Topock Project I	Executive Abstract
Document Title:	Date of Document: July 15, 2013
Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2013 (PGE20130715A)	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E
Submitting Agency: DOI	
Final Document? Xes No	
Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document:	Action Required: Information Only Review & Comment Return to:
☐ Draft ☐ Report ☐ Letter ☐ Memo	By Date: Other / Explain:
Other / Explain:	
What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:	Is this a Regulatory Requirement? Yes No If no, why is the document needed?
What is the consequence of NOT doing this item? What is the	Other Justification/s:
consequence of DOING this item? Submittal of this report is a compliance requirement under DOI's enforcement as an ARARs beginning August 2011.	Permit Other / Explain:
Brief Summary of attached document:	
and/or water quality of the aquifer in the injection well area and affected by the injected water. The monitoring network consists (CW series) screened in the shallow, middle, and/or deep zones area began in 2005. As of the First Half 2013, wells that exhibit deep-zone observation wells and certain middle- and all deep-zwells have not yet shown characteristics approaching injected wells.	of multiple observation wells (OW series) and compliance wells of the alluvial aquifer. The injection of treated groundwater in the water quality similar to the injected water include the middle- and one compliance wells. Two of the three shallow-zone observation
	oring event, no samples exceeded the water quality objectives for
Written by: PG&E	
Recommendations: This report is for your information only.	
How is this information related to the Final Remedy or Regulator	ry Requirements:
Submittal of this report is a compliance requirement under DOI	enforcement's as ARARs beginning August 2011.
Other requirements of this information?	
None.	

Related Reports and Documents:

Click any boxes in the Regulatory Road Map (below) to be linked to the Documents Library on the DTSC Topock Web Site (www.dtsc-topock.com).

RFA/PA

RFI/RI

(incl. Risk
Assessment)

Corrective Measures
Implementation (CMI)/
Remedial Action

Completion/
Remedy in Place

Version 9

Legend

RFA/PA – RCRA Facility Assessment/Preliminary Assessment
RFI/RI – RCRA Facility Investigation/CERCLA Remedial Investigation (including Risk Assessment)
CRS/FS – RCRA Corrective Measures

Corrective Measures
Implementation (CMI)/
Remedy in Place

Yvonne J. Meeks Manager

Environmental Remediation

Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 E-Mail: <u>YJM1@pge.com</u>

July 15, 2013

Pamela Innis
DOI Topock Remedial Project Manager
U.S. Department of the Interior
Office of Environmental Policy and Compliance
P.O. Box 2507-D (D-108)
Denver Federal Center, Building 56
Denver, CO 80225-0007

Subject: Interim Measures No. 3, Compliance Monitoring Program, Semiannual Groundwater

Monitoring Report, First Half 2013, PG&E Topock Compressor Station, Needles, California

(PGE20130715A)

Dear Ms. Innis:

Enclosed is the Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2013 for the Interim Measures No. 3 at the Pacific Gas and Electric Company [PG&E] Topock Compressor Station. This monitoring report presents the results of the First Half 2013 Compliance Monitoring Program groundwater monitoring event and has been prepared in accordance with the United States Department of the Interior's August 18, 2011 letter stating that the Interim Measures No. 3 Waste Discharge Requirements are applicable or relevant and appropriate requirements.

The current contingency plan specifies the concentrations and values for hexavalent chromium [Cr(VI)], chromium, total dissolved solids (TDS), and pH to be used to determine if contingency plan actions are necessary based on sample results. The water quality objectives concentrations that are used to trigger the contingency plan are Cr(VI) greater than 32.6 micrograms per liter (μ g/L), chromium greater than 28.0 μ g/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

No samples exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS during the First Half 2013 sampling event. The next CMP event is scheduled to occur in October 2013.

Please contact me at (805) 234-2257 if you have any questions on the Compliance Monitoring Program.

Sincerely,

Yvonne Meeks

Topock Remediation Project Manager

honne Meks

Cc: Robert Perdue, Water Board Jose Cortez, Water Board Aaron Yue, DTSC Christopher Guerre, DTSC

Enclosure

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2013,

Interim Measure No. 3, PG&E Topock Compressor Station, Needles, California Document ID: PGE20130715A

United States Department of the Interior

Pacific Gas and Electric Company

July 15, 2013

CH2MHILL。 155 Grand Avenue, Suite 800 Oakland, CA 94612

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2013,

PG&E Topock Compressor Station, Needles, California

Prepared for

United States Department of the Interior

On behalf of

Pacific Gas and Electric Company

July 15, 2013

This report was prepared under the supervision of a California Professional Geologist

Serena Lee

Professional Geologist, P.G. #8259

Contents

1.0	Introduction	n	1-1								
2.0	First Half 20	013 Activities	2-1								
3.0	First Half 2013 Results										
		llytical Results	_								
	3.1.	•									
	3.1.										
	3.2 Ana	lytical Data Quality Review									
		uence of Treated Water									
	3.3.										
	3.3.	2 Water Quality Hydrographs	3-3								
	3.4 Wat	ter Level Measurements	3-4								
	3.4.	1 Groundwater Gradient Characteristics	3-4								
	3.5 Field	d Parameter Data	3-5								
	3.6 ARA	AR Monitoring Requirements	3-5								
4.0	Status of M	onitoring Activities	4-1								
	4.1 Sem	niannual Monitoring	4-1								
	4.2 Ann	nual Monitoring	4-1								
5.0	References		5-1								
6.0	Certification	n	6-1								
Tables 1 2 3 4 5 6 7 8 9 10	Well Construction Chromium F Metals and Treated War Treated War Manual War Vertical Gra Field Param	Status of Interim Measures No. 3 Injection Wells from July 2005 through June 2013 uction and Sampling Summary for Groundwater Samples, First Half 2013 Results for Groundwater Samples, First Half 2013 General Chemistry Results for Groundwater Samples, First Half 2013 ter Quality Compared to OW and CW Pre-injection Water Quality ter Quality Compared to First Half 2013 Sampling Event Water Quality ter Level Measurements and Elevations, First Half 2013 dients within the OW and CW Clusters eter Measurements for Groundwater Samples, First Half 2013 toring Information for Groundwater Samples, First Half 2013									
Figures											
1		n and Layout									
2	_	Locations for CMP									
3A		7-2S, OW-5S Water Quality Hydrographs									
3B		V-2M, OW-5M Water Quality Hydrographs									
3C		/-2D, OW-5D Water Quality Hydrographs									
3D		/-2M, CW-3M, CW-4M Water Quality Hydrographs									
3E		-2D, CW-3D, CW-4D Water Quality Hydrographs									
4A		undwater Elevation Hydrograph									
4B 4C		undwater Elevation Hydrograph ndwater Elevation Hydrographs									
-1 C	OVV-J GIOUI	nawater Elevation Hydrographs									

- 5A Average Groundwater Elevations for Shallow Wells, May 28, 2013
- 5B Average Groundwater Elevation Contours for Mid-Depth Wells, May 28, 2013
- 5C Average Groundwater Elevation Contours for Deep Wells, May 28, 2013

Appendices

- A Laboratory Reports, First Half 2013
- B Field Data Sheets, First Half 2013
- C Additional Graphs, First Half 2013

Acronyms and Abbreviations

μg/L micrograms per liter

ARAR applicable or relevant and appropriate requirement

CMP Compliance Monitoring Program

Cr(VI) hexavalent chromium

CW compliance well

DOI United States Department of the Interior

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

IM Interim Measure

IM-3 Interim Measure No. 3

IW injection well

mg/L milligrams per liter

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

OW observation well

QAPP quality assurance project plan

TDS total dissolved solids

Water Board California Regional Water Quality Control Board, Colorado River Basin Region

WDR Waste Discharge Requirement

WQO water quality objective

SECTION 1

Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM-3). Currently, the IM-3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM-3 extraction, conveyance, treatment, and injection facilities. (All figures and tables are provided at the end of this report.)

The Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, Topock Compressor Station, Needles, California (CH2M HILL, 2005a) (herein referred to as the Compliance Monitoring Plan) was submitted to the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) and the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) on June 17, 2005. The Compliance Monitoring Plan and its addendum (CH2M HILL, 2005b) provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the Compliance Monitoring Program (CMP). Several modifications of the sampling and reporting procedures have been approved since 2005, as outlined in Exhibit 1.

EXHIBIT 1 **Historical Modifications to the Compliance Monitoring Program** *PG&E Topock Compliance Monitoring Program*

Modification	Approval Date	Reference
Modification of reporting requirements	DTSC: June 9, 2006	DTSC, 2006
Reduction of constituents analyzed during	Water Board: January 23, 2007	Water Board, 2007a
quarterly sampling of CMP observation wells	DTSC: January 22, 2007	DTSC, 2007
		CH2M HILL, 2006
Change from laboratory pH to field collected pH	Water Board: October 16, 2007	Water Board, 2007b
for reporting	DTSC: January 22, 2008	DTSC, 2008a
Modification of hexavalent chromium analytical	Water Board: November 13, 2007	Water Board, 2007c
methods to extend hold time to 28 days	DTSC: January 22, 2008	DTSC, 2008a
Modification of sampling and reporting	Water Board: August 28, 2008	Water Board, 2008
frequency and the field pH trigger range for the CMP contingency plan	DTSC: December 12, 2008 (pH), September 3, 2009	DTSC, 2008b, 2009

From July 2005 through September 2011, PG&E was operating the IM-3 groundwater treatment system as authorized by Water Board Order No. R7-2004-0103 (issued October 13, 2004), Order No. R7-2006-0060 (issued September 20, 2006), and the revised Monitoring and Reporting Program (MRP) under Order No. R7-2006-0060 (issued August 28, 2008).

PG&E is currently performing the CMP as authorized by the United States Department of the Interior (DOI) waste discharge applicable or relevant and appropriate requirements (ARARs). The Waste Discharge Requirements (WDR Order No. R7-2006-0060) expired on September 20, 2011 and was replaced by DOI enforcement of the ARARs, as documented in correspondence among the Water Board, DOI, and PG&E during the summer of 2011.

Specifically, the letter agreement issued July 26, 2011 from the Water Board to DOI (Water Board, 2011) requested:

- DOI concurrence that the WDRs are ARARs under the Comprehensive Environmental Response,
 Compensation and Liability Act of 1980 response action ongoing at the site.
- DOI confirmation that it will enforce these WDRs pursuant to the Administrative Consent Agreement entered into by DOI and PG&E in 2005 in lieu of the Water Board's adoption of a new Board Order to replace the expiring Board Order that set forth the WDRs.
- DOI concurrence with the roles and responsibilities between DOI and the Water Board for monitoring and enforcement.

In its letter dated August 18, 2011, the DOI provided concurrence and confirmation as requested (DOI, 2011). PG&E confirmed these changes with a letter to the DOI and the Water Board dated September 7, 2011 (PG&E, 2011). These changes add the DOI as the receiving regulatory agency for the CMP reports, with the Water Board continuing to receive report copies. Work described in this report was performed in accordance with the ARARs established in the July 26, 2011 letter (Water Board, 2011).

The ARARs specify effluent limitations, prohibitions, specifications, and provisions for subsurface injection. The MRP contained within the ARARs specifies the requirements for the CMP to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality.

The injection system consists of two injection wells (IWs): IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005), and injection into IW-2 began on July 31, 2005. Table 1 provides a summary of the history of injection for IM-3.

Figure 2 shows the locations of the injection wells and the groundwater monitoring wells (observation wells [OWs] and compliance wells [CWs]) in the CMP. Table 2 provides a summary of information on well construction and sampling methods for all wells in the CMP.

As of April 2013, samples are collected from OWs and CWs, shown on Figure 2, according to the following schedule:

- Three OWs (OW-1S, OW-2S, and OW-5S) located near the IM-3 injection well field are sampled semiannually (during the second and fourth quarters) for a limited suite of constituents.
- Six OWs (OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D) are:
 - Sampled annually for a limited suite of constituents during the fourth quarter.
 - Sampled for a full suite of constituents one cluster at a time on a triennial (once every 3 years) schedule.
 Within each 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents.
 The triennial sampling will occur during the annual event (fourth quarter).
- Eight CWs are sampled semiannually for a limited suite of constituents and annually (during the fourth quarter) for a full suite of constituents.

For semiannual events, laboratory analyses include total dissolved solids (TDS), turbidity, specific conductance, a reduced suite of metals, and several inorganic cations and anions. Annual and triennial sampling events for CWs and select OWs include dissolved chromium, hexavalent chromium [Cr(VI)], metals, specific conductance, TDS, turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data—including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity—are also measured during each monitoring event (CH2M HILL, 2005a).

This report presents the results of the First Half 2013 CMP groundwater monitoring event.

SECTION 2

First Half 2013 Activities

This section provides a summary of the monitoring and sampling activities completed during the First Half 2013. The First Half 2013 event was a semiannual event conducted from April 8 through 9, 2013 and consisted of the following:

- Three observation and eight compliance monitoring wells were sampled for water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at wells CW-1D and CW-4M to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/ data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005c) and addendums.

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and CH2M HILL Applied Sciences Laboratory in Corvallis, Oregon, both California-certified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California (CH2M HILL, 2005c) and addendums. Data validation and management were conducted in accordance with the Addendum to the PG&E Program Quality Assurance Project Plan [QAPP] for the Topock Groundwater Monitoring and Investigation Projects (CH2M HILL, 2008).

First Half 2013 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the First Half 2013. Figure 2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), chromium, specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the First Half 2013 monitoring event are presented in Appendices A and B, respectively.

3.1 Analytical Results

Three observation wells and eight compliance wells were sampled during the First Half 2013 sampling event. Analytical results for Cr(VI), chromium, other metals, and general chemistry parameters are presented in Tables 3 and 4 and are discussed below. Interim action levels/ water quality objectives (WQOs) were updated on August 8, 2006, when PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), chromium, TDS, and pH to be used to determine if contingency plan actions were necessary based on sample results. A modification of the CMP contingency plan pH range was approved by the Water Board and DTSC in 2008 (Water Board, 2008; DTSC, 2008b).

3.1.1 Hexavalent Chromium and Chromium

Table 3 presents the Cr(VI) and chromium analytical results for groundwater in the shallow, middle, and deep wells from the First Half 2013 CMP sampling event. For shallow wells, the maximum detected Cr(VI) concentration was 23.6 micrograms per liter (μ g/L) in well OW-2S on April 8, 2013. For the middle wells, the maximum detected Cr(VI) concentration was 6.8 μ g/L in well CW-3M on April 9, 2013. For the deep wells, Cr(VI) was not detected [ND (1.0)] in any samples. During the First Half 2013 sampling event, no Cr(VI) sample result exceeded the WQO trigger level of 32 μ g/L.

For shallow wells, the maximum detected chromium concentration was 25.6 μ g/L in well OW-2S on April 8, 2013. For the middle wells, the maximum detected chromium concentration was 7.4 μ g/L in well CW-3M on April 9, 2013. For the deep wells, chromium was not detected [ND (1.0)] in any samples. During the First Half 2013 sampling event, no chromium sample result exceeded the WQO trigger level of 28 μ g/L. Hence, the contingency plan was not triggered for Cr(VI) nor chromium.

3.1.2 Other Metals and General Chemistry

Table 4 presents the metals and general chemistry results for the CMP groundwater wells sampled during the First Half 2013. Metals and ions detected in the First Half 2013 sampling event included chloride, fluoride, sulfate, nitrate/nitrite as nitrogen, dissolved sodium, and dissolved molybdenum. In general, concentrations of metals and ions detected during the First Half 2013 sampling event are similar to those detected in previous sampling events.

Table 4 presents other inorganic analyte results from the CMP wells. During the First Half 2013, the sampling results from all wells were within the WQOs for TDS (less than 10,800 milligrams per liter [mg/L]) and pH (between 6.2 and 9.2). Sampling results for TDS varied from 1,070 mg/L in well OW-2S to 5,190 mg/L in well CW-3M. Field pH varied from 7.0 in well OW-1S to 7.8 in well CW-4D.

3.2 Analytical Data Quality Review

The laboratory analytical data generated from the First Half 2013 CMP monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP addendum (CH2M HILL, 2008). A

detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

3.2.1 Matrix Interference

Matrix interference can affect the detection sensitivity for Cr(VI) when using Method E218.6 and can result in elevated reporting limits for nondetect samples. Six samples exhibited a matrix interference issue that required a dilution to achieve satisfactory matrix spike recovery, resulting in an elevated reporting limit. The sample results were qualified but no flags were added.

3.2.2 Matrix Spike Samples

Matrix spike acceptance criteria were met.

3.2.3 Quantitation and Sensitivity

With the exception of the matrix interference issues discussed in Section 3.2.1, method and analyte combinations met the project reporting limit objectives.

3.2.4 Holding-time Data Qualification

Method holding-time requirements were met.

3.2.5 Field Duplicates

Field duplicate acceptance criteria were met.

3.2.6 Method Blanks

Method blank acceptance criteria were met.

3.2.7 Equipment Blanks

Equipment blank acceptance criteria were met.

3.2.8 Laboratory Duplicates

Laboratory duplicate acceptance criteria for the methods were met.

3.2.9 Calibration

Initial and continuing calibrations were performed as required by the methods. Calibration criteria were met.

3.2.10 Conclusion

For the First Half 2013 CMP sampling event, the completeness objectives were met for the method and analyte combinations. The analyses and data quality met the QAPP and laboratory method quality control criteria except as noted above. Overall, the analytical data are considered acceptable for the purpose of the CMP.

3.3 Influence of Treated Water

3.3.1 Post-injection versus Pre-injection

Injection of treated water began on July 31, 2005. Originally, under WDR No. R7-2006-0060 for the IM-3 groundwater treatment system and now the DOI's affirmation of the WDR as an ARAR, PG&E is required to submit semiannual monitoring reports regarding operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water quality of the treated water being injected into the IM-3 injection well field. Table 5 provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, April 7, 2010, and April 1, 2013. While there are differences among some parameters in these samples, a number of parameters show relatively consistent concentrations in the effluent over time. Analytes that are relatively consistent over the injection time

3-2 SFO\131700001 ES061913203122BAO period include Cr(VI), chromium, fluoride, dissolved molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. The consistency of these seven constituents provide a characterization of the effluent that can serve as a basis for determining if a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of August 2005 through April 2013 effluent characteristics):

- Cr(VI): typically nondetect (or below 1.0 μg/L)
- Chromium: typically nondetect (or below 1.0 μg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 15 μg/L
- Nitrate/nitrite as nitrogen: approximately 3 mg/L
- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 5 also lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contain no detectable Cr(VI) or chromium, which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents but observable differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 6 presents a comparison between the treated water quality and the results from the most recent sampling event (the First Half 2013 sampling event). These samples were collected after approximately 7.7 years of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the First Half 2013 sample results show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, OW-5D, CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are at locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Wells OW-1S, CW-2M, CW-3M, and CW-4M have chemical characteristics approaching that of treated water. To date, shallow observation wells OW-2S and OW-5S show little or no water quality effects due to injection of treated water, indicating that injected water has not yet reached the screened intervals at these locations.

3.3.2 Water Quality Hydrographs

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM-3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, chromium, fluoride, Cr(VI), molybdenum, nitrate/nitrite as nitrogen, lab pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each OW and CW during First Half 2013 within the IM-3 injection well field are presented in Figures 3A through 3E.

Observation well water quality hydrographs are presented in Figures 3A through 3C. These hydrographs show the same overall patterns: wells that are identified as affected by treated water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no similar shift in water quality. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere

between the two. Based on the variability in response, it is inferred that the movement of treated water is non-uniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth wells (OW-2S and OW-5S) show little water quality variation over time. Sodium, chloride, vanadium, and molybdenum are particularly consistent with baseline pre-injection concentrations and show that the local groundwater quality at these shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 3D and 3E. Wells CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D show trends in TDS, sulfate, nitrate/nitrite as nitrogen, chromium, molybdenum, and Cr(VI) similar to the treated water. Wells CW-2M, and CW-4M show decreasing trends in Cr(VI) and chromium. These changes are attributed to the arrival of treated injection water.

3.4 Water Level Measurements

Table 7 presents the manual water level measurements and groundwater elevations from Second Quarter 2013 per the DOI ARAR requirements (DOI, 2011). Manual water level measurements from the First Quarter 2013 were collected on April 3, 2013. These water levels are representative of manual water levels collected from the First Quarter 2013 and this is supported by graphs presented in Appendix C. Appendix C graphs show manual water level graphs shown against previously collected transducer data.

In compliance with Condition No. 2 of DTSC's 2009 conditional approval letter (DTSC, 2009), confirmation was obtained from the IM-3 Plant Manager that the IM-3 plant was operating normally on both the day before and the days of CMP water level collection, with no backwash or unplanned shutdowns.

Water level measurements were collected continuously (measurements collected every half hour) with pressure transducers to produce hydrographs for select wells. Figures 4A through 4C present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the First Half 2013 reporting period at specified observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 5A through 5C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The date is noted on each figure.

3.4.1 Groundwater Gradient Characteristics

The monitoring wells in the middle and deep zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation; therefore, the groundwater contours in Figures 5B and 5C should be viewed as approximate.

The injection well field is located in the East Mesa area of the Topock site, as shown on Figure 2. Overall sitewide water level contour maps for shallow wells are prepared annually under a separate report, with flow consistently being shown to move to the east/northeast across the uplands portions of the site (CH2M HILL, 2013).

The effects of injection in the IM-3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection wells IW-2 and IW-3. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 7.7 years of injection, the mound increased and then stabilized in height at several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the snapshot groundwater elevation of the mound within the middle and deep wells using May 28, 2013 groundwater elevations. As expected with a mound, the potentiometric surface of the deep wells is slightly broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection wells. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis

3-4

are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM-3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 8 presents the vertical gradient data calculated using the May 28, 2013 groundwater elevations. The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is generally of the same order of magnitude throughout the injection area. A component of the vertical gradients calculated in the vicinity of the IM-3 injection well field is likely related to the injection of treated water in the lower portions of the aquifer. The observed groundwater gradients in the IM-3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, salinity, and water level elevations before sampling. Table 9 presents a summary of the field water quality data measured during the First Half 2013 monitoring event. Field data sheets for the First Half 2013 event are presented in Appendix B.

3.6 ARAR Monitoring Requirements

Table 10 identifies the laboratory that performed each analysis and lists the following information as required by the ARARs for the First Half 2013 monitoring event:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

Status of Monitoring Activities

4.1 Semiannual Monitoring

The next semiannual monitoring event will occur in October during the second half of 2013. This CMP monitoring event will include the sampling and analysis scope presented in Attachment A of DOI November 18, 2011 letter (DOI, 2011). The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2014.

4.2 Annual Monitoring

The next annual monitoring event, which is also a semiannual event, will occur in October during the second half of 2013. The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2014.

References

California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2005. Letter to PG&E. "Conditional Approval for the Start Up and Operation of the Interim Measures No. 3 Treatment System and Injection Wells, Pacific Gas & Electric Company, Topock Compressor Station." July 15.
2006. Letter to PG&E. "Third and Fourth Quarter Groundwater Monitoring Reports, Compliance Monitoring Program for Interim Measures No. 3 Injection Well Field Area, Pacific Gas & Electric Company Topock Compressor Station, Needles, California." June 9.
2007. Letter to PG&E. "Conditional Approval of Request for Reduced Groundwater Sampling Frequency for Select Constituents at Pacific Gas & Electric Company, Topock Compressor Station, Needle California." January 22.
2008a. Letter to PG&E. "Re: Analytical Methods for WDR Monitoring Programs." January 22.
2008b. Letter to PG&E. "PG&E Topock: pH Modification to the CMP." December 12.
2009. Letter to PG&E. "Conditional Approval of Modifications to the Compliance Monitoring Program, Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles California (EPA ID No. CAT080011729)." September 3.
California Regional Water Quality Control Board, Colorado River Basin Region (Water Board). 2007a. Letter to PG&E. "Conditional Approval of Limited Sampling Frequency for Selected Metals/General, PG&E, Topock Compressor Station, Needles, California." January 23.
2007b. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060 and R7-2004-0080, Topock Compressor Station, San Bernardino County." October 16.
2007c. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060, R7-2006-0008, R7-2004-0080, and R7-2007-0015, Topock Compressor Station, San Bernardino County." November 13.
2008. Letter to PG&E. "Revision of Monitoring and Reporting Program (MRP), Board Order No. R7-2006-0060 Revision 1, Topock Compressor Station, San Bernardino County." August 28.
2011. Letter to DOI. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility – PG&E Topock Compressor Station Site." July 26.
CH2M HILL. 2005a. Groundwater Compliance Monitoring Plan for Interim Measure No. 3 Injection Area, Topock Compressor Station, Needles, California. June 17.
2005b. Addendum to the Compliance Monitoring Plan for the IM No. 3 Injection Area, Topock Compressor Station, Needles, California. December 13.
2005c. Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California. March 31.
2006. Request for Approval to Implement Limited Sampling Frequency for Selected Metals/ General Minerals for PG&E Topock Compressor Station, Needles, California. December 1.
2008. PG&E Program Quality Assurance Project Plan, Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects. December.
2013. Fourth Quarter 2012 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.

- Pacific Gas and Electric Company (PG&E). 2011. Letter to DOI and Water Board. "Re: Applicable or Relevant and Appropriate Requirements (ARARs) for the Waste Discharge associated with Interim Measure 3 Facility at PG&E's Topock Compressor Station." September 7.
- _____. 2013. Letter to DOI and Water Board. "Signature Delegation for Discharger Monitoring Reports, ARAR Monitoring Requirements, Pacific Gas and Electric Company, Topock Compressor Station, Interim Measures No. 3, Needles, California." February 27.
- United States Department of the Interior (DOI). 2011. Letter to PG&E and Water Board. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility PG&E Topock Compressor Station Site." August 18.

SECTION 6

Certification

PG&E submitted a signature delegation letter to the DOI and the Water Board on February 27, 2013 (PG&E, 2013). The letter delegated PG&E signature authority to Ms. Sheryl Bilbrey, Ms. Yvonne Meeks, and Mr. Curt Russell for correspondence regarding required ARARs.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:

Name:

Yvonne J. Meeks

Company: Pacific Gas and Electric Company

Title: Topock Environmental Remediation Project Manager

Date: July 15, 2013

TABLE 1
Operational Status of Interim Measures No. 3 Injection Wells From July 2005 through June 2013
PG&E Topock Compliance Monitoring Program

Time Period	Injection Status
July 31, 2005 to Fourth Quarter 2005	Injection occurred at IW-2.
First Quarter 2006	Injection occurred primarily at IW-2 except during intervals of operational testing, when injection was divided equally between IW-2 and IW-3.
Second Quarter 2006	Injection occurred at IW-2.
Third Quarter 2006	In August 2006, IW-2 went offline for routine maintenance, and injection commenced at IW-3.
Fourth Quarter 2006	Injection occurred at IW-3, except during routine maintenance.
First Quarter 2007	Injection occurred at IW-3 and transitioned over to IW-2 on March 8.
Second Quarter 2007	Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.
Third Quarter 2007	Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.
Fourth Quarter 2007	Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.
First Quarter 2008	Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.
Second Quarter 2008	Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing was performed at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.
Third Quarter 2008	Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short interval on July 25 and from August 12 – August 31, 2008. Backwashing was performed at IW-3 on June 17, June 27, July 9, July 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing was performed at IW-2 on September 9 - September 11, 2008.
Fourth Quarter 2008	Injection occurred at IW-3 and then switched to IW-2 on September 23. Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued at IW-2 until December 16, 2008 and occurred concurrently and continued at IW-3 on December 11, 2008.
First Quarter 2009	Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events were performed periodically during the intervals when each injection well was offline. Routine and scheduled maintenance occurred 12/18/08 and 1/21/09 at which time both wells were offline.
Second Quarter 2009	Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.
Third Quarter 2009	IM3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned.
Fourth Quarter 2009	Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.
First Half 2010	Injection occurred mainly at IW-3 until March 3, 2010. Beginning March 3, 2010, IM3 injection alternated between the two wells approximately every two weeks until April 20, 2010 for a

TABLE 1

Operational Status of Interim Measures No. 3 Injection Wells From July 2005 through June 2013

PG&E Topock Compliance Monitoring Program

Time Period	Injection Status							
	planned shutdown. On April 22, 2010, injection resumed at IW-3 and alternated between the two wells approximately every two weeks. Backwashing was performed periodically during the intervals when each injection well was offline.							
Second Half 2010	Injection occurred primarily at IW-2 with the exception of the following periods when it primarily occurred at IW-3: July 22 - August 25, August 30 - September 7, September 16 - October 15, November 5 -18, and December 17-31, 2010.							
First Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 27 - February 10, February 23 - March 7, March 30 - April 20, May 6 – June 7, and June 22-28, 2011. Backwashing was performed periodically during the intervals when each injection well was offline. A planned shutdown occurred April 25-29 and June 28-30.							
Second Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 14 through August 3, August 10 through 13, September 11 through 22, October 6 through10; and October 27 Through December 31. Backwashing was performed periodically during the intervals when each injection well was offline.							
First Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 1 through January 6, 2012; February 2 through February 16, 2012; March 2 through April 5, 2012; May 10 through May 21, 2012; May 29 through June 1, 2012, June 14,2012 and June 21 through June 27, 2012.							
Second Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 18 through July 25, 2012; August 1 through August 13, 2012; August 17 through August 22, 2012; August 31 through September 26, 2012; and September 29 through October 9, 2012.							
First Half 2013	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: March 5 through March 14, 2013; April 8 through May 22, 2013, June 24 through June 25, 2013, and June 29 through June 30, 2013.							

TABLE 2Well Construction and Sampling Summary for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Well ID	Site Area	Measuring Point Elevation (ft AMSL)	Screen Interval	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typical Purge Ra (gpm)	Typical Purge te Volume (gallons)		Transducer Status	Remarks
IM Compliar	nce Wells											
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	190.0	108.9	Temp Redi-Flo	AR 2	42	165		
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	300.2	109.0	Temp Redi-Flo	AR 3	98	180		
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	208.3	92.4	Temp Redi-Flo	AR 2	56	195		
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	355.0	91.9	Temp Redi-Flo	AR 3	134	159		
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	222.0	77.3	Temp Redi-Flo	AR 2	74	180		
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	340.0	76.7	Temp Redi-Flo	AR 3	134	143		
CW-04M	East Mesa	518.55	119.5 - 169.5	2 (PVC)	169.8	61.3	Temp Redi-Flo	AR 2	56	160		
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	303.0	61.2	Temp Redi-Flo	AR 3	124	134		
IM Observat	tion Wells				•							
OW-01S	East Mesa	550.21	83.5 - 113.5	2 (PVC)	113.5	93.2	Temp Redi-Flo	AR 1	10.2	100	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	185.8	93.7	Temp Redi-Flo	AR 3	48	109.6		
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	277.3	93.7	Temp Redi-Flo	AR 3	94	111.4		
OW-02S	East Mesa	548.88	71 - 101	2 (PVC)	103.6	91.7	Temp Redi-Flo	AR 1	15	100	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	210.3	91.9	Temp Redi-Flo	AR 2	61	111.4		
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	340.0	92.3	Temp Redi-Flo	AR 2	127	110.3		
OW-05S	East Mesa	551.83	70 - 110	2 (PVC)	110.3	94.7	Temp Redi-Flo	AR 1	8	100	Active	
OW-05M	East Mesa	551.81	210 - 250	2 (PVC)	250.3	95.1	Temp Redi-Flo	AR 2	80	112.5	Active	
OW-05D	East Mesa	552.41	300 - 320	2 (PVC)	350.0	95.7	Temp Redi-Flo	AR 3	131	113.2	Active	

AMSL above mean sea level BGS below ground surface

BTOC below top of polyvinyl chloride (PVC) casing

gpm gallons per minute

Redi-Flo AR adjustable-rate electric submersible pump

Temp temporary

Depth to water for each well was collected on April 2013. All wells were purged and sampled using 3 well-volume method.

TABLE 3 Chromium Results for Groundwater Samples, First Half 2013 PG&E Topock Compliance Monitoring Program

	N	lethod:	E218.6	E200.8	
Location ID	Sample Date		Hexavalent Chromium (μg/L)	Chromium (μg/L)	
CW-01M	4/8/2013		ND (1.0)	1.20	
CW-01D	4/8/2013		ND (1.0)	ND (1.0)	
CW-01D	4/8/2013	(FD)	ND (1.0)	ND (1.0)	
CW-02M	4/9/2013		2.40	2.80	
CW-02D	4/9/2013		ND (1.0)	ND (1.0)	
CW-03M	4/9/2013		6.80	7.40	
CW-03D	4/9/2013		ND (1.0)	ND (1.0)	
CW-04M	4/9/2013		6.30	6.80	
CW-04M	4/9/2013	(FD)	6.20	6.50	
CW-04D	4/9/2013		ND (1.0)	ND (1.0)	
OW-01S	4/8/2013		7.00	7.40	
OW-02S	4/8/2013		23.6	25.6	
OW-05S	4/8/2013		18.2	18.4	

FD field duplicate

parameter not detected at the listed reporting limit micrograms per liter ND

μg/L

Hexavalent Chromium and Chromium are field filtered.

TABLE 4 Metals and General Chemistry Results for Groundwater Samples, First Half 2013 PG&E Topock Compliance Monitoring Program

	Method:	E120.1	Field	SM2540C	SM2130B	E300.0	E300.0	E300.0	SM4500NH3D	SM4500NO3	E200.7	E200.8
Location ID	Sample Date	Specific Conductance (µmhos/cm)	Field pH	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Ammonia as Nitrogen (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Sodium (mg/L)	Dissolved Molybdenum (µg/L)
CW-01M	4/8/2013	7080	7.4	4360	0.128	2190	1.85	505	ND (0.5)	2.91		
CW-01D	4/8/2013	7110	7.5	4210	ND (0.1)	2220	2.33	525	ND (0.5)	2.95		
CW-01D	4/8/2013 (FD)	7080	(FD)	4440	ND (0.1)	2170	2.31	500	ND (0.5)	2.99		
CW-02M	4/9/2013	7020	7.5	4170	0.132	1980	3.04	486	ND (0.5)	2.79		
CW-02D	4/9/2013	7140	7.7	5160	0.205	2130	2.79	481	ND (0.5)	2.91		
CW-03M	4/9/2013	8400	7.5	5190	ND (0.1)	2660	2.78	460	ND (0.5)	1.48		
CW-03D	4/9/2013	7150	7.7	4510	ND (0.1)	2100	3.86	500	ND (0.5)	2.93		
CW-04M	4/9/2013	6690	7.6	4050	0.140	2010	1.93	438	ND (0.5)	2.48		
CW-04M	4/9/2013 (FD)	6680	(FD)	4120	0.134	2020	1.82	440	ND (0.5)	2.46		
CW-04D	4/9/2013	7100	7.8	4310	0.249	2140	3.15	496	ND (0.5)	2.83		
OW-01S	4/8/2013	5910	7.0	3800	2.760	1880	1.49	426		2.94	696	5.90
OW-02S	4/8/2013	1860	7.7	1070	0.248	469	4.58	106		3.70	336	38.3
OW-05S	4/8/2013	3270	7.4	2010	0.213	947	1.84	176		3.08	426	18.6

not sampled or required for this event

field duplicate FD

parameter not detected at the listed reporting limit Nephelometric Turbidity Unit ND

NTU micro-mhos per centimeter µmhos/cm

mg/L milligrams per liter μg/L micrograms per liter

TABLE 5Treated Water Quality Compared to OW and CW Pre-injection Water Quality *PG&E Topock Compliance Monitoring Program*

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Dissolved Molybdenum (µg/L)	Nitrate/ Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Treated Water	8/29/2005	ND (1.0)	ND (2.1)	1.95	8.3	3.7	450	3620
Treated Water	4/7/2010	0.29	ND (1.0)	1.82	18.6	2.87	512	4270
Treated Water	4/1/2013	ND (0.2)	ND (1.0)	2.14	17.2	2.84	501	4230
OW-01S	7/28/2005	19.4	23.5	2.45	17.2	3.2	114	1320
OW-01M	7/27/2005	16.3	18.9	2.31	27	1.01	311	3450
OW-01D	7/27/2005	ND(1.0)	ND(1.3)	1.14	46.1	0.321	441	6170
OW-02S	7/28/2005	15.3	14.8	3.79	35.6	3.81	126	1090
OW-02M	7/28/2005	5.4	5.7	2.19	32.4	0.735	342	4380
OW-02D	7/28/2005	ND(1.0)	ND(1.2)	0.966	51.2	0.1	616	9550
OW-05S	7/28/2005	23.4	25.6	2.3	17.1	3.55	105	1060
OW-05M	7/28/2005	8.6	8.8	2.74	35.4	0.621	417	5550
OW-05D	7/28/2005	ND(1.0)	ND(1.2)	1.11	57	0.151	480	8970
CW-01M	9/15/2005	18.1	17.8	2.34	21.6	1.11	318	2990
CW-01D	9/15/2005	ND(1.0)	1.6	0.951	32.1	0.972	379	6230
CW-02M	9/15/2005	15.8	15.5	2.3	23.1	0.908	342	3500
CW-02D	9/15/2005	ND(1.0)	1.6	0.982	41.6	0.28	601	8770
CW-03M	9/15/2005	8.8	8.1	2.57	24.2	0.642	464	4740
CW-03D	9/15/2005	ND(1.0)	ND(1.0)	1.4	29.2	0.304	672	9550
CW-04M	9/15/2005	19.2	19	1.5	12.3	1.18	240	3310
CW-04D	9/15/2005	ND(1.0)	ND(1.0)	1.01	26	0.188	534	7470

NOTES:

ND Not detected at the listed reporting limit.

mg/L milligrams per liter μg/L micrograms per liter

Hexavalent chromium samples were analyzed using method 7199 in 2005 and then by method E218.6.

Chromium samples were analyzed using method 6020A for samples collected on 7/28/2005, by method 6010B for samples collected on 9/15/2005, by method 6020B for samples collected on 8/29/2005 and by method E200.8 for all other chromium samples.

Chromium samples of the treated water were unfiltered.

TABLE 6Treated Water Quality Compared to First Half 2013 Sampling Event Water Quality *PG&E Topock Compliance Monitoring Program*

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Molybdenum (μg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	4/5/2011	ND (0.2)	ND (1.0)	2.01	17.3	2.88	518	4,150
Treated Water	4/3/2012	ND (0.2)	ND (1.0)	2.11	18.9	3.06	564	4,430
Treated Water	4/1/2013	ND (0.2)	ND (1.0)	2.14	17.2	2.84	501	4,230
CW-01M	4/8/2013	ND (1.0)	1.20	1.85		2.91	505	4,360
CW-01D	4/8/2013	ND (1.0)	ND (1.0)	2.33		2.95	525	4,210
CW-01D	4/8/2013 (FD)	ND (1.0)	ND (1.0)	2.31		2.99	500	4,440
CW-02M	4/9/2013	2.40	2.80	3.04		2.79	486	4,170
CW-02D	4/9/2013	ND (1.0)	ND (1.0)	2.79		2.91	481	5,160
CW-03M	4/9/2013	6.80	7.40	2.78		1.48	460	5,190
CW-03D	4/9/2013	ND (1.0)	ND (1.0)	3.86		2.93	500	4,510
CW-04M	4/9/2013 (FD)	6.20	6.50	1.82		2.46	440	4,120
CW-04M	4/9/2013	6.30	6.80	1.93		2.48	438	4,050
CW-04D	4/9/2013	ND (1.0)	ND (1.0)	3.15		2.83	496	4,310
OW-01S	4/8/2013	7.00	7.40	1.49	5.90	2.94	426	3,800
OW-02S	4/8/2013	23.6	25.6	4.58	38.3	3.70	106	1,070
OW-05S	4/8/2013	18.2	18.4	1.84	18.6	3.08	176	2,010

--- not sampled or required for this event

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter μg/L micrograms per liter

All hexavalent chromium samples were analyzed with method E218.6.

All chromium and molybdenum samples were analyzed with method E200.8, except treated water which was analyzed by method E200.7 and E200.8. Chromium and molybdenum samples were field filtered, except for the treated water.

Fluoride and Sulfate samples were analyzed with method E300.0.

All nitrate/nitrite as nitrogen samples were analyzed with method SM4500NO3E, except for treated water which used method E300.0.

All total dissolved solid samples were analyzed with method SM2540C.

TABLE 7Manual Water Level Measurements and Elevations, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location ID	Well Depth (feet BTOC)	Measuring Point Elevation (feet AMSL)	: Monito Date &	_	Water Level Measurement (feet BTOC)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
CW-01M	190.0	566.07	03-Apr-13	8:46 AM	109.45	0.48	456.55
			28-May-13	9:43 AM	108.33	0.48	457.67
CW-01D	300.2	566.46	03-Apr-13	8:54 AM	109.76	0.48	456.55
			28-May-13	9:45 AM	108.45	0.48	457.86
CW-02M	208.3	549.45	03-Apr-13	9:08 AM	92.75	0.48	456.60
			28-May-13	9:51 AM	91.85	0.48	457.50
CW-02D	355.0	549.43	03-Apr-13	9:16 AM	92.72	0.49	456.46
			28-May-13	9:53 AM	91.47	0.49	457.71
CW-03M	222.0	534.10	03-Apr-13	9:31 AM	77.57	0.58	456.51
			28-May-13	9:58 AM	76.71	0.58	457.37
CW-03D	340.0	534.14	03-Apr-13	9:39 AM	77.35	0.49	456.53
			28-May-13	10:00 AM	76.13	0.49	457.75
CW-04M	169.8	518.55	03-Apr-13	9:56 AM	61.69	0.46	456.77
			28-May-13	10:07 AM	60.67	0.46	457.79
CW-04D	303.0	518.55	03-Apr-13	10:04 AM	61.80	0.52	456.59
			28-May-13	10:09 AM	60.55	0.52	457.83
OW-01S	113.5	550.21	03-Apr-13	10:18 AM	93.52	0.34	456.66
			28-May-13	10:16 AM	92.77	0.34	457.40
OW-01M	185.8	550.36	03-Apr-13	10:23 AM	93.71	0.47	456.56
			28-May-13	10:18 AM	92.54	0.47	457.73
OW-01D	277.3	550.36	03-Apr-13	10:31 AM	93.70	0.47	456.48
			28-May-13	10:20 AM	92.26	0.47	457.92
OW-02S	103.6	548.88	03-Apr-13	10:43 AM	92.07	0.12	456.78
			28-May-13	10:23 AM	91.39	0.12	457.45
OW-02M	210.3	548.52	03-Apr-13	10:48 AM	91.90	0.47	456.50
			28-May-13	10:25 AM	90.68	0.47	457.71
OW-02D	340.0	549.01	03-Apr-13	10:58 AM	92.35	0.47	456.38
			28-May-13	10:27 AM	90.74	0.47	457.99
OW-05S	110.3	551.83	03-Apr-13	11:13 AM	95.04	0.27	456.75
			28-May-13	10:31 AM	94.23	0.27	457.56
OW-05M	250.3	551.81	03-Apr-13	11:20 AM	95.09	0.47	456.66
			28-May-13	10:33 AM	93.35	0.47	458.31
OW-05D	350.0	552.41	03-Apr-13	11:40 AM	95.72	0.47	456.62
			28-May-13	10:35 AM	94.04	0.47	458.10

AMSL above mean sea level

BTOC below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

TABLE 8
Vertical Gradients within the OW and CW Clusters
PG&E Topock Compliance Monitoring Program

Well Pairs	Vertical Gradient (ft/ft) ^a
CW-01D to CW-01M	0.0017
CW-02D to CW-02M	0.0016
CW-03D to CW-03M	0.0039
CW-04D to CW-04M	0.0004
OW-01M to OW-01S	0.0043
OW-01D to OW-01M	0.0021
OW-02M to OW-02S	0.0023
OW-02D to OW-02M	0.0023
OW-05M to OW-05S	0.0054
OW-02D to OW-02M	0.0023

^a Positive value signifies an upward gradient.

Gradients calculated using May 28, 2013 groundwater levels.

TABLE 9Field Parameter Measurements for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sampling	Specific Conductance	Temperature		ORP	Dissolved Oxygen	Turbidity	Salinity	Depth To Water
ID	Date	(µmhos/cm)	(°C)	рН	(mV)	(mg/L)	(NTU)	(%)	(feet BTOC)
CW-01M	4/8/2013	7,582	29.35	7.4	168	9.50	1	0.49	108.95
CW-01D	4/8/2013	7,601	28.44	7.5	176	8.81	1	0.49	109.00
CW-02M	4/9/2013	7,582	30.00	7.5	158	7.98	1	0.49	92.42
CW-02D	4/9/2013	7,727	30.20	7.7	167	7.32	1	0.50	91.92
CW-03M	4/9/2013	9,055	30.07	7.5	143	3.44	1	0.58	77.25
CW-03D	4/9/2013	7,737	30.37	7.7	135	7.51	1	0.50	76.67
CW-04M	4/9/2013	7,191	29.86	7.6	161	6.09	1	0.46	61.33
CW-04D	4/9/2013	7,687	30.00	7.8	128	8.64	1	0.50	61.22
OW-01S	4/8/2013	6,325	29.04	7.0	157	7.92	2	0.41	93.21
OW-02S	4/8/2013	1,962	28.92	7.7	131	8.07	2	0.13	91.73
OW-05S	4/8/2013	3,542	29.15	7.4	138	6.64	1	0.23	94.69
-		+							-

µmhos/cm micro-mhos per centimeter

°C degree centigrade

ORP oxidation reduction potential

mV millivolts

mg/L milligrams per liter

NTU Nephelometric Turbidity Unit

% percentage

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	OW-90-029	Barry Collom	4/8/2013	6:55:00 AM	TLI	EPA 120.1	sc	4/12/2013	Gautam Savani	µmhos/cm	7080	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	ND (1.0)	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	ND (1.0)	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2170	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	2.31	0.5	0.104
			TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	500	25.0	1.54		
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.99	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4440	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-01D	CW-01D-029	Barry Collom	4/8/2013	9:15:42 AM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	7110	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	ND (1.0)	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	ND (1.0)	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2220	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	2.33	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	525	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.95	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4210	250	1.76

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-029	Barry Collom	4/8/2013	9:15:42 AM	TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-01M	CW-01M-029	Barry Collom	4/8/2013	9:53:47 AM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	7080	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	1.20	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	ND (1.0)	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2190	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	1.85	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	505	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.91	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.128	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4360	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-02D	CW-02D-029	Barry Collom	4/9/2013	8:06:51 AM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	7140	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	ND (1.0)	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	ND (1.0)	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2130	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	2.79	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	481	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.91	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.205	0.1	0.014

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	CW-02D-029	Barry Collom	4/9/2013	8:06:51 AM	TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	5160	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-02M	CW-02M-029	Barry Collom	4/9/2013	9:06:00 AM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	7020	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	2.80	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	2.40	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	1980	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	3.04	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	486	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.79	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.132	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4170	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-03D	CW-03D-029	Barry Collom	4/9/2013	10:54:00 AM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	7150	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	ND (1.0)	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	ND (1.0)	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2100	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	3.86	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	500	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.93	0.05	0.0152

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-029	Barry Collom	4/9/2013	10:54:00 AM	TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4510	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-03M	CW-03M-029	Barry Collom	4/9/2013	12:12:09 PM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	8400	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	7.40	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	6.80	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2660	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	2.78	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	460	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	1.48	0.01	0.00303
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	5190	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-04D	CW-04D-029	Barry Collom	4/9/2013	1:54:24 PM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	7100	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	ND (1.0)	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	ND (1.0)	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2140	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	3.15	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	496	25.0	1.54

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-029	Barry Collom	4/9/2013	1:54:24 PM	СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.83	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.249	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4310	250	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-04M	CW-04M-029	Barry Collom	4/9/2013	3:12:41 PM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	6690	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	6.80	1.0	0.18
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	6.30	1.0	0.046
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2010	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	1.93	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	438	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.48	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.14	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4050	125	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
CW-04M	OW-91-029	Barry Collom	4/9/2013	5:25:00 PM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	6680	2.0	0.116
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	6.50	1.0	0.18
					TLI	EPA 218.6	CR6	4/12/2013	Tom Martinez	μg/L	6.20	0.2	0.0092
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	2020	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	1.82	0.5	0.104

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04M	OW-91-029	Barry Collom	4/9/2013	5:25:00 PM	TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	440	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.46	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.134	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	4120	125	1.76
					TLI	SM4500NH3D	NH3N	4/12/2013	Melissa Scharfe	mg/L	ND (0.5)	0.5	0.0318
OW-01S	OW-01S-029	Barry Collom	4/8/2013	11:43:44 AM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	5910	2.0	0.116
					TLI	EPA 200.7	NAD	4/16/2013	Denise Chauv	mg/L	696	200	78.8
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	7.40	1.0	0.18
					TLI	EPA 200.8	MOD	4/12/2013	Bita Emami	μg/L	5.90	2.0	0.41
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	7.00	0.2	0.0092
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	1880	50.0	17.4
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	1.49	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	426	25.0	1.54
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	2.94	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	2.76	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	3800	125	1.76
OW-02S	OW-02S-029	Barry Collom	4/8/2013	1:53:00 PM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	1860	2.0	0.116
					TLI	EPA 200.7	NAD	4/16/2013	Denise Chauv	mg/L	336	50.0	19.7
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	25.6	1.0	0.18

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2013 *PG&E Topock Compliance Monitoring Program*

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-02S	OW-02S-029	Barry Collom	4/8/2013	1:53:00 PM	TLI	EPA 200.8	MOD	4/12/2013	Bita Emami	μg/L	38.3	2.0	0.41
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	23.6	0.2	0.0092
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	469	10.0	3.49
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	4.58	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	106	5.0	0.307
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	3.70	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.248	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	1070	50.0	1.76
OW-05S	OW-05S-029	Barry Collom	4/8/2013	12:35:33 PM	TLI	EPA 120.1	SC	4/12/2013	Gautam Savani	μmhos/cm	3270	2.0	0.116
					TLI	EPA 200.7	NAD	4/16/2013	Denise Chauv	mg/L	426	50.0	19.7
					TLI	EPA 200.8	CRTD	4/12/2013	Bita Emami	μg/L	18.4	1.0	0.18
					TLI	EPA 200.8	MOD	4/12/2013	Bita Emami	μg/L	18.6	2.0	0.41
					TLI	EPA 218.6	CR6	4/11/2013	Tom Martinez	μg/L	18.2	0.2	0.0092
					TLI	EPA 300.0	CL	4/11/2013	Giawad Ghenniwa	mg/L	947	20.0	6.98
					TLI	EPA 300.0	FL	4/10/2013	Giawad Ghenniwa	mg/L	1.84	0.5	0.104
					TLI	EPA 300.0	SO4	4/11/2013	Giawad Ghenniwa	mg/L	176	5.0	0.307
					СНМС	EPA 353.2	NO3NO2N	4/26/2013	Youning Li	mg/L	3.08	0.05	0.0152
					TLI	SM2130B	TRB	4/10/2013	Gautam Savani	NTU	0.213	0.1	0.014
					TLI	SM2540C	TDS	4/12/2013	Jenny Tankunakorn	mg/L	2010	50.0	1.76

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2013

PG&E Topock Compliance Monitoring Program

NOTES:

MDL method detection limit corrected for sample dilution

RL reporting limit corrected for sample dilution

ND parameter not detected at the listed reporting limit

μmhos/cm micro-mhos per centimeter
NTU Nephelometric Turbidity Unit

mg/L milligrams per liter μg/L micrograms per liter

Concentration estimated by laboratory or data validation

ARAR applicable or relevant and appropriate requirements

TLI Truesdail Laboratories, Inc.

EMXT Emax Laboratories

SC specific conductance CRTD chromium, dissolved CR6 hexavalent chromium

CL chloride FL fluoride SO4 sulfate

TDS total dissolved solids

TRB turbidity

NH3N ammonia as nitrogen NO3NO2N nitrate/nitrite (as N) MOD molybdenum, dissolved NAD sodium, dissolved SED selenium, dissolved

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

April 26, 2013

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2013-CMP-029, GROUNDWATER MONITORING

PROJECT, TLI NO.: 807342

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2013-CMP-029 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody April 9, 2013, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Michael Ngo

aphilise(

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy
Sample: Seventeen (17) Group

Sample: Seventeen (17) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 423575.MP.02.CM

Date: April 26, 2013 Collected: April 8 - 9, 2013 Received: April 9, 2013

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Melissa Scharfe
EPA 200.7	Metals by ICP	Denise Chauv
EPA 200.8	Metals by ICP/MS	Bita Emami
EPA 218.6	Hexavalent Chromium	Tom Martinez

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 807342 Date Received: April 9, 2013

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
807342-001	CW-01D-029	E120.1	NONE	4/8/2013	9:15	EC	7110	umhos/cm	2.00
807342-001	CW-01D-029	E200.8	FLDFLT	4/8/2013	9:15	Chromium	ND	ug/L	1.0
807342-001	CW-01D-029	E218.6	FLDFLT	4/8/2013	9:15	Chromium, Hexavalent	ND	ug/L	1.0
807342-001	CW-01D-029	E300	NONE	4/8/2013	9:15	Chloride	2220	mg/L	50.0
807342-001	CW-01D-029	E300	NONE	4/8/2013	9:15	Fluoride	2.33	mg/L	0.500
807342-001	CW-01D-029	E300	NONE	4/8/2013	9:15	Sulfate	525	mg/L	25.0
807342-001	CW-01D-029	SM2130B	NONE	4/8/2013	9:15	Turbidity	ND	NTU	0.100
807342-001	CW-01D-029	SM2540C	NONE	4/8/2013	9:15	Total Dissolved Solids	4210	mg/L	250
807342-001	CW-01D-029	SM4500NH3D	NONE	4/8/2013	9:15	Ammonia-N	ND	mg/L	0.500
807342-002	CW-01M-029	E120.1	NONE	4/8/2013	9:53	EC	7080	umhos/cm	2.00
807342-002	CW-01M-029	E200.8	FLDFLT	4/8/2013	9:53	Chromium	1.2	ug/L	1.0
807342-002	CW-01M-029	E218.6	FLDFLT	4/8/2013	9:53	Chromium, Hexavalent	ND	ug/L	1.0
807342-002	CW-01M-029	E300	NONE	4/8/2013	9:53	Chloride	2190	mg/L	50.0
807342-002	CW-01M-029	E300	NONE	4/8/2013	9:53	Fluoride	1.85	mg/L	0.500
807342-002	CW-01M-029	E300	NONE	4/8/2013	9:53	Sulfate	505	mg/L	25.0
807342-002	CW-01M-029	SM2130B	NONE	4/8/2013	9:53	Turbidity	0.128	NTU	0.100
807342-002	CW-01M-029	SM2540C	NONE	4/8/2013	9:53	Total Dissolved Solids	4360	mg/L	250
807342-002	CW-01M-029	SM4500NH3D	NONE	4/8/2013	9:53	Ammonia-N	ND	mg/L	0.500

Report Continued

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
807342-003	OW-01S-029	E120.1	NONE	4/8/2013	11:43	EC	5910	umhos/cm	2.00
807342-003	OW-01S-029	E200.7	FLDFLT	4/8/2013	11:43	Sodium	696000	ug/L	200000
807342-003	OW-01S-029	E200.8	FLDFLT	4/8/2013	11:43	Chromium	7.4	ug/L	1.0
807342-003	OW-01S-029	E200.8	FLDFLT	4/8/2013	11:43	Molybdenum	5.9	ug/L	2.0
807342-003	OW-01S-029	E218.6	FLDFLT	4/8/2013	11:43	Chromium, Hexavalent	7.0	ug/L	0.20
807342-003	OW-01S-029	E300	NONE	4/8/2013	11:43	Chloride	1880	mg/L	50.0
807342-003	OW-01S-029	E300	NONE	4/8/2013	11:43	Fluoride	1.49	mg/L	0.500
807342-003	OW-01S-029	E300	NONE	4/8/2013	11:43	Sulfate	426	mg/L	25.0
807342-003	OW-01S-029	SM2130B	NONE	4/8/2013	11:43	Turbidity	2.76	NŤU	0.100
807342-003	OW-01S-029	SM2540C	NONE	4/8/2013	11:43	Total Dissolved Solids	3800	mg/L	125
807342-004	OW-02S-029	E120.1	NONE	4/8/2013	13:53	EC	1860	umhos/cm	2.00
807342-004	OW-02S-029	E200.7	FLDFLT	4/8/2013	13:53	Sodium	336000	ug/L	50000
807342-004	OW-02S-029	E200.8	FLDFLT	4/8/2013	13:53	Chromium	25.6	ug/L	1.0
807342-004	OW-02S-029	E200.8	FLDFLT	4/8/2013	13:53	Molybdenum	38.3	ug/L	2.0
807342-004	OW-02S-029	E218.6	FLDFLT	4/8/2013	13:53	Chromium, Hexavalent	23.6	ug/L	0.20
807342-004	OW-02S-029	E300	NONE	4/8/2013	13:53	Chloride	469	mg/L	10.0
807342-004	OW-02S-029	E300	NONE	4/8/2013	13:53	Fluoride	4.58	mg/L	0.500
807342-004	OW-02S-029	E300	NONE	4/8/2013	13:53	Sulfate	106	mg/L	5.00
807342-004	OW-02S-029	SM2130B	NONE	4/8/2013	13:53	Turbidity	0.248	NTU	0.100
807342-004	OW-02S-029	SM2540C	NONE	4/8/2013	13:53	Total Dissolved Solids	1070	mg/L	50.0
807342-005	OW-05S-029	E120.1	NONE	4/8/2013	12:35	EC	3270	umhos/cm	2.00
807342-005	OW-05S-029	E200.7	FLDFLT	4/8/2013	12:35	Sodium	426000	ug/L	50000
807342-005	OW-05S-029	E200.8	FLDFLT	4/8/2013	12:35	Chromium	18.4	ug/L	1.0
807342-005	OW-05S-029	E200.8	FLDFLT	4/8/2013	12:35	Molybdenum	18.6	ug/L	2.0
807342-005	OW-05S-029	E218.6	FLDFLT	4/8/2013	12:35	Chromium, Hexavalent	18.2	ug/L	0.20
807342-005	OW-05S-029	E300	NONE	4/8/2013	12:35	Chloride	947	mg/L	20.0
807342-005	OW-05S-029	E300	NONE	4/8/2013	12:35	Fluoride	1.84	mg/L	0.500
807342-005	OW-05S-029	E300	NONE	4/8/2013	12:35	Sulfate	176	mg/L	5.00
807342-005	OW-05S-029	SM2130B	NONE	4/8/2013	12:35	Turbidity	0.213	NTU	0.100
807342-005	OW-05S-029	SM2540C	NONE	4/8/2013	12:35	Total Dissolved Solids	2010	mg/L	50.0
807342-006	OW-80-029	E218.6	FLDFLT	4/8/2013	14:40	Chromium, Hexavalent	ND	ug/L	0.20
807342-007	OW-81-029	E218.6	FLDFLT	4/8/2013	14:35	Chromium, Hexavalent	ND	ug/L	0.20

1	Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
	807342-008	OW-90-029	E120.1	NONE	4/8/2013	6:55	EC	7080	umhos/cm	2.00
	807342-008	OW-90-029	E200.8	FLDFLT	4/8/2013	6:55	Chromium	ND	ug/L	1.0
	807342-008	OW-90-029	E218.6	FLDFLT	4/8/2013	6:55	Chromium, Hexavalent	ND	ug/L	1.0
	807342-008	OW-90-029	E300	NONE	4/8/2013	6:55	Chloride	2170	mg/L	50.0
	807342-008	OW-90-029	E300	NONE	4/8/2013	6:55	Fluoride	2.31	mg/L	0.500
	807342-008	OW-90-029	E300	NONE	4/8/2013	6:55	Sulfate	500	mg/L	25.0
	807342-008	OW-90-029	SM2130B	NONE	4/8/2013	6:55	Turbidity	ND	NŤU	0.100
	807342-008	OW-90-029	SM2540C	NONE	4/8/2013	6:55	Total Dissolved Solids	4440	mg/L	250
	807342-008	OW-90-029	SM4500NH3D	NONE	4/8/2013	6:55	Ammonia-N	ND	mg/L	0.500
	807342-009	CW-02D-029	E120.1	NONE	4/9/2013	8:06	EC	7140	umhos/cm	2.00
	807342-009	CW-02D-029	E200.8	FLDFLT	4/9/2013	8:06	Chromium	ND	ug/L	1.0
	807342-009	CW-02D-029	E218.6	FLDFLT	4/9/2013	8:06	Chromium, Hexavalent	ND	ug/L	1.0
	807342-009	CW-02D-029	E300	NONE	4/9/2013	8:06	Chloride	2130	mg/L	50.0
	807342-009	CW-02D-029	E300	NONE	4/9/2013	8:06	Fluoride	2.79	mg/L	0.500
	807342-009	CW-02D-029	E300	NONE	4/9/2013	8:06	Sulfate	481	mg/L	25.0
	807342-009	CW-02D-029	SM2130B	NONE	4/9/2013	8:06	Turbidity	0.205	NTU	0.100
	807342-009	CW-02D-029	SM2540C	NONE	4/9/2013	8:06	Total Dissolved Solids	5160	mg/L	250
	807342-009	CW-02D-029	SM4500NH3D	NONE	4/9/2013	8:06	Ammonia-N	ND	mg/L	0.500
	807342-010	CW-02M-029	E120.1	NONE	4/9/2013	9:06	EC	7020	umhos/cm	2.00
	807342-010	CW-02M-029	E200.8	FLDFLT	4/9/2013	9:06	Chromium	2.8	ug/L	1.0
	807342-010	CW-02M-029	E218.6	FLDFLT	4/9/2013	9:06	Chromium, Hexavalent	2.4	ug/L	1.0
	807342-010	CW-02M-029	E300	NONE	4/9/2013	9:06	Chloride	1980	mg/L	50.0
	807342-010	CW-02M-029	E300	NONE	4/9/2013	9:06	Fluoride	3.04	mg/L	0.500
	807342-010	CW-02M-029	E300	NONE	4/9/2013	9:06	Sulfate	486	mg/L	25.0
	807342-010	CW-02M-029	SM2130B	NONE	4/9/2013	9:06	Turbidity	0.132	NŤU	0.100
	807342-010	CW-02M-029	SM2540C	NONE	4/9/2013	9:06	Total Dissolved Solids	4170	mg/L	250
	807342-010	CW-02M-029	SM4500NH3D	NONE	4/9/2013	9:06	Ammonia-N	ND	mg/L	0.500
	807342-011	CW-03D-029	E120.1	NONE	4/9/2013	10:54	EC	7150	umhos/cm	2.00
	807342-011	CW-03D-029	E200.8	FLDFLT	4/9/2013	10:54	Chromium	ND	ug/L	1.0
	807342-011	CW-03D-029	E218.6	FLDFLT	4/9/2013	10:54	Chromium, Hexavalent	ND	ug/L	1.0
	807342-011	CW-03D-029	E300	NONE	4/9/2013	10:54	Chloride	2100	mg/L	50.0
	807342-011	CW-03D-029	E300	NONE	4/9/2013	10:54	Fluoride	3.86	mg/L	0.500
	807342-011	CW-03D-029	E300	NONE	4/9/2013	10:54	Sulfate	500	mg/L	25.0
	807342-011	CW-03D-029	SM2130B	NONE	4/9/2013	10:54	Turbidity	ND	NŤU	0.100
,)	807342-011	CW-03D-029	SM2540C	NONE	4/9/2013	10:54	Total Dissolved Solids	4510	mg/L	250
1	807342-011	CW-03D-029	SM4500NH3D	NONE	4/9/2013	10:54	Ammonia-N	ND	mg/L	0.500

700

Report Continued

l ah Campia ID	E:ald ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	DI
Lab Sample ID				· · · · · · · · · · · · · · · · · · ·				Units	RL
807342-012	CW-03M-029	E120.1	NONE	4/9/2013	12:12	EC	8400	umhos/cm	2.00
807342-012	CW-03M-029	E200.8	FLDFLT	4/9/2013	12:12	Chromium	7.4	ug/L	1.0
807342-012	CW-03M-029	E218.6	FLDFLT	4/9/2013	12:12	Chromium, Hexavalent	6.8	ug/L	1.0
807342-012	CW-03M-029	E300	NONE	4/9/2013	12:12	Chloride	2660	mg/L	50.0
807342-012	CW-03M-029	E300	NONE	4/9/2013	12:12	Fluoride	2.78	mg/L	0.500
807342-012	CW-03M-029	E300	NONE	4/9/2013	12:12	Sulfate	460	mg/L	25.0
807342-012	CW-03M-029	SM2130B	NONE	4/9/2013	12:12	Turbidity	ND	NTU	0.100
807342-012	CW-03M-029	SM2540C	NONE	4/9/2013	12:12	Total Dissolved Solids	5190	mg/L	250
807342-012	CW-03M-029	SM4500NH3D	NONE	4/9/2013	12:12	Ammonia-N	ND	mg/L	0.500
807342-013	CW-04D-029	E120.1	NONE	4/9/2013	13:54	EC	7100	umhos/cm	2.00
807342-013	CW-04D-029	E200.8	FLDFLT	4/9/2013	13:54	Chromium	ND	ug/L	1.0
807342-013	CW-04D-029	E218.6	FLDFLT	4/9/2013	13:54	Chromium, Hexavalent	ND	ug/L	1.0
807342-013	CW-04D-029	E300	NONE	4/9/2013	13:54	Chloride	2140	mg/L	50.0
807342-013	CW-04D-029	E300	NONE	4/9/2013	13:54	Fluoride	3.15	mg/L	0.500
807342-013	CW-04D-029	E300	NONE	4/9/2013	13:54	Sulfate	496	mg/L	25.0
807342-013	CW-04D-029	SM2130B	NONE	4/9/2013	13:54	Turbidity	0.249	NTU	0.100
807342-013	CW-04D-029	SM2540C	NONE	4/9/2013	13:54	Total Dissolved Solids	4310	mg/L	250
807342-013	CW-04D-029	SM4500NH3D	NONE	4/9/2013	13:54	Ammonia-N	ND	mg/L	0.500
807342-014	CW-04M-029	E120.1	NONE	4/9/2013	15:12	EC	6690	umhos/cm	2.00
807342-014	CW-04M-029	E200.8	FLDFLT	4/9/2013	15:12	Chromium	6.8	ug/L	1.0
807342-014	CW-04M-029	E218.6	FLDFLT	4/9/2013	15:12	Chromium, Hexavalent	6.3	ug/L	1.0
807342-014	CW-04M-029	E300	NONE	4/9/2013	15:12	Chloride	2010	mg/L	50.0
807342-014	CW-04M-029	E300	NONE	4/9/2013	15:12	Fluoride	1.93	mg/L	0.500
807342-014	CW-04M-029	E300	NONE	4/9/2013	15:12	Sulfate	438	mg/L	25.0
807342-014	CW-04M-029	SM2130B	NONE	4/9/2013	15:12	Turbidity	0.140	NTU	0.100
807342-014	CW-04M-029	SM2540C	NONE	4/9/2013	15:12	Total Dissolved Solids	4050	mg/L	125
807342-014	CW-04M-029	SM4500NH3D	NONE	4/9/2013	15:12	Ammonia-N	ND	mg/L	0.500
807342-015	OW-82-029	E218.6	FLDFLT	4/9/2013	15:42	Chromium, Hexavalent	ND	ug/L	0.20
807342-016	OW-83-029	E218.6	FLDFLT	4/9/2013	15:48	Chromium, Hexavalent	ND	ug/L	0.20

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
807342-017	OW-91-029	E120.1	NONE	4/9/2013	17:25	EC	6680	umhos/cm	2.00
807342-017	OW-91-029	E200.8	FLDFLT	4/9/2013	17:25	Chromium	6.5	ug/L	1.0
807342-017	OW-91-029	E218.6	FLDFLT	4/9/2013	17:25	Chromium, Hexavalent	6.2	ug/L	0.20
807342-017	OW-91-029	E300	NONE	4/9/2013	17:25	Chloride	2020	mg/L	50.0
807342-017	OW-91-029	E300	NONE	4/9/2013	17:25	Fluoride	1.82	mg/L	0.500
807342-017	OW-91-029	E300	NONE	4/9/2013	17:25	Sulfate	440	mg/L	25.0
807342-017	OW-91-029	SM2130B	NONE	4/9/2013	17:25	Turbidity	0.134	NŤU	0.100
807342-017	OW-91-029	SM2540C	NONE	4/9/2013	17:25	Total Dissolved Solids	4120	mg/L	125
807342-017	OW-91-029	SM4500NH3D	NONE	4/9/2013	17:25	Ammonia-N	ND	mg/L	0.500

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Page 1 of 24

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 4/26/2013

Laboratory No. 807342

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 423575.MP.02.CM
P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 4/9/2013 10:30:00 PM

Field ID	Lab ID	Collected	Matrix
CW-01D-029	807342-001	04/08/2013 09:15	Water
CW-01M-029	807342-002	04/08/2013 09:53	Water
OW-01S-029	807342-003	04/08/2013 11:43	Water
OW-02S-029	807342-004	04/08/2013 13:53	Water
OW-05S-029	807342-005	04/08/2013 12:35	Water
OW-80-029	807342-006	04/08/2013 14:40	Water
OW-81-029	807342-007	04/08/2013 14:35	Water
OW-90-029	807342-008	04/08/2013 06:55	Water
CW-02D-029	807342-009	04/09/2013 08:06	Water
CW-02M-029	807342-010	04/09/2013 09:06	Water
CW-03D-029	807342-011	04/09/2013 10:54	Water
CW-03M-029	807342-012	04/09/2013 12:12	Water
CW-04D-029	807342-013	04/09/2013 13:54	Water
CW-04M-029	807342-014	04/09/2013 15:12	Water
OW-82-029	807342-015	04/09/2013 15:42	Water
OW-83-029	807342-016	04/09/2013 15:48	Water
OW-91-029	807342-017	04/09/2013 17:25	Water

Anions By I.C. - EPA 300.0 Batch 04AN13K

Parameter	Unit	Analyzed	DF	MDL	RL	Result
807342-001 Fluoride	mg/L	04/10/2013 09:33	5.00	0.104	0.500	2.33
807342-002 Fluoride	mg/L	04/10/2013 09:44	5.00	0.104	0.500	1.85
807342-003 Fluoride	mg/L	04/10/2013 09:55	5.00	0.104	0.500	1.49
807342-004 Fluoride	mg/L	04/10/2013 10:07	5.00	0.104	0.500	4.58
807342-005 Fluoride	mg/L	04/10/2013 10:18	5.00	0.104	0.500	1.84
807342-008 Fluoride	mg/L	04/10/2013 10:30	5.00	0.104	0.500	2.31
807342-009 Fluoride	mg/L	04/10/2013 10:41	5.00	0.104	0.500	2.79
807342-010 Fluoride	mg/L	04/10/2013 10:52	5.00	0.104	0.500	3.04
807342-011 Fluoride	mg/L	04/10/2013 12:58	5.00	0.104	0.500	3.86

Client: E2 Consulting Eng	jineers, Inc		roject Name: roject Number	PG&E Topock F : 423575.MP.02.0	-	Page 2 of 24 Printed 4/26/2013
807342-012 Fluoride		mg/L	04/10/	2013 13:09 5	.00 0.104	0.500 2.78
807342-013 Fluoride		mg/L	04/10/	2013 14:41 5	.00 0.104	0.500 3.15
807342-014 Fluoride		mg/L			.00 0.104	0.500 1.93
807342-017 Fluoride		mg/L			.00 0.104	0.500 1.82
Method Blank			· · · · · · · · · · · · · · · · · · ·	وروان المراوية والمراوية و		144 144 144 144 144 144 144 144 144 144
Parameter	Unit	DF	Result			
Fluoride	mg/L	1.00	ND			
Nitrate as Nitrogen	mg/L	1.00	ND			
Duplicate						Lab ID = 807290-004
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Fluoride	mg/L	1.00	ND	0.291	0	0 - 20
Duplicate						Lab ID = 807346-010
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Nitrate as Nitrogen	mg/L	1.00	ND	0.235	0	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	4.17	4.00	104	90 - 110
Nitrate as Nitrogen	mg/L	1.00	4.00	4.00	100	90 - 110
Matrix Spike						Lab ID = 807290-004
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Acceptance Range
Fluoride	mg/L	1.00	2.33	2.29(2.00)	102	85 - 115
Matrix Spike						Lab ID = 807346-010
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Acceptance Range
Nitrate as Nitrogen	mg/L	1.00	2.25	2.24(2.00)	101	85 - 115
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	4.14	4.00	104	90 - 110
Nitrate as Nitrogen	mg/L	1.00	3.99	4.00	99.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.20	3.00	107	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.17	3.00	106	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 4 of 24

Project Number: 423575.MP.02.CM

Printed 4/26/2013

Anions By I.C EPA 300	.0		Batch	04AN13O				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
807342-001 Sulfate		mg/L	04/11	/2013 19:14	50.0	1.54	25.0	525
807342-002 Sulfate		mg/L	04/11	/2013 19:25	50.0	1.54	25.0	505
807342-003 Sulfate		mg/L	04/11	/2013 19:37	50.0	1.54	25.0	426
807342-004 Sulfate		mg/L	04/11	/2013 19:48	10.0	0.307	5.00	106
807342-005 Sulfate		mg/L	04/11	/2013 19:59	10.0	0.307	5.00	176
807342-008 Sulfate		mg/L	04/11	/2013 20:11	50.0	1.54	25.0	500
807342-009 Sulfate		mg/L	04/11	/2013 20:22	50.0	1.54	25.0	481
807342-010 Sulfate		mg/L	04/11	/2013 20:56	50.0	1.54	25.0	486
807342-011 Sulfate		mg/L	04/11	/2013 21:08	50.0	1.54	25.0	500
807342-012 Sulfate		mg/L	04/11	/2013 21:19	50.0	1.54	25.0	460
807342-013 Sulfate		mg/L	04/11	/2013 21:31	50.0	1.54	25.0	496
807342-014 Sulfate		mg/L	04/11	/2013 21:42	50.0	1.54	25.0	438
807342-017 Sulfate		mg/L	04/11	/2013 21:53	50.0	1.54	25.0	440
Method Blank								
Parameter	Unit	DF	Result					
Chloride	mg/L	1.00	ND					
Sulfate	mg/L	1.00	ND					
Duplicate							Lab ID =	807346-010
Parameter	Unit	DF	Result	Expected		RPD	Accepta	nce Range
Chloride	mg/L	10.0	30.9	31.6		2.29	0 - 20	
Sulfate	mg/L	10.0	38.5	39.3		2.10	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Range
Chloride	mg/L	1.00	4.02	4.00		100	90 - 110)
Sulfate	mg/L	1.00	20.0	20.0		100	90 - 110)
Matrix Spike							Lab ID =	807346-010
Parameter	Unit	DF	Result	Expected/A	.dded	Recovery	Accepta	ınce Range
Chloride	mg/L	10.0	73.8	71.6(40.0)		105	85 - 115	j
Sulfate	mg/L	10.0	80.0	79.3(40.0)		102	85 - 115	i .
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Range
Chloride	mg/L	1.00	3.98	4.00		99.6	90 - 110)
Sulfate	mg/L	1.00	20.0	20.0		100.	90 - 110)

Client: E2 Consulting Engineers, Inc.

PG&E Topock Project Project Name:

Page 6 of 24

Project Number: 423575.MP.02.CM

Printed 4/26/2013

Anions By I.C EPA 300	0.0		Batch	04AN13L			
Parameter		Unit	Ana	Analyzed DF		RL	Result
807342-001 Chloride	1,7110111111111111111111111111111111111	mg/L	04/11	1/2013 12:23 5	00 17.4	50.0	2220
807342-002 Chloride		mg/L	04/11	/2013 12:34 5	00 17.4	50.0	2190
807342-003 Chloride		mg/L	04/11	/2013 12:46 5	00 17.4	50.0	1880
807342-004 Chloride		mg/L	04/11	/2013 12:57	00 3.49	10.0	469
807342-005 Chloride		mg/L	04/11/2013 13:09		00 6.98	20.0	947
807342-008 Chloride		mg/L	04/11	/2013 13:54 5	00 17.4	50.0	2170
807342-009 Chloride		mg/L	04/11	/2013 14:06 5	00 17.4	50.0	2130
807342-010 Chloride		mg/L	04/11	/2013 14:17 50	00 17.4	50.0	1980
807342-011 Chloride		mg/L	04/11	/2013 14:29 5	00 17.4	50.0	2100
807342-012 Chloride		mg/L	04/11	/2013 14:40 5	00 17.4	50.0	2660
807342-013 Chloride		mg/L	04/11	/2013 14:51 50	00 17.4	50.0	2140
807342-014 Chloride		mg/L	04/11	/2013 15:03 50	00 17.4	50.0	2010
807342-017 Chloride		mg/L_	04/11	/2013 15:14 50	00 17.4	50.0	2020
Method Blank							
Parameter	Unit	DF	Result				
Chloride	mg/L	1.00	ND				
Sulfate	mg/L	1.00	ND				
Nitrate as Nitrogen	mg/L	1.00	ND				
Duplicate						Lab ID =	807346-011
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ince Range
Chloride	mg/L	10.0	31.4	31.8	1.12	0 - 20	
Sulfate	mg/L	10.0	38.5	39.4	2.28	0 - 20	
Duplicate						Lab ID =	807375-013
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ince Range
Nitrate as Nitrogen	mg/L	5.00	13.1	13.1	0.312	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chloride	mg/L	1.00	4.03	4.00	101	90 - 110)
Sulfate	mg/L	1.00	20.2	20.0	101	90 - 110	, (
Nitrate as Nitrogen	mg/L	1.00	4.02	4.00	100	90 - 110)
Matrix Spike						Lab ID =	807346-011
Parameter	Unit	DF	Result	Expected/Added	d Recovery	Accepta	ince Range
Chloride	mg/L	10.0	72.4	71.8(40.0)	101	85 - 115	j
Sulfate	mg/L	10.0	79.6	79.4(40.0)	100	85 - 115	;

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 8 of 24

Project Number: 423575.MP.02.CM

Printed 4/26/2013

Specific Conductivity -	EPA 120.1		Ba	atch 04EC13D				
Parameter		Unit	A	Analyzed	DF	MDL	RL	Result
807342-001 Specific Conductivity		umhos	/cm 04	04/12/2013		0.116	2.00	7110
807342-002 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	7080
807342-003 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	5910
807342-004 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	1860
807342-005 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	3270
807342-008 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	7080
807342-009 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	7140
807342-010 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	7020
807342-011 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	7150
807342-012 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	8400
807342-013 Specific Conductivity		umhos/cm 04/2		/12/2013	1.00	0.116	2.00	7100
807342-014 Specific Conductivity		umhos	/cm 04	/12/2013	1.00	0.116	2.00	6690
807342-017 Specific Conduc	ctivity	umhos	/cm 04	/12/2013	1.00	0.116	2.00	6680
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	807342-011
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Specific Conductivity	umhos	1.00	7140	7150		0.140	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1.00	683	706		96.7	90 - 110)
Lab Control Sample [Duplicate							
Parameter	Unit	DF	Result	•	F	Recovery	•	ance Range
Specific Conductivity	umhos	1.00	692	706		98.0	90 - 110)
MRCCS - Secondary								
Parameter	Unit	DF	Result	•	F	Recovery	•	ance Range
Specific Conductivity MRCVS - Primary	umhos	1.00	694	706		98.3	90 - 110)
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	971	998		97.3	90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 10 of 24 Printed 4/26/2013

Chrome VI by EPA 218.0	5		Batch	04CrH13G				
Parameter Unit		Ana	Analyzed Di		MDL	RL	Result	
807342-001 Chromium, Hex	avalent	ug/L	04/1	1/2013 16:54	5.00	0.0460	1.0	ND
807342-002 Chromium, Hex	avalent	ug/L	04/11	1/2013 18:04	5.00	0.0460	1.0	ND
807342-003 Chromium, Hex	avalent	ug/L	04/11	1/2013 11:48	1.00	0.00920	0.20	7.0
807342-004 Chromium, Hex	avalent	ug/L	04/11	1/2013 11:58	1.00	0.00920	0.20	23.6
807342-005 Chromium, Hex	avalent	ug/L	04/11	/2013 12:19	1.00	0.00920	0.20	18.2
807342-006 Chromium, Hex	avalent	ug/L	04/11	/2013 12:30	1.00	0.00920	0.20	ND
807342-007 Chromium, Hex	avalent	ug/L	04/11	/2013 13:11	1.00	0.00920	0.20	ND
807342-008 Chromium, Hex	avalent	ug/L	04/11	/2013 18:15	5.00	0.0460	1.0	ND
807342-009 Chromium, Hex	avalent	ug/L	04/11	/2013 18:25	5.00	0.0460	1.0	ND
807342-010 Chromium, Hex	avalent	ug/L	04/11	/2013 18:35	5.00	0.0460	1.0	2.4
307342-011 Chromium, Hexavalent		ug/L	04/11/2013 18:46		5.00	0.0460	1.0	ND
07342-012 Chromium, Hexavalent u		ug/L	04/11/2013 15:37		5.00	0.0460	1.0	6.8
07342-013 Chromium, Hexavalent		ug/L	04/11	/2013 19:17	5.00	0.0460	1.0	ND
07342-014 Chromium, Hexavalent		ug/L	04/11	/2013 19:27	5.00	0.0460	1.0	6.3
307342-015 Chromium, Hexavalent		ug/L	04/11	/2013 14:34	1.00	0.00920	0.20	ND
807342-016 Chromium, Hexa	um, Hexavalent ug/L		04/11/2013 15:06 1.		1.00	0.00920	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	807342-003
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	6.80	6.96		2.27	0 - 20	
Low Level Calibration	Verification	1						
Parameter	Unit	DF	Result Expected			Recovery	Acceptance Range	
Chromium, Hexavalent	ug/L	1.00	0.200 0.200			100	70 - 130	_
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	4.94	5.00		98.8	90 - 110	_
Matrix Spike							Lab ID =	807342-001
Parameter	Unit	DF	Result	Expected/Ad	dded	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.00	5.27	5.44(5.00)		96.5	90 - 110	_

Client: E2 Consulting Engineers, Inc.			roject Name: roject Number:	oject 1	Page 11 of 24 Printed 4/26/2013	
Matrix Spike						Lab ID = 807342-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.42	Expected/Added 1.51(1.00)	Recovery 90.6	Acceptance Range 90 - 110 Lab ID = 807342-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.83	Expected/Added 5.94(5.00)	Recovery 97.9	Acceptance Range 90 - 110 Lab ID = 807342-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.74	Expected/Added 6.00(5.00)	Recovery 94.7	Acceptance Range 90 - 110 Lab ID = 807342-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 16.3	Expected/Added 17.0(10.0)	Recovery 93.6	Acceptance Range 90 - 110 Lab ID = 807342-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.05	Result 48.3	Expected/Added 49.8(26.2)	Recovery 94.2	Acceptance Range 90 - 110 Lab ID = 807342-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.02	Result 37.3	Expected/Added 38.6(20.4)	Recovery 93.8	Acceptance Range 90 - 110 Lab ID = 807342-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.942	Expected/Added 1.00(1.00)	Recovery 94.2	Acceptance Range 90 - 110 Lab ID = 807342-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.912	Expected/Added 1.00(1.00)	Recovery 91.2	Acceptance Range 90 - 110 Lab ID = 807342-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.34	Expected/Added 5.41(5.00)	Recovery 98.5	Acceptance Range 90 - 110 Lab ID = 807342-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.44	Expected/Added 1.50(1.00)	Recovery 94.7	Acceptance Range 90 - 110 Lab ID = 807342-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.49	Expected/Added 5.55(5.00)	Recovery 98.8	Acceptance Range 90 - 110 Lab ID = 807342-009
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.56	Expected/Added 1.60(1.00)	Recovery 96.5	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.			roject Name: roject Numbe	oject 1	Page 12 of 24 Printed 4/26/2013	
Matrix Spike						Lab ID = 807342-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 7.37	Expected/Added 7.42(5.00)	Recovery 99.0	Acceptance Range 90 - 110 Lab ID = 807342-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 7.32	Expected/Added 7.42(5.00)	Recovery 98.1	Acceptance Range 90 - 110 Lab ID = 807342-011
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.73	Expected/Added 1.78(1.00)	Recovery 95.2	Acceptance Range 90 - 110 Lab ID = 807342-011
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.59	Expected/Added 5.73(5.00)	Recovery 97.3	Acceptance Range 90 - 110 Lab ID = 807342-012
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 30.8	Expected/Added 31.8(25.0)	Recovery 96.1	Acceptance Range 90 - 110 Lab ID = 807342-013
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.20	Expected/Added 5.60(5.00)	Recovery 92.0	Acceptance Range 90 - 110 Lab ID = 807342-013
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.62	Expected/Added 1.64(1.00)	Recovery 98.1	Acceptance Range 90 - 110 Lab ID = 807342-014
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 16.0	Expected/Added 16.2(10.0)	Recovery 99.1	Acceptance Range 90 - 110 Lab ID = 807342-014
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 31.2	Expected/Added 31.3(25.0)	Recovery 99.7	Acceptance Range 90 - 110 Lab ID = 807342-015
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.946	Expected/Added 1.00(1.00)	Recovery 94.6	Acceptance Range 90 - 110 Lab ID = 807342-016
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.916	Expected/Added 1.00(1.00)	Recovery 91.6	Acceptance Range 90 - 110 Lab ID = 807342-017
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.00	Result 31.3	Expected/Added 31.1(25.0)	Recovery 101	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 14 of 24 Printed 4/26/2013

Project Number: 423575.MP.02.CM

Chrome VI by EPA 218.6

Batch 04CrH13I

Omomo al by El Al Eloio								
Parameter		Unit Analyzed		lyzed	DF	MDL	RL	Result
807342-017 Chromium, Hexa	avalent	ug/L	04/12/2013 12:10		1.00	0.00920	0.20	6.2
Method Blank								
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND				Lab ID =	807345-008
Parameter Chromium, Hexavalent Low Level Calibration	Unit ug/L Verification	DF 1.00	Result 41.2	Expected 41.5		PD 0.624	Accepta 0 - 20	ince Range
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.00	Result 0.198	Expected 0.200		ecovery 99.0	Accepta 70 - 130	ince Range)
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 4.89	Expected 5.00		ecovery 97.9	Acceptance Rang 90 - 110 Lab ID = 807342-01	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 15.6	Expected/Adde 16.2(10.0)		ecovery 93.9	90 - 110	nce Range) 807345-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.12	Expected/Adde 1.17(1.00)		ecovery 94.3	Acceptance Rang 90 - 110 Lab ID = 807345-00	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 9.57	Expected/Adde 9.91(5.00)		ecovery 93.3	Acceptance Rang 90 - 110 Lab ID = 807345-00	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.936	Expected/Adde 1.00(1.00)		ecovery 93.6	90 - 110	nce Range) 807345-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 16.8	Expected/Adde 16.9(10.0)		ecovery 99.0	90 - 110	nce Range 807345-011
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 0.955	Expected/Adde 1.01(1.00)		ecovery 94.3	Accepta 90 - 110	nce Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 16 of 24 Printed 4/26/2013

Total Dissolved Solids	Batch	04TDS13E						
Parameter		Unit	Analyzed		DF	MDL	RL	Result
807342-001 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	250	4210
807342-002 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	250	4360
807342-003 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	125	3800
807342-004 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	50.0	1070
807342-005 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	50.0	2010
807342-008 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	250	4440
807342-009 Total Dissolved	Solids	mg/L	04/12	2/2013	1.00	1.76	250	5160
807342-010 Total Dissolved Solids		mg/L	04/12	2/2013	1.00	1.76	250	4170
807342-011 Total Dissolved Solids		mg/L	04/12/2013		1.00	1.76	250	4510
807342-012 Total Dissolved Solids		mg/L	04/12/2013		1.00	1.76	250	5190
807342-013 Total Dissolved Solids		mg/L	04/12/2013		1.00	1.76	250	4310
807342-014 Total Dissolved Solids		mg/L	04/12/2013		1.00	1.76	125	4050
807342-017 Total Dissolved Solids		mg/L	04/12/2013		1.00	1.76	125	4120
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	807342-012
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ince Range
Total Dissolved Solids	mg/L	1.00	5350	5190		3.04	0 - 10	
Duplicate							Lab ID =	807408-005
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	1430	1420		0.422	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Total Dissolved Solids	mg/L	1.00	474	500		94.8	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 17 of 24

Printed 4/26/2013

Parameter		Unit	Ana	lyzed [)F	MDL	RL	Result
807342-001 Ammonia as N		mg/L			.00	0.0318	0.500	ND
807342-002 Ammonia as N		mg/L			.00	0.0318	0.500	ND
807342-008 Ammonia as N		mg/L			.00	0.0318	0.500	ND
807342-009 Ammonia as N		mg/L			.00	0.0318	0.500	ND
807342-010 Ammonia as N		mg/L			.00	0.0318	0.500	ND
807342-011 Ammonia as N		mg/L	04/12	./2013 1	.00	0.0318	0.500	ND
307342-012 Ammonia as N		mg/L	04/12	/2013 1	.00	0.0318	0.500	ND
307342-013 Ammonia as N		mg/L	04/12	/2013 1	.00	0.0318	0.500	ND
807342-014 Ammonia as N		mg/L	04/12	/2013 1	.00	0.0318	0.500	ND
807342-017 Ammonia as N		mg/L	04/12/2013		.00	0.0318	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Duplicate	-					Lab ID = 807346-0		
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptance R	
Ammonia as N	mg/L	1.00	ND	0		0	0 - 20	J
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.31	8.00		104	90 - 110	•
Lab Control Sample D	uplicate							
Parameter	Unit	DF	Result	Expected	R	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	8.24	8.00		103	90 - 110	
Matrix Spike							Lab ID = 8	307346-011
Parameter	Unit	DF	Result	Expected/Adde	d R	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	7.82	8.00(8.00)		97.8	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	R	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.25	6.00		104	90 - 110	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	Recovery	Acceptar	nce Range
Ammonia as N	mg/L	1.00	6.46	6.00		108	90 - 110	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 19 of 24 Printed 4/26/2013

Metals by EPA 200.8, Disso	lved		Batch	041213A				
Parameter		Unit	Ana	ilyzed	DF	MDL	RL	Result
807342-001 Chromium		ug/L	04/12	2/2013 13:24	2.00	0.184	1.0	ND
807342-002 Chromium		ug/L	04/12	2/2013 13:30	2.00	0.184	1.0	1.2
807342-003 Chromium		ug/L	04/12	2/2013 13:36	2.00	0.184	1.0	7.4
Molybdenum		ug/L	04/12	2/2013 13:36	2.00	0.414	2.0	5.9
807342-004 Chromium		ug/L	04/12	2/2013 13:42	2.00	0.184	1.0	25.6
M olybdenum		ug/L	04/12	2/2013 13:42	2.00	0.414	2.0	38.3
807342-005 Chromium		ug/L	04/12	2/2013 13:48	2.00	0.184	1.0	18.4
Molybdenum		ug/L	04/12	2/2013 13:48	2.00	0.414	2.0	18.6
807342-008 Chromium		ug/L	04/12	2/2013 13:54	2.00	0.184	1.0	ND
807342-009 Chromium		ug/L	04/12	2/2013 14:06	2.00	0.184	1.0	ND
807342-010 Chromium		ug/L	04/12	2/2013 14:12	2.00	0.184	1.0	2.8
807342-011 Chromium		ug/L	04/12	2/2013 14:18	2.00	0.184	1.0	ND
807342-012 Chromium		ug/L	04/12	2/2013 14:42	2.00	0.184	1.0	7.4
807342-013 Chromium		ug/L	04/12	2/2013 14:49	2.00	0.184	1.0	ND
807342-014 Chromium		ug/L	04/12	2/2013 14:55	2.00	0.184	1.0	6.8
807342-017 Chromium		ug/L	04/12	2/2013 15:01	2.00	0.184	1.0	6.5
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate							Lab ID =	807288-004
Parameter	Unit	DF	Result	Expected	R	RPD	Accepta	nce Range
Chromium	ug/L	2.00	2.34	2.33		0.240	0 - 20	
Molybdenum	ug/L	2.00	28.0	26.6		5.08	0 - 20	
Low Level Calibration Ver	rification							
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	ince Range
Chromium	ug/L	1.00	0.233	0.200		117	70 - 130)
Low Level Calibration Ver	ification							
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	nce Range
Molybdenum	ug/L	1.00	0.508	0.500		102	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	ince Range
Chromium	ug/L	2.00	53.7	50.0		107	85 - 115	;
Molybdenum	ug/L	2.00	48.7	50.0		97.4	85 - 115	;

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting E		roject Name: roject Numbe	Project P.CM	Page 21 of 24 Printed 4/26/2013		
Interference Check	Standard A					
Parameter Chromium Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum Interference Check S	Unit ug/L Standard A	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum Interference Check S	Unit ug/L Standard AB	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range
Parameter Chromium Interference Check S	Unit ug/L Standard AB	DF 1.00	Result 19.3	Expected 20.0	Recovery 96.7	Acceptance Range 80 - 120
Parameter Chromium Interference Check S	Unit ug/L Standard AB	DF 1.00	Result 19.7	Expected 20.0	Recovery 98.5	Acceptance Range 80 - 120
Parameter Molybdenum Interference Check S	Unit ug/L Standard AB	DF 1.00	Result N D	Expected 0	Recovery	Acceptance Range
Parameter Molybdenum Serial Dilution	Unit ug/L	DF 1.00	Result ND	Expected 0	Recovery	Acceptance Range Lab ID = 807342-004
Parameter Chromium Molybdenum	Unit ug/L ug/L	DF 10.0 10.0	Result 23.7 37.1	Expected 25.6 38.3	RPD 7.85 3.26	Acceptance Range 0 - 10 0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 22 of 24

Project Number: 423575.MP.02.CM

Printed 4/26/2013

Metals by 200.7, Dissolv	ed			041613A-Th2				
Parameter	······	Unit	Analy	zed	DF	MDL	RL	Result
807342-003 Sodium		ug/L	04/16/2	2013 15:11 2	.00	78800	200000	696000
807342-004 Sodium		ug/L	04/16/2	2013 15:37 5	0.0	19700	50000	336000
807342-005 Sodium		ug/L	04/16/2	2013 15:43 5	0.0	19700	50000	426000
Method Blank								
Parameter	Unit	DF	Result					
Sodium	ug/L	1.00	ND					
Duplicate							Lab ID = 8	07342-003
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptan	ce Range
Sodium	ug/L	200	691000	696000		0.779	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	2080	2000		104	85 - 115	
Matrix Spike							Lab ID = 8	07342-003
Parameter	Unit	DF	Result	Expected/Adde	d F	Recovery	Acceptan	ce Range
Sodium	ug/L	200	1070000	1100000(4000	C	94.0	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	4910	5000		98.2	95 - 105	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	4900	5000		98.1	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	4890	5000		97.8	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	4870	5000		97.3	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	4900	5000		97.9	90 - 110	Ü
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Acceptan	ce Range
Sodium	ug/L	1.00	4900	5000		98.0	90 - 110	J

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 24 of 24

Project Number: 423575.MP.02.CM Printed 4/26/2013

Turbidity by SM 2130 B			Batch	04TUC13I					
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result	
807342-001 Turbidity		NTU	04/10/2013		1.00	0.0140	0.100	ND	
807342-002 Turbidity		NTU	04/10	0/2013	1.00	0.0140	0.100	0.128	
807342-003 Turbidity		NTU	04/10	0/2013	1.00	0.0140	0.100 2.76		
807342-004 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100 0.248		
807342-005 Turbidity		NTU	04/10	0/2013	1.00	0.0140	0.100	0.213	
807342-008 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100	ND	
807342-009 Turbidity		NTU	04/10	0/2013	1.00	0.0140	0.100	0.205	
807342-010 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100	0.132	
807342-011 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100	ND	
807342-012 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100	ND	
807342-013 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100	0.249	
807342-014 Turbidity		NTU	04/10)/2013	1.00	0.0140	0.100	0.140	
807342-017 Turbidity		NTU	04/10	0/2013	1.00	0.0140	0.100	0.134	
Method Blank									
Parameter	Unit	DF	Result						
Turbidity	NTU	1.00	ND						
Duplicate							Lab ID = 8	807342-011	
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptance Range		
Turbidity	NTU	1.00	ND	0		0	0 - 20		
Lab Control Sample									
Parameter	DF	Result	Expected	F	Recovery	Acceptance Range			
Turbidity	1.00	7.90	8.00		98.8	90 - 110			
Lab Control Sample D	uplicate								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range	
Turbidity	NTU	1.00	7.77	8.00		97.1	90 - 110		

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Truesdail Laboratories, Inc.

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 04TDS13E Date Analyzed: 4/12/13

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	.DF
Blank	100	72.3781	72.3781	72.3781	0.0000	No	0.0000	0.0	25.0	ND	1
807342-1	10	50.5062	50.5486	50.5483	0.0003	Nσ	0.0421	4210.0	250.0	4210.0	1
807342-2	10	51.8547	51.8987	51.8983	0.0004	No	0.0436	4360.0	250.0	4360.0	1_
807342-3	20	49.4973	49.5732	49.5732	0.0000	No	0.0759	3795.0	125.0	3795.0	1
807342-4	50	46.9791	47.0325	47.0324	0.0001	No	0.0533	1066,0	50.0	1066.0	1
807342-5	50	50.8285	50.9288	50.9288	0.0000	No	0.1003	2006.0	50.0	2006.0	1
807342-8	10	49.3981	49.4429	49.4425	0.0004	No	0.0444	4440.0	250.0	4440.0	1
807342-9	10	50.7264	50.7781	50.778	0.0001	No	0.0516	5160.0	250.0	5160.0	1
807342-10	10	50.7619	50.8041	50.8036	0.0005	No	0.0417	4170.0	250.0	4170.0	1
807342-11	10	50.5018	50.547	50.5469	0.0001	No	0.0451	4510.0	250.0	4510.0	1
807342-12	10	51.3488	51.4007	51.4007	0.0000	No	0.0519	5190.0	250.0	5190.0	1
807342-12D	10	50.1534	50.2073	50.2069	0.0004	No	0,0535	5350.0	250.0	5350.0	1
LCS	100	50.5872	50.6346	50.6346	0.0000	No	0.0474	474.0	25.0	474.0	1
807342-13	10	47.9466	47.9897	47.9897	0.0000	No	0.0431	4310.0	250.0	4310.0	1_
807342-14	20	49.3471	49.4282	49.4281	0.0001	No	0.0810	4050.0	125.0	4050.0	1
807342-17	20	52.0422	52.1245	52.1245	0.0000	No	0.0823	4115.0	125.0	4115.0	11
807375-13	20	51.0503	51.1018	51.1018	0.0000	No	0.0515	2575.0	125.0	2575.0	1
807383-2	20	47.7620	47.8386	47.8386	0.0000	No	0.0766	3830.0	125.0	3830.0	1
807408-1	50	51.2500	51.3168	51.3167	0.0001	No	0.0667	1334.0	50.0	1334.0	1
807408-2	50	51.8805	51.9767	51.9763	0.0004	No	0.0958	1916.0	50.0	1916.0	1
807408-3	20	49.1791	49.241	49.2409	0.0001	No	0.0618	3090.0	125.0	3090.0	1
807408-4	50	50.6961	50.7984	50.7980	0.0004	No	0.1019	2038.0	50.0	2038.0	1
807408-5	50	51.8378	51.9091	51.9087	0.0004	No	0.0709	1418.0	50.0	1418.0	1
807408-5D	50	51.4574	51.5289	51.5287	0.0002	No	0,0713	1426.0	50.0	1426.0	1

Calculation as follows:

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered.

 $\left(\frac{A-B}{C}\right) \times 10^6$

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

Luboluioi	y Control Ct	mpic (200	7 Garring	y	
QC Std I.D.	Measurd Value, ppm	Theoretical Value, ppm	Acceptance Limit	QC Within Control?	
LCS1	474	500	94.8%	90-110%	Yes
LCSD					

Duplicate Determinations Difference Summary

Lab Number	Sample Weight, g	Sample Dup Weight, g	% RPD	Acceptance Limit	QC Within Control?
807342-12	0.0519	0.0535	1.5%	≤5%	Yes
807408-5	0.0709	0.0713	0.3%	5%	Yes

LCS Recovery

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

Duplicate Determination Difference

% Difference =
$$\frac{\left| \frac{1}{A \text{ or } B - C} \right|}{C} \times 100$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

Reviewer Printed Name

Analyst Printed Name

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 04TDS13E Date Analyzed: 4/12/13

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
807342-1	7110	0.59	4621.5	0.91
807342-2	7080	0.62	4602	0.95
807342-3	5910	0.64	3841.5	0.99
807342-4	1860	0.57	1209	0.88
807342-5	3270	0.61	2125.5	0.94
807342-8	7080	0.63	4602	0.96
807342-9	7140	0.72	4641	1.11
807342-10	7020	0.59	4563	0.91
807342-11	7140	0.63	4641	0.97
807342-12	8400	0.62	5460	0.95
807342-12D	8400	0.64	5460	0.98
LCS				j
807342-13	7100	0.61	4615	0.93
807342-14	6690	0.61	4348.5	0.93
807342-17	6680	0.62	4342	0.95
807375-13	4050	0.64	2632.5	0.98
807383-2	5170	0.74	3360.5	1.14
807408-1	1880	0.71	1222	1.09
807408-2	2570	0.75	1670.5	1.15
807408-3	4040	0.76	2626	1.18
807408-4	2710	0.75	1761.5	1.16
807408-5	1970	0.72	1280.5	1.11
807408-5D	1970	0.72	1280.5	1.11

CH2MHILL

CHAIN OF CUSTODY RECORD 4/9/2013 3:50:25 PM

Page 1 OF 2

	Project Name PG		k	Container	Poly	500 ml Poly	500 ml Poly	2x1 Liter	2x1 Liter	2x1 Liter	2x1 Liter	1 Liter Poly	•		
	Location Topoci Project Manager		Pres	servatives:	(NH4)2S O4/NH4O H, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	H2SO4, pH<2, 4°C			
	Sample Manager I	Matt Ringie	er	Filtered:	Field	Field	Field	NA	NA	NA	NA NA	NA	Rec'd 4/9/13 Sec 8 0 7 3 4 2		
			Hole	ding Time:	28	180	180	14	14	14	14	28	SAC		
	Project Number 4 Task Order Project 2013-CMi Turnaround Time Shipping Date: 4 COC Number: TL	P-029 10 Days /3/2013	;	Vi M atrix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Chromium	Metals (E200.7–E200.8) Field Filtered Cr.Mo.Na	Specific Conductance (E120.1)	Anions (E300.0) CI, FI, SO4	Turbidity (SM2130)	TDS (SM2540C)	Ammonia (SM4500NH3)		Number of Containers	COMMENTS
-1	CW-01D-029	4/8/2013	9:15	Water	x	x		Х	х	х	х	x		5	1
-2	CW-01M-029	4/8/2013	9:53	Water	х	х		х	х	х	х	х		5	
3	OW-01S-029	4/8/2013	11:43	Water	х		х	х	х	х	х			4	ypi =2
-4	OW-02S-029	4/8/2013	13:53	Water	х		х	X	х	x	х			4	metals
-5	OW-05S-029	4/8/2013	12:35	Water	х		х	. x	х	х	х			4	
-6	OW-80-029	4/8/2013	14:40	Water	х	1								1	
-7	OW-81-029	4/8/2013	14:35	Water	х								AILDIII	1	
રી	OW-90-029	4/8/2013	6:55	Water	х	х		х	х	х	х	х	T II	5	7
Ŋ	CW-02D-029	4/9/2013	8:06	Water	х	х		х	х	х	х	х	Level III QU	5	
10	CW-02M-029	4/9/2013	9:06	Water	х	х		х	х	х	х	х		5	1114=2
-11	CW-03D-029	4/9/2013	10:54	Water	х	х	1	х	х	х	х	х		5	Motaly
-/2	CW-03M-029	4/9/2013	12:12	Water	х	X		х	х	х	х	х		5	
73	CW-04D-029	4/9/2013	13:54	Water	х	Х		х	х	х	х	х		5	
18	CW-04M-029	4/9/2013	15:12	Water	х	X		х	х	х	х	х		5	

Approved by

Sampled by

Remandary Received by

Relinquished by Received by

Signatures

Shipping Details

Method of Shipment:

On Ice: yes / no

Airbill No:

4-9-13 22: 30 Name: Truesdail Laboratories, Inc. 4/4//3 22/50 Lab Phone: (714) 730-6239

ATTN:

April 8-10, 2013

Special Instructions:

Sample Custody

Report Copy to Shawn Duffy

(530) 229-3303

	12N	MH	Ш	
W-0 19		37 M S		

CHAIN OF CUSTODY RECORD

4/9/2013 3:50:26 PM

Page 2 OF 2

	· <u>-</u>											47072073 3.300.207 M		
Project Name PG Location Topoci Project Manager	k	,,,	ontainer: vatives:	250 ml Poly (NH4)2S 04/NH40 H, 4°C	500 ml Poly HNO3, 4°C	500 ml Poly HNO3, 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2SO4, pH<2, 4°C			
Sample Manager	Matt Ringi	er	Filtered:	Field	Field	Field	NA	NA	NA	NA	NA			
		Holdir	ng Time:	28	180	180	14	14	14	14	28			l
Project Number of Task Order Project 2013-CMi Turnaround Time Shipping Date: 4 COC Number: Ti	P-029 10 Day: 5/3/2013	s	M atrix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Chromium	Metals (E200.7-E200.8) Field Filtered Cr,Mo.Na	Specific Conductance (E120.1)	Anions (E300.0) Cl, Fl, SO4	Turbidity (SM2130)	TDS (SM2540C)	Ammonia (SM4500NH3)		Number of Containers	COMMENT
OW-82-029	4/9/2013	15:42	Water	х									1	
OW-83-029	4/9/2013	15:48	Water	х									1	
OW-91-029	4/9/2013	17:25	Water	х	X		х	х	х	х	х		5	pie:
						,					,	TOTAL NUMBER OF CONTAINERS	66	Mi

Approved by Sampled by

Remandary

Received by

Relinquished by

Received by

,≱ignatures

Shipping Details

FedEx

Method of Shipment:

On Ice: yes / no

Airbill No:

22: Lab Name: Truesdail Laboratories, Inc. Lab Phone: (714) 730-6239

Special Instructions:

ATTN:

April 8-10, 2013

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
4/6/13	807268	7.0	2 mc/100 mc	9.5	9:00	TM
418113	807286-1	9.5	NIA	NIA	NA	NE
	3					
	_4					
	-5					
	-6					
1K	V-8		V	V	V	_\/
4/8/13	807287-1	9.5	N/A	MA	N14	NE
	-2			\		
	-3					
	<u>-</u> 4					
V273	V -5	4		-	-V	V
40/208						
8/11/00/13	807288-1	9.5	NIA	NIA	NIA	NE
1	-2	- 				
	-3					
	- 4					
	-5		· ·			
	-6				7	
	-8					
	- 8		5dops 25% NaOH/100ml	9.5	(0:00	
4/10/13	28807287-6	7.0	N/A	NA	who well a management of the construction construction of the cons	· · · · · · · · · · · · · · · · · · ·
4/9/13	807341	7.0	2 ml / 100 ml		09:00	NE
	807342-1	9.5	NIA	NIA	N/A	NE
	-2					
i i	-3					
	24					
1	V5	\bigvee	$\sqrt{}$		V	V

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date		·	Buffer Added (mL)	Final pH	Time Buffered	Initials	
4/9/13	807342-6 9.5		N/A	NiA	NA	NE	
	-7						
	-8		·				
	-9				-		
	-10						
	-11						
	-12						
	- 13						
	-14						
	-13			·			
	-16	·					
	-17	V	V:		V	<u>V</u>	
4/10/13	807343-1	9.5	NIA	NA	NA	Tay	
	-2						
	-3						
	-4						
	-5						
	-6						
	-7						
	-8						
	-9					-	
	V -10					<u> </u>	
4/10/13	807344-1	9.5	NA	MA	NA	Try	
	1 -2						
+/10/13	807345-1	9.5	NI	NA	N/A	Thy	
	-2						
	-3						
	-4						
	-5						
	-6						
∀]	<u> </u>	4 1		<u> </u>			

Turbidity/pH Check

Turbidity/pH Check										
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH2- Adjusted Time	Date/Time of 2nd pH check	Comments		
807283-174	>1	42	4/10/13	90	ifez					
8:7301-4		ì		i	j		_			
807302-4										
807293										
807294	J		l l	Ţ	V					
803229(1-3)	۷١	> 2	4-10-13	BZ	NO	14:30				
807322	1	J	7	7	4	J				
807364	71	72	J.	pr	ijes	16:45				
807290-5	2j	> 2.	ı	pc	 มือ	Ŀ				
507342(3-72)		く 2	4-11-13	136	y c5					
\$67338-1,2	71	72	4/11/13	or	ijee	9:25				
807359(4,5,6)	41	<u> </u>	4/4/13	ES	NO	10:00	4/12/13	pH 22		
807350C1-5	۲۱	< 2.	4-4-13	BE	Xes					
807384 (1-6)	1			1	\					
807343(1-4)	41	<u> </u>	4111[13	ES	y.es					
907344-1										
907345(1-10)										
807346(1,3-12)										
807340(1-4)										
807380			<u> </u>	4	V					
807371(10-13)	21	フユ	4/12/13	ES	NO	12:00	4/15/13	PH 22		
E 07405	<١	< 2.	4-12-13	BE-	×e3					
807383(1-4)										
807381 L1-31										
8 c 73 75 (1-11913)	<u> </u>	\	<u> </u>	<u>J</u>	y cs					
807376 CI-10)	<1	<2	4-15-13	BE	7 65					
80740711-799)										
80 73821192-13)			•							
807406 (1-8)	<u> </u>		11 15 4	1-1	(1.0)		·			
807404(1-5)	41	22	4-15-13	ES	yes					
807409(1-8)										
807410 (1-2,4-9)										
807411(1,3-10)	4	<u> </u>	<u> </u>	<u>V</u>	yes			and the second s		
80 7448(1-8)	<u> </u>	< q.	4-17-13	36	707					
8-7449 (173-11)										
897459(1-7	- - -									
807451 (1-8)	<u> </u>	7	<u> </u>	300	tle.	fl. m				
807395	41	72	4/17/13	ov	yes	thor				
807348	<1	42								
807399	- L									
807400	71									
807403	4 4									
807419	1									
807427		<u> </u>	- 1	v	<u> </u>			·		

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
 All Total Recoverable Analytes must be pH adjusted and digested.
 Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.

Sample Integrity & Analysis Discrepancy Form

Cli	ient: $\underline{E2}$	Lab # 8073
Da	te Delivered:ººº/ ººº/ 13 Time忿忿ઃऽ० By: □Mail ஜ	ÍField Service □Client
1.	Was a Chain of Custody received and signed?	MYes ONO ON/A
2 .	Does Customer require an acknowledgement of the COC?	□Yes □No ¤NA
3.	Are there any special requirements or notes on the COC?	□Yes □No ¤(N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No □N/A
5.	Were all requested analyses understood and acceptable?	✓Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? 3.6 °C	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	⊘ Yes □No □N/A
3,	Were sample custody seals intact?	□Yes □No ÆN/A
	Does the number of samples received agree with COC?	□ Ves □ No □ N/A
0.	Did sample labels correspond with the client ID's?	₽Yes □No □N/A
1.	Did sample labels indicate proper preservation? Preserved (if yes) by: ♥ Truesdail □ Client	de Yes □No □N/A
2.	Were samples pH checked? pH = Sel C. O. C	ØYes □No □N/A
l.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	✓ Yes □No □N/A
enposense evo	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH Std	DYes DNO DN/A
	Sample Matrix:	Water
	Comments:	
•	Sample Check-In completed by Truesdail Log-In/Receiving:	duda
(Toeth Phoph	top/Forms A - D\Discrp.FormBlank.doc	

ANALYTICAL REPORT

For:

PGE Topock

ASL Report #: M1713

Project ID: 423575.MP.02.CM

Attn: Jay Piper

cc:

Data Center/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

(541) 758-0235 ext.23144

May 07, 2013

This data package meets standards requested by client and is not intended or implied to meet any other standard.

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.

Sample Receipt Comments

We certify that the test results meet all standard ASL requirements.

Sample Cross-Reference

ASL		Date/Time	Date	
Sample ID	Client Sample ID	Collected	Received	
M171301	CW-01D-029	04/08/13 09:15	04/23/13	
M171302	CW-01M-029	04/08/13 09:53	04/23/13	
M171303	OW-01S-029	04/08/13 11:43	04/23/13	
M171304	OW-02S-029	04/08/13 13:53	04/23/13	
M171305	OW-05S-029	04/08/13 12:35	04/23/13	
M171306	OW-90-029	04/08/13 06:55	04/23/13	
M171307	CW-02D-029	04/09/13 08:06	04/23/13	
M171308	CW-02M-029	04/09/13 09:06	04/23/13	
M171309	CW-03D-029	04/09/13 10:54	04/23/13	
M171310	CW-03M-029	04/09/13 12:12	04/23/13	
M171311	CW-04D-029	04/09/13 13:54	04/23/13	
M171312	CW-04M-029	04/09/13 15:12	04/23/13	
M171313	OW-91-029	04/09/13 17:25	04/23/13	

CH2M HILL

Applied Sciences Laboratory (ASL)

1000 NE Circle Blvd, Building 10

Suite 10350

Corvallis, OR 97330

Tel 541.768.3120

Fax 541.752.0276

ASL@CH2M.com

Client: PGE Topock

M1713

Method	Parameter	Analyst
EPA 353.2	NO3-NO2	Youning Li

CLIENT SAMPLE CROSS-REFERENCE For Samples Received January 05, 2011

ASL Report #: K1012

Sample ID	Client Sample ID	Date Collected	Time Collected
K101201	SAWGRASS-CA	01/04/2011	
K101202	SPRINGTREE-CA	01/04/2011	
K101203	SOUTHWEST-CA-2	01/05/2011	

CASE NARRATIVE ORGANICS

ASL Report #: K1012

Client	/Projec	t: Sunrise DBP-FP
I.		ng Times: ceptance criteria were met.
II.	Analy	<u>sis</u> :
	A.	Calibration: All acceptance criteria were met.
	B.	Method Blank(s): All acceptance criteria were met.
	C.	<u>Duplicate Sample(s)</u> : Analysis performed in accordance with standard operating procedure.
	D.	Spike Sample(s): Analysis performed in accordance with standard operating procedure.
	E.	Lab Control Sample(s): All acceptance criteria were met.
	F.	Surrogate Recoveries: All acceptance criteria were met.
	G.	Other: Not applicable.
III.	Docur None.	mentation Exceptions:
IV.	client detaile	fy that this data package is in compliance with the terms and conditions agreed to by the and CH2M HILL, both technically and for completeness, except for the conditions ed above. Release of the data contained in this hardcopy data package has been fized by the Laboratory Manager or designee, as verified by the following signature.
Prepar	ed by: _	Date:

Reviewed by: _____ Date: ____

CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Na	me: <u>C</u>	CH2M HILL/LAB/CVO	ASL SDG#:	<u>M1713</u>	
Project:	PGE	Topock	Project #:	423575.MI	P.02.CM
I.	Metho Analys	<u>d(s):</u> sis: E353.2			-
II.		ot/Holding Times: ceptance criteria were met.			
III.	Analy:	sis:			
	A.	Initial Calibration(s): All acceptance criteria were met.			
	В.	Calibration Verification(s): All acceptance criteria were met.			
	C.	Blanks: All acceptance criteria were met.			
	D.	<u>Laboratory Control Sample(s):</u> All acceptance criteria were met.			
	E.	Matrix Spike/Matrix Spike Duplicate San Analyzed in accordance with standard op		dure.	
	F.	Analytical Exception(s): None.			
IV.	Docun None.	nentation Exception(s):			
V.	CH2M the dat	y that this data package is in compliance w HILL, both technically and for completent a contained in this hardcopy data package hee, as verified by the following signatures.	ess, except for	the conditi	ons detailed above. Release of
Prepared	d by:		 	Date:	5/1/2013
Reviewe	ed by:	kathy noknley		Date:	575/10

Field Sample ID:

CW-01D-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171301

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	2.95		MG/L	5	2 ML	E353.2	04/26/13

<u></u>										
						_				
·										
<u></u>										
							-			
								-		
				-						
						<u></u>				
										

Field Sample ID:

CW-01M-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

 ${\tt Matrix:} \ \ \underline{{\tt WATER}} \qquad \qquad {\tt Lab \ Sample \ ID:} \ \underline{{\tt M171302}}$

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	2.91		MG/L	5	2 ML	E353.2	04/26/13
				1						
				·						
			j							
										
									,,,,	
							-			

Field Sample ID:

OW-01S-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171303

CAS No.	Analyte	DL	PQL	Result	Ω	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	2.94		MG/L	5	2 ML	E353.2	04/26/13
					- ····································					
		·								
										,
										
-										
<u> </u>										
									-	
										<u> </u>

Field Sample ID:

OW-02S-029

SDG No.: <u>M1713</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: M171304

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	3.70		MG/L	5	2 ML	E353.2	04/26/13
**										

Field Sample ID:

OW-05S-029

SDG No.: <u>M1713</u>

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: M171305

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	3.08		MG/L	5	2 ML	E353.2	04/26/13
				10000		-				
									-	

-										
	-									
										-
			:							
						_				
						_				
						_				
						_,				

	-									
				-						
						_				

Field Sample II):
-----------------	----

OW-90-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171306

CAS No.	Analyte	DF	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
N03N02N	Nitrate/Nitrite-N	0.0152	0.0500	2.99		MG/L	5	2 ML	E353.2	04/26/13
	-								1000	
										
	1									
	-					-				
····										
	,									
•						<u> </u>				
		······································			•					
			-							
,										

Field Sample ID:

CW-02D-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171307

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
N03N02N	Nitrate/Nitrite-N	0.0152	0.0500	2.91		MG/L	5	2 ML	E353.2	04/26/13
·						<u> </u>				
								:		
	**									
								-		
-										
-										
										·
										<u></u>

Field Sample ID:

CW-02M-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171308

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
иозиози	Nitrate/Nitrite-N	0.0152	0.0500	2.79		MG/L	5	2 ML	E353.2	04/26/13
			, and the second							
									-	

Field	4 0~	- I ~	TD.
FIELE	ı ba	шоте	TD:

CW-03D-029

SDG No.: M1713

Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER

Lab Sample ID: M171309

CAS No.	Analyte	DL	PQL,	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	2.93		MG/L	5	2 ML	E353.2	04/26/13
								:		
								:		
				:						

Field Sample ID:

CW-03M-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171310

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.00303	0.0100	1.48		MG/L	1	2 ML	E353.2	04/26/13
		,							,	
		1								
										-
								// ***********************************		
			-							
								'		
·							-			
									.,,	

Field Sample ID:

CW-04D-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171311

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.0152	0.0500	2.83		MG/L	5	2 ML	E353.2	04/26/13
										, , , , , , , , , , , , , , , , , , , ,
		-								
	:									
									-	
								:		

Field	Sample	TD-
TTCTU	DOWNTE	- July .

CW-04M-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171312

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
N03N02N	Nitrate/Nitrite-N	0.0152	0.0500	2.48		MG/L	5	2 ML	E353.2	04/26/13
•										
- ,						_				
	-									
	-									
	,									
								•		
										
										
										
										
								· · · ·		
						_				
	-									
						_				
						_				
]
							•			
										
						<u> </u>				

1A-WC

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

OW-91-029

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: M171313

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
N03N02N	Nitrate/Nitrite-N	0.0152	0.0500	2.46		MG/L	5	2 ML	E353.2	04/26/13
										· · · · · · · · · · · · · · · · · · ·
				-						
	N. A. (MATERIAL III.)									
	-									

					-					
					-					

Field	Sample	ID:	

WB3-0426	

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: WB3-0426

Date Received: //

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
иозиози	Nitrate/Nitrite-N	0.00303	0.0100	0.0100	Ū	MG/L	1	2 ML	E353.2	04/26/13
<u>.</u>										

						<u></u>				
						1				
										
.										
		:			-	<u> </u>				<u></u>
										·
					1					
						 				

1A-WC

GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample	ID:
WB4-0426	

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Matrix: WATER Lab Sample ID: WB4-0426

Date Received: __/_/

CAS No.	Analyte	DL	PQL	Result	Q	Units	DF	Sample Amount	Analysis Method	Date Analyzed
NO3NO2N	Nitrate/Nitrite-N	0.00303	0.0100	0.0100	IJ	MG/L	1	2 ML	E353.2	04/26/13
							··········			
							Ü			

										,

7-WC

GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Analysis Method: E353.2 LCS ID: BS3W0426

Matrix: (Soil/Water) WATER Time Analyzed: 1647

Instrument: <u>LACH8500</u> Concentration Units: <u>MG/L</u>

Analyte	Expected	Found	%R	QC Limits %R	Q
Nitrate/Nitrite-N	0.876	0.830	95	90-110	
1.101					
- 1000					
			<u> </u>		
					_
					+
			1		

					-
					+-
					-
			-		
		-			
			<u> </u>		
		1000000			
			i		

^{*} Values outside of QC limits

Comments	:	

7-WC

GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: M1713 Lab Name: CH2M HILL/LAB/CVO

Analysis Method: $\underline{E353.2}$ LCS ID: $\underline{BS4W0426}$

Initial Calibration ID: <u>042613NO23Cal</u> Date Analyzed: <u>04/26/13</u>

Matrix: (Soil/Water) WATER Time Analyzed: 2153

Instrument: <u>LACH8500</u> Concentration Units: <u>MG/L</u>

Analyte	Expected	Found	%R	QC Limits %R	Q
Nitrate/Nitrite-N	0.876	0.842	96	90-110	
-					
			'		
					<u> </u>
			-		
				,	
					-
-					
					
					ļi
			-		
				10000	<u> </u>

^{*} Values outside of QC limits

Comment	

CHAIN OF CUSTODY RECORD CH2MHILL 4/9/2013 4:15:15 PM Page 1 OF 1 1 Liter Project Name PG&E Topock Container Poly M1713 Location Topock H2SO4. Preservatives: pH<2, Project Manager Jay Piper 4°C Sample Manager Matt Ringier Filtered: NA Holding Time: 28 Project Number 423575.MP.02.CM Nitrate/Nitrite (SM4500NO3) Task Order Project 2013-CMP-029 Number of Containers Turnaround Time 12 Days Shipping Date: 4/3/2013 COC Number: CHMC-CMP029 TIME Matrix DATE COMMENTS CW-01D-029 4/8/2013 9:15 Water 1 X CW-01M-029 1 4/8/2013 9:53 Water Х OW-01S-029 1 4/8/2013 11:43 Water Х OW-02S-029 4/8/2013 13:53 Water X 1 OW-05S-029 4/8/2013 12:35 Water Х 1 OW-90-029 6 4/8/2013 6:55 Water 1 Х CW-02D-029 4/9/2013 8:06 Water 1 Х CW-02M-029 8 4/9/2013 9:06 Water 1 Х CW-03D-029 4/9/2013 10:54 Water 1 X CW-03M-029 4/9/2013 12:12 Water 1 10 Х CW-04D-029 4/9/2013 13:54 1 Water X CW-04M-029 4/9/2013 15:12 Water Х 13 OW-91-029 4/9/2013 17:25 Water 1 Х 13 TOTAL NUMBER OF CONTAINERS

Approved by
Sampled by
Relinquished by
Receiged by
Relinquished by
Receiged by
Receiged by

Date/Time 4-16-13

Shipping Details

Method of Shipment: FedEx

On Ice: Fest no 2.

Lab Name: CH2M HILL Applied Sciences Lab

Lab Phone: (541) 752-4271

Norman B-E4

ATTN:

Special Instructions:

N: April 8-10, 2013

Sample Custody

and

Kathy McKinley

Report Copy to Shawn Duffy

(530) 229-3303

4/23/13 1200

Sample Receipt Record

Batch Number: M1713 Client/Project: Topock	- -	Date received: Checked by: Checked by:	4/23/	13		- -
VERIFICATION OF SAMPLE CONDITIONS (verify a	all items), HD = Client Hand deliver	ed Samples	NA	YES	NO	7
Radiological Screening for DoD			V			1
Were custody seals intact and on the outside of the	ne cooler?	, , , , , , , , , , , , , , , , , , ,		1		1
Type of packing material: Ice Blue Ice Bubblew						1
Was a Chain of Custody (CoC) Provided?				./		1
Was the CoC correctly filled out (If No, document	in the SRER)			V		
Did the CoC list a correct bottle count and the pre-		N=Corrected on CoC)		V		1
Were the sample containers in good condition (bro				V		1
Containers supplied by ASL?						1
Any sample with < 1/2 holding time remaining? If	so contact LPM	111111111111111111111111111111111111111			2	1
Samples have multi-phase? If yes, document on S					1	7
Was there ice in the cooler? Enter temp. If >6°C of		1-8 °C	;	//		1
		111111111111111111111111111111111111111				⊒ ∃
All VOCs free of air bubbles? No, document on S	RER		10			4
pH of all samples checked and met requirements?	? No, then document in	SRER		1		-
Enough sample volume provided for analysis? No	, document in SRER	•		<u></u>		-
Did sample labels agree with COC? No, documen	t in SRER					4
Dissolved/Soluble metals filtered in the field?			14			-
Dissolved/Soluble metals have sediment in botton	n of container? Docume	ent in SRER				_
Sample ID	Reagent	Reagent Lot Numbe	Volume	Added .	Initials	
						_
						_
						1
,						
						7

Droinet N	lama DCor	Topody ONED	-		- •			_		Topock S	Sampling Log		
Project N Job Nu		Topock CMP 5.MP.02.CM					Sampling		2013-ÇN				
	(C) 42357					24		Date	4/8/1	<u>ک</u>		BEL	\
Sampler _		_ Field Team _	Field	d Conditions	<i>(</i> 1)	PHy Clous	Ly Cool	Page	of	<u> </u>		- 12	
	•	CW-01D-029					/-90-029			QC Sample	Time 065	3-V	
Purge Start Tim	e 0839			Purge Meth	10d: 3-6010	Ded.	Pump Ab					<i>/</i> G	
	Flow Cell:) N	ı	Min. Purge	Volume (gal) (L	47.51	Purge Rate	pm)(mLp	m) <u>3</u>	Pump	Make and Model	2" Grunelfa	75 X
Water Level	Time	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	(See	Comments description below	v
	0846	21	7.34	7575	3	7.59	28.75	· ·	_	210	HZ=3	11	
	0853	42	7.42	7603	1	8.79	28.45	-		193			
109.13	0900	63	7.45	7603	1	8.80	28.45	_	~	183			
109.13	0907	84	7.44	7.606	_		28.47						
109.13	0914	105	7.45		<u>l</u>	0				178			
704.13	0117	705	1175	7601		0.01	28.44			176			
	.	-							-				
Parameter Co	mpliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td><td></td><td></td></ph<9.2<>						1.0800				
*If pH or TDS is	out of range cl	heck calibration, t	ake to IM3 an	d check pH, SC	get second pr	i obe. If still out of	range imme	diately con	tact B. Coll	lom ((541) 740-3	l 3250). If B. Collom	upougilahla aasta	
July ((530) 941	-9227). If S. Du	iffy unavailable co		((. 5) 555 125	2 X00000 01 (7)	JZ) JZJ-1131). II	J. Piper una	vailable co	ntact Christ	ina Hong ((213)	3250). If B. Collom 228-8248 x35448	or (213) 228-8242	ici S. 2).
	bilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV			
		orior to sampling?	4	4	4	4	4	_	_	U	-		
revious Field me	s consistent with	10/16/2012)	7.77	7283	0.2	7.92	28.74	0.47		66.6			
	30.00		<u> </u>	4		higher	<u> 4</u>		_	higher			
ample Time <i>(</i>	7113 · S	Sample Location:	pump	tubing	well port	spigot	ba	iler	other	3			
			<u> </u>		<u> </u>								
itial Depth to W	/ater (ft BTOC):	109	.()						MO ME	TED MAKE	LOEDIAL AUGUS	In-Situ	
	. ,	Well Depth (ft bto		 	Measure	Point: Well To	Steel	Casina			SERIAL NUMBER	. <u>deca 2</u>	
	- from database					· oma	Oleen	Casing	VVAIER		R SERIAL NUMBE	R: Heron 10	2760
		WD-Initial Depth	191,7	· · · · · · · · · · · · · · · · · · ·	Initial DTW /	Before Remova	Ann	roy 5 min	After Reins	4_11_4!	nsducer		
		0.17 <u>,4"</u> = 0.66, 1"			Time	Initial DTW		me		I DTW	me of Removal	7	
ne Casing Volu		32.50	J.071	·	0820	109.0	N	4		Tir	me of Reinstallation	' ノー	
ree Casing Vol	-	97.51			Comments:								
~*		ı, black, cloudy, g	reen .		1/5	llphur, organic, o							
		,, Sidady, g			ough none, su	iipi lur, organic, oʻ	mer	Sc	lide Trob	🔾 Smali Qu, Me	-10		

Page 1 of 11

Project N	lamo PG&E	Topock CMP				-	<u> </u>				Sampling Log	
Job Nu	. —	5.MP.02.CM					Sampling		2013-CN			Jan 1
Sampler_	72001		1 Field					Date _	4/8/1_	5		BUV
	mla Nivershauf	_ Field Team _	Field	Conditions				Page	of of	<u> </u>		
	ple Number	CW-01M-029				mple ID NA		_		QC Sample	Time	
ourge Start Tim				Purge Meth	nod: <u>3-VOl</u> v	Ded. I	Pump <u>VC</u>	2				
	Flow Cell)/ N		Min. Purge	Volume@sl)/(I	-) <u>47</u> F	Purge Rate (gpm)/(mLpi	m) 2	Pump I	Make and Model 23	Grane Gos 4
Water Level	Time 4.m.n	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv		nments cription below
109.03		8	7.41	7.589			24.30	_	_	170	Hz=319	,
10903	0940	16	7.36	7585	1	9.43	29,29	-	-	171		· · · · · · · · · · · · · · · · · · ·
10903	0944	24	7.42	7.593	.1	9.37	29.51		-	168		
109.03	0948	32	7.44	7.585	1		29.31	_		168		
109.03	0952	40	7.43	7.582	1	9.50				1/08		
10 6.00	0 00		11-15	11700	<u> </u>	7,50	24,35	-		168		
							-					
					<u>, , , , , , , , , , , , , , , , , , , </u>				•——•			
	mpliance Crite		6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td>-</td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>					-	1.0800			
*If pH or TDS is	s out of range ch	neck calibration, t	ake to IM3 an	d check pH, SC	get second pr	obe. If still out of	range imme	ı ediately cor	ntact B. Coll	ו lom ((541) 740-3	B250). If B. Collom unav	ailable contact S
			+/- 0.1	+/- 3%	2 x36602 or (7 +/- 10% NTU	02) 525-1137). If +/- 0.3	J. Piper una	vallable co	ntact Christ	ina Hong ((213)	3250). If B. Collom unav 228-8248 x35448 or (2	13) 228-8242).
Parameter Sta	bilization Criter	ria	pH units		units when >10 NTUs	mg/L	+/- 2°C	NA	NA	+/- 10 mV		
	ameters Stablize p	orior to sampling?	y	Ч		V	V	-	_	11		
revious Field me		10/16/2012)	7.8	7314	0.2	9.3	29.7	0.47		66.7		
	s consistent with r		Y	4	V	V	1/		_	highr		
ample Time (2953 ° s	Sample Location:	pum	tubing	well port	7 spigot	ba	ailer	other	0		
omments:									_ other			
		1000		· · ·								
	/ater (ft BTOC):					permission.	×				OLIVIAL NONDLIV.	In-5.74 950 506
		Nell Depth (ft bto	c):		Measure	Point: Vell T	Ot Steel	Casing	WATER	R LEVEL METER	R SERIAL NUMBER:	teron 1071
	- from database	·	,		Initial DTM	/Defee D				If Tra	nsducer	
		WD-Initial Depth	-			Before Remova	7,00		After Reins		me of Removal	d
	r diameter) 2"= (0.17, 4"= 0.66, 1"		n)	7ime 6905	Initial DTW		ime 	Fina	I DTW Tir	me of Reinstallation	ン
					(39/3	100170	_ / /	V/ } —				
ne Casing Volu		13, 78			_			V 1		· · · · · · · · · · · · · · · · · · ·		
ne Casing Volu	lumes =	13, 78 41, 34 , black, cloudy, g			Comments:	ılphur, organic, o		V 1			,	

						···		-		Topock	Sampling Log		:
	na PG&E	Topock CMP					Sampling		2013-CN			· ·	_
Project Nar	110	5.MP.02.CM	1		.			Date	4/9/1)		BRL	
F	1 A	Field Team	Field	Conditions		eral, Cle	<u> </u>	Page	of			(700	
Sampler	le Number	CW-02D-029				mple ID NA				QC Sample	Time A	-	_
Well/Samp	/3 1101				10d: 3-U01		Pump 🔥						
Purge Start Time	Flow Cel	/ N		Min. Purge	Volume (ga))/(L) <u>130 </u>	Purge Rate	gpm)/(mLp	m) 3	Pump	Make and Model	Grandfos & 3	
	Flow Ce			0 1 45 - 15 -	T !!!	Di o				T		21101109/05	_
Water	Time	Vol. Rurged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	(See	Comments description below	
Level	0728	27	7.63	7.729	17	7.41	30.16			191	Az=277	7	
	1	54	7.63	7,729	2	7.40	30.26			181			
92.14			7.64	7715	_1	7.35	30.29	_		ורן			-
92.13	0746	108	7,66	7.732	1	7.30	30.32			167			_
92.13	10132	135	7.60	7,727	1	7.32	30.20						
92.13	0804	133	1.40			1,02	00.00			167			_
			· · · · · ·										_
			6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>4.0000</td><td></td><td></td><td></td><td></td></ph<9.2<>						4.0000				
Parameter	Compliance Crit	teria	l		`	 	[1.0800				
Parameter TE	S is out of range	check calibration, ouffy unavailable c	take to livis ar ontact J. Pipei	r ((702) 953-120	5-get second pro 32 x36602 or (70	obe. If still out o 02) 525-1137), If	range imme J. Piper una	ediately cor vailable co	ntact B. Coll ntact Christ	om ((541) 740-3	3250). If B. Collom (unavailable contact S. or (213) 228-8242).	
Duffy ((530)	341	i	+/- 0.1	+/- 3%	+/- 10% NTU units	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV	220-0248 333446 (UI (213) 228-8242).	_
	Stabilization Crit	eria	pri units		when >10 NTUs	mg/L						•	
Parame	parameters Stablize	e prior to sampling? (10/15/2012)	4	7507	0.2	<u> </u>	<u> </u>	-	-	4			_
Did last three	e Fala	(10/15/2012)		1 501 1 1	0.2	7.28	30.51	0.48		37.6			_
Are measure	eld measurement ements consistent wit	in previous:	Com			7				Light			
ormple Tin	ne 0600 V	Sample Location	pum (p tubing	well port	spigot	ba	ailer	_ other	J			
Comments								-				·	_
		2).	41.97	•					WQ ME	TER MAKE and	SERIAL NUMBER	+ 4-5; tu 4500	_
Initial Dept	th to Water (ft BTO)	رن):			Measure	Point: Well T	OG Steel	Casing	WATER	LEVEL METER	SERIAL NUMBER	# N-5; tn 4500 50618 Solinst 210100	
Field mea	sured confirmation o	of Well Depth (ft bto ase) ft btoc(35	 5)				$\overline{}$			If Trai	nsducer	- 21.15+ 21010	<i>;</i> ¬
WD (Well	Depth - from units	ויייייייייייייייייייייייייייייייייייי	n 263	108	Initial DTW	/ Before Remova	App	rox. 5 min	After Reinst	- H - C	· · · · · · · · · · · · · · · · · · ·		4
SWH (Sta	anding Water Height	y"= 0 17, 4"= 0.66, 1	1"=0.041 (2	in)	Time	Initial DTW		ime		I DTW	ne of Removal	7	-
	as not didiliotory	, ,	4.72		0702	91.92		17		— []]	ne of Reinstallation	\mathcal{I}	-
One Casi	ing Volume = 5 5 5 6		154.1	1	Comments:	~ ,							1
~~~ Ca	asing Volumes		green		Odor: (one) si	ulphur, organic, o	other	Sc	olids: Trace	Small Qu. Med	d Qu. Large Ou Pa	articulate, Silt, Sand	
/: d	grey, yellow, br	own, black, cloudy, _{ock} program\Database\Fie	ki/FrontEnd2Kv34	4_PaperWorkMIST.i	mdb/rptPurgeFormÇ&	ИР			C	/	,go &u, i di	Page 3 of 1	11
(nPro	jiPacifict as Electric											-901	•

Page 4 of 11

Topock Sampling Log

	· · · · · · · · · · · · · · · · · · ·						тороск 5	ampling Log	
Project Name PG&E Topock CMP		-		Sampling		2013-CN	IP-029		
Job Number 423575.MP.02.CM	4	esside a	-1 A/-	_	Date	9/41	رايا 		BE V
Sampler Field Team		windy, C	por Clear		Page	of of			
Well/Sample Number CW-03D-029	9	QC San	nple ID NA				QC Sample T	ime $\mathcal{M}$	
Purge Start Time 1007	Purge M	lethod: 3 vo (	Ded. I	Pump A	Q				
Flow Cell. N	Min. Pu	ge Volume (gal)/(L)	135	ourge Rate	gpn)/(mLp	m) <u>3</u>	Pump N	Make and Model Q	mudfes & Z
Water Time Vol Purgeo Level Quin gallons / lite		ity Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	C	omments scription below
76.71 1016 27	7,52 7765	5	7.46	29.64			143		
76.71 1025 54	בדר וריך		7.53	30.70	-	_	136		
76.71 1034 81	7.71 7.72(	0 1	7,54	30.43	_		133		
76.71 1043 108	7.72 7777			30.15		_	133		
76.71 1057 135	7.72 773	7.   ]		36.37		_	135		
				,			رد.		
			· · · · · · · · · · · · · · · · · · ·						
			7 100-00		<u> </u>				
Parameter Compliance Criteria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td>4 0000</td><td></td><td></td><td></td></ph<9.2<>					4 0000			
•	1 ' 1		le de en	]		1.0800	]		
**If pH or TDS is out of range check calibratic Duffy ((530) 941-9227). If S. Duffy unavailable	e contact J. Piper ((702) 953-	, SC-get second pro 1202 x36602 or (70	obe. It still out o 2) 525-1137). If	f range imme J. Piper una	ediately cor ivailable co	ntact B. Coll ntact Christ	lom ((541) 740-3 ina Hong ((213)	250). If B. Collom una 228-8248 x35448 or	available contact S. (213) 228-8242)
Parameter Stabilization Criteria	+/- 0.1 +/- 3% pH units	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV		()
Did last three Parameters Stablize prior to sampling	1 ² 4 V	V	Υ	У		-	V	4	. 741
Previous Field measurement (10/15/2012)	8.08 7509	0.2	7.43	30.67	0.48		12.2		
Are measurements consistent with previous?	lonuer V	У	Y	V		-	higher		
Sample Time 1054 Sample Locat	on: pump tubing	well port	spigot	b	ailer	other	U		<del></del>
Comments:		····					<del> </del>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
1 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 1	76.67					MO ME	TED MAKE	OF5141 AU 44555	In-situ asou
Initial Depth to Water (ft BTOC): Field measured confirmation of Well Depth (ft		— Measure	Point: Well T	Stee	l Casing			SERIAL NUMBER: SERIAL NUMBER:	In-situ 9504
	340)			0.00	- Cuomg	VVIII		nsducer	Solmst 210100
SWH (Standing Water Height) = WD-Initial De		Initial DTW /	Before Remova	al Ap	prox. 5 min	After Reins	4-11-4!	ne of Removal	
D (Volume as per diameter) 2"= 0.17, 4"= 0.66		Time	Initial DTW	7	lime .		al DTW	ne of Reinstallation _	
One Casing Volume = D*SWH	44.76	0957	76.6	1 /	VA-			TO ST INCHISTALIALION	
Three Casing Volumes = 3	1.29	Comments:							
Color: clea, grey, yellow, brown, black, cloud	y, green	Odor: pone, su	lphur, organic, o	other	s	olids: Trac	e, Small Qu, Me	d Qu, Large Qu, Parti	iculate. Silt. Sand

Project N	lama PGSE	Topock CMP								Topock S	Sampling Log	
Job Nu		75.MP.02.CM		<del> </del>			Sampling		2013-CM			
Sampler	11		1					Date	4/4/1	3		pec V
<del></del>		_ Field Team _	Field	Conditions $\nu$	•	Cool, Clas	~	Page	of	<u> </u>		
	1100	CW-03M-029			QC Sa	mple ID NA				QC Sample	Time VA	
Purge Start Tim	e 1120			Purge Meth	nod: 3 volu	anul Ded.	Pump			•		
	Flow Cell Y	')) N Т	1		Volume (gal) (L		Purge Rate	gp <b>m</b> )/(mLp	m) 2	Pump	Make and Model	7 mudfos*12
Water Level	Time Smr	Vol. Purged gallors / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv		omments escription below
77.37	1128	16	7.49	9597	2	3. lele	29.90			185	Hz=267	,
77.37	1136	32	7.47	9.236	1	3.07	29.93	-	_	174		
77.37	1144	48	7.47	9.131	1	3.79	29.99			163		,
77.37	1157	64	7.48	9094	ì	3.35	29.99	_	_	153		
71.37	4160	80	7.48	9074	1	1	30.Ce			146		95%
77.37	1708	96	7.48	9055	1	3.44	30.07	-		143		
												·
						-		~ .				*
Parameter Co	mpliance Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td>·</td><td></td></ph<9.2<>						1.0800		·	
**If pH or TDS is	out of range cl	I heck calibration, t	<b>I</b> ake to IM3 an	d check nH. SC	-net second nro	about still out of	Fongo imaga		l	//= =	3250). If B. Collom un	
Duffy ((530) 941	-9227). If S. Du	ffy unavailable co	ntact J. Piper	((702) 953-120	22 X00002 01 (10	02) 525-1137). If	J. Piper una	vailable co	ntact B. Coll ntact Christi	om ((541) 740-: ina Hong ((213)	3250). If B. Collom un 228-8248 x35448 or	available contact S. (213) 228-8242).
Parameter Stat			+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV		( , , , , , , , , , , , , , , , , , , ,
Did last three Para			4	У	Y	v	V	_	_	· /		
Previous Field me Are measurements	٠,	10/15/2012)	7.78	8495	0.2	3.43	30.19	0.55		-1.7	74	<del></del>
			Corre	hany	V		V	_	-	higher	-	
Sample Time Comments:	1717 3	Sample Location:	punk	tubing	well port	spigot	/ ba	iler	other	3		
Comments						•						
Initial Depth to W	ater (ft BTOC):		77.25			· · · · · · · · · · · · · · · · · · ·			WO ME	TED MAKE and	SERIAL NUMBER:	In-5, tu 9500
		Nell Depth (ft btoo			Measure	Point: Well T	OC Steel	Casing				50618
ND (Well Depth -											nsducer	Solins 210100
		WD-Initial Depth	144,	75	Initial DTW /	Before Remova	App	rox. 5 min	After Reinst	allation		
) (Volume as per	diameter) 2"=	0.17, 4"= 0.66, 1"	=0.041 (2 i	n)	Time	Initial DTW	Т	ime		I DTW	me of Removal _	<del></del>
One Casing Volu		24.6	<b>5</b>		1032	77.25	1	A -			ne of Reinstallation	
Three Casing Vol	umes = ·	73,	8		Comments:							
Color: (lea), grey	, yellow, brown	, black, cloudy, g	reen	1	Odor: none. su	lphur, organic, o	ther	6.	lide: TA	Small Ov. M-	d Ou Lease Ou D	
rlandel\Proj\PacificGasi	ElectricCo\TopockPr	ogram\Database\Field	FrontEnd2Kv344_	PaperWorkMIST.mc	lb\rptPurge <b>Co</b> mCMF	,, <b></b>		30	Julia. Tiple	) Small Qu, Me	d Qu, Large Qu, Parti	culate, Silt, Sand Page 6 of 1

			·							Topock S	Sampling Log	
Project N	and a	Topock CMP	<del>.</del>				Sampling	Event _	2013-CN			(John )
Job Nu	A23579	5.MP.02.CM	7					Date C	1/9/1	<b>S</b>		DCC.
Sampler _	<u> Uh</u>	_ Field Team _	1 Field	Conditions L	v.vdy, c	ool Clear	•	Page	of			BE
Well/Sam	ple Number	CW-04D-029			QC Sai	mple ID NA				QC Sample	Time 11A	
Purge Start Tim	ne 1317			Purge Meth	nod: 3-100	Ded.	Pump	7A		•	2013	
	Flow Cell:	) _{/ N}	T	Min. Purge	Volume (gai) (L		Purge Rate (		m)3	Pump i	Make and Model	Grundfos & 3
Water Level	Time Smin	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	(See	Comments description below
61.63	1320	24	7.72	7189	4	8.14	29.89			150	HZ=24	7
61.61	1328	48	7.76	7631	4	8.67	29.97	-	_	138		
61.60	1336	72	7,77		2	8,73	30.15		_	133		
61.60	1344	96	7.76		1	_	30.18			128		
61.60	1352	120	7.76	7687			30.00	·	*******	128		
			,,,,	1401		0.00	50.00			1,00		
-		<del></del>							-			
					**	· · · · · · · · · · · · · · · · · · ·			<del></del>			
Parameter Co	mpliance Crite		6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><del></del></td><td></td></ph<9.2<>								<del></del>	
							Ī .		1.0800			
Duffy ((530) 941	s out of range cr 1-9227). If S. Du	ffy unavailable co	take to IM3 an ontact J. Piper	d check pH, S0 ((702) 953-120	C-get second pro 02 x36602 or (70	obe. If still out o 02) 525-1137). If	of range imme f J. Piper una	ediately cor vailable co	ntact B. Col ntact Christ	lom ((541) 740-3	3250). If B. Collom	unavailable contact S. or (213) 228-8242).
	bilization Crite	1	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV		0. (2.10) 220 0212).
Did last three Par	ameters Stablize p	prior to sampling?	4	У	Ч	Ч	V		_	$\overline{v}$		
Previous Field me		10/16/2012)	7.97	7717	0.7	8.61	30.48	0.5		80.7		
Are measurement		previous?	4	_ Ч	¥	Y	4		_	higher		
Sample Time	<u>354</u> / (	Sample Location:	pum	p tubing	well port	spigot	b	ailer	other	J		
Comments:							<del> </del>					
Initial Danth to 10	V-1- (5 DT00)	112	7	***								Insty 9500
Initial Depth to W Field measured			- \.		Measure	Point: Well T	- COC)	l Casing	WQ ME	LIER MAKE and	SERIAL NUMBER	· « /((n/ a)
WD (Well Depth				***	Wicasaic	TOILL. EVVEIL	Siee	Casing	VVATER	LEVEL METER	R SERIAL NUMBER	R: Belinst BIOICO
SWH (Standing \				78	Initial DTW /	Before Remova	al Apr	orox, 5 min	After Reins	.4=!!=!:	nsducer	
D (Volume as pe				. •	Time	Initial DTW		ime		al DTM/	me of Removal me of Reinstallatior	·
One Casing Volu			10		1301	61.22	1	B-			ne ui keinstallatioi	
Three Casing Vo	lumes =	17	3.30	į	Comments:							
Color: clear, gre	y, yellow, brown	, black, cloudy, g	green		Odor: none, su	Ilphur, organic, o	other	S	olids: Trag	e, Small Qu, Me	ed Qu, Large Qu, P	articulate, Silt, Sand

Project Name PG&E Topock CMP								- Opcon (	Sampling Log	/
					Sampling	g Event	2013-ÇN	1P-029		
Job Number 423575.MP.02.CM						Date	4/9/1	3		RSC V
Sampler Field Team	1 Field	Conditions	windly, (	bol, ale	er	Page	of	7	*	12
Well/Sample Number CW-04M-02	9				-91-029		. ]	QC Sample	Time/7 <i>Z</i> 5	
Purge Start Time 1441		Purge Meth	hod: 3 vol	Ded. I	Pump 🔥	10		ao campio	1725	
Flow Cell 🕢 / N			Volume (ga)/(L		Purge Rate		m) 2	Pump	Make and Model $\mathcal{G}_{i}$	rungbs &
Water Time Vol Rurged Level Cerum Gallors / liter	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS**	Eh/ORP mv		omments scription below
61.59 1447 12	7,67	7298	4	6.54	29.69	The state of the s		167	Hz 251	
61.59 1453 24	7.67	7,188	l	6.19	24.72		_	166		
6/59 1459 36	7.66	7.182	1	6.09	21.76	_	_	165		
61.59 1505 48	7.66	7188	1	,	29.80	_		163		<u> </u>
61.59 1511 60	7.64	7,191	1	1 2	29.86	_	_	161		
					1100			1001	:	
								,		
Parameter Compliance Criteria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td>·</td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>					·	1.0800			
**If pH or TDS is out of range check calibratio Duffy ((530) 941-9227). If S. Duffy unavailable	- Contact C. 1 ipci	((102) 333-120	02 X30002 01 (10	02) 020-1107). 11	f range imme J. Piper una	ediately cor vailable co	ntact B. Coll ntact Christ	 om ((541) 740-; ina Hong ((213)	 3250). If B. Collom una   228-8248 x35448 or	available contact S. (213) 228-8242).
Parameter Stabilization Criteria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	+/- 2°C	NA	NA	+/- 10 mV		
Did last three Parameters Stablize prior to sampling	? 4		4	Y	4			4	310	
Previous Field measurement (10/16/2012)  Are measurements consistent with previous?	7.76	6823	0.4	5.2	29.81	0.44		64.7		
	4	4	<u> </u>	brahr	1/		_	hall		
Sample TimeS\\ Z_\times Sample Location  Comments:	on: pam	tubing	well port	spigot	/ ba	ailer	_ other	J		
nitial Depth to Water (ft BTOC):	23						\\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\\circ}\exitingt{\\circ}\exitingth\\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\exitin\ex	TED MAKE		In-8,74 9508
Field measured confirmation of Well Depth (ft l			Measure	Point: Well T	? OO Steel	l Casing			SERIAL NUMBER:	30/01X
AID (Mall Danth From L. L. S. S. L.	69.8)				0.00.		***************************************	If Tra	Insducer	Solinst 210100
SWH (Standing Water Height) = WD-Initial Dep		1	Initial DTW /	Before Remova	I App	orox. 5 min	After Reins	4-11-4:		- <del>7</del> )
O (Volume as per diameter) 2"= 0.17, 4"= 0.66			Time	Initial DTW		ime			me of Removal _ me of Reinstallation _	/
	44		1430	61.33	N	A			THE OF REINSTAILATION _	/
Three Casing Volumes = 55.3	32		Comments:				70.00			

Project N	ama DOSE	Topock OMD								Topock	Sampling Log	
Project N Job Nu		Topock CMP					Sampling		2013-CN			
Sampler	(A)	5.MP.02.CM	1			,	*	Date	4/8/1	3,		nel V
		_ Field Team _ OW-01S-029	Fiel	d Conditions	vindy Cr		dy	Page	of of			ge -
		OVV-015-029	<del></del> -			mple ID NA	<u>.                                      </u>			QC Sample	Time Ast	<i>}</i>
Purge Start Tim	4	•			hod: 3-vol	Ded. I	Pump W	<u></u>				<del></del>
	Flow Cell:	) / N	T	Min. Purge	Volume (ga))/(L	)	Purge Rate	gpm)(mLp	m)	Pump	Make and Model	Grandfos & 3
Water Level	Time	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv		Comments escription below
G3.30	1132	2	7,10	6469	LAS NA	8117	2052	_	_	211	Hz=243	
93.28	1134	4	7.05	lele12	68	8.50	28.84		_	159		
93.28	1134	V	7.05	6391	10	8.00	28.96	_	_	166		
93.28	1138	ર્જ	7.02	6356	10 3	8.02	29.16		_	1 '		
93.29	1140	10	7.61	6325	2		29.04	-		160		
	11 10	10	1.0.	427 C	•	7.92	C1.04			157		
						``						
	-											
D											•	
Parameter Co			6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0800</td><td></td><td></td><td></td></ph<9.2<>						1.0800			
i*lf pH or TDS is Duffy ((530) 941	out of range of -9227), if S. Du	heck calibration, i	take to IM3 an	id check pH, SC	C-get second pro	be. If still out of	range imme	diately cor	ntact B. Coll	• lom ((541) 740-	I 3250). If B. Collom ur	navailable contact S.
<u> </u>			+/- 0.1	+/- 3%	+/- 10% NTU	+/- 0.3	J. Fiper una	valiable co	ntact Unrist	ina Hong ((213	3250). If B. Collom ur ) 228-8248 x35448 or	(213) 228-8242).
Parameter Stal	oilization Crite	ria	pH units		units when >10 NTUs	mg/L	+/- 2°C	NA	NA	+/- 10 mV		
		prior to sampling?	4	4	4	V	<b>y</b>		_	Y		
revious Field me are measurements		10/16/2012)	7.64	4295	1	8.26	29.66	0.28	-	61.9		
	10.10		lower	high	V	V	U			hans	•	
		Sample Location:	, pain	p tubing	well port	( spigot	( ba	iler	other	3		
comments:	10 - Chec	k In-situ	4500	527 vs. 3/	andord a	reads 224	@21.3°C	Sta	ndond	= ~230	@ 21°C . Caliz	nation is gorx
nitial Depth to W	/ater (ft BTOC):	·	93.21				<del></del>	· · · · · · · · · · · · · · · · · · ·	WO ME	TED MAKE on	d SERIAL NUMBER:	Insim 9500
		Well Depth (ft bto			Measure	Point: Well To	OC Steel	Casing			U SERIAL NUMBER: R SERIAL NUMBER:	50618
VD (Well Depth -				<del></del>							ansducer	Heron 10769
		WD-Initial Depth		29	Initial DTW /	Before Remova	I App	rox. 5 min	After Reins		<del></del>	163
		0.17, 4"= 0.66, 1			Time	Initial DTW	Т	ime		I DTW	ime of Removal	1153
ne Casing Volui					1101	93.21	170	DO	93	3.70	ime of Reinstallation	1177
hree Casing Vol	umes =	10.32			Comments:							
olor: clear, grey	, yellow, browr	n, black, cloudy, g	reen		Odor: none, sui	lphur, organic, o	ther		lide: To	Small Ov. M	ad Out Laws Out 7	e. 11 ou c
		rogram\Database\Field		_PaperWorkMIST.m	db/rptPuro	,		30	Jinus. II dice	Joinan Qu, Me	ed Qu, Large Qu, Pari	ticulate, Silt, Sand

Topock Sampling Log PG&E Topock CMP **Project Name** Sampling Event 2013-CMP-029 Job Number 423575.MP.02.CM 4/8/13 Date bu Field Conditions Windy Claudy Field Team Sampler Page of Well/Sample Number | OW-02S-029 l NA QC Sample Time Purge Start Time 1335 Purge Method: 5-6 Ded. Pump Min. Purge Volume (gal)/(L) Flow Cell: Y N Purge Rate (gpm))(mLpm) Pump Make and Model Time Vol. Purged Water pH** Conductivity Turbidity Diss. Oxygen Temp. Salinity TDS** Eh/ORP Comments Level gallons / liters mS/cm NTU °C ma/L a/L mν (See description below 92.13 1338 8.26 1980 28.45 133 Hz = 245 1341 92.13 ZVO 8,15 28,94 131 Pumpsipped down. More 4/2. 92.13 1344 12 8.00 28,79 130 92.13 1965 1347 3 8.03 28.84 130 5 42.13 1350 1962 8.07 78.92 131 **Parameter Compliance Criteria** 6.2<pH<9.2 1.0800 **If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137). If J. Piper unavailable contact Christina Hong ((213) 228-8248 x35448 or (213) 228-8242). +/- 10% NTU +/- 0.3 +/- 0.1 +/- 2°C +/- 10 mV Parameter Stabilization Criteria units pH units mg/L when >10 NTUs Did last three Parameters Stablize prior to sampling? Previous Field measurement (10/18/2012)8.08 1716 7.92 29.55 0.11 43.2 Are measurements consistent with previous? Sample Time Sample Location: pump tubing well port Initial Depth to Water (ft BTOC): WQ METER MAKE and SERIAL NUMBER: Measure Point: Field measured confirmation of Well Depth (ft btoc): (Vell TOC) Steel Casing WATER LEVEL METER SERIAL NUMBER: WD (Well Depth - from database) ft btoc (121) If Transducer Initial DTW / Before Removal SWH (Standing Water Height) = WD-Initial Depth 29.31 Approx. 5 min After Reinstallation Time of Removal Time Initial DTW Time D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 Final DTW 1404 Time of Reinstallation 9173 One Casing Volume = D*SWH Comments: Three Casing Volumes = -Color: dear grey, yellow, brown, black, cloudy, green Odor: none, sulphur, organic, other Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand

Project Name	Droinet N	DCSE	Tanada OMD	<del></del>				<u> </u>			Topock 8	Sampling Log	
Sampler   Color   Field Toam   Field Conditions   CO   Reg   Reg   Field   Conditions   CO   Reg   Reg   Field   Conditions   CO   Reg   Field   Conditions			•					Sampling	_				
Well/Sample Number   OW-055-026   DA		M. 42357		. 1					_	1.7 /	Ś		Val.
Purge Start Time   1224   Purge Method:   Ded. Purnp   Ded. Purnp   Purnp Make and Model   Church   Purnp Make and Model   Chu				'Fiel	d Conditions $\nu$			lendy	Page	of	<u>1                                    </u>		<u> </u>
Purge Method:   Ded. Pump   Ded. Pump   Pump Make and Model   Conductivity   Diss. Oxygen   Temp.   Similarly   Total   Time   Vol. Purged   Ded. Pump   Pump Make and Model   Comments   Ded. Pump		-	OW-05S-029			QC Sa	mple ID NA				QC Sample	Time 00	<b>-</b> D
Water   Time   Vol. Purged   pH**   Conductivity   Turbidity   Diss. Oxygen   Temp.   Salinity   TDS**   ENORP   Comments   Salinity   TDS**   Sample Incertification   Turbidity   Salinity   TDS**   Sample Incertification   Turbidity   Salinity   TDS**   Salinity	Purge Start Tim	e 1224			-			Pump					<del>                                     </del>
Level		Flow Cell Y	) / N T	T	Min. Purge	Volume (ga)/(L	8	Purge Rate (	gpn)/(mLp	om)	Pump	Make and Model	aninofes #12
941.83 1739 4 7.38 3579 6 6 6.68 79.02 - 1447  94.83 1739 8 7.37 3520 3 6.66 29.02 - 1447  94.83 1739 10 7.38 3542 7 6.66 29.08 - 139  Parameter Compliance Criteria 6.2cpH-9.2 1 6.66 29.08 - 138  Parameter Compliance Criteria 6.2cpH-9.2 1 6.66 29.08 - 138  Parameter Compliance Criteria 6.2cpH-9.2 1 6.2c 10 10 10 10 10 10 10 10 10 10 10 10 10		Time		pH**			1					(See	
\$\frac{94.85}{94.83} \   \$238 \   \$\frac{7.38}{3579} \   \$\frac{6}{6.68} \   \$\frac{99.10}{29.05} \   \$			2	7,41	3731	7	6.66	28.89		_	147	1/2=25	53
17.83   17.30		1228	4	7,38	3579	6	I .	1	_		147		
Parameter Compliance Criteria  6.2 <ph<9.2 1.080="" 1.0800="" 1.<="" 6.2<ph<9.2="" compliance="" criteria="" parameter="" td=""><td>94.83</td><td>1230</td><td>6</td><td>7.37</td><td>3562</td><td>5</td><td>1 /</td><td></td><td></td><td></td><td></td><td></td><td></td></ph<9.2>	94.83	1230	6	7.37	3562	5	1 /						
Parameter Compliance Criteria  6.2 <ph<9.2 1.080="" 1.0800="" 1.<="" 6.2<ph<9.2="" compliance="" criteria="" parameter="" td=""><td>9483</td><td>17.32</td><td>8</td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ph<9.2>	9483	17.32	8			3							
Parameter Compliance Criteria  6.2-pH-e9.2  **If pt or TDS is out of range check calibration, take to IM3 and check pt, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250), If B. Collom unavailable contact S. Duffy ((530) 941-9227), If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137), If J. Piper unavailable contact Christina Hong ((213) 228-8248 x35448 or (213) 228-8242).  **Parameter Stabilization Criteria  **H-01	94,83	-	10										
**If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-927). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If					ے، پی		0.09	2 110	-		120		
**If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-927). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If					<del></del>					<u> </u>			
**If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-927). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If			<del></del>					-				<u> </u>	
**If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x38602 or (702) 525-1137). If J. Piper unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-927). If S. Duffy unavailable contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((541) 740-3250). If	Porometer C-												
Parameter Stabilization Criteria  +/- 0.1 pH units pH units when >10 NTUs when >10 NTU				· ·									
Parameter Stabilization Criteria  #-0.1 pH units when >10 NTUs when >10	^*If pH or TDS is Duffy ((530) 941	s out of range cl -9227). If S. Du	heck calibration, : iffy unavailable co	take to IM3 ar ontact J. Pipei	nd check pH, SC	C-get second pro	obe. If still out o	f range imme	ediately con	ntact B. Coll	om ((541) 740-	3250). If B. Collom	unavailable contact S.
Did last three Parameters Stablize prior to sampling?  Previous Field measurement (10/18/2012) 7.71 2954 2 6/28 30.01 0.19 46.6  Are measurements consistent with previous?  Sample Time 1735 Sample Location:				+/- 0.1	+/- 3%	+/- 10% NTU units	+/- 0.3					) 228-8248 X35448	or (213) 228-8242).
Are measurements consistent with previous?  Sample Time 1735 Sample Location: pump tubing well port spigot bailer other  Unitial Depth to Water (ft BTOC): 94.69  Well port spigot bailer other  WQ METER MAKE and SERIAL NUMBER: 514.9500  WATER LEVEL METER SERIAL NUMBER: 516.750  WATER LEVEL METER SERIAL NUMBER: 10769  Initial DTW / Before Removal Approx. 5 min After Reinstallation Time of Removal Time of Reinstallation Time of Reinsta	Did last three Para	ameters Stablize I	prior to sampling?	Ý	У	V	1/	1.0			<del></del>		
Sample Time 17235 Sample Location: pump tubing well port spigot bailer other    Sample Time 17235   Sample Location: pump tubing   Sample Location: pump tubing   Sample Time   Sample T		٠,		7.71	2954	2	6.28	30.01	0.19		46.6		
Sample Time		/	revious?	<u> </u>	<u> </u>	1/	V	· U		_	1- 2 1000	_	
Initial Depth to Water (ft BTOC):    GU. GG	Sample Time	1735 V	Sample Location:	pum	p tubing	well port	spigot	b	ailer	other	7		
Field measured confirmation of Well Depth (ft btoc):  WD (Well Depth - from database) ft btoc (110.3)  SWH (Standing Water Height) = WD-Initial Depth   5 (0)   Time   Initial DTW   Time of Reinstallation   Time of Reinsta	Comments:	<del></del>				· · · · · · · · · · · · · · · · · · ·							
Field measured confirmation of Well Depth (ft btoc):  WD (Well Depth - from database) ft btoc (110.3)  SWH (Standing Water Height) = WD-Initial Depth   5 (0)   Time   Initial DTW   Time of Reinstallation   Time of Reinsta				B11 C			· .						To the Great
WD (Well Depth - from database) ft btoc (110.3)  SWH (Standing Water Height) = WD-Initial Depth 15.61  D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)  One Casing Volume = D*SWH 100 (110.3)  Initial DTW / Before Removal Approx. 5 min After Reinstallation Time of Removal 17.72  Time Initial DTW Time Final DTW Time of Reinstallation Time of Reinstallation Time of Reinstallation 17.40					1			` '					R:50618
SWH (Standing Water Height) = WD-Initial Depth 15.61  D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)  One Casing Volume = D*SWH 10.00 (10.3)  Initial DTW / Before Removal Approx. 5 min After Reinstallation Time of Removal 17.72  Time Initial DTW Time Final DTW Time of Reinstallation Time of Reinstallation Time of Reinstallation 17.40						Measure	Point: Vell T	Steel	Casing	WATER	LEVEL METE	R SERIAL NUMBE	R: Heron 10769
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in)  Time Initial DTW Time Final DTW  Time of Removal  1210 94.69 1245 94.69  Time of Reinstallation  Time of Removal  1210 94.69 1245				- 1 -		Initial DTW /	Before Remova	,	·			nsducer	
One Casing Volume = D*SWH 265 1210 94.69 1745 94.69 Time of Reinstallation 7240			-					App			I II	me of Removal	12/2
				=0.041(2			946			1 11	Ti	me of Reinstallatio	n /240
The state of the s	-			7			1.07		ч)_		67_		
Color: clear, grey, yellow, brown, black, cloudy, green  Odor: fone sulphur, organic, other  Solids: Trace Small Qu. Med Qu. Large Qu. Particulate, Silt, Sand	<b>^</b> \'		• •			Odor: rone e	Ilnhur organic c	other		alida. T	2)0	-10 0 =	

**Topock Specific Conductance Profiling** 

Personnel: B. Collow/CH2M

Date 4-3-13

CTD Diver Serial Number: 12767

Did calibration parameters stabilize? yes
SC calibration: 1413 ws/cm soln reads 1413 ws/cm @ 0745

- IM-3 Statl confirms that there was no backwashing or
unplanned plant downtime on 4-2-13 or 4-3-13, Hay were Ree

Depth to Water (ft BTOC) Loc ID **Date Start Time Finish Time** Comments **OW-1S** 93.52 @ 10/8 1018 1021 Pt not moved. 10 OW-1M 93.71@1023 1023 1028 TD= 189 OW-1D 93.70@ 1031 1031 1037 TD= 2791 OW-2S 92.07@1043 1043 1045 TD= lua OW-2M 91.900 1048 1048 TD= 211 1054 OW-2D 92,350 1058 1058 No6 **OW-5S** 95.04a 1113 Pt not moved TD= ルノフ 1120 OW-5M 95.09@ 1120 1127 70=253 OW-5D 95.72@ 1140 1140 1150 " " STOP@ 340' 109.45e0846 0846 CW-1M 0852 CW-1D 109.76 @ 0854 0854 0902 TD= 319' CW-2M 9275@ 0908 0908 0913 CW-2D 92.72 @ 0916 0916 0925 NO PT , FB END@ 340' CW-3M 0931 0936 77.57@0931 CW-3D 0939 77.350,0939 0946 CW-4M 61.69@ 0956 0956 TD = 171 1001 CW-4D 61.80@ 1004 1004 1010 NOPT TD=304 MW 27-085 5.08@ 1343 1343 PT not moved TD=100' 1347 MW 31-135-19 MW 34-100 5.30 @ 1352 1358 22 MW 33-150 31.920 1431 1431 1437 TD=155 12.31@ 1903 &O MW 45-095 TD=93' 1403 1407 31-135 42.150 1416 1416 1421

#### Topock CMP Manual Water Level Snapshot Personnel: 3. Collow/CH2M

WLI serial number: PGE 2005-018

	Depth to Water			
Loc ID	(ft BTOC)	Date	Time	Comments
CW-1M	108,33	5-28-13	0943	
CW-1D	108.45		0945	
CW-2M	91.85		0951	***
CW-2D	91.47		0958	
CW-3M	76,71		0958	
CW-3D	76.13		1000	
CW-4M	60.67		1007	
CW-4D	60.55		1009	
OW-1S	92.77		1016	
OW-1M	92.54		1018	
OW-1D	92.26		1020	
OW-2S	91.39		1023	
OW-2M	90.68		1025	
OW-2D	90,74		1027	
OW-5S	94,23		1031	
OW-5M	43.35		1033	
OW-5D	94.04		1035	
	,	-		

IM-3 Staff confirm that 5-28-13, 5-27-13, and 5-26-13 were normal operation days with no backwashing or plant down time prior to snapshot collection.







On September 3, 2009, DTSC approved modifications to the CMP Monitoring and Reporting Program that no longer required continuous groundwater elevation measurements at CW-1D and CW-1M.

### **MANUAL WATER LEVELS**

IM-3 COMPLIANCE MONITORING PROGRAM PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA



On September 3, 2009, DTSC approved modifications to the CMP Monitoring and Reporting Program that no longer required continuous groundwater elevation measurements at CW-2D and CW-2M.

# **MANUAL WATER LEVELS**

IM-3 COMPLIANCE MONITORING PROGRAM PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA



# **MANUAL WATER LEVELS**

IM-3 COMPLIANCE MONITORING PROGRAM PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA



On September 3, 2009, DTSC approved modifications to the CMP Monitoring and Reporting Program that no longer required continuous groundwater elevation measurements at CW-4D and CW-4M.

# **MANUAL WATER LEVELS**

IM-3 COMPLIANCE MONITORING PROGRAM PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA