EPARTMENT OF TOXIC SUBSTANCES CONTROL 5 West Broadway, Suite 425 ng Beach, CA 90802-4444 February 2, 1996 Mr. Melvin Wong Project Manager Pacific Gas & Electric Co. (H-9-A) 123 Mission Street P.O. Box 7770000 San Francisco, California 94177 Dear Mr. Wong: CORRECTIVE ACTION CONSENT AGREEMENT (REVISED): PACIFIC GAS AND ELECTRIC CO.'S TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA EPA ID NO. CAT080011729 The Department of Toxic Substances Control (DTSC), has revised the Corrective Action Consent Agreement (CACA) transmitted to Pacific Gas & Electric Co. (PG&E) on October 31, 1995. The CACA is revised to address PG&E's comments and concerns as discussed in a meeting on December 7, 1995 and in a conference call on January 24, 1996. Enclosed is the CACA for PG&E's signatory. Please sign and return the Agreement. Upon receipt of the signed Agreement, DTSC will sign it and forward a copy to PG&E. If you have any questions, please contact Mr. Eduardo Vallesteros at (310) 590-4876. Sincerely, Unit Chief Facility Permitting Branch Enclosures Certified Mail Z 091 832 973 Returned Receipt Requested cc: See next page. # CORRECTIVE ACTION CONSENT AGREEMENT ## TABLE OF CONTENTS | Section | | <u>Pace</u> | |----------|---|-------------| | I. | INTRODUCTION | | | īI. | DTSC'S FINDINGS OF FACT | 1 | | III. | PROJECT COORDINATOR. | | | īV. | WORK TO BE PERFORMED | 5 | | | A. INTERIM MEASURES | 5 | | | B. RCRA FACILITY INVESTIGATION (RFI) | 5 | | | C. CORRECTIVE MEASURES STUDY (CMS) | 7 | | | D DEMENDED DETERMENTANT | 8 | | | D. REMEDY SELECTION E. CALIFORNIA ENVIRONMENTAL QUALITY ACT | 9 | | | E CALIFORNIA ENVIRONMENTAL QUALITY ACT | 9 | | ٧. | F. CORRECTIVE MEASURES IMPLEMENTATION (CMT) DTSC APPROVAL. | 10 | | VI. | SUBMITTALS | 11 | | VII | PROPOSED CONTRACTOR/CONSULTANT | 11 | | VTTT | ADDITIONAL WORK. | 12 | | IX. | QUALITY ASSURANCE | 12 | | | SAMPLING AND DATA/DOCUMENT AVAILABILITY. | 13 | | XI. | ACCESS | 14 | | | RECORD PRESERVATION | 14 | | XIII. | DISPUTE RESOLUTION | 12 | | XIV. | RESERVATION OF RIGHTS | 15
17 | | XV. | OTHER CLAIMS | 17
18 | | XVI. | OTHER APPLICABLE LAWS | 18 | | | INDEMNIFICATION OF THE STATE OF CALIFORNIA | 19 | | XVIII. | REIMBURSEMENT OF OVERSIGHT COSTS | 19 | | XIX. | MODIFICATION | 19 | | XX. | SEVERABILITY | 20 | | XXI. | TERMINATION AND SATISFACTION | 20 | | XXII. | COUNTERPARTS | 20 | | XXIII. | FULL AND COMPLETE AGREEMENT. | 20 | | XXIV. | SUBMITTAL SUMMARY | 20 | | XXV. | EFFECTIVE DATE | 22 | | XXVI. | SIGNATORIES | 22 | | Attachme | | | | 1. | OF WORK FOR INTERIM MEASURES IMPLEMENTATION | | | | SCOPE OF WORK FOR A HEALTH AND SAFETY PLAN | | | | SCOPE OF WORK FOR A PUBLIC INVOLVEMENT PLAN | | | | SCOPE OF WORK FOR A RCRA FACILITY INVESTIGATION | | | 5. | SCOPE OF WORK FOR A CORRECTIVE MEASURES STUDY | | | | SCOPE OF WORK FOR CORRECTIVE MEASURES IMPLEMENTATION | J | | 7. | SCOPE OF WORK FOR PROGRESS REPORTS | 4 | The Department of Toxic Substances Control (DTSC) and Pacific Gas and Electric Company (PG&E), (Respondent) enter into this Corrective Action Consent Agreement (Consent Agreement) and agree as follows: #### I. INTRODUCTION - 1. Jurisdiction exists pursuant to Health and Safety Code (H&SC) Section 25187, which authorizes the DTSC to issue an order when the DTSC determines that there is or has been a release or threatened release of hazardous waste or hazardous waste constituents into the environment from a hazardous waste facility. - 2. The parties enter into this Consent Agreement to avoid the expense of litigation and to carry out the corrective action described below promptly. - 3. Respondent is the Owner and/or Operator of a former hazardous waste management facility located at 15 miles southeast of Needles, south of Freeway I-40, Needles, California. - 4. The Facility engaged in the management of hazardous waste pursuant to an Interim Status Document issued by the Department of Health Services, which was the DTSC's predecessor agency, on April 6, 1981. - 5. The terms used in this Consent Agreement are as defined defin Section 66260.10 of Title 22 of the California Code of Regulations (CCR), except as otherwise provided. - 6. This Consent Agreement shall apply to and be binding upon the DTSC and upon Respondent and their respective agents, successors, and assigns. Respondent shall be liable for acts or omissions of its contractors and consultants for activities conducted under this Consent Agreement. - 7. No change in ownership or corporate or partnership status relating to the Facility will in any way alter Respondent's responsibility under this Consent Agreement. Any conveyance of title, easement, or other interest in the Facility, or a portion of the Facility, shall not affect Respondent's obligations under this Consent Agreement. Unless the DTSC agrees that such obligations may be transferred to a third party, Respondent will be responsible for and liable for any failure to carry out all activities required of Respondent by the terms and conditions of this Consent Agreement, regardless of Respondent's use of employees, agents, contractors, or consultants to perform any such tasks. - 8. Respondent shall provide a copy of this Consent Agreement to all contractors, laboratories, and consultants retained to conduct or monitor any portion of the work performed pursuant to this Consent Agreement. - 9. Respondent shall give written notice of this Consent Agreement to any successor in interest prior to transfer of ownership or operation of the Facility and shall notify the Department at least seven (7) days prior to such transfer. - 10. Respondent agrees to implement all approved workplans and to undertake all actions required by the terms and conditions of this Consent Agreement, including any portions of this Consent Agreement incorporated by reference. Respondent waives any right to request a hearing on this matter pursuant to H&SC Section 25187. Respondent consents to the issuance of this Consent Agreement pursuant to H&SC Section 25187. #### II. DTSC'S FINDINGS OF FACT 1. In October 1988, the PG&E's Contractor, Brown and Caldwell completed a soil investigation in the Bat Cave Wash area, PG&E Compressor Station, at the request of the Department of Health Services (now the DTSC), and the United States Environmental Protection Agency (U.S.E.P.A.). The report titled, Bat Cave Wash Soil Investigation, Topock Gas Compressor Station, Pacific Gas and Electric Company dated October 1988, indicated that a former percolation bed and the surrounding areas contain soils contaminated with Chromium (Cr), (total Cr and Cr VI) and possibly other metals. The percolation bed is considered as a solid waste management unit (SWMU) and the surrounding areas an area of concern (AOC). The RCRA Comprehensive Ground Water Monitoring Evaluation (CME) Report on PG&E Topock dated May 17, 1989 by the California Regional Water Quality Control Board (CRWQCB), Colorado River Basin Region (CRBR), described an inactive injection well in addition to the percolation bed mentioned above. This inactive injection well which received treated wastewater containing Cr is considered a SWMU, and the surrounding area an AOC. On May 29, 1995 the DTSC received a copy of PG&E's letter dated May 22, 1995 notifying the CRWQCB, CRBR, about the presence of Cr (total Cr and Cr VI), as contaminants in ground water samples. The samples were obtained from two abandoned water production wells. The wells are designated as PG&E Well #6 and PG&E Well #7, located on the east side of the Bat Cave Wash area, near the north boundary of the facility. Each well is considered as a SWMU and the area encompassing the wells an AOC. PG&E submitted two Closure Certification Reports dated June 1990 and December 27, 1993, respectively, for six (6) former hazardous waste management units in the Topock Compressor Station. A Closure Certification Acceptance letter dated June 26, 1995 was issued to PG&E that certified RCRA closure of the six former hazardous waste management units, now considered as SWMUs. The reports and letter above identify a total of ten (10) SWMUs and three (3) AOCs, that either have released or may release hazardous waste or hazardous waste constituents into the environment. Four SWMUs and three AOCs are located in the Bat Cave Wash area vicinity, and six SWMUs located in the Topock Compressor Station facility, outside of the Bat Cave Wash area. The SWMUs and AOCs in the Bat Cave Wash area are as follows: ``` Former Percolation bed (SWMU 1) Inactive injection well (SWMU 2) PG&E well #6 (SWMU 3) PG&E well #7 (SWMU 4) Area around the percolation bed (AOC 1) Area around the injection well (AOC 2) Area around PG&E wells #6 and #7 (AOC 3) ``` The SWMUs in the Topock Compressor Station, with approved Closure Certification reports are: ``` Sludge drying beds (SWMU 5) Chromate reduction tank (SWMU 6) Precipitation tank (SWMU 7) Process pump tank (SWMU 8) Transfer Sump (SWMU 9) Old evaporation (surface impoundments) ponds (SWMU 10) ``` 2. Based on the documents (reports and letters) above, the DTSC concludes that further investigation is needed to determine the nature and extent of contamination in the four SWMUs and three AOCs in the Bat Cave Wash area as listed below: ``` Former Percolation bed (SWMU 1) Inactive injection well (SWMU 2) PG&E abandoned well #6 (SWMU 3) PG&E abandoned well #7 (SWMU 4) Area around percolation bed (AOC 1) Area around inactive injection well (AOC 2) Area around PG&E abandoned wells #6 & #7 (AOC 3) ``` 3. Hazardous wastes or hazardous waste constituents have migrated or may migrate from the Facility into the environment through the following pathways: Soil, Surface Water, Ground Water and Air. 4. The hazardous waste and hazardous waste constituents of concern at the Facility based on an approved Closure Plan for hazardous waste management units at PG&E Topock Compressor Station dated August 1986 are: total Chromium, Chromium VI, Nickel, Copper,
Zinc, pH and Electrical Conductivity (E.C.). Except for total Chromium and Chromium VI, any of the constituents of concern may be excluded during the investigation, provided that the Respondent requests an exclusion in writing with results justifying the exclusion from DTSC and DTSC approves the exclusion. All of the above mentioned documents by reference are made parts of this Consent Agreement. 5. The Facility is located approximately 15 miles southeast of Needles, south of Freeway I-40, Needles, California. It occupies about 265 acres in the north end of Chemehuevi Mountains, and the southern portion of the Mojave Valley. The nearest residence is across the Colorado River, in the Topock Village of Arizona, about 3,000 feet east-northeast of the Facility. The surface water body in the area is the south flowing Colorado River which forms the boundary of California and Arizona in this region. The Bat Cave Wash is an ephemeral stream that is dry most of the year round. This stream may empty into the Colorado River. The ground water in the abandoned water production wells was sampled at 120 to 130 feet deep. However, the depth of the uppermost aquifer from the ground surface has not been determined. None of the water wells within one mile radius of the Facility are in use. The land within one mile of the Facility site boundary includes industrial, recreational and wildlife management uses. The only industrial use in the area is the PG&E Topock Compressor Station. Recreational use includes the Moabi Park, which is a approximately a mile to the northwest of the Facility. For wildlife management use, the portion of the Havasu National Wildlife Refuge is located along the Colorado River within a mile of the Facility. 6. Releases from the Facility at the SWMUs in the Bat Cave Wash vicinity may have migrated in the surrounding areas and toward the Wash downstream and potentially into the Colorado River. The present and future potential and actual receptors are the facility personnel, water fowl including quails, doves, geese, desert animals like tortoise and bighorn sheep, and people who come in contact with the nearby Colorado River. There are no human dwellings within half a mile of the Facility. ### III. PROJECT COORDINATOR Within fourteen (14) days of the effective date of this Consent Agreement, the DTSC and Respondent shall each designate a Project Coordinator and shall notify each other in writing of the Project Coordinator selected. Each Project Coordinator shall be responsible for overseeing the implementation of this Consent Agreement and for designating a person to act in his/her absence. All communications between Respondent and the DTSC, and all documents, report approvals, and other correspondence concerning the activities performed pursuant to this Consent Agreement shall be directed through the Project Coordinators. Each party may change its Project Coordinator with at least seven (7) days prior written notice. #### IV. WORK TO BE PERFORMED Respondent agrees to perform the work undertaken pursuant to this Consent Agreement in a manner consistent with: the attached Scopes of Work; the DTSC-approved Interim Measures Workplan, RCRA Facility Investigation Workplan, Corrective Measures Study Workplan, Corrective Measures Implementation Workplan, and any other DTSC-approved Workplans; H&SC and other applicable state and federal laws and their implementing regulations; and applicable DTSC or USEPA guidance documents. Applicable guidance includes, but is not limited to, the "RCRA Facility Investigation (RFI) Guidance" (Interim Final, May 1989, EPA 530/SW-89-031), "RCRA Groundwater Monitoring Technical Enforcement Guidance Document" (OSWER Directive 9950.1, September 1986), "Test Methods For Evaluating Solid Waste" (SW-846), and "Construction Quality Assurance for Hazardous Waste Land Disposal Facilities" (EPA 530/SW-85-031, July 1986). #### A. INTERIM MEASURES (IM) - 1. Respondent shall evaluate available data and assess the need for interim measures in addition to those specifically required by this Consent Agreement. Interim measures shall be used whenever possible to control or abate immediate threats to human health and/or the environment, and to prevent and/or minimize the spread of contaminants while long-term corrective action alternatives are being evaluated. - 2. Respondent shall submit a Current Conditions Report to the DTSC in accordance with Section IV.B.1 of this Consent Agreement. The Current Conditions Report shall contain an assessment of interim measures. The assessment must include both previously implemented interim measures and other interim measures that could be implemented at the Facility. The assessment must also identify any additional data needed for making decisions on interim measures. This new data or information shall be collected during the early stages of the RCRA Facility Investigation. The DTSC will review the Respondent's assessment and determine which interim measures, if any, Respondent will implement at the Facility. If deemed appropriate by the DTSC, such determination may be deferred until additional data are collected. - In the event Respondent identifies an immediate or potential threat to human health and/or the environment, discovers new releases of hazardous waste and/or hazardous waste constituents, or discovers new solid waste management units not previously identified, Respondent shall notify the DTSC Project Coordinator orally within 48 hours of discovery and notify the DTSC in writing within 10 days of discovery summarizing the findings, including the immediacy and magnitude of the potential threat to human health and/or the environment. Within ninety (90) days of receiving the DTSC's written request, Respondent shall submit to the DTSC an IM Workplan for approval. Workplan shall include a schedule for submitting to the DTSC an IM Operation and Maintenance Plan and IM Plans and Specifications. The IM Workplan, IM Operation and Maintenance Plan, and IM Plans and Specifications shall be developed in a manner consistent with the Scope of Work for Interim Measures Implementation appended as Attachment 1 of this Consent Agreement. If the DTSC determines that immediate action is required, the DTSC Project Coordinator may orally authorize the Respondent to act prior to the Department's receipt of the IM Workplan. - If the DTSC identifies an immediate or potential threat to human health and/or the environment, discovers new releases of hazardous waste and/or hazardous waste constituents, or discovers new solid waste management units not previously identified, the DTSC will notify Respondent in writing as soon as practicable. Within ninety (90) days of receiving the DTSC's written notification, Respondent shall submit to the DTSC for approval an IM Workplan that identifies Interim Measures that will mitigate the threat. The IM Workplan shall include a schedule for submitting to the DTSC an IM Operation and Maintenance Plan and IM Plans and Specifications. The IM Workplan, IM Operation and Maintenance Plan, and IM Plans and Specifications shall be developed in a manner consistent with the Scope of Work for Interim Measures Implementation appended as Attachment 1 of this Consent Agreement. If the DTSC determines that immediate action is required, the Department Project Coordinator may orally authorize Respondent to act prior to receipt of the IM Workplan. - 5. All IM Workplans shall ensure that the Interim Measures are designed to mitigate current or potential threats to human health and/or the environment, and should, to the extent practicable, be consistent with the objectives of, and contribute to the performance of, any remedy which may be required at the Facility. - 6. Concurrent with the submission of an IM Workplan, Respondent shall submit to the DTSC a Health and Safety Plan in accordance with the Scope of Work for a Health and Safety Plan, Attachment 2 of this Consent Agreement. - 7. Concurrent with the submission of an IM Workplan, Respondent shall submit to the DTSC a Public Involvement Plan in accordance with Attachment 3 of this Consent Agreement. ### B. RCRA FACILITY INVESTIGATION (RFI) - 1. Within one hundred twenty (120) days of the effective date of this Consent Agreement, Respondent shall submit to the DTSC a Current Conditions Report and a Workplan for a RCRA Facility Investigation ("RFI Workplan"). The Current Conditions Report and RFI Workplan are subject to approval by the DTSC and shall be developed in a manner consistent with the Scope of Work for a RCRA Facility Investigation contained in Attachment 4 of this Consent Agreement. The DTSC will review the Current Conditions Report and RFI Workplan and notify Respondent in writing of the DTSC's approval or disapproval, in accordance with Section V. - 2. The RFI Workplan shall detail the methodology to: (1) gather data needed to make decisions on interim measures/ stabilization during the early phases of the RCRA Facility Investigation; (2) identify and characterize all sources of contamination; (3) define the nature, degree and extent of contamination; (4) define the rate of movement and direction of contamination flow; (5) characterize the potential pathways of contaminant migration; (6) identify actual or potential human and/or ecological receptors; and (7) support development of alternatives from which a corrective measure will be selected by the DTSC. A specific schedule for implementation of all activities shall be included in the RFI Workplan. - 3. Respondent shall submit a RFI Report to the DTSC for approval in accordance with the DTSC-approved RFI Workplan schedule. The RFI Report shall be developed in a manner consistent with the Scope of Work for a RCRA Facility Investigation contained in Attachment 4. If there is a phased investigation, separate RFI Reports and a report that summarizes the findings from all phases of the RFI must be submitted to the DTSC. The DTSC will review the RFI
Report(s) and notify Respondent in writing of the DTSC's approval or disapproval, in accordance with Section V. - 4. Concurrent with the submission of a RFI Workplan, Respondent shall submit to the DTSC a Health and Safety Plan in accordance with Attachment 2. If Workplans for both an IM and RFI are required by this Consent Agreement, Respondent may submit a single Health and Safety Plan that addresses the combined IM and RFI activities. - 5. Respondent shall submit a RFI Summary Fact Sheet to the DTSC that summarizes the findings from all phases of the RFI. The RFI Summary Fact Sheet shall be submitted to the DTSC in accordance with the schedule contained in the approved RFI Workplan. The DTSC will review the RFI Summary Fact Sheet and notify Respondent in writing of the DTSC approval or disapproval, including any comments and/or modifications. When the DTSC approves the RFI Summary Fact Sheet, Respondent shall mail the approved RFI Summary Fact Sheet to all individuals on the facility mailing list established pursuant to 22 CCR 66271.9(c)(1)(D), within fifteen (15) calendar days of receipt of written approval. - 6. Concurrent with the submission of a RFI Workplan, Respondent shall submit to the DTSC a Public Involvement Plan, which is subject to the DTSC's approval. The Public Involvement Plan shall be developed in accordance with Attachment 3 of this Consent Agreement. Any Public Involvement Plan developed for Interim Measures may be revised to include RFI activities. #### C. CORRECTIVE MEASURES STUDY (CMS) - 1. Respondent shall prepare a Corrective Measures Study if contaminant concentrations exceed current health-based action levels and/or if the DTSC determines that the contaminant releases pose a potential threat to human health and/or the environment. It is recommended that the Caltox or the healthbased levels found in Health Risk Assessment (HRA) developed by the DTSC be used as action levels. Caltox and health-based levels are contaminant concentrations in air, soil (residential and industrial), and water which can be used for risk screening purposes as possible triggers for site specific further action, (e.g., Corrective Measures Study) and as starting point for determining cleanup levels. However, since PG&E has an approved Closure Certification for some hazardous waste management units using background standards for cleanup levels, PG&E may establish a site specific background standards with certainty, to be used as cleanup levels in the Bat Cave Wash area. - 2. Within ninety (90) days of the DTSC's approval of the RFI Report (or Respondent's receipt of a written request from the DTSC), Respondent shall submit a CMS Workplan to the DTSC. The CMS Workplan is subject to approval by the DTSC and shall be developed in a manner consistent with the Scope of Work for a Corrective Measures Study contained in Attachment 5 of this Consent Agreement. - 3. The CMS Workplan shall detail the methodology for developing and evaluating potential corrective measures to remedy any contamination at the Facility. The CMS Workplan shall identify the potential corrective measures, including any innovative technologies, that may be used for the containment, treatment, remediation, and/or disposal of contamination. - 4. Respondent shall prepare treatability studies for all potential corrective measures that involve treatment except where Respondent can demonstrate to the DTSC's satisfaction that they are not needed. The CMS Workplan shall include, at a minimum, a summary of the proposed treatability study including a conceptual design, a schedule for submitting a treatability study workplan, or Respondent's justification for not proposing a treatability study. - 5. Respondent shall submit a CMS Report to the DTSC for approval in accordance with the DTSC-approved CMS Workplan schedule. The CMS Report shall be developed in a manner consistent with the Scope of Work for a Corrective Measures Study contained in Attachment 5. The DTSC will review the CMS Report and notify Respondent in writing of the DTSC's approval or disapproval, in accordance with Section V. #### D. REMEDY SELECTION - 1. The DTSC will provide the public with an opportunity to review and comment on the final draft of the CMS Report, the DTSC's proposed corrective measures for the Facility, and the DTSC's justification for selection of such corrective measures. - 2. Following the public comment period, the DTSC may select final corrective measures or require Respondent to revise the CMS Report and/or perform additional corrective measures studies. - 3. The DTSC will notify Respondent of the final corrective measures selected by the DTSC in the Final Decision and Response to Comments. The notification will include the DTSC's reasons for selecting the corrective measures. ### E. CALIFORNIA ENVIRONMENTAL QUALITY ACT The DTSC must comply with the California Environmental Quality Act (CEQA) insofar as activities required by this Consent # Agreement are projects requiring CEQA compliance. The DTSC will make an initial determination regarding the applicability of CEQA. If the activities are not exempt from CEQA, the DTSC will conduct an initial study. Based on the results of the Initial Study, the DTSC will determine if a Negative Declaration or an Environmental Impact Report (EIR) should be prepared. They will prepare and process any such Negative Declaration. However, should the DTSC determine that an EIR is necessary, such an EIR would be prepared under a separate agreement between the DTSC and Respondent. ### F. CORRECTIVE MEASURES IMPLEMENTATION (CMI) - 1. Within ninety (90) days of Respondent's receipt of notification of the DTSC's selection of the corrective measures, Respondent shall submit to the DTSC a Corrective Measures Implementation (CMI) Workplan. The CMI Workplan is subject to approval by the DTSC and shall be developed in a manner consistent with the Scope of Work for Corrective Measures Implementation contained in Attachment 6 of this Consent Agreement. - 2. Concurrent with the submission of a CMI Workplan, Respondent shall submit to the DTSC a Health and Safety Plan in accordance with Attachment 2. - 3. Concurrent with the submission of a CMI Workplan, Respondent shall submit to the DTSC a Public Involvement Plan in accordance with Attachment 3. - 4. The CMI program shall be designed to facilitate the design, construction, operation, maintenance, and monitoring of corrective measures at the Facility. In accordance with the schedule contained in the approved CMI Workplan, Respondent shall submit to the DTSC the documents listed below. These documents shall be developed in a manner consistent with the Scope of Work for Corrective Measures Implementation contained in Attachment 6. - o Operation and Maintenance Plan - o Draft Plans and Specifications - o Final Plans and Specifications - o Construction Workplan - o Construction Completion Report - o Corrective Measures Completion Report - 5. The DTSC will review all required CMI documents and notify Respondent in writing of the DTSC's approval or disapproval, in accordance with Section V. - 6. As directed by the DTSC, Respondent shall establish a financial assurance mechanism for Corrective Measures Implementation. The financial assurance mechanisms may include a performance or surety bond, liability insurance, an escrow performance guarantee account, a trust fund, financial test, or corporate guarantee as described in 22 CCR 66265.143 or any other mechanism acceptable to the DTSC. The mechanism shall be established to allow the DTSC access to the funds to undertake Corrective Measures Implementation tasks if Respondent is unable or unwilling to undertake the required actions. #### V. DISC APPROVAL - 1. Respondent shall revise any workplan, report, specification, or schedule in accordance with the DTSC's written comments. Respondent shall submit to the DTSC any revised documents by the due date specified by the DTSC. Revised submittals are subject to the DTSC's approval or disapproval. - 2. Upon receipt of the DTSC's written approval, Respondent shall commence work and implement any approved workplan in accordance with the schedule and provisions contained therein. - 3. Any DTSC approved workplan, report, specification, or schedule required under this Consent Agreement shall be deemed incorporated into this Consent Agreement. - 4. Verbal advice, suggestions, or comments given by the DTSC representatives will not constitute an official approval or decision. ### VI. SUBMITTALS - 1. Beginning with the first full month following the effective date of this Consent Agreement, Respondent shall provide the DTSC with quarterly progress reports of corrective action activities conducted pursuant to this Consent Agreement. Progress reports are due on the first Wednesday of the month following the completed quarter. The progress reports shall conform to the Scope of Work for Progress Reports contained in Attachment 7. The DTSC may adjust the frequency of progress reporting to be consistent with site-specific activities. - 2. Any report or other document submitted by Respondent pursuant to this Consent Agreement shall be signed and certified by the project coordinator, a responsible corporate officer, or a duly authorized representative. - 3. The certification required by paragraph 2 above, shall be in the following form: - "I certify that the information contained in or accompanying this submittal is true, accurate, and complete. As to those portions of this submittal for which I cannot personally verify the accuracy, I certify that this submittal and all attachments were prepared at my direction in accordance with procedures designed to assure that qualified personnel properly gathered and evaluated the information submitted. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. | Signature: | <u></u> |
------------|---------| | Name: | | | Title: | | | Date: | | | | | - 4. Respondent shall provide three (3) copies of all documents, including but not limited to, workplans, reports, and correspondence of fifteen (15) pages or longer. Submittals specifically exempted from this copy requirement are all progress reports and correspondence of less than 15 pages, of which one copy is required. - 5. Unless otherwise specified, all reports, correspondence, approvals, disapprovals, notices, or other submissions relating to this Consent Agreement shall be in writing and shall be sent to the current Project Coordinators. ### VII. PROPOSED CONTRACTOR/CONSULTANT All work performed pursuant to this Consent Agreement shall be under the direction and supervision of a professional engineer or registered geologist, registered in California, with expertise in hazardous waste site cleanup. Respondent's contractor or consultant shall have the technical expertise sufficient to fulfill his or her responsibilities. Within fourteen (14) days of the effective date of this Consent Agreement, Respondent shall notify the DTSC Project Coordinator in writing of the name, title, and qualifications of the professional engineer or registered geologist and of any contractors or consultants. The DTSC may disapprove of Respondent's contractor and/or consultant. ### VIII. ADDITIONAL WORK The DTSC may determine or Respondent may propose that certain tasks, including investigatory work, engineering evaluation, or procedure/methodology modifications are necessary in addition to, or in lieu of, the tasks and deliverables included in any part of the DTSC-approved workplans. The DTSC shall request in writing that Respondent perform the additional work and shall specify the basis and reasons for the DTSC's determination that the additional work is necessary. Within fourteen (14) days after the receipt of such determination, Respondent may confer with the DTSC to discuss the additional work the DTSC has requested. If required by the DTSC, Respondent shall submit a workplan to the DTSC for the additional work. Such workplan shall be submitted to the DTSC within ninety (90) days of receipt of the DTSC's determination or according to an alternate schedule established by the DTSC. Upon approval of a workplan, Respondent shall implement it in accordance with the provisions and schedule contained therein. The need for, and disputes concerning, additional work are subject to the dispute resolution procedures specified in this Consent Agreement. ### IX. QUALITY ASSURANCE - 1. All sampling and analyses performed by Respondent under this Consent Agreement shall follow applicable DTSC and USEPA guidance for sampling and analysis. Workplans shall contain quality assurance/quality control and chain of custody procedures for all sampling, monitoring, and analytical activities. Any deviations from the approved workplans must be approved by the DTSC prior to implementation, must be documented, including reasons for the deviations, and must be reported in the applicable report (e.g., RFI Report). - 2. The names, addresses, and telephone numbers of the California State certified analytical laboratories Respondent proposes to use must be specified in the applicable workplans. - 3. All workplans required under this Consent Agreement shall include data quality objectives for each data collection activity to ensure that data of known and appropriate quality are obtained and that data are sufficient to support their intended uses. - 4. Respondent shall monitor to ensure that high quality data are obtained by its consultant or contract laboratories. Respondent shall ensure that laboratories used by Respondent for analysis perform such analysis according to the latest approved edition of "Test Methods for Evaluating Solid Waste, (SW-846)", or other methods deemed satisfactory to the DSTC. If methods other than USEPA methods are to be used, Respondent shall specify all such protocols in the applicable workplan (e.g., RFI Workplan). The DTSC may reject any data that do not meet the requirements of the approved workplan, USEPA analytical methods, or quality assurance/quality control procedures, and may require resampling and analysis. - 5. Respondent shall ensure that the California State certified laboratories used by Respondent for analyses have a quality assurance/quality control program. The DTSC may conduct a performance and quality assurance/quality control audit of the laboratories chosen by Respondent before, during, or after sample analyses. Upon request by the DTSC, the Respondent shall have its selected laboratory perform analyses of samples provided by the DTSC to demonstrate laboratory performance. If the audit reveals deficiencies in a laboratory's performance or quality assurance/quality control procedures, resampling and analysis may be required. ## X. SAMPLING AND DATA/DOCUMENT AVAILABILITY - 1. Respondent shall submit to the DTSC upon request the results of all sampling and/or tests or other data generated by its employees, agents, consultants, or contractors pursuant to this Consent Agreement. - 2. Notwithstanding any other provisions of this Consent Agreement, the DTSC retains all of its information gathering and inspection authority and rights including enforcement actions related thereto, under H&SC, and any other state or federal statutes or regulations. - 3. Respondent shall notify the DTSC in writing at least seven (7) days prior to beginning each separate phase of field work approved under any workplan required by this Consent Agreement. If Respondent believes it must commence emergency field activities without delay, Respondent may seek emergency telephone authorization from the DTSC Project Coordinator or if the Project Coordinator is unavailable, his/her Branch Chief, to commence such activities immediately. - 4. At the request of the DTSC, Respondent shall provide or allow the DTSC or its authorized representative to take split or duplicate samples of all samples collected by Respondent pursuant to this Consent Agreement. Similarly, at the request of Respondent, the DTSC shall allow Respondent or its authorized representative to take split or duplicate samples of all samples collected by the DTSC under this Consent Agreement. - 5. Respondent may assert a business confidentiality claim covering all or part of any information submitted to the DTSC pursuant to this Consent Agreement, as provided by 22 CCR 66260.2 and 40 CFR Part 2. Respondent agrees not to assert any confidentiality claim with regard to any physical or analytical data generated as part of the work to be performed under this Consent Agreement. ### XI. ACCESS 1. Subject to the Facility's security and safety procedures, Respondent agrees to provide the DTSC and its representatives access at all reasonable times to the Facility and any other property to which access is required for implementation of this Consent Agreement and shall permit such persons to inspect and copy all records, files, photographs, documents, including all sampling and monitoring data, that pertain to work undertaken pursuant to this Consent Agreement and that are within the possession or under the control of Respondent or its contractors or consultants. - To the extent that work being performed pursuant to this Consent Agreement must be done beyond the Facility property boundary, Respondent shall use its best efforts to obtain access agreements necessary to complete work required by this Consent Agreement from the present owners of such property within thirty (30) days of approval of any workplan for which access is required. Best efforts as used in this paragraph shall include, at a minimum, a letter by certified mail from the Respondent to the present owners of such property requesting an access agreement to permit Respondent and the DTSC and its authorized representatives to access such property. As may be subsequently required by the property owner, Respondent shall offer reasonable payment for such access. Any such access agreement shall provide for access to the DTSC and its representatives. Respondent shall provide the DTSC's Project Coordinator with a copy of any access agreements. In the event that an agreement for access is not obtained within thirty (30) days of approval of any workplan for which access is required, or of the date that the need for access becomes known to Respondent, Respondent shall notify the DTSC in writing within fourteen (14) days thereafter regarding both the efforts undertaken to obtain access and its failure to obtain such agreements. The DTSC may, at its discretion, assist Respondent in obtaining access. - 3. Nothing in this section limits or otherwise affects the DTSC's right of access and entry pursuant to any applicable state or federal law or regulation. - 4. Nothing in this Consent Agreement shall be construed to limit or otherwise affect Respondent's liability and obligation to perform corrective action including corrective action beyond the Facility boundary. If Respondent uses best efforts to obtain access and is unable to do so, the DTSC will assert its authority under the Health and Safety Code to obtain such access. Should the DTSC fail to obtain such access, Respondent's obligation under this Consent Agreement with respect to such offsite areas shall be deferred until such access is obtained. #### XII. RECORD PRESERVATION 1. Respondent shall retain, during the pendency of this Consent Agreement and for a minimum of six (6) years after its termination, all data, records, and documents that relate in any way to the performance of this Consent Agreement or to hazardous waste management and/or disposal at the Facility. Respondent shall notify the DTSC in writing ninety (90) days prior to the destruction of any such records, and shall provide the DTSC with the opportunity to take possession of any such records. Such written notification shall reference the effective date,
caption, and docket number of this Consent Agreement and shall be addressed to: Chief Facility Permitting Branch Department of Toxic Substances Control Region 4 245 West Broadway, Suite 350 Long Beach, California 90802 - 2. If Respondent retains or employs any agent, consultant, or contractor for the purpose of carrying out the terms of this Consent Agreement, Respondent will require any such agents, consultants, or contractors to provide Respondent a copy of all documents produced pursuant to this Consent Agreement. - 3. All documents pertaining to this Consent Agreement shall be stored in a central location at the Facility to afford ease of access by the DTSC and its representatives. ### XIII. DISPUTE RESOLUTION - 1. The parties agree to use their best efforts to resolve all disputes informally. The parties agree that the procedures contained in this section are the required administrative procedures for resolving disputes arising under this Consent Agreement. If Respondent fails to follow the procedures contained in this section, it shall have waived its right to further consideration of the disputed issue. Respondent otherwise reserves all its legal rights to contest or defend against any unilateral decision rendered by the DTSC under this paragraph XIII. - 2. If Respondent disagrees with any written decision by the DTSC pursuant to this Consent Agreement, Respondent's Project Coordinator shall orally notify the DTSC Project Coordinator of the dispute. The Project Coordinators shall attempt to resolve the dispute informally. - 3. If the Project Coordinators cannot resolve the dispute informally, Respondent may pursue the matter formally by placing its objections in writing. Respondent's written objections must be forwarded to Chief, Facility Permitting Branch, Department of Toxic Substances Control, Region 4, with a copy to the DTSC Project Coordinator. This written notice must be mailed to the Project Coordinator within thirty (30) days of Respondent's receipt of the DTSC's written decision. Respondent's written objection must set forth the specific points of the dispute and the basis for Respondent's position. - 4. The DTSC and Respondent shall have thirty (30) days from the DTSC's receipt of Respondent's written objections to resolve the dispute through formal discussions. This period may be extended by the DTSC for good cause. During such period, the Respondent may meet or confer with the DTSC to discuss the dispute. - 5. After the formal discussion period, the DTSC will provide the Respondent with its written decision on the dispute. The DTSC's written decision will reflect any agreements reached during the formal discussion period and be signed by Chief, Facility Permitting Branch, Department of Toxic Substances Control, Region 4, or his/her designee. - 6. During the pendency of all dispute resolution procedures set forth above, the time periods for completion of work to be performed under this Consent Agreement that are affected by such dispute shall be extended for a period of time not to exceed the actual time taken to resolve the dispute. The existence of a dispute shall not excuse, toll, or suspend any other compliance obligation or deadline required pursuant to this Consent Agreement. #### XIV. RESERVATION OF RIGHTS - 1. The DTSC reserves all of its statutory and regulatory powers, authorities, rights, and remedies, both legal and equitable, which may pertain to Respondent's failure to comply with any of the requirements of this Consent Agreement, including the assessment of penalties under H&SC Section 25187. This Consent Agreement shall not be construed as a covenant not to sue, release, waiver, or limitation on any rights, remedies, powers, or authorities, civil or criminal, that the DTSC has under any statutory, regulatory, or common law authority. - 2. The DTSC reserves the right to disapprove of work performed by Respondent pursuant to this Consent Agreement and to request that Respondent perform additional tasks. - 3. The DTSC reserves the right to perform any portion of the work consented to herein or any additional site characterization, feasibility study, and/or remedial actions it deems necessary to protect human health and/or the environment. The DTSC may exercise its authority under any applicable state or federal law or regulation to undertake response actions at any time. The DTSC reserves its right to seek reimbursement from Respondent for costs incurred by the State of California with respect to such actions. The DTSC will notify Respondent in writing as soon as practicable after the decision to perform any work described in this section. - 4. If the DTSC determines that activities in compliance or noncompliance with this Consent Agreement have caused or may cause a release of hazardous waste and/or hazardous waste constituents, or a threat to human health and/or the environment, or that Respondent is not capable of undertaking any of the work ordered, the DTSC may order Respondent to stop further implementation of this Consent Agreement for such period of time as the DTSC determines may be needed to abate any such release or threat and/or to undertake any action which the DTSC determines is necessary to abate such release or threat. The deadlines for any actions required of Respondent under this Consent Agreement affected by the order to stop work shall be extended to take into account the DTSC's actions. - 5. This Consent Agreement is not intended to be nor shall it be construed to be a permit. The parties acknowledge and agree that the DTSC's approval of any workplan, plan, and/or specification does not constitute a warranty or representation that the workplans, plans, and/or specifications will achieve the required cleanup or performance standards. Compliance by Respondent with the terms of this Consent Agreement shall not relieve Respondent of its obligations to comply with H&SC or any other applicable local, state, or federal law or regulation. ### XV. OTHER CLAIMS Except as provided in this Consent Agreement, nothing in this Consent Agreement shall constitute or be construed as a release from any claim, cause of action, or demand in law or equity against any person, firm, partnership, or corporation for any liability it may have arising out of or relating in any way to the generation, storage, treatment, handling, transportation, release, or disposal of any hazardous constituents, hazardous substances, hazardous wastes, pollutants, or contaminants found at, taken to, or taken or migrating from the Facility. Respondent waives any claims or demands for compensation or payment from the State of California arising out of any activity performed or expense incurred by Respondent pursuant to this Consent Agreement. #### XVI. OTHER APPLICABLE LAWS All actions required to be taken pursuant to this Consent Agreement shall be undertaken in accordance with the requirements of all local, state, and federal laws and regulations. Respondent shall obtain or cause their representatives to obtain all permits and approvals necessary under such laws and regulations. ## XVII. INDEMNIFICATION OF THE STATE OF CALIFORNIA Respondent agrees to indemnify and save and hold harmless the State of California, its agencies, departments, agents, and employees, from any and all claims or causes of action arising from or on account of acts or omissions of Respondent or its officers, employees, agents, independent contractors, receivers, trustees, and assigns in carrying out activities required by this Consent Agreement. Such indemnification shall not, however, extend to that portion of any such claim or cause of action attributable to the grossly negligent, wanton, or wilful acts of the DTSC or its contractors, subcontractors, or agents in carrying out activities at the Facility. This indemnification shall not be construed in any way as affecting or limiting the rights or obligations of Respondent or State of California under their various respective contracts. ### XVIII. REIMBURSEMENT OF OVERSIGHT COSTS Respondent agrees to pay the DTSC's oversight costs associated with the implementation and execution of this Consent Agreement. The DTSC will provide Respondent with quarterly invoices documenting oversight costs. These costs shall be due and payable by Respondent to the DTSC within thirty (30) days of Respondent's receipt of each invoice. All payments shall be made by check payable to the Department of Toxic Substances Control and shall be remitted to: Accounting Unit Department of Toxic Substances Control P. O. Box 806 Sacramento, California 95812-0806 All checks shall reference the name of the Facility, the Respondent's name and address, and the docket number of this action. Copies of all checks and letters transmitting such checks shall be sent simultaneously to the DTSC Project Coordinator. #### XIX. MODIFICATION - 1. This Consent Agreement may be modified by mutual agreement of the parties. Any agreed modifications shall be in writing, shall be signed by both parties, shall have as their effective date the date on which they are signed by the DTSC, and shall be deemed incorporated into this Consent Agreement. - 2. Any requests for revision of an approved workplan requirement must be in writing. Such requests must be timely and provide justification for any proposed workplan revision. The DTSC has no obligation to approve such requests, but if it does so, such approval will be in writing and signed by the Chief, Facility Permitting Branch, DTSC, Region 4, or his or her designee. Any approved workplan modification shall be incorporated by reference into this Consent Agreement. #### XX. SEVERABILITY The requirements of this agreement are severable, and Respondent shall comply with each and every provision hereof, notwithstanding the effectiveness of any other provision. ### XXI. TERMINATION AND SATISFACTION The provisions of this Consent Agreement shall be deemed satisfied upon the execution by both
parties of an "Acknowledgment of Satisfaction" (Acknowledgment). The DTSC will prepare the Acknowledgment for Respondent's signature. The Acknowledgment will specify that Respondent has demonstrated to the satisfaction of the DTSC that the terms of this Consent Agreement have been satisfactorily completed. The Acknowledgment will affirm Respondent's continuing obligation to preserve all records after the rest of the Consent Agreement is satisfactorily completed. #### XXII. COUNTERPARTS This Consent Agreement may be executed and delivered in any number of counterparts, each of which when executed and delivered shall be deemed to be an original, but such counterparts shall together constitute one and the same document. ### XXIII. FULL AND COMPLETE AGREEMENT This Consent Agreement contains all of the covenants and agreements between the DTSC and Respondent with respect to the subject matter of this Consent Agreement. Each party to this Consent Agreement acknowledges that no representations, inducements, promises, or agreements have been made by or on behalf of any party except those covenants and agreements embodied in this Consent Agreement. ### XXIV. SUBMITTAL SUMMARY Below is a summary of the major reporting requirements contained in this Consent Agreement. The summary is provided as a general guide and does not contain all requirements. Please refer to the specific language of this Consent Agreement for all the requirements. | | | - | |-----------|--|--| | I.10 & IV | Implement approved Workplans | In accordance with schedules contained in approved Workplans | | III | Designate Project Coordinator and notify the DTSC in writing | 14 days from
effective date
of Consent Agreement | | IV.A | Notify the DTSC orally of potential threats to human health | 48 hours after discovery | | IV.A | Notify the DTSC in writing of potential threats to human health | 10 days after
discovery | | IV.A | Submit Interim Measures
Workplan, Health and Safety
Plan, and Public Involvement | 90 days from
receipt of DTSC
request | | IV. B | Submit RFI Workplan, Current
Conditions Report, Public
Involvement Plan, and
Health and Safety Plan | 120 days from
effective date
of Consent Agreement | | IV.C | Submit CMS Workplan | 90 days after
receipt of
DTSC request | | IV.F | Submit CMI Workplan | 90 days from receipt notification of DTSC selection of a corrective measure | | VI | Submit first Progress Report | 1st. Wednesday of fourth month following the effective date of Consent Agreement | | VI | Submit Progress Reports | Quarterly thereafter | | VII | Notify the DTSC in writing of contractors to carry out terms of Consent Agreement | 14 days from
effective date
of Consent Agreement | Section Action Due Date ### Х ## XXV. EFFECTIVE DATE The effective date of this Consent Agreement shall be the date on which this Consent Agreement is signed by both parties. ### XXVI. <u>SIGNATORIES</u> Each undersigned representative certifies that he or she is fully authorized to enter into this Consent Agreement. IT IS SO AGREED AND ORDERED: | DATE: 2/15/96 | BY: Donald W./ Anderson Manager of Gas System Technical Support Pacific Gas and Electric Company | |---------------|---| | DATE: | BY: Mohinder S. Sandhu, P.E., Chief Facility Permitting Branch Department of Toxic Substances Control Region 4 | #### ATTACHMENT 1 #### SCOPE OF WORK FOR INTERIM MEASURES IMPLEMENTATION #### PURPOSE Interim measures are actions to control and/or eliminate releases of hazardous waste and/or hazardous constituents from a facility prior to the implementation of a final corrective measure. Interim measures must be used whenever possible to achieve the goal of stabilization which is to control or abate threats to human health and/or the environment, and to prevent or minimize the spread of contaminants while long-term corrective action alternatives are being evaluated. #### SCOPE The documents required for Interim Measures (IM) are, unless the Department of Toxic Substances Control (Department) specifies otherwise, an IM Workplan, an Operation and Maintenance Plan and IM Plans and Specifications. The scope of work (SOW) for each document is specified below. The SOWs are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that a plan or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement. The scope and substance of interim measures should be focused to fit the site specific situation and be balanced against the need to take quick action. The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOWs in order to support the IM program. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks. ### A. Interim Measures Workplan The Owner/Operator or Respondent shall prepare an IM Workplan that evaluates interim measure options and clearly describes the proposed interim measure, the key components or elements that are needed, describes the designer's vision of the interim measure in the form of conceptual drawings and schematics, and includes procedures and schedules for implementing the interim measure(s). The IM Workplan must be approved by the Department prior to implementation. The IM Workplan must, at a minimum, include the following elements: ### 6. Project Management Describe the levels of authority and responsibility (include organization chart), lines of communication and a description of the qualifications of key personnel who will direct the interim measure design and implementation effort (including contractor personnel). ### 7. Project Schedule The project schedule must specify all significant steps in the process, when any key documents (e.g., plans and specifications, operation and maintenance plan) are to be submitted to the Department and when the interim measure is to be implemented. #### 8. Design Basis Discuss the process and methods used to design all major components of the interim measure. Discuss the significant assumptions made and possible sources of error. Provide justification for the assumptions. - 9. Conceptual Process/Schematic Diagrams. - 10. Site plan showing preliminary plant layout and/or treatment area. - 11. Tables listing number and type of major components with approximate dimensions. - 12. Tables giving preliminary mass balances. - 13. Site safety and security provisions (e.g., fences, fire control, etc.). #### 14. Waste Management Practices Describe the wastes generated by the construction of the interim measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed. #### 15. Required Permits List and describe the permits needed to construct the interim measure. Indicate on the project schedule when the permit applications will be submitted to the applicable agencies and an estimate of the permit issuance date. ### 16. Sampling and Monitoring Sampling and monitoring activities may be needed for design and during construction of the interim measure. If sampling activities are necessary, the IM Workplan must include a complete sampling and analysis section which specifies at a minimum the following information: - a. Description and purpose of monitoring tasks; - b. Data quality objectives; - c. Analytical test methods and detection limits; - d. Name of analytical laboratory; - e. Laboratory quality control (include laboratory QA/QC procedures in appendices) - f. Sample collection procedures and equipment; - g. Field quality control procedures: - o duplicates (10% of all field samples) - o blanks (field, equipment, etc.) - o equipment calibration and maintenance - o equipment decontamination - o sample containers - o sample preservation - o sample holding times (must be specified) - o sample packaging and shipment - o sample documentation (field notebooks, sample labeling, etc.); - o chain of custody; - h. Criteria for data acceptance and rejection; and - i. Schedule of monitoring frequency. The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document. ### 17. Appendices including: Design Data - Tabulations of significant data used in the design effort; Equations - List and describe the source of major equations used in the design process; Sample Calculations - Present and explain one example calculation for significant calculations; and Laboratory or Field Test Results. ### B. Interim Measures Operation and Maintenance Plan The Owner/Operator or Respondent shall prepare an Interim Measures Operation and Maintenance (O&M) Plan that includes a strategy and procedures for performing operations, maintenance, and monitoring of the interim measure(s). An Interim Measures Operation and Maintenance Plan shall be submitted to the Department simultaneously with the Plans and Specifications. The O&M plan shall, at a minimum, include the following elements: ### 1. Purpose/Approach Describe the purpose of the document and provide a summary of the project. #### 2. Project Management Describe the levels of authority and responsibility (include organization chart), lines of communication and a description of the qualifications of key personnel who will operate and maintain the interim measure(s) (including contractor personnel). ### 3. System Description Describe the interim measure and identify
significant equipment. ### 4. Personnel Training Describe the training process for O&M personnel. The Owner/Operator or Respondent shall prepare, and include in the technical specifications governing treatment systems, contractor requirements for providing: appropriate service visits by experienced personnel to supervise the installation, adjustment, start up and operation of the treatment systems, and training covering appropriate operational procedures once the start-up has been successfully accomplished. #### 5. Start-Up Procedures Describe system start-up procedures including any operational testing. #### 6. Operation and Maintenance Procedures Describe normal operation and maintenance procedures including: - a. Description of tasks for operation; - b. Description of tasks for maintenance; - c. Description of prescribed treatment or operation condition, and - d. Schedule showing frequency of each O&M task. - 7. Replacement schedule for equipment and installed components. - 8. Waste Management Practices Describe the wastes generated by operation of the interim measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed. 9. Sampling and Monitoring Sampling and monitoring activities may be needed for effective operation and maintenance of the interim measure. If sampling activities are necessary, the O&M plan must include a complete sampling and analysis section which specifies at a minimum the following information: - a. Description and purpose of monitoring tasks; - b. Data quality objectives; - c. Analytical test methods and detection limits; - d. Name of analytical laboratory; - e. Laboratory quality control (include laboratory QA/QC procedures in appendices) - f. Sample collection procedures and equipment; - g. Field quality control procedures: - o duplicates (10% of all field samples) - o blanks (field, equipment, etc.) - o equipment calibration and maintenance - o equipment decontamination - o sample containers - o sample preservation - o sample holding times (must be specified) - o sample packaging and shipment - o sample documentation (field notebooks, sample labeling, etc.); - o chain of custody; - h. Criteria for data acceptance and rejection; and - i. Schedule of monitoring frequency. The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document. - 10. O&M Contingency Procedures: - a. Procedures to address system breakdowns and operational problems including a list of redundant and emergency back-up equipment and procedures; - b. Should the interim measure suffer complete failure, specify alternate procedures to prevent release or threatened releases of hazardous substances, pollutants or contaminants which may endanger public health and/or the environment or exceed cleanup standards; and - c. The O&M Plan must specify that, in the event of a major breakdown and/or complete failure of the interim measure (includes emergency situations), the Owner/Operator or Respondent will orally notify the Department within 24 hours of the event and will notify the Department in writing within 72 hours of the event. The written notification must, at a minimum, specify what happened, what response action is being taken and/or is planned, and any potential impacts on human health and the environment. ## 11. Data Management and Documentation Requirements Describe how analytical data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data. The O&M Plan shall specify that the Owner/Operator or Respondent collect and maintain the following information: - a. Progress Report Information - o Work Accomplishments (e.g., performance levels achieved, hours of treatment operation, treated and/or excavated volumes, concentration of contaminants in treated and/or excavated volumes, nature and volume of wastes generated, etc.). - o Record of significant activities (e.g., sampling events, inspections, problems encountered, action taken to rectify problems, etc.). - b. Monitoring and laboratory data; - c. Records of operating costs; and - d. Personnel, maintenance and inspection records. The Department may require that the Owner/Operator or Respondent submit additional reports that evaluate the effectiveness of the interim measure in meeting the stabilization goal. ## C. Interim Measures Plans and Specifications [Note - The decision to require the submittal of plans and specifications should be based on the site specific situation. The requirement for plans and specifications should be balanced against the need to quickly implement interim measures at a facility.] The Owner/Operator or Respondent shall prepare Plans and Specifications for the interim measure that are based on the conceptual design but include additional detail. The Plans and Specifications shall be submitted to the Department simultaneously with the Operation and Maintenance Plan. The design package must include drawings and specifications needed to construct the interim measure. Depending on the nature of the interim measure, many different types of drawings and specifications may be needed. Some of the elements that may be required are: - o General Site Plans - o Process Flow Diagrams - o Mechanical Drawings - o Electrical Drawings - o Structural Drawings - o Piping and Instrumentation Diagrams - o Excavation and Earthwork Drawings - o Equipment Lists - o Site Preparation and Field Work Standards - o Preliminary Specifications for Equipment and Material General correlation between drawings and technical specifications is a basic requirement of any set of working construction plans and specifications. Before submitting the project specifications to the Department, the Owner/Operator or Respondent shall: - a. Proofread the specifications for accuracy and consistency with the conceptual design; and - b. Coordinate and cross-check the specifications and drawings. #### ATTACHMENT 2 #### SCOPE OF WORK FOR HEALTH AND SAFETY PLAN The Department of Toxic Substances Control (Department) may require that the Owner/Operator or Respondent prepare a Health and Safety Plan for any corrective action field activity (e.g., soil or ground water sampling, drilling, construction, operation and maintenance of a treatment system, etc.). The Health and Safety Plan must, at a minimum, include the following elements: ### 1. Objectives Describe the goals and objectives of the Health and Safety Plan (must apply to on-site personnel and visitors). The Health and Safety Plan must be consistent with the facility Contingency Plan, OSHA Regulations, NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (1985), all state and local regulations and other Department guidance as provided. #### 2. Hazard Assessment List and describe the potentially hazardous substances that could be encountered by field personnel during field activities. Discuss the following: - o Inhalation Hazards - o Dermal Exposure - o Ingestion Hazards - o Physical Hazards - o Overall Hazard Rating Include a table that, at a minimum, lists: Known Contaminants, Highest Observed Concentration, Media, Symptoms/Effects of Acute Exposure. #### 3. Personal Protection/Monitoring Equipment For each field task, describe personal protection levels and identify all monitoring equipment. Describe any action levels and corresponding response actions (i.e., when will levels of safety be upgraded). Describe decontamination procedures and areas. 4. Site Organization and Emergency Contacts List and identify all contacts (include phone numbers). Identify the nearest hospital and provide a regional map showing the shortest route from the facility to the hospital. Describe site emergency procedures and any site safety organizations. Include evacuation procedures for neighbors (where applicable). Include a facility Map showing emergency station locations (first aid, eye wash areas, etc.). #### ATTACHMENT 3 ## SCOPE OF WORK FOR A PUBLIC INVOLVEMENT PLAN The Public Involvement Plan (PIP) must address the public involvement needs for all aspects of corrective action including Interim Measures, RCRA Facility Investigation (RFI), Corrective Measures Study (CMS), and Corrective Measures Implementation (CMI) (if required). The PIP must be updated as necessary to address changing public concerns and situations. For additional information, see the USEPA guidance document, RCRA Public Involvement Manual and the Department of Toxic Substances Control's (Department) guidance document for community relation program. The PIP shall, unless the Department specifies otherwise, include the following elements: #### 1. Introduction Describe the public involvement goals and objectives for corrective action (e.g., provide the community with information updates and respond to inquiries, provide for citizen input and involvement). The amount of public involvement work must be consistent with the nature and degree of community concerns and with any state or federal requirements. The public involvement program should be flexible and able to respond to changing public concerns as the corrective action process proceeds from the RFI to the CMS and into CMI. #### 2. Public Involvement Background Identify and describe any known issues or community concerns. Indicate if any community or local officials have been interviewed. Acquire and describe demographic information about the potentially impacted community. ## 3. Techniques to Reach Public Involvement Goals Many community relations techniques may be used to accomplish the objectives. These techniques include: fact sheets, press releases, informal community workgroup meetings, community advisory committees, community meetings, information repositories, mailing
lists and public service announcements. Include a detailed description of how the local community will be contacted and informed. At a minimum, the following items must be developed as described below: ### 3.1 Mailing List Establish and maintain a mailing list of all: local officials; interested, affected and potentially affected private citizens; residents within a one-half mile radius of the facility; and news media representatives who should receive fact sheets or other information regarding the investigation/mitigation activities at the facility. The mailing list should at least include those on the mailing list developed for the RCRA permitting process. The mailing list must be expanded as time goes on to include all interested persons. The mailing list should be submitted to the Department separately from the PIP. #### 3.2 Information Repository Establish and maintain an information repository at a location convenient to public access (e.g., local library). The purpose of the information repository is to allow open and convenient public access to all site-related documents approved by the agency for public disclosure. At a minimum, the repository for a site must include copies of the following: - o Administrative Order or Consent Decree; - o RFI Workplans; - o RFI Reports; - o Interim Measures Workplans; - o Corrective Measures Study Workplans; - o Corrective Measures Study Reports; - o Public Involvement Plan; - o Statement of Basis for Remedy Selection; and #### other Information: - o Copy of RCRA; - O Copies of press releases and newspaper clippings that refer to the site; - o Brochures, fact sheets, and other information about RCRA program and specific site; and - o Any other relevant material (e.g., published studies on the potential risks associated with specific chemicals that have been found at the site). ### 3.3 Fact Sheets The Respondent shall prepare fact sheets to inform the community of key events in the corrective action process (e.g., interim measures, RFI, RFI findings, etc.). It is important that all fact sheets be written clearly so that the public will understand the information. In general, facility fact sheets should include a description of the overall investigation/remedial process from start to finish, a summary of existing contamination at the facility, a summary of possible impacts on the local community (e.g., drinking water supplies, etc.), a summary of any interim measures being taken or planned at the facility, a synopsis of upcoming tasks, and a brief description about the potential uses, available documents, and the location of the information repository. #### 4. Submittal Schedule The submittal schedule must specify when key documents are to be submitted to the Department and when public involvement activities are planned. #### ATTACHMENT 4 # SCOPE OF WORK FOR A RCRA FACILITY INVESTIGATION #### PURPOSE The purpose of this RCRA Facility Investigation (RFI) is to determine the nature and extent of releases of hazardous waste of constituents from regulated units, solid waste management units, and other source areas at the Facility and to gather all necessary data to support the Corrective Measures Study. The RFI must include characterization of the facility (processes, waste management, etc), environmental setting, source areas, nature and extent of contamination, migration pathways (transport mechanisms) and all potential receptors. #### SCOPE The documents required for a RFI are, unless the Department of Toxic Substances Control (Department) specifies otherwise, a Current Conditions Report, a RCRA Facility Investigation Workplan and a RCRA Facility Investigation Report. The scope of work (SOW) for each document is specified below. The SOWs are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that a plan and/or report or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement. The scope and substance of the RFI should be focused to fit the complexity of the site-specific situation. It is anticipated that Owner/Operator's or Respondent's of sites with complex environmental problems may need more extensive RFI's than other facilities with less complex problems. The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOWs in order to meet the objectives of the RFI. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks. ## A. Current Conditions Report The Current Conditions Report must describe existing information pertinent to the facility including operations, processes, waste management, geology, hydrogeology, contamination, migration pathways, potential receptor populations and interim corrective measures. The required format for a current conditions report is described below. If some of this information does not exist, so indicate in the applicable section. # 1. Introduction #### 1.1 Purpose Describe the purpose of the current conditions report (e.g., summary and evaluation of existing information related to the facility; required as a component of RFI). # 1.2 Organization of Report Describe how the report is organized. # 2. Facility Description Summarize background, current operations, waste management and products produced at the facility. Include a map that shows the general geographic location of the facility. Describe current facility structures including any buildings, tanks, sumps, wells, waste management areas, landfills, ponds, process areas and storage areas. Include detailed facility maps that clearly show current property lines, the owners of all adjacent property, surrounding land use (residential, commercial, agricultural, recreational, etc.), all tanks, buildings, process areas, utilities, paved areas, easements, rights-of-way, waste management areas, ponds, landfills, piles, underground tanks, wells and other facility features. #### 3. Facility History # 3.1 Ownership History Describe the ownership history of the facility. #### 3.2 Operational History Describe in detail how facility operations, processes and products have changed over time (historical aerial photographs could be useful for this purpose). # 3.3 Regulatory History Describe all permits (including waste discharge requirements) requested or received, any enforcement actions taken by the Department or designated agencies and any closure activities that are planned or underway. #### 3.4 Waste Generation Describe all wastes (solid or hazardous) that have been generated at the facility. Include approximate waste volumes generated and summaries of any waste analysis data. Show how the waste stream (volume and chemical composition) has changed over time. # 3.5 <u>Waste Management</u> Describe in detail all past solid and hazardous waste treatment, storage and disposal activities at the facility. Show how these activities have changed over time and indicate the current status. Make a clear distinction between active waste management units and older out of service waste management units. Identify which waste management units are regulated under RCRA or California Health and Safety Code. Include maps showing: (1) all solid or hazardous waste treatment, storage or disposal areas active after November 19, 1980, (2) all known past solid waste or hazardous waste treatment, storage or disposal areas regardless of whether they were active on November 19, 1980 and (3) all known past or present underground tanks or piping. # 3.6 Spill and Discharge History Provide approximate dates or periods of past product and waste spills, identify the materials spilled and describe any response actions conducted. Include a summary of any sampling data generated as a result of the spill. Include a map showing approximate locations of spill areas at the facility. # 3.7 Chronology of Critical Events Provide a chronological list (including a brief description) of major events, communications, agreements, notices of violation, spills, discharges that occurred throughout the facility's history. # 4. Environmental Setting #### 4.1 Location/Land Use Discuss facility size, location and adjacent land use. Include a rough demographic profile of the human population who use or have access to the facility and adjacent lands. Provide approximate distance to nearest residential areas, schools, nursing homes, hospitals, parks, playgrounds, etc. # 4.2 Local Ecology Describe any endangered or threatened species near the facility. Include a description of the ecological setting on and adjacent to the facility. Provide approximate distance to nearest environmentally sensitive areas such as marsh lands, wetlands, streams, oceans, forests, etc. # 4.3 Topography and Surface Drainage Describe the regional and site specific topography and surface drainage patterns that exist at the facility. Include a map that shows the topography and surface drainage depicting all waterways, wetlands, floodplains, water features, drainage patterns and surface water containment areas. # 4.4 Climate Discuss mean annual temperatures, temperature extremes, 25-year 24-hour maximum rainfall, average annual rainfall, prevailing wind direction, etc. # 4.5 <u>Surface Water Hydrology</u> Describe the facility's proximity (distance) and access to surface water bodies (e.g., coastal waters, lakes, rivers, creeks, drainage basins, floodplains, vernal pools, wetlands, etc.). Describe flows on-site that lead to holding basins, etc., and describe flows that leave the site. #### 4.6 Geology Describe the regional and site specific geology including stratigraphy and structure. Include a geologic map and cross-sections to show the subsurface structure. Cross-sections should be at a natural scale (vertical equals horizontal) and of sufficient detail to
accurately plot cut and fills, alluvium, and structural features. Cross-sections should be taken on a grid pattern oriented normal to major geologic structure and spaced close enough to determine geology and ground water flow on a unit-by-unit basis. # 4.7 <u>Hvdrogeologv</u> Describe the regional and site specific hydrogeologic setting including any information concerning local aquifers, ground water levels, gradients, flow direction, hydraulic conductivity, and velocity. Include potentiometric surface contour maps. Describe the beneficial uses of the ground water (e.g., drinking water supply, agricultural water supply, etc.). Plot ground water elevations on the geologic cross-sections and indicate ground water flow directions and likely contaminant pathways. Describe temporal variations (seasonal and historical). # 4.8 Ground Water Monitoring System Describe the facility's ground water monitoring system including a table detailing the existing well construction. The table must, at a minimum, identify the following construction details for each well: Well ID Completion Date Drilling Method Borehole Diameter (inches) Well Casing Diameter and Type Measuring Point Elevation (feet MSL) Borehole Depth (feet BGS) Depth of Well (feet) Screened Interval Formation Screened Slot Size & Type (inches) Filter Pack Material Filter Pack Thickness and Spacing Type of Filter Pack Seal Thickness of Filter Pack Seal Pump System (dedicated or non-dedicated) Type of Pump and Depth in the Well Approximate Depth to Water (feet BGS) If some of this information is not available, so indicate on the table with an "NA". (BGS: Below Ground Surface, MSL: Mean Sea Level) The monitoring well locations must be shown on the facility map (see Section A.2 of this Attachment). # Existing Degree and Extent of Contamination For each medium where the Permit or Order identifies a release (e.g., soil, ground water, surface water, air, etc.), describe the existing extent of contamination. This description must include all available monitoring data and qualitative information on the locations and levels of contamination at the facility (both onsite and offsite). Include a general assessment of the data quality, a map showing the location of all existing sampling points and potential source areas and contour maps showing any existing ground water plumes at the facility (if ground water release). Highlight potential ongoing release areas that would warrant use of interim corrective measures (see Section 8, Interim Corrective Measures). # 5.1 Previous Investigations List and briefly describe all previous investigations that have occurred at the facility, agencies (e.g., the Department's Site Mitigation Branch, the Regional Water Quality Control Board, etc.) which required and/or oversaw the investigations, and agency contacts. # 6. Potential Migration Pathways # 6.1 Physical Properties of Contaminants Identify the applicable physical properties for each contaminant that may influence how the contaminant moves in the environment. These properties could include melting point (degrees C), water solubility (mg/l), vapor pressure (mm Hg), Henry's law constant (atm-m3/mol), density (g/cc), dynamic viscosity (cp), kinematic viscosity (cs), octanol/water partition coefficient (log Kow), soil organic carbon/water partition coefficients (log koc) and soil/water partition coefficients, etc. Include a table that summarizes the applicable physical properties for each contaminant. # 6.2 <u>Conceptual Model of Contaminant Migration</u> Develop a conceptual model of contaminant migration. The conceptual model consists of a working hypothesis of how the contaminants may move from the release source to the receptor population. The conceptual model is developed by looking at the applicable physical parameters for each contaminant and assessing how the contaminant may migrate given the existing site conditions (geologic features, depth to ground water, etc.). Describe the phase (water, soil, gas, non-aqueous) and location where contaminants are likely to be found (e.g., if a ground water contaminant has a low water solubility and a high density, then the contaminant will likely sink and be found at the bottom of the aquifer, phase: non-aqueous). Include a discussion of potential transformation reactions that could impact the type and number of contaminants (i.e., what additional contaminants could be expected as a result of biotic and abiotic transformation reactions given the existing soil conditions). A typical conceptual model should include a discussion similar to the following: benzene, ethylbenzene, toluene and xylenes are potential contaminants at the facility. Based on their high vapor pressures and relatively low water solubilities (see Henry's Law constant), the primary fate of these compounds in surface soils or surface water is expected to be volatilization to the atmosphere. These mono-cyclic aromatic hydrocarbons may leach from soils into ground water. The log koc (soil organic carbon/water partition coefficient) values for these compounds ranges from 1.9 to 4.0, indicating that sorption to organic matter in soils or sediments may occur only to a limited extent. # 7. Potential Impacts of Existing Contamination Describe the potential impacts on human health and the environment from any existing contamination and/or ongoing activities at the facility. This description must consider the possible impacts on sensitive ecosystems and endangered species as well as on local populations. Potential impacts from any releases to ground water, surface water, soil (including direct contact with contaminated surface soil) and air (including evaporation of volatile organic compounds from contaminated soil) must be discussed. If air could be a significant pathway, soil gas or vapor emissions and/or ambient air monitoring should be described. # 7.1 Ground Water Releases Identify all wells (municipal, domestic, agricultural, industrial, etc.) within a 1-mile radius of the facility. Include a summary of available water sampling data for any identified municipal, industrial or domestic supply wells. Develop a well inventory table that lists the following items for each identified well: Well Designation State ID Reported Owner Driller Date of Completion Original Use of Well Current Use of Well Drilling Method Borehole Diameter (inches) Casing Diameter (inches) Perforated Interval (feet) Gravel Pack Interval (feet) Total Well Depth (feet) Depth to Water (feet below ground surface) Date of Water Level Measurement If some of this information is not available, so indicate on the table with an "NA". Include a regional map showing the facility, ground water flow direction (if known) and the location of all identified wells within a 1-mile radius of the facility. Identify and describe any potential ground water discharge to surface water bodies. Identify and list all relevant and applicable water standards for the protection of human health and the environment (e.g., maximum contaminant levels, water quality standards, etc). # 7.2 Surface Water Releases Discuss the facility's potential impact on surface water within a 2-mile radius of the facility. Describe the potential beneficial uses of the surface water (e.g., drinking water supply, recreational, agricultural, industrial, or environmentally sensitive). Identify all water supply intake points and contact areas within a 2-mile radius of the facility. Include a summary of the most recent water sampling data available for each of the identified water supply intake points. Include a description of the biota in surface water bodies on, adjacent to, or which can be potentially affected by the release. Also summarize any available sediment sampling data. Include a regional map showing the facility, surface water flow direction, beneficial use areas, and the location of any identified water supply intake points or contact areas that are within a 2-mile radius of the facility. #### 7.3 <u>Sensitive Ecosystems/Habitats</u> Discuss the facility's potential impact on sensitive ecosystems. 8. Interim Corrective Measures and Stabilization Assessment Identify all corrective measures that were or are being undertaken at the facility to stabilize contaminant releases. Describe the objectives of the corrective measures including how the measure is mitigating a potentia threat to human health and the environment. Summarize the design features of the corrective measure. Include a schedule for completing any ongoing or future work. Identify and describe potential interim corrective measure alternatives that could be implemented immediately to stabilize any ongoing releases and/or prevent further migration of contaminants and control source areas. #### 9. Data Needs Assess the amount and quality of existing data concerning the facility and determine what additional information must be collected to meet the objectives of the RFI. This assessment must identify any additional information that make needed to (1) support development of interim measures for early action and (2) adequately evaluate and compare corrective measures alternatives (e.g., field work, treatability studies, computer modeling, literature searches, vendor contacts, etc.). For example, if soil vapor extraction (SVE) is a likely option to address contamination at the facility, then the RFI should collect applicable field data to assess SVE (e.g., soil gas analysis, depth to ground water, etc.). The RFI Workplan must detail how this additional information will be collected. #### 10. References Provide a list of references cited in the Current Condition: Report. #### B. RCRA Facility Investigation Workplan The RFI Workplan shall define the procedures necessary to: - Gather all necessary data to determine where interim measures are needed and to support the use of interim measures to address immediate threats to human health and/or the environment, to prevent or minimize the spread of
contaminants, to control sources of contamination and to accelerate the corrective action process (required for all releases); - O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any ground water contamination in and around the facility (only required for releases to ground water); - O Characterize the geology and hydrogeology in and around the facility (only required for releases to ground water and possibly for releases to soil); - O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any soil contamination in and around the facility (only required for releases to soil); - O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any soil gas contamination in and around the facility (may be required for releases to ground water and/or soil depending on the circumstances); - O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any surface water contamination (includes surface water sediments) at the facility (only required for releases to surface water); - O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any air releases at the facility (only required for air releases); - o Characterize any potential sources of contamination (required for all releases); - O Characterize the potential pathways of contaminant migration (required for all releases); - o Identify any actual or potential receptors (required for all releases); - o Gather all data to support a risk and/or ecological assessment (if required); - O Gather all necessary data to support the Corrective Measures Study (required for all releases). This could include conducting treatability, pilot, laboratory and/or bench scale studies to assess the effectiveness of a treatment method. The RFI Workplan shall describe all aspects of the investigation, including project management, sampling and analysis, well drilling and installation and quality assurance and quality control. If the scope of the investigation is such that more than one phase is necessary, the "Phase 1" RFI Workplan must include a summary description of each phase. For example, the first phase of a RFI could be used to gather information necessary to focus the second phase into key areas of the facility that need further investigation. The required format for a RFI Workplan is described below: #### 1. Introduction Briefly introduce the RFI Workplan. Discuss the Order or Permit requiring the RFI and how the RFI Workplan is organized. # 2. Investigation Objectives #### 2.1 Project Objectives Describe the overall objectives and critical elements of the RFI. State the general information needed from the site (e.g., soil chemistry, hydraulic conductivity of aquifer, stratigraphy, ground water flow direction, identification of potential receptors, etc.). The general information should be consistent with the objectives of the RFI and the data needs identified in the Current Conditions Report. #### 2.2 Data Quality Objectives Provide data quality objectives that identify what data are needed and the intended use of the data. #### Project Management Describe how the investigation will be managed, including the following information: Organization chart showing key personnel, levels of authority and lines of communication; - o Project Schedule; and - o Estimated Project Budget. Identify the individuals or positions who are responsible for: project management, field activities, laboratory analysis, database management, overall quality assurance, data validation, etc. Include a description of qualifications for personnel performing or directing the RFI, including contractor personnel. # 4. Facility Background Summarize existing contamination (e.g., contaminants, concentrations, etc.), local hydrogeologic setting and any other areas of concern at the facility. Include a map showing the general geographic location of the facility and a more detailed facility map showing the areas of contamination. Provide a reference to the Current Conditions Report and/or other applicable documents as a source of additional information. # 5. Field Investigation # 5.1 Task Description Provide a qualitative description of each investigation task. Example tasks may include, but are not limited to the following: Task 1: Surface Soil Sampling Task 2: Surface Geophysics, Subsurface Soil Boring, and Borehole Geophysics Task 3: Data Gathering to Support Interim Corrective Measures Task 4: Monitoring Well Installation Task 5: Aquifer Testing Task 6: Ground Water Sampling Task 7: Potential Receptor Identification Task 8: Treatability Studies # 5.2 Rationale for Sampling Describe where all samples will be collected (location and depth), types of media that will be sampled and the analytical parameters. Explain the rationale for each sampling point, the total number of sampling points, and any statistical approach used to select these points. The conceptual model of contaminant migration developed in the Current Conditions Report should be considered when selecting sampling locations and depths. If some possible sampling points are excluded, explain why. Describe any field screening techniques that will be used to identify samples for laboratory analysis. Include the rationale for use of field screening techniques and criteria for sample selection. # 5.2.1 Background Samples Background samples should be analyzed for the complete set of parameters for each medium; treat sediments, surface soils and subsurface soils as separate media. Background samples are collected, numbered, packaged, and sealed in the same manner as other samples. For long term and/or especially large projects, it is recommended that 10% of samples collected be from background locations. #### 5.3 <u>Sample Analysis</u> List and discuss all analyses proposed for the project. Include a table that summarizes the following information for each analysis to be performed: - o Analytical Parameters - o Analytical Method Reference Number (from USEPA SW 846) - o Sample Preparation and/or Extraction Method Reference Number (from USEPA SW 846) - o Detection and Practical Quantitation Limits (Data above the detection limit but below the practical quantitation limit must be reported with the estimated concentration.) Discuss the rationale for selection of the analytical parameters. The rationale must relate to site history and the RFI objectives. The achievable detection limits or quantitation limits stated in the selected methods must be adequate for valid comparisons of analytical results against any action levels or standards. For example, the objective may be to collect ground water data for comparison with Maximum Contaminant Levels (MCL's). If this were the case, it would be important to ensure that any ground water test methods had detection limits below the MCL's. Give an explanation if all samples from the same medium will not be analyzed for the same parameters. Provide the name(s) of the laboratory(s) that will be doing the analytical work. Indicate any special certifications or ratings of the laboratory. Describe the steps that will be taken to select and pre-qualify analytical laboratories to be used including any previous audits and/or other criteria. If a definite laboratory has not yet been selected, list at least 3 laboratories that are being considered for the analytical work. #### 5.4 <u>Sample Collection Procedures</u> Describe how sampling points will be selected in the field, and how these locations will be documented and marked for future reference. If a sampling grid will be used, describe the dimensions and lay out planned for the grid. Outline sequentially or step-by-step the procedure for collecting a sample for each medium and each different sampling technique. Include a description of sampling equipment (including materials of construction), field measurements, sample preservation, housekeeping/cleanliness techniques and well purging procedures. The procedure described must ensure that a representative sample is collected, and that sample handling does not result in cross contamination or unnecessary loss of contaminants. Special care in sample handling for volatile organic samples must be addressed. Describe how and when duplicates, blanks, laboratory quality control samples and background samples will be collected. If samples will be filtered, describe filtration equipment and procedures. The Owner/Operator or Respondent must include sufficient maps and tables to fully describe the sampling effort. This shall include, at a minimum, a map showing all proposed sampling locations and tables that contain the following information: #### Sample Collection Table: Sampling Location/Interval Analytical Parameters (e.g., volatile organic compounds) Analytical Method Number Medium Preservation Method Holding Times (as specified in USEPA SW 846) Containers (quantity, size, type plus footnotes that discuss source and grade of containers) #### Sample Summary Table: Sample Description/Area (include QC samples) Analytical Parameters Analytical Method Number Preparation or Extraction Method Number Medium Number of Sample Sites Number of Analyses # 5.4.1 Equipment Decontamination Describe the decontamination procedure for all drilling, sampling equipment (including metal sleeves), and field-parameter testing equipment. The following is a recommended generic procedure for decontamination of sampling equipment: - o Wash with non-phosphate detergent - o Tap water rinse - o 0.1M nitric acid rinse (when cross contamination from metals is a concern) - o Deionized/distilled water rinse - o Pesticide grade solvent rinse (when semivolatiles and non-volatile organic contamination may be present) - o Deionized/distilled water rinse (twice) - o Organic free water rinse (HPLC grade) The above procedure is not
appropriate for every field condition. Clearly document the decontamination procedures. # 5.4.2 Equipment Calibration and Maintenance Logbooks or pre-formatted calibration worksheets should be maintained for major field instruments, to document servicing, maintenance and instrument modification. The calibration, maintenance and operating procedures for all instruments, equipment and sampling tools must be based upon manufacturer's instructions. List all field equipment to be used, specify the maintenance/calibration frequency for each instrument and the calibration procedures (referenced in text and included in appendices). # 5.4.3 Sample Packaging and Shipment Describe how samples will be packaged and shipped. All applicable Department of Transportation regulations must be followed. # 5.4.4 Sample Documentation Discuss the use of all paperwork including field notebooks, record logs, photographs, sample paperwork, and Chain of Custody forms (include a blank copy in RFI Workplan Appendices) and seals. Describe how sample containers will be labeled and provide an example label if available. At a minimum, each sample container label should include: project ID, sample location, analytical parameters, date sampled and any preservative added to the sample. A bound field log book must be maintained by the sampling team to provide a daily record of events. Field log books shall provide the means of recording all data regarding sample collection. All documentation in field books must be made in permanent ink. If an error is made, corrections must be made by crossing a line through the error and entering the correct information. Changes must be initialed, no entries shall be obliterated or rendered unreadable. Entries in the log book must include, at a minimum, the following for each day's sampling: Date Starting Time Meteorological Conditions Field Personnel Present Level of Personal Protection Site Identification Field Observations/Parameters Sample Identification Numbers Location and Description of Sampling Points Number of Samples Collected Time of Sample Collection Signature of Person Making the Entry Observation of Sample Characteristics Photo Log Deviations # 5.4.5 Disposal of Contaminated Materials Describe the storage and disposal methods for all contaminated cuttings, well development and purge water, disposable equipment, decontamination water, and any other contaminated materials. The waste material must be disposed of in a manner consistent with local, state and federal regulations. # 5.4.6 Standard Operating Procedures If Standard Operating Procedures (SOPs) are referenced, the relevant procedure must be summarized in the RFI Workplan. The SOP must be specific to the type of tasks proposed and be clearly referenced in the RFI Workplan. The SOP must also be directly applicable, as written, to the RFI Workplan; otherwise, modifications to the SOP must be discussed. Include the full SOP description in the RFI Workplan appendix. # 5.5 Well Construction and Aquifer Testing When new monitoring wells (or piezometers) are proposed, describe the drilling method, well design and construction details (e.g., depth of well, screen length, slot size, filter pack material, etc.) and well development procedures. Describe the rationale for proposed well locations and selection of all well design and construction criteria (i.e., provide rationale for selection of slot size and screen length). When aquifer testing is proposed, describe the testing procedures, flow rates, which wells are involved, test periods, how water levels will be measured, and any other pertinent information. # 6. Quality Assurance and Quality Control Quality control checks of field and laboratory sampling and analysis serve two purposes: to document the data quality, and to identify areas of weakness within the measurement process which need correction. Include a summary table of data quality assurance objectives that, at a minimum, lists: - o Analysis Group (e.g., volatile organic compounds) - o Medium - o Practical Quantitation Limits (PQL) - o Spike Recovery Control Limits (%R) - o Duplicate Control Limits +/-(RPD) - o QA Sample Frequency - o Data Validation A reference may note the specific pages from USEPA's SW 846 Guidance Document that list the test method objectives for precision and accuracy. If the field and laboratory numerical data quality objectives for precision are the same and presented on a single table, then a statement should be made to this effect and added as a footnote to the table (e.g., "These limits apply to both field and laboratory duplicates"). Include a copy of the analytical laboratory quality assurance/quality control plan in the appendices of the RFI Workplan and provide the equations for calculating precision and accuracy. # 6.1 Field Quality Control Samples # 6.1.1 Field Duplicates Duplicates are additional samples that must be collected to check for sampling and analytical precision. Duplicate samples for all parameters and media must be collected at a frequency of at least one sample per week or 10 percent of all field samples, whichever is greater. Duplicates should be collected from points which are known or suspected to be contaminated. For large projects, duplicates should be spread out over the entire site and collected at regular intervals. Duplicates must be collected, numbered, packaged, and sealed in the same manner as other samples; duplicate samples are assigned separate sample numbers and submitted blind to the laboratory. # 6.1.2 Blank Samples Blanks are samples that must be collected to check for possible cross-contamination during sample collection and shipment and in the laboratory. Blank samples should be analyzed for all parameters being evaluated. At least one blank sample per day must be done for all water and air sampling. Additionally, field blanks are required for soil sampling if non-dedicated field equipment is being used for sample collection. Blank samples must be prepared using analytically-certified, organic-free (HPLC-grade) water for organic parameters and metal-free (deionized-distilled) water for inorganic parameters. Blanks must be collected, numbered, packaged, and sealed in the same manner as other samples; blank samples are assigned separate sample numbers and submitted blind to the laboratory. The following types of blank samples may be required: Equipment Blank: An equipment blank must be collected when sampling equipment (e.g., bladder pump) or a sample collection vessel (e.g., a bailer or beaker) is decontaminated and reused in the field. Use the appropriate "blank" water to rinse the sampling equipment after the equipment has been decontaminated and then collect this water in the proper sample containers. Field Bottle Blank: This type of blank must be collected when sampling equipment decontamination is not necessary. The field bottle blank is obtained by pouring the appropriate "blank" water into a container at a sampling point. # 6.2 <u>Laboratory Quality Control Samples</u> Laboratories routinely perform medium spike and laboratory duplicate analysis on field samples as a quality control check. A minimum of one field sample per week or 1 per 20 samples (including field blanks and duplicates), whichever is greater, must be designated as the "Lab QC Sample" for the medium and laboratory duplicate analysis. Laboratory quality control samples should be selected from sampling points which are suspected to be moderately contaminated. Label the bottles and all copies of the paperwork as "Lab QC Sample"; the laboratory must know that this sample is for their QC analyses. The first laboratory QC sample of the sampling effort should be part of the first or second day's shipment. Subsequent laboratory QC samples should be spread out over the entire sampling effort. For water media, 2-3 times the normal sample volume must be collected for the laboratory QC sample. Additional volume is usually not necessary for soil samples. # 6.3 <u>Performance System Audits by the Owner/Operator or Respondent</u> This section should describe any internal performance and/or system audit which the Owner/Operator or Respondent will conduct to monitor the capability and performance of the project. The extent of the audit program should reflect the data quality needs and intended data uses. Audits are used to quickly identify and correct problems thus preventing and/or reducing costly errors. For example, a performance audit could include monitoring field activities to ensure consistency with the workplan. If the audit strategy has already been addressed in a QA program plan or standard operating procedure, cite the appropriate section which contains the information. #### 7. Data Management Describe how investigation data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data. To document any quality assurance anomalies, the RFI QC Summary Forms (see Appendix A of this attachment) must be completed by the analytical laboratory and submitted as part of the RFI Report. In addition, provide examples of any other forms or checklists to be used. Identify and discuss personnel and data management responsibilities, all field, laboratory and other data to be recorded and maintained, and any statistical methods that may be used to manipulate the data. #### 8. References Provide a list of references cited in the RFI Workplan. # C. RCRA Facility Investigation Report A RFI Report must be prepared that describes the entire site investigation and presents the basic results. The RFI Report must clearly present an evaluation of investigation results (e.g., all potential contaminant source areas must be identified, potential migration pathways must be described, and affected media shown, etc.). The RFI Report must also include an evaluation of the completeness of the
investigation and indicate if additional work is needed. This work could include additional investigation activities and/or interim corrective measures to stabilize contaminant release areas and limit contaminant migration. If additional work is needed, the Owner/Operator or Respondent must submit a Phase 2 RFI Workplan and/or Interim Corrective Measures Workplan must be submitted to the Department along with the RFI Report. At a minimum, the RFI Report must include: - o A summary of investigation results (include tables that summarize analytical results). - O A complete description of the investigation, including all data necessary to understand the project in its entirety including all investigative methods and procedures. - o A discussion of key decision points encountered and resolved during the course of the investigation. - o Graphical displays such as isopleths, potentiometric surface maps, cross-sections, plume contour maps (showing concentration levels, isoconcentration contours), facility maps (showing sample locations, etc.) and regional maps (showing receptor areas, water supply wells, etc.) that describe report results. Highlight important facts such as geologic features that may affect contaminant transport. - o Tables that list all chemistry data for each medium investigated. - o An analysis of current and existing ground water data to illustrate temporal changes for both water chemistry and piezometric data (use graphics whenever possible). - O A description of potential or known impacts on human and environmental receptors from releases at the facility. Depending on the site specific circumstances, this analysis could be based on the results from contaminant dispersion models if field validation is performed. - O A discussion of any upset conditions that occurred during any sampling events or laboratory analysis that may influence the results. The discussion must include any problems with the chain of custody procedures, sample holding times, sample preservation, handling and transport procedures, field equipment calibration and handling, field blank results that show potential sample contamination and any field duplicate results that indicate a potential problem. Summary tables must be provided that show the upset condition and the samples that could be impacted. The RFI QC Summary Forms (see Appendix A of this attachment) must be completed by the analytical laboratory and submitted as part of the RFI Report. - o Assessment of the entire QA/QC program effectiveness. - o Data validation results should be documented in the RFI Report. In addition to the RFI Report, the Department may require the Owner/Operator or Respondent to submit the analytical results (database) on a floppy disk (Department will specify the format). All raw laboratory and field data (e.g., analytical reports) must be kept at the facility and be made available or sent to the Department upon request. # APPENDIX A RCRA INVESTIGATION QC SUMMARY FORMS # EGION 9 RCRA FACILITY INVESTIGATION LABORATORY OC SUMMARY Inorganic Analyses Method: LABORATORY: DMPLETED BY: RGANIZATION: DATE: SITE/PROJECT: NUMBER OF SAMPLES: TYPE OF SAMPLES: BATCH NUMBER: SUMMARY ELEMENT BORATORY BLANKS MPLE DUPLICATE *RPD BORATORY CONTROL SAMPLE RECOVERY ANDARD ADDITION RESULTS* * SERIAL DILUTION *D KED SAMPLE RECOVERY ITIAL CALIBRATION VERIFICATION *D NITINUING CALIBRATION VERIFICATION *D expressed as the correlation coefficient TERFERENCE CHECK SAMPLE RECOVERY scribe any method modifications or specific problem areas: Does the laboratory have access to the project QAPjP? YESMO Are the Laboratory Control Limits listed above the same as the limits in the QAPJP7 YES/NO Were there QC results outside the stated Control Limits or Frequency listed above? YES/NO If yes to 3, report, in PART 2, all QC results which are outside the stated QC limits or frequency. Was a Case Narrative, describing any difficulties and deviations submitted? YESMO All information reported on this form are certified true and correct. | Иашс: | | |-------|-------------| | | | | Tide: | | | | | | Date: | · | PART 2: SUMMARY OF RESULTS FOR INORGANIC ANALYSIS Complete for all parameters which do not meet QC criteria specified in Part 1 | LAMORATORY | | |---------------|--| | SUBMITTED BYE | | | DATE | | | SITE/FXO/CCT: | | | METHOD: | |----------------------| | MIN OF SAMPLES: | | TYPE OF JAMPI, F.J.: | | BATCH HUMBER: | | ERFJAMA
BTAD | WFL16 | THIRMHA
\$TYJANA | HARRENIET | ILLURE TYPE | æ. | BAHFLE
DUMUCATE
PPD | ICI
PERCURI
PROVERT | DIAPRATE
HOTTOGA | CONTINUING
TENTRATION
PERCENTS | SHEET
SHEET
SHEET | KI
MCVYINY
ANA | |---|----------------------|---------------------|-------------|---------------------------------------|----------|--|---------------------------|---------------------|--|-------------------------|----------------------| | 1 | 3.15.15.15.18.18 | HERMANIA. | 5° 2 | · · · · · · · · · · · · · · · · · · · | o., *** | | 15 96 1 4 | 13/17/19/8/ | 中心外的特 | | 1.0 min 14 | | the second stands | 7.5.5 7 | AND FROM | Z. | | 1. 15 m | ·'; | | 3 Program | | | | | m 120 miles | SKIGHTIN | s water in | 4460 cm | | | $\mathcal{P}_{i}^{\alpha}\mathcal{P}_{i}^{\alpha}\mathcal{P}_{i}^{\alpha}\mathcal{P}_{i}^{\alpha}$ | | | SMSM. | 的 特别学。 | 34 W.A | | 95 | | ALEMAN. | A 197 127 | | | | 1211 | 34500 | WAXZAW. | g S CF of | The . | | 1 | F-13-675 | 发展扩张 。 | 145.71, se | | | | ** | | #500 Bio 8 | astron | 194 17 | | , | \$5.00 m | | * , . | | 1,1, | | | 11-54-12 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 10/0. s | t | | ·\$ | BANGSAYAKKI | Name of the | 15, 21, | | . 1925 | | | Section Section | 建筑的工程。 | | | | 17. | STATE STATE | Section 1 | 1:; | | W.A | | | 1. 4.5 | १ क्षाप्तराज्य ।
इ.क्षाप्तराज्य | · | | | nin. | अस्ति <u>।</u> विकास | r Missipphysik | or general | | t i Sign | | | tet color | 5:11 | . . | | | | ত্র সমিন্টি বিদ্যু | Programme 1 | Chr. S.A. | | 1.78.76 | | | 1 1 1 1 1 TO | months one | | | | • | 10.12.25.00.00.00 | | | i | + P(-) | ! | | 1. 1. 1. | :· · · | | | | | N. 2000 M. | | | | 1 - 545 | | | \$ 57kg | 民等級 | : - | | | | TO MENTAL STREET | | ALANG VALVA | · 100 | | on the second | <u>com</u> , 57 | | THE WAS ELLER | RN. | A CONTRACT OF | #### ATTACHMENT 7 #### SCOPE OF WORK FOR PROGRESS REPORTS Progress Reports shall, at a minimum, include the following information: - 1. A description of significant activities and work completed during the reporting period; - 2. A summary of any findings made during the reporting period; - 3. Summaries of all problems or potential problems encountered during the reporting period; - 4. Actions taken and/or planned to rectify problems; - 5. All projected work for the next reporting period; - 6. A discussion of any changes in personnel that occurred during the reporting period; - 7. Summaries of all contacts with representatives of the press, local community or public interest groups during the reporting period; - 8. Summary of treatment system effectiveness. Provide a comparison of treatment system operation to predicted performance levels (applicable only if there is an operating treatment system); and - 9. If requested by the Department of Toxic Substances Control, the results of any sampling tests and/or other data generated during the reporting period. # REGION 9 RCRA FACILITY INVESTIGATION LABORATORY OC SUMMARY PART 1: SUMMARY OF QC LIMITS Meti | Organic Ai | nalyses | - | |------------|---------|---------------| | Method: | | | LABORATORY: COMPLETED BY: SITE/PROJECT: NUMBER OF SAMPLES: TYPE OF SAMPLES: BATCH NUMBER: ORGANIZATION: | DATE: | BATCH NUMBER | <u>.</u> | |--|--
--| | QC SUMMARY ELEMENT | LABORATORY CONTROL LIMITS | FREQUENCY PERFORMED | | LABORATORY BLANKS | | | | INITIAL CALIBRATION-\$ RSD | | The state of s | | CONTINUING CALIBRATION-SD | | | | MATRIX SPIXE/SPIXE DUPLICATE RECOVERY | ر از از معمد وراها (۱۳۰۰ ما درایان درور معمور درایان معمور از درور معمور سال است. از از از از معمور سال این از
معموری از از معمد وراها (۱۳۱۱ معمور این درور معموری درایان معموری از از معمور سال این از از از معموری از از از | STO HAGAT TO SERVE | | MATRIX SPIKE/SPIKE DUPLICATE \$ RPD | | | | SURROGATE PERCENT RECOVERY | They be the companied than a being of the Companies of the | The second section of the second second | | NTERNAL STANDARD AREA | | | | SECOND COLUMN CONFIRMATION | | <u> </u> | | . Method surrogates used: | | | | | | | | • | | | | • | | • | | . Internal standards used: | | | | | | | | · | • | | | • | | | | · | · | · | | . Describe say method modifications or specific prob | olem areas: | | | | | | | | | | | · , | | | | | · · · · · · · · · · · · · · · · · · · | | | Does the laboratory have access to the project QAI | PJP7 | YES/NO | | | | | | Are the Laboratory Control Limits listed above the | same as the limits in the QAPjP? | YES/NO | | . Were there QC results outside the stated Control L | imits or Frequency listed above? | YES/NO | | If yes to 3, report, in PART 2, all QC results which | h are outside the stated QC limits (| or frequency. | | Was a Case Narrative, describing any difficulties a | nd devistions submitted? | YES/NO | | | | | | All information reported on this for | m are certified true and correct. | | | Name: | · · · · · · · · · · · · · · · · · · · | | | • | | | | | · | | # HEGIUN Y RCAA FACILITY INVESTIGATION LABORATORY QC SUMMARY PART 2: SUMMARY OF RESULTS FOR ORGANIC ANALYSIS Complete for all parameters which do not meet QC criteria specified in Part 1 | LABORATORY: SUBMITTED BY: DATE: DATE: DATE: SITE/TRO/ECT: BATCH NUMBER: | | |---|--| |---|--| | <u> </u> | PATE | MIRLI 16 | MALYTE | Imit Ituit | BLANK TYPE | g. | HVM ED
S EPO | HAND
TERCHI
EKOYERY | MINL
CALIFATION
\$1.50 | CONTINUING
CALITRATION
S.D | PROVING STREET | MILENAL
BLACKITE | |----------|---------------|---|---|--|-------------|-------------------|-----------------|----------------------------|------------------------------|----------------------------------|----------------|---------------------| | 1 | " | | e <mark>ntrast</mark> eri | | 1.77 | N. 17 M. 18 A. 19 | * 1 | s | 3-40-42474 | | 25 (| 92 - 12 T 14 | | | १ र महुद | | の機能のい | ************************************** | · i , | . **!**, | · : : | : | | 5 2 13 744. | 478 | 200 | | | 7, 1,, | | NAME OF THE PARTY | istin 4. | :`` | | | * • * | | ng grander | 38 a
13 - 3 | 11 N 17 | | , | | | (角数)公司 | ed pr | | 7.7 | i
 | | | N. Segar | 11
11 | , , , | | | . :, ! | 5 M: M: | 20 80 20 | | · | | | | | 開発が | \$1.7 | | | | <u>, 1944</u> | 4. 3.0.C | 4. A. S. S. S. S. | : 15 | | 2003.5 | ., 1 | | | aning. | AND NOW | | | | | | APE SE | Programme and the second | | , | | ••• | | FORTHER | Enter of | 香港 級 2 | | | | | D##45554 | dig. | | : : | | | | TANKE TO | | • | | | * | her ald said. | PERMIT ASS. | and the second | i) | T. Waren | ٠. | a, tet vi | 明海水 区。 | green ver | Think Carlot | Property. | | N. A. | | British de des | Street . | 19.83 | er. | *** | ٠٠. | <u> </u> | Strategy. | 3640968 | atalor in | Basens. | | | | 0.5384155 | addinasti. | Marine As | | 2. | | | 43,830,43 | ANTENS: | 1884 : . | | | | | 2000 000 000 000 000 000 000 000 000 00 | NAMES OF | F #5: 55 | | Mor Sylect | | 25 | TO MILE | | | | | , . | 10 mg | ashum | STANCE OF THE | NO STREET | 18 A 13 A 1 | To Service | | engine yantiga
jirkista | | 463777590 | | i . | #### ATTACHMENT 5 # SCOPE OF WORK FOR A CORRECTIVE MEASURES STUDY #### PURPOSE The purpose of the Corrective Measures Study (CMS) is to identify and evaluate potential remedial alternatives to address contaminant releases from a facility. #### SCOPE A Corrective Measures Study Workplan and a Corrective Measures Study Report are, unless otherwise specified by the Department of Toxic Substances Control (Department), required elements of the CMS. The Scope of Work (SOW) for the Corrective Measures Study Workplan and Report describe what should be included in each document. The SOWs are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that sections of a plan and/or report are not needed in the given site specific situation, then the Department may waive that requirement. The scope and substance of the CMS should be focused to fit the complexity of the site-specific situation. It is anticipated that Owner/Operator's or Respondent's of sites with complex environmental problems may need to evaluate a number of technologies and corrective measure alternatives. For other facilities, however, it may be appropriate to evaluate a single corrective measure alternative. The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOWs in order to support the CMS. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks. The SOW for the Corrective Measures Study Workplan and Report are specified below: #### A. Corrective Measures Study Workplan The purpose of the Corrective Measures Study (CMS) Workplan is to specify how the CMS Report will be prepared. The CMS Workplan shall, at a minimum, include the following elements: - 1. A brief project
summary; - 2. A site-specific description of the overall purpose of the CMS; - A description of the proposed media cleanup standards and points of compliance that will be used in the corrective measures study report. Include the justification and supporting rationale for the proposed media cleanup standards and points of compliance. proposed media cleanup standards must be based on available promulgated federal and state cleanup standards, risk based analysis, data and information gathered during the corrective action process (e.g., from RCRA Facility Investigation, etc.), and/or information from other applicable guidance documents. The Department may require that the Owner/Operator or Respondent conduct a risk assessment to gather information for establishing cleanup standards. on the CMS Report and other information including public comments, the Department will establish final cleanup standards and points of compliance as part of the remedy selection process. - 4. A description of the specific corrective measure technologies and/or corrective measure alternatives which will be studied; - 5. A description of the general approach to investigating and evaluating potential corrective measures; - 6. A detailed description of any proposed treatability, pilot, laboratory and/or bench scale studies. Proposed studies must be further detailed in either the CMS Workplan or in separate workplans. Submittal times for separate workplans must be included in the CMS Workplan project schedule; - A proposed outline for the CMS Report including a description of how information will be presented; - 8. A description of overall project management including overall approach, levels of authority (include organization chart), lines of communication, budget and personnel. Include a description of qualifications for personnel directing or performing the work; and - 9. A project schedule that specifies all significant steps in the process and when key documents (e.g., CMS Report) are to be submitted to the Department. # B. Corrective Measures Study Report The CMS Report shall, at a minimum, include the following elements: # 1. Introduction/Purpose Describe the purpose and intent of the document. # 2. Description of Current Conditions The Owner/Operator or Respondent shall include a brief discussion of any new information that has been developed since the RCRA Facility Investigation Report was finalized. This discussion should concentrate on those issues which could significantly affect the evaluation and selection of the corrective measure alternative(s). # 3. Proposed Media Cleanup Standards The Owner/Operator or Respondent shall describe and justify the proposed media cleanup standards and points of compliance. # 4. Identification and Screening of Corrective Measure Technologies #### a. Identification List and briefly describe potentially applicable technologies for each affected media that may be used to achieve the media cleanup standards. The Owner/Operator or Respondent should consider including a table that summarizes the available technologies. The Owner/Operator or Respondent should consider innovative treatment technologies, especially in situations where there are a limited number of applicable corrective measure technologies. technologies are defined as those technologies for source control other than incineration, solidification/stabilization and pumping with conventional treatment for contaminated ground water. Innovative treatment technologies may require extra initial effort to gather information, analyze options and to adapt the technology to site specific situations. However, in the long run, innovative treatment technologies could be more cost effective. Treatability studies and on-site pilot scale studies may be necessary for evaluating innovative treatment technologies. # b. Screening Technologies must be screened to eliminate those that may prove unfeasible to implement given the existing set of waste and site-specific conditions. The screening is accomplished by evaluating technology limitations (e.g., for volume, area, contaminant concentrations, interferences, etc.) and using contaminant and site characterization information from the RCRA Facility Investigation to screen out technologies that cannot be fully implemented at the facility. The screening process must focus on eliminating those technologies which have severe limitations for a given set of waste and site-specific conditions (e.g., depth to ground water and aquitards). As with all decisions during the CMS, the screening of technologies must be fully documented. This is especially true if the screening step indicates that only one corrective action technology should proceed to the next step and be evaluated in detail. List the corrective action technologies selected for further evaluation. Also document the reasons for excluding any corrective action technologies. The Owner/Operator or Respondent should consider including a table that summarizes the findings. # 5. Corrective Measure Alternative Development Assemble the technologies that pass the screening step into specific alternatives that have potential to meet the corrective action objectives. Options for addressing less complex sites could be relatively straightforward and may only require evaluation of a single or limited number of alternatives. Each alternative may consist of an individual technology or a combination of technologies used in sequence (e.g., treatment train). Depending on the site specific situation, different alternatives may be considered for separate areas of the facility. List and briefly describe each corrective measure alternative. # 6. Evaluation of Corrective Measure Alternatives The four corrective action standards and five remedy selection decision factors described below shall be used to evaluate the corrective measure alternatives. All alternatives must meet the corrective action standards before the remedy selection decision factors are used for further evaluation. The corrective action standards are as follows: - o Be protective of human health and the environment; - o Attain media cleanup standards; - O Control the source(s) of releases in order to reduce or eliminate, to the extent practicable, further releases of hazardous wastes (including hazardous constituents) that may pose a threat to human health and the environment; and - o Comply with any applicable federal, state, and local standards for management of wastes. The remedy selection decision factors are as follows: - o Short- and Long-Term Effectiveness; - o Reduction of Toxicity, Mobility and/or Volume; - o Long-Term Reliability; - o Implementability; and - o Cost. The corrective action standards and decision factors are described in further detail below. # a. Be Protective of Human Health and the Environment Describe in detail how each corrective measure alternative is protective of human health and the environment. This standard for protection of human health and the environment is a general mandate of the RCRA statute. The standard requires that remedies include any measures that are needed to be protective. These measures may or may not be directly related to media cleanup, source control, or management of wastes. An example would be a requirement to provide alternative drinking water supplies in order to prevent exposures to a contaminated drinking water supply. # b. Attain Media Cleanup Standards Describe in detail each corrective measure alternatives ability to meet the proposed media cleanup standards. # c. Control the Sources of Releases Describe in detail each corrective measure alternatives ability to control the sources of releases. A critical objective of any remedy must be to stop further environmental degradation by controlling or eliminating further releases that may pose a threat to human health and the environment. Unless source control measures are taken, efforts to cleanup releases may be ineffective or, at best, will essentially involve a perpetual cleanup. Therefore, an effective source control program is essential to ensure the long-term effectiveness and protectiveness of the corrective action effort. The source control standard is not intended to mandate a specific remedy or class of remedies. Instead, the Owner/Operator or Respondent is encouraged to examine a wide range of options. This standard should not be interpreted to preclude the equal consideration of using other protective remedies to control the source, such as partial waste removal, capping, slurry walls, in-situ treatment/stabilization and consolidation. # d. <u>Comply With Any Applicable Standards for Management of Wastes</u> Discuss how any specific waste management activities will be conducted in compliance with all applicable state or federal regulations (e.g., CAMU closure requirements, land disposal restrictions). # e. Short- and Long-Term Effectiveness Each corrective measure alternative must be evaluated with regard to its effectiveness in protecting human health and the environment and meeting the proposed media cleanup standards. Both short- and long-term components of effectiveness must be evaluated; short-term referring to the construction and implementation period, and long-term referring to the period after the remedial action is complete. Estimate approximately how much time it will take to implement each corrective measure alternative, the length of time before initial beneficial results are obtained, and the length of time required to achieve the proposed media cleanup standards. The evaluation of short-term effectiveness must include possible threats to the safety of nearby communities, workers, and environmentally sensitive areas (e.g., oceans, wetlands) during construction of the corrective measure alternative. Factors to consider are fire, explosion, exposure to hazardous substances and potential threats associated with treatment, excavation, transportation and re-disposal or containment of
waste material. Laboratory and/or field studies are extremely useful in estimating the effectiveness of corrective measures and should be used whenever possible. The evaluation of long-term effectiveness must include possible threats to the safety of nearby communities workers, and environmentally sensitive areas (e.g., oceans, wetlands) during operation of the corrective measure alternative. # f. Reduction of Toxicity, Mobility and/or Volume Each corrective measure alternative must be evaluated for its ability to reduce the toxicity, mobility, and/or volume of the contaminated media. Reduction in toxicity, mobility, and/or volume refers to changes in one or more characteristics of the contaminated media by the use of corrective measures that decrease the inherent threats associated with the media. -Estimate how much the corrective measure alternative will reduce the waste toxicity, volume and/or mobility (compare initial site conditions to post-corrective measure conditions). In general, the Department strongly prefers corrective measures that have a high degree of permanence and reduce the contaminant toxicity, mobility and volume through treatment. # g. Long-Term Reliability Each corrective measure alternative must be evaluated with regards to its long-term reliability. This evaluation includes consideration of operation and maintenance requirements. Demonstrated and expected reliability is a way of assessing the risk and effect of failure. Discuss whether the technology or combination of technologies have been used effectively together under analogous site conditions, whether failure of any one technology in the alternative has an impact on receptors or contaminant migration, and whether the alternative would have the flexibility to deal with uncontrollable changes at the site (e.g., heavy rain storms, earthquakes, etc). Operation and maintenance requirements include the frequency and complexity of necessary operation and maintenance. Technologies requiring frequent or complex operation and maintenance activities should be regarded as less reliable than technologies requiring little or straightforward operation and maintenance. The availability of labor and materials to meet these requirements must also be considered. Most corrective measure technologies, with the exception of destruction, deteriorate with time. Often, deterioration can be slowed through proper system operation and maintenance, but the technology eventually may require replacement. Each corrective measure alternative shall be evaluated in terms of the projected useful life of the overall alternative and of its component technologies. Useful life is defined as the length of time the necessary or required level of effectiveness can be maintained. # h. Implementability of Corrective Measure Alternatives The implementability criterion addresses the technical and administrative feasibility of implementing a corrective measure alternative and the availability of various services and materials needed during implementation. Each corrective measure alternative must be evaluated using the following criteria: Construction and Operation: Corrective measure alternatives must be feasible to implement given the existing set of waste and site-specific conditions. This evaluation was initially done for specific technologies during the screening process and is addressed again in this detailed analysis of the alternative as a whole. It is not intended that the screening process be repeated here, but instead to highlight key differences and/or changes from the screening analysis that may result from combining technologies. Administrative Feasibility: Discuss the administrative activities needed to implement the corrective measure alternative (e.g., permits, public acceptance, rights of way, off-site approvals, etc.). Availability of Services and Materials: Discuss the availability of adequate off-site treatment, storage capacity, disposal services, needed technical services and materials, and the availability of prospective technologies for each corrective measure alternative. #### i. Cost Develop a preliminary cost estimate for each corrective measure alternative (and for each phase or segment of the alternative). The cost estimate shall include both capital and operation and maintenance costs. Include a description of how the costs were estimated and what assumptions were used. - The preliminary capital cost estimate must consider all key costs including, at a minimum, costs for engineering, mobilization, demobilization, site preparation, construction, materials, labor, equipment purchase and rental, sampling, analysis, waste disposal, permitting and health and safety measures. - The preliminary operation and maintenance cost estimate must consider all key costs including, at a minimum, costs for labor, training, sampling, analysis, maintenance materials, utilities, waste disposal, waste treatment, permitting and health and safety measures. - O Calculate the net present value of preliminary capital and operation and maintenance costs for each corrective measure alternative. - 7. Owner/Operator or Respondent's Recommended Corrective Measure Alternative The Owner/Operator or Respondent may recommend a preferred corrective measure alternative for consideration by the Department. Such a recommendation should include a description and supporting rationale for the preferred alternative that is consistent with the corrective action standards and remedy selection decision factors discussed above. Based on the CMS Report and other information including public comments, the Department will establish final cleanup standards, points of compliance and will select a final remedy for the facility. #### ATTACHMENT 6 ## SCOPE OF WORK FOR CORRECTIVE MEASURES IMPLEMENTATION #### PURPOSE The purpose of the Corrective Measures Implementation (CMI) program is to design, construct, operate, maintain and monitor the performance of the corrective measure or measures selected by the Department. Corrective measures are intended to protect human health and/or the environment from hazardous waste releases from the Facility. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to implement the corrective measures program. #### SCOPE The documents required for Corrective Measures Implementation are, unless the Department of Toxic Substances Control (Department) specifies otherwise, a Corrective Measures Implementation Workplan, Operation and Maintenance Plan, Draft Plans and Specifications, Final Plans and Specifications, Construction Workplan, Construction Completion Report and Corrective Measure Completion Report. The scope of work (SOW) for each document is specified below. The SOWs are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that a plan and/or report or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement. The scope and substance of the CMI should be focused to fit the complexity of the site-specific situation. Not all of the documents included in the CMI SOW may be needed for every facility. The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOWs in order to support the CMI program. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks. ## A. Corrective Measures Implementation Workplan The Owner/Operator or Respondent shall prepare a CMI Workplan that clearly describes the size, shape, form, and content of the proposed corrective measure, the key components or elements that are needed, describes the designers vision of the corrective measure in the form of conceptual drawings and schematics, and includes procedures and schedules for implementing the corrective measure(s). Note that more that one CMI Workplan may be needed in situations where there is a complex site with multiple technologies being employed at different locations. The CMI Workplan must be approved by the Department prior to implementation. The CMI Workplan must, at a minimum, include the following elements: ### 1. Introduction/Purpose Describe the purpose of the document and provide a summary description of the project. ## 2. Media Cleanup Standards Discuss the media cleanup standards for the facility. ## 3. Conceptual Model of Contaminant Migration It is important to know where the contaminants are and to understand how they are moving before an adequate corrective measure can be developed. To address this critical question, the Owner/Operator or Respondent must present a conceptual model of the site and contaminant migration. The conceptual model consists of a working hypothesis of how the contaminants may move from the release source to the receptor population. The conceptual model is developed by looking at the applicable physical parameters (e.g., water solubility, density, Henry's Law Constant, etc.) for each contaminant and assessing how the contaminant may migrate given the existing site conditions (geologic features, depth to ground water, etc.). Describe the phase (water, soil, gas, non-aqueous) and location where contaminants are likely to be found. This analysis may have already been done as part of earlier work (e.g., Current Conditions Report). If this is the case, then provide a summary of the conceptual model with a reference to the earlier document. If not, then field validation of the conceptual model is required. ## 4. Description of Corrective Measures Considering the conceptual model of contaminant migration, qualitatively describe what the corrective measure is supposed to do and how it will function at the Facility. Discuss the constructability of the corrective measure and its ability to meet the
corrective measure objectives. #### 5. Data Sufficiency Review existing data needed to support the design effort and establish whether or not there are sufficient accurate data available for this purpose. The Owner/Operator or Respondent must summarize the assessment findings and specify any additional data needed to complete the corrective measure design. The Department may require or the Owner/Operator or Respondent may propose that sampling and analysis plans and/or treatability study workplans be developed to obtain the additional data. Submittal times for any new sampling and analysis plans and/or treatability study workplans must be included in the project schedule. ## 6. Project Management Describe the management approach including levels of authority and responsibility (include organization chart), lines of communication and the qualifications of key personnel who will direct the corrective measure design and implementation effort (including contractor personnel). #### 7. Project Schedule The project schedule must specify all significant steps in the process and when all CMI deliverables (e.g., Operation and Maintenance Plan, Corrective Measure Construction Workplan, etc.) are to be submitted to the Department. ## 8. Design Criteria Specify performance requirements for the overall corrective measure and for each major component. The Owner/Operator or Respondent must select equipment that meets the performance requirements. #### 9. Design Basis Discuss the process and methods for designing all major components of the corrective measure. Discuss the significant assumptions made and possible sources of error. Provide justification for the assumptions; - 10. Conceptual Process/Schematic Diagrams. - 11. Site plan showing preliminary plant layout and/or treatment area. - 12. Tables listing number and type of major components with approximate dimensions. - 13. Tables giving preliminary mass balances. 14. Site safety and security provisions (e.g., fences, fire control, etc.). ## 15. Waste Management Practices Describe the wastes generated by the construction of the corrective measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed. ### 16. Required Permits List and describe the permits needed to construct and operate the corrective measure. Indicate on the project schedule when the permit applications will be submitted to the applicable agencies and an estimate of the permit issuance date. #### 17. Long-Lead Procurement Considerations The Owner/Operator or Respondent shall prepare a list of any elements or components of the corrective measure that will require custom fabrication or for some other reason must be considered as long-lead procurement items. The list must include the reason why the items are considered long-lead items, the length of time necessary for procurement, and recognized sources of such procurement; ## 18. Appendices including: Design Data - Tabulations of significant data and assumptions used in the design effort; Equations - List and describe the source of major equations used in the design process; Sample Calculations - Present and explain one example calculation for significant or unique design calculations; and Laboratory or Field Test Results. ## B. Operation and Maintenance Plan The Owner/Operator or Respondent shall prepare an Operation and Maintenance (O&M) Plan that includes a strategy and procedures for performing operations, long term maintenance, and monitoring of the corrective measure. A draft Operation and Maintenance Plan shall be submitted to the Department simultaneously with the draft Plans and Specifications. A final Operation and Maintenance Plan shall be submitted to the Department simultaneously with the final Plans and Specifications. The O&M plan shall, at a minimum, include the following elements: ### 1. Introduction/Purpose Describe the purpose of the document and provide a summary description of the project. ### 2. Project Management Describe the management approach including levels of authority and responsibility (include organization chart), lines of communication and the qualifications of key personnel who will operate and maintain the corrective measures (including contractor personnel); ## 3. System Description Describe the corrective measure and identify significant equipment. #### 4. Personnel Training Describe the training process for O&M personnel. The Owner/Operator or Respondent shall prepare, and include in the technical specifications governing treatment systems, contractor requirements for providing: appropriate service visits by experienced personnel to supervise the installation, adjustment, start up and operation of the treatment systems, and training covering appropriate operational procedures once the start-up has been successfully accomplished. #### 5. Start-Up Procedures Describe system start-up procedures including and operational testing. ## 6. Operation and Maintenance Procedures Describe normal operation and maintenance procedures including: - a. Description of tasks for operation; - b. Description of tasks for maintenance; - Description of prescribed treatment or operation conditions; and - d. Schedule showing frequency of each O&M task. - 7. Replacement schedule for equipment and installed components. - 8. Waste Management Practices Describe the wastes generated by operation of the corrective measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed. 9. Sampling and Monitoring Sampling and monitoring activities may be needed for effective operation and maintenance of the corrective measure. If sampling activities are necessary, the O&M plan must include a complete sampling and analysis section which specifies at a minimum the following information: - a. Description and purpose of monitoring tasks; - b. Data quality objectives; - c. Analytical test methods and detection limits; - d. Name of analytical laboratory; - e. Laboratory quality control (include laboratory QA/QC procedures in appendices) - f. Sample collection procedures and equipment; - g. Field quality control procedures: - o duplicates (10% of all field samples) - o blanks (field, equipment, etc.) - o equipment calibration and maintenance - o equipment decontamination - o sample containers - o sample preservation - o sample holding times (must be specified) - o sample packaging and shipment - o sample documentation (field notebooks, sample labeling, etc); - o chain of custody; - h. Criteria for data acceptance and rejection; and - i. Schedule of monitoring frequency. The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document. - 10. Corrective Measure Completion Criteria Describe the process and criteria (e.g., ground water cleanup goal met at all compliance points for one year) for determining when corrective measures may cease. Also describe the process and criteria for determining when maintenance and monitoring may cease. Criteria for corrective measures such as a landfill cap must be carefully crafted to account for the fact that a landfill cap will never actually "cease" but will need to be maintained and monitored for a long period of time. Satisfaction of the completion criteria will trigger preparation and submittal of the Corrective Measure Completion Report. #### 11. O&M Contingency Procedures: - a. Procedures to address system breakdowns and operational problems including a list of redundant and emergency back-up equipment and procedures; - b. Should the corrective measure suffer complete failure, specify alternate procedures to prevent release or threatened releases of hazardous substances, pollutants or contaminants which may endanger public health and/or the environment or exceed cleanup standards; - c. The O&M Plan must specify that, in the event of a major breakdown and/or complete failure of the corrective measure (includes emergency situations), the Owner/Operator or Respondent will orally notify the Department within 24 hours of the event and will notify the Department in writing within 72 hours of the event. The written notification must, at a minimum, specify what happened, what response action is being taken and/or is planned, and any potential impacts on human health and/or the environment; and - d. Procedures to be implemented in the event that the corrective measure is experiencing major operational problems, is not performing to design specifications and/or will not achieve the cleanup goals in the expected timeframe. For example, in certain circumstances both a primary and secondary corrective measure may be selected for the Facility. If the primary corrective measure were to fail, then the secondary would be implemented. This section would thus specify that if the primary corrective measure failed, then design plans would be developed for the secondary measure. #### 12. Data Management and Documentation Requirements Describe how analytical data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data. The O&M Plan shall specify that the Owner/Operator or Respondent collect and maintain the following information: - a. Progress Report Information - Work Accomplishments (e.g., performance levels achieved, hours of treatment operation, treated and/or excavated volumes, concentration of contaminants in treated and/or excavated volumes, nature and volume of wastes generated, etc.). - o Record of significant activities (e.g., sampling events, inspections, problems encountered, action taken to rectify problems, etc.). - b. Monitoring and laboratory data; - Records of operating costs; and - d. Personnel, maintenance and inspection records. These data and information
should be used to prepare Progress Reports and the Corrective Measure Completion Report. ### C. Draft Plans and Specifications [Note - The Owner/Operator or Respondent may propose or the Department may require the submittal of other draft plans and specifications. The Owner/Operator or Respondent shall prepare draft Plans and Specifications that are based on the CMI Workplan but include additional design detail. A draft Operation and Maintenance Plan and Construction Workplan shall be submitted to the Department simultaneously with the draft Plans and Specifications. The draft design package must include drawings and specifications needed to construct the corrective measure. Depending on the nature of the corrective measure, many different types of drawings and specifications may be needed. Some of the elements that may be required are: - o General Site Plans - o Process Flow Diagrams - o Mechanical Drawings - o Electrical Drawings - o Structural Drawings - o Piping and Instrumentation Diagrams - Excavation and Earthwork Drawings - o Equipment Lists - o Site Preparation and Field Work Standards - o Preliminary Specifications for Equipment and Material General correlation between drawings and technical specifications is a basic requirement of any set of working construction plans and specifications. Before submitting the project specifications to the Department, the Owner/Operator or Respondent shall: - a. Proofread the specifications for accuracy and consistency with the CMI Workplan; and - b. Coordinate and cross-check the specifications and drawings. ## D. Final Plans and Specifications The Owner/Operator or Respondent shall prepare final Plans and Specifications that are sufficient to be included in a contract document and be advertised for bid. A final Operation and Maintenance Plan and Construction Workplan shall be submitted to the Department simultaneously with the final Plans and Specifications. The final design package must consist of the detailed drawings and specifications needed to construct the corrective measure. Depending on the nature of the corrective measure, many different types of drawings and specifications may be needed. Some of the elements that may be required are: - o General Site Plans - o Process Flow Diagrams - o Mechanical Drawings - o Electrical Drawings - o Piping and Instrumentation Diagrams - o Structural Drawings - o Excavation and Earthwork Drawings - o Site Preparation and Field Work Standards - o Construction Drawings - o Installation Drawings - o Equipment Lists - o Detailed Specifications for Equipment and Material General correlation between drawings and technical specifications is a basic requirement of any set of working construction plans and specifications. Before submitting the final project specifications to the Department, the Owner/Operator or Respondent shall: - a. Proofread the specifications for accuracy and consistency with the preliminary design; and - Coordinate and cross-check the specifications and drawings. ## E. Construction Workplan The Owner/Operator or Respondent shall prepare a Construction Workplan which documents the overall management strategy, construction quality assurance procedures and schedule for constructing the corrective measure. A draft Construction Workplan shall be submitted to the Department simultaneously with the draft Plans and Specifications and draft Operation and Maintenance Plan. A final Construction Workplan shall be submitted to the Department simultaneously with the final Plans and Specifications and final Operation Upon receipt of written approval from and Maintenance Plan. the Department, the Owner/Operator or Respondent shall commence the construction process and implement the Construction Workplan in accordance with the schedule and provisions contained therein. The Construction Workplan must be approved by the Department prior to the start of corrective measure construction. The Construction Workplan must, at a minimum, include the following elements: ### Introduction/Purpose Describe the purpose of the document and provide a summary description of the project. ### 2. Project Management Describe the construction management approach including levels of authority and responsibility (include organization chart), lines of communication and the qualifications of key personnel who will direct the corrective measure construction effort and provide construction quality assurance/quality control (including contractor personnel); #### 3. Project Schedule The project schedule must include timing for key elements of the bidding process, timing for initiation and completion of all major corrective measure construction tasks as specified in the Final Plans and Specifications, and specify when the Construction Completion Report is to be submitted to the Department; # 4. Construction Quality Assurance/Quality Control Program The purpose of construction quality assurance is to ensure, with a reasonable degree of certainty, that a completed corrective measure will meet or exceed all design criteria, plans and specifications. The Construction Workplan must include a complete construction quality assurance program to be implemented by the Owner/Operator or Respondent. #### 5. Waste Management Procedures Describe the wastes generated by construction of the corrective measure and how they will be managed. #### 6. Sampling and Monitoring Sampling and monitoring activities may be needed for construction quality assurance/quality control and/or other construction related purposes. If sampling activities are necessary, the Construction Workplan must include a complete sampling and analysis section which specifies at a minimum the following information: - a. Description and purpose of monitoring tasks; - b. Data quality objectives; - c. Analytical test methods and detection limits; - d. Name of analytical laboratory; - e. Laboratory quality control (include laboratory QA/QC procedures in appendices) - f. Sample collection procedures and equipment; - g. Field quality control procedures: - o duplicates (10% of all field samples) - o blanks (field, equipment, etc.) - o equipment calibration and maintenance - o equipment decontamination - o sample containers - o sample preservation - o sample holding times (must be specified) - o sample packaging and shipment - o sample documentation (field notebooks, sample labeling, etc); - o chain of custody - h. Criteria for data acceptance and rejection; and - i. Schedule of monitoring frequency. The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document. #### 7. Construction Contingency Procedures - a. Changes to the design and/or specifications may be needed during construction to address unforeseen problems encountered in the field. Procedures to address such circumstances, including notification of the Department, must be included in the Construction Workplan; - b. The Construction Workplan must specify that, in the event of a construction emergency (e.g., fire, earthwork failure, etc.), the Owner/Operator or Respondent will orally notify the Department within 24 hours of the event and will notify the Department in writing within 72 hours of the event. The written notification must, at a minimum, specify what happened, what response action is being taken and/or is planned, and any potential impacts on public health and/or the environment; and - c. Procedures to be implemented if unforeseen events prevent corrective measure construction. For example, in certain circumstances both a primary and secondary corrective measure may be selected for the Facility. If the primary corrective measure could not be constructed, then the secondary would be implemented. This section would thus specify that if the primary corrective measure could not be constructed, then design plans would be developed for the secondary measure. - Construction safety procedures should be specified in a separate Health and Safety Plan. - 9. Data Management and Documentation Requirements Describe how analytical data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data. The Construction Workplan shall specify that the Owner/Operator or Respondent collect and maintain the following information: - a. Progress Report Information - o Work Accomplishments (e.g., hours of operation, excavated volumes, nature and volume of wastes generated, area of cap completed, length of trench completed, etc.). - o Record of significant activities (e.g., sampling events, inspections, problems encountered, action taken to rectify problems, etc.). - b. Monitoring and laboratory data; - c. Records of construction costs; and - d. Personnel, maintenance and inspection records. This data and information should be used to prepare progress reports and the Construction Completion Report. #### 10. Cost Estimate/Financial Assurance If financial assurance for corrective measure construction and operation is required by an enforcement order, facility permit, or through use of Department discretion, the Construction Workplan must include a cost estimate, specify which financial mechanism will be used and when the mechanism will be established. The cost estimate shall include both construction and operation and maintenance costs. An initial cost estimate shall be included in the draft Construction Workplan and a final cost estimate shall be included in the final Construction Workplan. financial assurance mechanism may include a performance or surety bond, a trust fund, a letter of credit, financial test and corporate guarantee equivalent to that in the California Code of Regulations, Title 22, Section 66264.143, 66265.143 or any other mechanism acceptable to the Department. Financial assurance
mechanisms are used to assure the Department that the Owner/Operator or Respondent has adequate financial resources to construct and operate the corrective measure. F. Construction Completion Report The Owner/Operator or Respondent shall prepare a Construction Completion Report which documents how the completed project is consistent with the Final Plans and Specifications. A Construction Completion Report shall be submitted to the Department when the construction and any operational tests have been completed. The Construction Completion Report shall, at a minimum, include the following elements: - 1. Purpose; - 2. Synopsis of the corrective measure, design criteria, and certification that the corrective measure was constructed in accordance with the Final Plans and Specifications; - 3. Explanation and description of any modifications to the Final Plans and Specifications and why these were necessary for the project; - Results of any operational testing and/or monitoring, indicating how initial operation of the corrective measure compares to the design criteria; - 5. Summary of significant activities that occurred during construction. Include a discussion of problems encountered and how they were addressed; - 6. Summary of any inspection findings (include copies of key inspection documents in appendices); - 7. As built drawings; and - 8. A schedule indicating when any treatment systems will begin full scale operations. G. Corrective Measure Completion Report The Owner/Operator or Respondent shall prepare a Corrective Measure Completion Report when the Owner/Operator or Respondent believes that the corrective measure completion criteria have been satisfied. The purpose of the Corrective Measure Completion Report is to fully document how the corrective measure completion criteria have been satisfied and to justify why the corrective measure and/or monitoring may cease. The Corrective Measure Completion Report shall, at a minimum, include the following elements: - 1. Purpose; - Synopsis of the corrective measure; - 3. Corrective Measure Completion Criteria Describe the process and criteria for determining when corrective measures, maintenance and monitoring may cease. Corrective measure completion criteria were given in the final Operation and Maintenance (O&M) Plan; - 4. Demonstration that the completion criteria have been met. Include results of testing and/or monitoring, indicating how operation of the corrective measure compares to the completion criteria; - 5. Summary of work accomplishments (e.g., performance levels achieved, total hours of treatment operation, total treated and/or excavated volumes, nature and volume of wastes generated, etc.); - Summary of significant activities that occurred during operations. Include a discussion of problems encountered and how they were addressed; - Summary of inspection findings (include copies of key inspection documents in appendices); and - 8. Summary of total operation and maintenance costs. #### H. Submittal Summary The following list provides a summary of when and how key documents should be submitted to the Department. The Department may adjust this list to meet site-specific circumstances. - The submittal schedule for the documents listed below should be included in an enforcement order, permit or otherwise specified by the Department. - o CMI Workplan - 2. The submittal schedule for the documents listed below must be specified in the CMI Workplan. The groupings reflect which documents should be submitted together. - o Draft Plans and Specifications - o Draft Operation and Maintenance Plan - o Draft Construction Workplan - o Final Plans and Specifications - o Final Operation and Maintenance Plan - o Final Construction Workplan - The submittal schedule for the document listed below must be specified in the Final Construction Workplan. - o Construction Completion Report - 4. The submittal schedule for the document listed below is based on when the Owner/Operator or Respondent believes the completion criteria have been satisfied. - o Corrective Measure Completion Report - 5. The submittal schedule for Progress Reports and a Health and Safety Plan shall be specified in the order or permit.