Topock Project	Executive Abstract
Document Title:	Date of Document: July 13, 2012
Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2012 (PGE20120713A) Submitting Agency: DOI	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other) – PG&E
Final Document? X Yes No	
Priority Status: HIGH MED LOW Is this time critical? Yes No Type of Document: Draft Report Letter Memo	Action Required: Information Only Review & Comment Return to: By Date: Other / Explain:
What does this information pertain to?	Is this a Regulatory Requirement? ☑ Yes ☐ No If no, why is the document needed?
What is the consequence of NOT doing this item? What is the consequence of DOING this item? Submittal of this report is a compliance requirement under DOI's enforcement as an ARARs beginning August 2011.	Other Justification/s: Permit Other / Explain:
Brief Summary of attached document: The purpose of the Topock Compliance Monitoring Program (Cl and/or water quality of the aquifer in the injection well area an affected by the injected water. The monitoring network consist (CW series) screened in the shallow, middle, and/or deep zones area began in 2005. As of the First Half 2012, wells that exhibit deep-zone observation wells and certain middle- and all deep-zwells have not yet shown characteristics approaching injected with the properties of the properties	s of multiple observation wells (OW series) and compliance wells of the alluvial aquifer. The injection of treated groundwater in the water quality similar to the injected water include the middle- and one compliance wells. Two of the three shallow-zone observation water quality. water level data collected from the First Half 2012 CMP monitoring coring event, no samples exceeded the water quality objectives for
Recommendations: This report is for your information only.	
How is this information related to the Final Remedy or Regulator	pry Requirements:
Submittal of this report is a compliance requirement under DOI	enforcement's as an ARARs beginning August 2011.

Other requirements of this information? None. **Related Reports and Documents:** Click any boxes in the Regulatory Road Map (below) to be linked to the Documents Library on the DTSC Topock Web Site (www.dtsc-topock.com). CEQA/EIR Corrective Action Completion/ Remedy in Place Corrective Measures Implementation (CMI)/ Remedial Action RFI/RI RFA/PA CMS/FS (incl. Risk Assessment) Other Interim Measures Legend Version 9 RFA/PA – RCRA Facility Assessment/Preliminary Assessment
RFI/RI – RCRA Facility Investigation/CERCLA Remedial Investigation (including Risk Assessment) CMS/FS – RCRA Corrective Measure Study/CERCLA Feasibility Study CEQA/EIR – California Environmental Quality Act/Environmental Impact Report

Yvonne J. Meeks Manager

Environmental Remediation Gas Transmission & Distribution Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 E-Mail: <u>Yjm1@Pge.Com</u>

July 13, 2012

Pamela Innis
DOI Topock Remedial Project Manager
U.S. Department of the Interior
Office of Environmental Policy and Compliance
P.O. Box 2507-D (D-108)
Denver Federal Center, Building 56
Denver, CO 80225-0007

Subject: Interim Measures No. 3, Compliance Monitoring Program, Semiannual Groundwater

Monitoring Report, First Half 2012, PG&E Topock Compressor Station, Needles, California

(PGE20120713A)

Dear Ms. Innis:

Enclosed is the Compliance Monitoring Program, Semiannual Groundwater Monitoring Report, First Half 2012 for the Interim Measures No. 3 at the Pacific Gas and Electric Company (PG&E) Topock Compressor Station. This monitoring report presents the results of the First Half 2012 Compliance Monitoring Program groundwater monitoring event and has been prepared in conformance with the Department of the Interior's August 18, 2011 letter stating that the Interim Measures No. 3 Waste Discharge Requirements are applicable or relevant and appropriate requirements.

The current contingency plan specifies the concentrations and values for hexavalent chromium (Cr[VI]), chromium, total dissolved solids (TDS), and pH to be used to determine if contingency plan actions are necessary based on sample results. The water quality objectives concentrations that are used to trigger the contingency plan are Cr(VI) greater than 32.6 micrograms per liter (μ g/L), chromium greater than 28.0 μ g/L, TDS greater than 10,800 milligrams per liter, and pH outside of the range of 6.2 to 9.2.

No samples exceeded the water quality objectives for Cr(VI), chromium, pH, or TDS during the First Half 2012 sampling event. The next CMP event is scheduled to occur in October 2012.

Please contact me at (805) 234-2257 if you have any questions on the Compliance Monitoring Program.

Sincerely,

Yvonne Meeks

Topock Remediation Project Manager

honne Meks

Cc: Robert Perdue, Water Board Jose Cortez, Water Board Aaron Yue, DTSC Christopher Guerre, DTSC

Enclosure

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2012

Interim Measure No. 3, PG&E Topock Compressor Station, Needles, California Document ID: PGE20120713A

United States Department of the Interior

Pacific Gas and Electric Company

July 13, 2012

CH2MHILL。 155 Grand Avenue, Suite 800 Oakland, CA 94612

Compliance Monitoring Program Semiannual Groundwater Monitoring Report, First Half 2012

PG&E Topock Compressor Station, Needles, California

Prepared for

United States Department of the Interior

On behalf of

Pacific Gas and Electric Company

July 13, 2012

This report was prepared under the supervision of a California Professional Geologist

Serena Lee

Professional Geologist, P.G. #8259

Contents

Intro	duction		
First I	Half 2012	Activities	
First I		Results	
3.1	Analyti	ical Results	
	3.1.1	Hexavalent Chromium and Chromium	
	3.1.2	Other Metals and General Chemistry	
3.2	Analyti	ical Data Quality Review	
	3.2.1	Matrix Interference	
	3.2.2	Matrix Spike Samples	
	3.2.3	Quantitation and Sensitivity	
	3.2.4	Holding-time Data Qualification	
	3.2.5	Field Duplicates	
	3.2.6	Method Blanks	
	3.2.7	Equipment Blanks	
	3.2.8	Laboratory Duplicates	
	3.2.9	Calibration	
	3.2.10	Conclusion	
3.3	Influen	ice of Treated Water	
	3.3.1	Post-injection Versus Pre-injection	
	3.3.2	Water Quality Hydrographs	
3.4	Water	Level Measurements	
	3.4.1	Groundwater Gradient Characteristics	
3.5	Field Pa	arameter Data	
3.6	ARAR N	Monitoring Requirements	
		itoring Activities	
4.1		nnual Monitoring	
4.2	Annual	l Monitoring	
Refer	ences		
Certif	ication		

Tables

- Operational Status of Interim Measures No. 3 Injection Wells from Inception of Injection through First Half 2012
- Well Construction and Sampling Summary for Groundwater Samples, First Half 2012
- 3 Chromium Results for Groundwater Samples, First Half 2012
- 4 Metals and General Chemistry Results for Groundwater Samples, First Half 2012
- 5 Treated Water Quality Compared to OW and CW Pre-injection Water Quality
- 6 Treated Water Quality Compared to First Half 2012 Sampling Event Water Quality
- 7 Manual Water Level Measurements and Elevations, First Half 2012
- 8 Vertical Gradients within the OW and CW Clusters
- 9 Field Parameter Measurements for Groundwater Samples, First Half 2012
- 10 ARAR Monitoring Information for Groundwater Samples, First Half 2012

Figures

1	Site Location and Layout
2	Monitoring Locations for CMP
3A	OW-1S, OW-2S, OW-5S Water Quality Hydrographs
3B	OW-1M, OW-2M, OW-5M Water Quality Hydrographs
3C	OW-1D, OW-2D, OW-5D Water Quality Hydrographs
3D	CW-1M, CW-2M, CW-3M, CW-4M Water Quality Hydrographs
3E	CW-1D, CW-2D, CW-3D, CW-4D Water Quality Hydrographs
4A	OW-1S Groundwater Elevation Hydrograph
4B	OW-2S Groundwater Elevation Hydrograph
4C	OW-5 Groundwater Elevation Hydrographs
5A	Average Groundwater Elevations for Shallow Wells, May 2, 2012
5B	Average Groundwater Elevation Contours for Mid-Depth Wells, May 2, 2012
5C	Average Groundwater Elevation Contours for Deep Wells, May 2, 2012

Appendices

A Laboratory Reports, First Half 2012 B Field Data Sheets, First Half 2012

vi

Acronyms and Abbreviations

μg/L micrograms per liter

ARAR applicable or relevant and appropriate requirement

CMP Compliance Monitoring Program

Cr(VI) hexavalent chromium

CW compliance well

DOI United States Department of the Interior

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

IM Interim Measure

IM-3 Interim Measure No. 3

IW injection well

mg/L milligrams per liter

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

OW observation well

QAPP quality assurance project plan

TDS total dissolved solids

Water Board California Regional Water Quality Control Board, Colorado River Basin Region

WDR Waste Discharge Requirement

WQO water quality objective

SECTION 1

Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM-3). Currently, the IM-3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM-3 extraction, conveyance, treatment, and injection facilities. (All figures and tables are provided at the end of this report.)

The Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area, Topock Compressor Station, Needles, California (CH2M HILL, 2005a) (herein referred to as the Compliance Monitoring Plan) was submitted to the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) and the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) on June 17, 2005. The Compliance Monitoring Plan and its addendum (CH2M HILL, 2005b) provide the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the Compliance Monitoring Program (CMP). Several modifications of the sampling and reporting procedures have been approved since 2005, as outlined in Exhibit 1.

EXHIBIT 1 **Historical Modifications to the Compliance Monitoring Program** *PG&E Topock Compliance Monitoring Program*

Modification	Approval Date	Reference		
Modification of reporting requirements	DTSC: June 9, 2006	DTSC, 2006		
Reduction of constituents analyzed during	Water Board: January 23, 2007	Water Board, 2007a		
quarterly sampling of CMP observation wells	DTSC: January 22, 2007	DTSC, 2007		
		CH2M HILL, 2006		
Change from laboratory pH to field collected pH	Water Board: October 16, 2007	Water Board, 2007b		
for reporting	DTSC: January 22, 2008	DTSC, 2008a		
Modification of hexavalent chromium analytical	Water Board: November 13, 2007	Water Board, 2007c		
methods to extend hold time to 28 days	DTSC: January 22, 2008	DTSC, 2008a		
Modification of sampling and reporting	Water Board: August 28, 2008	Water Board, 2008		
frequency and the field pH trigger range for the CMP contingency plan	DTSC: December 12, 2008 (pH), September 3, 2009	DTSC, 2008b, 2009		

From July 2005 through September 2011, PG&E was operating the IM-3 groundwater treatment system as authorized by Water Board Order No. R7-2004-0103 (issued October 13, 2004), Order No. R7-2006-0060 (issued September 20, 2006), and the revised Monitoring and Reporting Program (MRP) under Order No. R7-2006-0060 (issued August 28, 2008).

PG&E is currently performing the CMP as authorized by the United States Department of the Interior (DOI) waste discharge applicable or relevant and appropriate requirements (ARARs). The Waste Discharge Requirements (WDR Order No. R7-2006-0060) expired on September 20, 2011 and was replaced by DOI enforcement of the ARARs, as documented in correspondence among the Water Board, DOI, and PG&E during the summer of 2011.

Specifically, the letter agreement issued July 26, 2011 from the Water Board to DOI (Water Board, 2011) requested:

- DOI concurrence that the WDRs are ARARs under the Comprehensive Environmental Response,
 Compensation and Liability Act of 1980 response action ongoing at the site.
- DOI confirmation that it will enforce these WDRs pursuant to the Administrative Consent Agreement entered into by DOI and PG&E in 2005 in lieu of the Water Board's adoption of a new Board Order to replace the expiring Board Order that set forth the WDRs.
- DOI concurrence with the roles and responsibilities between DOI and the Water Board for monitoring and enforcement.

In its letter dated August 18, 2011, the DOI provided concurrence and confirmation as requested (DOI, 2011). PG&E confirmed these changes with a letter to the DOI and the Water Board dated September 7, 2011 (PG&E, 2011). These changes add the DOI as the receiving regulatory agency for the CMP reports, with the Water Board continuing to receive report copies. Work described in this report was performed in accordance with the ARARs established in the July 26, 2011 letter (Water Board, 2011).

The ARARs specify effluent limitations, prohibitions, specifications, and provisions for subsurface injection. The MRP contained within the ARARs specifies the requirements for the CMP to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality.

The injection system consists of two injection wells (IWs): IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC, 2005), and injection into IW-2 began on July 31, 2005. Table 1 provides a summary of the history of injection for IM-3.

Figure 2 shows the locations of the injection wells and the groundwater monitoring wells (observation wells [OWs] and compliance wells [CWs]) in the CMP. Table 2 provides a summary of information on well construction and sampling methods for all wells in the CMP.

As of April 2012, samples are collected from OWs and CWs, shown on Figure 2, according to the following schedule:

- Three OWs (OW-1S, OW-2S, and OW-5S) located near the IM-3 injection well field are sampled semiannually (during the second and fourth quarters) for a limited suite of constituents.
- Six OWs (OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, and OW-5D) are:
 - Sampled annually for a limited suite of constituents during the fourth quarter.
 - Sampled for a full suite of constituents one cluster at a time on a triennial (once every 3 years) schedule.
 Within each 3-year period, all OW middle and deep wells will be sampled for a full suite of constituents.
 The triennial sampling will occur during the annual event (fourth quarter).
- Eight CWs are sampled semiannually for a limited suite of constituents and annually (during the fourth quarter) for a full suite of constituents.

For semiannual events, laboratory analyses include total dissolved solids (TDS), turbidity, specific conductance, a reduced suite of metals, and several inorganic cations and anions. Annual and triennial sampling events for CWs and select OWs include dissolved chromium, hexavalent chromium [Cr(VI)], metals, specific conductance, TDS, turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data—including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity—are also measured during each monitoring event (CH2M HILL, 2005a).

This report presents the results of the First Half 2012 CMP groundwater monitoring event.

SECTION 2

First Half 2012 Activities

This section provides a summary of the monitoring and sampling activities completed during the First Half 2012. The First Half 2012 event was a semiannual event conducted from April 3 through April 5, 2012 and consisted of:

- Three observation and eight compliance monitoring wells were sampled for water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- Two duplicate samples were collected at wells CW-2Dand CW-3D to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected using pressure transducers/ data loggers at five of the 17 CMP wells and were downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California* (CH2M HILL, 2005c) and addendums.

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and EMAX Laboratories, Inc. in Torrance, California, both California-certified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements were in accordance with the Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California (CH2M HILL, 2005c) and addendums. Data validation and management were conducted in accordance with the Quality Assurance Project Plan [QAPP], Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects (CH2M HILL, 2008).

First Half 2012 Results

This section is a summary of the results of the CMP groundwater sampling conducted during the First Half 2012. Figure 2 presents the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), chromium, specific conductance, metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports and field data sheets for the First Half 2012 monitoring event are presented in Appendices A and B, respectively.

3.1 Analytical Results

Three observation wells and eight compliance wells were sampled during the First Half 2012 sampling event. Analytical results for Cr(VI), chromium, other metals, and general chemistry parameters are presented in Tables 3 and 4 and are discussed below. Interim action levels/ water quality objectives (WQOs) were updated on August 8, 2006 when PG&E submitted a revised contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specifies the concentrations and values for Cr(VI), chromium, TDS, and pH to be used to determine if contingency plan actions were necessary based on sample results. A modification of the CMP contingency plan pH range was approved by the Water Board and DTSC in 2008 (Water Board, 2008; DTSC, 2008b).

3.1.1 Hexavalent Chromium and Chromium

Table 3 presents the Cr(VI) and chromium analytical results for groundwater in the shallow, middle, and deep wells from the First Half 2012 CMP sampling event. For shallow wells, the maximum detected Cr(VI) concentration was 26.8 micrograms per liter (μ g/L) in well OW-2S on April 5, 2012. For the middle wells, the maximum detected Cr(VI) concentration was 8.7 μ g/L in well CW-4M on April 4, 2012. For the deep wells, the maximum detected Cr(VI) concentration was 1.0 μ g/L in well CW-4D on April 4, 2012. During the First Half 2012 sampling event, no Cr(VI) sample results exceeded the WQO trigger level for Cr(VI) of 32 μ g/L.

For shallow wells, the maximum detected chromium concentration was 25.4 μ g/L in well OW-2S on April 5, 2012. For the middle wells, the maximum detected chromium concentration was 8.7 μ g/L in well CW-4M on April 4, 2012. For the deep wells, the maximum detected chromium concentration was 1.3 μ g/L in well CW-4D on April 4, 2012. During the First Half 2012 sampling event, no chromium sample results exceeded the WQO trigger level for chromium of 28 μ g/L. The contingency plan was not triggered for Cr(VI) or chromium.

3.1.2 Other Metals and General Chemistry

Table 4 presents the metals and general chemistry results for the CMP groundwater wells sampled during the First Half 2012. Metals and ions detected in the First Half 2012 sampling event included chloride, fluoride, sulfate, nitrate/nitrite as nitrogen, dissolved sodium, and dissolved molybdenum. In general, concentrations of metals and ions detected during the First Half 2012 sampling event are similar to those detected in previous sampling events.

Table 4 presents other inorganic analyte results from the CMP wells. During the First Half 2012, the sampling results from all wells were within the WQOs for TDS (less than 10,800 milligrams per liter [mg/L]) and pH (within 6.2 to 9.2). Sampling results for TDS varied from 1,000 mg/L in well OW-2S to 4,830 mg/L in well CW-3M. Field pH varied from 7.47 in well OW-1S to 8.06 in well CW-2D.

Table 4 also includes results from a subset of wells being analyzed for contaminants of potential concern, including molybdenum and selenium. In an email dated March 3, 2010, DTSC directed monitoring of these contaminants of potential concern and potential in situ byproducts (DTSC, 2010).

Analytical Data Quality Review 3.2

The laboratory analytical data generated from the First Half 2012 CMP monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP (CH2M HILL, 2008). A detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

3.2.1 Matrix Interference

Matrix interference can affect the sensitivity for Cr(VI) when using Method E218.6 and result in elevated reporting limits for nondetect samples. No matrix interference was encountered for this set of samples.

3.2.2 Matrix Spike Samples

All matrix spike acceptance criteria were met.

3.2.3 Quantitation and Sensitivity

All method and analyte combinations met the project reporting limit objectives.

3.2.4 Holding-time Data Qualification

For the current semiannual sampling event, all method holding-time requirements were met.

3.2.5 Field Duplicates

One field duplicate pair had relative percent difference greater than the upper control limit for fluoride (E300.0, 20 percent); the detected results were qualified as estimated and flagged "J". All other field duplicate acceptance criteria were met.

3.2.6 Method Blanks

All method blank acceptance criteria were met.

3.2.7 **Equipment Blanks**

All equipment blank acceptance criteria were met.

3.2.8 **Laboratory Duplicates**

All laboratory duplicate acceptance criteria for the methods were met.

3.2.9 Calibration

Initial and continuing calibrations were performed as required by the methods. All calibration criteria were met.

3.2.10 Conclusion

For the semiannual First Half 2012 sampling event, the completeness objectives were met for all method and analyte combinations. The analyses and data quality met the QAPP and laboratory method quality control criteria except as noted above. Overall, the analytical data are considered acceptable for the purpose of the CMP.

Influence of Treated Water 3.3

3.3.1 Post-injection Versus Pre-injection

Injection of treated water began on July 31, 2005. Originally under WDR No. R7-2006-0060 for the IM-3 groundwater treatment system and now the DOI's affirmation of the WDR as an ARAR, PG&E is required to submit semiannual monitoring reports regarding operation of the system. These reports contain the analytical results of treated water effluent sampling and, as such, the reports are useful in determining the baseline water

3-2 SFO\121720002 ES062012163911BAO quality of the treated water being injected into the IM-3 injection well field. Table 5 provides selected effluent water analytical results from three of the monthly reports: August 29, 2005, April 1, 2009, and April 3, 2012. While there are differences among some parameters in these samples, a number of parameters show relatively consistent concentrations in the effluent over time. Analytes that are relatively consistent over the injection time period include Cr(VI), chromium, fluoride, molybdenum, nitrate/nitrite as nitrogen, sulfate, and TDS. These seven constituents provide a characterization of the effluent that does not appear to vary greatly over time and can serve as a basis for determining if a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of December 2005 through April 2012 effluent characteristics):

- Cr(VI): typically nondetect (or below 1.0 μg/L)
- Chromium: typically nondetect (1.0 μg/L)
- Fluoride: approximately 2 mg/L
- Molybdenum: approximately 15 μg/L
- Nitrate/nitrite as nitrogen: approximately 3.0 mg/L
- Sulfate: approximately 500 mg/L
- TDS: approximately 4,000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 5 also lists the results of baseline sampling for the observation wells and compliance wells. A full set of nine OW groundwater samples was collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples was collected on September 15, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-1D, OW-2D, OW-5D, CW-3D, and CW-4D) contain no detectable Cr(VI) or chromium, which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents but observable differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 6 presents a comparison between the treated water quality and the results from the most recent sampling event (the First Half 2012 sampling event). These samples were collected after approximately 80 months of injection. While the pre-injection OW and CW sample results were significantly different from the treated water quality, a number of the First Half 2012 sample results show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: OW-1M, OW-1D, OW-2M, OW-2D, OW-5M, OW-5D, CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D. These wells are at locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Wells OW-1S, CW-2M, and CW-4M have chemical characteristics approaching that of treated water. To date, shallow observation wells OW-2S and OW-5S and compliance well CW-3M do not show water quality effects due to injection of treated water, indicating that injected water has not yet reached these depths and locations. However, well OW-5S has increased in TDS since injection began in 2005, suggesting that the injection front is approaching these wells.

3.3.2 Water Quality Hydrographs

Trend data can be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Eleven analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM-3 injection well field area and have sufficient detections to make time-series analysis useful. The analytes include chloride, chromium, fluoride, Cr(VI), molybdenum, nitrate/ nitrite as nitrogen, pH,

sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of these 11 analytes in each OW and CW during First Half 2012 within the IM-3 injection well field are presented in Figures 3A through 3E.

Observation well water quality hydrographs are presented in Figures 3A through 3C. These hydrographs show the same overall patterns: wells that are identified as affected by treated water injection show a shift in water quality for characteristic parameters, while those identified as being unaffected by injection show no net trends. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2M), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, it is inferred that the movement of treated water is non-uniform laterally between wells. This variability in lateral movement can be inferred from differences in the water quality hydrographs in both the mid-depth and deep wells. The OW shallow-depth wells (OW-2S and OW-5S) show little water quality variation over time. Sodium, chloride, vanadium, and molybdenum are particularly consistent with baseline preinjection concentrations and show that the local groundwater quality at these shallow depths is not being affected by injection of treated water or outside water sources.

Compliance well water quality hydrographs are presented in Figures 3D and 3E. Wells CW-1M, CW-1D, CW-2D, CW-3D, and CW-4D show trends in TDS, sulfate, nitrate/nitrite as nitrogen, chromium, molybdenum, and Cr(VI) similar to the treated water. Wells CW-1M, CW-2M, and CW-4M show decreasing trends in Cr(VI) and chromium. These changes are attributed to the arrival of treated injection water.

Water Level Measurements 3.4

Table 7 presents the manual water level measurements and groundwater elevations from First and Second Quarters 2012 per the DOI ARAR requirements (DOI, 2011), as well as Third and Fourth Quarters 2011 groundwater elevations. In compliance with Condition No. 2 of DTSC's 2009 conditional approval letter (DTSC, 2009), confirmation was obtained from the IM-3 Plant Manager that the IM-3 plant was operating normally on both the day before and the day of CMP sample collection, with no backwash or unplanned shutdowns.

Water level measurements were collected continuously (measurements collected every half hour) with pressure transducers to produce hydrographs for select wells. Figures 4A through 4C present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the First Half 2012 reporting period at specified observation monitoring wells.

Groundwater elevation maps for shallow, middle, and deep wells are provided as Figures 5A through 5C. A snapshot of water level elevations was used to produce the groundwater elevation contour plots. The date is noted on each figure.

3.4.1 **Groundwater Gradient Characteristics**

The monitoring wells in the middle and deep zone categories are screened over a wide elevation range (74 feet in the middle zone wells and 59 feet in the deep wells). Because there are natural vertical gradients as well as vertical gradients induced by injection, the groundwater elevations for wells in each category will reflect a mixture of vertical and horizontal gradients in groundwater elevation. Therefore, the groundwater contours in Figures 5B and 5C should be viewed as approximate.

The injection well field is located in the East Mesa area of the Topock site, as shown on Figure 2. Overall sitewide water level contour maps for shallow wells are prepared annually under a separate report, with flow consistently being shown to move to the east/northeast across the uplands portions of the site (CH2M HILL, 2012).

The effects of injection in the IM-3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound can be seen around the injection wells. This mound is centered on the active injection wells IW-2 and IW-3. The potentiometric surfaces in prior CMP reports mapped the growth of the groundwater mound over time and show that, after 80 months of injection, the mound increased and then stabilized in height at several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the average groundwater elevation of the mound within the middle and deep wells using May 2, 2012 groundwater elevations. As expected with a mound, the

3-4 SFO\121720002 potentiometric surface of the deep wells is slightly broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection wells. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM-3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 8 presents the vertical gradient data calculated using the May 2, 2012 groundwater elevations. The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is generally of the same order of magnitude throughout the injection area. A component of the vertical gradients calculated in the vicinity of the IM-3 injection well field is likely related to the injection of treated water in the lower portions of the aquifer. One gradient, between well pairs CW-4D and CW-4M, is negative, signifying that the groundwater flow is downward. The gradient for this well pair is very small (-0.0007). A review of the last two years' of gradients at this well pair has the gradients ranging from 0.0003 to 0.0004. The negative gradient is in the same order of magnitude and very near zero, indicating that this could be due to normal variation of instrument readings. The observed groundwater gradients in the IM-3 injection well field are consistent with expected regional groundwater flow within the southern Mohave Valley.

3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, salinity, and water level elevations before sampling. Table 9 presents a summary of the field water quality data measured during the First Half 2012 monitoring event. Field data sheets for the First Half 2012 event are presented in Appendix B.

3.6 ARAR Monitoring Requirements

Table 10 identifies the laboratory that performed each analysis and lists the following information as required by the ARARs for the First Half 2012 monitoring event:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Parameter
- Analysis date
- Laboratory technician
- Result unit
- Sample result
- Reporting limit
- Method detection limit

Status of Monitoring Activities

4.1 Semiannual Monitoring

The next semiannual monitoring event will occur in October during the second half of 2012. This CMP monitoring event will include the sampling and analysis scope presented in Attachment A of DOI November 18, 2011 letter (DOI, 2011). The groundwater monitoring report for this CMP monitoring event will be submitted by January 15, 2013.

4.2 Annual Monitoring

The next annual monitoring event will also occur in October during the second half of 2012. The groundwater monitoring report for this annual CMP monitoring event will be submitted by January 15, 2013.

References

California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2005. Letter to PG&E. "Conditional Approval for the Start Up and Operation of the Interim Measures No. 3 Treatment System and Injection Wells, Pacific Gas & Electric Company, Topock Compressor Station." July 15.
2006. Letter to PG&E. "Third and Fourth Quarter Groundwater Monitoring Reports, Compliance Monitoring Program for Interim Measures No. 3 Injection Well Field Area, Pacific Gas & Electric Company Topock Compressor Station, Needles, California." June 9.
2007. Letter to PG&E. "Conditional Approval of Request for Reduced Groundwater Sampling Frequency for Select Constituents at Pacific Gas & Electric Company, Topock Compressor Station, Needle California." January 22.
2008a. Letter to PG&E. "Re: Analytical Methods for WDR Monitoring Programs." January 22.
2008b. Letter to PG&E. "PG&E Topock: pH Modification to the CMP." December 12.
2009. Letter to PG&E. "Conditional Approval of Modifications to the Compliance Monitoring Program, Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles California (EPA ID No. CAT080011729)." September 3.
2010. Email. Email to PG&E. "Topock GMP Monitoring Frequency Modification, Topock Compressor Station, Needles, California." March 3.
California Regional Water Quality Control Board, Colorado River Basin Region (Water Board). 2007a. Letter to PG&E. "Conditional Approval of Limited Sampling Frequency for Selected Metals/General, PG&E, Topock Compressor Station, Needles, California." January 23.
2007b. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060 and R7-2004-0080, Topock Compressor Station, San Bernardino County." October 16.
2007c. Letter to PG&E. "Clarification of Monitoring and Reporting Program (MRP) Requirements, Board Orders Nos. R7-2006-0060, R7-2006-0008, R7-2004-0080, and R7-2007-0015, Topock Compressor Station, San Bernardino County." November 13.
2008. Letter to PG&E. "Revision of Monitoring and Reporting Program (MRP), Board Order No. R7-2006-0060 Revision 1, Topock Compressor Station, San Bernardino County." August 28.
2011. Letter to DOI. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility – PG&E Topock Compressor Station Site." July 26.
CH2M HILL. 2005a. Groundwater Compliance Monitoring Plan for Interim Measure No. 3 Injection Area, Topock Compressor Station, Needles, California. June 17.
2005b. Addendum to the Compliance Monitoring Plan for the IM No. 3 Injection Area, Topock Compressor Station, Needles, California. December 13.
2005c. Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California. March 31.
2006. Request for Approval to Implement Limited Sampling Frequency for Selected Metals/ General Minerals for PG&E Topock Compressor Station, Needles, California. December 1.
2008. PG&E Program Quality Assurance Project Plan, Addendum to the PG&E Program Quality Assurance Project Plan for the Topock Groundwater Monitoring and Investigation Projects. December.

- ______. 2012. Fourth Quarter 2011 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15.
- Pacific Gas and Electric Company (PG&E). 2011. Letter to DOI and Water Board "Re: Applicable or Relevant and Appropriate Requirements (ARARs) for the Waste Discharge associated with Interim Measure 3 Facility at PG&E's Topock Compressor Station." September 7.
- United States Department of the Interior (DOI). 2011. Letter to PG&E and Water Board. "Enforcement of Applicable or Relevant and Appropriate Requirements for the Interim Measure 3 Facility PG&E Topock Compressor Station Site." August 18.

5-2

SECTION 6

Certification

PG&E submitted a signature delegation letter to the Water Board on September 20, 2006. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2006-0060.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	1	100	nne	11	ulls
	,				

16

Name:	Yvonne J. Meeks

TABLE 1Operational Status of Interim Measures No. 3 Injection Wells From Inception of Injection Through First Half 2012 *PG&E Topock Compliance Monitoring Program*

Time Period	Injection Status
July 31, 2005 to Fourth Quarter 2005	Injection occurred at IW-2.
First Quarter 2006	Injection occurred primarily at IW-2 except during intervals of operational testing, when injection was divided equally between IW-2 and IW-3.
Second Quarter 2006	Injection occurred at IW-2.
Third Quarter 2006	In August 2006, IW-2 went offline for routine maintenance, and injection commenced at IW-3.
Fourth Quarter 2006	Injection occurred at IW-3, except during routine maintenance.
First Quarter 2007	Injection occurred at IW-3 and transitioned over to IW-2 on March 8.
Second Quarter 2007	Injection occurred at IW-3 from April 3 through June 20. Injection switched to IW-2 on June 20 and continued through July 20, 2007.
Third Quarter 2007	Injection occurred at IW-3 after July 20. Injection occurred at IW-2 on August 30 for an injection test and then returned to IW-3 after August 31.
Fourth Quarter 2007	Injection occurred at IW-3 and then switched to IW-2 on September 25 for routine maintenance. Injection returned to IW-3 after October 9.
First Quarter 2008	Injection occurred at IW-3 only. From February 5 through February 13, well maintenance activities were conducted at IW-2.
Second Quarter 2008	Injection occurred at IW-3 only. IM-3 system offline from April 21 through April 28 due to routine maintenance. Backwashing was performed at IW-3 on April 9, May 7, May 15, May 22, June 3, and June 4, 2008.
Third Quarter 2008	Injection occurred primarily at IW-3. Injection also occurred at IW-2 for short interval on July 25 and from August 12 – August 31, 2008. Backwashing was performed at IW-3 on June 17, June 27, July 9, July 15, July 17, July 18, August 12, August 13, September 2, and September 3, 2008. Backwashing was performed at IW-2 on September 9 - September 11, 2008.
Fourth Quarter 2008	Injection occurred at IW-3 and then switched to IW-2 on September 23. Injection returned to IW-3 on October 7 and switched back to IW-2 on October 21. Injection primarily occurred at IW-2 until November 11 when it switched to IW-3 until December 3, 2008. Injection continued at IW-2 until December 16, 2008 and occurred concurrently and continued at IW-3 on December 11, 2008.
First Quarter 2009	Injection switched to IW-2 on December 30, 2008. On January 13, 2009 injection transitioned to IW-3. Backwashing events were performed periodically during the intervals when each injection well was offline. Routine and scheduled maintenance occurred 12/18/08 and 1/21/09 at which time both wells were offline.
Second Quarter 2009	Injection continued at IW-3 until April 20, 2009. Injection ceased from April 20, 2009 to April 27, 2009 due to routine maintenance after which injection continued at IW-3 until May 26, 2009 when it transitioned to IW-2. Injection continued at IW-2 until June 9, 2009 when it switched to IW-3. Injection returned to IW-2 on June 24, 2009.

TABLE 1Operational Status of Interim Measures No. 3 Injection Wells From Inception of Injection Through First Half 2012 *PG&E Topock Compliance Monitoring Program*

Time Period	Injection Status
Third Quarter 2009	IM3 injection alternates between the two wells approximately every two weeks. Injection continued at IW-2 until July 8, when it transitioned to IW-3. Injection ceased from July 23 to 27, 2009 when it continued at IW-3 until September 9, 2009. Unplanned downtime occurred from September 9-14, 2009. On September 16, 2009 injection continued at IW-2, except during times of routine maintenance or otherwise mentioned.
Fourth Quarter 2009	Injection occurred at IW-2 until November 25, 2009 when it switched to IW-3. Injection continued at IW-3, except during times of routine maintenance.
First Half 2010	Injection occurred mainly at IW-3 until March 3, 2010. Beginning March 3, 2010, IM3 injection alternated between the two wells approximately every two weeks until April 20, 2010 for a planned shutdown. On April 22, 2010, injection resumed at IW-3 and alternated between the two wells approximately every two weeks. Backwashing was performed periodically during the intervals when each injection well was offline.
Second Half 2010	Injection occurred primarily at IW-2 with the exception of the following periods when it primarily occurred at IW-3: July 22 - August 25, August 30 - September 7, September 16 - October 15, November 5 -18, and December 17- 31, 2010.
First Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 27 - February 10, February 23 - March 7, March 30 - April 20, May 6 – June 7, and June 22-28, 2011. Backwashing was performed periodically during the intervals when each injection well was offline. A planned shutdown occurred April 25-29 and June 28-30.
Second Half 2011	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: July 14 through August 3, August 10 through 13, September 11 through 22, October 6 through10; and October 27 Through December 31. Backwashing was performed periodically during the intervals when each injection well was offline.
First Half 2012	Injection occurred primarily at IW-3 with the exception of the following periods when it primarily occurred at IW-2: January 1 through January 6, 2012; February 2 through February 16, 2012; March 2 through April 5, 2012; May 10 through May 21, 2012; May 29 through June 1, 2012, June 14,2012 and June 21 through June 27, 2012.

TABLE 2Well Construction and Sampling Summary for Groundwater Samples, First Half 2012
PG&E Topock Compliance Monitoring Program

Well ID	Site Area	Measuring Point Elevation (ft AMSL)	Screen Interval (ft bgs)	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typical Purge Rate (gpm)	Typical Purge Volume (gallons)			Remarks
IM Compliar	nce Wells											
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	190.0	108.3	Temp Redi-Flo A	AR 2	42	165		
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	300.2	108.4	Temp Redi-Flo A	AR 3	98	180		
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	208.3	91.8	Temp Redi-Flo A	AR 2	56	195		
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	355.0	91.5	Temp Redi-Flo A	AR 3	135	159		
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	222.0	76.7	Temp Redi-Flo A	AR 2	74	180		
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	340.0	76.2	Temp Redi-Flo A	AR 3	135	143		
CW-04M	East Mesa	518.55	119.5 - 169.5	2 (PVC)	169.8	60.6	Temp Redi-Flo A	AR 2	56	160		
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	303.0	60.6	Temp Redi-Flo A	AR 3	124	134		
IM Observat	tion Wells				_							
OW-01S	East Mesa	550.21	83.5 - 113.5	2 (PVC)	113.5	92.7	Temp Redi-Flo A	AR 1	11	100	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	185.8	92.6	Temp Redi-Flo A	AR 3	50	109.6		
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	277.3	92.3	Temp Redi-Flo A	AR 3	102	111.4		
OW-02S	East Mesa	548.88	71 - 101	2 (PVC)	103.6	91.3	Temp Redi-Flo A	AR 1	6	100	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	210.3	90.7	Temp Redi-Flo A	AR 2	60	111.4		
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	340.0	90.7	Temp Redi-Flo A	AR 3	120	110.3		
OW-05S	East Mesa	551.83	70 - 110	2 (PVC)	110.3	94.2	Temp Redi-Flo A	AR 1	9	100	Active	
OW-05M	East Mesa	551.81	210 - 250	2 (PVC)	250.3	93.3	Temp Redi-Flo A	AR 3	80	112.5	Active	
OW-05D	East Mesa	552.41	300 - 320	2 (PVC)	350.0	93.8	Temp Redi-Flo A	AR 3	130	113.2	Active	

AMSL above mean sea level BGS below ground surface

BTOC below top of polyvinyl chloride (PVC) casing Redi-Flo AR adjustable-rate electric submersible pump

Temp temporary

gpm gallons per minute

Depth to water for each well was collected on May 2 2012. All wells were purged and sampled using 3 well-volume method.

TABLE 3 Chromium Results for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

	Me	ethod:	E218.6	E200.8	_
Location ID	Sample Date		Hexavalent Chromium (µg/L)	Chromium (µg/L)	
CW-01M	4/3/2012		2.00	2.40	
CW-01D	4/3/2012		0.41	ND (1.0)	
CW-02M	4/4/2012		2.40	2.80	
CW-02D	4/4/2012		0.82	1.20	
CW-02D	4/4/2012 (FD)	0.80	1.20	
CW-03M	4/4/2012		7.90	8.60	
CW-03D	4/4/2012		0.69	1.00	
CW-03D	4/4/2012 (FD)	0.70	1.10	
CW-04M	4/4/2012		8.70	8.70	
CW-04D	4/4/2012		1.00	1.30	
OW-01S	4/5/2012		9.50	9.40	
OW-02S	4/5/2012		26.8	25.4	
OW-05S	4/5/2012		20.2	20.1	

FD field duplicate

parameter not detected at the listed reporting limit micrograms per liter ND

μg/L

Hexavalent Chromium and Chromium are field filtered.

TABLE 4

Metals and General Chemistry Results for Groundwater Samples, First Half 2012
PG&E Topock Compliance Monitoring Program

	Method:	E120.1	Field	SM2540C	SM2130B	E300.0	E300.0	E300.0	SM4500NH3D	SM4500NO3	E200.7	E200.7/SW6020A	A SW6020A
Location ID	Sample Date	Specific Conductance (µmhos/cm)	Field pH	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Ammonia as Nitrogen (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Dissolved Sodium (mg/L)	Dissolved Molybdenum (µg/L)	Dissolved Selenium (µg/L)
CW-01M	4/3/2012	7280	7.86	4070	0.181	2260	1.89	510	ND (0.5)	2.90			
CW-01D	4/3/2012	7190	7.81	3960	0.142	2340	2.49	502	ND (0.5)	3.24			
CW-02M	4/4/2012	7180	7.92	3920	0.399	3800	3.02	475	ND (0.5)	2.81		20.2	ND (10)
CW-02D	4/4/2012	7390	8.06	4050	0.611	2360	3.12	500	ND (0.5)	3.11		ND (10)	ND (10)
CW-02D	4/4/2012 (FD)	7410	FD	4320	0.677	2230	3.48	500	ND (0.5)	3.05		ND (10)	ND (10)
CW-03M	4/4/2012	8780	7.66	4830	0.168	2910	3.16	454	ND (0.5)	1.55			
CW-03D	4/4/2012	7320	7.91	4170	0.115	2260	4.53 J	497	ND (0.5)	3.07		18.1	ND (10)
CW-03D	4/4/2012 (FD)	7350	FD	4360	0.135	2220	6.77 J	501	ND (0.5)	3.15		18.1	ND (10)
CW-04M	4/4/2012	6760	7.78	3690	ND (0.1)	1970	2.00	409	ND (0.5)	2.53			
CW-04D	4/4/2012	7610	7.97	4660	0.153	2210	3.72	507	ND (0.5)	2.97			
OW-01S	4/5/2012	5420	7.47	3100	ND (0.1)	1530	1.89	344		3.09	648	ND (10)	
OW-02S	4/5/2012	1760	8.04	1000	0.237	407	4.98	103		4.04	317	39.1	
OW-05S	4/5/2012	2770	7.76	1570	0.164	723	2.21	140		3.35	402	21.3	

FD field duplicate

μmhos/cm micro-mhos per centimeter
NTU Nephelometric Turbidity Unit

mg/L milligrams per liter μg/L micrograms per liter

ND parameter not detected at the listed reporting limit

not sampled or required for this event

J concentration or RL (reporting limit) estimated by laboratory or data validation

TABLE 5Treated Water Quality Compared to OW and CW Pre-injection Water Quality *PG&E Topock Compliance Monitoring Program*

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Dissolved Molybdenum (µg/L)	Nitrate/ Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Treated Water	8/29/2005	ND (1.0)	ND (2.1)	1.95	8.3	3.7	450	3620
Treated Water	4/1/2009	ND (0.2)	ND (1.0)	2.01	19.6	2.48	500	3850
Treated Water	4/3/2012	ND (0.2)	ND (1.0)	2.11	18.9	3.06	564	4430
OW-01S	7/28/2005	19.4	23.5	2.45	17.2	3.2	114	1320
OW-01M	7/27/2005	16.3	18.9	2.31	27	1.01	311	3450
OW-01D	7/27/2005	ND(1.0)	ND(1.3)	1.14	46.1	0.321	441	6170
OW-02S	7/28/2005	15.3	14.8	3.79	35.6	3.81	126	1090
OW-02M	7/28/2005	5.4	5.7	2.19	32.4	0.735	342	4380
OW-02D	7/28/2005	ND(1.0)	ND(1.2)	0.966	51.2	0.1	616	9550
OW-05S	7/28/2005	23.4	25.6	2.3	17.1	3.55	105	1060
OW-05M	7/28/2005	8.6	8.8	2.74	35.4	0.621	417	5550
OW-05D	7/28/2005	ND(1.0)	ND(1.2)	1.11	57	0.151	480	8970
CW-01M	9/15/2005	18.1	17.8	2.34	21.6	1.11	318	2990
CW-01D	9/15/2005	ND(1.0)	1.6	0.951	32.1	0.972	379	6230
CW-02M	9/15/2005	15.8	15.5	2.3	23.1	0.908	342	3500
CW-02D	9/15/2005	ND(1.0)	1.6	0.982	41.6	0.28	601	8770
CW-03M	9/15/2005	8.8	8.1	2.57	24.2	0.642	464	4740
CW-03D	9/15/2005	ND(1.0)	ND(1.0)	1.4	29.2	0.304	672	9550
CW-04M	9/15/2005	19.2	19	1.5	12.3	1.18	240	3310
CW-04D	9/15/2005	ND(1.0)	ND(1.0)	1.01	26	0.188	534	7470

NOTES:

ND Not detected at the listed reporting limit.

mg/L milligrams per liter μg/L micrograms per liter

Hexavalent chromium samples were analyzed using method 7199 in 2005 and then by method E218.6.

Chromium samples were analyzed using method 6020A for samples collected on 7/28/2005, by method 6010B for samples collected on 9/15/2005, by method 6020B for samples collected on 8/29/2005 and by method E200.8 for all other chromium samples.

Chromium samples of the treated water were unfiltered.

TABLE 6Treated Water Quality Compared to First Half 2012 Sampling Event Water Quality PG&E Topock Compliance Monitoring Program

Location ID	Sample Date	Hexavalent Chromium (µg/L)	Chromium (µg/L)	Fluoride (mg/L)	Molybdenum (µg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	4/7/2010	0.29	ND (1.0)	1.82	18.6	2.87	512	4270
Treated Water	4/5/2011	ND (0.2)	ND (1.0)	2.01	17.3	2.88	518	4150
Treated Water	4/3/2012	ND (0.2)	ND (1.0)	2.11	18.9	3.06	564	4430
CW-01M	4/3/2012	2.00	2.40	1.89		2.90	510	4070
CW-01D	4/3/2012	0.41	ND (1.0)	2.49		3.24	502	3960
CW-02M	4/4/2012	2.40	2.80	3.02	20.2	2.81	475	3920
CW-02D	4/4/2012 (FD)	0.80	1.20	3.48	ND (10)	3.05	500	4320
CW-02D	4/4/2012	0.82	1.20	3.12	ND (10)	3.11	500	4050
CW-03M	4/4/2012	7.90	8.60	3.16		1.55	454	4830
CW-03D	4/4/2012 (FD)	0.70	1.10	6.77 J	18.1	3.15	501	4360
CW-03D	4/4/2012	0.69	1.00	4.53 J	18.1	3.07	497	4170
CW-04M	4/4/2012	8.70	8.70	2.00		2.53	409	3690
CW-04D	4/4/2012	1.00	1.30	3.72		2.97	507	4660
OW-01S	4/5/2012	9.50	9.40	1.89	ND (10)	3.09	344	3100
OW-02S	4/5/2012	26.8	25.4	4.98	39.1	4.04	103	1000
OW-05S	4/5/2012	20.2	20.1	2.21	21.3	3.35	140	1570

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter μg/L micrograms per liter

--- not sampled or required for this event

All hexavalent chromium samples were analyzed with method E218.6

All chromium and molybdenum samples were analyzed with methods E200.8 and E200.7, respectively. Chromium and molybdenum samples were field filtered, except for the treated water.

Fluoride and Sulfate samples were analyzed with method E300.0.

All nitrate/nitrite as nitrogen samples were analyzed with method SM4500NO3E, except for treated water which used method E300.

All total dissolved solid samples were analyzed with method SM2540C.

TABLE 7Manual Water Level Measurements and Elevations, First Half 2012 PG&E Topock Compliance Monitoring Program

Location ID	Well Depth (feet BTOC)	Measuring Point Elevation (feet AMSL)	: Monito Date &		Water Level Measurement (feet BTOC)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
CW-01M	190.0	566.07	21-Sep-11	2:16 PM	108.69	0.49	457.31
			14-Dec-11	9:24 AM	110.13	0.48	455.87
			27-Mar-12	9:01 AM	109.25	0.49	456.76
			02-May-12	11:18 AM	108.31	0.49	457.69
CW-01D	300.2	566.46	21-Sep-11	2:29 PM	108.90	0.48	457.40
			14-Dec-11	9:22 AM	110.21	0.50	456.12
			27-Mar-12	9:05 AM	109.24	0.48	457.06
			02-May-12	11:17 AM	108.40	0.48	457.90
CW-02M	208.3	549.45	21-Sep-11	11:09 AM	92.37	0.47	456.99
			14-Dec-11	9:47 AM	93.76	0.49	455.61
			27-Mar-12	9:09 AM	92.64	0.47	456.72
			02-May-12	11:25 AM	91.78	0.47	457.58
CW-02D	355.0	549.43	21-Sep-11	10:48 AM	91.93	0.50	457.26
			14-Dec-11	9:45 AM	93.24	0.49	455.95
			27-Mar-12	9:13 AM	92.15	0.50	457.04
			02-May-12	11:24 AM	91.53	0.50	457.66
CW-03M	222.0	534.10	21-Sep-11	11:43 AM	77.24	0.60	456.87
			14-Dec-11	9:53 AM	78.65	0.60	455.46
			27-Mar-12	9:17 AM	77.48	0.60	456.63
			02-May-12	11:29 AM	76.66	0.60	457.45
CW-03D	340.0	534.14	21-Sep-11	11:23 AM	76.62	0.54	457.36
			14-Dec-11	9:51 AM	77.92	0.53	456.04
			27-Mar-12	9:20 AM	76.82	0.54	457.16
			02-May-12	11:27 AM	76.20	0.54	457.77
CW-04M	169.8	518.55	21-Sep-11	1:53 PM	61.11	0.45	457.34
			14-Dec-11	9:36 AM	62.54	0.43	455.90
			27-Mar-12	9:29 AM	61.56	0.45	456.89
			02-May-12	11:38 AM	60.64	0.45	457.81
CW-04D	303.0	518.55	21-Sep-11	1:34 PM	61.02	0.50	457.33
			14-Dec-11	9:34 AM	62.36	0.51	456.01
			27-Mar-12	9:26 AM	61.38	0.50	456.97
			02-May-12	11:37 AM	60.62	0.50	457.73
OW-01S	113.5	550.21	22-Sep-11	10:50 AM	93.30	0.21	456.85
			14-Dec-11	9:12 AM	94.72	0.21	455.44
			27-Mar-12	9:32 AM	93.61	0.29	456.56
			02-May-12	11:00 AM	92.65	0.29	457.51
OW-01M	185.8	550.36	22-Sep-11	10:36 AM		0.48	457.48
			14-Dec-11	9:17 AM	94.13	0.46	456.13
			27-Mar-12	9:36 AM	93.35	0.48	456.92
			02-May-12	11:01 AM		0.48	457.72

Date printed: 5/18/2012

TABLE 7
Manual Water Level Measurements and Elevations, First Half 2012
PG&E Topock Compliance Monitoring Program

Location ID	Well Depth (feet BTOC)	Measuring Point Elevation (feet AMSL)	: Monito Date &		Water Level Measurement (feet BTOC)	Salinity (%)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
OW-01D	277.3	550.36	22-Sep-11	10:19 AM	92.54	0.48	457.64
			14-Dec-11	9:16 AM	93.72	0.48	456.47
			27-Mar-12	9:40 AM	92.77	0.48	457.41
			02-May-12	11:02 AM	92.28	0.48	457.90
OW-02S	103.6	548.88	22-Sep-11	9:54 AM	91.95	0.09	456.89
			14-Dec-11	9:04 AM	93.37	0.09	455.47
			27-Mar-12	9:45 AM	92.21	0.12	456.64
			02-May-12	11:06 AM	91.25	0.12	457.59
OW-02M	210.3	548.52	22-Sep-11	10:03 AM	90.68	0.48	457.72
			14-Dec-11	9:06 AM	92.07	0.49	456.34
			27-Mar-12	9:49 AM	91.38	0.48	457.02
			02-May-12	11:08 AM	90.68	0.48	457.72
OW-02D	340.0	549.01	22-Sep-11	9:32 AM	90.80	0.48	457.94
			14-Dec-11	9:09 AM	92.06	0.49	456.70
			27-Mar-12	9:52 AM	90.89	0.48	457.85
			02-May-12	11:05 AM	90.71	0.48	458.03
OW-05S	110.3	551.83	22-Sep-11	8:38 AM	94.83	0.17	456.95
			14-Dec-11	8:53 AM	96.21	0.17	455.57
			27-Mar-12	9:55 AM	95.14	0.23	456.66
			02-May-12	11:10 AM	94.16	0.23	457.63
OW-05M	250.3	551.81	22-Sep-11	8:49 AM	94.30	0.46	457.35
			14-Dec-11	8:56 AM	95.52	0.46	456.13
			27-Mar-12	9:57 AM	94.61	0.44	457.11
			02-May-12	11:12 AM	93.30	0.44	458.33
OW-05D	350.0	552.41	22-Sep-11	9:08 AM	94.86	0.52	457.37
			14-Dec-11	8:59 AM	96.07	0.52	456.16
			27-Mar-12	10:00 AM	95.07	0.50	457.13
			02-May-12	11:13 AM	93.82	0.50	458.38

AMSL above mean sea level

BTOC below top of polyvinyl chloride (PVC) casing

% percentage

Salinity used to adjust water level to freshwater equivalent. Salinity values have been averaged in accordance with the Performance Monitoring Program.

Date printed: 5/18/2012

TABLE 8
Vertical Gradients within the OW and CW Clusters
PG&E Topock Compliance Monitoring Program

Well Pairs	Vertical Gradient (ft/ft) ^a
CW-01D to CW-01M	0.0019
CW-02D to CW-02M	0.0006
CW-03D to CW-03M	0.0033
CW-04D to CW-04M	-0.0007
OW-01M to OW-01S	0.0027
OW-01D to OW-01M	0.0020
OW-02M to OW-02S	0.0011
OW-02D to OW-02M	0.0026
OW-05M to OW-05S	0.0050
OW-05D to OW-05M	0.0006

^a Positive value signifies an upward gradient.

Gradients calculated using May 2, 2012 groundwater levels.

TABLE 9 Field Parameter Measurements for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location ID	Sampling Date	Specific Conductance (µmhos/cm)	Temperature (°C)	pН	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Salinity (%)	Depth To Water (feet BTOC)
CW-01M	4/3/2012	7294	29.38	7.86	19.3	5.04	1	0.47	108.91
CW-01D	4/3/2012	7314	28.47	7.81	29.2	4.52	1	0.47	108.93
CW-02M	4/4/2012	7228	29.55	7.92	27.2	6.5	1	0.47	92.32
CW-02D	4/4/2012	7465	30.32	8.06	15.3	7.79	2	0.48	91.74
CW-03M	4/4/2012	8913	29.89	7.66	73	2.54	1	0.58	77.16
CW-03D	4/4/2012	7502	30.85	7.91	122	8.43	1	0.48	76.45
CW-04M	4/4/2012	6792	29.48	7.78	15.5	4.02	1	0.44	61.10
CW-04D	4/4/2012	7641	30.44	7.97	22.4	8.48	1	0.49	61.00
OW-01S	4/5/2012	5499	28.74	7.47	75.6	6.77	1	0.35	93.29
OW-02S	4/5/2012	1739	29.01	8.04	38.2	7.49	1	0.11	91.85
OW-05S	4/5/2012	2742	28.78	7.76	21.8	6.39	1	0.18	94.77

µmhos/cm °C micro-mhos per centimeter degree centigrade

oxidation reduction potential ORP

millivolts mV

mg/L milligrams per liter

NŤU Nephelometric Turbidity Unit

% percentage

Salinity is calculated using the specific conductance field measurement, the last measurement before sampling.

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01D	CW-01D-027	Barry Collom	4/3/2012	2:36:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7190	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	ND (1.0)	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	0.41	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2340	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	2.49	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	502	25.0	5.70
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.142	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	3960	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.24	1.0	0.20
CW-01M	CW-01M-027	Barry Collom	4/3/2012	3:30:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7280	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	2.40	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	2.00	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2260	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	1.89	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	510	50.0	11.4
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.181	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4070	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-01M	CW-01M-027	Barry Collom	4/3/2012	3:30:00 PM	EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	2.90	1.0	0.20
CW-02D	CW-02D-027	Barry Collom	4/4/2012	12:47:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7390	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	1.20	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	0.82	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2360	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	3.12	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	500	25.0	5.70
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.611	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4050	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.11	1.0	0.20
					TLI	SW 6020A	MOD	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.27
					TLI	SW 6020A	SED	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.34
CW-02D	OW-91-027	Barry Collom	4/4/2012	5:35:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7410	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	1.20	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	0.80	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2230	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	3.48	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	500	25.0	5.70

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-02D	OW-91-027	Barry Collom	4/4/2012	5:35:00 PM	TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.677	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4320	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.05	1.0	0.20
					TLI	SW 6020A	MOD	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.27
					TLI	SW 6020A	SED	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.34
CW-02M	CW-02M-027	Barry Collom	4/4/2012	1:47:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7180	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	2.80	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	2.40	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	3800	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	3.02	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	475	25.0	5.70
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.399	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	3920	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	2.81	1.0	0.20
					TLI	SW 6020A	MOD	4/11/2012	Katia Kiarashpoor	μg/L	20.2	10.0	0.27
					TLI	SW 6020A	SED	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.34
CW-03D	OW-90-027	Barry Collom	4/4/2012	7:10:00 AM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7350	2.0	0.095

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	OW-90-027	Barry Collom	4/4/2012	7:10:00 AM	TLI	EPA 200.8	CRTD	4/14/2012	Katia Kiarashpoor	μg/L	1.10	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	0.70	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2220	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	6.77 J	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	501	25.0	5.70
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.135	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4360	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.15	1.0	0.20
					TLI	SW 6020A	MOD	4/11/2012	Katia Kiarashpoor	μg/L	18.1	10.0	0.27
					TLI	SW 6020A	SED	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.34
CW-03D	CW-03D-027	Barry Collom	4/4/2012	9:25:00 AM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7320	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	1.00	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	0.69	0.2	0.026
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2260	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	4.53 J	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	497	25.0	5.70
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.115	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4170	250	0.40

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-03D	CW-03D-027	Barry Collom	4/4/2012	9:25:00 AM	TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.07	1.0	0.20
					TLI	SW 6020A	MOD	4/11/2012	Katia Kiarashpoor	μg/L	18.1	10.0	0.27
					TLI	SW 6020A	SED	4/11/2012	Katia Kiarashpoor	μg/L	ND (10)	10.0	0.34
CW-03M	CW-03M-027	Barry Collom	4/4/2012	10:31:00 AM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	8780	2.0	0.095
					TLI	EPA 200.8	CRTD	4/11/2012	Katia Kiarashpoor	μg/L	8.60	1.0	0.11
					TLI	EPA 218.6	CR6	4/10/2012	Maksim Gorbunov/George Wahba/ Melissa Scharfe	μg/L	7.90	1.0	0.13
					TLI	EPA 300.0	CL	4/5/2012	Giawad Ghenniwa	mg/L	2910	100	18.0
					TLI	EPA 300.0	FL	4/5/2012	Giawad Ghenniwa	mg/L	3.16	0.5	0.155
					TLI	EPA 300.0	SO4	4/5/2012	Giawad Ghenniwa	mg/L	454	25.0	5.70
					TLI	SM2130B	TRB	4/5/2012	Gautam Savani	NTU	0.168	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4830	250	0.40
					TLI	SM4500NH3D	NH3N	4/5/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	1.55	0.5	0.10
CW-04D	CW-04D-027	Barry Collom	4/4/2012	3:48:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	7610	2.0	0.095
					TLI	EPA 200.8	CRTD	4/7/2012	Katia Kiarashpoor	μg/L	1.30	1.0	0.11
					TLI	EPA 218.6	CR6	4/11/2012	Melissa Scharfe	μg/L	1.00	0.2	0.075
					TLI	EPA 300.0	CL	4/6/2012	Giawad Ghenniwa	mg/L	2210	100	18.0
					TLI	EPA 300.0	FL	4/6/2012	Giawad Ghenniwa	mg/L	3.72	0.5	0.155

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
CW-04D	CW-04D-027	Barry Collom	4/4/2012	3:48:00 PM	TLI	EPA 300.0	SO4	4/6/2012	Giawad Ghenniwa	mg/L	507	25.0	5.70
					TLI	SM2130B	TRB	4/6/2012	Gautam Savani	NTU	0.153	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	4660	250	0.40
					TLI	SM4500NH3D	NH3N	4/10/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	2.97	1.0	0.20
CW-04M	CW-04M-027	Barry Collom	4/4/2012	4:46:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	6760	2.0	0.095
					TLI	EPA 200.8	CRTD	4/7/2012	Katia Kiarashpoor	μg/L	8.70	1.0	0.11
					TLI	EPA 218.6	CR6	4/11/2012	Melissa Scharfe	μg/L	8.70	0.2	0.075
					TLI	EPA 300.0	CL	4/6/2012	Giawad Ghenniwa	mg/L	1970	100	18.0
					TLI	EPA 300.0	FL	4/6/2012	Giawad Ghenniwa	mg/L	2.00	0.5	0.155
					TLI	EPA 300.0	SO4	4/6/2012	Giawad Ghenniwa	mg/L	409	25.0	5.70
					TLI	SM2130B	TRB	4/6/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	3690	250	0.40
					TLI	SM4500NH3D	NH3N	4/10/2012	Bita Emami	mg/L	ND (0.5)	0.5	0.0012
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	2.53	1.0	0.20
OW-01S	OW-01S-027	Barry Collom	4/5/2012	9:08:00 AM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	5420	2.0	0.095
					TLI	EPA 200.7	MOD	4/9/2012	Ethel Suico	μg/L	ND (10)	10.0	4.00
					TLI	EPA 200.7	NAD	4/9/2012	Ethel Suico	mg/L	648	25.0	2.93
					TLI	EPA 200.8	CRTD	4/7/2012	Katia Kiarashpoor	μg/L	9.40	1.0	0.11

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-01S	OW-01S-027	Barry Collom	4/5/2012	9:08:00 AM	TLI	EPA 218.6	CR6	4/11/2012	Melissa Scharfe	μg/L	9.50	0.2	0.075
					TLI	EPA 300.0	CL	4/6/2012	Giawad Ghenniwa	mg/L	1530	100	18.0
					TLI	EPA 300.0	FL	4/6/2012	Giawad Ghenniwa	mg/L	1.89	0.5	0.155
					TLI	EPA 300.0	SO4	4/6/2012	Giawad Ghenniwa	mg/L	344	25.0	5.70
					TLI	SM2130B	TRB	4/6/2012	Gautam Savani	NTU	ND (0.1)	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	3100	125	0.40
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.09	1.0	0.20
OW-02S	OW-02S-027	Barry Collom	4/5/2012	10:10:00 AM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	1760	2.0	0.095
					TLI	EPA 200.7	MOD	4/9/2012	Ethel Suico	μg/L	39.1	10.0	4.00
					TLI	EPA 200.7	NAD	4/9/2012	Ethel Suico	mg/L	317	25.0	2.93
					TLI	EPA 200.8	CRTD	4/10/2012	Katia Kiarashpoor	μg/L	25.4	1.0	0.11
					TLI	EPA 218.6	CR6	4/11/2012	Melissa Scharfe	μg/L	26.8	1.0	0.38
					TLI	EPA 300.0	CL	4/6/2012	Giawad Ghenniwa	mg/L	407	20.0	3.60
					TLI	EPA 300.0	FL	4/6/2012	Giawad Ghenniwa	mg/L	4.98	0.5	0.155
					TLI	EPA 300.0	SO4	4/6/2012	Giawad Ghenniwa	mg/L	103	25.0	5.70
					TLI	SM2130B	TRB	4/6/2012	Gautam Savani	NTU	0.237	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	1000	50.0	0.40
					EMXT	SM4500NO3-E	NO3NO2N	4/16/2012	Nina Macalinao	mg/L	4.04	1.0	0.20
OW-05S	OW-05S-027	Barry Collom	4/5/2012	12:27:00 PM	TLI	EPA 120.1	SC	4/6/2012	Gautam Savani	μmhos/cm	2770	2.0	0.095

TABLE 10ARAR Monitoring Information for Groundwater Samples, First Half 2012 PG&E Topock Compliance Monitoring Program

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician	Units	Result	RL	MDL
OW-05S	OW-05S-027	Barry Collom	4/5/2012	12:27:00 PM	TLI	EPA 200.7	MOD	4/9/2012	Ethel Suico	μg/L	21.3	10.0	4.00
					TLI	EPA 200.7	NAD	4/9/2012	Ethel Suico	mg/L	402	25.0	2.93
					TLI	EPA 200.8	CRTD	4/7/2012	Katia Kiarashpoor	μg/L	20.1	1.0	0.11
					TLI	EPA 218.6	CR6	4/11/2012	Melissa Scharfe	μg/L	20.2	0.2	0.075
					TLI	EPA 300.0	CL	4/6/2012	Giawad Ghenniwa	mg/L	723	100	18.0
					TLI	EPA 300.0	FL	4/6/2012	Giawad Ghenniwa	mg/L	2.21	0.5	0.155
					TLI	EPA 300.0	SO4	4/6/2012	Giawad Ghenniwa	mg/L	140	25.0	5.70
					TLI	SM2130B	TRB	4/6/2012	Gautam Savani	NTU	0.164	0.1	0.014
					TLI	SM2540C	TDS	4/6/2012	Kim Luck	mg/L	1570	50.0	0.40
					EMXT	SM4500NO3-I	E NO3NO2N	4/16/2012	Nina Macalinao	mg/L	3.35	1.0	0.20

TABLE 10

ARAR Monitoring Information for Groundwater Samples, First Half 2012

PG&E Topock Compliance Monitoring Program

NOTES:

MDL method detection limit corrected for sample dilution

RL reporting limit corrected for sample dilution

ND parameter not detected at the listed reporting limit

μmhos/cm micro-mhos per centimeter
NTU Nephelometric Turbidity Unit

mg/L milligrams per liter
µg/L micrograms per liter
J Concentration estima

Concentration estimated by laboratory or data validation

ARAR applicable or relevant and appropriate requirements

TLI Truesdail Laboratories, Inc.

EMXT Emax Laboratories

SC specific conductance CRTD chromium, dissolved CR6 hexavalent chromium

CL chloride FL fluoride SO4 sulfate

TDS total dissolved solids

TRB turbidity

NH3N ammonia as nitrogen
NO3NO2N nitrate/nitrite (as N)
MOD molybdenum, dissolved
NAD sodium, dissolved
SED selenium, dissolved

1835 W. 205th Street Torrance, CA 90501 Tel: (310) 618-888

Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 04-24-2012

EMAX Batch No.: 12D046

Attn: Priya Kumar

CH2M HILL

155 Grand, Suite 1000 Oakland CA 94612

Subject: Laboratory Report

Project: PG&E's Topock Gas Compressor Stat

.....

Enclosed is the Laboratory report for samples received on 04/05/12. The data reported relate only to samples listed below:

Sample ID	Control #	Col Date	Matrix	Analysis
CW-01D-027	D046-01	04/03/12	WATER	NITRATE/NITRITE AS N
CW-01M-027	D046-02	04/03/12	WATER	NITRATE/NITRITE AS N
CW-02D-027	D046-03	04/04/12	WATER	NITRATE/NITRITE AS N
CW-02M-027	D046-04	04/04/12	WATER	NITRATE/NITRITE AS N
CW-03D-027	D046-05	04/04/12	WATER	NITRATE/NITRITE AS N
CW-03M-027	D046-06	04/04/12	WATER	NITRATE/NITRITE AS N
OW-90-027	D046-07	04/04/12	WATER	NITRATE/NITRITE AS N
OW-91-027	D046-08	04/04/12	WATER	NITRATE/NITRITE AS N

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

 ${\sf EMAX}$ certifies that results included in this report meets all NELAC & DOD requirements unless noted in the Case Narrative.

NELAC Accredited Certificate Number 02116CA L-A-B Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing

- ORIGINAL - 120046

	CH2MHILI					CHAIN OF CUSTODY RECORD 4/4/2012 4:05:47 PM Page 1	OF _	1
	Project Name PG	&E Topoc	k (Container:	1 Liter Poly			
١	Location Topock	ì	_		H2SO4,		na castrono	
	Project Manager J	lay Piper	Pres	ervatives:	pH<2, 4°C			
	Sample Manager N	//att Ringi	er	Filtered:	NA			
			Hold	ling Time:	28		00000000	
	Project Number 4	23575.MP	02.CN	1.0	<u> </u>			
	Task Order				trate			
	Project 2012-CMF				N.		Nur	
	Turnaround Time		5		rite		Number	
	Shipping Date: 4/	4/2012			(SM		r of	
	COC Number: 2				450			
					Nitrate/Nitrite (SM4500NO3-E)		Containers	
)3-E		inei	
		DATE	TIME	Matrix			S.	COMMENTS
OCHES!	CW-01D-027	4/3/2012	14:36	Water	Х		1	
2	CW-01M-027	4/3/2012	15:30	Water	Х		1	
3	CW-02D-027	4/4/2012	12:47	Water	Х		1	
4	CW-02M-027	4/4/2012	13:47	Water	х		1	
2	CW-03D-027	4/4/2012	9:25	Water	Х		1	
P	CW-03M-027	4/4/2012	10:31	Water	Х		1	
7	OW-90-027	4/4/2012	7:10	Water	Х		1	
8	OW-91-027	4/4/2012	17:35	Water	X		1	
					*	TOTAL NUMBER OF CONTAINERS	8	

Shipping Details

courier

Method of Shipment:

Approved by Sampled by Relinquished by

Signatures

On Ice: yes / no

Received by July 4-12 16.36 Airbill No:
Relinquished by July 4-12 22.00 Lab Name: EMAX

Received by Luda 4/4/12 22/00 Lab Phone:

Felinquished by: Ludo, 762, 4/5/12 9:40 Keah Stout 4/5/12 9:40 Keith Stout

7=3.0° C Sample Custody

ATTN:

Report Copy to

April 4-6, 2012

Special Instructions:

Shawn Duffy

F6

Out of Holding Time

SAMPLE RECEIPT FORM 1

luuz

LAMBUR	AIURIES, ING.	•			102011
e si quer o sistem specimento.	Type of Delivery		Airbill / Tracking Number		ECN /20046
□ Fedex □ UPS	☐ GSO ☐ Others				Recipient /-LUND
DEMAX Courier	☐ Client Delivery				Date 4/5/16 Time 1345
CIENTAX Caurer	Cheff Denvery				Date 7/3/12 time /
			COC Inspection		·
Client Name	Client PM/FC	Sampler Name	Sampling Date/Time/Location	C Sample ID	Matrix
and states of the	Tel # / Fax #	Courier Signature	Analysis Required	Defreservative (if any)	DITAT
Safety Issues (if any)	☐ High concentrations expe	3	☐ Superfund Site samples	☐ Rad screening req	uvired
Baloly Issues (I. miy)	- riigii concentrationa expe	Sicu .	a superimit site samples	La Rad sorcening req	
Comments:	·	•			•
			Packaging Inspection		
Container	Cooler	□ Box	☐ Other		annum martin martin de l'Art Artiste
Condition	☐ Custody Seal	Dintact	☐ Damaged		
Packaging	☐ Bubble Pack	☐ Styrofe	am Pepcom	Sefficient	
Temperatures	A Decooler 3, 0 °C	☐ Cooler	2°C	□ Cooler 4	°C □ Cooler 5°C
(Cool, =6 °C but not frozen	Cooler 6°C	☐ Cooler	7°C	□ Cooler 9	°C - □ Cooler 10°C
Thermome	eter: A - S/N 101541371	B - S/N I	01541382	•	
Comments: 🛘 Tempe	erature is out of range. PM w	as informed IMMED	LATELY.		-
Note: pH holding tim	e requirement for water sam	ples is 15 mins. Water	r samples for pH analysis are received	beyond 15 minutes fr	rom sampling time.
1.070	I.C.COTO		DISCREPANCIES	· · · · · · · · · · · · · · · · · · ·	
LSID	LSCID	Description Code	Sample Label ID / Information		Corrective Action Code
3					
					•
		-			
	,		. ,		
			-		
☐ Continue to next	Dage				
人名英格兰 医克克氏		1	(D) Cos		2v
REVIEWS	Sample Labeling	THE DAY	SRF	And a second second	PM
	Date	71-17-1	Date 9/1/2	-	Date 410 VC
LEGEND:	€		* / *		Γ V
Code	Description- Sample Management	t Code	Description-Sample Management	Code	Description-Project Management
	of indicated in COC.	G1	Sample indicated in COC is not received.		Hold sample(s); wait for further instructions
	ot indicated in label.	G2	MS/MSD is not indicated in COC.		roceed as indicated in COC and inform
	consistent in COC vis-à-vis label.		No identified trip blank, proceed as indicated in		lient.
	not indicated in COC.	G4			Refer to attached instruction
*	not indicated in label.	G5	Trip Blank is designated in SDG		
			Trip Blank has no sampling date & time. Log-in		Cancel the analysis
C1 Improper con	inconsistent in COC vis-à-vis label,	Н1	with earliest sampling date and 0:00 time.		nform client.
C1 Improper con C2 Broken conta		щ		ко Р	roceed as indicated in COC
C3 Leaking conta					
	amer ime is not indicated in COC.				
	ime is not indicated in COC.	•			
	me is inconsistent in COC vis-à-vis la	hei			
F1 Improper pres					
F2 Insufficient S					
	mm. Use vial with smallest bubble fir	rst.			
~ *	mm in all vials.			·	
F5 >20 % solid p	particle				

CLIENT: CH2M HILL
PROJECT: TOPOCK

SDG: 12D046

Analyst names:

1.SM4500NO3-E: Nina Macalinao

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 12D046

METHOD SM4500NO3 NITRATE/NITRITE-N

A total of eight (8) water samples were received on 04/05/12 for Nitrate/Nitrite as N analysis, Method SM4500NO3 in accordance with Standard Methods for the Examination of Water and Wastewater, 20th Edition.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAD004WL/C were all within QC limits.

Matrix QC Sample

Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recovery for D046-01M was within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD SM4500NO3 NITRATE/NITRITE-N

Client : CH2M HILL

: WATER Matrix Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : 70

Batch No. : 12D046

SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF 1	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NADO04WB	ND	1	NA	0.100	0.0200	04/16/1218:48	NA NA	NAD00410	NAD00407	NADO04W	NA	NA
LCS1W	NAD004WL	0.524	1	NA	0.100	0.0200	04/16/1218:49	NA	NAD00411	NAD00407	NAD004W	NA	NA
LCD1W	NAD004WC	0.524	1	NA	0.100	0.0200	04/16/1218:49	NA	NAD00412	NAD00407	NAD004W	NA	NA
CW-01D-027	D046-01T	3.24	10	NA	1.00	0.200	04/16/1218:50	NA	NAD00414	NAD00407	NAD004W	04/03/1214:36	04/05/12
CW-01D-027DUP	D046-01D	3.16	10	NA	1.00	0.200	04/16/1218:50	NA	NAD00415	NAD00407	NAD004W	04/03/1214:36	04/05/12
CW-01D-027MS	D046-01M	8.54	10	NA	1.00	0.200	04/16/1218:50	NA	NAD00416	NAD00407	NAD004W	04/03/1214:36	04/05/12
CW-01M-027	D046-02T	2.90	10	NA	1.00	0.200	04/16/1218:52	NA	NAD00420	NAD00417	NADO04W	04/03/1215:30	04/05/12
CW-02D-027	D046-03T	3.11	10	NA	1.00	0.200	04/16/1218:52	NA	NAD00422	NAD00417	NADO04W	04/04/1212:47	04/05/12
CW-02M-027	D046-04T	2.81	10	NA	1.00	0.200	04/16/1218:52	NA	NAD00424	NAD00417	NAD004W	04/04/1213:47	04/05/12
CW-03D-027	D046-05T	3.07	10	NA	1.00	0.200	04/16/1218:52	NA	NAD00426	NAD00417	NADO04W	04/04/1209:25	04/05/12
CW-03M-027	D046-06T	1.55	5	NA	0.500	0.100	04/16/1218:53	NA	NAD00430	NAD00427	NADO04W	04/04/1210:31	04/05/12
OW-90-027	D046-07T	3.15	10	NA	1.00	0.200	04/16/1218:54	NA	NAD00432	NAD00427	NADO04W	04/04/1207:10	04/05/12
OW-91-027	D046-08T	3.05	10	NA	1.00	0.200	04/16/1218:54	NA	NAD00434	NAD00427	NADO04W	04/04/1217:35	04/05/12

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

METHOD:

METHOD SM4500NO3

MATRIX:

WATER

% MOISTURE: NA

BATCH NO.: SAMPLE ID: 12D046

LCS1W/LCD1W

NAD004WL/C

DATE RECEIVED: NA

DATE EXTRACTED: NA

DATE ANALYZED: 04/16/1218:49/18:49

ACCESSION:

CONTROL NO.:

	BLNK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	RPD LIMIT
PARAMETER	(mg/L)	(mg/L)	(mg/L)	% REC	(mg/L)	(mg/L)	% REC	%	%	%
NITRATE + NITRITE-N	ND	0.500	0.524	105	0.500	0.524	105	0	85-115	20

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

METHOD:

METHOD SM4500NO3

MATRIX:

WATER

% MOISTURE:

NA

BATCH NO.: CONTROL NO.: 12D046

DATE RECEIVED: 04/05/12

SAMPLE ID:

CW-01D-027MS D046-01M

DATE EXTRACTED: NA

DATE ANALYZED: 04/16/1218:50

ACCESSION:

	SMPL RSLT	SPIKE AMT	MS RSLT	MS	QC LIMIT
PARAMETER	(mg/L)	(mg/L)	(mg/L)	% REC	(%)
NITRATE + NITRITE-N	3.24	5.00	8.54	106	75 - 125

EMAX QUALITY CONTROL DATA DUPLICATE ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

METHOD:

METHOD SM4500NO3

MATRIX:

WATER

% MOISTURE:

NΑ

BATCH NO.:

12D046 D046-01D DATE RECEIVED: 04/05/12

SAMPLE ID: CONTROL NO.: CW-01D-027DUP

DATE EXTRACTED: NA

DATE ANALYZED: 04/16/1218:50

ACCESSION:

	SAMPLE	DUP. SAMPLE	RPD	RPD LIMII
PARAMETER	(mg/L)	(mg/L)	(%)	(%)
NITRATE + NITRITE-N	3.24	3.16	3	20

1835 W. 205th Street Torrance, CA 90501

Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 04-24-2012

EMAX Batch No.: 12D083

Attn: Priya Kumar

CH2M HILL

155 Grand, Suite 1000 Oakland CA 94612

Subject: Laboratory Report

Project: PG&E's Topock Gas Compressor Stat

.....

Enclosed is the Laboratory report for samples received on 04/09/12. The data reported relate only to samples listed below:

Sample ID	Control #	Col Date	Matrix	Analysis
CW-04D-027	D083-01	04/04/12	WATER	NITRATE/NITRITE AS N
CW-04M-027	D083-02	04/04/12	WATER	NITRATE/NITRITE AS N
ow-01s-027	D083-03	04/05/12	WATER	NITRATE/NITRITE AS N
ow-02s-027	D083-04	04/05/12	WATER	NITRATE/NITRITE AS N
ow-05s-027	D083-05	04/05/12	WATER	NITRATE/NITRITE AS N

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that results included in this report meets all NELAC & DOD requirements unless noted in the Case Narrative.

NELAC Accredited Certificate Number 02116CA L-A-B Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing CH-0408.

CH2MHI					CHAIN OF CUSTODY REC	CORD	4/5/2012 2:31:48 PM	Page 1	OF _	1
Project Name I Location Topo Project Manage	ock	Dura	Container: servatives:	Poly H2SO4,				10.70		TO THE STATE OF TH
Sample Manage	er Matt Ringi		Filtered: ding Time:							
Project Number Task Order Project 2012-C Turnaround Tin Shipping Date: COC Number:	MP-027 ne 12 Day 3/28/2012 EMAX-CMP	P.02.CM /s /027	A.O	Nitrate/Nitrite (SM4500NO3-E					Number of Containers	
	DATE	TIME	Matrix						, ,	COMMENTS
CW-04D-027	4/4/2012	15:48	Water	Х					1	
CW-04M-027	4/4/2012	16:46	Water	х					1	
OW-01S-027	4/5/2012	9:08	Water	х	And the second s				1	
OW-02S-027	4/5/2012	10:10	Water	×		- T-	The second secon		1	
OW-05S-027	4/5/2012	12:27	Water	х	***************************************	2 AND STATE OF THE	100000000000000000000000000000000000000		1	
			9				TOTAL NUMBER OF C	ONTAINERS	5	

T= 2.600

Date/Time 15:50 Shipping Details Signatures Approved by Method of Shipment: Sampled by On Ice: yes / no Relinquished by Received by Relinquished by Pafael Davila 4-5-12 22:30 Lab Name: EMAX

Received by Lidda, TLZ 4/5/12 22:30 Lab Phone:

Rel-Skeep: Lenda, TLZ, 4/9/12 9:55 Keith Start Relinquished by Received by

ATTN: April 4-6, 2012 Sample Custody Report Copy to

Shawn Duffy

Special Instructions:

Keith Stood 4/9/12 14:08 Stock 4/9/12 1408

SAMPLE RECEIPT FORM 1

		(IUMIES, INC.								
Type of Delivery					Airt	oill / Tracking Number	ECN 12 DO83			
□ Fedex □ UPS □ GSO □ Others							Recipient I PATEL			
EMAX Co	urier	☐ Client Delivery						Date 4/9/12 Time 1408		
F					/COC Inspec	tion	1 .			
Client Nam		Jan Maria	٠				1	-/		
	ne	Client PM/FC	Sampler Nam		Sampling Date/T		☑ Sample ID	Matrix		
☐ Address		□ Tel#/Fax#	Courier Signa	ature	🗹 Analysis Require	d	T Preservative (if any)	₽ TAT		
Safety Issues (i	if any)	☐ High concentrations expe	ected		☐ Superfund Site sa	mples	☐ Rad screening r	equired		
Comments:										
L		***************************************								
	***************************************		·		Packaging Insp	ection				
Container		Cooler		□Вρх		☐ Other				
Condition		☐ Custody Seal	' '	Intact		☐ Damaged				
Packaging		□ Bubble Pack		□ Styrefe		, -	Sufficien	& Plushickage		
		A Cooler 2.6 °C			* .	□ Popcorn				
Temperatures (Cool, =6 °C by				□ Cooler	2°C	☐ Cooler 3	°C			
į		□ Cooler 6°C		□ Cooler		□ Cooler 8	°C 🗆 Cooler 9	°C □ Cooler 10°C		
	Thermomet				01541382		h e			
		rature is out of range. PM								
Note: pH ho	olding time	requirement for water sam	ples is 15 mins	. Water	samples for pH a	inalysis are receive	ed beyond 15 minutes	from sampling time.		
					DISCREPAN	CIES				
LSIC		LSCID	Description	Code	1	oel ID / Informatio	in l	Corrective Action Code		
	7		2 000.1.51.01	. 0000	Jampie La	, 111.0.111.0.0				
		ş								
		·								
					,					
					//		Ì			
				. /	$(I \setminus I)$					
□ Continu	e to next)	oage.	001	al	10/12	11. 1	*	0		
REVIEWS		Sample Labeling	The last	41	SRI	· Ulcel	e)	PM RK for Molly		
		Date	4-9-1	2/13	Date	. UI911		, Date 4/10/12		
				T	\bigcirc					
LEGEND:		j.	* *	Methodological						
Code		Description-Sample Managemen	ıt	Code	Descripti	on-Sample Managemer	nt Code	Description-Project Management		
A1 A	Analysis is not	indicated in COC.		G1	Sample indicated in C	OC is not received.	R1	Hold sample(s); wait for further instructions		
A2 A	Analysis is not	indicated in label.		G2	MS/MSD is not indica	ited in COC.	Proceed as indicated in COC and inform			
• A3 A	Analysis is inc	onsistent in COC vis-à-vis label.		G3	No identified trip blan	trip blank, proceed as indicated in COC. client.				
	•	ot indicated in COC.		G4	Trip Blank is designat	ed in SDG	Refer to attached instruction			
	•	ot indicated in label.		G5	G5 Trip Blank has no sampling date & time. Log-in R4			Cancel the analysis		
	Sample ID is it	nconsistent in COC vis-à-vis label.			with earliest sampling	date and 0:00 time.	R5	Inform client.		
	mproper conta			H1 .	The state of the s		R6	Proceed as indicated in COC		
	Broken contair						***			
	eaking contai									
		ne is not indicated in COC.								
		ne is not indicated in label.								
		ne is inconsistent in COC vis-à-vis la	abel.			/				
	mproper prese						***************************************			
_	nsufficient Sau Bubble is > 6m	mple m. Use vial with smallest bubble fi	ref			/				
~ ~	Bubble is > 6m		100				<u> </u>			
• •	20 % solid pa			•			***************************************	/		
	20 % sond pa Out of Holding			-	Lumino			famous Contraction		
		· 		-						

CLIENT: CH2M HILL
PROJECT: TOPOCK

SDG: 12D083

Analyst names:

1.SM4500NO3-E: Nina Macalinao

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 12D083

METHOD SM4500NO3 NITRATE/NITRITE-N

A total of five (5) water samples were received on 04/09/12 for Nitrate/Nitrite as N analysis, Method SM4500NO3 in accordance with Standard Methods for the Examination of Water and Wastewater, 20th Edition.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAD004WL/C were all within QC limits.

Matrix QC Sample

No matrix QC sample was designated for this SDG.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD SM4500NO3

Matrix

04/05/1210:10

04/05/1212:27

: WATER

04/09/12

04/09/12

Client : CH2M HILL

D083-04T

D083-05T

4.04

3.35

10

10

NA

NA

1.00

1.00

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : 70

Batch No. : 12D083

ow-02s-027

ow-05s-027

RESULTS RL MDL Analysis Collection Received EMAX Extraction (mg/L) DATETIME DATETIME LFID PREP BATCH DATETIME DATETIME SAMPLE ID (mq/L) (mq/L) CAL REF SAMPLE ID DLF MOIST -----_____ -----MBLK1W NAD004WB ND NA 0.100 0.0200 04/16/1218:48 NA-NAD00410 NAD00407 NADO04W NA NA LCS1W NAD004WL 0.524 1 NΑ 0.100 0.0200 04/16/1218:49 NA NAD00411 NAD00407 NAD004W NA 0.524 1 NA 0.100 0.0200 04/16/1218:49 NAD00412 NAD00407 NAD004W NA LCD1W NAD004WC NA CW-04D-027 D083-01T 2.97 10 1.00 0.200 04/16/1218:55 NAD00438 NAD00435 NAD004W 04/04/1215:48 04/09/12 NA NA CW-04M-027 D083-02T 2.53 10 NA 1.00 0.200 04/16/1218:55 NAD00440 NAD00435 NADO04W 04/04/1216:46 04/09/12 NΑ ow-01s-027 D083-03T 3.09 10 NΑ 1.00 0.200 04/16/1218:56 NA NAD00442 NAD00435 NAD004W 04/05/1209:08 04/09/12

0.200 04/16/1218:56

0.200 04/16/1218:56

NA

NAD00444

NAD00446

NAD00435

NAD00435

NAD004W

NAD004W

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

METHOD:

METHOD SM4500NO3

MATRIX:

WATER

% MOISTURE: NA

BATCH NO.:

12D083

LCS1W/LCD1W

DATE RECEIVED: NA
DATE EXTRACTED: NA

SAMPLE ID: LCS1W CONTROL NO.: NADOO

NAD004WL/C

DATE ANALYZED: 04/16/1218:49/18:49

ACCESSION:

	BLNK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	RPD LIMIT
PARAMETER	(mg/L)	(mg/L)	(mg/L)	% REC	(mg/L)	(mg/L)	% REC	%	%	%
NITRATE + NITRITE-N	ND	0.500	0.524	105	0.500	0.524	105	0	85-115	20

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

April 20, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2012-CMP-027, GROUNDWATER MONITORING

PROJECT, TLI NO.: 800861

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2012-CMP-027 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody April 4, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi

Manager, Analytical Services

Midwel sty

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612 **Attention:** Shawn Duffy

Sample: Nine (9) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM

Laboratory No.: 800861

Date: May 3, 2012 Collected: April 3, 2012 Received: April 4, 2012

Revision 1

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Kim Luck
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Bita Emami
SW 6020A	Metals by ICP/MS	Katia Kiarashpoor
EPA 200.8	Metals by ICP/MS	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Maksim Gorbunov / George Wahba / Melissa Scharfe

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 800861 Date Received: April 4, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
800861-001	CW-01D-027	E120.1	NONE	4/3/2012	14:36	EC	7190	umhos/cm	2.00
800861-001	CW-01D-027	E200.8	FLDFLT	4/3/2012	14:36	Chromium	ND	ug/L	1.0
800861-001	CW-01D-027	E218.6	FLDFLT	4/3/2012	14:36	Chromium, hexavalent	0.41	ug/L	0.20
800861-001	CW-01D-027	E300	NONE	4/3/2012	14:36	Chloride	2340	mg/L	100
800861-001	CW-01D-027	E300	NONE	4/3/2012	14:36	Fluoride	2.49	mg/L	0.500
800861-001	CW-01D-027	E300	NONE	4/3/2012	14:36	Sulfate	502	mg/L	25.0
800861-001	CW-01D-027	SM2130B	NONE	4/3/2012	14:36	Turbidity	0.142	NTU	0.100
800861-001	CW-01D-027	SM2540C	NONE	4/3/2012	14:36	Total Dissolved Solids	3960	mg/L	250
800861-001	CW-01D-027	SM4500NH3D	NONE	4/3/2012	14:36	Ammonia-N	ND	mg/L	0.500
800861-002	CW-01M-027	E120.1	NONE	4/3/2012	15:30	EC	7280	umhos/cm	2.00
800861-002	CW-01M-027	E200.8	FLDFLT	4/3/2012	15:30	Chromium	2.4	ug/L	1.0
800861-002	CW-01M-027	E218.6	FLDFLT	4/3/2012	15:30	Chromium, hexavalent	2.0	ug/L	0.20
800861-002	CW-01M-027	E300	NONE	4/3/2012	15:30	Chloride	2260	mg/L	100
800861-002	CW-01M-027	E300	NONE	4/3/2012	15:30	Fluoride	1.89	mg/L	0.500
800861-002	CW-01M-027	E300	NONE	4/3/2012	15:30	Sulfate	510	mg/L	50.0
800861-002	CW-01M-027	SM2130B	NONE	4/3/2012	15:30	Turbidity	0.181	NŤU	0.100
800861-002	CW-01M-027	SM2540C	NONE	4/3/2012	15:30	Total Dissolved Solids	4070	mg/L	250
800861-002	CW-01M-027	SM4500NH3D	NONE	4/3/2012	15:30	Ammonia-N	ND	mg/L	0.500
800861-003	OW-86-027	E218.6	FLDFLT	4/3/2012	16:30	Chromium, hexavalent	ND	ug/L	0.20

Report Continued

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
800861-004	CW-02D-027	E120.1	NONE	4/4/2012	12:47	EC	7390	umhos/cm	2.00
800861-004	CW-02D-027	E200.8	FLDFLT	4/4/2012	12:47	Chromium	1.2	ug/L	1.0
800861-004	CW-02D-027	E218.6	FLDFLT	4/4/2012	12:47	Chromium, hexavalent	0.82	ug/L	0.20
800861-004	CW-02D-027	E300	NONE	4/4/2012	12:47	Chloride	2360	mg/L	100
800861-004	CW-02D-027	E300	NONE	4/4/2012	12:47	Fluoride	3.12	mg/L	0.500
800861-004	CW-02D-027	E300	NONE	4/4/2012	12:47	Sulfate	500	mg/L	25.0
800861-004	CW-02D-027	SM2130B	NONE	4/4/2012	12:47	Turbidity	0.611	NTU	0.100
800861-004	CW-02D-027	SM2540C	NONE	4/4/2012	12:47	Total Dissolved Solids	4050	mg/L	250
800861-004	CW-02D-027	SM4500NH3D	NONE	4/4/2012	12:47	Ammonia-N	ND	mg/L	0.500
800861-004	CW-02D-027	SW6020	FLDFLT	4/4/2012	12:47	Molybdenum	ND	ug/L	10.0
800861-004	CW-02D-027	SW6020	FLDFLT	4/4/2012	12:47	Selenium	ND	ug/L	10.0
800861-005	CW-02M-027	E120.1	NONE	4/4/2012	13:47	EC	7180	umhos/cm	2.00
800861-005	CW-02M-027	E200.8	FLDFLT	4/4/2012	13:47	Chromium	2.8	ug/L	1.0
800861-005	CW-02M-027	E218.6	FLDFLT	4/4/2012	13:47	Chromium, hexavalent	2.4	ug/L	0.20
800861-005	CW-02M-027	E300	NONE	4/4/2012	13:47	Chloride	3800	mg/L	100
800861-005	CW-02M-027	E300	NONE	4/4/2012	13:47	Fluoride	3.02	mg/L	0.500
800861-005	CW-02M-027	E300	NONE	4/4/2012	13:47	Sulfate	475	mg/L	25.0
800861-005	CW-02M-027	SM2130B	NONE	4/4/2012	13:47	Turbidity	0.399	NTU	0.100
800861-005	CW-02M-027	SM2540C	NONE	4/4/2012	13:47	Total Dissolved Solids	3920	mg/L	250
800861-005	CW-02M-027	SM4500NH3D	NONE	4/4/2012	13:47	Ammonia-N	ND	mg/L	0.500
800861-005	CW-02M-027	SW6020	FLDFLT	4/4/2012	13:47	Molybdenum	20.2	ug/L	10.0
800861-005	CW-02M-027	SW6020	FLDFLT	4/4/2012	13:47	Selenium	ND	ug/L	10.0
800861-006	CW-03D-027	E120.1	NONE	4/4/2012	9:25	EC	7320	umhos/cm	2.00
800861-006	CW-03D-027	E200.8	FLDFLT	4/4/2012	9:25	Chromium	1.0	ug/L	1.0
800861-006	CW-03D-027	E218.6	FLDFLT	4/4/2012	9:25	Chromium, hexavalent	0.69	ug/L	0.20
800861-006	CW-03D-027	E300	NONE	4/4/2012	9:25	Chloride	2260	mg/L	100
800861-006	CW-03D-027	E300	NONE	4/4/2012	9:25	Fluoride	4.53	mg/L	0.500
800861-006	CW-03D-027	E300	NONE	4/4/2012	9:25	Sulfate	497	mg/L	25.0
800861-006	CW-03D-027	SM2130B	NONE	4/4/2012	9:25	Turbidity	0.115	NTU	0.100
800861-006	CW-03D-027	SM2540C	NONE	4/4/2012	9:25	Total Dissolved Solids	4170	mg/L	250
800861-006	CW-03D-027	SM4500NH3D	NONE	4/4/2012	9:25	Ammonia-N	ND	mg/L	0.500
800861-006	CW-03D-027	SW6020	FLDFLT	4/4/2012	9:25	Molybdenum	18.1	ug/L	10.0
800861-006	CW-03D-027	SW6020	FLDFLT	4/4/2012	9:25	Selenium	ND	ug/L	10.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
800861-007	CW-03M-027	E120.1	NONE	4/4/2012	10:31	EC	8780	umhos/cm	2.00
800861-007	CW-03M-027	E200.8	FLDFLT	4/4/2012	10:31	Chromium	8.6	ug/L	1.0
800861-007	CW-03M-027	E218.6	FLDFLT	4/4/2012	10:31	Chromium, hexavalent	7.9	ug/L	1.0
800861-007	CW-03M-027	E300	NONE	4/4/2012	10:31	Chloride	2910	mg/L	100
800861-007	CW-03M-027	E300	NONE	4/4/2012	10:31	Fluoride	3.16	mg/L	0.500
800861-007	CW-03M-027	E300	NONE	4/4/2012	10:31	Sulfate	454	mg/L	25.0
800861-007	CW-03M-027	SM2130B	NONE	4/4/2012	10:31	Turbidity	0.168	NTU	0.100
800861-007	CW-03M-027	SM2540C	NONE	4/4/2012	10:31	Total Dissolved Solids	4830	mg/L	250
800861-007	CW-03M-027	SM4500NH3D	NONE	4/4/2012	10:31	Ammonia-N	ND	mg/L	0.500
800861-008	OW-90-027	E120.1	NONE	4/4/2012	7:10	EC	7350	umhos/cm	2.00
800861-008	OW-90-027	E200.8	FLDFLT	4/4/2012	7:10	Chromium	1.1	ug/L	1.0
800861-008	OW-90-027	E218.6	FLDFLT	4/4/2012	7:10	Chromium, hexavalent	0.70	ug/L	0.20
800861-008	OW-90-027	E300	NONE	4/4/2012	7:10	Chloride	2220	mg/L	100
800861-008	OW-90-027	E300	NONE	4/4/2012	7:10	Fluoride	6.77	mg/L	0.500
800861-008	OW-90-027	E300	NONE	4/4/2012	7:10	Sulfate	501	mg/L	25.0
800861-008	OW-90-027	SM2130B	NONE	4/4/2012	7:10	Turbidity	0.135	NTU	0.100
800861-008	OW-90-027	SM2540C	NONE	4/4/2012	7:10	Total Dissolved Solids	4360	mg/L	250
800861-008	OW-90-027	SM4500NH3D	NONE	4/4/2012	7:10	Ammonia-N	ND	mg/L	0.500
800861-008	OW-90-027	SW6020	FLDFLT	4/4/2012	7:10	Molybdenum	18.1	ug/L	10.0
800861-008	OW-90-027	SW6020	FLDFLT	4/4/2012	7:10	Selenium	ND	ug/L	10.0
800861-009	OW-91-027	E120.1	NONE	4/4/2012	17:35	EC	7410	umhos/cm	2.00
800861-009	OW-91-027	E200.8	FLDFLT	4/4/2012	17:35	Chromium	1.2	ug/L	1.0
800861-009	OW-91-027	E218.6	FLDFLT	4/4/2012	17:35	Chromium, hexavalent	0.80	ug/L	0.20
800861-009	OW-91-027	E300	NONE	4/4/2012	17:35	Chloride	2230	mg/L	100
800861-009	OW-91-027	E300	NONE	4/4/2012	17:35	Fluoride	3.48	mg/L	0.500
800861-009	OW-91-027	E300	NONE	4/4/2012	17:35	Sulfate	500	mg/L	25.0
800861-009	OW-91-027	SM2130B	NONE	4/4/2012	17:35	Turbidity	0.677	NTU	0.100
800861-009	OW-91-027	SM2540C	NONE	4/4/2012	17:35	Total Dissolved Solids	4320	mg/L	250
800861-009	OW-91-027	SM4500NH3D	NONE	4/4/2012	17:35	Ammonia-N	ND	mg/L	0.500
800861-009	OW-91-027	SW6020	FLDFLT	4/4/2012	17:35	Molybdenum	ND	ug/L	10.0
800861-009	OW-91-027	SW6020	FLDFLT	4/4/2012	17:35	Selenium	ND	ug/L	10.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

т.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 423575.MP.02.CM
P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 4/4/2012 10:00:00 PM

Laboratory No. 800861

Page 1 of 16

Printed 4/20/2012

Samples Received on 4/4/2012 10:00:00 PM								
Field ID		Lab ID	Col	lected	Matr	ix		
CW-01D-027		800861-001	04/03	/2012 14:36	Wate	er		
CW-01M-027		800861-002	04/03	/2012 15:30	Wat	er		
OW-86-027		800861-003	04/03	/2012 16:30	Wat	er		
CW-02D-027		800861-004	04/04	/2012 12:47	Wate	er		
CW-02M-027		800861-005	04/04	/2012 13:47	Wate	er		
CW-03D-027		800861-006	04/04	/2012 09:25	Wate	er		
CW-03M-027		800861-007	04/04	/2012 10:31	Wate	er		
OW-90-027		800861-008	04/04	/2012 07:10	Wate	er		
OW-91-027		800861-009	04/04	/2012 17:35	Wat	er		
Anions By I.C EPA 300.0		Batch 04AN12D						
Parameter	Unit	Analyzed	DF	MDL	RL	Result		
800861-001 Chloride	mg/L	04/05/2012 13:50	500	18.0	100.	2340		
Fluoride	mg/L	04/05/2012 10:24	5.00	0.155	0.500	2.49		

1 didiliotoi	Offic	7 tranyzou	וט	IVIDE	116	1 (Count
800861-001 Chloride	mg/L	04/05/2012 13:50	500	18.0	100.	2340
Fluoride	mg/L	04/05/2012 10:24	5.00	0.155	0.500	2.49
Sulfate	mg/L	04/05/2012 15:44	50.0	5.70	25.0	502.
800861-002 Chloride	mg/L	04/05/2012 14:01	500	18.0	100.	2260
Fluoride	mg/L	04/05/2012 10:36	5.00	0.155	0.500	1.89
Sulfate	mg/L	04/05/2012 12:41	100	11.4	50.0	510.
800861-004 Chloride	mg/L	04/05/2012 14:35	500	18.0	100.	2360
Fluoride	mg/L	04/05/2012 10:47	5.00	0.155	0.500	3.12
Sulfate	mg/L	04/05/2012 15:55	50.0	5.70	25.0	500.
800861-005 Chloride	mg/L	04/05/2012 14:47	500	18.0	100.	3800
Fluoride	mg/L	04/05/2012 10:59	5.00	0.155	0.500	3.02
Sulfate	mg/L	04/05/2012 16:07	50.0	5.70	25.0	475.
800861-006 Chloride	mg/L	04/05/2012 14:58	500	18.0	100.	2260
Fluoride	mg/L	04/05/2012 11:10	5.00	0.155	0.500	4.53
Sulfate	mg/L	04/05/2012 16:18	50.0	5.70	25.0	497.

Client: E2 Consulting E		roject Name: roject Numbei	Project CM	Page 2 of 16 Printed 4/20/2012			
800861-007 Chloride		mg/L	04/05/	/2012 15:10 5	00 18.0	100. 2910	
Fluoride		mg/L	04/05/	/2012 11:21 5	.00 0.155	0.500 3.16	
Sulfate		mg/L	04/05/	/2012 16:52 5	0.0 5.70	25.0 454.	
800861-008 Chloride		mg/L	04/05	/2012 15:21 5	000 18.0	100. 2220	
Fluoride		mg/L	04/05	/2012 11:33 5	0.155	0.500 6.77	
Sulfate		mg/L	04/05/	/2012 17:04 5	50.0 5.70	25.0 501.	
800861-009 Chloride		mg/L	04/05	/2012 15:32 5	18.0	100. 2230	
Fluoride		mg/L	04/05	/2012 11:44 5	0.155	0.500 3.48	
Sulfate		mg/L	04/05	/2012 17:15 5	0.0 5.70	25.0 500.	
Method Blank							
Parameter	Unit	DF	Result				
Chloride	mg/L	1.00	ND				
Fluoride	mg/L	1.00	ND				
Sulfate	mg/L	1.00	ND				
Duplicate						Lab ID = 800854-0	001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Rar	nge
Chloride	mg/L	25.0	53.6	55.4	3.24	0 - 20	
Duplicate						Lab ID = 800861-0	001
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Rar	nge
Fluoride	mg/L	5.00	2.43	2.49	2.32	0 - 20	
Duplicate						Lab ID = 800861-0	
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Rar	nge
Sulfate	mg/L	100	508.	510.	0.422	0 - 20	
Lab Control Sample					_		
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Rar	nge
Chloride	mg/L	1.00	3.98	4.00	99.4	90 - 110	
Fluoride Sulfate	mg/L	1.00 1.00	4.12 20.1	4.00 20.0	103. 100.	90 - 110 90 - 110	
	mg/L	1.00	20.1	20.0	100.	Lab ID = 800854-0	201
Matrix Spike	119	D.F.	D #	F + 1/A -1-1-	.d. D		
Parameter Chloride	Unit mg/L	DF 25.0	Result 152.	Expected/Adde 155.(100.)	ed Recovery 96.9	Acceptance Rar 85 - 115	ige
Matrix Spike	mg/L	20.0	102.	100.(100.)	90.9	Lab ID = 800861-0	001
Parameter	Unit	DF	Result	Expected/Adde	ed Recovery	Acceptance Rar	nge
Fluoride	mg/L	5.00	23.3	22.5(20.0)	104.	85 - 115	

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Project Number: 423575.MP.02.CM					=	Page 3 of 16 Printed 4/20/2012
Matrix Spike						Lab ID = 800861-002
Parameter Sulfate	Unit mg/L	DF 100	Result 1530	Expected/Added 1510(1000)	Recovery 102.	Acceptance Range 85 - 115
MRCCS - Secondary			5 "		_	
Parameter Chloride	Unit mg/L	DF 1.00	Result 3.98	Expected 4.00	Recovery 99.4	Acceptance Range 90 - 110
Fluoride	mg/L	1.00	4.12	4.00	103.	90 - 110
Sulfate	mg/L	1.00	20.1	20.0	100.	90 - 110
MRCVS - Primary						
Parameter Chloride MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.98	Expected 3.00	Recovery 99.4	Acceptance Range 90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride MRCVS - Primary	mg/L	1.00	2.98	3.00	99.3	90 - 110
Parameter Chloride	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.6	Acceptance Range 90 - 110
MRCVS - Primary Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Fluoride	mg/L	1.00	3.12	3.00	104.	90 - 110
MRCVS - Primary	.					
Parameter Fluoride	Unit mg/L	DF 1.00	Result 3.12	Expected 3.00	Recovery 104.	Acceptance Range 90 - 110
Sulfate	mg/L	1.00	14.9	15.0	99.4	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate MRCVS - Primary	mg/L	1.00	14.9	15.0	99.2	90 - 110
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	15.0	15.0	100.	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate	mg/L	1.00	15.0	15.0	99.8	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 4 of 16 Printed 4/20/2012

Specific Conductivity - E	PA 120.1		Ba	tch 04EC12B				
Parameter	Division of the British	Unit	A	nalyzed	DF	MDL	RL	Result
800861-001 Specific Conducti	vity	umhos/	cm 04	/06/2012	1.00	0.0950	2.00	7190
800861-002 Specific Conducti	vity	umhos/	cm 04	/06/2012	1.00	0.0950	2.00	7280
800861-004 Specific Conducti	vity	umhos/	cm 04	/06/2012	1.00	0.0950	2.00	7390
800861-005 Specific Conducti	vity	umhos/	cm 04.	/06/2012	1.00	0.0950	2.00	7180
800861-006 Specific Conducti	vity	umhos/	cm 04.	/06/2012	1.00	0.0950	2.00	7320
800861-007 Specific Conducti	vity	umhos/	cm 04.	/06/2012	1.00	0.0950	2.00	8780
800861-008 Specific Conducti	vity	umhos/	cm 04.	/06/2012	1.00	0.0950	2.00	7350
800861-009 Specific Conducti	vity	umhos/	cm 04.	/06/2012	1.00	0.0950	2.00	7410
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	800861-009
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Specific Conductivity	umhos	1.00	7410	7410		0.00	0 - 10	
Duplicate							Lab ID =	800895-005
Parameter	Unit	DF	Result	Expected	F	RPD	-	nce Range
Specific Conductivity	umhos	1.00	2770	2770		0.00	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	-	nce Range
Specific Conductivity	umhos	1.00	693	706		98.2	90 - 110	
Lab Control Sample Du	ıplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Specific Conductivity	umhos	1.00	701	706		99.3	90 - 110	1
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery		nce Range
Specific Conductivity	umhos	1.00	686	706		97.2	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	•	nce Range
Specific Conductivity	umhos	1.00	969	998		97.1	90 - 110	1
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	-	nce Range
Specific Conductivity	umhos	1.00	972	998		97.4	90 - 110	

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 5 of 16 Printed 4/20/2012

Project Number: 423575.MP.02.CM

Chrome VI by EPA 218.6			Batch 04CrH12G					
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
800861-001 Chromium, Hex	avalent	ug/L	04/10	/2012 14:03	1.00	0.0260	0.20	0.41
800861-002 Chromium, Hex	avalent	ug/L	04/10	/2012 14:55	1.00	0.0260	0.20	2.0
800861-003 Chromium, Hex	avalent	ug/L	04/10/2012 15:05		1.00	0.0260	0.20	ND
800861-004 Chromium, Hex	avalent	ug/L	04/10	04/10/2012 15:57		0.0260	0.20	0.82
800861-005 Chromium, Hexa	avalent	ug/L	04/10	/2012 16:07	1.00	0.0260	0.20	2.4
800861-006 Chromium, Hexa	avalent	ug/L	04/10	/2012 16:18	1.00	0.0260	0.20	0.69
800861-007 Chromium, Hexa	avalent	ug/L	04/10	/2012 19:55	5.00	0.130	1.0	7.9
800861-008 Chromium, Hexa	avalent	ug/L	04/10	/2012 17:31	1.00	0.0260	0.20	0.70
800861-009 Chromium, Hex	avalent	ug/L	04/10	/2012 18:04	1.00	0.0260	0.20	0.80
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	800919-001
Parameter	Unit	DF	Result	Expected		RPD	•	nce Range
Chromium, Hexavalent	ug/L	1.00	0.0132	0.0146		10.1	0 - 20	
Low Level Calibration	Verification							
Parameter	Unit	DF	Result	Expected		Recovery	•	ince Range
Chromium, Hexavalent	ug/L	1.00	0.188	0.200		94.2	70 - 130)
Lab Control Sample						_		_
Parameter	Unit	DF 1.00	Result	Expected		Recovery	•	ince Range
Chromium, Hexavalent	ug/L	1.00	5.08	5.00		102.	90 - 110	, 800861-001
Matrix Spike	1.121	DE	D	-		D		
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.44	Expected/A 1.41(1.00)	aded	Recovery 104.	90 - 110	nce Range
Matrix Spike	ug/L	1.00	1.77	1.41(1.00)		104.		, 800861-001
·	Lleit	DF	Dogult	Evported/A	ddad	Doggues		
Parameter Chromium, Hexavalent	Unit ug/L	5.00	Result 5.24	Expected/A 5.27(5.00)	aueu	Recovery 99.4	90 - 110	ince Range i
Matrix Spike	~g, _	0.00	0.2 1	0.27 (0.00)		00.1		, 800861-002
Parameter	Unit	DF	Result	Expected/A	hahh	Recovery		nce Range
Chromium, Hexavalent	ug/L	1.00	6.90	6.98(5.00)	ducu	98.5	90 - 110	_
Matrix Spike	J			7				800861-002
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	5.00	6.77	6.73(5.00)		101.	90 - 110	

Client: E2 Consulting Er	ngineers, Inc		oject Name: oject Numbe	oject 1	Page 6 of 16 Printed 4/20/2012	
Matrix Spike						Lab ID = 800861-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.978	Expected/Added 1.00(1.00)	Recovery 97.8	Acceptance Range 90 - 110 Lab ID = 800861-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.58	Expected/Added 5.59(5.00)	Recovery 99.9	Acceptance Range 90 - 110 Lab ID = 800861-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.78	Expected/Added 1.82(1.00)	Recovery 96.0	Acceptance Range 90 - 110 Lab ID = 800861-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 7.39	Expected/Added 7.45(5.00)	Recovery 98.8	Acceptance Range 90 - 110 Lab ID = 800861-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 7.33	Expected/Added 7.23(5.00)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 800861-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.66	Expected/Added 1.69(1.00)	Recovery 96.2	Acceptance Range 90 - 110 Lab ID = 800861-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.38	Expected/Added 5.54(5.00)	Recovery 96.8	Acceptance Range 90 - 110 Lab ID = 800861-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 17.7	Expected/Added 17.8(10.0)	Recovery 99.1	Acceptance Range 90 - 110 Lab ID = 800861-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 32.9	Expected/Added 32.9(25.0)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 800861-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.49	Expected/Added 5.49(5.00)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 800861-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.68	Expected/Added 1.70(1.00)	Recovery 97.4	Acceptance Range 90 - 110 Lab ID = 800861-009
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 1.80	Expected/Added 1.80(1.00)	Recovery 99.4	Acceptance Range 90 - 110

Client: E2 Consulting Eng	: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Project Number: 423575.MP.02.CM			-	Page 7 of 16 Printed 4/20/2012	
Matrix Spike						Lab ID = 800861-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.00	Result 5.55	Expected/Added 5.58(5.00)	Recovery 99.4	Acceptance Range 90 - 110 Lab ID = 800919-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.997	Expected/Added 1.01(1.00)	Recovery 98.2	Acceptance Range 90 - 110 Lab ID = 800919-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 0.972	Expected/Added 1.00(1.00)	Recovery 97.2	Acceptance Range 90 - 110 Lab ID = 800920-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.00	Result 1.06	Expected/Added 1.00(1.00)	Recovery 106.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.03	Expected 5.00	Recovery 100.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 8 of 16

Project Number: 423575.MP.02.CM Printed 4/20/2012

Selenium ug/L 04/11/2012 00:58 5.00 0.340 800861-005 Molybdenum ug/L 04/11/2012 01:05 5.00 0.270 Selenium ug/L 04/11/2012 01:05 5.00 0.340 800861-006 Molybdenum ug/L 04/11/2012 01:12 5.00 0.270 Selenium ug/L 04/11/2012 01:12 5.00 0.340	10.0 NI 10.0 NI	D 0.2 D
Selenium ug/L 04/11/2012 00:58 5.00 0.340 800861-005 Molybdenum ug/L 04/11/2012 01:05 5.00 0.270 Selenium ug/L 04/11/2012 01:05 5.00 0.340 800861-006 Molybdenum ug/L 04/11/2012 01:12 5.00 0.270 Selenium ug/L 04/11/2012 01:12 5.00 0.340	10.0 NI 10.0 20 10.0 NI 10.0 18	D 0.2 D
800861-005 Molybdenum ug/L 04/11/2012 01:05 5.00 0.270 Selenium ug/L 04/11/2012 01:05 5.00 0.340 800861-006 Molybdenum ug/L 04/11/2012 01:12 5.00 0.270 Selenium ug/L 04/11/2012 01:12 5.00 0.340	10.0 20 10.0 Ni 10.0 18	0.2 D
Selenium ug/L 04/11/2012 01:05 5.00 0.340 800861-006 Molybdenum ug/L 04/11/2012 01:12 5.00 0.270 Selenium ug/L 04/11/2012 01:12 5.00 0.340	10.0 NI 10.0 18	D
800861-006 Molybdenum ug/L 04/11/2012 01:12 5.00 0.270 Selenium ug/L 04/11/2012 01:12 5.00 0.340	10.0 18	
Selenium ug/L 04/11/2012 01:12 5.00 0.340		2.4
5	10.0 NI	5. T
		D
800861-008 Molybdenum ug/L 04/11/2012 01:26 5.00 0.270	10.0 18	3.1
Selenium ug/L 04/11/2012 01:26 5.00 0.340	10.0 NI	D
800861-009 Molybdenum ug/L 04/11/2012 01:33 5.00 0.270	10.0 NI	D
Selenium ug/L 04/11/2012 01:33 5.00 0.340	10.0 NI	D
Method Blank		
Parameter Unit DF Result		
Selenium ug/L 1.00 ND		
Molybdenum ug/L 1.00 ND		
Duplicate	ab ID = 8008	61-001
Parameter Unit DF Result Expected RPD A	Acceptance	Range
Selenium ug/L 5.00 3.00 3.41 12.8 0	0 - 20	-
Molybdenum ug/L 5.00 18.3 18.5 1.09 0	0 - 20	
Low Level Calibration Verification		
Parameter Unit DF Result Expected Recovery A	Acceptance I	Range
Selenium ug/L 1.00 0.202 0.200 101. 7	70 - 130	
Molybdenum ug/L 1.00 0.210 0.200 105. 7	70 - 130	
Lab Control Sample		
·	Acceptance I	Range
G	35 - 115	
Molybdenum ug/L 5.00 95.4 100. 95.4 8	35 - 115	
Matrix Spike	ab ID = 8008	61-001
Parameter Unit DF Result Expected/Added Recovery A	Acceptance I	Range
· · ·	75 - 125	
Molybdenum ug/L 5.00 115. 118.(100.) 96.4 7	75 - 125	
Matrix Spike Duplicate	ab ID = 8008	61-001
•	Acceptance I	Range
· · ·	75 - 125	
Molybdenum ug/L 5.00 122. 118.(100.) 103. 7	75 - 125	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 10 of 16 Printed 4/20/2012

Project Number: 423575.MP.02.CM

Total Dissolved Solids	by SM 254	0 C	Batch	04TDS12B				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
800861-001 Total Dissolved	Solids	mg/L	04/06	5/2012	1.00	0.400	250.	3960
800861-002 Total Dissolved	Solids	mg/L	04/06	6/2012	1.00	0.400	250.	4070
800861-004 Total Dissolved	Solids	mg/L	04/06	5/2012	1.00	0.400	250.	4050
800861-005 Total Dissolved	Solids	mg/L	04/06	5/2012	1.00	0.400	250.	3920
800861-006 Total Dissolved	Solids	mg/L	04/06	6/2012	1.00	0.400	250.	4170
800861-007 Total Dissolved	Solids	mg/L	04/06	6/2012	1.00	0.400	250.	4830
800861-008 Total Dissolved	Solids	mg/L	04/06	5/2012	1.00	0.400	250.	4360
800861-009 Total Dissolved	Solids	mg/L	04/06	5/2012	1.00	0.400	250.	4320
Method Blank								
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result ND					
Duplicate							Lab iD =	800895-005
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 1630	Expected 1570	F	RPD 3.87	Accepta 0 - 5	ance Range
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 450.	Expected 500.	F	Recovery 90.0	Accepta 90 - 110	ance Range)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 11 of 16 Printed 4/20/2012

Ammonia Nitrogen by SM	4500-NF	13D	Batch	04NH3-E12A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
800861-001 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-002 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-004 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-005 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-006 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-007 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-008 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
800861-009 Ammonia as N		mg/L	04/05	5/2012	1.00	0.00120	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Duplicate							Lab ID =	800831-001
Parameter	Unit	DF	Result	Expected		RPD	•	nce Range
Ammonia as N	mg/L	1.00	ND	0.00		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	•	nce Range
Ammonia as N	mg/L	1.00	10.4	10.0		104.	90 - 110	
Matrix Spike							Lab ID =	800831-001
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	•	nce Range
Ammonia as N	mg/L	1.00	6.28	6.00(6.00)		105.	75 - 125	
Matrix Spike Duplicate							Lab ID =	800831-001
Parameter	Unit	DF	Result	Expected/Ad	lded	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.50	6.00(6.00)		108.	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.12	6.00		102.	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	5.97	6.00		99.4	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.02	6.00		100.	90 - 110	

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 12 of 16

Project Number: 423575.MP.02.CM Printed 4/20/2012

Metals by EPA 200.8, Dis	solved		Batch	041012B				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
800861-001 Chromium		ug/L	04/11	/2012 00:08	5.00	0.110	1.0	ND
800861-002 Chromium		ug/L	04/11	/2012 00:51	5.00	0.110	1.0	2.4
800861-004 Chromium		ug/L	04/11	/2012 00:58	5.00	0.110	1.0	1.2
800861-005 Chromium		ug/L	04/11	/2012 01:05	5.00	0.110	1.0	2.8
800861-006 Chromium		ug/L	04/11	/2012 01:12	5.00	0.110	1.0	1.0
800861-007 Chromium		ug/L	04/11	/2012 01:19	5.00	0.110	1.0	8.6
800861-009 Chromium		ug/L	04/11	/2012 01:33	5.00	0.110	1.0	1.2
Method Blank			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Duplicate							Lab ID =	800861-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium	ug/L	5.00	ND	0.00		0	0 - 20	
Low Level Calibration Verification								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	0.226	0.200		113.	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	5.00	103.	100.		103.	85 - 115	5
Matrix Spike							Lab ID =	800861-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	106.	100.(100.)		106.	75 - 125	5
Matrix Spike Duplicate							Lab ID =	800861-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	109.	100.(100.)		109.	75 - 125	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Chromium	ug/L	1.00	10.8	10.0		108.	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	•	nce Range
Chromium	ug/L	1.00	10.1	10.0		101.	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 14 of 16

Project Number: 423575.MP.02.CM

Printed 4/20/2012

Metals by EPA 200.8. Disso	Metals	by EPA	200.8.	Disso	lved
----------------------------	---------------	--------	--------	-------	------

Parameter		Unit	Ana	lyzed C	F MDL	RL Result
800861-008 Chromium		ug/L			00 0.110	1.0 1.1
Method Blank			······································			***************************************
Parameter Chromium	Unit ug/L	DF 1.00	Result ND			
Low Level Calibration	Verification					
Parameter Chromium Lab Control Sample	Unit ug/L	DF 1.00	Result 0.211	Expected 0.200	Recovery 105.	Acceptance Range 70 - 130
Parameter Chromium Matrix Spike	Unit ug/L	DF 5.00	Result 103.	Expected 100.	Recovery 103.	Acceptance Range 85 - 115 Lab ID = 800861-001
Parameter Chromium Matrix Spike Duplicate	Unit ug/L e	DF 5.00	Result 107.	Expected/Added 101.(100.)	d Recovery 106.	Acceptance Range 75 - 125 Lab ID = 800861-001
Parameter Chromium MRCCS - Secondary	Unit ug/L	DF 5.00	Result 114.	Expected/Added 101.(100.)	d Recovery 113.	Acceptance Range 75 - 125
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.74	Expected 10.0	Recovery 97.4	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.55	Expected 10.0	Recovery 95.5	Acceptance Range 90 - 110
Parameter Chromium Interference Check St	Unit ug/L tandard A	DF 1.00	Result 9.67	Expected 10.0	Recovery 96.7	Acceptance Range 90 - 110
Parameter Chromium Interference Check St	Unit ug/L tandard A	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range

Client: E2 Consulting Eng	ineers, Inc		roject Name: roject Number	PG&E Topo r: 423575.MP.	-	ct	Printed 4/	age 15 of 16 20/2012
Interference Check Sta	andard AB							
Parameter	Unit	DF	Result 9.64	Expected 10.0	F	Recovery	Accepta 80 - 120	nce Range
Chromium Interference Check Sta	ug/L andard AB	1.00	9.04	10.0		96.4	00 - 120	
Parameter	Unit	DF	Result	Expected	F	Recovery	Accenta	nce Range
Chromium	ug/L	1.00	9.47	10.0	'	94.7	80 - 120	_
Turbidity by SM 2130 B			Batch	04TUC12E				
Parameter	en di Nice de La	Unit	Anal	yzed	DF	MDL	RL	Result
800861-001 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.142
800861-002 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.181
800861-004 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.611
800861-005 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.399
800861-006 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.115
800861-007 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.168
800861-008 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.135
800861-009 Turbidity		NTU	04/05	/2012	1.00	0.0140	0.100	0.677
Method Blank			,					
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID = 8	800861-009
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Turbidity	NTU	1.00	0.680	0.677		0.442	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.30	8.00		104.	90 - 110	
Lab Control Sample Du	uplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.20	8.00		102.	90 - 110	

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 16 of 16

Project Number: 423575.MP.02.CM Printed 4/20/2012

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

س ہر Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 04TDS12B

Date Calculated: 4/6/12

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL,	Reported Value, ppm	DF
BLANK	100	72.8180	72.8190	72.8188	0.0002	No	0.0008	8.0	25.0	ND	1
800861-1	10	75.4461	75.4859	75.4857	0.0002	No	0.0396	3960.0	250.0	3960.0	1
800861-2	10	51.4259	51.4669	51.4666	0.0003	No	0.0407	4070.0	250.0	4070.0	1
800861-4	10	50.4941	50.5348	50.5346	0.0002	No	0.0405	4050.0	250.0	4050.0	1
800861-5	. 10	74.6832	74.7228	74.7224	0.0004	No	0.0392	3920.0	250.0	3920.0	1
800861-6	10	47.5215	47.5636	47.5632	0.0004	No	0.0417	4170.0	250.0	4170.0	1
800861-7	10	49.3515	49.4002	49.3998	0.0004	No	0.0483	4830.0	250.0	4830.0	1
800861-8	10	48.5955	48.6395	48.6391	0.0004	No	0.0436	4360.0	250.0	4360.0	1
800861-9	10	47.5075	47.5511	47.5507	0.0004	No	0.0432	4320.0	250.0	4320.0	1
800895-1	10	46.9878	47.0347	47.0344	0.0003	No	0.0466	4660.0	250.0	4660.0	1
800895-2	10	50.9888	51.0259	51.0257	0.0002	No	0.0369	3690.0	250.0	3690.0	1
800895-3	20	49.8234	49.8858	49.8855	0.0003	No	0.0621	3105.0	125.0	3105.0	1
800895-4	50	68.4249	68.4754	68.475	0.0004	No	0.0501	1002.0	50.0	1002.0	1
800895-5	50	76,5494	76.6283	76.6279	0.0004	No	0.0785	1570.0	50.0	1570.0	1
800895-5D	50	68.1358	68.2177	68.2174	0.0003	No	0.0816	1632.0	50.0	1632.0	1
				-							
LCS	100	74.7349	74,7803	74,7799	0.0004	No	0.0450	450.0	25.0	450.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =
$$\left(\frac{A-B}{C}\right) x \cdot 1^{-0.6}$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Analyst Printed Name

Analyst Signature

Paylourer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 04TDS12B Date Calculated: 4/6/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
800861-1	7199	0.55	4679,35	0.85
800861-2	7280	0.56	4732	0.86
800861-4	7390	0.55	4803.5	0.84
800861-5	7180	0.55	4667	0.84
800861-6	7320	0.57	4758	0.88
800861-7	8780	0.55	5707	0.85
800861-8	7350	0.59	4777.5	0.91
800861-9	7410	0.58	4816.5	0.90
800895-1	7610	0.61	4946,5	0.94
800895-2	6760	0.55	4394	0.84
800895-3	5420	0.57	3523	0.88
800895-4	1760	0.57	1144	0.88
800895-5	2770	0.57	1800.5	0.87
800895-5D	2770	0.59	1800.5	0.91

CMP-027 TLI #1

800861

	CH2MHIL	L							CH	IAIN C	F CU	STODY	RECORD 4/4/2012 4:03:44 PM Page 1	OF _	1
	Project Name PG Location Topoci Project Manager	k	.,.	Container	Poly (NH4)2S	500 mi Poly HNO3 4°C	500 ml Poly HNON 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2SO4, pH-2, 4°C			
	Sample Manager	Matt Ringi	er	Filtered:	Field	Field	Field	NA	NA	NA	NA	NA			
			Holi	ding Time:	28	180	180	2	2	2	2	28			
	Project Number 4 Task Order Project 2012-CMI Turnaround Time Shipping Date: 4 COC Number: 1	P-027 10 Day:	3	vi.0 Matrix	Or8 (E218.6) Field Fillered	Metals (6200,7-6200.8) Field Filtered Chromium	Metals (SW60106/SW6020Adis) Flat: Filtered Mo.Se	Specific Conductance (E120.1)	Aniona (£300.0) Ct. Ft. SO4	Turbidity (SM2:30)	TOS (SMZ540C)	Ammonie (SM4500NH3)	ALERT!! Level III QC	Number of Containers	COMMENTS
ار	CW-01D-027	4/3/2012	14:36	Water	х	х		х	х	х	х	x		5	
-2	CW-01M-027	4/3/2012	15:30	Water	х	х	· · · · · · · · · · · · · · · · · · ·	х	х	х	х	х		5	
-3	OW-86-027	4/3/2012	16:30	Water	х		*****							1	
~¥	CW-02D-027	4/4/2012	12:47	Water	х	х	Х	х	X	х	х	Х		6	
5	CW-02M-027	4/4/2012	13:47	Water	Х	Х	Х	Х	Х	x	х	x		6	
76	CW-03D-627	4/4/2012	9:25	₩ater	х	х	х	X	х	Х	х	х		6	
7	CW-03M-027	4/4/2012	10:31	Water	х	x	5PD_	, Х	х	х	х	х		5	
8	OW-90-027	4/4/2012	7:10	Water	х	х	X	x	х	х	х	х	Please add Mo and Se analysis to this sample	5	
-9	OW-91-027	4/4/2012	17:35	Water	х	х	х	х	х	X	х	х	Strong ?. Duffe	6	
-	<u>angangan ng pangangan ng pangang</u>		-	<u> </u>	.	THE PERSON NAMED IN COLUMN NAMED IN	ossessi (A. 1971) and the contract of the cont	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					4/4/3013	45	

Approved by Sampled by

Reinquished by

Relinquished by

Received by

Shipping Details

ATTN:

Special Instructions:

Method of Shipment:

April 4-6, 2012

On Ice: yes / no I-4-12 1606

Sample Custody

Airbill No:

Lab Name: Truesdail Laboratories, Inc.

Lab Phone: (714) 730-6239

Report Copy to Shawn Duffy

(530) 229-3303

CH2MHILL

CHAIN OF CUSTODY RECORD

	Project Name PG Location Topock Project Manager J	(Container: ervatives:	250 ml Poly (NH4)2S O4/NH4O H, 4°C	500 ml Poly HNO3, 4°C	500 ml Poly HNO3, 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2SO4, pH<2, 4°C			
	Sample Manager A	Aatt Ringi	er	Filtered:	Field	Field	Field	NA	NA	NA	NΑ	NA			
				ling Time:	28	180	180	2	2	2	2	28	<i>5</i> %		
	Project Number 4 Task Order Project 2012-CMF		7.02.CM	#.O	Cr6 (t∦etals (E200. Filtered	Metals (Specific	Anion	-1		Amr	A		
1	Turnaround Time		S		E218	(E2)	ield F	Cor	s (E	urbic	TDS	noni	1/24/PA	Number	
1	Shipping Date: 4/	-			8.6) F		010£ Filter	nduct	300.0	lity (s	(SMI)	a (SN	TO VOICE TO THE PARTY OF THE PA		
	COC Number: 1	DATE	TIME	Matrix	Cr6 (E218.6) Field Filtered	7-E200.8) Field Chromium	(SW6010B/SW6020Adis) Field Filtered Mo.Se	Specific Conductance (E120.1)	Anions (E300.0) Cl, Fl, SO4	Turbidity (SM2130)	TDS (SM2540C)	Ammonia (SM4500NH3)	QC/	of Containers	COMMENTS
Ĺ	CW-01D-027	4/3/2012	14:36	Water	х	Х		Х	х	Х	Х	X		5	Lou=2
	CW-01M-027	4/3/2012	15:30	Water	X	Х		Х	Х	Х	Х	Х		5	Ineta
	OW-86-027	4/3/2012	16:30	Water	х									1	
ľ	CW-02D-027	4/4/2012	12:47	Water	X	X	X	Х	Х	Х	Х	Х		6	1
T	CW-02M-027	4/4/2012	13:47	Water	Х	Х	Х	Х	Х	Х	Х	Х		6	1
Ī	CW-03D-027	4/4/2012	9:25	Water	х	Х	x	Х	X	X	X	Х		6	(DH=2
Ī	CW-03M-027	4/4/2012	10:31	Water	Х	Х		X	Х	X	X	Х		5	Meta
-	OW-90-027	4/4/2012	7:10	Water	Х	Х	(E)	X	X	Х	X	Х		5	
-	OW-91-027	4/4/2012	17:35	Water	Х	×	X	Х	Х	Х	Х	Х		6	J
	······································	<u> </u>	-	 	4	······································							TOTAL NUMBER OF CONTAINERS	45	

For Sample Conditions See Form Attached

Approved by
Sampled by
Retinquished by

Received by Relinquished by Received by

Signatures

Shipping Details

Method of Shipment:

On Ice: yes / no

4/4//12 221 Lab Phone: (714) 730-6239

Special Instructions:

ATTN:

April 4-6, 2012

4-4-12 1606 Airbill No: 4-4-12 Regulab Name: Truesdail Laboratories, Inc.

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

3/16/12 800534-1 9.5 N/A	Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials	7
3/21/2 300584 7.0 5mc 9.5 10.15an 127 3/21/2 300584 7.0 5mc 9.5 10.15an 127 3/23/2 800651-1 9.5 NA NA NA MA 3/23/2 800732 7.0 5mc 9.5 9.25an 127 3/23/2 800732 7.0 5mc 9.5 10.25an 127 3/23/2 800742 7.0 5mc 9.5 10.25an 127 3/23/2 80070-1 9.5 NA	3/16/12	800534-1	9.5	N/A	N/A	N/A	MG	
3/21/2 800584 7.0 5mc 9,5 10:15am 19 3/21/2 800584 7.0 5mc 9,5 10:15am 19 3/23/12 800651-1 9.5 NA NA NA NA 3/23/12 800732 7.0 5mc 9.5 9:25am 19 3/23/12 800732 7.0 5mc 9.5 10:25am 19 3/23/12 800742 7.0 5mc 9.5 NA NA NA NA NA NA 3/23/12 800700-1 9.5 NA NA NA NA NA NA 3/23/12 800700-1 9.5 NA NA NA NA NA 4/4/12 800830 -1 7.0 2mc 9.5 10:00am 19 4/4/12 800831 -1 7.0 2mc 9.5 10:00am 19 4/5/12 800861 -1 9.5 NA NA NA NA NA 10:20am 19 10:20am 19 10:30am 19 1		-2	Ś					
3/21/2 800584 7.0 5mL 9.5 10:50m 79 3/23/2 800651-1 9.5 NA NA NA NA MA 3/28/12 800732 7.0 5mL 9.5 9:25cm 704 3/28/12 800732 7.0 5mL 9.5 10:25cm 704 3/28/12 800756 9.5 NA NA NA NA NA MA 3/28/12 80070-1 9.5 NA NA NA NA MA 4/4/12 800830-1 7.0 2mL 9.5 9:30cm 704 4/4/12 800830-2 7.0 2mL 9.5 10:00cm 704 4/4/12 800830-1 7.0 2mL 9.5 10:00cm 704 4/4/12 800861-1 9.5 NA NA NA NA NA NA 4/4/12 800861-1 9.5 NA NA NA NA NA NA 4/4/12 800861-1 9.5 NA NA NA NA NA 4/5/12 800861-1 9.5 NA NA NA NA NA NA		-3						
3/21/2 800584 7.0 5mL 9.5 10:15an 127 3/21/2 800584 7.0 5mL 9.5 10:15an 127 3/28/2 800732 7.0 5mL 9.5 9:25an 127 3/28/2 800732 7.0 5mL 9.5 9:25an 127 3/28/12 800742 7.0 5mL 9.5 10:25an 127 3/28/12 800756 9.5 NA				·			·	
3/21/2 800884 7.0 5mL 9.5 10:50m 127 3/25/2 800851-1 9.5 NA NA NA MA 3/26/2 800832 7.0 5mL 9.5 9:25cm m/ 3/26/2 800782 7.0 5mL 9.5 9:25cm m/ 3/26/2 800742 7.0 5mL 9.5 10:35am m/ 3/26/2 80070-1 9.5 NA NA NA NA NA MA 3/26/2 80070-1 9.5 NA						·		
3/28/12 800/651-1 9.5 NA NA NA NA MA 3/28/12 800782 7.0 5mL 9.5 9:25cm MA 3/28/12 800782 7.0 5mL 9.5 10:25cm MA 3/28/12 800742 7.0 5mL 9.5 10:25cm MA 3/28/12 80070-1 9.5 NA NA NA NA NA MA 3/28/12 80070-1 9.5 NA NA NA NA NA 4/4/12 800820 -2 7.0 2mL 9.5 9:30cm MA 4/4/12 800820 -2 7.0 2mL 9.5 9:45cm MA 4/4/12 800820 -2 7.0 2mL 9.5 10:00cm MA 4/5/12 800831 -1 7.0 2nL 9.5 10:00cm MA 4/5/12 800861 -1 9.5 NA NA NA NA MA -2 -3 -4 -3 -4 -3 -4 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8			V	<i>y</i>	V	* *	1	
3/38/12 800782 7.0 5ml 9.5 9:25cm m/ 3/38/12 800742 7.0 5ml 9.5 10:35cm m/ 3/38/12 800742 7.0 5ml 9.5 10:35cm m/ 3/38/12 800786 9.5 NA NA NA NA MA MA 3/30/12 800780-1 9.5 NA NA NA NA MA MA 4/41/12 800830-1 7.0 2ml 9.5 9:30cm m/ 4/41/12 800830-2 7.0 2ml 9.5 10:00cm m/ 4/41/12 800831-1 7.0 2nl 9.5 10:00cm m/ 4/41/2 800831-1 7.0 2nl 9.5 10:20cm m/ 4/5/12 800861-1 9.5 NA NA NA NA NA MA MA MA	7 [
3/38/12 800782 7.0 5mL 9.5 9:25cm mf 3/38/12 800782 7.0 5mL 9.5 9:35cm mf 3/38/12 800742 7.0 5mL 9.5 10:35cm mf 3/38/12 800766 9.5 NA NA NA NA NA MA 3/30/12 80070-1 9.5 NA NA NA NA NA MA 4/4/12 800830 -1 7.0 2mL 9.5 9:30cm mf 4/4/12 800830 -2 7.0 2mL 9.5 10:00cm mf 4/4/19 800831 -1 7.0 2mL 9.5 10:00cm mf 4/3/12 800861 -1 9.5 NA NA NA NA MA -2 4/3/12 800861 -1 9.5 NA NA NA NA MA -2 -3 -4 -3 -4 -7 -8	3/23/12		9.5	NA	NA	NA	m	
3/38/12 800782 7.0 5mL 9.5 9:25cm Mf 3/38/12 800782 7.0 5mL 9.5 9:35 Am (2) 3/38/12 800786 7.5 NA NA NA NA NA MA 3/30/12 800770-1 9.5 NA NA NA NA NA NA 4/4/12 800830 -1 7.0 2mL 9.5 9:30an Mf 4/4/12 800830 -2 7.0 2mL 9.5 10:00am Mf 4/4/12 800831 -1 7.0 2mL 9.5 10:00am Mf 4/4/12 800831 -1 7.0 2mL 9.5 10:00am Mf 4/5/12 800861 -1 9.5 NA NA NA NA MA 4/5/12 800861 -1 9.5 NA NA NA MA -2 -3 -3 -4 -7 -8								
3 18 12 8 = 132 7 5 mL 9 5 9 30 Am (2) 3 38 12 800 742 7.0 5 mL 9 5 10 35 5 cm 10 4 10 10 10 10 10 10								
3/8/12 800742 7.0 SML 9.5 10:35am 747 3/30/12 800756 9.5 NA			7,0	•1			my-	
3/30/12 800756 9.5 NA NA NA NA MA TECON MY GU 1/2/12 3/30/12 800770-1 9.5 NA NA TECON MY GU 1/2/12 4 -2		1 •	7				(,)	
3/30/12 800770-1 9,5 NA	3/28/12	800 742	7.0				12/	
-2 -3 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	3/20/12	800106	1			NA WA	74	C. Inlin
4	7/30/12	1	9,0	- NA	- NA		116	1/2/12
4/4/12 800830 -1 7.0 2mL 9.5 9:30an Mt 4/4/12 800830 -2 7.0 2mL 9.5 10:00an Mt 4/4/13 800831 -1 7.0 2mL 9.5 10:00an Mt 10:10an 1 10:20an 4 4/5/12 800861 -1 9.5 NA NA NA MA -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4								
4/4/ ₁₂ 800830 -2 7.0 2mL 9.5 9:45am My 4/4/ ₁₉ 800831 -1 7.0 2mL 9.5 10:00am My 10:10am 1 10:20am 7 4/5/ ₁₂ 800861 -1 9.5 NA NA NA MY -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4								-\
4/4/13 800831 -1 7.0 2nL 9.5 10:00 on suf 10:10 cm 4/5/12 800861 -1 9.5 NA NA NA NA MA -2 -4 -7 -8	4/17	1					Int	
10:10cm 10:20cm 4/5/12 800861 -1 9.5 NA NA NA NA MA -2 -4 -4 -5 -6 -8		i i		1			, , , , , , , , , , , , , , , , , , ,	•
4/5/12 800861 -1 9.5 NA NA NA NA MA SUSTINIO SECONDA S	1	l	1.0	ZNC	$\frac{7.5}{1}$		day	
4/5/12 800861 -1 9.5 NA NA NA MA -2 -3 -4 -5 -5 -7 -8		→ -2	1		+	, ,	1	
-2 -3 -4 -5 -5 -7 -7								
-4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5			(,0)	1	, , ,		708)	
-4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5		-3						
-5 -6 -7 -8				· ·				
-7 -8								
-7 -8								
		-8						
, , , , , , , , , , , , , , , , , , ,	7		→	\$	£	=	+	

MM G 4/13/12 078

Turbidity/pH Check

			rui	bidity/pH C	HECK	· ·	
	Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
	800853(11-13)	<-	>2	4-5-12	ВE	No	XCS 7:30AM
	800861 (1-21)	خ١	<2		[XES	321aA
	802 875-4	<1	< 2			No	yes
	800 860	ול	72			Ve5	301 mA x c5:14:35
	800 878	7	₹ 2			xcs	3010A 400 14 30
	800880	<1				NO	OF 4
	800879	71				yes	3010 A
E-12	800 891 800 907	71	< Z	4-6-12	BE	Yes	3 10A
6-12	8008351:-51	ا ر ک	ر ک			1	
-	ए ० व ५० १	>1	<u> </u>			T. J.	1
ļ	500121(12)		42	Y	T.	yes	3010A
	800 713	71	<2	4-9-12	BE	Xes	30104
	800314	71					
ļ	800 915(1-33)		72			No	XC5 7:45AN
	800916(1-18)						
	800917 (1-17)	 	 			 	
	200918 (1-12)						
ļ	50092E	<1	< z	4-10-12	BE	N 0	NO
	800129	<u> </u>	; -				
	800930		>2			BE YES	30104 465 7: 30 Am
	800 931 (1-4)	7.0 31	\\\\ \{ z}			-293 × <5	3010A
	80093447	1 <1	<u> </u>			Yes	3010A
	800 936(1-7)					1 7	
	800 935U-6)						
	20 0939					Wes 3	bA NO
	8007646-101	<u> </u>	<2	4-11-12	B 6	Xes	3 = 10 4
	800 963-1				1 :		
	800965(1-3)						
	800 966L1-9)					 	
	800967	1	72			†	y c5 8 30
	8,00 768 (i-14)	121	42				727
	, 8co 9354-3	<1	72			NO	xe5 14:00
BE 4	9 800 249	71	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1		yes	3610A
5Q 7 1	80950	1					
	8 00 970	<u>\</u>	- 1			1	*
	800974-4		1	1		T	+
	800 972	<1	-			No.	No
	800 971					xes 3	30 (0A 1 BE 4-11-
	800 18 2(1-3)	<1	72	4-12-12	BE	No	×es 8:30
	80a986L1-31		\\\\ \alpha^2	1	<u>5e</u>	-2 xes	3010 A -2
	500998(1-28)		1-1272	1 1		NO	1-12 725 8145
	200 999Li -24		12			No	NO
	800 9974-281		<2 <2			No	No
	800 47/4-28)	<u> </u>	12			No.	NO
	200 999	71	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			yes	30104
	800991	71	72	 		Yes	3010 A × 25 101 A
İ	800771	<u> </u>	72			N 0	465 10: 20 AM
				 			
				4	N 1		
	\$0\$007 \$0\$007	>1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-13-12	36	Xcs Yes	3010A 3010A

Sample Integrity & Analysis Discrepancy Form

. Cli	ent: <u>E 2</u>	Lab # <u> </u>
Da	te Delivered: <u>04 / 04</u> / 12 Time: <u>&&.' (0</u> 0 By: □Mail 🖄 F	ield Service
1.	, Was a Chain of Custody received and signed?	√∆(Yes □No □N/A
2 .	Does Customer require an acknowledgement of the COC?	□Yes □No ÆN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ANA
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ⊉N/A
5 .	Were all requested analyses understood and acceptable?	d Yes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)? <u>// & C</u>	ÆÚYes □No □N/A
7 .	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc.)?	ØYes □No □N/A
8.	Were sample custody seals intact?	☐Yes ☐No ØN/A
9.	Does the number of samples received agree with COC?	∕ AYes □No □N/A
10.	Did sample labels correspond with the client ID's?	Æ(Yes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: △Truesdail □Client	প্রYes □No □N/A
12.	Were samples pH checked? pH = \underline{SelC} . \mathcal{O} . \mathcal{C} .	ÃYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Yes ONO ON/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH	QYes □No □N/A
<i>5</i> .	Sample Matrix: □Liquid □Drinking Water □Ground W □Sludge □Soil □Wipe □Paint □Solid ⁄ □C	
6.	Comments:	
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	L. Shabuein

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

April 20, 2012

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2012-CMP-027, GROUNDWATER MONITORING

PROJECT, TLI NO.: 800895

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2012-CMP-027 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody April 5, 2012, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Midwel At

Michael Ngo

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Seven (7) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 423575.MP.02.CM

Laboratory No.: 800895

Date: April 20, 2012

Collected: April 4, 2012 Received: April 5, 2012

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Kim Luck
SM 2130B	Turbidity	Gautam Savani
EPA 300.0	Anions	Giawad Ghenniwa
SM 4500-NH3 D	Ammonia	Bita Emami
EPA 200.7	Metals by ICP	Ethel Suico
EPA 200.8	Metals by ICP/MS	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Melissa Scharfe

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 800895 Date Received: April 5, 2012

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 423575.MP.02.CM P.O. No.: 423575.MP.02.CM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
800895-001	CW-04D-027	E120.1	NONE	4/4/2012	15:48	EC	7610	umhos/cm	2.00
800895-001	CW-04D-027	E200.8	FLDFLT	4/4/2012	15:48	Chromium	1.3	ug/L	1.0
800895-001	CW-04D-027	E218.6	FLDFLT	4/4/2012	15:48	Chromium, hexavalent	1.0	ug/L	0.20
800895-001	CW-04D-027	E300	NONE	4/4/2012	15:48	Chloride	2210	mg/L	100
800895-001	CW-04D-027	E300	NONE	4/4/2012	15:48	Fluoride	3.72	mg/L	0.500
800895-001	CW-04D-027	E300	NONE	4/4/2012	15:48	Sulfate	507	mg/L	25.0
800895-001	CW-04D-027	SM2130B	NONE	4/4/2012	15:48	Turbidity	0.153	NTU	0.100
800895-001	CW-04D-027	SM2540C	NONE	4/4/2012	15:48	Total Dissolved Solids	4660	mg/L	250
800895-001	CW-04D-027	SM4500NH3D	NONE	4/4/2012	15:48	Ammonia-N	ND	mg/L	0.500
800895-002	CW-04M-027	E120.1	NONE	4/4/2012	16:46	EC	6760	umhos/cm	2.00
800895-002	CW-04M-027	E200.8	FLDFLT	4/4/2012	16:46	Chromium	8.7	ug/L	1.0
800895-002	CW-04M-027	E218.6	FLDFLT	4/4/2012	16:46	Chromium, hexavalent	8.7	ug/L	0.20
800895-002	CW-04M-027	E300	NONE	4/4/2012	16:46	Chloride	1970	mg/L	100
800895-002	CW-04M-027	E300	NONE	4/4/2012	16:46	Fluoride	2,00	mg/L	0.500
800895-002	CW-04M-027	E300	NONE	4/4/2012	16:46	Sulfate	409	mg/L	25.0
800895-002	CW-04M-027	SM2130B	NONE	4/4/2012	16:46	Turbidity	ND	NTU	0.100
800895-002	CW-04M-027	SM2540C	NONE	4/4/2012	16:46	Total Dissolved Solids	3690	mg/L	250
800895-002	CW-04M-027	SM4500NH3D	NONE	4/4/2012	16:46	Ammonia-N	ND	mg/L	0.500
800895-003	OW-01S-027	E120.1	NONE	4/5/2012	9:08	EC	5420	umhos/cm	2.00
800895-003	OW-01S-027	E200.7	FLDFLT	4/5/2012	9:08	Molybdenum	ND	ug/L	10.0
800895-003	OW-01S-027	E200.7	FLDFLT	4/5/2012	9:08	Sodium	648000	ug/L	25000
800895-003	OW-01S-027	E200.8	FLDFLT	4/5/2012	9:08	Chromium	9.4	ug/L	1.0
800895-003	OW-01S-027	E218.6	FLDFLT	4/5/2012	9:08	Chromium, hexavalent	9.5	ug/L	0.20
800895-003	OW-01S-027	E300	NONE	4/5/2012	9:08	Chloride	1530	mg/L	100
800895-003	OW-01S-027	E300	NONE	4/5/2012	9:08	Fluoride	1.89	mg/L	0.500
800895-003	OW-01S-027	E300	NONE	4/5/2012	9:08	Sulfate	344	mg/L	25.0

004

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
800895-003	OW-01S-027	SM2130B	NONE	4/5/2012	9:08	Turbidity	ND	NTU	0.100
800895-003	OW-01S-027	SM2540C	NONE	4/5/2012	9:08	Total Dissolved Solids	3100	mg/L	125
800895-004	OW-02S-027	E120.1	NONE	4/5/2012	10:10	EC	1760	umhos/cm	2.00
800895-004	OW-02S-027	E200,7	FLDFLT	4/5/2012	10:10	Molybdenum	39.1	ug/L	10.0
800895-004	OW-02S-027	E200.7	FLDFLT	4/5/2012	10:10	Sodium	317000	ug/L	25000
800895-004	OW-02S-027	E200.8	FLDFLT	4/5/2012	10:10	Chromium	25.4	ug/L	1.0
800895-004	OW-02S-027	E218.6	FLDFLT	4/5/2012	10:10	Chromium, hexavalent	26.8	ug/L	1.0
800895-004	OW-02S-027	E300	NONE	4/5/2012	10:10	Chloride	407	mg/L	20.0
800895-004	OW-02S-027	E300	NONE	4/5/2012	10:10	Fluoride	4.98	mg/L	0.500
800895-004	OW-02S-027	E300	NONE	4/5/2012	10:10	Sulfate	103	mg/L	25.0
800895-004	OW-02S-027	SM2130B	NONE	4/5/2012	10:10	Turbidity	0.237	NTU	0.100
800895-004	OW-02S-027	SM2540C	NONE	4/5/2012	10:10	Total Dissolved Solids	1000	mg/L	50.0
800895-005	OW-05S-027	E120.1	NONE	4/5/2012	12:27	EC	2770	umhos/cm	2.00
800895-005	OW-05S-027	E200,7	FLDFLT	4/5/2012	12:27	Molybdenum	21.3	ug/L	10.0
800895-005	OW-05S-027	E200.7	FLDFLT	4/5/2012	12:27	Sodium	402000	ug/L	25000
800895-005	OW-05S-027	E200.8	FLDFLT	4/5/2012	12:27	Chromium	20.1	ug/L	1.0
800895-005	OW-05S-027	E218.6	FLDFLT	4/5/2012	12:27	Chromium, hexavalent	20.2	ug/L	0.20
800895-005	OW-05S-027	E300	NONE	4/5/2012	12:27	Chloride	723	mg/L	100
800895-005	OW-05S-027	E300	NONE	4/5/2012	12:27	Fluoride	2.21	mg/L	0.500
800895-005	OW-05S-027	E300	NONE	4/5/2012	12:27	Sulfate	140	mg/L	25.0
800895-005	OW-05S-027	SM2130B	NONE	4/5/2012	12:27	Turbidity	0.164	NTU	0.100
800895-005	OW-05S-027	SM2540C	NONE	4/5/2012	12:27	Total Dissolved Solids	1570	mg/L	50.0
800895-006	OW-87-027	E218.6	FLDFLT	4/5/2012	7:45	Chromium, hexavalent	ND	ug/L	0.20
800895-007	OW-88-027	E218.6	FLDFLT	4/5/2012	13:15	Chromium, hexavalent	ND	ug/L	0.20

ND: Non Detected (below reporting limit)

mg/L; Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project Number: 423575.MP.02.CM P.O. Number: 423575.MP.02.CM

Release Number:

Samples Received on 4/5/2012 10:30:00 PM

Laboratory No. 800895

Page 1 of 14 Printed 4/20/2012

Field ID	Lab ID	Collected	Matrix	
CW-04D-027	800895-001	04/04/2012 15:48	Water	***************************************
CW-04M-027	800895-002	04/04/2012 16:46	Water	
OW-01S-027	800895-003	04/05/2012 09:08	Water	
OW-02S-027	800895-004	04/05/2012 10:10	Water	
OW-05S-027	800895-005	04/05/2012 12:27	Water	
OW-87-027	800895-006	04/05/2012 07:45	Water	
OW-88-027	800895-007	04/05/2012 13:15	Water	

Anions By I.C. - EPA 300.0

Batch 04AN12E

Amons by I.C EPA 300.0		DAIGH UTANTEL				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
800895-001 Chloride	mg/L	04/06/2012 13:58	500	18.0	100.	2210
Fluoride	mg/L	04/06/2012 11:07	5.00	0.155	0.500	3.72
Sulfate	mg/L	04/06/2012 12:50	50.0	5.70	25.0	507.
800895-002 Chloride	mg/L	04/06/2012 14:09	500	18.0	100.	1970
Fluoride	mg/L	04/06/2012 11:18	5.00	0.155	0.500	2.00
Sulfate	mg/L	04/06/2012 13:01	50.0	5.70	25.0	409.
800895-003 Chloride	mg/L	04/06/2012 14:55	500	18.0	100.	1530
Fluoride	mg/L	04/06/2012 11:30	5.00	0.155	0.500	1.89
Sulfate	mg/L	04/06/2012 13:12	50.0	5.70	25.0	344.
800895-004 Chloride	mg/L	04/06/2012 15:06	100	3.60	20.0	40 7.
Fluoride	mg/L	04/06/2012 11:41	5.00	0.155	0.500	4.98
Sulfate	mg/L	04/06/2012 13:24	50.0	5.70	25.0	103.
800895-005 Chloride	mg/L	04/06/2012 15:18	500	18.0	100.	723.
Fluoride	mg/L	04/06/2012 11:53	5.00	0.155	0.500	2.21
Sulfate	mg/L	04/06/2012 13:35	50.0	5.70	25.0	140.

Method Blank Parameter Chloride Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Client: E2 Consulting Engi	ineers, Inc.		Project Name: Project Number:	PG&E Topock Project : 423575.MP.02.CM		Page 2 of 14 Printed 4/20/2012
Chloride mg/L 1.00 ND Fluoride mg/L 1.00 ND Sulfate mg/L 1.00 ND Duplicate Parameter Unit DF Result Expected RPD Acceptance Range Chloride mg/L 1.00 ND 0.00 0 0 - 20 Fluoride mg/L 1.00 ND 0.00 0 0 - 20 Sulfate mg/L 1.00 ND 0.00 0 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100 90 - 110 Matrix Spike Lab ID = 800896-001	Method Blank						
Fluoride mg/L mg/L mg/L mg/L 1.00 mg/L mg/L ND mg/L mg/L 1.00 mg/L mg/L ND mg/L mg/L 1.00 mg/L mg/L ND mg/L mg/L Lab ID = 800896-001 Parameter Unit mg/L mg/L DF mg/L mg/L Expected mg/L mg/L RPD mg/L mg/L Acceptance Range Chloride mg/L mg/L 1.00 mg/L ND mg/L 0.00 mg/L 0 mg/L 0 mg/L 0 mg/L 0 mg/L 0.00 mg/L 0 mg/L	Parameter	Unit	DF	Result			
Sulfate mg/L 1.00 ND Duplicate Lab ID = 800896-001 Parameter Unit DF Result Expected RPD Acceptance Range Chloride mg/L 1.00 ND 0.00 0 0 - 20 Fluoride mg/L 1.00 ND 0.00 0 0 - 20 Sulfate mg/L 1.00 ND 0.00 0 0 - 20 Lab Control Sample Expected Recovery Acceptance Range Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Chloride	mg/L	1.00	ND			
Duplicate Lab ID = 800896-001 Parameter Unit mg/L DF mesult 1.00 Expected ND	Fluoride	mg/L	1.00	ND			
Parameter Unit mg/L DF mg/L Result number leading Expected number leading RPD number leading Acceptance Range Chloride mg/L 1.00 ND number leading 0.00 0 number leading 0 number leading	Sulfate	mg/L	1.00	ND			
Chloride mg/L 1.00 ND 0.00 0 0 - 20 Fluoride mg/L 1.00 ND 0.00 0 0 - 20 Sulfate mg/L 1.00 ND 0.00 0 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Duplicate						Lab ID = 800896-001
Fluoride mg/L 1.00 ND 0.00 0 0 - 20 Sulfate mg/L 1.00 ND 0.00 0 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Parameter				•	RPD	
Sulfate mg/L 1.00 ND 0.00 0 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Chloride	mg/L	1.00	ND	0.00	0	
Lab Control Sample Parameter Unit mg/L DF properties Result properties Expected properties Recovery properties Acceptance Range properties Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Fluoride	mg/L			0.00	0	
Parameter Unit DF Result Expected Recovery Acceptance Range Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Sulfate	mg/L	1.00	ND	0.00	0	0 - 20
Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110 Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Lab Control Sample						
Fluoride mg/L 1.00 4.12 4.00 103. 90 - 110 Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110 Matrix Spike Lab ID = 800896-001	Chloride	mg/L	1.00	3.97	4.00	99.2	90 - 110
Matrix Spike Lab ID = 800896-001	Fluoride	mg/L	1.00	4.12	4.00	103.	90 - 110
	Sulfate	mg/L	1.00	20.0	20.0	100.	90 - 110
	Matrix Spike						Lab ID = 800896-001
Parameter Unit DF Result Expected/Added Recovery Acceptance Range	Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Chloride mg/L 1.00 2.06 2.00(2.00) 103. 85 - 115	Chloride	mg/L	1.00	2.06	2.00(2.00)	103.	85 - 115
Fluoride mg/L 1.00 2.17 2.00(2.00) 108. 85 - 115	Fluoride	mg/L	1.00	2,17	2.00(2.00)	108.	85 - 115
Sulfate mg/L 1.00 1.93 2.00(2.00) 96.3 85 - 115	Sulfate	mg/L	1.00	1.93	2.00(2.00)	96.3	85 ~ 115
Matrix Spike Duplicate Lab ID = 800896-001	Matrix Spike Duplicate						Lab ID = 800896-001
Parameter Unit DF Result Expected/Added Recovery Acceptance Range	Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Chloride mg/L 1.00 2.08 2.00(2.00) 104. 85 - 115	Chloride	mg/L	1.00	2.08	2.00(2.00)	104.	85 - 115
Fluoride mg/L 1.00 2.17 2.00(2.00) 109. 85 - 115	Fluoride	mg/L	1.00	2.17	2.00(2.00)	109.	85 - 115
Sulfate mg/L 1.00 1.93 2.00(2.00) 96.5 85 - 115	Sulfate	mg/L	1.00	1.93	2.00(2.00)	96.5	85 - 115
MRCCS - Secondary	MRCCS - Secondary						
Parameter Unit DF Result Expected Recovery Acceptance Range	Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride mg/L 1.00 3.97 4.00 99.2 90 - 110	Chloride	mg/L	1.00	3.97	4.00	99.2	90 - 110
Fluoride mg/L 1.00 4.13 4.00 103. 90 - 110	Fluoride	mg/L	1.00	4.13	4.00	103.	90 - 110
Sulfate mg/L 1.00 20.0 20.0 100. 90 - 110	Sulfate	mg/L	1.00	20.0	20.0	100.	90 - 110
MRCVS - Primary	MRCVS - Primary						
Parameter Unit DF Result Expected Recovery Acceptance Range	Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chloride mg/L 1.00 2.97 3.00 99.0 90 ~ 110	Chloride	mg/L	1.00	2.97	3.00	99.0	90 ~ 110
MRCVS - Primary	MRCVS - Primary						
Parameter Unit DF Result Expected Recovery Acceptance Range	Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

012

3.00

99.6

90 - 110

2.99

mg/L

1.00

Chloride

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 4 of 14

Project Number: 423575.MP.02.CM

Printed 4/20/2012

Specific Conductivity - E	PA 120.1		Batcl	n 04EC12B				
Parameter		Unit Analyzed		alyzed	DF	MDL	RL	Result
800895-001 Specific Conduc	tivity	umhos/cm 04/06/201		5/2012	1.00	0.0950	2.00	7610
800895-002 Specific Conduc	tivity	umhos/	cm 04/06	5/2012	1.00	0.0950	2.00	6760
800895-003 Specific Conduc	tivity	umhos/	cm 04/06	6/2012	1.00	0.0950	2.00	5420
800895-004 Specific Conduc	tivity	umhos/	cm 04/06	6/2012	1.00	0.0950	2.00	1760
800895-005 Specific Conduc	tivity	umhos/	cm 04/06	5/2012	1.00	0.0950	2.00	2770
Method Blank								
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result ND				Lab ID =	800861-009
Parameter Specific Conductivity Duplicate	Unit umhos	DF 1.00	Result 7410	Expected 7410	F	RPD 0.00	Accepta 0 - 10	ance Range 800895-005
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 2770	Expected 2770	F	RPD 0.00	Accepta 0 - 10	ince Range
Parameter Specific Conductivity Lab Control Sample D	Unit umhos uplicate	DF 1.00	Result 693	Expected 706	F	Recovery 98.2	Accepta 90 - 110	ince Range)
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 701	Expected 706	F	Recovery 99.3	Accepta 90 - 110	ince Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 686	Expected 706	F	Recovery 97,2	Accepta 90 - 110	ince Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 969	Expected 998	F	Recovery 97.1	Accepta 90 - 110	nce Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 972	Expected 998	F	Recovery 97.4	Accepta 90 - 110	ince Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 5 of 14

Project Number: 423575.MP.02.CM

Printed 4/20/2012

Chrome VI by EPA 218.	6		Batch 04CrH12H					
Parameter	et et en	Unit	Ana	lyzed	DF	MDL	RL	Result
800895-001 Chromium, Hex	avalent	ug/L	04/11	/2012 15:38	1.00	0.0750	0.20	1.0
800895-002 Chromium, Hexavalent		u g/L	04/11	/2012 15:49	1.00	0.0750	0.20	8.7
800895-003 Chromium, Hex	avalent	ug/L	04/11	/2012 15:59	1.00	0.0750	0.20	9.5
800895-004 Chromium, Hex	avalent	u g /L	04/11	/2012 16:09	5.00	0.375	1.0	26.8
800895-005 Chromium, Hex	avalent	ug/L	04/11	/2012 16:20	1.00	0.0750	0.20	20.2
800895-006 Chromium, Hex	avalent	ug/L	04/11	/2012 16:30	1.00	0.0750	0.20	ND
800895-007 Chromium, Hex	avalent	ug/L	04/11	/2012 16:41	1.00	0.0750	0.20	ND
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	800895-002
Parameter	Unit	DF	Result	esult Expected RPD		Accepta	ance Range	
Chromium, Hexavalent	ug/L	1.00	8.75	8.70		0.538	0 - 20	
Low Level Calibration	Nerification	1						
Parameter	Unit	DF	Result	Expected		Recovery	Acceptance Range	
Chromium, Hexavalent	ug/L	1.00	0.200	0.200		100.	70 - 130)
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	5.11	5.00		102.	90 - 110)
Matrix Spike							Lab ID =	800895-001
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	6.05	6.02(5.00)		100.	90 - 110)
Matrix Spike							Lab ID =	800895-002
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	18.4	18.7(10.0)		97.1	90 - 110)
Matrix Spike							Lab ID =	800895-003
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	nce Range
Chromium, Hexavalent	ug/L	1.00	19.2	19.5(10.0)		96.2	90 - 110)
Matrix Spike							Lab ID =	800895-004
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	5.00	73.3	76.8(50.0)		93.0	90 - 110)

			roject Name: PG&E Topock Project roject Number: 423575.MP.02.CM				Page 6 of 14 Printed 4/20/2012	
Matrix Spike							Lab ID =	800895-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result Expected/Added Recovery 45.4 46.4(26.2) 96.2		Recovery 96.2	Acceptance Range 90 - 110 Lab ID = 800895-006		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 1.01	Expected/A 1.03(1.00)	dded	Recovery 98.3	Acceptance Range 90 - 110 Lab ID = 800895-007	
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.00	Result 0.944	Expected/A 1.01(1.00)	dded Recovery 93.0		Acceptance Range 90 - 110	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.09	Expected 5.00		Recovery 102.	Acceptance Range 90 - 110	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0		Recovery Acceptance R 101. 95 - 105		•
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.0	Expected 10.0	Recovery 100.		Acceptance Range 95 - 105	
Total Dissolved Solids b	v SM 2540) C	Batch	04TDS12B				
Parameter	Unit	Analyzed		DF	MDL	RL	Result	
800895-001 Total Dissolved Solids		mg/L	04/06/2012		1,00	0.400	250.	4660
800895-002 Total Dissolved Solids		mg/L	04/06/2012		1.00	0.400	250.	3690
800895-003 Total Dissolved Solids		mg/L	04/06/2012		1.00	0.400	125	3100
800895-004 Total Dissolved Solids		mg/L	04/06/2012		1.00	0.400	50.0	1000
800895-005 Total Dissolved Solids		mg/L	04/06/2012		1.00	0.400	50.0	1570
Method Blank								
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND				Lab ID =	800895-005
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 1630	•		RPD 3.87	Acceptance Range 0 - 5	
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 450.	Expected 500.	Recovery Acceptanc 90.0 90 - 110		ince Range	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 7 of 14 Printed 4/20/2012

Project Number: 423575.MP.02.CM

Ammonia Nitrogen by SM4500-NH3D Batch 04NH3-E12B Unit DF Parameter Analyzed MDL Result

Parameter		Unit	Ana	ilyzea	DF	MDL	KL	Result
800895-001 Ammonia as N		mg/L	04/10/2012		1,00	0.00120	0.500	ND
800895-002 Ammonia as N		mg/L	mg/L 04/10/2012		1.00	0.00120	0.500	ND
Method Blank								
Parameter	Unit	DF	Result					
Ammonia as N	mg/L	1.00	ND					
Duplicate							Lab ID =	800895-001
Parameter	Unit	DF	Result	Expected	RPD		Acceptance Range	
Ammonia as N	mg/L	1.00	ND	0.00	0		0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Recovery		Acceptance Range	
Ammonia as N	mg/L	1.00	10.6	10.0		106	90 - 110)
Matrix Spike							Lab ID =	800895-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	5.96	6.00(6,00)		99.2	75 - 125	
Matrix Spike Duplicate							Lab ID =	800895-001
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.03	6.00(6.00)		100.	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.17	6.00		103.	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Ammonia as N	mg/L	1.00	6.03	6.00		100.	90 - 110	

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 8 of 14

Project Number: 423575.MP.02.CM Printed 4/20/2012

Metals by EPA 200.8, Dis	solved		Batch	040612B					
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result	
800895-001 Chromium		ug/L	04/07	//2012 03:46	5.00	0.110	1.0	1.3	
800895-002 Chromium		ug/L	04/07	//2012 02:57	5.00	0.110	1.0	8.7	
800895-003 Chromium		ug/L	04/07	//2012 03:54	5.00	0.110	1.0 9.4		
800895-005 Chromium	005 Chromium		04/07	//2012 04;08	5.00	0.110	1.0	20.1	
Method Blank						•			
Parameter	Unit	DF	Result						
Chromium	ug/L	1.00	ND					•	
Duplicate							Lab ID =	800895-002	
Parameter	Unit	DF	Result	Expected	i	RPD	Accepta	ance Range	
Chromium	ug/L	5.00	8.94	8.69		2.89	0 - 20		
Low Level Calibration \	erification/								
Parameter	Unit	DF	Result	Expected	i	Recovery	•	ance Range	
Chromium	ug/L	1.00	0.194	0.200		97.2	70 - 130)	
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	- 1	Recovery	Accepta	ance Range	
Chromium	ug/L	5.00	95.7	100.		95.7	85 - 118	5	
Matrix Spike							Lab ID =	800895-002	
Parameter	Unit	DF	Result	Expected/Add	ed l	Recovery	Accepta	ance Range	
Chromium	ug/L	5.00	114	109.(100.)		105.	75 - 12		
Matrix Spike Duplicate							Lab ID =	800895-002	
Parameter	Unit	DF	Result	Expected/Adde	ed I	Recovery	Accepta	ance Range	
Chromium	ug/L	5.00	115.	109.(100.)		106.	75 - 125	5	
MRCCS - Secondary									
Parameter	Unit	DF	Result	Expected	ı	Recovery	•	ance Range	
Chromium	ug/L	1.00	9.94	10.0		99.4	90 - 110		
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	1	Recovery	-	ance Range	
Chromium	ug/L	1.00	9.71	10.0		97.1	90 - 110	כ	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	ı	Recovery		ance Range	
Chromium	ug/L	1.00	9.60	10.0		96.0	90 - 110	כ	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 10 of 14

Project Number: 423575.MP.02.CM

Printed 4/20/2012

Metals by EPA 200.8, Dis	ssolved		Batch	041012A	er e		
Parameter	use sufficient to a fi	Unit	Ana	lyzed D	F MDL	RL	Result
800895-004 Chromium		ug/L	04/10)/2012 16:21 5.0	0.110	1.0	25.4
Method Blank							
Parameter Chromium	Unit ug/L	DF 1.00	Result ND				
Duplicate						Lab ID =	800895-002
Parameter Chromium	Unit ug/L	DF 5.00	Result 8.81	Expected 8.93	RPD 1.35	Accepta 0 - 20	ınce Range
Low Level Calibration	Verification	1					
Parameter Chromium Lab Control Sample	Unit ug/L	DF 1.00	Result 0.176	Expected 0.200	Recovery 88.0	Accepta 70 - 130	ince Range
Parameter Chromium Matrix Spike	Unit ug/L	DF 5.00	Result 103.	Expected 100.	Recovery 103.	85 - 115	ince Range 5 800895-002
Parameter Chromium	Unit ug/L	DF 5.00	Result 110.	Expected/Added 109.(100.)	Recovery 101.	Accepta 75 - 125	ince Range
Matrix Spike Duplicate							800895-002
Parameter Chromium MRCCS - Secondary	Unit ug/L	DF 5.00	Result 110.	Expected/Added 109.(100.)	Recovery 100.	Accepta 75 - 125	nce Range
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.5	Expected 10.0	Recovery 105.	Accepta 90 - 110	nce Range
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.0	Expected 10.0	Recovery 100.	Accepta 90 - 110	nce Range
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.94	Expected 10.0	Recovery 99.4	Accepta 90 - 110	nce Range
Parameter Chromium	Unit ug/L	DF 1.00	Result 9.64	Expected 10.0	Recovery 96,4	Accepta 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 020

Client: E2 Consulting Er	Client: E2 Consulting Engineers, Inc.			PG&E Topoc 423575.MP.0		Page 11 of 14 Printed 4/20/2012
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	10.1	10.0	101.	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	9.58	10.0	95.8	90 - 110
Interference Check S	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	ND	0.00		
Interference Check S	tandard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	ND	0.00		
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	9.94	10.0	99.4	80 - 120
Interference Check S	tandard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	9.77	10.0	97.7	80 - 120
Serial Dilution						Lab ID = 800895-004
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Chromium	ug/L	25.0	26.6	25.4	4.46	0 - 10

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 12 of 14

Project Number: 423575.MP.02.CM Printed 4/20/2012

Metals by 200.7, Dissolve	Metals by 200.7, Dissolved			040912A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
800895-003 Molybdenum		ug/L	04/09	/2012 15:46	1.00	4.02	10.0	ND
Sodium		ug/L	04/09	/2012 14:39	50.0	2930	25000	648000
800895-004 Molybdenum		ug/L	04/09	/2012 15:52	1.00	4.02	10.0	39.1
Sodium	ug/L	04/09	/2012 14:45	50,0	2930	25000	317000	
800895-005 Molybdenum		ug/L	04/09	/2012 15:58	1.00	4.02	10.0	21.3
Sodium		ug/L	04/09	/2012 14:51	50.0	2930	25000	402000
Method Blank	, , , , , , , , , , , , , , , , , , , 							
Parameter	Unit	DF	Result					
Sodium	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate							Lab ID = 8	300921-001
Parameter	Unit	DF	Result	Expected		RPD	Acceptar	nce Range
Sodium	ug/L	10.0	70400	74200		5.23	0 - 20	J
Molybdenum	ug/L	1.00	ND	0.00		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptar	nce Range
Sodium	ug/L	1.00	2170	2000		108.	85 - 115	
Molybdenum	ug/L	1.00	1870	2000		93.7	85 - 11 5	
Matrix Spike							Lab ID ≈ 8	300921-001
Parameter	Unit	DF	Result	Expected/Ad	dded	Recovery	Acceptar	nce Range
Sodium	ug/L	10.0	92300	94200(2000	0)	90.4	75 - 125	
Molybdenum	ug/L	1.00	2050	2000(2000)		102.	75 - 125	
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptar	nce Range
Sodium	ug/L	1.00	4750	5000		95.1	90 - 110	
Molybdenum	ug/L	1.00	5220	5000		104.	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptar	nce Range
Sodium	ug/L	1.00	5200	5000		104.	90 - 110	
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptar	nce Range
Sodium	ug/L	1.00	4880	5000		97.7	90 - 110	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

022

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 423575.MP.02.CM

Page 14 of 14 Printed 4/20/2012

Turbidity by SM 2130 B			Batch	04TUC12F				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
800895-001 Turbidity		NTU	04/06	/2012	1.00	0.0140	0.100	0.153
800895-002 Turbidity		NTU	04/06/2012 1.00 0.0140				0.100	ND
800895-003 Turbidity		NTU	04/06	/2012	1,00	0.0140	0.100	ND
800895-004 Turbidity		NTU	04/06	/2012	1.00	0.0140	0.100	0.237
800895-005 Turbidity		NTU	04/06	/2012	1.00	0.0140	0.100	0.164
Method Blank								
Parameter	Unit	DF	Result					
Turbidity	NTU	1.00	ND					
Duplicate							Lab ID =	800895-005
Parameter	Unit	ΦF	Result	Expected	F	RPD	Accepta	nce Range
Turbidity	NTU	1.00	0.166	0.164		1.21	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Turbidity	NTU	1.00	8.46	8.00		106.	90 - 110	_
Lab Control Sample Di	uplicate							
Parameter Un		ÐF	Result	Result Expected		Recovery Acceptance		nce Range
Turbidity	NTU	1.00	8.37	8.00		105.	90 - 110	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 04TDS12B

Date Calculated: 4/6/12

Laboratory Number	Sample volume, ml	lnitial weight,g	1st Final Weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	72.8180	72.8190	72.8188	0.0002	No	0.0008	8,0	25.0	ND	1
800861-1	10	75,4461	75.4859	75.4857	0.0002	No	0.0396	3960.0	250.0	3960,0	1
800861-2	10	51.4259	51,4669	51.4666	0.0003	No	0.0407	4070.0	250.0	4070.0	1
800861-4	10	50,4941	50.5348	50.5346	0.0002	No	0,0405	4050.0	250.0	4050.0	1
800861-5	10	74.6832	74.7228	74.7224	0.0004	No	0.0392	3920.0	250,0	3920.0	1
800861-6	10	47.5215	47.5636	47.5632	0.0004	No	0.0417	4170.0	250.0	4170.0	1
800861-7	10	49.3515	49.4002	49,3998	0.0004	No	0.0483	4830.0	250.0	4830.0	1
800861-8	10	48.5955	48.6395	48.6391	0.0004	No	0.0436	4360.0	250.0	4360.0	1
800861-9	10	47,5075	47.5511	47.5507	0,0004	No	0.0432	4320.0	250.0	4320.0	1
800895-1	10	46.9878	47.0347	47.0344	0.0003	No	0.0466	4660.0	250.0	4660.0	1
800895-2	10	50.9888	51.0259	51.0257	0.0002	No	0.0369	3690.0	250.0	3690.0	1
800895-3	20	49.8234	49.8858	49.8855	0.0003	No	0.0621	3105.0	125.0	3105.0	1
800895-4	50	68,4249	68,4754	68.475	0.0004	No	0.0501	1002.0	50.0	1002.0	1
800895-5	50	76,5494	76.6283	76.6279	0.0004	No	0.0785	1570.0	50.0	1570.0	1
800895-5D	50	68,1358	68.2177	68.2174	0.0003	No	0.0816	1632.0	50,0	1632.0	1
							***		******		
				-							
LCS	100	74.7349	74.7803	74.7799	0.0004	No	0.0450	450.0	25.0	450.0	1

Calculation as follows:

Filterable residue (TDS), mg/L =
$$\left(\frac{A-B}{C}\right) \times 10^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Analyst Printed Name

Analyst Signature

Reviewer Printed Name

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 04TDS12B Date Calculated: 4/6/12

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
800861-1	7199	0.55	4679.35	0.85
800861-2	7280	0.56	4732	0.86
800861-4	7390	0,55	4803,5	0.84
800861-5	7180	0.55	4667	0.84
800861-6	7320	0.57	4758	0.88
800861-7	8780	0.55	5707	0.85
800861-8	7350	0.59	4777.5	0.91
800861-9	7410	0.58	4816.5	0,90
800895-1	7610	0.61	4946.5	0.94
800895-2	6760	0,55	4394	0.84
800895-3	5420	0.57	3523	0.88
800895-4	1760	0.57	1144	0.88
800895-5	2770	0.57	1800.5	0.87
800895-5D	2770	0.59	1800.5	0.91
				-,-
				, <u></u>

800895

CH2MHII	LL							CH	AIN C	F CU	STODY RECORD	4/5/2012 2:31:17 PM	Page 1 (OF	
Project Name P Location Topo Project Manager	ck		Container servatives:	250 ml Poly (NH4)2S O4/NH4O H, 4°C	500 ml Poly HNO3, 4°C	500 ml Poly HNO3, 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	2x1 Liter 4°C	1 Liter Poly H2S04, pH<2. 4°C				
Sample Manager	r Matt Ri ngi		Filtered	1 .	Field	Field	NA	NA	NA	NA	NA				
		Hol	ding Time:	28	180	180	2	2	2	2	28	3 00000			
Project Number Task Order Project 2012-Ch Turnaround Tim Shipping Date: COC Number:	MP-027 e 10 Day 4/5/2012	s	Matrix	Cr6 (E218.6) Field Filtered	Metals (E200.7-E200.8) Field Filtered Chromium	Metals (E200,7-E200,8) Field Fillered Cr.Mo,Na	Specific Conductance (E120.1)	Anions (E300.0) Cl. Fl. SO4	Turbidity (SM2130)	TDS (SiA2540C)	Ammonia (Sta4500NH3)	LEVEL II QUI		Number of Containers	COMMENTS
CW-04D-027	4/4/2012	15:48	Water	Х	X		X	X	X	X	X			Ş)
CW-04M-027	4/4/2012	18:46	Water	Х	X	<u> </u>	Ж	Х	X	X	X			5	
OW-015-027	4/5/2012	9:08	Water	х		X	X	X	X	x				4	DH=2
OW-025-027	4/5/2012	10:10	Water	×		X	Х	X	Х	Х				4	Mets
OW-058-027	4/5/2012	12:27	Water	Х		X	х	ă	Х	×				4	7
OW-87-027	452012	7:45	Water	×	***		***************************************		······					de service	
			·		***************************************		···								

See Form Attached

Approved by Sampled by

OW-88-027

Sampled by Relinquished by Received by

Relinquished by

Received by

4-S

Date/Time 15:50

Shipping Details

Method of Shipment:

On Ice: yes / no

ATTN:

Special Instructions: April 4-6, 2012

Sample Custody

mine castray

Report Copy to

Shawn Duffy (530) 229-3303

TOTAL NUMBER OF CONTAINERS

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
4/2/12	800769-1	٦	mL	9.5	4:15 pm	(fur
1	-2	7		, ,	7,	J
4/5/12	800863 -1	9,5	NA.	NA	NA	ust
1	-2				1	1
	-3					
4	→ _4	*	4	Ą	4	Ψ.
4/5/12	900862 -1	9.5	NA.	NA	NA	M
ė	+ -2	₽	A A	÷	4	J.
4/6/12	806894-1	9,5	NA	NA	AA	M
4/6/12	.] -2	1	1			
Ą	-3 −3	+	4	Ą	4-	4
4/6/12.	800395-1	9,5	NA.	NA	NA	mt
1	-2			·		
	-3					
	_4					
	-5					
4	♦ ~7	4	4	4	4	+ I
4/6/12	800919-1	9.5	N/A	N/A	N/A	1999
+	1 -2	<u> </u>	1	4	4	1
4/6/12	800 920	9.5	N/A	NA	NA	194
4/6/12	8∞921=1.	9.5	N/A	NA	NA	194
1	4 -2	1	. 4	4		\mathcal{L}
4/10/12	800933-1 t −2	9.5	UA.	NA	NA +	soft.
4	+ -2	f	F	Ą		45
4/10/12	800935-1	9.5	NA	NA	NA	and
	-2 -3					
	-3					
	_4					
	-5					
	₹ 6	4	4	4	4	+

G 4/16/12

Turbidity/pH Check

			I LII	rbidity/pH C	HECK	·	
	Sample Number	Turbidity	pН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
I	802853(11-13)	⟨	>2	4-5-12	BE	No	XCS 7:30 A M
	800881(1-21)	<١	<2			×cs	AFICE
	६८२ ४ 75-4	۲۱	₹ 2			No	yes
	800 E 86	ול	72			yes	301 mA X < 5 : 14 : 30
Ī	800 878	. 7	< 2			xcs	3010A 7000 BE4
ļ	800880	<∙	\			Na	
	800879	71	J		1	yes	3010 A
E-12	800 891 840 907	71	< Z	4-6-12	BE	Y=5	3 10A
-6-10	8008950-51	くじ	ر ک			7	1.
	कु ० व ८० ९	>1	42				
	500121(12)		42		1	yes	3010A
Ì	800713	71	<1	4-9-12	BE	×e5	30104
	8001914	71	l.			1	
Ì	800 915(1-33)		72			No.	YES 7:45AM
t	800916 (1-18)		1	1 1		1	
	800917 (1-17)						
	200918 (1-18)	\\.		† 		1	
	€6092€	₹ 1	< Z	4-10-12	B. E	N 0	NO
	800 729	<u> </u>	 	† ' 			
	500930		>2	1	—— —	10-Kyes	30104 165 7: 30 pm
	800 931 (1-4)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 	—— ——	- Zy 3 Y c 3	3010A
	80093445	-273 71) <1		 			3c16A
	8 . 0 936(1-7)			 		Yes	Jeton
	goc 9354-6)			 		 	
	\$0 0939			 		\\	14440
	8=376411-1d	<u> </u>	<u>√</u> <2	4-11-12	13 E	Yes 3	3 - \ 4
	809 963-1	<u> </u>		1 - 1 - 1 - 1	- 1 - ·	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 0 (4
				 		 	
	822965(1-3)			<u> </u>		 	
	8 m 166L1-9)	Ψ	<u> </u>			 	
	800767		72	 		 	Y C 3 8 30.
	8,007680-14)		\\ \Z	 		1	
BE 4	11 8 00 9354-3	<1	72			<i>NO</i>	Xe5 14:00
sa 94	9 200 949	>1	<2	 		Yes	30104
-	800950	\	 			 	
	8 49 970	<u> </u>	 	 		 	
	800974-4					<u> </u>	<u> </u>
	800 972	<1	-	<u> </u>		1	₩9
	800 971	<u> </u>		 		xes 3	30 16A \$ BE 4-11-
	800 98 2(1-3)		<u> </u>	4-12-12	<u> 3£</u>	No	Yes 8:30
ļ	80a986L1-31		<u>ر ک</u>			-2 xes	3010 A -2
]	£00998(1-28)		1-1272			Na	1-12 825 8245
	9,0099961-24		22			No	NO
ĺ	800 9974-281	<1	<u> </u>			No	No
	800989	<u> </u>	42			~°	NO
	200999	71	12	1		y cs	30104
	800991	71	72			yes	30 10 A × 45 10 1 A
	700992	≺ ١_	72			No	xes 10:00 Am
Ì	804207	71	<u>ر</u> ک			Хes	3=104
	801098	<u> </u>	くて	· , · · · · · · · · · · · · · · · · · ·		I	3010 A

Sample Integrity & Analysis Discrepancy Form

Clie	nt: <u>E 2 °</u>	Lab # <u>&</u>	avergs
Date	Delivered:₺॔॔ <u>Y</u> /₺ऽ/12 Time:₺॔॔ॐ By: □Mail ØF	Field Service	□ <i>Clien</i> t
1.	, Was a Chain of Custody received and signed?	Ø(Yes □No	o □N/A
2,	Does Customer require an acknowledgement of the COC?	□Yes □No	ØN/A
3 .	Are there any special requirements or notes on the COC?	□Yes □No	.⊠N/A
1.	If a letter was sent with the COC, does it match the COC?	□Yes □No	ুরN/A
5.	Were all requested analyses understood and acceptable?	À Yes □ No	□N/A
) .	Were samples received in a chilled condition? Temperature (if yes)? <u>⊰. Y° C</u>	ÆjYes □No	□N/A
•	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ad Yes □No	□ <i>N/A</i>
	Were sample custody seals intact?	□Yes □No	ÆÌN∕A
	Does the number of samples received agree with COC?	∄Yes □No	
).	Did sample labels correspond with the client ID's?	ДiYes □No	□N/A
	Did sample labels indicate proper preservation? Preserved (if yes) by ATruesdail Client	چ Yes □No	□N⁄A
	Were samples pH checked? pH = <u>Sel C. O. C.</u>	øaYes □No	□N/A
	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	⊿Yes □No	□ <i>N/A</i>
!	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std	∕ ⊉ Yes □No	
5	<u>Sample Matrix:</u> □Liquid □Drinking Water □Ground V		e Water
	□Sludge □Soil □Wipe □Paint □Solid ⊠d	Other <u>Was</u>	<u>ler</u>
i	Comments:		***************************************
7.	Sample Check-In completed by Truesdail Log-In/Receiving ALERI	TO 35	rabu

Project Name	PG&E	Topock CMP			*		Sampling	Event _	2012-CMI		
Job Number	423 575	5.MP.02.CM.01				D .	· ^ -	Date _	4/5/1	٧	
Sampler	<u>ප</u>	_ Field Team	1 Field	Conditions (tea) varie	E, Breezy	<i>√65°F</i>	Page	of		•
Well/Sample Nu	ımber	OW-01S-027			QC San					QC Sample	
Purge Start Time	50	Flow Ce	P(S)/N	Purge Meth	10d: 25N 14	Z Ded. I	oump _V	<u>\</u> M	lin. Purge Vo	lume (gal) (L)	Purge Rate (gpm)/(mLpm)
Water Ti	me	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
93.74 08	57	2	7.18	6315					4.090	1/3.5	H2241
93.25 DE	54	4	7.26	6/57		6.89	28.59	331	3.979	106.1	
	56	6	7.34	<i>592</i> 3	1	6.90	28.64		3.840	96.8	
93.75 08	558	8	7.37	5865		6.87	28.64		3.799		
93.25 09	100	10	7.40	5749	(6.89			5 731		
	102	12	7.42	5662					3.665	83.3	
93.75 090	04	14	7.45	5551			8.73			79.6	
93.75 090	<u> </u>	10	7.41	5499		6.77	28.74	2.94	3557	75.6	
Parameter Complia	nce Crite	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0000</td><td></td><td></td></ph<9.2<>						1.0000		
**If pH or TDS is out o Duffy ((530) 941-9227	of range o	heck calibration, uffy unavailable c	take to IM3 ar	nd check pH, Ser ((702) 953-12	C-get second pro	obe. If still out o 02) 525-1137). If	f range imm J. Piper un	ediately co available co	ntact B. Coll	om ((541) 740- ina Hong ((213	3250). If B. Collom unavailable contact S.) 228-8248 x35448 or (213) 228-8242).
Parameter Stabilizat	<u> </u>		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
Did Parameters Stablize	prior to sa	ampling?	Ý	V	V	Y	NA	~	_	У	
Previous Field measuren		(10/5/2011)	7,68	4019	2	7.59	28.66	0.26		91.7	
Are measurements cons			- }	<u>highe</u>	' }	lower	NA	-		4	
Sample Time 99	(X_	Sample Location	: ' pun	np tubing	well port	spigot	i	oailer	other		
Comments:			•		v····						
Initial Depth to Water (29 00):		Measure	e Point Well	TOO Stee	el Casing			14556 Id SERIAL NUMBER: D100474 ER SERIAL NUMBER: 2016-01
WD (Well Depth - from			-				-		***************************************	If Tra	ansducer
SWH (Standing Water						/ Before Remov	7 14	•	n After Reins	tallationT	ime of Removal
D (Volume as per dian	neter) 2"=	= 0.17, 4"= 0.66,	1"=0.041(2	2 in)	Time	Initial DTW		Time		IDTW T	ime of Reinstallation
One Casing Volume =	: D*SWH	3,44			0821	93.29		926	45	.27	
Three Casing Volumes	s =	10.13%	L		Comments:						
Color: (lean, grey, yel	color: clear, grey, yellow, brown, black, cloudy, green Odor: flone sulphur, organic, other Solids: Trace Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand										

Project N		Topock CMP					Sampling		2012-CM	P-027	06/		
Job Nu	Imper 423575	5.MP.02.CM.01	4		110A-01	D., 2003. 4		Date _	4/5/1		BU		
Sampler _	(6)	_ Field Team	Field	Conditions (morphati			Page	of of				
ľ	ple Number				QC San					QC Sample	Time		
Purge Start Tim	ne 0954	Plow Ce	N S	Purge Meth	nod: 2-in ×	Ded. F	oump	M ر کر	in. Purge Vo	olume (gal) (L)	Purge Rate (gpm)/(mLpm)		
Water Level	Time	Vol. Purged gallons Hiters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below		
91.93	0958	1	8.06	1750	3	7:107	28.44	0.88	1.133	447	Hz 225		
91-93	1000	7	8.05	1743	2			Ι _		42.9	Pumpa 98/A		
91-93	1002	<u> </u>	8.05	1734	2	7.54		I -	1.126				
91,93	1004	4	8.05	1739		7.51	28.87	0.87	1.131	40.5			
91.93	Inde	5	8.04	1739		7.51	28,92	0.87	1,132	39.5			
91.93	1008	6	8.04	1739	1	7.49	1	•	1.130				
										•			
Parameter C	ompliance Crit	eria	6.2 <ph<9.2< td=""><td></td><td></td><td></td><td></td><td></td><td>17.000 FE</td><td></td><td></td></ph<9.2<>						17.000 FE				
**If pH or TDS Duffy ((530) 94	is out of range o	heck calibration, uffy unavailable c	take to IM3 ar ontact J. Pipe	nd check pH, S0 r ((702) 953-12	• C-get second pr 02 x36602 or (7)	obe. If still out o 02) 525-1137). If	• f range imm f J. Piper una	lediately col available co	ntact B. Coll	, om ((541) 740- ina Hong ((213	3250). If B. Collom unavailable contact S. 228-8248 x35448 or (213) 228-8242).		
	abilization Crite		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA .	NA	+/- 10 mV			
Did Parameters	Stablize prior to sa	ampling?	γ	Y		_							
Previous Field m		(10/5/2011)	8	1602	1	8.03	28.72 0.1 76.2						
	nts consistent with	previous?	<u> </u>	<u> </u>		у	NA	_		(our			
Sample Time	1010	Sample Location	ı: / pun	np tubing 🖊	well port	spigot	I	bailer	other _				
Comments:	·····												
	Water (ft BTOC)	: 91,8 Well Depth (ft bt			Measure	e Point: Well	TOO Stee	el Casing			d SERIAL NUMBER: DICOLITY ER SERIAL NUMBER: 2011-01		
			·	<u></u>					If Transducer				
SWH (Standing	: - Irom databas v Water Height) :	e) ft btoc (12 = WD-Initial Dept	h 10.6	<u>, </u>	Initial DTW	/ Before Remov	al Ar	prox. 5 mir	After Reins				
		= 0.17, 4"= 0.66,		in)	Time	Initial DTW		Time		al DTW	ime of Reinstallation 1021		
	olume = D*SWH	1 ~			0934	91.85	/	016	9	1.88			
Three Casing \		5,4			Comments:								
Color: gear grey, yellow, brown, black, cloudy, green					Odor: none,	ulphur, organic,	other	8	Solids: Trac	Small Qu, M	led Qu, Large Qu, Particulate, Silt, Sand		

Project Name PG&E Topock CMP Job Number 423575,MP.02,CM.01		Sampling	Event 2012-CM	P-027					
420070,1111 .02,011.01	ield Conditions Gworlast	Breezy 750F	Page / of						
Well/Sample Number OW-05S-027	QC San			QC Sample Time	1 A				
Purge Start Time 1216 Flow Cell: Y / N	Purge Method: 2,1 1 1 1	Ded. Pump	Min. Purge Vo	· · · · · · · · · · · · · · · · · · ·	Purge Rate (gpm) (mLpm)				
Water Time Vol. Purged pH** Level callons / iters	Conductivity Turbidity mS/cm NTU	Diss. Oxygen Temp. °C	Salinity TDS** % g/L	Eh/ORP mv	Comments (See description below				
94.76 1218 2 7.60	3.070	6.45 28.38	1.57 1.962	24.0 Hc	-239 up@ 105				
94.76 1220 4 7.76	2.816	6.41 28.73	1.44 1.820	22.1 Du	up@ 105				
94.76 1227 6 7.70	0 2,765	6.38 26.75	1.42 1.790	21.7					
94.76 1224 8 7.71	02.761	6.41 28.77	1.42 1.790						
94.76 1276 10 7.76	62.742	6.39 28.78	1.411,777	21.8	Continue of the Continue of th				
Parameter Compliance Criteria 6.2 <ph-< td=""><td>9.2</td><td></td><td>1.0000 7</td><td></td><td></td></ph-<>	9.2		1.0000 7						
**If pH or TDS is out of range check calibration, take to IN Duffy ((530) 941-9227). If S. Duffy unavailable contact J. I	3 and check pH, SC-get second property (702) 953-1202 x36602 or (70	obe. If still out of range imm	ediately contact B. Col	om ((541) 740-3250). If B	Collom unavailable contact S.				
Parameter Stabilization Criteria +/- 0.1 pH units	+/- 3% +/- 10% NTU units when >10 NTUs	+/- 0.3 NA mg/L	NA NA	+/- 10 mV					
Did Parameters Stablize prior to sampling?	Y	√ NA		4					
Previous Field measurement (10/5/2011) 7.72	2551 1.3	6.67 29.2	0.16	75					
Are measurements consistent with previous?		NA NA		(aul					
	Sample Time Sample Location: pump tubing well bort spigot bailer other Comments: OW FB OV 88 077 (W 13.5)								
Initial Depth to Water (ft BTOC): 94.77	Measure	e Point: Well Too Stee		YSTER MAKE and SERIAL R LEVEL METER SERIAL	10.00				
Field measured confirmation of Well Depth (ft btoc):		0.00	7.7.12.	If Transduce					
WD (Well Depth - from database) ft btoc (110.3) SWH (Standing Water Height) = WD-Initial Depth	Initial DTW	/ Before Removal Ap	prox. 5 min After Reins		- 7/				
D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041	(2 in) Time			al DTWTime of Rein	200				
One Casing Volume = D*SWH		94.77	248 91	1.79					
Three Casing Volumes =	Comments:			7					
Color: (lea), grey, yellow, brown, black, cloudy, green	Odor none, s	ulphur, organic, other	Solids: Tre	se Small Qu, Med Qu, Lar	ge Qu, Particulate, Silt, Sand				

Page 1 of 11

Topock Sampling Log

\\Zinfandef\Pro\PacificGasElectricCo\TopockProgram;Database\Field\FrontEnd2Kv344_PaperWorkMIST.mdb\rotPurgeFormCMP

Topock Sampling Log

Project Name	e PG&E	Topock CMP	·				Sampling	Event _	2012-CN		
Job Numbe	er 423575	.MP.02.CM.01			_			Date _	4/4/1	<u> </u>	fec
Sampler	CG_	Field Team _	1Field	Conditions 2	Junny, &	Breezy 8	0°F	Page	/ of		
Well/Sample		CW-02D-027			QC Sar	mple ID OV	/-91-027			QC Sample	Time /735
Purge Start Time	1157 quin	Flow Ce	ell(Y) N	Purge Meth	iod: 2.h	Z Ded.	Pump 🔟	<u>س</u> M	in. Purge V	olume (gal)/(L)	
Water Level	Time	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
9200	206	27	7.51	7541	4	8.85	30.32		_	66	HZ 295
92.00 1	715	54	7.24	7543	2	8.77	30.55	_	-	67	
92.00	17.24	81	7.21	7539	2	8.79	30.58	_		67	PH Jumping, Ant 45 DOO
91.91	173512	34 200 105	8.04	7462)	7.97	36.23		_	7.1	PH Jumping, Put 455 DICO in time & BEST to swith wh 90, Pumpen \$1229
91.91	74412	39 13512	08.05	7467)	7.88	30.29	_	_	10.0	
91.90	1244	135	8.06	7465	1	7.79	36.32	-		15.3	
Parameter Comp	pliance Crite	ria	6.2 <ph<9.2< td=""><td>118,000</td><td></td><td></td><td></td><td></td><td>1:0800 10.8</td><td></td><td></td></ph<9.2<>	118,000					1:0800 10.8		
**If pH or TDS is or	ut of range ch	neck calibration,	take to IM3 ar	nd check pH. S0	ı C-get second pro	obe. If still out o	េ of range imm	r ediately co	ntact B. Col	ı lom ((541) 740	-3250). If B. Collom unavailable contact S.
Duffy ((530) 941-92	227). If S. Du	ffy unavailable c			02 x36602 or (70 +/- 10% NTU	02) 525-1137). I +/- 0.3					3) 228-8248 x35448 or (213) 228-8242).
Parameter Stabili	ization Crite	ria	+/- 0.1 pH units	+/- 3%	units when >10 NTUs	mg/L	NA	NA	NA 	+/- 10 mV	·
Did Parameters Stab	olize prior to sa	mpling?	Y	Y	Y	7	NA			4	
Previous Field measu		10/6/2011)	8.05	8010	0.6	8.64	30.61	0.52		69.3	
Are measurements c	consistent with	previous?	Υ	lemel	<u> </u>	Y	NA			lower	
Sample Time	247 :	Sample Location	: t	np tubing X	well port	spigot	I	oailer	other		·
Comments:				·							
Initial Depth to Wat	ter (ff BTOC):	91	.74						WQ MI	ETER MAKE ar	JASITU 9500 nd SERIAL NUMBER: IS 50618
Field measured co					Measure	Point: Well	TOC Stee	el Casing			ER SERIAL NUMBER: 2011-61
WD (Well Depth - f			WW								ransducer
SWH (Standing Wa	ater Height) =	WD-Initial Depth	263.	26		/ Before Remov		·	After Rein		Time of Removal
D (Volume as per o	diameter) 2"=	0.17, 4"= 0.66, 1	l"=0.041 <u>(2</u>	in)	Time	Initial DTW		Time		al DTW	Time of Reinstallation
One Casing Volum	ne = D*SWH _	44			1145	91.70	1 .	NA	1	NA	
Three Casing Volu	ımes =	131	4.76		Comments:					·	
Color: deal, grey,						ulphur, organic,	other	8	Solids: Tra	Small Qu, N	lled Qu, Large Qu, Particulate, Silt, Sand
\\Zinfandel\ProjPacificGasEl	HectricCo\TopockP	Programi\Database\Fie	ld\FrontEnd2Kv34	4_PaperVvoikMIST.i	ndb\rptPurgeFormCh	AP				<i>J</i>	Page 3 of

Page 3 of 11

Project Na Job Nui		Topock CMP 5.MP.02.CM.01			_		Sampling	Event	2012-CN <i>L L</i> I		gec .
Sampler _	Ch	_ Field Team	1 Field	Conditions 2	Junnyi	windy so	gof	Page	of		
Well/Sam	ole Number	CW-02M-027		·	QC Sa	mple ID NA				QC Sample	
Purge Start Time	1313	Flow Ce	N (Sill	Purge Meth	od: 2), 🐧	721 Ded.	Pump/	C M	in. Purge V	olume (gal)/(L)	Purge Rate (gpm) (mLpm)
Water Level	Cemme	Vol. Purged gellors / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Salinity %	TDS** g/L	Eh/ORP mv	Comments (See description below
92,35	1319	17	7.90	7.238	1	6.44	29.50	_	_	15.1	Hz 271
97.35	1325	24	7.91	7.233		6.50	24.54	~	-	20.0	
97.35	1331	3(2	7.92	7.234	ì	6.48	29.58		_	201	
92.35		118	7.92	7.231	1	1 119	29.59			25,3	
, , , , ,	1337	40			1	1 513	~ ~ ~	-		27 2	
97.35	1343	60	7.97	7.228		650	29.55			01.6	
				•		1					
											
Parameter Co	ompliance Crite	eria	6.2 <ph<9.2< td=""><td>418,000</td><td></td><td></td><td></td><td></td><td>4.0800</td><td></td><td></td></ph<9.2<>	418,000					4 .0800		
									ntact B. Col		-3250). If B. Collom unavailable contact S.
Duffy ((530) 947	1-9227). If S. Du	uffy unavailable c			02 x36602 or (7 +/- 10% NTU	702) 525-1137). l· +/- 0.3					3) 228-8248 x35448 or (213) 228-8242).
Parameter Sta	bilization Crite	eria	+/- 0.1 pH units	+/- 3%	units when >10 NTUs	mg/L	NA	NA	NA	+/- 10 mV	· .
Did Parameters S	·	ampling?	y	У		V	NA	-	`	У :	
Previous Field me		(10/6/2011)	19 91	7665	0.2	6.75	29.73	0.5		74.5	
Are measuremen	420		y	Cerrier	<u></u>	<u>ν</u>	NA	~		Comer	·
Sample Time _	1347	Sample Location	pun	np tubingX	well port	/ spigot	k	oailer	other		
Comments:				1							
Initial Depth to V	•	: <u>47.3</u> Well Depth (ft bto	-		Measur	re Point: Well	TOC Stee	el Casing			nd SERIAL NUMBER: 100474 ER SERIAL NUMBER: 9611-61
WD (Well Depth	- from databas	se) ft btoc (20	2)							lf Tr	ansducer
SWH (Standing Water Height) = WD-Initial Depth /09.68					Initial DTW	/ / Before Remov			After Rein		Time of Removal
		= 0.17, 4"= 0.66,		in)	Time	Initial DTW		Time	Fin	al DTW T	Time of Reinstallation
One Casing Vol	ume = D*SWH	18.0	5		1158	92.32		W)	. ,	NA .	
Three Casing Vo	olumes =	55	.95		Comments:				2		
Color: clear, gro	ey, yellow, brow	vn, black, cloudy,	green		Odor: none)	sulphur, organic,	other	\$	Solids: Ta	ce) Small Qu, M	led Qu, Large Qu, Particulate, Silt, Sand
nfandeNPro CacificGa	asElectricCo\Topock	Program\Database\Fie	ld\FrontEnd2Kv34	4 PanerWorkMIST.	ndb\mtPumeFormC	MP			C	/	Page 4 of

	G&E Topock CMP					Sampling	Event _	2012-CM				
Job Number 42	23575.MP.02.CM.01						Date _	4/4/1	Z,		Be	e e
Sampler	Field Team	1 Field	Conditions	unuy, Ca	lu 579F		Page	of of		_		
Well/Sample Numb	per CW-03D-027			QC Sar	mple ID OW	-90-027			QC Sample		710	
Purge Start Time	Flow Ce	ell: 🕅 / N	Purge Meth	od: Z. 🥻	Z Ded. I	Oump	JO_M	in. Purge Vo	olume (gal) (L)	135	Purge Rate (sprn)/(mL	pm) <u>3</u>
Water Level	Vol. Purged gallons / liters	pH**	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Salinity %	TDS** g/L	Eh/ORP mv		Comments (See description below	1
76.52 084	6 27	7.90	7476		8.08	30.43	_		156	He	293	_
76.53 085	55 54	7,89	7500	1	8.41	30.75	_	-	134	'	•	
7653 090		7.90	7501	1	8,41	33,81	~	-	177			
76.53 091	3 108	7.90	7500	1		36.81	_	_	125			
76,53 09		7.91	7502	1	8.43		_	_	177			
			1				,					
Parameter Compliance	Criteria	6.2 <ph<9.2< td=""><td>418,000</td><td></td><td></td><td></td><td></td><td>1088</td><td></td><td></td><td></td><td></td></ph<9.2<>	418,000					1088				
**If pH or TDS is out of rai Duffy ((530) 941-9227). If	nge check calibration, S. Duffy unavailable o	take to IM3 ar	nd check pH. S(i C-get second pr 02 x36602 or (7)	obe. If still out o 02) 525-1137) If	f range imm J. Piner una	ediately cou available co	ntact B. Col	เ lom ((541) 740- tina Hong ((213	1 -3250), If B. C 3) 228-8248 x:	Collom unavailable conta	act S.
Parameter Stabilization		+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		(,0, ==0	
Did Parameters Stablize prio	r to sampling?	V	4	Ų	y	NA			У			
Previous Field measurement		8.07	7900	0′.5	0.5 8.65 30.79 0.51 70					•		
Are measurements consister		_ 4	lower	<u> </u>	<u> </u>	NA NA			nigher			
Sample Time 6975	Sample Location	: { pum	np tubing	well port	spigot	b	ailer	other				
Comments:						<u> </u>	,n.e.					
Initial Depth to Water (ft B	•	Measure	e Point: (Well 1	TOO Stee	el Casing		ETER MAKE an	nd SERIAL NU	J Tvoll 9900 JMBER: IS 506 UMBER: FGF 20	218 11-01		
WD (Well Depth - from da	- '					$\overline{}$			If Tr	ansducer		
SWH (Standing Water Hei			\$5	Initial DTW	/ Before Remova		prox. 5 min	After Reins		ime of Remov		_
D (Volume as per diamete				Time	Initial DTW		Time		al DTW ————————————————————————————————————	ime of Reinst	· · · · · · · · · · · · · · · · · · ·	
One Casing Volume = D*S	SWH	1.8	*****	0800	16.49	5	NH		VH			
Three Casing Volumes =		<u>34.4</u>		Comments:								
Color: deal, grey, yellow,	brown, black, cloudy,	Odor: fone, sulphur, organic, other Solids: Trace Small Qu, Med Qu, Large Qu, Particulate, Silt,					Qu, Particulate, Silt, S	and				

Comments:

Color: clean, grey, yellow, brown, black, cloudy, green

Three Casing Volumes =

Odor: fiorle, sulphur, organic, other

Solids: (Trace) Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand

Topock Sampling Log PG&E Topock CMP **Project Name** Sampling Event Job Number Date 423575,MP.02,CM.01 Field Conditions Open (18) , windy 80 Page Sampler Field Team Well/Sample Number CW-04D-027 NA QC Sample Time Min. Purge Volume (gally(L) Purge Method: 21 XZ Purge Start Time 25 Ded. Pump Flow Cell! Y) Purge Rate (gpm)/(mLpm) 」かいり Time Vol. Purged Water Conductivity Diss. Oxygen Salinity TDS** Eh/ORP Turbidity Temp. Comments gallons / liters mS/cm NTU °C (See description below Level mg/L mv 6.2<pH<9.2 1.0800 **Parameter Compliance Criteria** 108 **If pH or TDS is out of range check calibration, take to IM3 and check pH, SC-get second probe. If still out of range immediately contact B. Collom ((541) 740-3250). If B. Collom unavailable contact S. Duffy ((530) 941-9227). If S. Duffy unavailable contact J. Piper ((702) 953-1202 x36602 or (702) 525-1137), If J. Piper unavailable contact Christina Hong ((213) 228-8248 x35448 or (213) 228-8242). +/- 10% NTU +/-0.3+/- 10 mV units **Parameter Stabilization Criteria** mg/L pH units when >10 NTUs NA Did Parameters Stablize prior to sampling? 7/92 8609 Previous Field measurement (10/5/2011)30.67 0.56 63.9 Are measurements consistent with previous? NA Sample Time Sample Location: spigot bailer other Comments: 452 95U WQ METER MAKE and SERIAL NUMBER: Initial Depth to Water (ft BTOC): WATER LEVEL METER SERIAL NUMBER: Measure Point: (Well TO Steel Casing Field measured confirmation of Well Depth (ft btoc): If Transducer WD (Well Depth - from database) ft btoc Initial DTW / Before Removal Approx. 5 min After Reinstallation Time of Removal Time Initial DTW Time Final DTW D (Volume as per diameter) 2"= 0.17, 4"= 0.66, 1"=0.041 (2 in) Time of Reinstallation WA One Casing Volume = D*SWH

Comments:

Odor: hong, sulphur, organic, other

Solids: Trace/Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand
Page 7 of 11

Three Casing Volumes = -

Color: clear, grey, yellow, brown, black, cloudy, green

Page 8 of 11

Topock CMP Manual Water Level Snapshot

Personnel: B. Collow / CHAM
WLI serial number: PGE 2011-01

	Depth to Water	,		
Loc ID	(ft BTOC)	Date	Time	Comments
CW-1M	109.25	3-27-12	0901	
CW-1D	109.24	\	0905	;
CW-2M	92.64		0909	
CW-2D	92.15		0913	
CW-3M	77.48		0917	
CW-3D	76.82		0920	
CW-4M	61.56		0929	
CW-4D	61.38		0926	
OW-1S	93.61		0932	
OW-1M	93,35		0936	
OW-1D	92,77		0940	
OW-2S	92,21		0945	
OW-2M	91.38		0949	
OW-2D	90.89		0952	
OW-5S	95.14		0955	
OW-5M	94.61		0957	
OW-5D	95.07		1000	
			1	
		·		·
			Assume 1	

*IM-3 personnel (Scott O'Donnell)

confirms that 3-25-12 + 3-26-12 were

both normal operation days with no

down time or backwashing.

Topock CMP Manual Water Level Snapshot

Personnel: B.Collom/CH2M WLI serial number: DGE 2011-01

(ft BTOC) 108.31 108.40	Date 5-2-12	Time	Comments
108.31	ニューニ		
100110	J 04 1 L	1118	
100,40		1117	
91.78		ที่สรั	
91.53			
76.66			
76,20			
60.64		1)38	
60,62		1137	
92.65		1100	
92.55		101	
42.28	.3	1103	1 4 A
91.25		1106	,
90.68		1108	
90.71		105	
94.16		illo	
93,30		1+12	
43.82	4	1113	
		·	
			·
	91.78 91.53 76.66 76.20 60.64 60.63 92.65 92.55 92.38 91.25 90.68	91.78 91.53 76.66 76.20 60.64 60.63 92.65 92.55 92.38 91.25 90.68 90.68 90.71 94.16	91.78 91.53 76.66 1129 76.20 1127 60.64 1138 60.62 1100 1237 124 127 127 127 127 127 127 127 127

IM-3 staff confirms that #24, 4-30, +
5-1 + 5-2-12 were all normal operation
days w/no downtime or backwashing prior
to snapshot collection.