg/L	0.500
3 810321-005	CW-04D-030	SW6010B	NONE	10/8/2013	15:02	Iron	ND	ug/L	20.0

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810321-006	OW-80-030	E218.6	FLDFLT	10/8/2013	15:23	Chromium, Hexavalent	ND	ug/L	0.20

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 423575.MP.02.CM
P.O. Number: 423575.MP.02.CM

Release Number:

Field ID CW-02D-030 CW-02M-030 CW-03D-030 CW-03M-030 CW-04D-030 Samples Received on 10/8/2013 8:10:00 PM

www.truesdail.com

Laboratory No. 810321
Page 1 of 45
Printed 11/8/2013

Lab ID	Collected	Matrix	
810321-001	10/08/2013 11:59	Water	
810321-002	10/08/2013 13:24	Water	
810321-003	10/08/2013 09:12	Water	
810321-004	10/08/2013 10:12	Water	
810321-005	10/08/2013 15:02	Water	

OW-80-030				810321-006	10/08	/2013 15:23	Wate	er
Anions By I.C EPA 300.	0		Batch	10AN13F				
Parameter	tiji variga ja varja Da varidaka	Unit	Ana	lyzed	DF	MDL	RL	Result
810321-001 Fluoride		mg/L	10/09	/2013 13:27	5.00	0.104	0.500	2.67
Sulfate		mg/L	10/09	/2013 15:28	100	3.07	50.0	518
810321-002 Fluoride		mg/L	10/09	/2013 13:38	5.00	0.104	0.500	2.95
Sulfate		mg/L	10/09	/2013 16:02	50.0	1.54	25.0	507
810321-003 Fluoride		mg/L	10/09	/2013 14:13	5.00	0.104	0.500	3.55
Sulfate		mg/L	10/09	/2013 16:14	50.0	1.54	25.0	512
810321-004 Fluoride		mg/L	10/09	/2013 14:24	5.00	0.104	0.500	2.78
Sulfate		mg/L	10/09	/2013 16:25	50.0	1.54	25.0	481
810321-005 Fluoride		mg/L	10/09	/2013 14:58	5.00	0.104	0.500	3.01
Sulfate		mg/L	10/09	/2013 16:36	50.0	1.54	25.0	511
Method Blank						a. (21. 9a.		
Parameter	Unit	DF	Result					
Fluoride	mg/L	1.00	ND					
Sulfate	mg/L	1.00	ND					
Duplicate							Lab ID =	810304-001
Parameter Fluoride	Unit mg/L	DF 1.00	Result 0.757	Expected 0.765	F	RPD 1.05	Accepta 0 - 20	nce Range

Client: E2 Consulting Eng	jineers, Ind		roject Name: roject Numbe	PG&E Topock Pror: 423575.MP.02.CM	-	Page 2 of 45 Printed 11/8/2013
Duplicate						Lab ID = 810321-001
Parameter Sulfate	Unit mg/L	DF 100	Result 535	Expected 518	RPD 3.18	Acceptance Range 0 - 20
Lab Control Sample						
Parameter Fluoride	Unit mg/L	DF 1.00	Result 4.16	Expected 4.00	Recovery 104	Acceptance Range 90 - 110
Sulfate	mg/L	1.00	20.2	20.0	101	90 - 110
Matrix Spike						Lab ID = 810304-001
Parameter Fluoride	Unit mg/L	DF 1.00	Result 2.72	Expected/Added 2.76(2.00)	Recovery 97.8	Acceptance Range 85 - 115
Matrix Spike						Lab ID = 810321-001
Parameter Sulfate	Unit mg/L	DF 100	Result 1030	Expected/Added 1020(500)	Recovery 102	Acceptance Range 85 - 115
MRCCS - Secondary						
Parameter Fluoride	Unit mg/L	DF 1.00	Result 4.15	Expected 4.00	Recovery 104	Acceptance Range 90 - 110
Sulfate	mg/L	1.00	20.2	20.0	101	90 - 110
MRCVS - Primary	Ū					
Parameter Fluoride MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.10	Expected 3.00	Recovery 103	Acceptance Range 90 - 110
Parameter Fluoride MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.11	Expected 3.00	Recovery 104	Acceptance Range 90 - 110
Parameter Fluoride MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.08	Expected 3.00	Recovery 102	Acceptance Range 90 - 110
Parameter	Unit	ĎF	Result	Expected	Recovery	Acceptance Range
Sulfate MRCVS - Primary	mg/L	1.00	15.3	15.0	102	90 - 110
Parameter Sulfate	Unit mg/L	DF 1.00	Result 15.0	Expected 15.0	Recovery 99.8	Acceptance Range 90 - 110
MRCVS - Primary	1.1 !4	D.E.	D "	Formated	D	Acceptance 5
Parameter Sulfate	Unit mg/L	DF 1.00	Result 15.0	Expected 15.0	Recovery 100	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 3 of 45 Printed 11/8/2013

Anions By I.C EPA 300.	0		Batch	10AN13K			
Parameter		Unit	Ana	lyzed D	F MDL	RL	Result
810321-001 Chloride		mg/L	10/11	/2013 15:43 50	0 17.4	50.0	2390
810321-002 Chloride		mg/L	10/11	/2013 15:54 50	0 17.4	50.0	2120
810321-003 Chloride		mg/L	10/11	/2013 16:05 50	0 17.4	50.0	2130
810321-004 Chloride		mg/L	10/11	/2013 16:17 50	0 17.4	50.0	2640
810321-005 Chloride		mg/L	10/11	/2013 16:28 50	0 17.4	50.0	2150
Method Blank							
Parameter	Unit	DF	Result				
Chloride	mg/L	1.00	ND				
Duplicate						Lab ID =	810390-002
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ance Range
Chloride	mg/L	1.00	ND	0	0	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.91	4.00	97.8	90 - 110)
Matrix Spike						Lab ID =	810390-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	1.81	2.00(2.00)	90.4	85 - 115	5
Matrix Spike Duplicate						Lab ID =	810390-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	1.81	2.00(2.00)	90.3	85 - 118	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.98	4.00	99.4	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.01	3.00	100	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Chloride	mg/L	1.00	3.10	3.00	103	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	2.93	3.00	97.6	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 5 of 45 Printed 11/8/2013

Alkalinity by SM 2320E	3		Batch	10ALK13C				
Parameter		Unit	Ana	llyzed	DF	MDL	RL	Result
810321-001 Alkalinity as C	aCO3	mg/L	10/17	7/2013	1.00	1.68	5.00	55.0
Bicarbonate (0	Calculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	55.0
Carbonate (Ca	alculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	ND
810321-002 Alkalinity as C	aCO3	mg/L	10/17	7/2013	1.00	1.68	5.00	54.0
Bicarbonate (0	Calculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	54.0
Carbonate (Ca	alculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	ND
810321-003 Alkalinity as C	aCO3	mg/L	10/17	7/2013	1.00	1.68	5.00	58.0
Bicarbonate (C	Calculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	58.0
Carbonate (Ca	alculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	ND
810321-004 Alkalinity as C	aCO3	mg/L	10/17	7/2013	1.00	1.68	5.00	48.0
Bicarbonate (C	Calculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	48.0
Carbonate (Ca	alculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	ND
810321-005 Alkalinity as C	aCO3	mg/L	10/17	7/2013	1.00	1.68	5.00	50.0
Bicarbonate (C	Calculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	50.0
Carbonate (Ca	alculated)	mg/L	10/17	7/2013	1.00	1.68	5.00	ND
Method Blank					- :10,		gi garaggi	
Parameter	Unit	DF	Result					
Alkalinity as CaCO3	mg/L	1.00	ND					
Duplicate							Lab ID =	810321-005
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Alkalinity as CaCO3	mg/L	1.00	50.0	50.0		0	0 - 20	J
Lab Control Sample)							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Alkalinity as CaCO3	mg/L	1.00	98.0	100		98.0	90 - 110	-
Lab Control Sample	Duplicate	ga ga da waxaya da da waxay	and the second s	and the state of the	askatistisisis (1946)	alemania establisado en		
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Alkalinity as CaCO3	mg/L	1.00	98.0	100		98.0	90 - 110	_
Matrix Spike							Lab ID =	810371-021
Parameter	Unit	DF	Result	Expected/A	dded F	Recovery	Accepta	ince Range
Alkalinity as CaCO3	mg/L	1.00	212	205(100)		107	75 - 125	•
Matrix Spike Duplica	ate						Lab ID =	810371-021
Parameter	Unit	DF	Result	Expected/A	dded F	Recovery	Accepta	ince Range
Alkalinity as CaCO3	mg/L	1.00	211	205(100)		106	75 - 125	•

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 6 of 45 Printed 11/8/2013

Specific Conductivity - E	PA 120.1			Batch 10EC13E				
Parameter	a distribution of the second o	Unit		Analyzed	DF	MDL	RL	Result
810321-001 Specific Conducti	vity	umhos/cm		10/11/2013	1.00	0.606	2.00	6680
810321-002 Specific Conducti	vity	umhos	/cm	10/11/2013	1.00	0.606	2.00	6590
810321-003 Specific Conductivity		umhos	s/cm	10/11/2013	1.00	0.606	2.00	6600
810321-004 Specific Conducti	vity	umhos	:/cm	10/11/2013	1.00	0.606	2.00	7840
310321-005 Specific Conductivity		umhos	:/cm	10/11/2013	1.00	0.606	2.00	6710
Method Blank								
Parameter	Unit	DF	Res					
Specific Conductivity Duplicate	umhos	1.00	ND				Lab ID =	810321-005
Parameter	Unit	DF	Res	ult Expected	d	RPD	Accepta	nce Range
Specific Conductivity	umhos	1.00	688	•		2.50	0 - 10	J
Lab Control Sample								
Parameter	Unit	DF	Res	ult Expected	t	Recovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	722	2 706		102	90 - 110)
MRCCS - Secondary								
Parameter	Unit	DF	Res	ult Expected	t	Recovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	707	7 706		100	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Res	ult Expected	t	Recovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	102	20 1000		102	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Res	ult Expected	t	Recovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	101	10 1000		101	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 7 of 45 Printed 11/8/2013

Parameter	and the property of the second	Unit	Ana	lyzed	DF	MDL	RL	Result
810321-001 Iron	-	ug/L	10/18	/2013 16:56	1.00	3.00	20.0	ND
810321-002 Iron		ug/L	10/18	/2013 17:21	1.00	3.00	20.0	ND
810321-003 fron		ug/L	10/18/2013 17:28		1.00	3.00	20.0	ND
810321-004 Iron		ug/L	10/18/2013 17:34		1.00	3.00	20.0	ND
810321-005 Iron		ug/L	10/18	/2013 17:41	1.00	3.00	20.0	ND
Method Blank						and the		
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	0.200					
Duplicate							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Iron	ug/L	1.00	19.2	12.8		40.0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	2160	2000		108	85 - 115	5
Matrix Spike							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accepta	ance Range
Iron	ug/L	1.00	1920	2010(2000)		95.6	75 - 12	5
Matrix Spike Duplicate							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	Accepta	ance Range
Iron	ug/L	1.00	1940	2010(2000)		96.3	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	5150	5000		103	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	5250	5000		105	90 - 110	ס
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	5180	5000		104	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	-	ance Range
Iron	ug/L	1.00	5210	5000		104	90 - 110	כ

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 9 of 45

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Chrome VI by EPA 218.6			Batch	10CrH13F				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
810321-001 Chromium, Hexa	ıvalent	ug/L	10/10/	/2013 08:43	1.00	0.00600	0.20	0.54
810321-003 Chromium, Hexa	valent	ug/L	10/10/	/2013 09:04	1.00	0.00600	0.20	0.66
810321-005 Chromium, Hexa	valent	ug/L	10/10/	/2013 09:25	1.00	0.00600	0.20	0.63
810321-006 Chromium, Hexa	valent	ug/L	10/10/	/2013 09:35	1.00	0.00600	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	810350-002
Parameter	Unit	DF	Result	Expected	i	RPD	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	19.0	19.1		0.340	0 - 20	
Low Level Calibration	Verification							
Parameter	Unit	DF	Result	Expected	i	Recovery		nce Range
Chromium, Hexavalent	ug/L	1.00	0.200	0.200		99.8	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	i	Recovery	· ·	nce Range
Chromium, Hexavalent	ug/L	1.00	4.86	5.00		97.2	90 - 110	
Matrix Spike							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected/Add	ed i	Recovery		nce Range
Chromium, Hexavalent	ug/L	1.00	1.58	1.54(1.00)		104	90 - 110	
Matrix Spike							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected/Add	ed i	Recovery	-	nce Range
Chromium, Hexavalent	ug/L	5.00	5.25	5.51(5.00)		95.0	90 - 110	
Matrix Spike							Lab ID =	810321-002
Parameter	Unit	DF	Result	Expected/Add	ed I	Recovery	•	nce Range
Chromium, Hexavalent	ug/L	1.00	7.30	7.45(5.00)		97.0	90 - 110	
Matrix Spike							Lab ID =	810321-003
Parameter	Unit	DF	Result	Expected/Add	ed i	Recovery	-	ince Range
Chromium, Hexavalent	ug/L	1.00	1.67	1.66(1.00)		100	90 - 110	
Matrix Spike							Lab ID =	810321-003
Parameter	Unit	DF	Result	Expected/Add	ed i	Recovery	· ·	ince Range
Chromium, Hexavalent	ug/L	5.00	5.50	5.69(5.00)		96.2	90 - 110)

Client: E2 Consulting En	ngineers, Inc	•	Project Name: Project Number:	PG&E Topock Pro 423575.MP.02.CM	-	Page 10 of 45 Printed 11/8/2013
Matrix Spike						Lab ID = 810321-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 16.4	Expected/Added 16.6(10.0)	Recovery 98.3	Acceptance Range 90 - 110 Lab ID = 810321-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 55.1	Expected/Added 55.2(50.0)	Recovery 99.7	Acceptance Range 90 - 110
Matrix Spike Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.62	Expected/Added 1.63(1.00)	Recovery 98.5	Lab ID = 810321-005 Acceptance Range 90 - 110 Lab ID = 810321-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.65	Expected/Added 5.61(5.00)	Recovery 101	Acceptance Range 90 - 110 Lab ID = 810321-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.992	Expected/Added 1.00(1.00)	Recovery 99.2	Acceptance Range 90 - 110 Lab ID = 810350-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 18.0	Expected/Added 18.4(10.0)	Recovery 95.9	Acceptance Range 90 - 110 Lab ID = 810350-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 9.48	Expected/Added 9.54(5.00)	Recovery 98.7	Acceptance Range 90 - 110 Lab ID = 810351-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.18	Expected/Added 1.13(1.00)	Recovery 105	Acceptance Range 90 - 110 Lab ID = 810351-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 4.88	Expected/Added 5.14(5.00)	Recovery 94.8	Acceptance Range 90 - 110 Lab ID = 810351-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.999	Expected/Added 1.00(1.00)	Recovery 99.9	Acceptance Range 90 - 110 Lab ID = 810351-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.60	Expected/Added 1.58(1.00)	Recovery 103	Acceptance Range 90 - 110 Lab ID = 810351-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.62	Expected/Added 1.61(1.00)	Recovery 101	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 12 of 45 Printed 11/8/2013

Chrome VI by EPA 218.0	6		Batch	10CrH13T				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
810321-002 Chromium, Hex	avalent	ug/L	10/19)/2013 17:03	5.00	0.0300	1.0	2.4
810321-004 Chromium, Hex	avalent	ug/L	10/19)/2013 17:13	5.00	0.0300	1.0	7.0
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	810386-007
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	17.6	18.2		3.25	0 - 20	
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	0.184	0.200		92.2	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.87	5.00		97.5	90 - 110	כ
Matrix Spike							Lab ID =	810321-002
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.00	7.13	7.35(5.00)		95.5	90 - 110)
Matrix Spike							Lab ID =	810321-004
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.00	30.1	32.0(25.0)		92.4	90 - 110)
Matrix Spike							Lab ID =	810386-001
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.00	28.8	30.4(25.0)		93.5	90 - 110	
Matrix Spike							Lab ID =	810386-002
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.00	5.58	5.71(5.00)		97.4	90 - 110	ס
Matrix Spike							Lab ID =	810386-003
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.00	5.98	6.19(5.00)		95.9	90 - 110	_
Matrix Spike							Lab ID =	810386-004
Parameter	Unit	DF	Result	Expected/Add	ded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	17.2	17.6(10.0)		95.8	90 - 11	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 15 of 45

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Total Dissolved Solids b	y SM 254	0 C	Batc	h 10TDS13F				
Parameter		Unit	An	alyzed	DF	MDL	RL	Result
810321-001 Total Dissolved S	Solids	mg/L	10/09/2013		1.00	1.76	125	4140
810321-002 Total Dissolved	Solids	mg/L	10/0	9/2013	1.00	1.76	125	4200
810321-003 Total Dissolved S	Solids	mg/L	10/0	9/2013	1.00	1.76	125	4260
810321-004 Total Dissolved S	Solids	mg/L	10/0	9/2013	1.00	1.76	250	4740
810321-005 Total Dissolved S	Solids	mg/L	10/0	9/2013	1.00 1.76 12		125	4260
Method Blank							***	
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	810353-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	362	340		6.27	0 - 10	
Duplicate							Lab ID =	810353-009
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	1300	1330		2.44	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	489	500		97.8	90 - 110)

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 16 of 45

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Ammonia Nitrogen by SM	4500-NF	13D	Batch	10NH313C				
Parameter		Unit	Anal	lyzed l)F	MDL	RL	Result
810321-001 Ammonia as N		mg/L	10/29	/2013 1	.00	0.0318	0.500	ND
810321-002 Ammonia as N		mg/L	10/29	/2013 1	.00	0.0318	0.500	ND
810321-003 Ammonia as N		mg/L	10/29/2013		.00	0.0318	0.500	ND
810321-004 Ammonia as N		mg/L	10/29/2013		.00	0.0318	0.500	ND
810321-005 Ammonia as N		mg/L	10/29	/2013 1	.00	0.0318	0.500	ND
Method Blank		21				a Şağılı darı	Zv. pod At	
Parameter Ammonia as N Duplicate	Unit mg/L	DF 1.00	Result ND	jeunak koj oj			Lab ID ≃	810442-003
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result ND	Expected 0	R	PD 0	Accepta 0 - 20	nce Range
Lab Control Sample								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 9.26	Expected 10.0	R	ecovery 92.6	Accepta 90 - 110	nce Range
Lab Control Sample Du	ıplicate							
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 10.6	Expected 10.0	R	ecovery 106	Accepta 90 - 110	nce Range
Matrix Spike							Lab ID =	810442-003
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 9.80	Expected/Adde 10.0(10.0)	d R	ecovery 98.0	Accepta 75 - 125	nce Range
Matrix Spike Duplicate							Lab ID =	810442-003
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 8.87	Expected/Adde 10.0(10.0)	ed R	ecovery 88.7	Accepta 75 - 125	ince Range
MRCCS - Secondary								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 5.94	Expected 6.00	R	ecovery 99.1	Accepta 90 - 110	nce Range
MRCVS - Primary								
Parameter Ammonia as N	Unit mg/L	DF 1.00	Result 6.39	Expected 6.00	R	Recovery 106	Accepta 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 17 of 45 Printed 11/8/2013

Parameter		Unit	Analyzed	DF	MDL	RL	Result
810321-001 Ant	timony	ug/L	10/09/2013 22:00	2.00	0.0700	2.0	ND
Ars	enic	ug/L	10/09/2013 22:00	2.00	0.100	0.50	3.5
Bar	rium	ug/L	10/09/2013 22:00	2.00	0.594	5.0	11.3
Ber	yllium	ug/L	10/09/2013 22:00	2.00	0.0724	0.50	ND
Cad	dmium	ug/L	10/09/2013 22:00	2.00	0.0800	1.0	ND
Chr	romium	ug/L	10/09/2013 22:00	2.00	0.142	1.0	ND
Col	balt	ug/L	10/09/2013 22:00	2.00	0.0800	5.0	ND
Cop	pper	ug/L	10/09/2013 22:00	2.00	0.380	5.0	ND
Lea	ad	ug/L	10/09/2013 22:00	2.00	0.286	1.0	ND
Me	rcury	ug/L	10/09/2013 22:00	2.00	0.0800	0.40	ND
310321-002 Ant	imony	ug/L	10/09/2013 22:42	2.00	0.0700	2.0	ND
Ars	enic	ug/L	10/09/2013 22:42	2.00	0.100	0.50	2.1
Ber	yllium	ug/L	10/09/2013 22:42	2.00	0.0724	0.50	ND
Cad	dmium	ug/L	10/09/2013 22:42	2.00	0.0800	1.0	ND
Col	balt	ug/L	10/09/2013 22:42	2.00	0.0800	5.0	ND
Cop	pper	ug/L	10/09/2013 22:42	2.00	0.380	5.0	ND
Lea	ad	ug/L	10/09/2013 22:42	2.00	0.286	1.0	ND
Me	rcury	ug/L	10/09/2013 22:42	2.00	0.0800	0.40	ND
310321-003 Ant	imony	ug/L	10/09/2013 22:48	2.00	0.0700	2.0	ND
Ars	enic	ug/L	10/09/2013 22:48	2.00	0.100	0.50	1.6
Bar	ium	ug/L	10/09/2013 22:48	2.00	0.594	5.0	13.2
Ber	yllium	ug/L	10/09/2013 22:48	2.00	0.0724	0.50	ND
Cad	dmium	ug/L	10/09/2013 22:48	2.00	0.0800	1.0	ND
Chr	romium	ug/L	10/09/2013 22:48	2.00	0.142	1.0	ND
Cot	balt	ug/L	10/09/2013 22:48	2.00	0.0800	5.0	ND
Cop	pper	ug/L	10/09/2013 22:48	2.00	0.380	5.0	ND
Lea	ad	ug/L	10/09/2013 22:48	2.00	0.286	1.0	ND
Mei	rcury	ug/L	10/09/2013 22:48	2.00	0.0800	0.40	ND
310321-004 Ant	imony	ug/L	10/09/2013 22:54	2.00	0.0700	2.0	ND
Ars	enic	ug/L	10/09/2013 22:54	2.00	0.100	0.50	1.3
Ber	yllium	ug/L	10/09/2013 22:54	2.00	0.0724	0.50	ND
Cad	dmium	ug/L	10/09/2013 22:54	2.00	0.0800	1.0	ND
Chr	romium	ug/L	10/09/2013 22:54	2.00	0.142	1.0	6.3
Col	palt	ug/L	10/09/2013 22:54	2.00	0.0800	5.0	ND

Client: E2 Consulting	յ Engineers, Inc	: .	Project Name: Project Numbe	PG&E Topo r: 423575.MP.	-	et	P Printed 1	age 18 of 45 1/8/2013
810321-004 Copper		ug/L	10/09	/2013 22:54	2.00	0.380	5.0	ND
Lead		ug/L		/2013 22:54	2.00	0.286	1.0	ND
Mercury		ug/L		/2013 22:54	2.00	0.0800	0.40	ND
810321-005 Antimony		ug/L		/2013 23:00	2.00	0.0700	2.0	ND
Arsenic		ug/L		/2013 23:00	2.00	0.100	0.50	3.6
Barium		ug/L		/2013 23:00	2.00	0.594	5.0	16.2
Beryllium		ug/L		/2013 23:00	2.00	0.0724	0.50	ND
Cadmium		ug/L	10/09	/2013 23:00	2.00	0.0800	1.0	ND
Chromium		ug/L		/2013 23:00	2.00	0.142	1.0	ND
Cobalt		ug/L		/2013 23:00	2.00	0.0800	5.0	ND
Copper		ug/L		/2013 23:00	2.00	0.380	5.0	ND
Lead		ug/L		/2013 23:00	2.00	0.286	1.0	ND
Mercury		ug/L		/2013 23:00	2.00	0.0800	0.40	ND
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00						
Barium	ug/L	1.00						
Beryllium	ug/L	1.00	ND					
Cadmium	ug/L	1.00	ND					
Cobalt	ug/L	1.00	ND					
Chromium	ug/L	1.00	ND					
Mercury	ug/L	1.00	ND					
Antimony	ug/L	1.00	ND					
Copper	ug/L	1.00	ND					
Lead	ug/L	1.00	ND					
Duplicate							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Arsenic	ug/L	2.00		3.51		1.96	0 - 20	
Barium	ug/L	2.00		11.3		0.00885	0 - 20	
Beryllium	ug/L	2.00		0		0	0 - 20	
Cadmium	ug/L	2.00		0		0	0 - 20	
Cobalt	ug/L	2.00		0		0	0 - 20	
Chromium	ug/L	2.00		0		0	0 - 20	
Mercury	ug/L	2.00		0		0	0 - 20	
Antimony	ug/L	2.00		0		0	0 - 20	
Copper	ug/L	2.00		0		0	0 - 20	
Lead	ug/L	2.00	ND	0		0	0 - 20	

Client: E2 Consulting Engineers, Inc.	Project Name:	PG&E Topock Project	Page 19 of 45
	Project Number:	423575.MP.02.CM	Printed 11/8/2013

Low Lovel Calibr	ation Varification					
Low Level Calibra	ation vernication Unit	DF	Decult	Function	Danasaa	A
Parameter Arsenic	ug/L	1.00	Result 0.207	Expected 0.200	Recovery 104	Acceptance Range 70 - 130
Barium	ug/L	1.00	0.207	1.00	81.8	70 - 130 70 - 130
Beryllium	ug/L ug/L	1.00	0.200	0.200	100	70 - 130 70 - 130
Cadmium	ug/L ug/L	1.00	0.200	0.200	93.5	
Cobalt	ug/L ug/L	1.00	0.187	0.200	93.5 98.5	70 - 130
Chromium	•	1.00		0.200		70 - 130
	ug/L		0.190		95.0	70 - 130
Mercury	ug/L	1.00	0.201	0.200	100	70 - 130
Antimony	ug/L 	1.00	0.214	0.200	107	70 - 130
Copper	ug/L 	1.00	2.24	2.00	112	70 - 130
Lead	ug/L	1.00	0.471	0.500	94.2	70 - 130
Lab Control Sam	ple					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	48.7	50.0	97.4	85 - 115
Barium	ug/L	1.00	49.0	50.0	98.0	85 - 115
Beryllium	ug/L	1.00	47.5	50.0	95.0	85 - 115
Cadmium	ug/L	1.00	48.4	50.0	96.8	85 - 115
Cobalt	ug/L	1.00	48.9	50.0	97.8	85 - 115
Chromium	ug/L	1.00	48.0	50.0	96.0	85 - 115
Mercury	ug/L	1.00	4.85	5.00	97.1	85 - 115
Antimony	ug/L	1.00	50.6	50.0	101	85 - 115
Copper	ug/L	1.00	48.9	50.0	97.8	85 - 115
Lead	ug/L	1.00	50.1	50.0	100	85 - 115
Matrix Spike						Lab ID = 810321-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	2.00	52.3	53.5(50.0)	97.6	75 - 125
Barium	ug/L	2.00	59.9	61.3(50.0)	97.2	75 - 125
Beryllium	ug/L	2.00	42.2	50.0(50.0)	84.4	75 - 125
Cadmium	ug/L	2.00	44.0	50.0(50.0)	88.1	75 - 125
Cobalt	ug/L	2.00	45.6	50.0(50.0)	91.3	75 - 125
Chromium	ug/L	2.00	46.8	50.0(50.0)	93.6	75 - 125
Mercury	ug/L	2.00	4.60	5.00(5.00)	92.0	75 - 125
Antimony	ug/L	2.00	49.8	50.0(50.0)	99.6	75 - 125
Copper	ug/L	2.00	44.1	50.0(50.0)	88.2	75 - 125
Lead	ug/L	2.00	46.4	50.0(50.0)	92.9	75 - 125

Client: E2 Consulting Eng	ineers, Ind		oject Name: oject Numbe	PG&E Topock Pror: 423575.MP.02.CM	-	Page 20 of 45 Printed 11/8/2013
Matrix Spike Duplicate						Lab ID = 810321-001
Parameter Arsenic	Unit ug/L	DF 2.00	Result 52.3	Expected/Added 53.5(50.0)	Recovery 97.6	Acceptance Range 75 - 125
Barium	ug/L ug/L	2.00	58.1	61.3(50.0)	93.6	75 - 125 75 - 125
Beryllium	ug/L ug/L	2.00	41.9	50.0(50.0)	83.8	75 - 125 75 - 125
Cadmium	ug/L	2.00	43.1	50.0(50.0)	86.2	75 - 125 75 - 125
Cobalt	ug/L ug/L	2.00	44.1	50.0(50.0)	88.2	75 - 125 75 - 125
Chromium	ug/L	2.00	46.6	50.0(50.0)	93.2	75 - 125 75 - 125
Mercury	ug/L	2.00	4.37	5.00(5.00)	87.4	75 - 125
Antimony	ug/L	2.00	49.1	50.0(50.0)	98.2	75 - 125 75 - 125
Copper	ug/L	2.00	44.0	50.0(50.0)	88.0	75 - 125 75 - 125
Lead	ug/L	2.00	45.0	50.0(50.0)	90.0	75 - 125 75 - 125
MRCCS - Secondary	ug/L	2.00	40.0	00.0(00.0)	30.0	70 - 120
·	1.1	DE	D 11	ini .	, D-	A
Parameter Arsenic	Unit	DF 1.00	Result 19.3	Expected 20.0	Recovery 96.7	Acceptance Range 90 - 110
Barium	ug/L	1.00 1.00	19.3	20.0	96.7 96.9	90 - 110
Beryllium	ug/L	1.00	19.4	20.0	96.9	90 - 110
Cadmium	ug/L	1.00	19.4	20.0	90.0 97.0	90 - 110
Cobalt	ug/L	1.00	19.4	20.0	97.0 95.6	90 - 110
Chromium	ug/L	1.00	18.8	20.0	93.6 94.0	90 - 110
	ug/L	1.00	1.98	2.00	98.8	90 - 110
Mercury Antimony	ug/L	1.00	20.4	20.0	102	
•	ug/L	1.00	20. 4 19.2	20.0	96.2	90 - 110 90 - 110
Copper Lead	ug/L	1.00	20.2	20.0	96.2 101	90 - 110
	ug/L	1.00	20.2	20.0	101	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	19.2	20.0	96.0	90 - 110
MRCVS - Primary						en grennsk i sulvistate i in mensk nem seretamer er tromatiken sjelansk i serita.
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	20.7	20.0	103	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	19.8	20.0	99.2	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	19.8	20.0	99.0	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 26 of 45

Printed 11/8/2013

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
810321-002 Barium		ug/L	10/10	/2013 14:21	2.00	0.594	5.0	63.9
810321-004 Barium		ug/L	10/10	/2013 14:51	2.00	0.594	5.0	44.2
Method Blank				<i>2</i> 1				
Parameter	Unit	DF	Result					
Barium	ug/L	1.00	ND					
Duplicate							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Barium	ug/L	2.00	12.2	11.3		7.52	0 - 20	
Low Level Calibration V	erification/	1						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Barium	ug/L	1.00	0.943	1.00		94.3	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Barium	ug/L	1.00	49.4	50.0		98.7	85 - 11	5
Matrix Spike							Lab ID =	810321-001
Parameter	Uniť	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Barium	ug/L	2.00	57.6	61.3(50.0)		92.5	75 - 12	5
Matrix Spike Duplicate							Lab ID =	810321-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	ance Range
Barium	ug/L	2.00	56.9	61.3(50.0)		91.1	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Barium	ug/L	1.00	20.4	20.0		102	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Barium	ug/L	1.00	19.5	20.0		97.4	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Barium	ug/L	1.00	18.8	20.0		93.9	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Barium	ug/L	1.00	19.2	20.0		96.1	90 - 110	_

Client: E2 Consulting Engineers, Inc.

PG&E Topock Project Project Name:

Page 27 of 45

Project Number: 423575.MP.02.CM

Printed 11/8/2013

MRCVS	- Primary
-------	-----------

WRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	19.2	20.0	96.0	90 - 110
Interference Check S	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	ND	0		
Interference Check St	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	ND	0		
Interference Check St	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	ND	0		
Interference Check St	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Barium	ug/L	1.00	ND	0		_
Serial Dilution						Lab ID = 810321-002
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Barium	ug/L	10.0	65.4	63.9	2.33	0 - 10

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 10TDS13F Date Analyzed: 10/9/13

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
Blank	100	79.5068	79.5065	79.5065	0.0000	No	-0.0003	-3.0	25.0	ND	1
810317-2	50	47.9464	48.0942	48.0941	0.0001	No	0.1477	2954.0	50.0	2954.0	1
810317-3	50	50.8424	50.9551	50.9551	0.0000	No	0.1127	2254.0	50.0	2254.0	1
810353-2	20	106.0545	106.1296	106.1297	-0.0001	No	0.0752	3760.0	125.0	3760.0	1
810353-3	100	110.2613	110.3022	110.3024	-0.0002	No	0.0411	411.0	25.0	411.0	1
810353-4	50	49.646	49.7404	49.74	0.0004	No	0.0940	1880.0	50.0	1880.0	1
810353-5	50	49.724	49.8747	49.8747	0.0000	No	0.1507	3014.0	50.0	3014.0	1
810353-6	50	50.9446	51.096	51.0963	-0.0003	No	0.1517	3034.0	50.0	3034.0	1
810353-7	50	51.8281	51.9432	51.943	0.0002	No	0.1149	2298.0	50.0	2298.0	1
810353-8	50	49.3899	49.4558	49.4560	-0.0002	No	0.0661	1322.0	50.0	1322.0	1
810353-9	50	47.9421	48.0084	48.0084	0.0000	No	0.0663	1326.0	50.0	1326.0	1
810353-9 DUP	50_	78.9148	78.9797	78.9797	0.0000	No	0.0649	1298.0	50.0	1298.0	1
810353-10	50	51.9168	52.0016	52.0016	0.0000	No	0.0848	1696.0	50.0	1696.0	1
810353-11	50	50.7841	50.927	50.9271	-0.0001	No	0.1430	2860.0	50.0	2860.0	1
810353-12	50	51.8310	51.9375	51.9377	-0.0002	No	0.1067	2134.0	50.0	2134.0	1
810321-2	20	50.4985	50.5822	50.5824	-0.0002	No	0.0839	4195.0	125.0	4195.0	1
810321-3	20	49.1500	49.2353	49.2351	0.0002	No	0.0851	4255.0	125.0	4255.0	1
810321-4	10	77.9117	77.9594	77.9591	0.0003	No	0.0474	4740.0	250.0	4740.0	1
810321-5	20	80.5833	80.669	80.6686	0.0004	No	0.0853	4265.0	125.0	4265.0	1
810321-1	20	79.0669	79.1492	79.1496	-0.0004	No	0.0827	4135.0	125.0	4135.0	1
810353-1	100	104.2328	104.2669	104.2668	0.0001	No	0.0340	340.0	25.0	340.0	1
310353-1 DUP	100	78.7968	78.8331	78.833	0.0001	No	0.0362	362.0	25.0	362.0	1
LCS	100	79.4522	79.5011	79.5011	0.0000	No	0.0489	489.0	25.0	489.0	11

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

RL= reporting limit. ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	489	500	97.8%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Wilhin Control?
809689	0.0439	0.0432	0.8%	5%	Yes
810353-1	0.0362	0.034	3.1%	5%_	Yes

Himane Vaishnay -Jenny-T-

Analyst Printed Name

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) \times 10^{-10}$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{A \text{ or } B - C}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

Reviewer Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS13F

Date Analyzed: 10/9/13

EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Cald TDS <1.3	
3520	0.84	2288	1.29	
2680	0.84	1742	1.29	
4480	0.84	2912	1.29	
640	0.64	416	0.99	
2320	0.81	1508	1.25	
3590	0.84	2333.5	1.29	
3640	0.83	2366	1.28	
2780	0.83	1807	1.27	
1680	0.79	1092	1.21	
1710	0.78	1111.5	1.19	
1710	0.76	1111.5	1.17	
2130	0.80	1384.5	1.22	
3410	0.84	2216.5	1.29	
2620	0.81	1703	1.25	
6590	0.64	4283.5	0.98	
6600	0.64	4290	0.99	
7840	0.60	5096	0.93	
6710	0.64	4361.5	0.98	
6680	0.62	4342	0.95	
456	0.75	296.4	1.15	
456	0.79	296.4	1.22	
	3520 2680 4480 640 2320 3590 3640 2780 1680 1710 1710 2130 3410 2620 6590 6600 7840 6710 6680 456	3520 0.84 2680 0.84 4480 0.84 640 0.64 2320 0.81 3590 0.84 3640 0.83 2780 0.83 1680 0.79 1710 0.78 1710 0.76 2130 0.80 3410 0.84 2620 0.81 6590 0.64 6600 0.64 7840 0.60 6710 0.64 6680 0.62 456 0.75	EC IDS/EC Ratio: 0.559 TDS (EC*0.65) 3520 0.84 2288 2680 0.84 1742 4480 0.84 2912 640 0.64 416 2320 0.81 1508 3590 0.84 2333.5 3640 0.83 2366 2780 0.83 1807 1680 0.79 1092 1710 0.78 1111.5 1710 0.76 1111.5 2130 0.80 1384.5 3410 0.84 2216.5 2620 0.81 1703 6590 0.64 4283.5 6600 0.64 4290 7840 0.60 5096 6710 0.64 4361.5 6680 0.62 4342 456 0.75 296.4	

Mi mimo

Alkalinity by SM 2320B

Analytical Batch: 10ALK13C
Matrix: WATER
Date of Analysis: 10/17/13

Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL titrant to reach pH 0.3 unit lower	Total Alkalinity as CaCO3	RL, ppm	Total Alkalinity Reported Value	HCO3 Conc. as CaCO ₃ (ppm)	CO3 Alkalinity as CaCO₃ (ppm)	OH Alkalinity as CaCO₃ (ppm)	Low Alkalinity as CaCO ₃ (<20ppm)
BĽANK	7.01	50	0.02		0.0	0.00		0.0	5	ND	ND	ND	ND	
810280-1	8:03	50	0.02		0.0	5.25		105.0	5	105.0	105.0	ND	ND	
810371-17	8;05	50	0.02		0.0	3:55		71.0	5	71.0	71.0	ND	ND	
810371-21	8.17	50	0.02		0.0	5.25		105.0	5	105.0	105.0	ND	ND	
810321-1	7.96	50	0.02		0.0	2.75		55.0	5	55.0	55.0	ND	ND	
810321-2	7,82	50	0.02		0.0	2.70		54.0	5	54.0	54.0	ND	ND	
810321-3	8,01	50	0.02		0.0	2.90	T	58.0	5	58.0	58.0	ND	ND	
810321-4	7.75	50	0.02		0.0	2.40		48.0	5	48.0	48.0	ND	ND	
810321-5	7.87	50	0.02		0.0	2.50		50.0	5	50.0	50.0	ND	ND	1
810355-7	7.61	50	0.02	1	0.0	6.90	-	138.0	5	138.0	138.0	ND	ND	
810355-8	7.75	50	0.02		0.0	7.00		140.0	5	140.0	140.0	ND	ND	1
810321-5 DUP	7,88	50	0.02		0.0	2.50	1	50.0	5	50.0	50.0	ND	ND	
LCS	10.30	50	0.02	2.2	43.0	4.90		98.0	5	98.0	12.0	86	ND	
LCSD	10.25	50	0.02	2.2	44.0	4.90	T	98.0	5	98.0	10.0	88	ND	
810356-11	7.74	50	0:02		0.0	6.25		125.0	5	125.0	125.0	ND	ND	
810356-12	7.71	50	0.02		0.0	6.80		136.0	5	136.0	136.0	ND	ND	
810442-1	7.87	50	0.02		0.0	9.50		190.0	5	190.0	190.0	ND	ND	
810442-2	6.82	50	0.02		0.0	12.60	T	252.0	5	252.0	252.0	ND	ND	
810442-3	7:94	50	0:02		0.0	9.25		185.0	5	185.0	185.0	ND	ND	
810473-1	6,96	50	0.02		0.0	19.30	1	386.0	5	386.0	386,0	ND	ND	
810473-3	6.83	50	0.02		0.0	17:51		350.2	5	350.2	350.2	ND	ND	
810473-4	6.96	50	0.02	T	0.0	12.75		255.0	5	255.0	255.0	ND	ND	
810371-21MS	9;53	50	0:02	2.3	45.0	10.60	1	212.0	5	212.0	122.0	90	ND	
810371-21MSD	9.54	50	0.02	2.2	44.0	10.55	7	211.0	5	211.0	123.0	88	ND	

Calculations as follows:

Tor P=

Where:

 $\left(\frac{A \times N \times 50000}{mL \ sample}\right)$

mL sample $T \approx Total$ Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used
N = normality of standard acid

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000 mL sample

here: B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

Accept Limit

<5

QC Std I.D.	Measured Value, ppm	Theoretical Value, ppm	% Recovery	Accetance Limit	QC Within Control?
LCS	98	100	98.0%	90-110	Yes
LCSD	98	100	98.0%	90-110	Yes

QC Within

Control?

Yes

Duplicate Determination Difference Summary

Lab Number I.D.			RPD	Accetance Limit	QC Within Control?
810321-5	50	50	0.0%	≤20%	Yes
	1500				

Sample Matrix Spike (MS/MSD) Summary

Lab Number	Conc of Unspk spl	Dil Factor	Added Spk Conc	MS/MSD Amt	Measrd Conc of Spk Spl	Theor Conc of Spk Spl	MS/MSD % Rec	MS Accept Limit	QC Within Control?	RPD	RPD Accept Limit	QC Within Control?
040272.04	105	1	100	100	212	205.00	107%	75-125	Yes	0.2%	≤20%	Yes
810372-21	105	1	19Q	n 1/00	211	205.00	106%	75-125	Yes	0.270	744	res

KIM Analyst Printed Name

Blank Summary

Measured

Value, ppm

0

Reporting

Limit, RL

5 ppm

Analysi Signature

Maksim Gorbunov Reviewer Printed Name Reviewer Signature

- P

CH2MHILL

CHAIN OF CUSTODY RECORD

10/8/2013 3:35:35 PM

Page 1 OF 1

	CMZIVINIL	L							Ci		,, 00.	3100	IKEC	10/8/2013 3:35:35 PM Page 1	OF _	<u>1</u>
	Project Name PG Location Topoci	-	k (Container	Poly	500 ml Poly	500 ml Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly			
	Project Manager		Pres	ervatives	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	H2SO4, pH<2, 4°C	Rec'd 10/08/13 S24e 8 1 0 3 2 1		
	Sample Manager	Shawn Duf	ffy	Filtered	Field	NA	Field	NA	NA	NA	NA	NA	NA	a1032 ·		
			Holo	ling Time:	28	180	180	2	2	2	2	2	28	5246		
	Project Number A Task Order Project 2013-CMI Turnaround Time Shipping Date: 1 COC Number: 1	P-030 10 Days	3	Matri x	Cr6 (E218.6) Field Filtered	Metals (6010B) Total Fe	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) Cl. Fl. SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)		Number of Containers	COMMENTS
	CW-02D-030	10/8/2013	11:59	Water	Х	X	х	X	Х	Х	Х	X	x		5	1
2	CW-02M-030	10/8/2013	13:24	Water	х	Х	х	х	х	Х	Х	х	Х		5	
3	CW-03D-030	10/8/2013	9:12	Water	Х	Х	Х	х	Х	Х	х	х	х		5) PH=2
1	CW-03M-030	10/8/2013	10:12	Water	Х	Х	Х	х	х	x	x	Х	Х		5	Metal
)	CW-04D-030	10/8/2013	15:02	Water	Х	х	Х	Х	х	Х	×	X	x		5	/
O	OW-80-030	10/8/2013	15:23	Water	Х							-			q	
		1	4				+	-					 	TOTAL NUMBER OF CONTAINERS	26	

	//Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by	// /	10-8-13	Simpping Sound	ATTN:	opeoidi matruotiona.
Sà mpled by		1540	Method of Shipment: courier	AIII.	Oct 7-9, 2013
Helinquished by	M		On Ice: (yes) no	Sample Custody	
Received by	Ghalingo	10-8-15	Airbill No:		
Relinquished by	Blackago	(0.8.12 Z)	Cab Name: Truesdail Laboratories, Inc.		Report Copy to
Received by	Erebial Been	10/8 (13	Lab Phone: (714) 730-6239		Shawn Duffy (530) 229-3303

Subject: RE: CMP COC Question From: <Shawn.Duffy@CH2M.com> Date: Mon, 4 Nov 2013 20:21:50 +0000

To: <seanc@truesdail.com>

Hi Sean,

The metals list should be:
Al, Sb, As, Ba, Be, B, Ca, Cd, Co, Cr, Cu, Fe, Pb, Mg, Mn, Hg, Mo, Ni, Se, Ag, Tl, V, Zn, K, Na

Shawn

----Original Message----

From: Sean Condon [mailto:seanc@truesdail.com]

Sent: Sunday, November 03, 2013 12:15 PM

To: Duffy, Shawn/RDD Subject: CMP COC Question

Hi Shawn,

It looks like there might be some metals missing from the metals lists on the two CMP COCs (see attached).

Thank you,

Sean Condon Project Manager Truesdail Laboratories, Inc. Phone: (714) 730-6239 Fax: (714) 730-6462

> **151** 11/8/2013 4:53 PM

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
10/0/13	810317-4	7.0	2011/100 ml	9.5	9:40	Ju
	-5-					
	-6	·				
	J -7		J			
10/9/13	810318-1	9.5	NA	MA	wa	Tru
	- 2					
	- 3					
	-4					
	-5					
	-6					
<u> </u>	J -7	<u> </u>		V		
10/9/13	810320-1	9.5	NA	N/A	MA	m
	2					
	-3					
	- Y					
	-5					
	-6					
<u> </u>	1 -7	V	J	7	J	J
W/A/13	810321-1	9.5	NA	NA	NA	121
	-2					
	-3					
	-4					
	-5					
	J -6	V	J			
10/10/15	810350-1	9.5	W12	w14	NIA	NE
	-2					
	-3					
<u> </u>	V -4	$V \perp$	V	<u> </u>	<u> </u>	<u> </u>
10110117	8/0351-1	7.0	2 mel //00 ml	9.5	8:30	WE
	2					
√	-3	1	1	V	<u> </u>	J

			Turbi	dity/pH C	heck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
810237-177	41	12	10/03/13	90	NO	15:10		
810231-4	1	i	1 1	1	Yes			
V10230					1			
810236-112	>1							
810239	41							
810229		v .	, , , , , , , , , , , , , , , , , , ,	- 4	, V			
310252 810206(1,3)	٢	42	10/04/13	De	yes Yes			
810206(1,3)	41	L2	10/4/13	ES	125			
204-2		72				10:00		PHZZ
810227	<u> </u>	22						
810251 (1-3)	1	1		V				
810184	11	L C						solid
\$10 185 (1-2)	1							L
810205 81020-4 810271-4	1				V			gludge
810200-4	>1	42	104113	n	yes			
810271-4	4	22	1014113	_ oc	yes		·	
810248								
810255-3,4	J	<u> </u>	<u> </u>	<u> </u>	4			-9 62 pH
810242-10-912	<1	72	4.	J	NO	15:10		-3 digest as 2
810262-175	TTL		1017113	or	ye			
810275 -4	71	22						
810279	41							
810276-4	71	<u> </u>	V	<u> </u>		5 - 1-4		
810230-41516	21	72	10/7/13	DL	N:	1.00		
410296 310301-4	41	22	10/4/12	5	Yes			
					1			
810310								
810705	_ _							
810706								
8107107								
810 70 9		\downarrow						· ·
						50		
810245		72			J	1 4		
\$10704(1-4)	71	22	10/8/12	以	Yes	-		
(3102/3/1-2)	21	72	10/9/19	ES	Yes	10:00		Fi thed the
310317(1,47)	41	72 42	1014117	57	7/2	10.00		Filtred than
910318 (1-6)	LI	72				10:00		
410319-1		22				10,00		
810320 (1-5)	21	12						·T-10
8/032/ (1-5)			1011111	ES	Yes			TID
810350 (1-4)	1 4 1	22	10/10/13	<u> </u>	yer		-	
810353(1-15)	"			-1,-				
V 11/0C X 1 L ~ 1 C V	.1 /	W /	-1/	417	W/			

Notes:

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

Clie	ent: <u>E</u> 2	_ Lab#_\$10321
Dat	re Delivered: 10 18 / 13 Time: 20/10 By: □Mail □	iField Service
1.	Was a Chain of Custody received and signed?	অYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes ¤No □N/A
3 .	Are there any special requirements or notes on the COC?	□Yes ቯNo □N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
<i>5</i> .	Were all requested analyses understood and acceptable?	∞QÍYes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)? <u>ろう°C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	⊅ÍYes □No □N/A .
8.	Were sample custody seals intact?	□Yes □No ÅN/A
9.	Does the number of samples received agree with COC?	ØYes □No □N/A
10.	Did sample labels correspond with the client ID's?	dYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Collect	J ØYes □No □N/A
12.	Were samples pH checked? pH =	☐Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	☐Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH 超 Std	,⊿Yes □No □N/A
15.	Sample Matrix: DLiquid Drinking Water Ground	. 11/ /
16.	Comments:	.
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	duda

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 8, 2013

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2013-CMP-030, GROUNDWATER MONITORING

PROJECT, TLI No.: 810386

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2013-CMP-030 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody October 11, 2013, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

On November 5, 2013, Mr. Duffy provided an updated metals list via email.

Total Thallium by EPA 200.8 in batch 110613C was detected in the method blank just above the reporting limit. Because the sample results were all below the reporting limit and all other QA/QC were within acceptable limits, the data was accepted.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi مرسط

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Sixteen (16) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM

Laboratory No.: 810386

Date: November 8, 2013 **Collected:** October 9 - 10, 2013 **Received:** October 11, 2013 Revision 1; December 9, 2013

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Jenny Tankunakorn
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2320B	Total Alkalinity	Kim Luck
SM 2130B	Turbidity	Kim Luck
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Kim Luck / Maria Mangarova
EPA 200.7	Metals by ICP	Denise Chauv
SW 6010B	Metals by ICP	Denise Chauv
EPA 200.8	Metals by ICP/MS	Ethel Suico
EPA 218.6	Hexavalent Chromium	Naheed Eidinejad

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 810386

Date Received: October 11, 2013

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-001	CW-04M-030	E120.1	NONE	10/9/2013	8:10	EC	6360	umhos/cm	2.00
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Aluminum	ND	ug/L	20.0
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	BORON	857	ug/L	200
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Calcium	177000	ug/L	10000
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Iron	ND	ug/L	20.0
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Magnesium	14500	ug/L	1000
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Potassium	15600	ug/L	500
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Sodium	1300000	ug/L	100000
810386-001	CW-04M-030	E200.7	FLDFLT	10/9/2013	8:10	Zinc	ND	ug/L	20.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Antimony	ND	ug/L	2.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Arsenic	2.2	ug/L	0.50
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Barium	87.1	ug/L	5.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Beryllium	ND	ug/L	0.50
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Cadmium	ND	ug/L	1.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Chromium	5.6	ug/L	1.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Cobalt	ND	ug/L	5.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Copper	ND	ug/L	5.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Lead	ND	ug/L	1.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Manganese	ND	ug/L	0.50
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Mercury	ND	ug/L	0.40
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Molybdenum	10.1	ug/L	2.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Nickel	ND	ug/L	2.0

005

TRUESDAIL LABORATORIES, II	NC.
----------------------------	-----

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
									
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Selenium	ND	ug/L	5.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Silver Thallium	ND	ug/L	5.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10		ND	ug/L	1.0
810386-001	CW-04M-030	E200.8	FLDFLT	10/9/2013	8:10	Vanadium	ND 5.4	ug/L	5.0
810386-001	CW-04M-030	E218.6	FLDFLT	10/9/2013	8:10	Chromium, Hexavalent	5.4	ug/L	1.0
810386-001	CW-04M-030	E300	NONE	10/9/2013	8:10	Chloride	2060	mg/L	50.0
810386-001	CW-04M-030	E300	NONE	10/9/2013	8:10	Fluoride	1.84	mg/L	0.500
810386-001	CW-04M-030	E300	NONE	10/9/2013	8:10	Sulfate	454	mg/L	25.0
810386-001	CW-04M-030	SM2130B	NONE	10/9/2013	8:10	Turbidity	ND	NTU	0.100
810386-001	CW-04M-030	SM2320B	NONE	10/9/2013	8:10	Alkalinity	54.0	mg/L	5.00
810386-001	CW-04M-030	SM2320B	NONE	10/9/2013	8:10	Alkalinity, Bicarbonate (As CaCO3)	54.0	mg/L	5.00
810386-001	CW-04M-030	SM2320B	NONE	10/9/2013	8:10	Alkalinity, Carbonate (As CaCO3)	ND	mg/L	5.00
810386-001	CW-04M-030	SM2540C	NONE	10/9/2013	8:10	Total Dissolved Solids	4100	mg/L	125
810386-001	CW-04M-030	SM4500NH3D	NONE	10/9/2013	8:10	Ammonia-N	ND	mg/L	0.500
810386-001	CW-04M-030	SW6010B	NONE	10/9/2013	8:10	Iron	ND	ug/L	20.0
810386-002	OW-01D-030	E120.1	NONE	10/9/2013	10:14	EC	6470	umhos/cm	2.00
810386-002	OW-01D-030	E200.7	FLDFLT	10/9/2013	10:14	Sodium	1440000	ug/L	100000
810386-002	OW-01D-030	E200.8	FLDFLT	10/9/2013	10:14	Chromium	ND	ug/L	1.0
810386-002	OW-01D-030	E200.8	FLDFLT	10/9/2013	10:14	Molybdenum	20.7	ug/L	2.0
810386-002	OW-01D-030	E218.6	FLDFLT	10/9/2013	10:14	Chromium, Hexavalent	ND	ug/L	1.0
810386-002	OW-01D-030	E300	NONE	10/9/2013	10:14	Chloride	2130	mg/L	50.0
810386-002	OW-01D-030	E300	NONE	10/9/2013	10:14	Fluoride	2.35	mg/L	0.500
810386-002	OW-01D-030	E300	NONE	10/9/2013	10:14	Sulfate	493	mg/L	25.0
810386-002	OW-01D-030	SM2130B	NONE	10/9/2013	10:14	Turbidity	0.415	NTU	0.100
810386-002	OW-01D-030	SM2540C	NONE	10/9/2013	10:14	Total Dissolved Solids	4270	mg/L	125
810386-003	OW-01M-030	E120.1	NONE	10/9/2013	10:42	EC	6530	umhos/cm	2.00
810386-003	OW-01M-030	E200.7	FLDFLT	10/9/2013	10:42	Sodium	1480000	ug/L	100000
810386-003	OW-01M-030	E200.8	FLDFLT	10/9/2013	10:42	Chromium	1.5	ug/L	1.0
810386-003	OW-01M-030	E200.8	FLDFLT	10/9/2013	10:42	Molybdenum	11.1	ug/L	2.0
810386-003	OW-01M-030	E218.6	FLDFLT	10/9/2013	10:42	Chromium, Hexavalent	1.2	ug/L	1.0
810386-003	OW-01M-030	E300	NONE	10/9/2013	10:42	Chloride	2410	mg/L	50.0
810386-003	OW-01M-030	E300	NONE	10/9/2013	10:42	Fluoride	1.66	mg/L	0.500
810386-003	OW-01M-030	E300	NONE	10/9/2013	10:42	Sulfate	489	mg/L	25.0
810386-003	OW-01M-030	SM2130B	NONE	10/9/2013	10:42	Turbidity	ND	NŤU	0.100
810386-003	OW-01M-030	SM2540C	NONE	10/9/2013	10:42	Total Dissolved Solids	4320	mg/L	125

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-004	OW-01S-030	E120.1	NONE	10/9/2013	11:35	EC	5190	umhos/cm	2.00
810386-004	OW-01S-030	E200.7	FLDFLT	10/9/2013	11:35	Sodium	801000	ug/L	100000
810386-004	OW-01S-030	E200.8	FLDFLT	10/9/2013	11:35	Chromium	8.4	ug/L	1.0
810386-004	OW-01S-030	E200.8	FLDFLT	10/9/2013	11:35	Molybdenum	5.9	ug/L	2.0
810386-004	OW-01S-030	E218.6	FLDFLT	10/9/2013	11:35	Chromium, Hexavalent	7.4	ug/L	1.0
810386-004	OW-01S-030	E300	NONE	10/9/2013	11:35	Chloride	1730	mg/L	50.0
810386-004	OW-01S-030	E300	NONE	10/9/2013	11:35	Fluoride	1.67	mg/L	0.500
810386-004	OW-01S-030	E300	NONE	10/9/2013	11:35	Sulfate	372	mg/L	25.0
810386-004	OW-01S-030	SM2130B	NONE	10/9/2013	11:35	Turbidity	0.212	NTU	0.100
810386-004	OW-01S-030	SM2540C	NONE	10/9/2013	11:35	Total Dissolved Solids	3870	mg/L	125
810386-005	OW-05D-030	E120.1	NONE	10/9/2013	13:56	EC	6710	umhos/cm	2.00
810386-005	OW-05D-030	E200.7	FLDFLT	10/9/2013	13:56	Sodium	1800000	ug/L	100000
810386-005	OW-05D-030	E200.8	FLDFLT	10/9/2013	13:56	Chromium	ND	ug/L	1.0
810386-005	OW-05D-030	E200.8	FLDFL T	10/9/2013	13:56	Molybdenum	18.2	ug/L	2.0
810386-005	OW-05D-030	E218.6	FLDFLT	10/9/2013	13:56	Chromium, Hexavalent	ND	ug/L	1.0
810386-005	OW-05D-030	E300	NONE	10/9/2013	13:56	Chloride	2190	mg/L	50.0
810386-005	OW-05D-030	E300	NONE	10/9/2013	13:56	Fluoride	2.06	mg/L	0.500
810386-005	OW-05D-030	E300	NONE	10/9/2013	13:56	Sulfate	512	mg/L	25.0
810386-005	OW-05D-030	SM2130B	NONE	10/9/2013	13:56	Turbidity	0.138	NTU	0.100
810386-005	OW-05D-030	SM2540C	NONE	10/9/2013	13:56	Total Dissolved Solids	4240	mg/L	125
810386-006	OW-05M-030	E120.1	NONE	10/9/2013	14:44	EC	6650	umhos/cm	2.00
810386-006	OW-05M-030	E200.7	FLDFLT	10/9/2013	14:44	Sodium	1620000	ug/L	100000
810386-006	OW-05M-030	E200.8	FLDFLT	10/9/2013	14:44	Chromium	ND	ug/L	1.0
810386-006	OW-05M-030	E200.8	FLDFLT	10/9/2013	14:44	Molybdenum	17.0	ug/L	2.0
810386-006	OW-05M-030	E218.6	FLDFLT	10/9/2013	14:44	Chromium, Hexavalent	ND	ug/L	1.0
810386-006	OW-05M-030	E300	NONE	10/9/2013	14:44	Chloride	2150	mg/L	50.0
810386-006	OW-05M-030	E300	NONE	10/9/2013	14:44	Fluoride	2.08	mg/L	0.500
810386-006	OW-05M-030	E300	NONE	10/9/2013	14:44	Sulfate	500	mg/L	25.0
810386-006	OW-05M-030	SM2130B	NONE	10/9/2013	14:44	Turbidity	ND	NTU	0.100
810386-006	OW-05M-030	SM2540C	NONE	10/9/2013	14:44	Total Dissolved Solids	4300	mg/L	125

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
810386-007	OW-05S-030	E120.1	NONE	10/9/2013	15:12	EC	2880	umhos/cm	2.00
810386-007	OW-05S-030	E200.7	FLDFLT	10/9/2013	15:12	Sodium	486000	ug/L	100000
810386-007	OW-05S-030	E200.8	FLDFLT	10/9/2013	15:12	Chromium	17.1	ug/L	1.0
810386-007	OW-05S-030	E200.8	FLDFLT	10/9/2013	15:12	Molybdenum	15.5	ug/L	2.0
810386-007	OW-05S-030	E218.6	FLDFLT	10/9/2013	15:12	Chromium, Hexavalent	18.2	ug/L	0.20
810386-007	OW-05S-030	E300	NONE	10/9/2013	15:12	Chloride	865	mg/L	50.0
810386-007	OW-05S-030	E300	NONE	10/9/2013	15:12	Fluoride	1.80	mg/L	0.500
810386-007	OW-05S-030	E300	NONE	10/9/2013	15:12	Sulfate	163	mg/L	25.0
810386-007	OW-05S-030	SM2130B	NONE	10/9/2013	15:12	Turbidity	0.238	NTU	0.100
810386-007	OW-05S-030	SM2540C	NONE	10/9/2013	15:12	Total Dissolved Solids	1820	mg/L	50.0
810386-008	OW-70-030	E120.1	NONE	10/9/2013	10:00	EC	6260	umhos/cm	2.00
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	Aluminum	ND	ug/L	20.0
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	BORON	854	ug/L	200
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	Calcium	173000	ug/L	10000
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	iron	ND	ug/L	20.0
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	Magnesium	14800	ug/L	1000
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	Potassium	15900	ug/L	500
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	Sodium	1320000	ug/L	100000
810386-008	OW-70-030	E200.7	FLDFLT	10/9/2013	10:00	Zinc	ND	ug/L	20.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Antimony	ND	ug/L	2.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Arsenic	2.2	ug/L	0.50
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Barium	90.4	ug/L	5.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Beryllium	ND	ug/L	0.50
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Cadmium	ND	ug/L	1.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Chromium	5.7	ug/L	1.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Cobalt	ND	ug/L	5.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Copper	ND	ug/L	5.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Lead	ND	ug/L	1.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Manganese	ND	ug/L	0.50
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Mercury	ND	ug/L	0.40
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Molybdenum	9.6	ug/L	2.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Nickel	ND	ug/L	2.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Selenium	ND	ug/L	5.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Silver	ND	ug/L	5.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Thallium	ND	ug/L	1.0
810386-008	OW-70-030	E200.8	FLDFLT	10/9/2013	10:00	Vanadium	ND	ug/L	5.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-008	OW-70-030	E218.6	FLDFLT	10/9/2013	10:00	Chromium, Hexavalent	5.4	ug/L	1.0
810386-008	OW-70-030	E300	NONE	10/9/2013	10:00	Chloride	2060	mg/L	50.0
810386-008	OW-70-030	E300	NONE	10/9/2013	10:00	Fluoride	1.77	mg/L	0.500
810386-008	OW-70-030	E300	NONE	10/9/2013	10:00	Sulfate	454	mg/L	25.0
810386-008	OW-70-030	SM2130B	NONE	10/9/2013	10:00	Turbidity	ND	NTU	0.100
810386-008	OW-70-030	SM2320B	NONE	10/9/2013	10:00	Alkalinity	50.0	mg/L	5.0
810386-008	OW-70-030	SM2320B	NONE	10/9/2013	10:00	Alkalinity, Bicarbonate (As CaCO3)	50.0	mg/L	5.00
810386-008	OW-70-030	SM2320B	NONE	10/9/2013	10:00	Alkalinity, Carbonate (As CaCO3)	ND	mg/L	5.00
810386-008	OW-70-030	SM2540C	NONE	10/9/2013	10:00	Total Dissolved Solids	4120	mg/L	125
810386-008	OW-70-030	SM4500NH3D	NONE	10/9/2013	10:00	Ammonia-N	ND	mg/L	0.500
810386-008	OW-70-030	SW6010B	NONE	10/9/2013	10:00	Iron	77.5	ug/L	20.0
810386-009	CW-01D-030	E120.1	NONE	10/10/2013	8:25	EC	6460	umhos/cm	2.00
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Aluminum	ND	ug/L	20.0
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	BORON	900	ug/L	200
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Calcium	164000	ug/L	10000
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Iron	ND	ug/L	20.0
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Magnesium	16300	ug/L	10000
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Potassium	13900	ug/L	5000
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Sodium	1400000	ug/L	500000
810386-009	CW-01D-030	E200.7	FLDFLT	10/10/2013	8:25	Zinc	ND	ug/L	20.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Antimony	ND	ug/L	2.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Arsenic	1.3	ug/L	0.50
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Barium	21.6	ug/L	5.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Beryllium	ND	ug/L	0.50
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Cadmium	ND	ug/L	1.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Chromium	ND	ug/L	1.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Cobalt	ND	ug/L	5.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Copper	ND	ug/L	5.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Lead	ND	ug/L	1.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Manganese	ND	ug/L	0.50
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Mercury	ND	ug/L	0.40
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Molybdenum	19.9	ug/L	2.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Nickel	ND	ug/L	2.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Selenium	ND	ug/L	5.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Silver	ND	ug/L	5.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Thallium	ND	ug/L	1.0
810386-009	CW-01D-030	E200.8	FLDFLT	10/10/2013	8:25	Vanadium	ND s As a mutual p	ug/L rotection to clients	5.0 , the public,

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-009	CW-01D-030	E218.6	FLDFLT	10/10/2013	8:25	Chromium, Hexavalent	ND	ug/L	1.0
810386-009	CW-01D-030	E300	NONE	10/10/2013	8:25	Chloride	2110	mg/L	50.0
810386-009	CW-01D-030	E300	NONE	10/10/2013	8:25	Fluoride	2.34	mg/L	0.500
810386-009	CW-01D-030	E300	NONE	10/10/2013	8:25	Sulfate	494	mg/L	25.0
810386-009	CW-01D-030	SM2130B	NONE	10/10/2013	8:25	Turbidity	ND	NŤU	0.100
810386-009	CW-01D-030	SM2320B	NONE	10/10/2013	8:25	Alkalinity	47.0	mg/L	5.00
810386-009	CW-01D-030	SM2320B	NONE	10/10/2013	8:25	Alkalinity, Bicarbonate (As CaCO3)	47.0	mg/L	5.00
810386-009	CW-01D-030	SM2320B	NONE	10/10/2013	8:25	Alkalinity, Carbonate (As CaCO3)	ND	mg/L	5.00
810386-009	CW-01D-030	SM2540C	NONE	10/10/2013	8:25	Total Dissolved Solids	4130	mg/L	125
810386-009	CW-01D-030	SM4500NH3D	NONE	10/10/2013	8:25	Ammonia-N	ND	mg/L	0.500
810386-009	CW-01D-030	SW6010B	NONE	10/10/2013	8:25	Iron	ND	ug/L	20.0
810386-010	CW-01M-030	E120.1	NONE	10/10/2013	8:58	EC	6660	umhos/cm	2.00
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Aluminum	ND	ug/L	20.0
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	BORON	912	ug/L	200
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Calcium	175000	ug/L	10000
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Iron	ND	ug/L	20.0
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Magnesium	14600	ug/L	1000
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Potassium	15500	ug/L	500
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Sodium	1400000	ug/L	100000
810386-010	CW-01M-030	E200.7	FLDFLT	10/10/2013	8:58	Zinc	ND	ug/L	20.0
810386-010	CW-01M-030	E200.8	FLDFL T	10/10/2013	8:58	Antimony	ND	ug/L	2.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Arsenic	1.6	ug/L	0.50
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Barium	84.0	ug/L	5.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Beryllium	ND	ug/L	0.50
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Cadmium	ND	ug/L	1.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Chromium	ND	ug/L	1.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Cobalt	ND	ug/L	5.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Copper	ND	ug/L	5.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Lead	ND	ug/L	1.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Manganese	ND	ug/L	0.50
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Mercury	ND	ug/L	0.40
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Molybdenum	17.2	ug/L	2.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Nickel	ND	ug/L	2.00
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Selenium	ND	ug/L	5.0
3 810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Silver	ND	ug/L	5.0
5 810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Thallium	ND	ug/L	1.0
810386-010	CW-01M-030	E200.8	FLDFLT	10/10/2013	8:58	Vanadium ondition of apparently identical or similar product	ND s. As a mutual p	ug/L protection to clients	5.0 s, the public,

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-010	CW-01M-030	E218.6	FLDFLT	10/10/2013	8:58	Chromium, Hexavalent	ND	ug/L	1.0
810386-010	CW-01M-030	E300	NONE	10/10/2013	8:58	Chloride	2130	mg/L	50.0
810386-010	CW-01M-030	E300	NONE	10/10/2013	8:58	Fluoride	1.92	mg/L	0.500
810386-010	CW-01M-030	E300	NONE	10/10/2013	8:58	Sulfate	503	mg/L	25.0
810386-010	CW-01M-030	SM2130B	NONE	10/10/2013	8:58	Turbidity	ND	NTU	0.100
810386-010	CW-01M-030	SM2320B	NONE	10/10/2013	8:58	Alkalinity	50.0	mg/L	5.00
810386-010	CW-01M-030	SM2320B	NONE	10/10/2013	8:58	Alkalinity, Bicarbonate (As CaCO3)	50.0	mg/L	5.00
810386-010	CW-01M-030	SM2320B	NONE	10/10/2013	8:58	Alkalinity, Carbonate (As CaCO3)	ND	mg/L	5.00
810386-010	CW-01M-030	SM2540C	NONE	10/10/2013	8:58	Total Dissolved Solids	4250	mg/L	125
810386-010	CW-01M-030	SM4500NH3D	NONE	10/10/2013	8:58	Ammonia-N	ND	mg/L	0.500
810386-010	CW-01M-030	SW6010B	NONE	10/10/2013	8:58	Iron	ND	ug/L	20.0
810386-011	OW-02D-030	E120.1	NONE	10/10/2013	10:36	EC	6570	umhos/cm	2.00
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Aluminum	ND	ug/L	20.0
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	BORON	917	ug/L	200
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Calcium	119000	ug/L	10000
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Iron	ND	ug/L	20.0
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Magnesium	28200	ug/L	2000
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Potassium	17500	ug/L	500
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Sodium	1420000	ug/L	100000
810386-011	OW-02D-030	E200.7	FLDFLT	10/10/2013	10:36	Zinc	ND	ug/L	20.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Antimony	ND	ug/L	2.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Arsenic	3.5	ug/L	0.50
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Barium	15.8	ug/L	5.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Beryllium	ND	ug/L	0.50
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Cadmium	ND	ug/L	1.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Chromium	ND	ug/L	1.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Cobalt	ND	ug/L	5.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Copper	ND	ug/L	5.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Lead	ND	ug/L	1.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Manganese	ND	ug/L	0.50
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Mercury	ND	ug/L	0.40
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Molybdenum	18.7	ug/L	2.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Nickel	ND	ug/L	2.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Selenium	ND	ug/L	5.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Silver	ND	ug/L	5.0
× 810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Thallium	ND	ug/L	1.0
810386-011	OW-02D-030	E200.8	FLDFLT	10/10/2013	10:36	Vanadium	ND s As a mutual n	ug/L rotection to clients	5.0 . the public.

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-011	OW-02D-030	E218.6	FLDFLT	10/10/2013	10:36	Chromium, Hexavalent	ND	ug/L	1.0
810386-011	OW-02D-030	E300	NONE	10/10/2013	10:36	Chloride	2120	mg/L	50.0
810386-011	OW-02D-030	E300	NONE	10/10/2013	10:36	Fluoride	1.96	mg/L	0.500
810386-011	OW-02D-030	E300	NONE	10/10/2013	10:36	Sulfate	494	mg/L	25.0
810386-011	OW-02D-030	SM2130B	NONE	10/10/2013	10:36	Turbidity	ND	NŤU	0.100
810386-011	OW-02D-030	SM2320B	NONE	10/10/2013	10:36	Alkalinity	30.0	mg/L	5.00
810386-011	OW-02D-030	SM2320B	NONE	10/10/2013	10:36	Alkalinity, Bicarbonate (As CaCO3)	30.0	mg/L	5.00
810386-011	OW-02D-030	SM2320B	NONE	10/10/2013	10:36	Alkalinity, Carbonate (As CaCO3)	ND	mg/L	5.00
810386-011	OW-02D-030	SM2540C	NONE	10/10/2013	10:36	Total Dissolved Solids	4240	mg/L	125
810386-011	OW-02D-030	SM4500NH3D	NONE	10/10/2013	10:36	Ammonia-N	ND	mg/L	0.500
810386-011	OW-02D-030	SW6010B	NONE	10/10/2013	10:36	Iron	ND	ug/L	20.0
810386-012	OW-02M-030	E120.1	NONE	10/10/2013	11:13	EC	6450	umhos/cm	2.00
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Aluminum	ND	ug/L	20.0
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	BORON	992	ug/L	200
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Calcium	134000	ug/L	10000
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Iron	ND	ug/L	20.0
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Magnesium	22800	ug/L	2000
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Potassium	16600	ug/L	500
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Sodium	1360000	ug/L	100000
810386-012	OW-02M-030	E200.7	FLDFLT	10/10/2013	11:13	Zinc	ND	ug/L	20.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Antimony	ND	ug/L	2.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Arsenic	1.6	ug/L	0.50
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Barium	41.0	ug/L	5.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Beryllium	ND	ug/L	0.50
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Cadmium	ND	ug/L	1.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Chromium	1.6	ug/L	1.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Cobalt	ND	ug/L	5.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Copper	ND	ug/L	5.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Lead	ND	ug/L	1.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Manganese	ND	ug/L	0.50
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Mercury	ND	ug/L	0.40
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Molybdenum	16.3	ug/L	2.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Nickel	ND	ug/L	2.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Selenium	ND	ug/L	5.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Silver	ND	ug/L	5.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Thallium	ND	ug/L	1.0
810386-012	OW-02M-030	E200.8	FLDFLT	10/10/2013	11:13	Vanadium andition of apparently identical or similar products	ND s. As a mutual pi	ug/L rotection to clients	5.0 the public,

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-012	OW-02M-030	E218.6	FLDFLT	10/10/2013	11:13	Chromium, Hexavalent	1.6	ug/L	1.0
810386-012	OW-02M-030 OW-02M-030	E300	NONE	10/10/2013	11:13	Chloride	2090	mg/L	50.0
	OW-02M-030 OW-02M-030	E300	NONE	10/10/2013	11:13	Fluoride	2.04	_	0.500
810386-012								mg/L	25.0
810386-012	OW-02M-030	E300	NONE	10/10/2013	11:13	Sulfate	490	mg/L	
810386-012	OW-02M-030	SM2130B	NONE	10/10/2013	11:13	Turbidity	ND	NTU	0.100
810386-012	OW-02M-030	SM2320B	NONE	10/10/2013	11:13	Alkalinity	76.0	mg/L	5.00
810386-012	OW-02M-030	SM2320B	NONE	10/10/2013	11:13	Alkalinity, Bicarbonate (As CaCO3)	76.0	mg/L	5.00
810386-012	OW-02M-030	SM2320B	NONE	10/10/2013	11:13	Alkalinity, Carbonate (As CaCO3)	ND	mg/L	5.00
810386-012	OW-02M-030	SM2540C	NONE	10/10/2013	11:13	Total Dissolved Solids	4160	mg/L	125
810386-012	OW-02M-030	SM4500NH3D	NONE	10/10/2013	11:13	Ammonia-N	ND	mg/L	0.500
810386-012	OW-02M-030	SW6010B	NONE	10/10/2013	11:13	Iron	ND	ug/L	20.0
810386-013	OW-02S-030	E120.1	NONE	10/10/2013	12:04	EC	1760	umhos/cm	2.00
810386-013	OW-02S-030	E200.7	FLDFLT	10/10/2013	12:04	Sodium	391000	ug/L	100000
810386-013	OW-02S-030	E200.8	FLDFLT	10/10/2013	12:04	Chromium	22.0	ug/L	1.0
810386-013	OW-02S-030	E200.8	FLDFLT	10/10/2013	12:04	Molybdenum	34.7	ug/L	2.0
810386-013	OW-02S-030	E218.6	FLDFLT	10/10/2013	12:04	Chromium, Hexavalent	22.9	ug/L	0.20
810386-013	OW-02S-030	E300	NONE	10/10/2013	12:04	Chloride	468	mg/L	10.0
810386-013	OW-02S-030	E300	NONE	10/10/2013	12:04	Fluoride	4.74	mg/L	0.500
810386-013	OW-02S-030	E300	NONE	10/10/2013	12:04	Sulfate	99.8	mg/L	25.0
810386-013	OW-02S-030	SM2130B	NONE	10/10/2013	12:04	Turbidity	2.10	NTU	0.100
810386-013	OW-02S-030	SM2540C	NONE	10/10/2013	12:04	Total Dissolved Solids	1040	mg/L	50.0
810386-014	OW-71-030	E120.1	NONE	10/10/2013	7:00	EC	1740	umhos/cm	2.00
810386-014	OW-71-030	E200.7	FLDFLT	10/10/2013	7:00	Sodium	375000	ug/L	100000
810386-014	OW-71-030	E200.8	FLDFLT	10/10/2013	7:00	Chromium	21.7	ug/L	1.0
810386-014	OW-71-030	E200.8	FLDFLT	10/10/2013	7:00	Molybdenum	34.6	ug/L	2.0
810386-014	OW-71-030	E218.6	FLDFLT	10/10/2013	7:00	Chromium, Hexavalent	22.8	ug/L	0.20
810386-014	OW-71-030	E300	NONE	10/10/2013	7:00	Chloride	469	mg/L	10.0
810386-014	OW-71-030	E300	NONE	10/10/2013	7:00	Fluoride	4.77	mg/L	0.500
810386-014	OW-71-030	E300	NONE	10/10/2013	7:00	Sulfate	93.7	mg/L	50.0
810386-014	OW-71-030	SM2130B	NONE	10/10/2013	7:00	Turbidity	2.25	NTU	0.100
810386-014	OW-71-030	SM2540C	NONE	10/10/2013	7:00	Total Dissolved Solids	1030	mg/L	50.0
				· - · - - · -	-			-3 –	-

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
810386-015	OW-81-030	E218.6	FLDFLT	10/10/2013	7:23	Chromium, Hexavalent	ND	ug/L	0.20
810386-016	OW-82-030	E218.6	FLDFLT	10/10/2013	12:40	Chromium, Hexavalent	ND	ug/L	0.20

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 59

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 11/8/2013

Matrix Water

Water

Water

Water

Water

Laboratory No. 810386

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 423575.MP.02.CM
P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 10/11/2013

Field ID	Lab ID	Collected
CW-04M-030	810386-001	10/09/2013 08:10
OW-01D-030	810386-002	10/09/2013 10:14
OW-01M-030	810386-003	10/09/2013 10:42
OW-01S-030	810386-004	10/09/2013 11:35
OW-05D-030	810386-005	10/09/2013 13:56
OW-05M-030	810386-006	10/09/2013 14:44
OW-05S-030	810386-007	10/09/2013 15:12

Water Water Water OW-70-030 810386-008 10/09/2013 10:00 CW-01D-030 Water 810386-009 10/10/2013 08:25 Water CW-01M-030 810386-010 10/10/2013 08:58 OW-02D-030 810386-011 10/10/2013 10:36 Water 810386-012 10/10/2013 11:13 Water OW-02M-030 Water OW-02S-030 810386-013 10/10/2013 12:04 810386-014 10/10/2013 07:00 Water OW-71-030

 OW-71-030
 810386-014
 10/10/2013 07:00
 Water

 OW-81-030
 810386-015
 10/10/2013 07:23
 Water

 OW-82-030
 810386-016
 10/10/2013 12:40
 Water

Anions By I.C EPA 300.0		Batch 10AN13O				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
810386-001 Chloride	mg/L	10/15/2013 18:04	500	17.4	50.0	2060
Sulfate	mg/L	10/15/2013 22:04	50.0	1.54	25.0	454
810386-002 Chloride	mg/L	10/15/2013 18:16	500	17.4	50.0	2130
Sulfate	mg/L	10/15/2013 22:15	50.0	1.54	25.0	493
810386-003 Chloride	mg/L	10/15/2013 18:27	500	17.4	50.0	2410
Sulfate	mg/L	10/15/2013 22:27	50.0	1.54	25.0	489
810386-004 Chloride	mg/L	10/15/2013 19:01	500	17.4	50.0	1730
Sulfate	mg/L	10/15/2013 22:38	50.0	1.54	25.0	372
810386-005 Chloride	mg/L	10/15/2013 19:13	500	17.4	50.0	2190
Sulfate	mg/L	10/15/2013 22:49	50.0	1.54	25.0	512

Client: E2 Consulting Eng		oject Name: oject Number	PG&E Topod : 423575.MP.0	-	ect	Pa Printed 11	age 2 of 59 /8/2013	
810386-006 Chloride		mg/L	10/15/	2013 19:24	500	17.4	50.0	2150
Sulfate		mg/L	10/15/	2013 23:01	50.0	1.54	25.0	500
810386-007 Chloride		mg/L	10/15/	2013 19:35	500	17.4	50.0	865
Sulfate		mg/L	10/15/	2013 23:35	50.0	1.54	25.0	163
810386-008 Chloride		mg/L	10/15/	2013 19:47	500	17.4	50.0	2060
Sulfate		mg/L	10/15/	2013 23:46	50.0	1.54	25.0	454
810386-009 Chloride		mg/L	10/15/	2013 19:58	500	17.4	50.0	2110
Sulfate		mg/L	10/15/	2013 23:58	50.0	1.54	25.0	494
810386-010 Chloride		mg/L	10/15/	2013 20:10	500	17.4	50.0	2130
Sulfate		mg/L	10/16/	2013 00:09	50.0	1.54	25.0	503
810386-011 Chloride		mg/L	10/15/	2013 20:21	500	17.4	50.0	2120
Sulfate		mg/L	10/16/	/2013 00:21	50.0	1.54	25.0	494
810386-012 Chloride		mg/L	10/15/	2013 20:32	500	17.4	50.0	2090
Sulfate		mg/L	10/16/	2013 00:32	50.0	1.54	25.0	490
810386-013 Sulfate		mg/L	10/15/	/2013 20:44	50.0	1.54	25.0	99.8
810386-014 Chloride		mg/L	10/15/	/2013 21:18	100	3.49	10.0	469
Sulfate		mg/L	10/15/	2013 21:18	100	3.07	50.0	93.7
Method Blank								
Parameter	Unit	DF	Result					
Chloride	mg/L	1.00	ND					
Sulfate	mg/L	1.00	ND					
Duplicate							Lab ID = 8	310283-001
Parameter	Unit	DF	Result	Expected		RPD	Acceptai	nce Range
Chloride	mg/L	1.00	ND	0.208		0	0 - 20	
Sulfate	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	•	nce Range
Chloride	mg/L	1.00	3.97	4.00		99.4	90 - 110	
Sulfate	mg/L	1.00	20.0	20.0		99.9	90 - 110	
Matrix Spike							Lab ID = 8	310283-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	•	nce Range
Chloride	mg/L	1.00	2.18	2.21(2.00)		98.8	85 - 115	
Sulfate	mg/L	1.00	1.90	2.00(2.00)		94.8	85 - 115	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Page 4 of 59

Parameter	The second secon	Unit	Ana	lyzed	DF	MDL	RL	Result
810386-001 Fluoride		mg/L	10/14	/2013 21:02	5.00	0.104	0.500	1.84
810386-002 Fluoride		mg/L	10/14	/2013 21:14	5.00	0.104	0.500	2.35
810386-003 Fluoride		mg/L	10/14	/2013 21:25	5.00	0.104	0.500	1.66
810386-004 Fluoride		mg/L	10/14	/2013 21:37	5.00	0.104	0.500	1.67
810386-005 Fluoride		mg/L	10/14	/2013 21:48	5.00	0.104	0.500	2.06
810386-006 Fluoride		mg/L	10/14	/2013 22:22	5.00	0.104	0.500	2.08
810386-007 Fluoride		mg/L	10/14	/2013 22:34	5.00	0.104	0.500	1.80
810386-008 Fluoride		mg/L	10/14	/2013 22:45	5.00	0.104	0.500	1.77
810386-009 Fluoride		mg/L	10/14	/2013 22:57	5.00	0.104	0.500	2.34
810386-010 Fluoride		mg/L	10/14	/2013 23:08	5.00	0.104	0.500	1.92
810386-011 Fluoride		mg/L	10/14	/2013 23:19	5.00	0.104	0.500	1.96
810386-012 Fluoride		mg/L	10/14	/2013 23:31	5.00	0.104	0.500	2.04
810386-013 Fluoride		mg/L	10/14	/2013 23:42	5.00	0.104	0.500	4.74
810386-014 Fluoride		mg/L	10/14	/2013 23:54	5.00	0.104	0.500	4.77
Method Blank								
Parameter	Unit	DF	Result					
Fluoride	mg/L	1.00	ND					
Duplicate							Lab ID =	810371-011
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Fluoride	mg/L	1.00	ND	0.256		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Fluoride	mg/L	1.00	4.04	4.00		101	90 - 110	
Matrix Spike							Lab ID =	810371-011
Parameter	Unit	DF	Result	Expected/A	dded F	Recovery	Accepta	nce Range
Fluoride	mg/L	1.00	2.29	2.26(2.00)		102	85 - 115	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Fluoride	mg/L	1.00	4.15	4.00		104	90 - 110	
MRCVS - Primary								
Parameter Fluoride	Unit mg/L	DF 1.00	Result 3.07	Expected 3.00	F	Recovery 102	Accepta 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 6 of 59 Printed 11/8/2013

Parameter		Unit	Ana	lyzed [DF MDL	RL	Result
810386-013 Chloride		mg/L	10/16/2013 15:04		00 3.49	10.0	468
Method Blank							
Parameter	Unit	DF	Result				
Chloride	mg/L	1.00	ND				
Duplicate						Lab ID =	810328-001
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ance Range
Chloride	mg/L	1.00	ND	0	0	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.99	4.00	99.8	90 - 110)
Matrix Spike						Lab ID =	810328-001
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accepta	ance Range
Chloride	mg/L	1.00	1.78	2.00(2.00)	88.9	85 - 115	5
Matrix Spike Duplicate					e e Dye erere soos	Lab ID =	810328-001
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accepta	ance Range
Chloride	mg/L	1.00	1.79	2.00(2.00)	89.5	85 - 115	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.98	4.00	99.4	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.00	3.00	100	90 - 110	כ
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	3.18	3.00	106	90 - 110) "
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery		ance Range
Chloride	mg/L	1.00	3.08	3.00	103	90 - 110	ס
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chloride	mg/L	1.00	2.98	3.00	99.2	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 8 of 59 Printed 11/8/2013

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
810386-001 Alkalinity as Ca	aCO3	mg/L	10/17	/2013	1.00	1.68	5.00	54.0
Bicarbonate (C	Calculated)	mg/L	10/17	/2013	1.00	1.68	5.00	54.0
Carbonate (Ca	ılculated)	mg/L	10/17	/2013	1.00	1.68	5.00	ND
810386-008 Alkalinity as Ca	aCO3	mg/L	10/17	/2013	1.00	1.68	5.00	50.0
Bicarbonate (C	Calculated)	mg/L	10/17	/2013	1.00	1.68	5.00	50.0
Carbonate (Ca	lculated)	mg/L	10/17	/2013	1.00	1.68	5.00	ND
810386-009 Alkalinity as Ca	aCO3	mg/L	10/17	/2013	1.00	1.68	5.00	47.0
Bicarbonate (C	Calculated)	mg/L	10/17	/2013	1.00	1.68	5.00	47.0
Carbonate (Ca	lculated)	mg/L	10/17	/2013	1.00	1.68	5.00	ND
810386-010 Alkalinity as Ca	aCO3	mg/L	10/17	/2013	1.00	1.68	5.00	50.0
Bicarbonate (C	Calculated)	mg/L	10/17	/2013	1.00	1.68	5.00	50.0
Carbonate (Ca	ılculated)	mg/L	10/17	/2013	1.00	1.68	5.00	ND
810386-011 Alkalinity as Ca	aCO3	mg/L	10/17	/2013	1.00	1.68	5.00	30.0
Bicarbonate (C	Calculated)	mg/L	10/17	/2013	1.00	1.68	5.00	30.0
Carbonate (Calculated)		mg/L	10/17	/2013	1.00	1.68	5.00	ND
10386-012 Alkalinity as CaCO3		mg/L	10/17	/2013	1.00	1.68	5.00	76.0
Bicarbonate (C	Calculated)	mg/L	10/17	/2013	1.00	1.68	5.00	76.0
Carbonate (Ca	lculated)	mg/L	10/17	/2013	1.00	1.68	5.00	ND
Method Blank								
Parameter	Unit	DF	Result					
Alkalinity as CaCO3	mg/L	1.00	ND					
Duplicate							Lab ID =	810386-010
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Alkalinity as CaCO3	mg/L	1.00	50.0	50.0		0	0 - 20	
Lab Control Sample	him of a magic on a facilities of all first the many officers of relationship.	At the galactic management of properties of the first periodic states of the states of the states of the states	da kumbana 1477 iya ka nagara ika kababasa ka na tan ka	vidig grapes is disagrape and a 1120-pilot — also takes a construction and the construction a	ostija, agreja og av en entila	en den gillendikken en men den kenter er er en men den den personel den beste ste gegen.	infrances (de alemánico a como diference está interna-	
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Alkalinity as CaCO3	mg/L	1.00	98.0	100		98.0	90 - 110)
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery		ince Range
Alkalinity as CaCO3	mg/L	1.00	99.0	100		99.0	90 - 110	
Matrix Spike							Lab ID =	810386-012
Parameter Alkalinity as CaCO3	Unit	DF	Result	Expected/Add	ed F	Recovery	•	ance Range
	mg/L	1.00	175	176(100)		99.0	75 - 125	_

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 9 of 59

176

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Matrix Spike Duplicate

Lab ID = 810386-012

Parameter Alkalinity as CaCO3

Unit mg/L

DF 1.00

Result Expected/Added 176(100)

Recovery 100

Acceptance Range

75 - 125

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 10 of 59

Project Number: 423575.MP.02.CM Printed 11/8/2013

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
810386-001 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6360
810386-002 Specific Conduc	ctivity	umhos/d	cm 10/17	10/17/2013		0.606	2.00	6470
810386-003 Specific Conduc	ctivity	umhos/d	cm 10/17	10/17/2013		0.606	2.00	6530
810386-004 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	5190
810386-005 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6710
810386-006 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6650
810386-007 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	2880
810386-008 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6260
810386-009 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6460
810386-010 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6660
810386-011 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6570
810386-012 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	0.606	2.00	6450
810386-013 Specific Conduc	ctivity	umhos/d	m 10/17	/2013	1.00 0.606 2.0		2.00	1760
810386-014 Specific Conduc	ctivity	umhos/d	cm 10/17	/2013	1.00	1.00 0.606 2.00		1740
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	810386-010
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Specific Conductivity	umhos	1.00	6670	6660		0.150	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1.00	684	706		96.9	90 - 110)
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	686	706		97.2	90 - 110)
MRCVS - Primary								
in to to timinary	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Parameter				1000		91.3	90 - 110)
•	umhos	1.00	913	1000			• • • • • • • • • • • • • • • • • • • •	,
Parameter		1.00	913	1000				,
Parameter Specific Conductivity		1.00 DF	913 Result	Expected	- 19 (d) F	Recovery		nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 11 of 59

Printed 1/7/2014

Revised

Parameter		Unit	Ana	lyzed D	F	MDL	RL	Result
810386-001 Iron		ug/L	10/17	/2013 17:08 1.	00	3.00	20.0	ND
810386-008 Iron		ug/L	10/17	/2013 17:55 1.	00	3.00	20.0	77.5
810386-009 Iron		ug/L	10/17	/2013 18:02 1.	00	3.00	20.0	ND
810386-010 Iron		ug/L	10/17	/2013 18:08 1.	00	3.00	20.0	ND
810386-011 Iron		ug/L	10/17	/2013 18:15 1.	00	3.00	20.0	ND
810386-012 Iron		ug/L_	10/17	/2013 18:22 1.	00	3.00	20.0	ND
Method Blank								
Parameter Iron	Unit ug/L	DF 1.00	Result ND					
Duplicate							Lab ID =	810386-001
Parameter Iron	Unit ug/L	DF 1.00	Result ND	Expected 0		PD 0	Accepta 0 - 20	ince Range
Lab Control Sample								
Parameter Iron	Unit ug/L	DF 1.00	Result 57.2	Expected 50.0	R	ecovery 114	Accepta 85 - 115	ince Range
Matrix Spike	Williage Devictories						Lab ID =	810386-001
Parameter Iron	Unit ug/L	DF 1.00	Result 48.8	Expected/Added 50.0(50.0)		ecovery 97.6	Accepta 75 - 125	ince Range
Matrix Spike Duplicate	Militaris						Lab ID =	810386-001
Parameter Iron	Unit ug/L	DF 1.00	Result 44.7	Expected/Added 50.0(50.0)		ecovery 89.4	Accepta 75 - 125	ince Range
MRCCS - Secondary								
Parameter Iron	Unit ug/L	DF 1.00	Result 5050	Expected 5000	R	ecovery 101	Accepta 90 - 110	ince Range
MRCVS - Primary		stranska station i Selan fragska			again an ann an a			
Parameter Iron	Unit ug/L	DF 1.00	Result 5020	Expected 5000	R	ecovery 100	Accepta 90 - 110	ince Range)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	ince Range
Iron	ug/L	1.00	4970	5000		99.5	90 - 110	_
Interference Check Sta	ndard A							
Parameter Iron	Unit ug/L	DF 1.00	Result 2220	Expected 2000	R	ecovery 111	Accepta 80 - 120	ince Range

Page 13 of 59 Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM Printed 11/8/2013

Chrome VI by EPA 218.6			Batch 1	0CrH13T				
Parameter	Ur	nit	Analyz	ed	DF	MDL	RL	Result
810386-001 Chromium, Hexavaler	it ug/	L	10/19/20	013 11:30	5.00	0.0300	1.0	5.4
810386-002 Chromium, Hexavaler	it ug/	L	10/19/20	013 11:40	5.00	0.0300	1.0	ND
810386-003 Chromium, Hexavalen	t ug/	L	10/19/20	013 11:51	5.00	0.0300	1.0	1.2
810386-004 Chromium, Hexavalen	t ug/	L	10/19/20	013 12:01	5.00	0.0300	1.0	7.4
810386-005 Chromium, Hexavaler	it ug/	L	10/19/20	013 12:11	5.00	0.0300	1.0	ND
810386-006 Chromium, Hexavalen	t ug/	L	10/19/20	013 12:22	5.00	0.0300	1.0	ND
810386-007 Chromium, Hexavalen	t ug/	L	10/19/20	013 07:03	1.00	0.00600	0.20	18.2
810386-008 Chromium, Hexavaler	it ug/	L	10/19/20	013 12:32	5.00	0.0300	1.0	5.4
810386-009 Chromium, Hexavalen	t ug/	L	10/19/20	013 12:43	5.00	0.0300	1.0	ND
810386-010 Chromium, Hexavalen	t ug/	L	10/19/20	013 12:53	5.00	0.0300	1.0	ND
810386-011 Chromium, Hexavaler	t ug/	L	10/19/2	013 13:03	5.00	0.0300	1.0	ND
810386-012 Chromium, Hexavalen	t ug/	L	10/19/20	013 13:35	5.00	0.0300	1.0	1.6
810386-015 Chromium, Hexavalen	t ug/	L	10/19/20	013 08:47	1.00	0.00600	0.20	ND
810386-016 Chromium, Hexavaler	it ug/	L	10/19/2	013 08:58	1.00	0.00600	0.20	ND
Method Blank					- :			
Parameter L	Jnit DF	: Re	esult					
	ı/L 1.0		ID					
Duplicate							Lab ID = 8	10386-007
Parameter L	Jnit DF	Re	esult	Expected	F	RPD	Acceptar	ce Range
Chromium, Hexavalent ug	y /L 1.0	0 1	7.6	18.2		3.25	0 - 20	Ü
Low Level Calibration Verifi	cation							
Parameter L	Jnit DF	: Re	esult	Expected	F	Recovery	Acceptar	ice Range
Chromium, Hexavalent ug	ı/L 1.0	0 0	.184	0.200		92.2	70 - 130	-
Lab Control Sample								
Parameter	Jnit DF	Re	esult	Expected	,,,,,F	Recovery	Acceptar	ce Range
Chromium, Hexavalent ug	ı/L 1.0	0 4	.87	5.00		97.5	90 - 110	-
Matrix Spike							Lab ID = 8	10321-002
Parameter L	Jnit DF	Re	esult	Expected/Ad	ded F	Recovery	Acceptar	ice Range
Chromium, Hexavalent ug	ı/L 5.0	0 7	.13	7.35(5.00)		95.5	90 - 110	-
Matrix Spike							Lab ID = 8	10321-004
Parameter L	Jnit DF	Re	esult	Expected/Ad	ded F	Recovery	Acceptar	ice Range
Chromium, Hexavalent ug	ı/L 5.0	0 3	0.1	32.0(25.0)		92.4	90 - 110	-

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting En	gineers, Inc		oject Name: oject Numbei	PG&E Topock Pro :: 423575.MP.02.CM	•	Page 14 of 59 Printed 11/8/2013
Matrix Spike						Lab ID = 810386-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 28.8	Expected/Added 30.4(25.0)	Recovery 93.5	Acceptance Range 90 - 110 Lab ID = 810386-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.58	Expected/Added 5.71(5.00)	Recovery 97.4	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.98	Expected/Added 6.19(5.00)	Recovery 95.9	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 17.2	Expected/Added 17.6(10.0)	Recovery 95.8	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 31.1	Expected/Added 32.4(25.0)	Recovery 94.9	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-005
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.19	Expected/Added 5.37(5.00)	Recovery 96.4	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-006
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.26	Expected/Added 5.50(5.00)	Recovery 95.1	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-007
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 36.2	Expected/Added 38.2(20.0)	Recovery 90.3	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-008
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 29.2	Expected/Added 30.4(25.0)	Recovery 95.4	Acceptance Range 90 - 110
Matrix Spike	anna an ann an seas an seasang an air sean an seasang					Lab ID = 810386-009
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.25	Expected/Added 5.43(5.00)	Recovery 96.5	Acceptance Range 90 - 110
Matrix Spike						Lab ID = 810386-010
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.50	Expected/Added 5.71(5.00)	Recovery 95.7	Acceptance Range 90 - 110
Matrix Spike			.		_	Lab ID = 810386-011
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 5.08	Expected/Added 5.36(5.00)	Recovery 94.4	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Eng	ineers, Inc.		Project Name: Project Number:	PG&E Topock Project 423575.MP.02.CM		Page 15 of 59 Printed 11/8/2013
Matrix Spike						Lab ID = 810386-012
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 6.43	Expected/Added 6.58(5.00)	Recovery 97.0	Acceptance Range 90 - 110 Lab ID = 810386-015
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.01	Expected/Added 1.00(1.00)	Recovery 101	Acceptance Range 90 - 110 Lab ID = 810386-016
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.00	Result 1.01	Expected/Added 1.00(1.00)	Recovery 101	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.87	Expected 5.00	Recovery 97.5	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.91	Expected 10.0	Recovery 99.1	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.85	Expected 10.0	Recovery 98.5	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.87	Expected 10.0	Recovery 98.7	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.80	Expected 10.0	Recovery 98.0	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.76	Expected 10.0	Recovery 97.6	Acceptance Range 95 - 105
MRCVS - Primary Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102	Acceptance Range 95 - 105

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 16 of 59 Printed 11/8/2013

Project Number: 423575.MP.02.CM

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
810386-013 Chromium, Hex	avalent	ug/L	10/21/2013 11:57 10/21/2013 12:08		1.00	0.00600	0.20	22.9
810386-014 Chromium, Hex	avalent	ug/L			1.00	0.00600	0.20	22.8
Method Blank								
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND					
Duplicate							Lab ID =	810437-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 48.6	Expected 49.3		RPD 1.34	Accepta 0 - 20	ance Range
Low Level Calibration	Verification							
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.180	Expected 0.200		Recovery 90.0	Accepta 70 - 130	ance Range 0
Lab Control Sample								
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.81	Expected 5.00		Recovery 96.2	Accepta 90 - 110	ance Range 0
Matrix Spike							Lab ID =	810386-013
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 46.4	Expected/A 47.9(25.0)	dded	Recovery 94.0	Accepta 90 - 110	ance Range 0
Matrix Spike							Lab ID =	810386-014
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 46.3	Expected/A 47.8(25.0)	dded	Recovery 94.0	Accepta 90 - 110	ance Range 0
Matrix Spike							Lab ID =	810415-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 6.83	Expected/A 6.74(5.00)	dded	Recovery 102	90 - 110	ance Range 0 :810415-002
Parameter Chromium, Hexavalent	Unit-	DF 1.00	Result 6.75	Expected/A 6.69(5.00)	dded	Recovery	Accepta 90 - 110	ance Range
Matrix Spike	ug/L	7.00	0.70					810415-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.35	Expected/A 1.33(1.00)	dded	Recovery 102	Accepta 90 - 110	ance Range 0
Matrix Spike							Lab ID =	810415-004
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 7.09	Expected/A 7.03(5.00)	dded	Recovery 101	Accepta 90 - 110	ance Range 0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

D

Page 19 of 59

Project Number: 423575.MP.02.CM

Printed	11/8/2013	

Total Dissolved Solids	by SM 254	0 C	Batch	n 10TDS13I				
Parameter	वर्तन । अर्थे दर्शने क्षण नवस्य हानि वर्षे	Unit	Ana	ilyzed	DF	MDL	RL	Result
810386-001 Total Dissolved	l Solids	mg/L	10/16	5/2013	1.00	1.76	125	4100
810386-002 Total Dissolved	l Solids	mg/L	10/16	6/2013	1.00	1.76	125	4270
810386-003 Total Dissolved	l Solids	mg/L	10/16	5/2013	1.00	1.76	125	4320
810386-004 Total Dissolved	l Solids	mg/L	10/16	6/2013	1.00	1.76	125	3870
810386-005 Total Dissolved	l Solids	mg/L	10/16	6/2013	1.00	1.76	125	4240
810386-006 Total Dissolved	l Solids	mg/L	10/16	5/2013	1.00	1.76	125	4300
810386-007 Total Dissolved	Solids	mg/L	10/16	5/2013	1.00	1.76	50.0	1820
810386-008 Total Dissolved	l Solids	mg/L	10/16	6/2013	1.00	1.76	125	4120
810386-009 Total Dissolved Solids		mg/L	10/16	5/2013	1.00	1.76	125	4130
810386-010 Total Dissolved Solids		mg/L	10/16/2013		1.00	1.76	125	4250
810386-011 Total Dissolved Solids		mg/L	10/16	6/2013	1.00	1.76	125	4240
810386-012 Total Dissolved Solids		mg/L	10/16	6/2013	1.00	1.76	125	4160
810386-013 Total Dissolved Solids		mg/L	10/16	5/2013	1.00	1.76	50.0	1040
810386-014 Total Dissolved	Solids	mg/L	10/16/2013		1.00	1.76	50.0	1030
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	810342-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	510	503		1.38	0 - 10	
Duplicate							Lab ID =	810386-006
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	4130	4300		4.03	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Total Dissolved Solids	mg/L	1.00	498	500		99.6	90 - 110)

Client: E2 Consulting Engineers, Inc.

PG&E Topock Project Project Name:

Page 20 of 59

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Parameter		Unit	Unit Analyzed		DF	MDL	RL	Result
810386-001 Ammonia as N					1.00	0.0318	0.500	ND
810386-008 Ammonia as N		mg/L						
		mg/L	10/22/2013 10/22/2013		1.00	0.0318	0.500	ND
810386-009 Ammonia as N		mg/L			1.00	0.0318	0.500	ND
810386-010 Ammonia as N		mg/L			1.00	0.0318	0.500	ND
810386-011 Ammonia as N		mg/L			1.00	0.0318	0.500	ND
810386-012 Ammonia as N		mg/L	10/22	/2013	1.00	0.0318	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Duplicate							Lab ID = i	810386-012
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Ammonia as N	mg/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	9.87	10.0		98.7	90 - 110	_
Lab Control Sample Du	plicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	10.7	10.0		107	90 - 110	_
Matrix Spike							Lab ID = 8	810386-012
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.30	10.0(10.0)		83.0	75 - 125	_
Matrix Spike Duplicate							Lab ID = {	810386-012
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	9.18	10.0(10.0)		91.8	75 - 125	-
MRCCS - Secondary	Charlieneur is sillithen inheum mein	statunismostaja stanis irrainemat trons	onesistiiidisesimäseinesilmaajamajamajainin	erra-sysymmät kaistä siyyeen poja artemmykskynja vatemisykskynja sistemise sistemise sistemise sistemise siste	pilitari gamenor e frends	Divisio kon parasana internamenta andrea divisio de	integralasi telefekki menenguan keluluk sasi	m kejamesiye'n katan a tresaman arisasl
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.07	6.00		101	90 - 110	_
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery		nce Range
Ammonia as N	mg/L	1.00	6.54	6.00		109	90 - 110	_

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 21 of 59

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Parameter	Unit	Analyzed	DF	MDL	RL	Result
810386-001 Antimony	ug/L	10/18/2013 20:31	2.00	0.0700	2.0	ND
Arsenic	ug/L	10/18/2013 20:31	2.00	0.100	0.50	2.2
Barium	ug/L	10/18/2013 20:31	2.00	0.594	5.0	87.1
Cadmium	ug/L	10/18/2013 20:31	2.00	0.0800	1.0	ND
Chromium	ug/L	10/18/2013 20:31	2.00	0.142	1.0	5.6
Cobalt	ug/L	10/18/2013 20:31	2.00	0.0800	5.0	ND
Lead	ug/L	10/18/2013 20:31	2.00	0.286	1.0	ND
810386-002 Chromium	ug/L	10/18/2013 21:19	2.00	0.142	1.0	ND
Molybdenum	ug/L	10/18/2013 21:19	2.00	0.100	2.0	20.7
810386-003 Chromium	ug/L	10/18/2013 21:25	2.00	0.142	1.0	1.5
Molybdenum	ug/L	10/18/2013 21:25	2.00	0.100	2.0	11.1
810386-004 Molybdenum	ug/L	10/18/2013 21:31	2.00	0.100	2.0	5.9
810386-005 Molybdenum	ug/L	10/18/2013 21:37	2.00	0.100	2.0	18.2
810386-006 Chromium	ug/L	10/18/2013 21:43	2.00	0.142	1.0	ND
Molybdenum	ug/L	10/18/2013 21:43	2.00	0.100	2.0	17.0
310386-007 Chromium	ug/L	10/18/2013 21:49	2.00	0.142	1.0	17.1
Molybdenum	ug/L	10/18/2013 21:49	2.00	0.100	2.0	15.5
810386-008 Antimony	ug/L	10/18/2013 21:56	2.00	0.0700	2.0	ND
Arsenic	ug/L	10/18/2013 21:56	2.00	0.100	0.50	2.2
Barium	ug/L	10/18/2013 21:56	2.00	0.594	5.0	90.4
Cadmium	ug/L	10/18/2013 21:56	2.00	0.0800	1.0	ND
Chromium	ug/L	10/18/2013 21:56	2.00	0.142	1.0	5.7
Cobalt	ug/L	10/18/2013 21:56	2.00	0.0800	5.0	ND
Lead	ug/L	10/18/2013 21:56	2.00	0.286	1.0	ND
810386-009 Antimony	ug/L	10/18/2013 22:02	2.00	0.0700	2.0	ND
Arsenic	ug/L	10/18/2013 22:02	2.00	0.100	0.50	1.3
Barium	ug/L	10/18/2013 22:02	2.00	0.594	5.0	21.6
Cadmium	ug/L	10/18/2013 22:02	2.00	0.0800	1.0	ND
Chromium	ug/L	10/18/2013 22:02	2.00	0.142	1.0	ND
Cobalt	ug/L	10/18/2013 22:02	2.00	0.0800	5.0	ND
Lead	ug/L	10/18/2013 22:02	2.00	0.286	1.0	ND
810386-010 Antimony	ug/L	10/18/2013 22:08	2.00	0.0700	2.0	ND
Barium	ug/L	10/18/2013 22:08	2.00	0.594	5.0	84.0
Cadmium	ug/L	10/18/2013 22:08	2.00	0.0800	1.0	ND

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting En	gineers, Ind		Project Name: PG&E Top Project Number: 423575.M	oock Proje P.02.CM	ct	Printed 1	age 22 of 59 1/8/2013
810386-010 Cobalt		ug/L	10/18/2013 22:08	2.00	0.0800	5.0	ND
Lead		ug/L	10/18/2013 22:08	2.00	0.286	1.0	ND
810386-011 Antimony		ug/L	10/18/2013 22:32	2.00	0.0700	2.0	ND
Arsenic		ug/L	10/18/2013 22:32	2.00	0.100	0.50	3.5
Barium		ug/L	10/18/2013 22:32	2.00	0.594	5.0	15.8
Cadmium		ug/L	10/18/2013 22:32	2.00	0.0800	1.0	ND
Chromium		ug/L	10/18/2013 22:32	2.00	0.142	1.0	ND
Cobalt		ug/L	10/18/2013 22:32	2.00	0.0800	5.0	ND
Lead		ug/L	10/18/2013 22:32	2.00	0.286	1.0	ND
810386-012 Antimony		ug/L	10/18/2013 22:38	2.00	0.0700	2.0	ND
Arsenic		ug/L	10/18/2013 22:38	2.00	0.100	0.50	1.6
Barium		ug/L	10/18/2013 22:38	2.00	0.594	5.0	41.0
Cadmium		ug/L	10/18/2013 22:38	2.00	0.0800	1.0	ND
Chromium		ug/L	10/18/2013 22:38	2.00	0.142	1.0	1.6
Cobalt		ug/L	10/18/2013 22:38	2.00	0.0800	5.0	ND
Lead		ug/L	10/18/2013 22:38	2.00	0.286	1.0	ND
810386-013 Chromium		ug/L	10/18/2013 22:44	2.00	0.142	1.0	22.0
810386-014 Chromium		ug/L	10/18/2013 22:50	2.00	0.142	1.0	21.7
Method Blank	-					u Paraka	Zitan in Line 4.4
Parameter	Unit	DF	Result				
Arsenic	ug/L	1.00	ND				
Barium	ug/L	1.00	ND				
Cadmium	ug/L	1.00	ND				
Cobalt	ug/L	1.00	ND				
Chromium	ug/L	1.00	ND				
Antimony	ug/L	1.00	ND				
Lead	ug/L	1.00	ND			willia wasa williamen (1919-99)	
Molybdenum	ug/L	1.00	ND				

Client: E2 Consulting Eng	gineers, Inc		Project Name: Project Number	PG&E Topocl 423575.MP.0	•	Page 23 of 59 Printed 11/8/2013
Duplicate						Lab ID = 810386-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Arsenic	ug/L	2.00	2.36	2.26	4.29	0 - 20
Barium	ug/L	2.00	85.5	87.1	1.81	0 - 20
Cadmium	ug/L	2.00	ND	0	0	0 - 20
Cobalt	ug/L	2.00	ND	0	0	0 - 20
Chromium	ug/L	2.00	5.88	5.59	4.97	0 - 20
Antimony	ug/L	2.00	ND	0	0	0 - 20
Lead	ug/L	2.00	ND	0	0	0 - 20
Molybdenum	ug/L	2.00	8.28	8.32	0.446	0 - 20
Low Level Calibration	Verification					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	0.218	0.200	109	70 - 130
Barium	ug/L	1.00	0.849	1.00	84.9	70 - 130
Cadmium	ug/L	1.00	0.178	0.200	89.0	70 - 130
Cobalt	ug/L	1.00	0.170	0.200	85.0	70 - 130
Chromium	ug/L	1.00	0.164	0.200	82.0	70 - 130
Antimony	ug/L	1.00	0.181	0.200	90.5	70 - 130
Lead	ug/L	1.00	0.440	0.500	88.0	70 - 130
Molybdenum	ug/L	1.00	0.177	0.200	88.5	70 - 130
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	51.6	50.0	103	85 - 115
Barium	ug/L	1.00	50.3	50.0	100	85 - 115
Cadmium	ug/L	1.00	48.9	50.0	97.8	85 - 115
Cobalt	ug/L	1.00	49.2	50.0	98.3	85 - 115
Chromium	ug/L	1.00	50.8	50.0	102	85 - 115
Antimony	ug/L	1.00	49.6	50.0	99.2	85 - 115
Lead	ug/L	1.00	50.7	50.0	101	85 - 115
Molybdenum	ug/L	1.00	49.0	50.0	97.9	85 - 115

Client: E2 Consulting Engineers, Inc.			oject Name: oject Numbe	ject I	Page 24 of 59 Printed 11/8/2013	
Matrix Spike						Lab ID = 810386-001
Parameter Arsenic	Unit ug/L	DF 2.00	Result 53.2	Expected/Added 52.3(50.0)	Recovery 102	Acceptance Range 75 - 125
Barium	ug/L	2.00	145	137(50.0)	116	75 - 125
Cadmium	ug/L	2.00	44.4	50.0(50.0)	88.8	75 - 125
Cobalt	ug/L	2.00	45.2	50.0(50.0)	90.4	75 - 125
Chromium	ug/L	2.00	54.3	55.6(50.0)	97.4	75 - 125
Antimony	ug/L	2.00	48.5	50.0(50.0)	97.1	75 - 125
Lead	ug/L	2.00	45.2	50.0(50.0)	90.4	75 - 125
Molybdenum	ug/L	2.00	57.1	58.3(50.0)	97.5	75 - 125
Matrix Spike Duplicate	•					Lab ID = 810386-001
Parameter Arsenic	Unit ug/L	DF 2.00	Result 52.2	Expected/Added 52.3(50.0)	Recovery 100.	Acceptance Range 75 - 125
Barium	ug/L	2.00	145	137(50.0)	116	75 - 125
Cadmium	ug/L	2.00	44.7	50.0(50.0)	89.4	75 - 125
Cobalt	ug/L	2.00	46.4	50.0(50.0)	92.7	75 - 125
Chromium	ug/L	2.00	53.2	55.6(50.0)	95.3	75 - 125
Antimony	ug/L	2.00	49.8	50.0(50.0)	99.7	75 - 125
Lead	ug/L	2.00	46.3	50.0(50.0)	92.7	75 - 125
Molybdenum	ug/L	2.00	58.0	58.3(50.0)	99.3	75 - 125
MRCCS - Secondary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 19.7	Expected 20.0	Recovery 98.6	Acceptance Range 90 - 110
Barium	ug/L	1.00	18.9	20.0	94.3	90 - 110
Cadmium	ug/L	1.00	18.8	20.0	93.8	90 - 110
Cobalt	ug/L	1.00	18.6	20.0	92.8	90 - 110
Chromium	ug/L	1.00	19.2	20.0	96.3	90 - 110
Antimony	ug/L	1.00	19.3	20.0	96.4	90 - 110
Lead	ug/L	1.00	19.3	20.0	96.5	90 - 110
Molybdenum	ug/L	1.00	18.7	20.0	93.4	90 - 110
MRCVS - Primary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 20.0	Expected 20.0	Recovery 99.8	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 19.6	Expected 20.0	Recovery 98.0	Acceptance Range 90 - 110

Client: E2 Consulting En	: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Project Number: 423575.MP.02.CM		•	Page 29 of 59 Printed 11/8/2013		
Interference Check St	tandard AB					
Parameter Cadmium	Unit ug/L	DF 1.00	Result 18.8	Expected 20.0	Recovery 94.2	Acceptance Range 80 - 120
Interference Check St	andard AB					
Parameter Cadmium	Unit ug/L	DF 1.00	Result 19.0	Expected 20.0	Recovery 95.0	Acceptance Range 80 - 120
Interference Check St	andard AB					
Parameter Cobalt	Unit ug/L	DF 1.00	Result 18.9	Expected 0	Recovery	Acceptance Range
Interference Check St	andard AB					
Parameter Cobalt	Unit ug/L	DF 1.00	Result 19.2	Expected 0	Recovery	Acceptance Range
Chromium	ug/L	1.00	19.9	20.0	99.4	80 - 120
Interference Check St	andard AB					
Parameter Chromium	Unit ug/L	DF 1.00	Result 19.8	Expected 20.0	Recovery 98.8	Acceptance Range 80 - 120
Antimony	ug/L	1.00	ND	0		
Interference Check St						
Parameter Antimony Interference Check St	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
		D E	D 11			
Parameter Lead	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check St	andard AB					
Parameter Lead	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check St	andard AB					
Parameter Molybdenum	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Interference Check St	andard AB					
Parameter Molybdenum	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Serial Dilution						Lab ID = 810386-001
Parameter Barium	Unit ug/L	DF 10.0	Result 90.5	Expected 87.1	RPD 3.81	Acceptance Range 0 - 10

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

Page 30 of 59

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Parameter	Unit	Analyzed	DF	MDL	RL	Result
810386-001 Beryllium	ug/L	10/21/2013 15:17	2.00	0.0720	0.50	ND
Copper	ug/L	10/21/2013 15:17	2.00	0.380	5.0	ND
Mercury	ug/L	10/21/2013 15:17	1.00	0.0400	0.40	ND
310386-004 Chromium	ug/L	10/21/2013 15:53	2.00	0.142	1.0	8.4
310386-005 Chromium	ug/L	10/21/2013 16:00	2.00	0.142	1.0	ND
310386-008 Beryllium	ug/L	10/21/2013 16:06	2.00	0.0720	0.50	ND
Copper	ug/L	10/21/2013 16:06	2.00	0.380	5.0	ND
Mercury	ug/L	10/21/2013 16:06	2.00	0.0800	0.40	ND
310386-009 Beryllium	ug/L	10/21/2013 16:12	2.00	0.0720	0.50	ND
Copper	ug/L	10/21/2013 16:12	2.00	0.380	5.0	ND
Mercury	ug/L	10/21/2013 16:12	2.00	0.0800	0.40	ND
310386-010 Arsenic	ug/L	10/21/2013 16:18	2.00	0.100	0.50	1.6
Beryllium	ug/L	10/21/2013 16:18	2.00	0.0720	0.50	ND
Chromium	ug/L	10/21/2013 16:18	2.00	0.142	1.0	ND
Copper	ug/L	10/21/2013 16:18	2.00	0.380	5.0	ND
Mercury	ug/L	10/21/2013 16:18	2.00	0.0800	0.40	ND
310386-011 Beryllium	ug/L	10/21/2013 16:24	2.00	0.0720	0.50	ND
Copper	ug/L	10/21/2013 16:24	2.00	0.380	5.0	ND
Mercury	ug/L	10/21/2013 16:24	2.00	0.0800	0.40	ND
310386-012 Beryllium	ug/L	10/21/2013 16:30	2.00	0.0720	0.50	ND
Copper	ug/L	10/21/2013 16:30	2.00	0.380	5.0	ND
Mercury	ug/L	10/21/2013 16:30	2.00	0.0800	0.40	ND
310386-013 Molybdenum	ug/L	10/21/2013 16:36	2.00	0.100	2.0	34.7
310386-014 Molybdenum	ug/L	10/21/2013 16:48	2.00	0.100	2.0	34.6

Method Blank			
Parameter	Unit	DF	Result
Arsenic	ug/L	1.00	ND
Beryllium	ug/L	1.00	ND
Chromium	ug/L	1.00	ND
Mercury	ug/L	1.00	ND
Copper	ug/L	1.00	ND
Molybdenum	ug/L	1.00	ND

Client: E2 Consulting En	gineers, Ind		roject Name: roject Number	PG&E Topock Pror: 423575.MP.02.CM	-	Page 31 of 59 Printed 11/8/2013
Duplicate						Lab ID = 810386-001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Arsenic	ug/L	2.00	2.16	2.28	5.22	0 - 20
Beryllium	ug/L	2.00	ND	0	0	0 - 20
Chromium	ug/L	2.00	5.51	5.67	2.84	0 - 20
Mercury	ug/L	2.00	ND	0	0	0 - 20
Copper	ug/L	2.00	ND	0	0	0 - 20
Molybdenum	ug/L	2.00	8.69	8.94	2.84	0 - 20
Low Level Calibration	Verification					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	0.213	0.200	106	70 - 130
Beryllium	ug/L	1.00	0.178	0.200	89.0	70 - 130
Chromium	ug/L	1.00	0.204	0.200	102	70 - 130
Mercury	ug/L	1.00	0.233	0.200	116	70 - 130
Copper	ug/L	1.00	1.23	1.00	123	70 - 130
Molybdenum	ug/L	1.00	0.205	0.200	102	70 - 130
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	52.3	50.0	105	85 - 115
Beryllium	ug/L	1.00	50.3	50.0	101	85 - 115
Chromium	ug/L	1.00	53.0	50.0	106	85 - 115
Mercury	ug/L	1.00	5.43	5.00	108	85 - 115
Copper	ug/L	1.00	54.0	50.0	108	85 - 115
Molybdenum	ug/L	1.00	52.3	50.0	105	85 - 115
Matrix Spike						Lab ID = 810386-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Arsenic	ug/L	2.00	52.8	52.3(50.0)	101	75 - 125
Beryllium	ug/L	2.00	42.5	50.0(50.0)	85.0	75 - 125
Chromium	ug/L	2.00	55.6	55.7(50.0)	99.9	75 - 125
Mercury	ug/L	2.00	4.89	5.00(5.00)	97.7	75 - 125
Copper	ug/L	2.00	46.6	50.0(50.0)	93.2	75 - 125
Molybdenum	ug/L	2.00	58.8	58.9(50.0)	99.8	75 - 125

Client: E2 Consulting Eng	gineers, Inc		Project Name: Project Number	PG&E Topock Pror: 423575.MP.02.CM	-	Page 32 of 59 Printed 11/8/2013
Matrix Spike Duplicate	•					Lab ID = 810386-001
Parameter Arsenic	Unit ug/L	DF 2.00	Result 52.0	Expected/Added 52.3(50.0)	Recovery 99.4	Acceptance Range 75 - 125
Beryllium	ug/L	2.00	40.9	50.0(50.0)	81.8	75 - 125
Chromium	ug/L	2.00	55.0	55.7(50.0)	98.7	75 - 125
Mercury	ug/L	2.00	4.70	5.00(5.00)	93.9	75 - 125
Copper	ug/L	2.00	46.2	50.0(50.0)	92.3	75 - 125
Molybdenum	ug/L	2.00	56.5	58.9(50.0)	95.2	75 - 125
MRCCS - Secondary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 20.0	Expected 20.0	Recovery 100	Acceptance Range 90 - 110
Beryllium	ug/L	1.00	19.8	20.0	99.2	90 - 110
Chromium	ug/L	1.00	19.9	20.0	99.5	90 - 110
Mercury	ug/L	1.00	2.08	2.00	104	90 - 110
Copper	ug/L	1.00	19.8	20.0	99.2	90 - 110
Molybdenum MRCVS - Primary	ug/L	1.00	19.6	20.0	97.9	90 - 110
Parameter Arsenic	Unit ug/L	DF 1.00	Result 19.0	Expected 20.0	Recovery 94.9	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 19.4	Expected 20.0	Recovery 97.1	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 18.7	Expected 20.0	Recovery 93.5	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 18.7	Expected 20.0	Recovery 93.6	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Arsenic	Unit ug/L	DF 1.00	Result 19.5	Expected 20.0	Recovery 97.6	Acceptance Range 90 - 110
MRCVS - Primary						
Parameter Beryllium	Unit ug/L	DF 1.00	Result 19.5	Expected 20.0	Recovery 97.4	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting En	gineers, Inc		roject Name: roject Numbe	PG&E Topock r: 423575.MP.02	•	Page 36 of 59 Printed 11/8/2013
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Beryllium	ug/L	1.00	ND	0		
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Beryllium	ug/L	1.00	ND	0		
Chromium	ug/L	1.00	20.2	20.0	101	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	20.0	20.0	100	80 - 120
Mercury	ug/L	1.00	1.94	2.00	97.0	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Mercury	ug/L	1.00	2.09	2.00	105	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Copper	ug/L	1.00	20.3	20.0	101	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Copper	ug/L	1.00	20.0	20.0	99.9	80 - 120
Interference Check S	tandard AB [°]					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Molybdenum	ug/L	1.00	ND	0		
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Molybdenum	ug/L	1.00	ND	0	•	
Serial Dilution						Lab ID = 810386-013
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Molybdenum	ug/L	10.0	37.8	34.7	8.70	0 - 10

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 37 of 59 Printed 11/8/2013

Parameter	Unit	Analyzed	DF	MDL	RL	Result
810386-001 Manganese	ug/L	11/07/2013 05:17	1.00	0.0600	0.50	ND
Molybdenum	ug/L	11/07/2013 05:17	1.00	0.0500	2.0	10.1
Nickel	ug/L	11/07/2013 05:17	1.00	0.240	2.0	ND
Selenium	ug/L	11/07/2013 05:17	1.00	0.212	5.0	ND
Silver	ug/L	11/07/2013 05:17	1.00	0.0290	5.0	ND
Thallium	ug/L	11/07/2013 05:17	1.00	0.0300	1.0	ND
Vanadium	ug/L	11/07/2013 05:17	1.00	0.0700	5.0	ND
310386-008 Manganese	ug/L	11/07/2013 05:23	1.00	0.0600	0.50	ND
Molybdenum	ug/L	11/07/2013 05:23	1.00	0.0500	2.0	9.6
Nickel	ug/L	11/07/2013 05:23	1.00	0.240	2.0	ND
Selenium	ug/L	11/07/2013 05:23	1.00	0.212	5.0	ND
Silver	ug/L	11/07/2013 05:23	1.00	0.0290	5.0	ND
Thallium	ug/L	11/07/2013 05:23	1.00	0.0300	1.0	ND
Vanadium	ug/L	11/07/2013 05:23	1.00	0.0700	5.0	ND
310386-009 Manganese	ug/L	11/07/2013 06:05	1.00	0.0600	0.50	ND
Molybdenum	ug/L	11/07/2013 06:05	1.00	0.0500	2.0	19.9
Nickel	ug/L	11/07/2013 06:05	1.00	0.240	2.0	ND
Selenium	ug/L	11/07/2013 06:05	1.00	0.212	5.0	ND
Silver	ug/L	11/07/2013 06:05	1.00	0.0290	5.0	ND
Thallium	ug/L	11/07/2013 06:05	1.00	0.0300	1.0	ND
Vanadium	ug/L	11/07/2013 06:05	1.00	0.0700	5.0	ND
310386-010 Manganese	ug/L	11/07/2013 06:11	1.00	0.0600	0.50	ND
Molybdenum	ug/L	11/07/2013 06:11	1.00	0.0500	2.0	17.2
Nickel	ug/L	11/07/2013 06:11	1.00	0.240	2.0	ND
Selenium	ug/L	11/07/2013 06:11	1.00	0.212	5.0	ND
Silver	ug/L	11/07/2013 06:11	1.00	0.0290	5.0	ND
Thallium	ug/L	11/07/2013 06:11	1.00	0.0300	1.0	ND
Vanadium	ug/L	11/07/2013 06:11	1.00	0.0700	5.0	ND
10386-011 Manganese	ug/L	11/07/2013 06:17	1.00	0.0600	0.50	ND
Molybdenum	ug/L	11/07/2013 06:17	1.00	0.0500	2.0	18.7
Nickel	ug/L	11/07/2013 06:17	1.00	0.240	2.0	ND
Selenium	ug/L	11/07/2013 06:17	1.00	0.212	5.0	ND
Silver	ug/L	11/07/2013 06:17	1.00	0.0290	5.0	ND
Thallium	ug/L	11/07/2013 06:17	1.00	0.0300	1.0	ND

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting E	ingineers, Ind).	Project Name: Project Number	PG&E Topo ; 423575.MP.	•	ct	P Printed 1	age 38 of 59 1/8/2013
810386-011 Vanadium		ug/L	11/07/	2013 06:17	1.00	0.0700	5.0	ND
810386-012 Manganese		ug/L		2013 06:23	1.00	0.0600	0.50	ND
Molybdenum		ug/L		2013 06:23	1.00	0.0500	2.0	16.3
Nickel		ug/L		2013 06:23	1.00	0.240	2.0	ND
Selenium		ug/L		2013 06:23	1.00	0.212	5.0	ND
Silver		ug/L		2013 06:23	1.00	0.0290	5.0	ND
Thallium		ug/L		2013 06:23	1.00	0.0300	1.0	ND
Vanadium		ug/L		2013 06:23	1.00	0.0700	5.0	ND
Method Blank	· · · · · · · · · · · · · · · · · · ·							
Parameter	Unit	DF	Result					
Nickel	ug/L	1.00						
Selenium	ug/L	1.00						
Silver	ug/L	1.00						
Thallium	ug/L	1.00						
Vanadium	ug/L	1.00						
Manganese	ug/L	1.00						
Molybdenum	ug/L	1.00						
Duplicate	J						Lab ID =	810386-008
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Nickel	ug/L	1.00		0	•	0	0 - 20	inoo rango
Selenium	ug/L	1.00		0		0	0 - 20	
Silver	ug/L	1.00	ND	0		0	0 - 20	
Thallium	ug/L	1.00	ND	0		0	0 - 20	
Vanadium	ug/L	1.00	4.12	0		0	0 - 20	
Manganese	ug/L	1.00	ND	0		0	0 - 20	
Molybdenum	ug/L	1.00	9.33	9.57		2.54	0 - 20	
Low Level Calibration	n Verification							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Nickel	ug/L	1.00	1.18	1.00		118	70 - 130)
Selenium	ug/L	1.00	0.647	0.500		129	70 - 130)
Silver	ug/L	1.00	0.592	0.500		118	70 - 130)
Thallium	ug/L	1.00	0.226	0.200		113	70 - 130)
Vanadium	ug/L	1.00	0.232	0.200		116	70 - 130)
Manganese	ug/L	1.00	0.405	0.500		81.0	70 - 130)
Molybdenum	ug/L	1.00	0.224	0.200		112	70 - 130)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Eng	ineers, Inc.		roject Name: roject Number:	PG&E Topock Pro 423575.MP.02.CM	-	Page 39 of 59 Printed 11/8/2013
Lab Control Sample						
Parameter Nickel	Unit ug/L	DF 1.00	Result 50.4	Expected 50.0	Recovery 101	Acceptance Range 85 - 115
Selenium	ug/L ug/L	1.00	47.4	50.0	94.8	85 - 115
Silver	ug/L ug/L	1.00	51.1	50.0	102	85 - 115
Thallium	ug/L ug/L	1.00	47.0	50.0	94.0	85 - 115
Vanadium	ug/L ug/L	1.00	49.6	50.0	99.2	85 - 115
Manganese	ug/L ug/L	1.00	49.6	50.0	99.2	85 - 115
Molybdenum	ug/L ug/L	1.00	51.6	50.0	103	85 - 115 85 - 115
Matrix Spike	ug/L	1.00	31.0			Lab ID = 810386-008
·						
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Nickel	ug/L	1.00	46.9	50.0(50.0)	93.8	75 - 125
Selenium	ug/L	1.00	49.9	50.0(50.0)	99.9	75 - 125
Silver	ug/L	1.00	43.9	50.0(50.0)	87.9	75 - 125
Thallium	ug/L 	1.00	43.2	50.0(50.0)	86.3	75 - 125
Vanadium	ug/L	1.00	56.6	50.0(50.0)	113	75 - 125
Manganese	ug/L	1.00	49.3	50.0(50.0)	98.7	75 - 125
Molybdenum	ug/L	1.00	60.4	59.6(50.0)	102	75 - 125
Matrix Spike Duplicate						Lab ID = 810386-008
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Nickel	ug/L	1.00	46.5	50.0(50.0)	92.9	75 - 125
Selenium	ug/L	1.00	49.3	50.0(50.0)	98.7	75 - 125
Silver	ug/L	1.00	44.0	50.0(50.0)	88.0	75 - 125
Thallium	ug/L	1.00	44.8	50.0(50.0)	89.7	75 - 125
Vanadium	ug/L	1.00	56.2	50.0(50.0)	112	75 - 125
Manganese	ug/L	1.00	49.1	50.0(50.0)	98.2	75 - 125
Molybdenum	ug/L	1.00	60.3	59.6(50.0)	102	75 - 125
MRCCS - Secondary	entidates provincia a sua cita esti tibas a como comi-	i tanani sata fi kaliman kata aya ya	undynne stad og med alle film film film film film film film film	entrema en escripcio de la propriede descrito del propriede de como un esperador en encolor de conse	an summer the tribute of the state of the st	enter timmetanelmissisteristeristeristeristeristeristeris
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Nickel	ug/L	1.00	19.7	20.0	98.6	90 - 110
Selenium	ug/L	1.00	20.0	20.0	100	90 - 110
Silver	ug/L	1.00	19.2	20.0	96.1	90 - 110
Thallium	ug/L	1.00	19.8	20.0	99.1	90 - 110
Vanadium	ug/L	1.00	19.6	20.0	97.8	90 - 110
Manganese	ug/L	1.00	19.6	20.0	98.2	90 - 110
Molybdenum	ug/L	1.00	20.5	20.0	102	90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 44 of 59 Printed 11/8/2013

Project Number: 423575.MP.02.CM

Metals by 200.7, Dissolve	d		Batch	102113A-Th2				
Parameter	nu i gusumin vi vizskur	Unit	Anal	lyzed	DF	MDL	RL	Result
810386-001 Aluminum		ug/L	10/21	/2013 14:29	1.00	7.20	20.0	ND
810386-008 Aluminum		ug/L	10/21	/2013 14:35	1.00	7.20	20.0	ND
810386-009 Aluminum		ug/L	10/21	/2013 15:15	1.00	7.20	20.0	ND
810386-010 Aluminum		ug/L	10/21	/2013 15:21	1.00	7.20	20.0	ND
810386-011 Aluminum		ug/L	10/21	/2013 15:28	1.00	7.20	20.0	ND
810386-012 Aluminum		ug/L	10/21	/2013 15:34	1.00	7.20	20.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Aluminum	ug/L	1.00	ND					
Duplicate							Lab ID =	810355-007
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Aluminum	ug/L	1.00	ND	0		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Aluminum	ug/L	1.00	2160	2000		108	85 - 118	5
Matrix Spike							Lab ID =	810355-007
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	Accepta	ance Range
Aluminum	ug/L	1.00	1990	2000(2000)		99.6	75 - 128	5
Matrix Spike Duplicate							Lab ID =	810355-007
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	Accepta	ance Range
Aluminum	ug/L	1.00	1920	2000(2000)		95.8	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Aluminum	ug/L	1.00	5200	5000		104	95 - 10	5
MRCVS - Primary	e la mara e mandra grapa grapa grapa grapa de la mesta la secondida de secondida de secondida de secondida de	e even a anamente le	a Calabatan (epikanak apiran) a jangung taman an manasa saya sa	radianum, ja opõida kiiki opõjajum sa tilliminin kangu ugu en en mateli kii ejem en ja tune eja	aniamo operazylikacy	ing-bef-housesternormer en significant no est	tern i elitzieri i ening-enilminoenie ili enistitein	850,000 jili phompo kultum pinokura libri kumantarin.
Parameter	Unit	DF	Result	Expected		Recovery	-	ance Range
Aluminum	ug/L	1.00	4780	5000		95.7	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Aluminum	ug/L	1.00	5170	5000		103	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Aluminum	ug/L	1.00	5180	5000		104	90 - 110)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc. Pro

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 46 of 59 Printed 11/8/2013

Metals by 200.7, Dissolve	ed		Batch	102113A				
Parameter	te, elektrikistiki gib	Unit	Analy	/zed	DF	MDL	RL	Result
810386-002 Sodium		ug/L	10/21/	2013 12:32	200	12000	100000	1440000
810386-003 Sodium		ug/L	10/21/	2013 12:39	200	12000	100000	1480000
810386-004 Sodium		ug/L	10/21/	2013 12:45	200	12000	100000	801000
810386-005 Sodium		ug/L	10/21/	2013 12:52	200	12000	100000	1800000
810386-006 Sodium		ug/L	10/21/	2013 12:59	200	12000	100000	1620000
810386-007 Sodium		ug/L	10/21/	2013 13:05	200	12000	100000	486000
810386-013 Sodium		ug/L	10/21/	2013 13:12	200	12000	100000	391000
810386-014 Sodium		ug/L	10/21/	2013 13:19	200	12000	100000	375000
Method Blank								
Parameter	Unit	DF	Result					
Sodium	ug/L	1.00	ND					
Duplicate							Lab ID = 8	10355-007
Parameter	Unit	DF	Result	Expected		RPD	Acceptan	ice Range
Sodium	ug/L	20.0	75000	75100		0.186	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	•	ice Range
Sodium	ug/L	1.00	2300	2000		115	85 - 115	
Matrix Spike							Lab ID = 8	10355-007
Parameter	Unit	DF	Result	Expected/Ad		Recovery	•	ice Range
Sodium	ug/L	20.0	124000	115000(4000	00)	122	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	-	ice Range
Sodium	ug/L	1.00	5090	5000		102	95 - 105	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	-	ice Range
Sodium	ug/L	1.00	5370	5000		107	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	•	ice Range
Sodium	ug/L	1.00	4740	5000		94.7	90 - 110	
Interference Check St								
Parameter	Unit	DF	Result	Expected		Recovery	•	ice Range
Sodium	ug/L	1.00	2180	2000		109	80 - 120	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 48 of 59

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Metals by 200.7, Dissolve	ed		Batch	101913A				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
810386-001 Calcium		ug/L	10/19	/2013 15:18	20.0	340	10000	177000
810386-008 Calcium		ug/L	10/19	/2013 15:25	20.0	340	10000	173000
810386-009 Calcium		ug/L	10/19	/2013 15:32	20.0	340	10000	164000
810386-010 Calcium		ug/L	10/19	/2013 15:39	20.0	340	10000	175000
810386-011 Calcium		ug/L	10/19	/2013 15:45	20.0	340	10000	119000
810386-012 Calcium		ug/L	10/19	/2013 15:52	20.0	340	10000	134000
Method Blank								
Parameter	Unit	DF	Result					
Calcium	ug/L	1.00	ND					
Duplicate							Lab ID = 8	310355-007
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Calcium	ug/L	20.0	53900	53600		0.595	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Calcium	ug/L	1.00	2000	2000		100	85 - 115	
Matrix Spike							Lab ID = 8	310355-007
Parameter	Unit	DF	Result	Expected/Ad	ded l	Recovery	Accepta	nce Range
Calcium	ug/L	20.0	93000	93600(4000	0)	98.6	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	ł	Recovery	•	nce Range
Calcium	ug/L	1.00	5110	5000		102	95 - 105	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Calcium	ug/L	1.00	4610	5000		92.3	90 - 110	
MRCVS - Primary	rangen am neugrapi kingang gitorina prastimong telash (1564) tan	troughoust pataman good tatal queful an amain 1993 in trighting	ali errakologuejinlerlalistatuan jakolorilistoo errakolorien	ter till det fra spærke med som til træden greger til framståre ett speldet fra fra til til træte ett beste et		of control of the control of training and the adjustment of the control of the co		kata terpengan pangangan pengangan di katalan di sebagai sebagai sebagai sebagai sebagai sebagai sebagai sebag Sebagai
Parameter	Unit	DF	Result	Expected	ł	Recovery	•	nce Range
Calcium	ug/L	1.00	4650	5000		93.0	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Calcium	ug/L	1.00	4670	5000		93.3	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	-	nce Range
Calcium	ug/L	1.00	4980	5000		99.6	90 - 110	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 50 of 59

Project Number: 423575.MP.02.CM

Printed 11/8/2013

Metals by 200.7, Dissolve	đ		Batch	101813A-Th2				
Parameter	respirit de la Caracti	Unit	Ana	lyzed [)F	MDL	RL	Result
810386-001 Boron		ug/L	10/18	/2013 19:39 1.	00 4	.10	200	857
Iron		ug/L	10/18	/2013 19:39 1.	.00 3	.00	20.0	ND
810386-008 Boron		ug/L	10/18	/2013 19:45 1.	.00 4	.10	200	854
Iron		ug/L	10/18	/2013 19:45 1.	.00 3	.00	20.0	ND
810386-009 Boron		ug/L	10/18	/2013 19:52 1.	.00 4	.10	200	900
Iron		ug/L	10/18	/2013 19:52 1.	.00 3	.00	20.0	ND
810386-010 Boron		ug/L	10/18	/2013 19:58 1	.00 4	.10	200	912
Iron		ug/L	10/18	/2013 19:58 1.	.00 3	.00	20.0	ND
810386-011 Boron		ug/L	10/18	/2013 20:04 1.	.00 4	.10	200	917
Iron		ug/L	10/18	/2013 20:04 1	.00 3	.00	20.0	ND
810386-012 Boron		ug/L	10/18	/2013 20:11 1.	.00 4	.10	200	992
Iron		ug/L	10/18	/2013 20:11 1.	.00 3	.00	20.0	ND
Method Blank						Januari Mari	San Allaha	ng ni vilha quifi s
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Boron	ug/L	1.00	ND					
Duplicate							Lab ID =	810355-007
Parameter	Unit	DF	Result	Expected	RPD)	Accepta	nce Range
Iron	ug/L	1.00	28.1	32.5	14	.5	0 - 20	
Boron	ug/L	1.00	211	207	1.8	32	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Reco	overy	Accepta	nce Range
Iron	ug/L	1.00	2270	2000	11	4	85 - 115	5
Boron	ug/L	1.00	2010	2000	10	0	85 - 115	5
Matrix Spike	ering ang ang ang ang ang ang ang ang ang a		annagum temperatus distribuiras que transpolit la transpólit actual de secuente de se	ky samt kaj kaj sita jagaj vira kinaj organija, kinaka markitika kaj mini jagaj asista organija.	alamanya yang di kalaman kasari	and the second s	Lab ID =	810355-007
Parameter	Unit	DF	Result	Expected/Adde	d Reco	overy	•	nce Range
Iron	ug/L	1.00	2230	2030(2000)	11	0	75 - 125	5
Boron	ug/L	1.00	2350	2210(2000)	10	7	75 - 125	
Matrix Spike Duplicate							Lab ID =	810355-007
Parameter	Unit	DF	Result	Expected/Adde		overy	· · · · · · · · · · · · · · · · · · ·	ınce Range
Iron	ug/L	1.00	2180	2030(2000)	10		75 - 125	
Boron	ug/L	1.00	2290	2210(2000)	10	4	75 - 125	5

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 53 of 59 Printed 11/8/2013

Metals by 200.7, Dissolved		Batch 110713A-Th2				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
810386-001 Magnesium	ug/L	11/07/2013 17:02	1.00	468	1000	14500
Potassium	ug/L	11/07/2013 17:02	1.00	95.2	500	15600
Sodium	ug/L	11/07/2013 14:35	200	12000	100000	1300000
Zinc	ug/L	11/07/2013 17:02	1.00	5.10	20.0	ND
810386-008 Magnesium	ug/L	11/07/2013 17:08	1.00	468	1000	14800
Potassium	ug/L	11/07/2013 17:08	1.00	95.2	500	15900
Sodium	ug/L	11/07/2013 14:41	200	12000	100000	1320000
Zinc	ug/L	11/07/2013 17:08	1.00	5.10	20.0	ND
810386-009 Magnesium	ug/L	11/07/2013 13:46	10.0	4680	10000	16300
Potassium	ug/L	11/07/2013 13:46	10.0	952	5000	13900
Sodium	ug/L	11/07/2013 14:10	1000	59800	500000	1400000
Zinc	ug/L	11/07/2013 16:37	1.00	5.10	20.0	ND
810386-010 Magnesium	ug/L	11/07/2013 17:15	1.00	468	1000	14600
Potassium	ug/L	11/07/2013 17:15	1.00	95.2	500	15500
Sodium	ug/L	11/07/2013 15:04	200	12000	100000	1400000
Zinc	ug/L	11/07/2013 17:15	1.00	5.10	20.0	ND
810386-011 Magnesium	ug/L	11/07/2013 17:50	2.00	936	2000	28200
Potassium	ug/L	11/07/2013 17:37	1.00	95.2	500	17500
Sodium	ug/L	11/07/2013 15:10	200	12000	100000	1420000
Zinc	ug/L	11/07/2013 17:37	1.00	5.10	20.0	ND
810386-012 Magnesium	ug/L	11/07/2013 17:56	2.00	936	2000	22800
Potassium	ug/L	11/07/2013 17:43	1.00	95.2	500	16600
Sodium	ug/L	11/07/2013 15:16	200	12000	100000	1360000
Zinc	ug/L	11/07/2013 17:43	1.00	5.10	20.0	ND

Method Blank	***************************************		
Parameter	Unit	DF	Result
Zinc	ug/L	1.00	ND
Potassium	ug/L	1.00	ND
Sodium	ug/L	1.00	ND
Magnesium	ug/L	1.00	ND

Client: E2 Consulting Eng	ineers, Inc		roject Name: roject Number:	PG&E Topock Pro 423575.MP.02.CN	-	Page 54 of 59 Printed 11/8/2013
Duplicate						Lab ID = 810386-009
Parameter Zinc	Unit ug/L	DF 1.00	Result ND	Expected 0	RPD 0	Acceptance Range 0 - 20
Potassium	ug/L	10.0	13600	13900	2.40	0 - 20
Sodium	ug/L	1000	1360000	1400000	2.97	0 - 20
Magnesium	ug/L	10.0	17600	16300	7.90	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Zinc	ug/L	1.00	2150	2000	108	85 - 115
Potassium	ug/L	1.00	2090	2000	105	85 - 115
Sodium	ug/L	1.00	2020	2000	101	85 - 115
Magnesium	ug/L	1.00	2030	2000	102	85 - 115
Matrix Spike						Lab ID = 810386-009
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Zinc	ug/L	1.00	2220	2000(2000)	111	75 - 125
Potassium	ug/L	10.0	32800	33900(20000)	94.4	75 - 125
Sodium	ug/L	1000	3340000	3400000(200000	97.2	75 - 125
Magnesium	ug/L	10.0	35300	36300(20000)	95.0	75 - 125
Matrix Spike Duplicate						Lab ID = 810386-009
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Zinc	ug/L	1.00	2220	2000(2000)	111	75 - 125
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Zinc	ug/L	1.00	5180	5000	104	95 - 105
Potassium	ug/L	1.00	4800	5000	96.0	95 - 105
Sodium	ug/L	1.00	4840	5000	96.8	95 - 105
Magnesium	ug/L	1.00	5060	5000	101	95 - 105
MRCVS - Primary	tions process to a large englishment of a branch blow		agit assarada escrita arme el almedro o proprio armeni de la la la colonia armene escrito en	gan menter i samma dan persanjin dan jegaran dan gan pengan 1.5 pjenere eta 1 pengan pengan pengan pengan berdar ber	ngang pipaga panang ang ang ang ang panang panang panang ang ang ang ang ang ang ang	
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Zinc	ug/L	1.00	5210	5000	104	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Zinc	ug/L	1.00	5080	5000	102	90 - 110
MRCVS - Primary						
Parameter Zinc	Unit ug/L	DF 1.00	Result 5120	Expected 5000	Recovery 102	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 58 of 59 Printed 11/8/2013

Turbidity by SM 2130 B			Batch	10TUC13K				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
810386-001 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	ND
810386-002 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	0.415
810386-003 Turbidity		NTU	10/11	/2013	1.00	0.0140	140 0.100	
810386-004 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	0.212
810386-005 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	0.138
810386-006 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	ND
810386-007 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	0.238
810386-008 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	ND
810386-009 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	ND
810386-010 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	ND
810386-011 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	ND
810386-012 Turbidity		NTU	10/11	/2013	1.00 0.0140		0.100	ND
810386-013 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	2.10
810386-014 Turbidity		NTU	10/11	/2013	1.00	0.0140	0.100	2.25
Method Blank	_	SAN A					- 1-711 A to 1.54	
Parameter Turbidity	Unit NTU	DF 1.00	Result ND					
Duplicate		i Marketa.					Lab ID =	810386-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Turbidity	NTU	1.00	0.408	0.415		1.70	0 - 20	•
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	7.36	8.00		92.0	90 - 110	
Lab Control Sample Do	uplicate				. Basis			
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	7.54	8.00		94.2	90 - 110	1

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 59 of 59

087

Printed 11/8/2013

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

✓ Mona Nassimi

Manager, Analytical Services

Calculations

Batch: 10TDS13I
Date Analyzed: 10/16/13

Laboratory Number	Sample volume, mi	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
Blank	100	67.4976	67.4979	67.4978	0.0001	No	0.0002	2.0	25.0	ND	1
810335-1	100	77.9876	78.0347	78.0345	0.0002	No	0.0469	469.0	25.0	469.0	1
810335-2	100	69.4842	69.5176	69.5172	0.0004	No	0.0330	330.0	25.0	330.0	1
810335-3	100	74.0442	74.0911	74.0911	0.0000	No	0.0469	469.0	25.0	469.0	1
810335-4	100	73.8232	73.8653	73.8653	0.0000	No	0.0421	421.0	25.0	421.0	1
810386-1	20	47.7599	47.842	47.842	0.0000	No	0.0821	4105.0	125.0	4105.0	1
810386-2	20	46.9746	47.0602	47.0600	0.0002	No	0.0854	4270.0	125.0	4270.0	1
810386-3	20	72.6337	72.72	72.72	0.0000	No	0.0863	4315.0	125.0	4315.0	1
810386-4	20	49.8117	49.8891	49.8891	0.0000	No	0.0774	3870.0	125.0	3870.0	1
810386-5	20	51.4885	51.5732	51.5732	0.0000	No	0.0847	4235.0	125.0	4235.0	1
810386-6	20	68.3691	68.455	68.455	0.0000	No	0.0859	4295.0	125.0	4295.0	1
810386-6D	20	50.6353	50.7179	50.7179	0.0000	No	0.0826	4130.0	125.0	4130.0	1
LCS	100	67.9747	68.0245	68.0245	0.0000	No	0.0498	498.0	25.0	498.0	1
810386-7	50	78.3938	78.4847	78.4846	0.0001	No	0.0908	1816.0	50.0	1816.0	1
810386-8	20	74.4607	74.543	74.543	0.0000	No	0.0823	4115.0	125.0	4115.0	1
810386-9	20	51.0438	51.1268	51.1264	0.0004	No	0.0826	4130.0	125.0	4130.0	1
810386-10	20	47.4291	47.5141	47.5141	0.0000	No	0.0850	4250.0	125.0	4250.0	1
810386-11	20	49.1752	49.2599	49.2599	0.0000	No	0.0847	4235.0	125.0	4235.0	1
810386-12	20	79.0614	79.145	79.1446	0.0004	No	0.0832	4160.0	125.0	4160.0	1
810386-13	50	77.9079	77.9598	77.9598	0.0000	No	0.0519	1038.0	50.0	1038.0	1
810386-14	50	79.5038	79.5558	79.5554	0.0004	No	0.0516	1032.0	50.0	1032.0	1
810342-1	100	79.4495	79.5002	79.5002	0.0000	No	0.0507	507.0	25.0	507.0	1
810342-2	100	77.4910	77.5413	77.5413	0.0000	No	0.0503	503.0	25.0	503.0	1
810342-2D	100	80.5818	80.6328	80.6328	0.0000	No	0.0510	510.0	25.0	510.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams, B = weight of dish in grams, C = mL of sample filtered.

 $\left(\frac{A-B}{C}\right) \times 10^6$

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory	Control Sa	imple (LCS	3) Summar	у
QC Std	Measurd	Theoretical	Percent Rec	Acceptar
I.D.	Value, ppm	Value, ppm		Limit

QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Percent Rec	Acceptance Limit	QC Within Control?
LCS1	498	500	99.6%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Duplicate D	ctcimmut	ons binere	nee Cann	iiui y	
Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
810386-6	0.0859	0.0826	2.0%	≤5%	Yes
810342-1	0.0503	0.051	0.7%	5%	Yes

Jenny T. Analyst Printed Name

LCS Recovery
$$P = \left(\frac{LC}{LT}\right) x \, 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left|\frac{1}{A \text{ or } B - C}\right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 10TDS13l Date Analyzed: 10/16/13

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
				17.1.0
810335-1	740	0.63	481	0.98
810335-2	550	0.60	357.5	0.92
810335-3	750	0,63	487.5	0.96
810335-4	740	0.57	481	0.88
810386-1	6360	0.65	4134	0.99
810386-2	6470	0.66	4205.5	1.02
810386-3	6530	0.66	4244.5	1.02
810386-4	5190	0.75	3373.5	1.15
810386-5	6710	0.63	4361.5	0.97
810386-6	6650	0.65	4322.5	0.99
810386-6D	6650	0.62	4322.5	0.96
LCS				
810386-7	2880	0.63	1872	0.97
810386-8	6260	0.66	4069	1.01
810386-9	6460	0.64	4199	0.98
810386-10	6660	0.64	4329	0.98
810386-11	6570	0.64	4270.5	0.99
810386-12	6450	0.64	4192.5	0.99
810386-13	1760	0.59	1144	0.91
810386-14	1740	0.59	1131	0.91
810342-1	929	0.55	603.85	0.84
810342-2	922	0.55	599,3	0.84
810342-2D	922	0.55	599.3	0.85

A

Alkalinity by SM 2320B

 Analytical Batch:
 10ALK13D

 Matrix:
 WATER

 Date of Analysis:
 10/17/13

Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	reach pH 4.5	Total mL titrant to reach pH 0.3 unit lower	CaCO3	RL, ppm	Total Alkalinity Reported Value	HCO3 Conc. as CaCO ₃ (ppm)	CO3 Alkalinity as CaCO ₃ (ppm)	OH Alkalinity as CaCO₃ (ppm)	Low Alkalinity as CaCO ₃ (<20ppm)
BLANK	7,01	50	0.02		0.0	0.00		0.0	5	ND	ND	ND	ND	
810386-1	7.78	50	0.02		0.0	2,70	Γ	54.0	5	54.0	54.0	ND	ND	
810386-8	7,77	50	0.02	i	0.0	2.50		50.0	5	50.0	50.0	ND	ND	
810386-9	7.78	50	0,02	Ī	0.0	2.35		47.0	5	47.0	47.0	ND	ND	
810386-10	7.79	50	0.02		0.0	2.50		50.0	5	50.0	50.0	ND	ND	
810386-11	7.85	50	0.02		0.0	1.50		30.0	5	30.0	30.0	ND	ND	
810386-12	7.80	50	0.02		0.0	3.80		76.0	5	76.0	76.0	ND	ND	
810386-10D	7.78	50	0.02	1	0.0	2.50	1	50.0	5	50.0	50.0	ND	ND	
810386-12MS	9.43	50	0,02	2.20	44.0	8,75	1	175.0	5	175.0	87.0	88	ND	
810386-12MSD	9.45	50	0,02	2.20	44.0	8,80	1	176.0	5	176.0	88.0	88	ND	
LCS	10.25	50	0.02	2.20	44.0	4.90		98.0	5	98.0	10.0	88	ND	
LCSD	10,30	50	0.02	2.20	44.0	4.95		99.0	5	99.0	11.0	88	ND	
-00		<u> </u>												
		-	-	-	 		-			-				
			ļ	, politica especiales en militar										
1 455 - 2000 - 200 - 200 - 200 - 2		 	1-11-111-11			and a supplication of the	 -			-				
			i -											
- makes		ļ	 	 	-	ļ	ļ							
as — 3- — — — — — — — — — — — — — — — — —	- Anna Anna Anna Anna Anna Anna Anna Ann		1				 				† <u></u>			-
		<u> </u>					<u> </u>							
			į.	1	i i									

Calculations as follows:

Tor P=

 $\left(\frac{A \times N \times 50000}{mL \ sample}\right)$

W

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000

mL sample

Blank Summary

Diamit Cu.	.,,		
Reporting Limit, RL	Measured Value, ppm	Accept Limit	QC Within Control?
5 ppm	0	<5	Yes

Where:

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used

N = normality of standard acid

Where: B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

QC Std I.D.	Measured Value, ppm	Theoretical Value, ppm	% Recovery	Accetance Limit	QC Within Control?
LCS	98	100	98.0%	90-110	Yes
LCSD	99	100	99.0%	90-110	Yes

Duplicate Determination Difference Summary

Lab Number I.D.	Measured Value, ppm	Dup Value, ppm	RPD	Accetance Limit	QC Within Control?
810386-10	50	50	0.0%	≤20%	Yes

Sample Matrix Spike (MS/MSD) Summary

Lab Number	Conc of Unspk spl	Dil Factor	Added Spk Conc	MS/MSD Amt	Measrd Conc of Spk Spl	Theor Conc of Spk Spl	MS/MSD % Rec	MS Accept Limit	QC Within Control?	RPD	RPD Accept Limit	QC Within Control?
810386-12	76	1	100	100	175	176.00	99%	75-125	Yes	0.3%	≤20%	Yes
0 10300-12	76	1	100	100	176	176.00	100%	75-125	Yes	0.5%	≥20% ~74	1 e5

KIM 022213C xis

analyst Signature

Maksim G.
Reviewer Printed Name

Reviewer Signature

S 810386

CHAIN OF CUSTODY RECORD 810386, 10/10/2013 4:03:25 PM

	CHZIVINIL	!							OI	MII4 O	1 000	טטונ	I IVEO	טאטי	10/10/2013 4.03.25 PW Page 1 OF 2
	Project Name PG Location Topoci Project Manager	K		Container:	Poly (NH4)2S	500 ml Poly HNO3, 4°C	500 ml Poly HNO3, 4°C	500 ml Poly HNO3, 4°C	1 Liter Poly 4°C	1 Liter Poly 4°C	1 Liter Poly 4°C	1 Liter Poly 4°C	1 Liter Poly 4°C	1 Liter Poly H2SO4, pH<2, 4°C	
	Sample Manager	Shawn Dul	fy	Filtered:	Field	Field	NA	Field	NA	NA	NA	NA	NA	NA	-
			Hold	ding Time:	28	180	180	180	2	2	2	2	2	28	
	Project Number 4 Task Order Project 2013-CMi Turnaround Time Shipping Date: 1 COC Number: 3	P-030 10 Days	3	Matrix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Cr.Mo,Na	Metals (6010B) Total Fe		Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)	Level III QC For Sample Conditions See Form Attached COMMENT:
	CW-04M-030	10/9/2013	8:10	Water	X		Х	×	Х	х	Х	Х	Х	х	5)
-2	OW-01D-030	10/9/2013	10:14	Water	Х	X			Х	Х	Х	Х			3
3	OW-01M-030	10/9/2013	10:42	Water	Х	X			х	X	X	Х			3
Y	OW-01S-030	10/9/2013	11:35	Water	Х	x			Х	х	х	Х			3
-5	OW-05D-030	10/9/2013	13:56	Water	Х	Х			х	Х	Х	X			3
-6	OW-05M-030	10/9/2013	14:44	Water	х	X,			Х	Х	X	Х			3 DH=1
7	OW-05S-030	10/9/2013	15:12	Water	X	×		ı	Х	Х	X	Х			3 Mct
3	OW-70-030	10/9/2013	10:00	Water	х		Х	х	х	х	х	X	Х	х	5
9	CW-01D-030	10/10/2013	8:25	Water	Х		х	х	Х	х	Х	Х	Х	х	5
0	CW-01M-030	10/10/2013	8:58	Water	х		Х	х	x	Х	Х	Х	Х	Х	5
Attenues	OW-02D-030	10/10/2013	10:36	Water	Х		Х	x	х	х	Х	х	X	х	5
12	OW-02M-030	10/10/2013	11:13	Water	х		Х	Х	х	Х	Х	Х	X	Х	5
12	OW-02S-030	10/10/2013	12:04	Water	Х	Х			х	х	Х	Х			3
A	OW-71-030	10/10/2013	7:00	Water	х	Х			x	x	Х	Х			3 /

Approved by Sampled by

inquished by

CH2MHIII

Received by

Relinquished by Received by

7Signatures

Date/Time 10-10-13 1645

0000

Shipping Details

Method of Shipment:

On Ice: yes / no

Lo-1/- (3 0000 Lab Name: Truesdail Laboratories, Inc.

Lab Phone: (714) 730-6239

ATTN:

Oct 7-9, 2013

Special Instructions:

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303

CH2MHILL

CHAIN OF CUSTODY RECORD

															1.00.207 ///		~9°	٠	
Project Name Po		k Co	ontainer:	Poly	500 ml Poly	500 ml Poly	500 ml Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly						·
Location Topoc Project Manager		Preser	rvatives:	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	H2SO4, pH<2, 4°C						
Sample Manager	Shawn Dut	fy f	Filtered:	Field	Field	NA	Field	NA	NA	NA	NA	NA	NA						
		Holdin	ng Time:	28	180	180	180	2	2	2	2	2	28						l
Project Number Task Order Project 2013-CN Turnaround Time Shipping Date: COC Number: 3	P-030 10 Days 10/10/2013 DATE	S TIME N		Cr6 (E218.6) Field Filtered	Metals (E200.7–E200.8) Field Filtered Cr.Mo,Na	Metals (6010B) Total Fe	Metals (E200series) Field Filtered AlSbAsBaBeBCaCdCoCrCuFePb	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Alkalinity (SM2320B)	Ammonia (SM4500NH3)					Number of Containers	СОММЕ
OW-81-030	10/10/2013	7:23	Water	X														1	
OW-82-030	10/10/2013	12:40	Water	X														que.	
								7							TOTAL NUMBEI	R OF CONTA	AINERS	56	

Approved by Sampled by

Reinquished by

Received by

Relinquished by Received by

7Signatures

Date/Time

Shipping Details

courier

Method of Shipment:

Airbill No:

(0-1/-/3 cool Lab Phone: (714) 730-6239

Special Instructions:

ATTN:

Oct 7-9, 2013

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303 Subject: RE: CMP COC Question From: <Shawn.Duffy@CH2M.com> Date: Mon, 4 Nov 2013 20:21:50 +0000

To: <seanc@truesdail.com>

Hi Sean,

The metals list should be:
Al, Sb, As, Ba, Be, B, Ca, Cd, Co, Cr, Cu, Fe, Pb, Mg, Mn, Hg, Mo, Ni, Se, Ag, Tl, V, Zn, K, Na

Shawn

----Original Message----

From: Sean Condon [mailto:seanc@truesdail.com]

Sent: Sunday, November 03, 2013 12:15 PM

To: Duffy, Shawn/RDD Subject: CMP COC Question

Hi Shawn,

It looks like there might be some metals missing from the metals lists on the two CMP COCs (see attached).

Thank you,

Sean Condon
Project Manager
Truesdail Laboratories, Inc.

Phone: (714) 730-6239 Fax: (714) 730-6462

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Nur	nber	Initi	al pH	Buffer A	dded (mL)	Fin	al pH	Time I	Buffered	Ini	tials
8/11/13	810385	-9	9.	<u></u>	N	<u> </u>	1	A	سرسه	Ą	7	en -
		- (0										
		_ ((/			L,					<u> </u>
8/11/13	810386	-1	9.3	-	N	A	1	A	111	A	7	4
		-2										
		-3										
		-4										
		-5-							. , que ne nen n			
		-6										
	<u> </u>	- 1										
		-8										
		<u>-9</u>										
		-10										
		-11										
		-12										
		-/3										
		-14										
		-15										
		-16	\				\downarrow					
0/11/13 NE	810 412	-1	9:5	An _{NE}	NIA		Ν	10	NI	4	N	Ē
0/14/3		-2		1				 				
		- 3										-
		- 4						1				
		-5					· · · · · · · · · · · · · · · · · · ·		<u> </u>			
		-6										
	- W	-7										
	810 413.							-				
		-2			······································			 				
		- 3						1				
		- 4		<u> </u>		,						
1/		- 5	V	1	\	<i>y</i>	•	VV		/	1	/

10/11/13

(A) 172/13

Turbidity/pH Check

			Turbic	dity/pH C	heck			
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments
8 (0354(1-8)	41	42	10/10/13	ES	Y25			
310345-10712	41	>2	10/10/13	or	NO	16:45		
810322	41	72	1	ì	Ĺ	L		
810342-112	>1	42	1.		yes			
810324	41	<2	U	1	1			
3/0355(1-15	41	12	10/11/13	ES	Yes			
810356(1-13)		1	ì	1	1			
810365 (1-3)								
810382 (1-6)	V	I			\mathcal{L}			
810378-4	4 1	42	6/11/13	n	ifes			
810374	71	42	V 11112	, <u> </u>	§			
810373-1+3	71	12						
810370-173		L2	J		, ,			
810375	ブ' 71	Ľ2	1	d	Ψ			
810368 - 1 -> 3	41	72	1	Ĭ	NO	16:00		
810371-17,24	41	72			j	y		
810391	71	12	ì	1	yes	•		
810367	41	12	1		1 1			
810380(1,3-10)	41	12	10/14/13	Es	Yes			
810414 (1-4,6)	V	V	V	V	1	-		
810407 (1-2)	71	17	10/14/13	ES	Y-es			
810419				1	1			
810420								
810421 (1-4)		·						
810424(12)								
910 427	< 1							
810438-174	4	42	10/15/13	n	ues		· .	
810439-173	1	1	¥	Ú	yes			
310384(1-2,4-11	21	42	10,15/12	E	405			
\$10385(1-10)	ì			Ĭ	1			
310386(1-14)							·	
810403 x 51615	112							
910471(1-6)	<u> </u>	12	1916113	区	Yes			
810448-1,2,4	41	72	6/16/13	a	NO	10:10		
810447-1-74	4	72	4	U	4	ø.		
810478	41	42	1	1	yes			
Sinyc3	21	42	J	1	· 'v			
810453 \$10412(1,3-7)	41	22	10 17 13	ES	405			
40417(2-5)		1	1	- T	,			
S10415 (1-7)					~			
810416 (1-37)								
81041711-4,6								
50476 (1-3)					1,			
810437 (1-3)					4	-		
1 30 1 V 4 7 / (1 1/)	$-\mathbf{v}$	*	<u> </u>	~	I			

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

Clie	nt: E2	Lab # 8 10381
Date	e Delivered:/ <u>//</u> / /13	Field Service 💋Client
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes ÆNo □N/A
3 .	Are there any special requirements or notes on the COC?	□Yes ÉdNo □N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ÆN/A
5.	Were all requested analyses understood and acceptable?	ÆYes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)? <u>ろって</u>	ÄYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	daYes □No □N/A .
8.	Were sample custody seals intact?	□Yes □No ⊉N/A
9.	Does the number of samples received agree with COC?	ØYes □No □N/A
10.	Did sample labels correspond with the client ID's LRT	Yes ONO ON/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ☑ Truesdail □ Client	2Yes DNO DN/A
12.	Were samples pH checked? pH = See C. O. C	ØYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ÁTÝes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH	ÀYes □No □N/A
15.	Sample Matrix: □Liquid □Drinking Water □Ground W	Water □Waste Water Other Waste R
6.	Comments:	<u> </u>
7	Sample Check-In completed by Truesdail Log-In/Receiving	Verda

ANALYTICAL REPORT

For:

PGE Topock - 2013-CMP-030

ASL Report #: M2999

Project ID: 423575.MP.02.CM

Attn: Jay Piper

cc:

Data Center/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

(541) 758-0235 ext.23144

October 28, 2013

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.

Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

Sample Receipt Comments

We certify that the test results meet all NELAP requirements.

Sample Cross-Reference

ASL		Date/Time	Date
Sample ID	Client Sample ID	Collected	Received
M299901	CW-02D-030	10/08/13 11:59	10/15/13
M299902	CW-02M-030	10/08/13 13:24	10/15/13
M299903	CW-03D-030	10/08/13 09:12	10/15/13
M299904	CW-03M-030	10/08/13 10:12	10/15/13
M299905	CW-04D-030	10/08/13 15:02	10/15/13
M299906	CW-04M-030	10/09/13 08:10	10/15/13
M299907	OW-01D-030	10/09/13 10:14	10/15/13
M299908	OW-01M-030	10/09/13 10:42	10/15/13
M299909	OW-01S-030	10/09/13 11:35	10/15/13
M299910	OW-05D-030	10/09/13 13:56	10/15/13
M299911	OW-05M-030	10/09/13 14:44	10/15/13
M299912	OW-05S-030	10/09/13 15:12	10/15/13
M299913	OW-70-030	10/09/13 10:00	10/15/13
M299914	CW-01D-030	10/10/13 08:25	10/15/13
M299915	CW-01M-030	10/10/13 08:58	10/15/13
M299916	OW-02D-030	10/10/13 10:36	10/15/13
M299917	OW-02M-030	10/10/13 11:13	10/15/13
M299918	OW-02S-030	10/10/13 12:04	10/15/13
M299919	OW-71-030	10/10/13 07:00	10/15/13

CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: M2999

Project: PGE Topock Project #: 423575.MP.02.CM

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

Method(s):

E353.2

Field Sample ID:

CW-02D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299901

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.93		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

CW-02M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299902

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.90		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

CW-03D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299903

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.94		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

CW-03M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299904

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	1.78		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

CW-04D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299905

NO3NO2N Nitrate/Nitrite-N	0.0112	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
		0.0400	2.92		MG/L	4	3 ML	E353.2	10/16/13
<u> </u>									
									

Field Sample ID:

CW-04M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299906

NO3NO2N P	Nitrate/Nitrite-N	0.0112	0.0400	2.59	MG/L	4	3 ML	E353.2	10/16/13
+									
+									
+									

Field Sample ID:

OW-01D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299907

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.77		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-01M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299908

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.72		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-01S-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299909

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	3.08		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-05D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299910

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.95		MG/L	4	3 ML	E353.2	10/16/13
						1				
						-				
										İ

Field Sample ID:

OW-05M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299911

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.91		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-05S-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299912

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.91		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-70-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299913

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.61		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

CW-01D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299914

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.88		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

CW-01M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299915

NO3NO2N Nitrate/Nitrite-N 0.0112 0.0400 3	.02	MG/L	4	3 ML	E353.2	10/16/13
						1
	-					
	-					
	-					
	_					
	-					
	\longrightarrow					

Field Sample ID:

OW-02D-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299916

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	2.93		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-02M-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299917

NO3NO2N Nitrate/Nitrite-N	QL Result Q Units DF Amoun	Result	L PQL	Analyte DL	Ar	CAS No.
	0400 2.80 MG/L 4 3	0 2.80	0.0400	rite-N 0.011	Nitrate/Nitrit	NO3NO2N
	 					
	 					
	 					
	 	+ +				
	 	+				
	 	+ +				
	 					
	 					
	 	+ +				
	 	+ +				

Field Sample ID:

OW-02S-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299918

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	3.85		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

OW-71-030

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: M299919

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0112	0.0400	3.92		MG/L	4	3 ML	E353.2	10/16/13

Field Sample ID:

WB14-101613

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB14-101613

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.00280	0.0100	0.0100	U	MG/L	1	3 ML	E353.2	10/16/13
		I				1				

Field Sample ID:

WB15-101613

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB15-101613

NO3NO2N Nitrate/Nitrite-N	353.2 10/16/1
	ı

Field Sample ID:

WB16-101613

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB16-101613

NO3NO2N Nitrate/Nitrite-N	353.2 10/16/1
	ı

Field Sample ID:

WB17-101613

SDG No.: M2999 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB17-101613

NO3NO2N Nitrate/Nitrite-N	353.2 10/16/1
	ı

GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: M2999 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS7W1016

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 10/16/13

Matrix: (Soil/Water) WATER Time Analyzed: 1457

Instrument: SMARTCHEM Concentration Units: MG/L

Analyte	Expected	Found	%R	QC Limits %R	Q
Nitrate/Nitrite-N	0.416	0.416	100	90-110	
NICIACC/NICIICC N	0.410	0.410	100	70 110	
			-		
					+
					1
	I	l		l .	

^{*} Values outside of QC limits

Comments:

GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: M2999 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS8W1016

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 10/16/13

Matrix: (Soil/Water) WATER Time Analyzed: 1551

Instrument: SMARTCHEM Concentration Units: MG/L

				QC Limits	
Analyte	Expected	Found	%R	%R	Q
Nitrate/Nitrite-N	0.416	0.429	103	90-110	
			+		
					+
			+		
			+		+
			+		
					-
					1

^{*} Values outside of QC limits

Comments:

L				CHAIN OF CUSTODY RECORD 10/10/2013 4:07:09 PM Page 1	OF	2 bad
k			Poly H2SO4, pH<2,			
Shawn Dui	fy	Filtered:	NA			
		-	28			
P-030 10 Days 0/14/2013	3		Nitrate/Nitrite (SM4500NO3)		Number of Containers	
					<u> </u>	COMMENTS
	 		X		-	<u> </u>
			X		1	2
10/8/2013	9:12	Water	X		1	3
10/8/2013	10:12	Water	x		1	τ
10/8/2013	15:02	Water	х		1	S
10/9/2013	8:10	Water	х		1	C
10/9/2013	10:14	Water	х		1	7
10/9/2013	10:42	Water	х		1	¥
10/9/2013	11:35	Water	Х		1	4
10/9/2013	13:56	Water	х		1	10
10/9/2013	14:44	Water	х		1	11
10/9/2013	15:12	Water	×		Ť	12
10/9/2013	10:00	Water	×	:	1	ι ζ
	k Jay Piper Shawn Duf 423575.MP P-030 10 Days 10/14/2013 10/8/2013 10/8/2013 10/8/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013 10/9/2013	G&E Topock k Jay Piper Shawn Duffy Hold 423575.MP.02.CN P-030 10 Days 10/14/2013 DATE TIME 10/8/2013 11:59 10/8/2013 13:24 10/8/2013 10:12 10/8/2013 15:02 10/9/2013 8:10 10/9/2013 10:14 10/9/2013 10:14 10/9/2013 10:14 10/9/2013 13:56 10/9/2013 13:56 10/9/2013 14:44 10/9/2013 15:12	G&E Topock Containers K Jay Piper Preservatives: Shawn Duffy Filtered: Holding Time: 423575.MP.02.CM P-030 10 Days 10/14/2013 11:59 Water 10/8/2013 13:24 Water 10/8/2013 13:24 Water 10/8/2013 15:02 Water 10/9/2013 15:02 Water 10/9/2013 10:14 Water 10/9/2013 10:14 Water 10/9/2013 10:14 Water 10/9/2013 10:15 Water 10/9/2013 10:15 Water 10/9/2013 10:15 Water 10/9/2013 10:15 Water 10/9/2013 10:16 Water 10/9/2013 10:17 Water 10/9/2013 10:18 Water 10/9/2013 10:19 Water 10/9/2013	Container R	125 ml 1	108/2013 11:59 Water X 11 108/2013 11:50 Water X 11 11:50 Water X 11:50 Wate

Approved by Sampled by Relinquished by Received by

Relinquished by Received b,

Signatures

On Ice: yes / no Airbill No:

s ab Phone

Method of Shipment

Lab Name:

Shipping Details

ATTN:

Special Instructions: +3p++ 1 +3+ 11111

Samuelle Cambrido

College William

Report Copy to

Noah

							ge 57 of 59
CH2MHIL	<u>L</u>				CHAIN OF CUSTODY RECORD 10/10/2013 4:07:09 PM Page 2	OF _	2 Bage
Project Name PG Location Topoc Project Manager	k	, .	Container: ervatives:	125 ml Poly H2\$04, pH<2, 4°C			
Sample Manager	Shawn Dul	ffy	Filtered:				İ
		Hold	ding Time:	28			
Project Number Task Order Project 2013-CM Turnaround Time Shipping Date: 1 COC Number: 2	P-030 10 Days	5	/I Matrix	Nitrate/Nitrite (SM4500NO3)		Number of Containers	COMMENT
CW-01M-030	10/10/2013	8:58	Water	x		1	15
OW-02D-030	10/10/2013	10:36	Water	х		1	16
OW-02M-030	10/10/2013	11:13	Water	х		1	17
OW-02S-030	10/10/2013	12:04	Water	х		1	is
OW-71-030	10/10/2013	7:00	Water	х		1	19
			1		TOTAL NUMBER OF CONTAINERS	19	

Approved by Sampled by Relinquished by Received by Relinquished by

Received by

ignatures Date/Time

Method of Shipment:

On Ice: yes / no

Lab Phone

Airbill No:
Lab Name: 19 Mill Str. Sergios 19

Confidence of Sugarantees of the

Special Instructions

ATTN:

Samuel Casania

Report Copy to

Sample Receipt Record

SDG ID:		Date	e Received:	10/15/1	3
Client/Project: PARE Torck	_		hecked By:		
Packing Material: Ice Blue Ice Box Bu	ubble Wrap HD(circle all that apply) C	hecked By:	_cc	
Shipping ID:		or - On File COC HD	USPS (c	ircle one)	
VERIFICATION OF SAMPLE CONDITIONS (ver	ify all items), HD = Client Hand	delivered Samples	NA	YES	NO
Were custody seals intact and on the outside of	the cooler?			×	
Radiological Screening for DoD	The same of the sa				
Temp OK? (<6C) Therm IDTH173Exp. 43_	/13	4.8°	С	٨	
Was a Chain of Custody (CoC) Provided?				X.	
Was the CoC correctly filled out (If No, docume	nt in the SRER)			<u></u>	
Did sample labels agree with COC? No, docume	ent in SRER				
Did the CoC list a correct bottle count and the p	reservative types (Y:	OK, N=Corrected on CoC)		×	
Were the sample containers in good condition (broken or leaking)?			*	
Was enough sample volume provided for analys	sis? No, document ir	SRER		Ч	
Containers supplied by ASL?				X	
Any sample with < 1/2 holding time remaining?	If so contact LPM				~
Samples have multi-phase? If yes, document or					٧
All VOCs free of air bubbles? No, document on	SRER		X		
		ment below or on SRER			
pH of all samples met criteria on receipt? If "No		ment below or on SRER	×		
All VOCs free of air bubbles? No, document on pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu				
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field?	", preserve and docu		× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials
pH of all samples met criteria on receipt? If "No' Dissolved/Soluble metals filtered in the field? Dissolved/Soluble metals have sediment in bott	", preserve and docu om of container? Do	cument in SRER	× ×	e Added	Initials

Sample Receipt Exception Report

	Sample Batch Number:	M2999	Client/Project	Topock
The fo	llowing exceptions were note	d:		
	l ·		Comments (write num	ber of exception description and the impacted sample numbers)
	No custody seal as requi	red by project		nethod SM4500 ASL will report using E353.2.
	No chain-of-custody prov	rided		
	Analysis, description, dat provided	te of collection not		
	4. Samples broken or leaking	ng on receipt.		
	5. Temperature of samples analysis requested	inappropriate for		
	Container inappropriate frequested	or analysis		
	7. Inadequate sample volur	me.		
	8. Preservation inappropria requested	te for analysis		
	Samples received out of analysis requested	holding time for		
	10. Discrepancies between container labels.	COC form and		
	11. Other.			
ACTIC	N TAKEN:			
Origina			Date:	10/15/213
Client	was notified on:	e/Time)	Client Contact:	
Client	Services:			

Project I	Name PG&E	Topock CMP									Sampling Log	
		75.MP.02.CM					Sampling	J Event Date	2013-CM		•	
Sampler	JE/RP	_ Field Team	1 Fiel	d Conditions	•			Page	10-10	<u>~ ()</u>		DCC
Well/San	ple Number				OC Sa	mple ID NA				· · ·		Bec
	m60935			Purge Met						QC Sample	Time	· · · · · · · · · · · · · · · · · · ·
	Flow Cell (•		_	/	Ded. 1	Pump Tu	be_				O
	1 low cent	215al.		Iviini. i dige	Volume (gai)//L	10598	Purge Rate	gpm)(mLpr	m) 3	Pump	Make and Model	G# Z
Water Level	Time	Vol. Purged gailons liters	pH**	Conductivity S/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		Comments escription below
109.34	0752	21	6.71	7412	1	7.74	28.64			196e	349 Hz	Pump Jumpet
109.20	0759	42	7.03	7412		7.95	28.47			140	369 Hz	2.7 gpm.
109.20	08:08	63	7.23	7422		7.94	29,00			145	391 Hz	Z. CJF C.
109.20	08:16	. 84	7.35	7419	1	7.93	29.04			154	3. RZ	,
109.2	08:24	105		7427	1	7.96	29.13			155		
				1 00 1	\ <u>\</u>	1.10	را. الم			152		
				2 <u>0</u>								
	<u> </u>		· · · · · · · ·	2. 2. 2.						·		
Danamata a O				·								
	ompliance Crite		6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>						1.0800			
**If pH or TDS i Duffy ((530) 51	is out of range cl 0-2340). If S. Du	heck calibration, t Iffy unavailable co	take to IM3 an	d check pH, S(C-get second pro	be. If still out of	f range imme	ediately con	tact B. Coll	om ((541) 740-3	3250). If B. Collom ur	navailable contact S.
	bilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs		+/- 2°C	NA NA	NA NA	na Hong ((626) +/- 10 mV	3250). If B. Collom ur 703-4475 or (626) 2	97-5292).
	ameters Stablize	orior to sampling?	Υ	V	Y	Υ	, 9					
Previous Field me		4/8/2013)	7.45	7601	1	8.81	28.44	0.49		176	9	·
	ts consistent with	previous?	<u> </u>	Y			V					
Sample Time (28:45 °	Sample Location:	pum	tubing	well port	spigot	ba	niler	other	<i>Y</i>		
Initial Depth to V	Vater (ft BTOC):	9270	109	·[D	.,	-			WO ME	TER MAKE and	I SERIAL NUMBER:	- :/ - : »!
Field measured	confirmation of \	Nell Depth (ft bto			Measure	Point: Well To	OC Steel	Casing	WATER	LEVEL METER	R SERIAL NUMBER:	Insita 51034
WD (Well Depth	- from database) ft btoc (300	(\$) V				\uparrow				nsducer	Solint 210891
SWH (Standing)	Water Height) =	WD-Initial Depth	0/207	46 91.1	Initial DTW /	Before Removal	App	rox. 5 min /	After Reinst		me of Removal	
D (Volume as pe		0.17, 4"= 0.66, 1"	'=0.041 (2 i		U735	Initial DTW	T	ime	Final	DTW	me of Reinstallation	/
One Casing Volu			2682	32,487	0925	92.74						/
Three Casing Vo		:	- •	1.46	Comments:	109.10			-			
Color: clear, gre	y, yellow, brown	, black, cloudy, g	reen		Odor: none, sul	lphur, organic, o	ther	So	lids: Trace	, Small Qu, Me	ed Qu, Large Qu, Par	ticulate, Silt, Sand

Broject N	James PCSE	Topock CMP								Topock S	Sampling Log	
Project N Job N		75.MP.02.CM					Sampling		2013-CN			
•	42307		1					Date	10-10	~13	BEC	-
Sampler		Field Team	Field	d Conditions				Page	of of		De-	
1	nple Number	CW-01M-030				mple ID NA				QC Sample	Time	
Purge Start Tin	ne 0836			Purge Meth	1001: 300		oump T	be				
 	Flow Cell()	D/ N	_	Min. Purge	Volume (gal) (L) <u>42</u> F	Purge Rate (gpm)/(mLp	m)_2	Pump	Make and Model <u>C</u> 4#3	·
Water Level	Time	Vol. Purged gallons) liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS**	Eh/ORP mv	Comments (See description belo	w
109.10	0846	8	7.43	7514	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9.52	29.04			183	317 Hz	
109.10	CON 18	16	7.46	7515	'	9.53	29.13			184		
109.10	0848	201	7.47	7516	1	9.56	29.18			184		
109.10	0852	30	7.48	7517		9.50	29.12	<u> </u>		,		
109.10		40	7,49	7512	1	9.51	29.14			135		
10.17.0	0000		1 (0	1316	,	(,)	21119			136		
			-,-									
				l <u>. </u>								
Danis												
	ompliance Crite		6.2 <ph<9.2< td=""><td></td><td>,</td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>		,				1.0800			
**If pH or TDS i Duffy ((530) 51	is out of range c 0-2340). If S. Du	heck calibration, t affy unavailable co	take to IM3 ar	nd check pH, S0	C-get second pro	obe. If still out of	range imme	ediately cor	ntact B. Coll	om ((541) 740-	i 3250). If B. Collom unavailable cont i 703-4475 or (626) 297-5292).	act S.
	bilization Crite	į.	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA NA	NA	+/- 10 mV	703-4475 or (626) 297-5292).	
	rameters Stablize	prior to sampling?	٧.	У	Υ	У	Υ			У		
Previous Field m	easurement (4/8/2013)	7.43	7582	1	9.5	29.35	0.49		168		
			<u> </u>	· /	Y	y	У			V		
	08581	Sample Location:	pum	p tubing	well port	spigot	/ ba	ailer	other	/		
Comments:												,
Initial Depth to V	Mator (# PTOC)	. ,	09.1			· · · · · · · · · · · · · · · · · · ·	-:					
	, ,	Well Depth (ft bto			Measure	Point: Well T	OC) Stool	Canina	WQ ME	LEK MAKE and	SERIAL NUMBER: Justo 5	7034
WD (Well Depth					- Incasare	r olini. Vveli r	OC SIEEI	Casing	VVATER		R SERIAL NUMBER: Solinst	210891
		WD-Initial Depth	<u>, </u>	30,9	Initial DTW	Before Remova	I Apr	orox. 5 min	After Reins	4 - 11 - 41	insducer	
		0.17, 4"= 0.66, 1		in) ,/7	Time	Initial DTW		ime		IDTW ''	me of Removal	4
One Casing Volu			.753		08:02	109.01					me of Reinstallation	<u> </u>
Three Casing Vo			159		Comments:							
Color: clear, gre	ey, yellow, browr	n, black, cloudy, g	jreen		Odor: none, su	ılphur, organic, o	ther	S	olids: Trac	e Small Qu Me	ed Qui Large Qui Particulate Silt S	and

Project Job N	—	E Topock CMP 75.MP.02.CM	,				Sampling	Event _	2013-CM	Topock Sam P-030 3 - (3	
Sampler	/ -	Field Team _	1 Field	d Conditions (A	Dem Kal	4-	٠	Page) of		BEC
Well/Sar	nple Number	CW-02M-030				nple ID NA	-		= -	00 CI- Ti	A 2 A
Purge Start Ti	me 1250			Purge Meth	od: 31/0 (<u></u>	Pump Tu	1.0		QC Sample Tim	ne MA
	Flow Cell:(V N			Volume (gal)/iL		urge Rate	_	m) 2	Pump Mal	ke and Model C+3
Water Level	Time	Vol. Purged gallons / liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
92.57	1307	34	7.43	7634		7.59	30-04	_		181	,
92.57	13/3	2446	7.76	7507		7.56	30.03			132	
92,57		52	7.76	7469		7.76	30.02			131	
92.57	1319	58	7.76	7458	<u> </u>	7.76	30.03	_		179	
92.57	1322	Cey	7-76	7954		7.76	30.02			179	
	ļ				-			· ·	7.7		
Parameter C	Compliance Crit	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td></ph<9.2<>						1.0800		
If pH or TDS uffy ((530) 5	is out of range of 10-2340). If S. D	check calibration, uffy unavailable co	take to IM3 ar ontact J. Piper	id check pH, SC ((702) 953-120	get second pro 2 x36602 or (70	bbe. If still out of 12) 525-1137) If	range imme Piner una	l diately cor vailable co	itact B. Coll	i om ((541) 740-325 ina Hong (/636) 70	i0). If B. Collom unavailable contact S. 3-4475 or (626) 297-5292).
	abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	3-4473 01 (020) 297-3292).
id last three Parevious Field n		prior to sampling?	<u>Y</u>	V	Y	V	Y			1	
	nts consistent with	(4/9/2013) i previous?	7.51	7582	1	7.98	30	0.49		158	
ample Time		Sample Location:	\leftarrow	7	<i>Y</i>	Y	/			nigher	
omments:			pum	p tubing	well port	spigot	ba	ailer	_ other		
tial Danth to	M-1 (# PTOO)	0/).50		•						
	Water (ft BTOC)	Well Depth (ft bto			Measure	Point: Well I	OC Steel	Casing	WQ ME	LEVEL METERS	ERIAL NUMBER: 5703
	h - from databas		 4				J Older		VVAILEN	If Trans	ERIAL NUMBER: Solinst 2103
		= WD-Initial Depth	<u> </u>	,5	Initial DTW /	Before Remova	I App	гох. 5 min	After Reins		of Removal
		= 0.17, 4"= 0.66, 1		in) . (7	Time	Initial DTW	T	ime	Fina	LDTW	of Reinstallation
	lume = D*SWH	C all	18.615		11:38	92.50					
ree Casing \	/olumes =	<u></u>	S		Comments:		,				

							·			Topock S	Sampling Log	
Project I		Topock CMP					Sampling	_	2013-CM			
	72001	75.MP.02.CM	4					Date	10-8	-17	·	BEC
Sampler		Field Team	Field	d Conditions				Page	t of		•	
	nple Number	CW-02D-030			QC Sai	mple ID NA				QC Sample	Time NA	
Purge Start Tir	me ///7			Purge Meth	od: 3/01	Ded. i	Pump Tu	be				
	Flow Cell) N		Min. Purge	Volume (gal))(L) 124 F	Purge Rate	gpm)/(mLp	m)	Pump I	Make and Model	Gn#2
Water Level	Time 8 min	Vol. Purged gallons / liters	pH**	Conductivity /bns/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS**	Eh/ORP mv	(See	Comments description below
90.13	11:25	24	7.73	7567		10.49	29.97	_		94	".	
92-13	11:33	48	7.32	7531	١	6.92	30.53			36		
92.13	11:41	12	7.34	7578	1	6.94	30-64			105		
92.13	11:49	96	7.8e	7532	1	6.93	30.78	****				
92.13	11:57	120	7.83	7582	1	6.94	30.98			108	'	
	11.5	100	1.00	7500		9.11	50.10			10(

Parameter C	Samulianaa Ooit	<u> </u>										
	ompliance Crit	i	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td><td>•</td></ph<9.2<>						1.0800			•
Duffy ((530) 51	is out of range o 10-2340). If S. Di	check calibration, uffy unavailable c	take to IM3 ar ontact J. Piper	id check pH, SC ((702) 953-120	get second property (7)	obe. If still out of	f range imme	ediately con	ntact B. Coll	om ((541) 740-(3250). If B. Collom 703-4475 or (626	unavailable contact S.
	abilization Crite	1	+/- 0.1 pH units	. +/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA .	+/- 10 mV	7703-4473 01 (626) 297-3292).
	arameters Stablize	prior to sampling?	Y	Ý	Υ	V	7			Y		
Previous Field m	neasurement nts consistent with	(4/9/2013)	7.66	7727	1	7.32	30.2	0.5		(167) Typ	10 E	
			<u> </u>	<u> </u>	Υ		У			<u>y</u> //		
Sample Time Comments:	11:59 V	Sample Location	pum	p tubing	well port	spigot	b	ailer	other		•	
		<u> </u>	00 07	<u> </u>	·							
	Water (ft BTOC)		92.03	<u> </u>			<u> </u>				d SERIAL NUMBE	
		Well Depth (ft bto	oc):		Measure	Point: Well T	OC Stee	l Casing	WATER	LEVEL METE	R SERIÁL NUMBE	R: Solinst 210891
	h - from databas		<u> </u>	92	Initial DTW	Before Remova					ınsducer	
		WD-Initial Depth		, 9つ. in)、17	Time	Initial DTW	Abi	prox. 5 min Time	After Reins	I DTW	me of Removal	
	ler diameter) 2"= lume = D*SWH		=0.041 <u>(</u> 2 1,30	١١، ٧٠	11:09	92.03			1 1110	Ti	me of Reinstallatio	n
Three Casing V		123	9147		Comments:			-			77.4	
£ \		n, black, cloudy, ç	green		Odor: none su	ılphur, organic, o	other	s	olids:/Trace	el Small Qu. Me	ed Qu. Larde Qu. F	Particulate, Silt, Sand

Project	Name PG&	E Topock CMP	· · ·			'		· · ·		***	Sampling Log		$-\!\!\!/-$
_		75.MP.02.CM	<u> </u>				Sampling	_	2013-CN			V	/
Sampler	JR/RP	•	1		-2 1			Date	10 - 8	<u> </u>		P	Ke
		Field Team	- Field	Conditions (warm/co			Page	of	1_			,
		CW-03D-030	·			mple ID NA		·		QC Sample	Time NA		
Purge Start Ti	me 0821.	_			nod: 3 Vo(.		Pump T4	be					
	Flow Cell	Ƴ/ N		Min. Purge	Volume (gal)/(L)_ <u>135</u> _ F	Purge Rate(gpm)/(mLp	m) 3	Pump	Make and Model 💪	#3	
Water Level	Time 9 min	Vol. Purged gallons / liters	рН**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		omments scription below	
76.36	0835	27	7.50	7573	, క్ర	6.94	30.34	·	-	201		1101	
76.36	0844	54	7/41	7570	.5	6,90	30.40			186			7.
76.34	0853	81	7.64	7571	.3	6.92	30.48			188			-
76.86	0853	108	7.70	7569	.3	Le.91	36.50			187			
76.86	0911	135	7,69	7570	,3	6.91	30.50			189			
			1.70			0	٠,٠٠٠			10			
		***************************************											· · · · · · · · · · · · · · · · · · ·
					*								
Parameter C	I Compliance Cri	itoria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td></td></ph<9.2<>						<u> </u>	<u> </u>			
]			1.0800		*	•	
Duffy ((530) 5	is out of range 10-2340). If S. D	cneck calibration, Duffy unavailable c	take to IM3 ar ontact J. Piper	id check pH, S0 · ((702) 953-120	C-get second pro 02 x36602 or (70	obe. If still out of 02) 525-1137). If	f range imme J. Piper una	ediately con	ntact B. Col	lom ((541) 740-3	3250). If B. Collom un 703-4475 or (626) 29	available contact S	S.
	tabilization Crit		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	700-7470 ti (020) 28	7-5252).	
		e prior to sampling?	Y	Y	Ý	У		.	-				
Previous Field n		(4/9/2013)	7.72	7737	1	7.51	30.37	0.5		135	***	<u> </u>	
	ents consistent with		У	<u> </u>	Y	lower	V			maker			
	09/2	Sample Location	pum	p tubing	well port	spigot	, b	ailer	other	J		;	
Comments:						•		· · · · · · · · · · · · · · · · · · ·	 				
Initial Donth to	Mata (ft DTOO	, DI	١ ، لو ٢				•	- ,					
	Water (ft BTOC	f Well Depth (ft bto			Measure	Point: (Well T	000 0000	l Coninn			SERIAL NUMBER:	Insitu 570	034
WD (Well Dept					Wicasule	Politi. (Veli 1	Steel	Casing	VVATER		R SERIAL NUMBER:	Solinst 21	0891
	•	se) ft btoc(34(= WD-Initial Depth		.33	Initial DTW	Before Remova	l An	orox 5 min	After Reins	1 11 11	nsducer		
		= 0.17 4"= 0.66, 1			Time	Initial DTW		ime		al DTW	me of Removal _		
One Casing Vo			·7661		08:15	76.67				Tiı	me of Reinstallation _		
Three Casing V		134.29	33		Comments:						78	- 1	
Color clear g	rey, yellow, brov	wn, black, cloudy, g	green		Odory none, su	ılphur, organic, o	other	s	olids: Trac	e. Small Qu Me	d Qu. Large Qu. Pari	iculate Silt Sand	

					-					Topock S	Sampling Log	/
Project N Job Ni		Topock CMP	·			•	Sampling	_	2013-CM			
· '	72001	75.MP.02.CM				• ,		Date _	10-3-	13	BEE	
Sampler .		Field Team _	1Field	d Conditions				Page	of			
l		CW-03M-030			QC Sai	mple ID NA				QC Sample	Time NA	
Purge Start Tin	me 0930			Purge Meth	nod: 3/0/	Ded. I	Pump Tu	be				•
	Flow Cell			Min. Purge	Volume (gal)/(L) <u>74 </u>	Purge Rate	gpm)//mLpi	m) 2	Pump	Make and Model G#2	
Water Level	Time SM: \	Vol. Purged gallons / liters	pH**	Conductivity AnS/em	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below	
77.5le]	lle	7.67	<u> </u>		5.46	29.10			198	301 HZ	
77.56	0946	32	7.54	3763	.5	3.77	30.05	_	 , '	179		
77.56	0954	48	7,53	3691	.5	3.92	30.07			173		
77.56	1002	led	7.52	8663	.5	4.02	30.08			Ilele		
77.56	1010	80	7.53	8667	.5	4,03	30.11			167		
			V									
				~ ~~	· · · · · · · · · · · · · · · · · · ·				747.	***-		
Parameter Co	ompliance Crit	oria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ph<9.2<>									
	•		i i	·					1.0800			
Duffy ((530) 51	0-2340). If S. Di	cneck calibration, uffy unavailable o	take to IM3 ar ontact J. Piper	nd check pH, S0 r ((702) 953-120	C-get second pro 12 x36602 or (7)	obe. If still out of 02) 525-1137). If	f range imme J. Piner una	ediately cor	ntact B. Coll	om ((541) 740-;	3250). If B. Collom unavailable contact S.) 703-4475 or (626) 297-5292).	
	abilization Crite	1	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	7 03-477 3 01 (020) 237-0232).	
		prior to sampling?	Y	y ·	1/	V	У			У		
Previous Field m		(4/9/2013)	7.48	9055	1	3.44	30.07	0.58	` `	143		
Are measuremen	1010		1/	/	/ .	Y	У			higher	•	
Sample Time	10120	Sample Location	pum	p tubing	well port	spigot	b	ailer	other			
			26	0	· · · · · · · · · · · · · · · · · · ·							
		:			Mossi	Point: (Well T	Or or o				d SERIAL NUMBER: Insily 5/034	_
	.,	Well Depth (ft bto			Weasure	Point: (vveil)	Steel	Casing	WATER		R SERIAL NUMBER: Soliast 21089	4_
		e) ft btoc(222 = WD-Initial Depth		.105	Initial DTW	Before Remova	al An	arov E min	After Dains	4 - 11 - 41	nsducer	
		- vvD-initiai Deptr : 0.17, 4"= 0.66, 1		in) (7	Time	Initial DTW	7191	ime	After Reins Fina	LDTM/	me of Removal	
One Casing Vol			=0.041 <u>(=</u>		0858	77.35				Ti	me of Reinstallation	
Three Casing Vol		73.7-	1		Comments:	· · · · · · · · · · · · · · · · · · ·						
		n, black, cloudy, g	green		Odor: none, su	ılphur, organic, c	other	S	olids: frac	Small Ou Me	ed Qu. Large Qu. Particulate, Silt, Sand	

					· · ·					Topock S	Sampling Log
Project N Job Nu	-	Topock CMP	**	·	•	•	Sampling		2013-CM		
l l	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	75.MP.02.CM	* .		Ţ			Date	10-8	-13	BEC
	JK/RP	Field Team _	1Field	Conditions U	son/100%	nels		Page	of		7)60
	-	CW-04D-030	*		QC Sai	mple ID NA	-			QC Sample	Time 1/A
Purge Start Tim	ne 1418			Purge Meth	nod: 3161	Ded. I	Pump Ja	<u></u>			
	Flow Cell) N		Min. Purge	Volume (gal)/(L		ourge Rate		m)_3_	Pump	Make and Model $G\#2$
Water Level	Time	Vol. Purged gallons) liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
61.30	142le	24	7.74	7571		7.68	30.46			165	291 Hz
61.30	1434	48	7.79	7699		8.99	30,82			132	
61.30	1442	72	7.01	7602	,	3.48	30.94			132	
101.50	1450	96	7.82	7602	. 1	8.39	30.98			124	
61,30	1458	120	1.				31.04			133	
	1 (30	100	7,82	7532		8.36	71,00			100	
·									·		
] }		
Parameter Co	ompliance Crit	eria	6.2 <ph<9.2< td=""><td></td><td><u>.</u></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td></ph<9.2<>		<u>.</u>				1.0800		
**If pH or TDS i Duffy ((530) 51	is out of range o	check calibration, uffy unavailable c	take to IM3 ar	ا ad check pH, S(د((702) 953_120	C-get second pro	obe. If still out o	f range imme	l ediately co	I ntact B. Col	lom ((541) 740-3	I 3250). If B. Collom unavailable contact S.) 703-4475 or (626) 297-5292).
	abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA NA	NA NA	+/- 10 mV) 703-4475 or (626) 297-5292).
Did last three Par	rameters Stablize	prior to sampling?	1	Y	V		V				
Previous Field me		(4/9/2013)	7.76	7687	1	8.64	30	0.5		128	
Are measuremen	nts consistent with	previous?	V	Y	У	V	V		~	higher	
Sample Time	1502~	Sample Location	: pum	p tubing	well port	spigot	Ь р	ailer	other	-73	
Comments:					· · · · · ·						
			- 1								
Initial Depth to V		_							WQ ME	TER MAKE and	d SERIAL NUMBER: Fisher 51034
Field measured	confirmation of	Well Depth (ft bto	oc):		Méasure	Point: Well 1	OG Stee	l Casing	WATER	R LEVEL METE	R SERIAL NUMBER: Solinst 210891
WD (Well Depth					L.W. I.D.T.A.						ansducer
		WD-Initial Depth	V	.99		Before Remova			After Reins	1	ime of Removal
		0.17, 4"= 0.66, 1		in) . 17	Time	Initial DTW		Гime	Fina	al DTW ———Ti	ime of Reinstallation
One Casing Vol		120 11	11.1383		140 W	(01.01			78341		
Three Casing Vo		123,91	77		Comments:		0			<u> </u>	`
Color: (lear, gre	ey, yellow, brow	n, black, cloudy,	green		Odor: rope, su	ulphur, organic, o	other	· s	olids: Trac	e. Small Qu. Me	ed Qu. Large Qu. Particulate. Silt. Sand

Project	Mama DC2	E Topock CMP							· ·		ampling Log	/
	1	75.MP.02.CM					Sampling	_	2013-CI			\checkmark
Sampler		Field Team _	1	at on the area	-, ' ',	• •	. •	Date	10-9		•	BUC
		CW-04M-030	Field	d Conditions				Page	of			
		CVV-041VI-030				mple ID OW	V-70-030	_		QC Sample T	ime (<i>\D</i> :0	00/
Purge Start Ti		_		Purge Meti			Pump /					•
	Flow Cell	Ý) N		Min. Purge	Volume (gal) (L	-) <u>-</u> 56 !	Purge Rate	gpm)/mLp	om)_ <i>J</i> _	_ Pump N	lake and Model	C#2
Water Level	Time	Vol. Purged gallons/ liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS**	Eh/ORP mv	(See	Comments description below
61.60	0743	12	6.70	792		4.70	29.60			221		
61.60	0749	24	6.32	7/81	(6.32	29,63			206	7	
61.60	0755	36	6.98	7174	1	6.29	29.65			195		
61.60	0803	48	699	7171	Í	6.01	29.65			186		,
61.60	0809	60	7.09	7171		10.32	29.68			190		
						0.50	101160		1 (–	1,10		
			{		***************************************			 	<u> </u>			
Parameter C	ompliance Crit	eria	6.2 <ph<9.2< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></ph<9.2<>	<u> </u>							· · · · · · · · · · · · · · · · · · ·	
			· ·	السالم علمان					1.0800	'		
Duffy ((530) 51	10-2340). If S. D	uffy unavailable c	ontact J. Piper	ia спеск рн, St · ((702) 953-12(3-get second pr 12 x36602 or (7)	obe. If still out o 02) 525-1137). If	f range imm J. Piper una	ediately cor available co	ntact B. Col ontact Chris	fom ((541) 740-3 tina Hong ((626)	250). If B. Collom	unavailable contact S.
	abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C		NA .	+/- 10 mV		201 0202).
		prior to sampling?	Y	Υ	Y	V	7			V		
Previous Field m		(4/9/2013)	7.64	7191	1	6.09	29.86	0.46		161,		
	nts consistent with		7			migher	Y			higher		
Sample Time Comments:	0810 V	Sample Location	pum	p tubing	well port	spigot	b	ailer	other			
I-W-ID O			1 out									
	Water (ft BTOC)	_	1, 24		Massimi	Daire (N. II					SERIAL NUMBE	- 50 JH5/11 UIV U
		Well Depth (ft bto e) ft btoc (169			weasure	Point: (Well T	OC) Stee	Casing	WATER		SERIAL NUMBE	R. Solinst 810891
		= WD-Initial Depth		8.56	Initial DTW	/ Before Remova	al Ani	nrov 5 min	After Reins		nsducer	
		: 0.17, 4"= 0.66, 1			Time	Initial DTW		Time		al DTW	ne of Removal	
	lume = D*SWH		8.4552		0711	(21.24				—· Tim	ne of Reinstallation	1
Three Casing V		\$5.31	ع اکو		Comments:				700			
Color: clear, gr	ey, yellow, brow	n, black, cloudy, ç	reen		Odor: none, su	ulphur, organic, c	other	s	olids: Trae	e, Small Qu, Med	d Qu. Large Qu. F	Particulate, Silt, Sand

	· · · · · · · · · · · · · · · · · · ·									тороск з	sampling Log	
Project N		Topock CMP		.	Sampling Event 2013-CMP-030							
1		5.MP.02.CM					•	Dațe	10-9-	13		386
Sampler 2	XL RY	_ Field Team _	1 Field	d Conditions	Windy			Page	of	_1	f.)()
I .	ple Number	OW-01D-030			∠C Sai	mple ID NA				QC Sample	Time	
Purge Start Tin	ne 0935			Purge Meth	nod: 3√0	Ded. I	Pump Tu	he		,		
	Flow Cell.			Min. Purge	Volume@a)/(L) total	Purge Rate (m) 3	Pump	Make and Model G#2	
Water Level	Time	Vol. Purged (gallons) liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description be	elow
94.60	0942	21	7.40	7333	6	6.47	28.64			117	353 Hz	
97.50	0952	42	7.43	7331	3	6.77	28.37			132		a little Flor
97.LeO	1002	70367	7.46	7331	Ĭ	6.39	28.88			143	Changed Hz to 395 lost Being Permeters By 2.75 Flow	R. L.
97.60	100\$	84	7.47	7333	1	6,94	28.90			147	21,73 1700	1-ex 1860
97.60	1013	705 94	7.47	7388	(6.98	83.39			150		
					,							
				,					· · · · · · · · · · · · · · · · · · ·			
Parameter C	ompliance Crite	l	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>4.0000</td><td></td><td></td><td></td></ph<9.2<>						4.0000			
	•]				! .		1.0800			
Duffy ((530) 51	0-2340). If S. Di	iffy unavailable c	iake to livis ar ontact J. Pipei	na cneck pH, St r ((702) 953-12(3-get second pro 02 x36602 or (70	obe. If still out o 02) 525-1137), If	f range imme J. Piper una	ediately cor available co	ntact B. Col Intact Christ	lom ((541) 740- tina Hong ((626)	3250). If B. Collom unavailable co) 703-4475 or (626) 297-5292).	intact S.
	abilization Crite	i	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	(23) 201 0202).	
Did last three Pa	rameters Stablize	prior to sampling?	Ч	4	4	9	1			7		
Previous Field m	,	10/16/2012)	7.81	7277	0.9	7.6	27.8	0.47		56.4		
	nts consistent with		_4	_ ~	4	7	<u> </u>			higher		
Sample Time	70:14	Sample Location	pu	p tubing	well port	spigot	b	ailer	other	•		
	-:		-1		" .							
· ·	Water (ft BTOC)		79	-Viz. 10					WQ ME	TER MAKE an	d SERIAL NUMBER: Ins'/	57034
Field measured	confirmation of	Well Depth (ft bto	oc):		Measure	Point: Well T	OC Stee	l Casing	WATER	R LEVEL METE	R SERIAL NUMBER: Solins	t 210891
· ·	n - from databas	·	<u>·</u>								insducer	
		WD-Initial Depti		4.26		Before Remova		prox. 5 min	·	, ' '	me of Remeval	
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in) • 17					Time	Initial DTW		Гime	Fina	al DTW Ti	me of Reinstallation	
_	lume = D*SWH _	31.		0978 92.79								
Three Casing V	•	93		Comments:								
Color: glear, gr	ey, yellow, brow	n, black, cloudy,		Odor: node sulphur organic other Solids: Trace Small Ou Med Ou Large Ou Portioulate Silt Sound								

Project N	lama - PG&E	Topock CMP					· ·	**.			Sampling Log	
Job Nu		5.MP.02.CM				•	Sampling		2013-CM			
	JH/RP		1		~ 1			Date	10-9-	1.5		
	ple Number	_ Field Team _	- Field	d Conditions (Page	of.			
		OW-01M-030			OQC Sar			***		QC Sample	Time	
Purge Start Tim	ne 10:29				nod: 3Vol		Pump					
	Flow Cel	<u>)</u> N	_	Min. Purge	Volume (gal)/(L) <u>48 </u>	Purge Rate	gpm)/mLpi	m) <u>3</u>	Pump	Make and Model C7#3	
Water Level	Time	Vol. Purged	рН**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS**	Eh/ORP mv	Comments (See description below	
93.55	10:27	9	7:45	7381	. (7.37	28.92			151	385 Hz	
93.55	93.55 10:30 18 7.40 7393					7.69	28.91	ŧ		160		
93.55	10:33	27	7.36	7395	1	7.71	28,92			164		
93.55	10:36	360	7.36	7392	· t	7.69	28.91			Ilelo		
93.55	10:39	45	7.35	7391	\							
	(0.5)	()	, , , ,	15.((7.69	23.90			169		
<u> </u>								-				
										<u> </u>		-
Parameter Co	ompliance Crite	eria	6:2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td>:</td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>					:	1.0800			
**If pH or TDS i	s out of range c	heck calibration,	take to IM3 ar	nd check pH, SC	C-get second pro	bbe. If still out or	f range imme	ediately cor	ntact B. Col	lom ((541) 740-	i 3250). If B. Collom unavailable contact	S.
	bilization Crite	· ·	+/- 0.1 pH units	+/- 3%	J2 X366U2 or (70 +/- 10% NTU units when >10 NTUs)2) 525-1137). If +/- 0.3 mg/L	J. Piper una	NA NA	ntact Christ NA	tina Hong ((626) +/- 10 mV	3250). If B. Collom unavailable contact () 703-4475 or (626) 297-5292).	•
	rameters Stablize	prior to sampling?	Y	Y	٧.	Υ	Y			Υ		
Previous Field me		10/18/2012)	7.63	7123	0.5	8	28.06	0.46	·	77.2	· · · · · · · · · · · · · · · · · · ·	
	ts consistent with		Υ	Y	4	У	Υ			higher	***************************************	
Sample Time _ Comments:	10:42V	Sample Location:	pum	p tubing	well port	spigot	b	ailer	_ other	<i>β</i>		
	*	00	· (8					·		<u> </u>		
Initial Depth to V	•					· ′				d SERIAL NUMBER:		
		Well Depth (ft bto		Measure	Point: Well T	OC) Stee	l Casing	WATER	R LEVEL METE	R SERIAL NUMBER:		
WD (Well Depth			0 1 0	Initial DTM	Before Remova					nsducer		
SWH (Standing Water Height) = WD-Initial Depth 92.62									After Reins	1	me of Removal	
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)					Time Initial DTW Time Final DTW Time of Reinstallation					me of Reinstallation		
One Casing Volume = D*SWH					Comments:	٠٠٠٠						
		n, black, cloudy, ç		Odor: Tope, sulphur, organic, other Solids: Trace, Small Qu. Med Qu. Large Qu. Particulate, Silt, Sand								
COIOI. Picar, gre	ey, yellow, browl	n, biack, cloudy, g		Odor: noné, su	ılphur, organic, c	other	S	Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand				

Project N	lame PG&E	Topock CMP					Communities of	·	2042.01		sampling Log
. Job Ni		5.MP.02.CM					Sampling	Date	2013-CM		
Sampler	28/JR	_ Field Team _	1 Field	d Conditions				Page	10-9	1	BEC V
	ple Number		1161	·	QC Sat	mple ID NA		- uge		ι	
Purge Start Tin	_			Purge Met				- 1		QC Sample	Time MA
ange of any fill	('	a			· Volume((gal)/()			ube.		_	- · · · · · ·
<u> </u>	Flow Cell. Y	<i>)</i> // N		wiiri. Purge	Volume (gai)/(b	<u>" </u>	Purge Rate	gpm)/(mLpi	m)	Pump	Make and Model C+2
Water Level	Time 2mia	Vol. Purged gallons / liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
93.47	11:14	2	7.40	7325	1	7.15	24.70			187	Hz 255
93.47	11:16	4	7.54	6564	1	7,37	27.73			191	
93.47	11:18	6	7.49	6431	1	7.29	28.28			189	
93.47	11:20	9	7.36	6145	1	7.06	23.69	-		184	
93,47	11:22	10	7.33	6134	1	7.05	28.70			184	
93.47	11:24	. 12_	7.32	6129	1	7,05	28.72			183	
7				-							
	· .										·
Parameter Co	ompliance Crite	l	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>4.0000</td><td></td><td></td></ph<9.2<>						4.0000		
				nd abook nU Cr	C mot oppositely and	-b (6 - 430 - 1			1,0800	1	· ·
Duffy ((530) 51	0-2340). If S. DL	iffy unavailable o	ontact J. Piper	((702) 953-12	02 x36602 or (70	obe. If still out o 02) 525-1137), If	rrange imme J. Piper una	ediately cor vailable co	ntact B. Coll ntact Christ	lom ((541) 740- lina Hong ((626)	3250). If B. Collom unavailable contact S. 1703-4475 or (626) 297-5292).
	abilization Crite	i	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	
Did last three Pa	rameters Stablize	prior to sampling?	Y	X	٧ .	Υ				Y	
Are massurement		4/8/2013)	7.01	6325	2	7.92	29.04	0.41		157	
	nts consistent with		<u> </u>	<u> </u>	·	(v)oer	У			higher	
Sample Time	11:35	Sample Location	- Qum	p tubing	well port	spigot	, ba	ailer	other	/5	
Initial Depth to V	Vater (ft BTOC)	93.4	7			•		···	WO ME	TER MAKE and	SERIAL NUMBER: Test to 51034
	,	Well Depth (ft bto			Measure	Point: (Well T	OC Steel	Casing			2/13/ 12 3 (05)
WD (Well Depth			·						******		R SERIAL NUMBER: Soliast 210391
		WD-Initial Depth	·	.03	Initial DTW	Before Remova	Apr	orox. 5 min	After Reins	4-11-4!	me of Removal /0:57
D (Volume as pe	er diameter) 2"=	0.17, 4"= 0.66, 1		(ni	Time	Initial DTW	- <u>-</u>	ïme		al DTW 🕌 🕌	me of Reinstallation //:34
One Casing Vol	ume = D*SWH_		4051		1634	93.47	11:3	39	93	47	TI
Three Casing Vo	olumes =	10.215	3		Comments:						
Color: clear, gre	ey, yellow, brow	n, black, cloudy, ç	green		Odor: none, su	ulphur, organic, o	other	S	olids: Trac	e, Small Qu, M	ed Qu, Large Qu, Particulate, Silt, Sand

Г	-	. 500										Sampling Log	
	Project N Job Nu		Topock CMP					Sampling	_	2013-CM			/ a
1	Sampler _	72001	5.MP.02.CM	4		· · · ·	•	•	Date	10-10) - 13		Be(
H			Field Team	Field	d Conditions				Page	of of			
ı			OW-02D-030			-QC Sai	· ·	****			QC Sample	Time	
F	Purge Start Tim	ne 0150			Purge Met	hod: $3\sqrt{6}$	Ded. I	Pump Tu	be				
		Flow Cell Y) N	1	Min. Purge	Volume (gal) (L) <u>187</u> F	Purge Rate (gpm)XmLp	m) 27	2 Pump	Make and Model	G#3
	Water Level	Time	Vol. Purged gallons / liters	pH** /	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDŚ** g/L	Eh/ORP mv	(See	Comments description below
	91.55	0943	He	7.49	7472		8.lde	26.51	_		197	Hz alel	
	91.60	0956	50	7,67	7455	l	7.59	29.22			190		, ,
	91.60	1009	78	7.46	7423		7.50	29.22		——,	52	Chancel	to Insitu 500013
		1022	104	7.47	7405		7.46	29.20			54		
	91.60	1035	130	7.43	7392	1	7.45	29.22			56		
Ш	(1.00		1	1.0	1310	 	1,13	21.00			_ ΣΨ		
			10.00										
			· · · · · · · · · · · · · · · · · · ·									•	
		ompliance Crite		6.2 <ph<9.2< td=""><td></td><td></td><td>,</td><td></td><td></td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>			,			1.0800			
* [*If pH or TDS i Ouffv ((530) 51(is out of range o 0-2340). If S. Di	check calibration, uffy unavailable c	take to IM3 ar	nd check pH, St	C-get second pro	obe. If still out o	f range imme	ediately cor	ntact B. Coll	lom ((541) 740-	3250). If B. Collom) 703-4475 or (626	unavailable contact S.
		abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA NA	NA NA	+/- 10 mV	703-4475 or (626) 297-5292).
[Did last three Par	rameters Stablize	prior to sampling?	У	Υ	٧	У	À			У		
_	Previous Field me		(10/18/2012)	8.01	7181	0.2	6.4	29.56	0.46		48.4		W164
		ts consistent with		<u> </u>	<u>/</u>	· V	· y	<i>y</i>			\searrow		
	ample Time _ omments:	10:36	Sample Location	pum	p tubing	well port	spigot	/ b	ailer	other			
-			0.1	06									
		Vater (ft BTOC)				•	·						R: Insitu 51034
			Well Depth (ft bto	oc):		Measure	Point: Well T	OC Stee	I Casing	WATER	R LEVEL METE	R SERIAL NUMBE	R: Solinst 210891
		ı - from databas	·	·		Initial DTW	/ Before Remova	,		-11.		ansducer	
			WD-Initial Depth			Time	Initial DTW			After Reins		ime of Removal	
		•	0.17, 4"= 0.66, 1	"=0.041 <u>(2</u> 43.27	in) .17	090	91.35		Time	rina	al DTW T	ime of Reinstallatio	on
	_	ume = D*SWH	1210	8115	<u> </u>	Comments:	11·2	·					
	ree Casing Vo										7		
اک دادن	pior: clear, gre	ey, yellow, brow	n, black, cloudy,	green	4 m	Odor none si	ulphur, organic, o	other	, s	olids: (rac	e/Small Qu, M	ed Qu, Large Qu, I	Particulate, Silt, Sand

Project N	lame PG&I	Topock CMP			-		Sampling	Event	2013-CM	"	Sampling Log	
Job Ni	7200	75.MP.02.CM			•			Date		0-13	<i>V</i>	
Sampler _	SKIRP	Field Team _	1 Field	Conditions (windy			Page	(of	. (BLL	
1		OW-02M-030			QC Sar	mple ID NA				QC Sample	Time	
Purge Start Tim	ne 1041			Purge Met	hod: 3Vol	Ded. I	oump Tu	be		·		
ļ	Flow Cell:	Y) N		Min. Purge	Volume (gal)/(L		Purge Rate (m) 2	Pump	Make and Model (1#2	
Water' Level	Time	Vol. Purged gallons / liters	pH**	Conductivity	Turbidity / NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below	
9162	10:47	12	7.61	7297	1	7.34	29.31			135	Hz 311	
91.62	10:53	24	7-lel	7296	1	7,59	29.47			135		
91.62	10:59	3le	7.62	7292		7.63	29.42	_		140		
91.62	10:05	48	7.62	7234	1	7.64	29.33			145		
91.62	11:11	60	7.63	7277	(7.63	29.35			145		
					,			•				
	· .						`	·				
								**			·	
Parameter Co	ompliance Crit	teria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td></ph<9.2<>						1.0800			
**If pH or TDS i	is out of range of	check calibration,	take to IM3 an	d check pH, St	C-get second pro	obe. If still out of	frange imme	ediately cor	ntact B. Coll	om ((541) 740-:	i 3250). If B. Collom unavailable contact S.	
Parameter Sta	•		+/- 0.1 pH units	+/- 3%	units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA NA	NA NA	ina Hong ((626) +/- 10 mV) 703-4475 or (626) 297-5292).	
Did last three Par	rameters Stablize	prior to sampling?	- V	Υ	√ Vilen > 10 IV 10 s	Α-	Y			У		
Previous Field me		(10/18/2012)	7.89	7154	1	7.67	29.63	0.46		47		
Are measuremen		previous?	Y	<i>Y</i>	V	<i>y</i>	У			Hoder		
Sample Time _	11:150	Sample Location	pum	p tubing)	well port	spigot	/ bi	ailer	_ other	7		
Comments:					· · · · · · · · · · · · · · · · · · ·							
Initial Depth to V	Nater (ft BTOC	, 91	.38				<u> </u>		WQ ME	TER MAKE and	d SERIAL NUMBER: Insitu 50/018	
	, ,	Well Depth (ft bto			Measure	Point: Well T	OC) Steel	Casing			R SERIAL NUMBER: Solinst 21089/	
WD (Well Depth			· ——								ansducer	
SWH (Standing	Water Height)	= WD-Initial Depth		8.92		Before Remova	I App	orox. 5 min	After Reins	4 - 11 - 41	me of Removal	
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)					Time Initial DTW Time Final DTW Time of Reinstallation				me of Reinstallation			
One Casing Vol	ume = D*SWH			10:00 91.38								
Three Casing Vo	olumes =	60. Pr	· · · · · · · · · · · · · · · · · · ·	Comments:								
Color: clear, gre	ey, yellow, brov	vn, black, cloudy, ç	green		Odor: none, sulphur, organic, other Solids, Trace, Sphall Qu, Med Qu, Large Qu, Particulate, Silt, Sand							

\\\Zinfandel\\Pro\\PacificGasElectricCo\Topock\Program\\Database\\Field\\FrontEnd2Kv344_r aper\VorkMIST.mdb\rptPurgeFormCMP

Page 13 of 17

										Гороск	Sampling Log		
Project N Job N		Topock CMP				÷ 2	Sampling	Event _	2013-CN			://	
1	1	75.MP.02.CM		,	~ h			Date	10-10	-13	<u> </u>	bre	
Sampler		Field Team	1Field	d Conditions	<u>Vindy</u>	•		Page	of	·	· -	- VC	
Well/San	nple Number	OW-02S-030			QC Sai	mple ID OW	/-71-030			QC Sample	Time @700)V	
Purge Start Tir	ne 11:47			Purge Meth	nod: 3/01	Ded.	Pump Tu	be					
]]	Flow Cell	γ N		Min. Purge	Volume (gal)/(L)_[51	Purge Rate		m) [Pump	Make and Model	C7#3	
Water Level	Time 3 Min	Vol. Purged gallors / liters	pH**	Conductivity S/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp/. °C	Salinity %	TDS** g/L	Eh/ORP mv	(See	Comments description below	
93.51	11:50	3	7.92	2224	5	7.95	28.22			212	Hz 255		
92.51	11:53	l le	7.92	1977	3	8.33	28.51	·		203			
92.51	11:56	9	7.39	1973	3	8.29	20.66			116			
92.51	11:59	12	7.88	1965	3	8.23	28.63				<u> </u>		
92.51	12:02	15		- 1	3			-		17	!		
10.31	12.00	1-3	7.88	1965		8.23	28.61			118			
<u> </u>		-										·	
				`									
		L											
Parameter C	ompliance Crit	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td>] </td><td></td><td>1.0800</td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></ph<9.2<>]		1.0800			· · · · · · · · · · · · · · · · · · ·	
**If pH or TDS	is out of range (check calibration,	take to IM3 an	d check pH, SC	C-get second pro	obe. If still out o	f range imme	ا ediately cor	ntact B. Col	lom ((541) 740-	-3250). If B. Collom	unavailable contact S.	
Buny ((800) 51	abilization Crite	uny unavallable di	+/- 0.1 pH units	+/- 3%	12 x36602 or (70 +/- 10% NTU units	12) 525-1137). If +/- 0.3	J. Piper una +/- 2°C	NA	ntact Christ NA	tina Hong ((626 +/- 10 mV	3) 703-4475 or (626)	297-5292).	
			ph units		when >10 NTUs	mg/L						1110	
Previous Field m		prior to sampling? (4/8/2013)	7.71		<u> </u>	У	У			<u> </u>			
	nts consistent with	` ,	1.71	1962	2	8.07	28.92	0.13	.~-	131			
Sample Time	12:04	Sample Location	· (-	\rightarrow	- Y	- 		-		- y -			
Comments:		702 7	eet t	p tubidg	well port	spigot		ailer	other	le feet a	prox. Be	Care Ful v	f N
Initial Depth to	Mater (ft RTOC)	92.			•				VA/O ME	TED MAKE an	nd SERIAL NUMBER	1	
· ·		Well Depth (ft bto		, , , , , , , , , , , , , , , , , , , ,	Measure	Point: Well T	OC Steel	l Casing			R SERIAL NUMBEI	41131 WC JU	
		e) ft btoc (12		·			5.00	- Cuonig	***************************************		ansducer	R. Soliast 210	201
		= WD-Initial Depth	3.92	Initial DTW	Before Remova	al Apr	orox. 5 min	After Reins			11.21		
		0.17, 4"= 0.66, 1	in) .17	Time Initial DTW Time Final DTW Time of Removal 11:21									
One Casing Vol		١		11:20 92.08 12:19 91.26 Time of Reinstallation 12:19									
Three Casing V		14		Comments:									
Color: clear, gr	ey, yellow, brow	n, black, cloudy, ç		Odor: none, su	ulphur, organic, o	other	S	Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand					

				*	· · · · · · · · · · · · · · · · · · ·					. гороск 8	Sampling Log	
Project N Job Nu		Topock CMP	*			• . •	Sampling	_	2013-CM			
	. 42331	5.MP.02.CM			0 + 0	,	٠, ,	Date	10-9.	-/3	 √	BL
) RP	_ Field Team _	1 Field	d Conditions (·		Page	of of			DC-
	-	OW-05D-030			Qe Sar					QC Sample	Time	
Purge Start Tim	ie /300			Purge Meth	nod: 31/0	Ded.	Pump Tu	ske				
	Flow Cell) N			Volume@al)(L		Purge Rate(om) 3	Pump	Make and Model GH.	2
Water Level	Time 9 m/n	Vol. Purged gallons / liters	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	∕Eh/ORP mv	Comments (See description	
95.70	1309	27	7.34	7306		5.22	28.55			156	fz 309	
95.20	1318	3442	7.54	7662		10.39	29.54			110	Hz 309 Chaged Hz to 375 9	pm changed to
95.20	1327	366	37.60	7661	ĺ	6.39	29.54	-	_	136		
95.20	1336	108,90.	67,60	7660	1	6,41	29.60			141		
95.20	1345	135114	97,64	7656		(0.42	29.58	-		146		
95.20	1354	139.2	7.64	7656	1	6.40	29.53			147		*
		, , , ,				3 3				. / ()		
Parameter Co	mpliance Crit	L	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>4.0000</td><td>1</td><td></td><td></td></ph<9.2<>						4.0000	1		
		` .	, i						1.0800		 .	
Duffy ((530) 510	3-2340). If S. Di	iffy unavailable co	take to livis ar ontact J. Pipei	ia cneck pH, St ^ ((702) 953-120	3-get second pro 02 x36602 or (70	obe. If still out o 02) 525-1137), If	f range imme J. Piper una	ediately cor available co	ntact B. Col. ontact Christ	lom ((541) 740- ina Hong ((626)	• 3250). If B. Collom unavailable) 703-4475 or (626) 297-5292).	contact S.
Parameter Sta			+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	, , , , , , , , , , , , , , , , , , , ,	
Did last three Par	ameters Stablize	prior to sampling?	4	Y	У	Ϋ́	Y		70	Y		
Previous Field me		10/18/2012)	7.98	7138	2	8.05	29.54	0.46		42.9		
Are measuremen		previous?	Y		γ	lower	Y			higger	-	
Sample Time Comments:	1351e V	Sample Location	pum	p tubing (well port	spigot	b	ailer	other			
	·		94.39	ζ					•			
Initial Depth to V)		5	_				d SERIAL NUMBER: Insh	
		Well Depth (ft bto			Measure	Point: Well T	OC Stee	l Casing	WATER		R SERIAL NUMBER: 50/10	st 210391
WD (Well Depth		e) ft btoc(350 = WD-Initial Depth	<u> </u>	5.15	Initial DTW	Before Remova	al An	nroy 5 min	After Reins		ansducer	cı!
		0.17, 4"= 0.66, 1		in) . [7	Time	Initial DTW	71	Fime		ALDTW ''	ime of Removal	
One Casing Volu		リング J 7 - 0.00, 1	.3755	. , , [11me Initial DTW Time Final DTW Time of Reinstallation 1409							
Three Casing Vo		130.12	عَ عَ	***	Comments:							
, =		n, black, cloudy, ç	green		Odor: none, sulphur, organic, other Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand							Bilt, Sand

Project Na	mo PG&F	Topock CMP			·	· ·		<u> </u>			sampling Log	
Job Num		MP.02.CM					Sampling	J Event _ Date	2013-CI		*	V-04
Sampler)		Field Team	1	d Conditions	2' ad	•			10-9-	-()		Bu
		OW-05M-030	Field	Conditions	7-	mple ID NA		Page	of of			
Purge Start Time		311-030								QC Sample	Time	
Truige Start Time					thod: $\frac{3\sqrt{0}}{2}$		Pump Tu	_	•		•	
	Flow Cell(Y)/ N		Min. Purge	e Volume (gal) (L) <u>80 </u>	Purge Rate(gpm) (mLp	m) 2	Pump	Make and Model 🔑	#3
Water Level	-Time 8min	Vol. Purged	pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		nments cription below
	1416	16	7,50	7438	. [6.61	28-57			169	Hz 315	
95.06	1418	32	7.53	7567		7.54	28-44			171		
95.16	Hle	48	7.56e	7559		7.57	28.38			173		
94.74	1434	64	7.59	7558		7.53	23.33			174		
94.70	1442	30	7.59	7554	,	7.54	28.33	•		175		
	(1.10 1412 00						00 25					
	·	,			<u> </u>			, ,				
										-		
Parameter Con	nnliance Crite	ria.	6.2 <ph<9.2< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></ph<9.2<>		 							<u> </u>
	•		·						1.0800			
Duffy ((530) 510-2	out of range cr 2340). If S. Dui	ieck calibration, i ffy unavailable co	take to IM3 ar ontact J. Piper	nd check pH, S · ((702) 953-12	iC-get second pr !02 x36602 or (7)	obe. If still out o [.] 02) 525-1137), If	f range imme J. Piper una	ediately cor	ntact B. Co	llom ((541) 740-3	• 3250). If B. Collom unav) 703-4475 or (626) 297	railable contact S.
Parameter Stabi	•		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	7 7 00 7 11 7 01 (020) 201	-02-02).
Did last three Parar	neters Stablize p	rior to sampling?	У	¥	Υ	Ϋ́	У			Υ		
Previous Field mea	ν.	0/18/2012)	7.84	7183	1	9.06	28.93	0.46	***	51.2		
Are measurements		revious?	<u> </u>	Υ	V	lower	У			higher		,
Sample Time	444 V s	Sample Location:	pum	p tubing	well port	spigot	b	ailer	other			
		ابہ										
Initial Depth to Wa	ater (ft BTOC):	94	<u>. 11</u>		•		_		WQ MI	ETER MAKE and	d SERIAL NUMBER:	Insitu 51034
Field measured co	onfirmation of V	Vell Depth (ft bto	c):		Measure	Point: Well T	OC Stee	l Casing	WATE	R LEVEL METE		Solinst 810391
WD (Well Depth -	from database) ft btoc(250).25)						- n . u	If Tra	ınsducer	
SWH (Standing W		•		5,48		Before Remova	74	prox. 5 min		''	me of Removal	1307
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in) , (7					Time	initial DTW		Γime		al DTW	me of Reinstallation	1449
One Casing Volume = D*SWH					1305	94.77	15	102	y c	1.28	10	
Three Casing Volumes = 79. 2945					Comments:						,	
Color: clear, grey	, yellow, brown		Odor: none, si	ulphur, organic, o	other	s	Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand					

Project N	lama PCSE	Topock CMP		•			****				sampling Log	-/	
Project N Job Nu		75.MP.02.CM	· .		Sampling Event 2013 -CMP-030 $\sqrt{2013}$								
Sampler _	42301		1		21 1	•		.Date _		-(<i>)</i>		BEC	
	ple Number	_ Field Team _	Field	d Conditions (L ID Corr		Page	of	<u> </u>	**************************************		
Purge Start Tim		O44-055-030		·	c Sai	- L				QC Sample	Time	<u>—</u> .	
Purge Start IIm	ne w [*(5)			Purge Met			-ump $ 7$	nhe					
 	Flow Ce(I: Ŷ	N Q		Min. Purge	: Volume (gal)/(L)_8F	Purge Rate (gpm)/mLp	m)	Pump	Pump Make and Model C++O		
Water Level	Time 2-Mia	Vol. Purged gallons / liters	∕ pH**	Conductivity	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS**	Eh/ORP mv	Comn (See descri		
94.90	1500	, 2	7.96	4037	(10.93	.27.62			179	Hz 253	. %-	
94,90	94.90 1502 4 7.76 3718					6.7A	28.59	٠	_	171			
94.90	1504	le	7.66	3519	1	6.62	28.74			1127			
94,90	1506	8	7.60	3493	1								
94,50	1508	10		,		6.63	28.72			165			
19,10	1500	10	7.57	3387	 	6.62	23.72			164			
Parameter Co	ompliance Crit	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>						1.0800				
**If pH or TDS	is out of range o	check calibration,	take to IM3 ar	' nd check pH, S	• C-get second pr	obe. If still out o	ı f range imm	ı ediately cor	∎ ntact B. Co	ा llom ((541) 740-:	ı 3250). If B. Collom unavai	ilable contact S.	
Dully ((530) 51	U-234U). ITS. DE	uffy unavailable o	untact J. Piper	((702) 953-12	02 x36602 or (70 +/- 10% NTU	02) 525-1137). If +/- 0.3	J. Piper una	vailable co	ntact Chris	tina Hong ((626)) 703-4475 or (626) 297-5	292).	
	abilization Crite	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+/- 0.1 pH units	+/- 3%	units when >10 NTUs	mg/L	+/- 2°C	NA	NA .	+/- 10 mV			
Did last three Par Previous Field m	****	prior to sampling?	<u> </u>			Υ	4			Υ			
	nts consistent with	(4/8/2013) previous?	7.38 //	3542	1	6.64	29.15	0.23		138			
Sample Time	10.0			$\overline{}$		<u> </u>	- Y	<u> </u> :		higher.			
Comments:	()(0	Sample Location	: (pum	p tubing	well port	spigot	b	ailer	_ other	V			
								-				-	
Initial Depth to \	Nater (ft BTOC)	99				$\overline{}$		WQ MI	ETER MAKE and	d SERIAL NUMBER: 7	nsita 5/034		
		Well Depth (ft bto		Measure	Point: (Well T	OC Stee	l Casing			R SERIAL NUMBER: 5			
WD (Well Depth					$\overline{}$					ansducer	111451 010017		
SWH (Standing	Water Height) =	- WD-Initial Depth	45	Initial DTW	Before Remova	Ap	prox. 5 min	After Rein		ime of Removal	14:54		
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)					Time	Initial DTW		Гime		al DTW	ime of Reinstallation	15:15	
One Casing Volume = D*SWH					1450	94.85	15:20 94.89 Time of Reinstallation 73:13						
Three Casing Ve	olumes =	7.8795		Comments:									
Color: clear, gr	ey, yellow, brow	n, black, cloudy,		Odor: nane, sulphur, organic, other Solids: Trate Small Ou, Med Ou, Large Ou, Particulate Silt						ate Silt Sand			

Personnel: B, Collom / CH2 M
WLI serial number: PGE 2005-01B

	Depth to Water	5 	_	
Loc ID	(ft BTOC)	Date	Time	Comments
CW-1M	108.35	7-8-13	1036	
CW-1D	108.55		1038	
CW-2M	91.84		1043	
CW-2D	91.52		1045	
CW-3M	76.73		1048	
CW-3D	76.20		1050	·.
CW-4M	60.73		1101	
CW-4D	60.67	i	1103	
OW-1S	42.76		MO	
OW-1M	92.36		1113	
OW-1D	92.00		1114	
OW-2S	91.40		1110	
OW-2M	90,26		1118	
OW-2D	BUGH 9031		1127	
OW-5S	94,26		1191	
OW-5M	93.82	T	1123	
OW-5D	94.45		1125	
	,			

IM-3 Staff confirm that 7-6-13 , and <u>7-8-13</u> were normal operation days with no backwashing or plant down time prior to snapshot collection.

Personnel: 6. Collem/CHam

WLI serial number: PGE 2005-01B

	Depth to Water			
Loc ID	(ft BTOC)	Date	Time	Comments
CW-1M	109.04	10-21-13	1030	
CW-1D	109.14		1032	
CW-2M	92.60		1035	
CW-2D	92.19		1037	
CW-3M	77.50		1040	
CW-3D	76.89		1041	
CW-4M	61.40		1047	
CW-4D	61.26		1049	
OW-1S	93.51		1053	
OW-1M	93.38		1055	
OW-1D	92.96		1057	
OW-2S	92.17		1100	
OW-2M	91.42		1102	
OW-2D	91.93		1104	
OW-5S	9497		1107	
OW-5M	43.89		1109	
OW-5D	94.72		1111	

IM-3 Staff confirm that 10-19-13 , 10-20-13 , and 10-21-13 operation days with no backwashing or plant down time prior to snapshot collection.