

Yvonne J. Meeks Topock Project Manager Chromium Remediation Project Office Gas Transmission & Distribution 6588 Ontario Road San Luis Obispo, CA 93405

Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

805.546.5243 Internal: 664.5243 Fax:: 805.546.5232 E-Mail: YJM1@pge.com

October 13, 2006

Aaron Yue California Department of Toxic Substances Control Senior Hazardous Substance Engineer 5796 Corporate Avenue Cypress, California 90630

Robert Perdue Executive Officer California Regional Water Quality Control Board Colorado River Basin Region 73-720 Fred Waring Drive, Suite 100 Palm Desert, CA 92260

Subject: Interim Measures Compliance Monitoring Program Groundwater Monitoring Report, Third Quarter 2006 PG&E Topock Compressor Station, Needles, California

Dear Mr. Yue and Mr. Perdue:

Enclosed is the *Groundwater Monitoring Report for Third Quarter 2006* for the Interim Measure Compliance Monitoring Program at the PG&E Topock Compressor Station. This monitoring report presents the results of the third quarter 2006 CMP groundwater monitoring event, and has been prepared in conformance with RWQCB Order No. R7-2004-0103¹, as well as DTSC's July 15, 2005, letter approving the Compliance Monitoring Plan and DTSC's June 9, 2006 letter modifying the reporting requirements.

On August 8, 2006, PG&E submitted an updated contingency plan flowchart for groundwater quality changes associated with the injection system. The contingency plan specified that the concentrations and values for hexavalent chromium, total chromium, total dissolved solids and pH would be used to determine if contingency plan actions were necessary based on sample results. The interim action levels were established as: hexavalent chromium at 32.6 μ g/L, total chromium at 28.0 μ g/L, total dissolved solids at 10,800 mg/L, and pH in the range between 7.6 and 8.89 pH units.

During the third quarter 2006 monitoring event, a sample and duplicate from the well OW-2S exceeded the hexavalent chromium action level of $32.6 \,\mu$ g/L (maximum $40.4 \,\mu$ g/L), and two

¹ On September 20, 2006 the Regional Water Quality Control Board, Colorado River Basin Region adopted Order No. R7-2006-0060 that replaces Order No. R7-2006-0103. Water Board staff have advised that this monitoring report be submitted under Order R7-2004-0103.

Mr. Aaron Yue Mr. Robert Perdue October 13, 2006 Page 2

samples and one duplicate from wells OW-2S and OW-5S exceeded the total chromium action level of 28 µg/L (maximum 38.9 µg/L). No other samples exceeded the action levels for hexavalent chromium, total chromium, TDS or pH. A review of the water quality parameters indicative of treated groundwater injection (hexavalent chromium, TDS, sulfate, nitrate/nitrite and fluoride) confirm that injected water has not yet reached OW-2S or OW-5S, and these fluctuations in total and hexavalent chromium concentrations are not related to injected water (which has lower chromium concentrations), but are related to the natural variability within the shallower portions of the aquifer.

The contingency plan requires that samples with monitoring parameters that exceed the water quality objectives either be re-analyzed within 28 days or re-sampled within 45 days. As required, these two wells will be re-sampled on October 10 and 11, 2006, which is 18 and 19 days, respectively, from the receipt of validated third quarter sampling data (data was received on September 22, 2006). The results from this sampling will be provided to DTSC and the RWQCB within 72 hours of data validation. PG&E will consult with DTSC and the RWQCB to determine what additional steps (if any) need to be taken after these data are available.

Please contact me at (805) 234-2257 if you have any questions on the performance monitoring program.

Sincerely,

Jan Gronne Meeks

cc. Jose Cortez, RWQCB Liann Chavez, RWQCB Christopher Guerre, DTSC

Enclosure

Compliance Monitoring Program Groundwater Monitoring Report, Third Quarter 2006

Interim Measure No. 3 PG&E Topock Compressor Station Needles, California

Prepared for

California Department of Toxic Substances Control and the California Regional Water Quality Control Board Colorado River Basin Region

> On behalf of Pacific Gas and Electric Company

> > October 13, 2006

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

Compliance Monitoring Program Groundwater Monitoring Report Third Quarter 2006

PG&E Topock Compressor Station Needles, California

Prepared for

California Department of Toxic Substance Control and the California Regional Water Quality Control Board Colorado River Basin Region

On Behalf of

Pacific Gas and Electric Company

October 13, 2006

This report was prepared under the supervision of a California Certified Engineering Geologist

Pun Brotan

Paul Bertucci, C.E.G. No. 1977 Project Hydrogeologist

Contents

Acro	nyms a	and Abbreviations	v
1.0	Intro	oduction	1-1
2.0	Thir	d Quarter 2006 Monitoring Activities	2-1
3.0	Thir	d Quarter 2006 Monitoring Results	3-1
	3.1	Analytical Results	
		3.1.1 Other Metals and Cations	3-2
		3.1.2 Other Inorganic Analytes	3-2
	3.2	Analytical Data Quality Review	3-2
		3.2.1 Matrix Interference	
		3.2.2 Matrix Spike Samples	3-2
		3.2.3 Quantitation and Sensitivity	
		3.2.4 Holding Time Data Qualification	
		3.2.5 Field Duplicates	
		3.2.6 Equipment Blanks	3-3
		3.2.7 Laboratory Duplicates	3-3
		3.2.8 Conclusion	3-3
	3.3	Influence of Treated Water	3-3
		3.3.1 Post-injection Versus Pre-injection	3-3
		3.3.2 Water Quality Hydrographs	
	3.4	Water Level Measurements	3-5
		3.4.1 Groundwater Flow Characteristics	3-5
	3.5	Field Parameter Data	3-6
	3.6	WDR Monitoring Requirements	3-6
4.0	Statu	us of Monitoring Activities	4-1
	4.1	Quarterly Monitoring	4-1
	4.2	Semiannual Monitoring	4-1
5.0	Refe	erences	5-1
6.0	Cert	ification	6-1

Tables

- 1 Well Construction and Sampling Summary for Groundwater Samples, Third Quarter 2006
- 2 Chromium Results for Groundwater Samples, Third Quarter 2006
- 3 Metal and Cation Results for Groundwater Samples, Third Quarter 2006
- 4 Other Inorganics Results for Groundwater Samples, Third Quarter 2006
- 5 Treated Water Quality Compared to OW and CW Pre-Injection Water Quality
- 6 Treated Water Quality Compared to Third Quarter 2006 Sampling Event Water Quality
- 7 Manual Water Level Measurements and Elevations, Third Quarter 2006
- 8 Vertical Gradients within the OW and CW Clusters
- 9 Field Parameter Measurements for Groundwater Samples, Third Quarter 2006
- 10 Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

Figures

- 1 Site Location and Layout
- 2 Monitoring Locations for CMP, Third Quarter Report 2006
- 3A OW-01S Water Quality Hydrographs
- 3B OW-01M Water Quality Hydrographs
- 3C OW-01D Water Quality Hydrographs
- 3D OW-02S Water Quality Hydrographs
- 3E OW-02M Water Quality Hydrographs
- 3F OW-02D Water Quality Hydrographs
- 3G OW-05S Water Quality Hydrographs
- 3H OW-05M Water Quality Hydrographs
- 3I OW-05D Water Quality Hydrographs
- 4A OW-01 Groundwater Elevation Hydrographs
- 4B OW-02 Groundwater Elevation Hydrographs
- 4C OW-05 Groundwater Elevation Hydrographs
- 4D CW-01 Groundwater Elevation Hydrographs
- 4E CW-02 Groundwater Elevation Hydrographs
- 4F CW-03 Groundwater Elevation Hydrographs
- 4G CW-04 Groundwater Elevation Hydrographs
- 5A Average Groundwater Elevation Contours for Shallow Wells, August 15 to September 15, 2006
- 5B Average Groundwater Elevation Contours for Mid-Depth Wells, August 15 to September 15, 2006
- 5C Average Groundwater Elevation Contours for Deep Wells, August 15 to September 15, 2006

Appendices

- A Laboratory Reports, Third Quarter 2006
- B Field Data Sheets and Chains of Custody, Third Quarter 2006

Acronyms and Abbreviations

CMP	Compliance Monitoring Program
Cr(T)	total dissolved chromium
Cr(VI)	hexavalent chromium
CW	compliance well
DTSC	California Department of Toxic Substances Control
IM	Interim Measure
μg/L	micrograms per liter
mg/L	milligrams per liter
MRP	Monitoring and Reporting Program
PG&E	Pacific Gas and Electric Company
OW	observation well
QAPP	Quality Assurance Project Plan
TDS	total dissolved solids
Water Board	California Regional Water Quality Control Board Colorado - River Basin Region
WDR	Waste Discharge Requirements
WQO	water quality objective

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as Interim Measure No. 3 (IM No. 3). Currently, the IM No. 3 facilities include a groundwater extraction system, conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Figure 1 shows the location of the IM No. 3 extraction, conveyance, treatment, and injection facilities.

On October 13, 2004, the California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) adopted Waste Discharge Requirements (WDR) Order No. R7-2004-0103, which authorized PG&E to inject treated groundwater into wells located in the East Mesa area of the Topock site. This WDR was superseded on September 20, 2006 by WDR No. R7-2006-0060. While the two WDRs contain essentially the same requirements for compliance monitoring within the injection well field, monitoring under the third quarter 2006 sampling event was started prior to the issuance of the current WDR. Work contained in this report was performed under the previous WDR. Future work will be performed in accordance with WDR No. R7-2006-0060.

The WDR specifies effluent limitations, prohibitions, specifications, and provisions for subsurface injection. Monitoring and Reporting Program (MRP) No. R7-2004-0103 specifies the requirements for the Compliance Monitoring Program (CMP) to monitor the aquifer in the injection well area to ensure that the injection of treated groundwater is not causing an adverse effect on the aquifer water quality. As with the WDR, MRP No. R7-2004-0103 was superseded on September 20, 2006 by MRP No. R7-2006-0063. In the future, requirements established in MRP No. R7-2006-0063 will be used. The *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* was submitted to the Water Board and the California Department of Toxic Substances Control (DTSC) on June 17, 2005 (herein referred to as the Compliance Monitoring Plan). The Compliance Monitoring Plan provides the objectives, proposed monitoring program, data evaluation methods, and reporting requirements for the CMP (CH2M HILL 2005a). In a letter dated June 9, 2006, DTSC modified the reporting requirements of the Compliance Monitoring Plan (DTSC 2006). This report incorporates the additional requirements.

The injection system consists of two injection wells, IW-2 and IW-3. Operation of the treatment system was conditionally approved on July 15, 2005 (DTSC 2005), and injection began on July 31, 2005 into IW-2. Beginning with the first quarter of 2006 (starting January 22, 2006), injection testing of treated water was performed, with the total injection rate divided equally between IW-2 and IW-3. Well IW-3 was only used for testing during the first quarter 2006. During the second quarter 2006, injection occurred solely at IW-2. In August 2006, IW-2 went offline for routine maintenance and injection commenced at IW-3. Figure 2 shows the locations of the injection wells and the groundwater monitoring wells

(observation wells and compliance monitoring wells) in the CMP. Table 1 summarizes information on well construction and sampling methods for all wells in the CMP.

Under the CMP, as of September 2006, samples are collected from groundwater wells (Figure 2) according to the following schedule:

- Nine observation wells located near the IM No. 3 injection well field are sampled quarterly (this is the third quarter 2006 event).
- Eight compliance monitoring wells located around the IM No. 3 injection well field are sampled semiannually (not sampled during the third quarter 2006).

For both quarterly and semiannual sampling events, laboratory analyses include total dissolved chromium [Cr(T)], hexavalent chromium [Cr(VI)], metals, specific conductance, pH, total dissolved solids (TDS), turbidity, and major inorganic cations and anions. Groundwater elevation data and field water quality data – including specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity and salinity – are also measured during each monitoring event (CH2M HILL 2005a).

This quarterly report presents the results of the third quarter 2006 CMP groundwater monitoring event.

2.0 Third Quarter 2006 Monitoring Activities

This section provides a summary of the monitoring and sampling activities completed during the third quarter 2006. Third quarter (July, August, September) 2006 monitoring consisted of one quarterly sampling event. The third quarter 2006 was conducted on August 30, 31, and September 8, 2006 and consisted of:

- Nine observation monitoring wells (OW series) were sampled for laboratory water quality analyses.
- Groundwater elevations and field water quality data were collected prior to sampling.
- One duplicate sample was collected at well OW-2S to assess field sampling and analytical quality control.

Continuous groundwater elevation data were collected from pressure transducers at each of the 17 CMP wells and downloaded monthly during the reporting period.

The sampling methods, procedures, field documentation of the CMP sampling, water level measurements, and field water quality monitoring were performed in accordance with the *Sampling, Analysis, and Field Procedures Manual* (CH2M HILL 2005b).

CMP groundwater samples were analyzed by Truesdail Laboratories, Inc. in Tustin, California and EMAX Laboratories, Inc. in Torrance, California, both State of Californiacertified analytical laboratories. Analytical methods, sample volumes and containers, sample preservation, and quality control sample requirements are in accordance with the *Sampling, Analysis, and Field Procedures Manual* (CH2M HILL 2005b). Data validation and management were conducted in accordance with the *Quality Assurance Project Plan* (QAPP) provided as Appendix D of the *Sampling, Analysis, and Field Procedures Manual*.

3.0 Third Quarter 2006 Monitoring Results

This section summarizes the results of the CMP groundwater sampling conducted during the third quarter 2006. Figure 2 shows the locations of the CMP groundwater wells.

The data presented include results for Cr(VI), Cr(T), metals, TDS, turbidity, and major inorganic cations and anions. Laboratory data quality review, water level measurements, and water quality field parameter data are also presented in this section. The laboratory reports for the third quarter 2006 monitoring are presented in Appendix A.

3.1 Analytical Results

Only the CMP observation wells were sampled during the third quarter 2006 event. The CMP compliance wells are sampled semiannually and will next be monitored during the fourth quarter 2006 sampling event. Analytical results for Cr(VI) and Cr(T), other metals, and other inorganic parameters are presented in Tables 2, 3 and 4 and are discussed below. Interim action levels/water quality objectives (WQOs) were updated in the addendum to the Compliance Monitoring Plan, which was submitted to DTSC and the Water Board on December 13, 2005 (CH2M HILL 2005c).

Table 2 presents the Cr(VI) and Cr(T) results for groundwater in the shallow, middle, and deep wells for the third quarter 2006 CMP sampling event. For shallow wells, the maximum detected Cr(VI) concentration was 40.4 μ g/L in well OW-2S on September 8, 2006. For the middle wells, the maximum detected Cr(VI) concentration was 5.1 μ g/L in well OW-5M on August 30, 2006. For the deep wells, the maximum detected Cr(VI) concentration was 0.84 μ g/L in well OW-1D on August 31, 2006. During the third quarter 2006 sampling event, two samples exceeded the interim action level of 32.6 μ g/L for Cr(VI). The September 8, 2006 primary and field duplicate samples from well OW-2S had concentrations of 40.4 μ g/L and 38.2 μ g/L, respectively. For these exceedences, the results were not considered to be the result of the injection of treated groundwater, as the average concentration of Cr(VI) from the IM No. 3 treatment plant is less than 0.2 μ g/L (CH2M HILL 2006a). Cr(VI) concentrations at OW-2S have been consistently above the WQOs since November 2005. In addition, other parameters that would indicate arrival of the injected water at OW-2S (such as a change in sulfate or TDS concentrations) are not observed in samples from this well. The results are thus considered reflective of the variance in background water quality.

For shallow wells, the maximum detected Cr(T) concentration was $38.9 \ \mu g/L$ in well OW-2S on September 8, 2006. For the middle wells, the maximum detected Cr(T) concentration was $6.5 \ \mu g/L$ in well OW-5M on August 30, 2006. For the deep wells, the maximum detected Cr(T) concentration was $1.2 \ \mu g/L$ in well OW-1D on August 31, 2006. During the third quarter 2006 sampling event, three samples exceeded the interim action level of $28 \ \mu g/L$ for Cr(T). The September 8, 2006 primary and field duplicate samples from well OW-2S had concentrations of $35.4 \ \mu g/L$ and $38.9 \ \mu g/L$, respectively, and the August 31, 2006 sample from OW-5S had a concentration of $30.4 \ \mu g/L$. Consistent with the Cr(VI) levels found in

the same wells, these exceedences of Cr(T) are considered reflective of the variance in background water quality.

3.1.1 Other Metals and Cations

Table 3 presents the other metals and cation results for the CMP groundwater wells sampled during the third quarter 2006 sampling event. Metals and cations detected in the third quarter 2006 sampling included aluminum, boron, calcium, total iron, molybdenum, potassium, magnesium, sodium, and vanadium. Concentrations of metals and cations detected during this sampling event are similar to those detected in previous sampling events.

3.1.2 Other Inorganic Analytes

Table 4 presents the results for other inorganic analytes detected in CMP groundwater wells. During the third quarter 2006 sampling event, the detected concentrations in all observation wells were below the WQOs for pH and TDS.

3.2 Analytical Data Quality Review

The laboratory analytical data generated from the third quarter 2006 monitoring event were independently reviewed by project chemists to assess data quality and identify deviations from analytical requirements. The quality assurance and quality control requirements are outlined in the QAPP for the PG&E Topock Program, which is Appendix D of the *Sampling, Analysis, and Field Procedures Manual, Revision 1* (CH2M HILL 2005b). A detailed discussion of data quality for CMP sampling data is presented in the data validation reports, which are kept in the project file and are available upon request.

3.2.1 Matrix Interference

For the third quarter 2006 sampling event, matrix interference was not encountered in any of the groundwater samples.

3.2.2 Matrix Spike Samples

For the third quarter 2006 sampling event, matrix spike acceptance criteria were met.

3.2.3 Quantitation and Sensitivity

For the third quarter 2006 sampling event, method and analyte combinations met the project reporting limit objectives.

3.2.4 Holding Time Data Qualification

For the third quarter 2006 sampling event, method holding time requirements were met.

3.2.5 Field Duplicates

For the third quarter 2006 sampling event, field duplicate acceptance criteria were met.

3.2.6 Equipment Blanks

For the third quarter 2006 sampling event, equipment blank acceptance criteria for the methods were met.

3.2.7 Laboratory Duplicates

For the third quarter 2006 sampling event, laboratory duplicate acceptance criteria for the methods were met.

3.2.8 Conclusion

The completeness objectives were met for the method and analyte combinations. No significant analytical deficiencies were identified in the third quarter 2006 data. The analyses and data quality met the QAPP and laboratory method quality control acceptance criteria. Overall, the analytical data are considered acceptable for the purpose of the CMP.

3.3 Influence of Treated Water

3.3.1 Post-injection Versus Pre-injection

Injection of treated water began on July 31, 2005. Under WDR No. R7-2004-0103 for the IM No. 3 groundwater treatment system, PG&E is required to submit monitoring reports on the operation of the system. These reports contain the analytical results of treated water effluent sampling and as such, they are useful in determining the baseline water quality of the treated water being injected into the IM No. 3 Injection well field. Table 5 provides selected analytical results from three of the monthly reports: August 29, 2005, March 18, 2006, and August 2, 2006. While there are differences among some parameters in these samples, a number of parameters show relatively consistent concentrations in the effluent over time. Analytes that are relatively consistent over the injection time period include Cr(VI), Cr(T), fluoride, molybdenum, nitrate as nitrogen, sulfate, and TDS. These seven constituents provide a characterization of the effluent that does not appear to vary greatly over time and can serve as a basis for determining if a groundwater monitoring well is being affected by injection. In general terms, treated water has the following characteristics (based on review of August 2005 through August 2006 effluent characteristics):

- Cr(VI): Typically non-detect (0.001) mg/L
- Cr(T): Typically non -detect (0.001) mg/L
- Fluoride: Approximately 1.9 mg/L
- Molybdenum: Approximately 0.008 to 0.013 mg/L
- Nitrate as nitrogen: Approximately 2 to 4 mg/L
- Sulfate: Approximately 470 mg/L
- TDS: Approximately 4000 mg/L

These treated water quality characteristics are meant to serve as a general guideline and not as a statistically representative sampling of the treated water quality over time.

Table 5 also lists the results of baseline sampling for the observation wells (OW) and compliance wells (CW). A full set of nine OW groundwater samples were collected on July 27 and 28, 2005, and a full set of eight CW groundwater samples were collected on

September 13 through September 16, 2005. These samples are considered representative of conditions unaffected by injection and serve to characterize the pre-injection water quality. In comparing these sampling results to the treated injection water sampling results, there are some similarities in the constituent concentrations. For example, most of the pre-injection OW or CW deep well samples (OW-01D, OW-02D, OW-05D, CW-03D, and CW-04D) have non-detects Cr(VI) or Cr(T), which is similar to the treated injection water. Most of the well samples show concentrations similar to the treated water for two or three constituents, but large differences in concentration from the treated water for the remaining four or five. By considering the entire suite of seven analytes, and focusing on those parameters that show differences, it is relatively easy to distinguish between the pre-injection water quality at the monitoring wells and the treated water effluent quality.

Table 6 presents a comparison between the treated water quality and the results from the most recent sampling event, the third quarter 2006 sampling event (August 30, 31, and September 8, 2006). These samples were collected after approximately 13 months of injection. While the pre-injection OW sample results were significantly different from the treated water quality, a number of the OW third quarter 2006 sample results have changed in that they show a marked similarity to the treated water results. The following wells display the general characteristics of treated water: OW-01M, OW-01D, OW-02M, OW-02D, and OW-05D. OW-05M and CW-1D show some change towards treated water quality concentrations in a number of the constituents. OW-05M displays concentrations of Cr(VI), Cr(T), nitrate, and TDS that are similar to the treated water, while increased concentrations of fluoride, molybdenum, and sulfate differ significantly from the treated water. The change of CW-1D towards treated water quality concentrations was shown during the second quarter sampling events (CH2M HILL 2006b) and it was not sampled during the current quarter, so this well is not discussed in further detail here.

Wells OW-01M, OW-01D, OW-02M, OW-02D, and OW-05D are locations and depths where the treated water injection front has largely replaced the local pre-injection groundwater. Well OW-5M is a location and depth where the treated water injection front has arrived but has not yet completely displaced the local pre-injection groundwater. Over time, the water quality in this observation well is expected to continue to change until it matches the general water quality of the treated water. To date, all shallow observations wells (wells OW-01S, OW-02S, and OW-05S) show no water quality effects due to injection of treated water.

3.3.2 Water Quality Hydrographs

The discussion of analytical results presented in the groundwater monitoring report focuses on the basic statistical representation of the sampling event results and documents exceedences of the proposed interim action levels, which have largely been isolated point occurrences. Although the entire quarterly water quality analytical data set was supplied in tabular format within each monitoring report, trends in these data have not been reported upon previously. Trend data could be used to determine when a rapid change has occurred between sampling events, such as the arrival of the injection front. It can also be used to look at more gradual changes that occur over several sampling events, such as seasonal effects or the interaction of treated water with local groundwater and host aquifer material. Thirty-six analytes are currently monitored quarterly; of which 19 have sufficient detections to make time-series analysis useful. A detection to non-detection ratio of greater than 50 percent was used as the criterion to determine which analyte had a useful time series response. Of these analytes, the majority are in the general minerals category, as common inorganic ionic constituents that are found in natural waters. Eleven of the 19 analytes were selected for time-series analysis; these analytes are considered to be most representative of the IM No. 3 injection well field area and include chloride, Cr(T), fluoride, Cr(VI), molybdenum, nitrate as nitrogen, pH, sodium, sulfate, TDS, and vanadium. Water quality hydrographs (time-series plots) of all 11 analytes in each observation well within the IM No. 3 injection well field are presented in Figures 3A-I.

Observation wells that are identified as affected by treated water injection show a shift in water quality hydrograph response for characteristic parameters, while those identified as being unaffected by injection show no net trends. The water quality change brought on by the arrival of the treated water injection front can be either gradual (OW-5M) or step-wise (OW-2D), with most affected wells showing a pattern of change somewhere between the two. Based on the variability in response, movement of treated water is non-uniform laterally between wells. That is, the treated water appears to preferentially move in one direction versus another. This variability in lateral movement of treated water is seen in both the mid and deep interval wells identified as affected by treated water injection. The OW shallow-depth wells (OW-01S, OW-02S, and OW-05S) show little water quality variation over time and generally have no net trends over time. The one exception to this behavior is seen in the response for Cr(VI) and Cr(T) in well OW-02S, which shows an increasing trend over time. Although the Cr(VI) and Cr(T) concentrations measured in this well have changed over time, the other parameters show little variability. TDS, sodium, sulfate, chloride, and molybdenum are particularly consistent and show that the local groundwater quality is not being affected by injection of treated water or outside water sources.

3.4 Water Level Measurements

Table 7 presents the manual water level measurements and groundwater elevations for the third quarter 2006 monitoring events.

As a requirement of the conditional approval by DTSC (DTSC 2005), transducer water level measurements were used to produce hydrographs for each well cluster. Figures 4A-G present hydrographs that illustrate groundwater elevation trends and vertical hydraulic gradients observed over the reporting period at the observation and compliance monitoring wells.

Average water level contour maps for shallow, middle, and deep wells are also provided as Figures 5A-C. Water levels near the injection well IW-2 (and near IW-3 after August 2006) are sensitive to the rate of injection, as can be seen from a cursory inspection of the hydrographs. Water levels used to produce the monthly average groundwater elevation contour plots were taken from a selected number of days in which the levels remained reasonably constant. These dates are noted on each figure.

3.4.1 Groundwater Flow Characteristics

The injection well field is located in the East Mesa area of the Topock site (Figure 2). Overall sitewide water level contour maps for shallow wells are prepared quarterly (CH2M HILL

2006c), with flow consistently being shown to move to the east across the site towards the floodplain.

The effects of injection in the IM No. 3 injection well field are superimposed on the more regional Topock site flow system and, as expected, a groundwater mound has continued to grow. This mound is centered around the injection wells IW-02 and IW-03. The monthly potentiometric surfaces presented in the monitoring report mapped the growth of the groundwater mound over time and show that, after 13 months of injection, the mound has increased in height by several tenths of a foot in elevation above the surrounding water level elevations. Figures 5B and 5C present groundwater elevation contours for the average groundwater elevation of the mound within the middle and deep wells using August 15 through September 15, 2006 averages. As expected with a mound, the potentiometric surface of the deep wells is broader, while the potentiometric surface of the middle wells is more localized to the vicinity of the injection well. The mound is elliptical in shape, with the major axis running in a southwest to northeast direction. The lower gradients (broader contours) in the direction of the major axis are an indication that the aquifer permeabilities are greater in this direction, indicating that there may be a preferred direction to flow in this area.

The vertical gradient in the IM No. 3 injection well field area is directed upward at all of the CW and OW well clusters and also upward between each of the depth intervals in those same well clusters. Table 8 presents the vertical gradient data calculated using the August 15 to September 15, 2006 average groundwater levels. The magnitude of the vertical gradients is similar between clusters and between the depth intervals, indicating that the vertical gradient is of the same order of magnitude throughout the injection area. A component of the vertical gradients calculated in the vicinity of the IM No. 3 injection well field is undoubtedly related to the injection of treated water. The observed groundwater gradients in the IM No. 3 injection well field is consistent with expected regional groundwater flow within the southern Mohave Valley.

3.5 Field Parameter Data

A field water quality instrument and flow-through cell were used to measure water quality parameters during well purging and groundwater sampling. The measured field parameters included specific conductance, temperature, pH, oxidation-reduction potential, dissolved oxygen, turbidity, and salinity. Table 9 summarizes the field water quality data measured during the third quarter 2006 monitoring event. Field data sheets and chain-of-custody documentation for the event are presented in Appendix B.

3.6 WDR Monitoring Requirements

Table 10 identifies the laboratory that performed each analysis and lists the following information as required by the WDR:

- Sample location
- Sample identification number
- Sampler name

- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

4.1 Quarterly Monitoring

The next quarterly monitoring event will take place during the first quarter of 2007. This event will implement the sampling and analysis scope that was presented in the June 17, 2005 Compliance Monitoring Plan.

4.2 Semiannual Monitoring

The next semiannual monitoring event will occur during October 2006. This CMP monitoring event, which will include both the OW and CW wells, will implement the sampling and analysis scope presented in the June 17, 2005 Compliance Monitoring Plan. The groundwater monitoring report for this semiannual CMP monitoring event will be submitted by January 15, 2007.

California Department of Toxic Substances Control (DTSC). 2005. Letter to PG&E. "Conditional Approval for the Start Up and Operation of the Interim Measures No. 3 Treatment System and Injection Wells, Pacific Gas & Electric Company, Topock Compressor Station." July 15.

_____. 2006. Letter to PG&E. "Third and Fourth Quarter Groundwater Monitoring Reports, Compliance Monitoring Program for Interim Measures No. 3 Injection Well Field Area, Pacific Gas & Electric Company, Topock Compressor Station, Needles, California." June 9.

CH2M HILL. 2005a. Groundwater Compliance Monitoring Plan for Interim Measure No. 3 Injection Area, Topock Compressor Station, Needles, California. June 17.

_____. 2005b. Sampling, Analysis, and Field Procedures Manual, Revision 1, PG&E Topock Compressor Station, Needles, California. March 31.

_____. 2005c. *Addendum to the Compliance Monitoring Plan for the IM No.3 Injection Area, Topock Compressor Station*. December 13.

_____. 2006a. August 2006 Monthly Report, Interim Measures No. 3 Groundwater Treatment System, Water Discharge Requirements Order No. R7-2004-0103, Topock Compressor Station. September 15.

_____. 2006b. Compliance Monitoring Program Groundwater Monitoring Report, Second Quarter 2006, Water Discharge Requirements Order No. R7-2004-0103, Topock Compressor Station, Needles, California. July 14.

_____. 2006c. Groundwater and Surface Water Monitoring Report, Second Quarter 2006, Topock Compressor Station, Needles, California. September 11.

6.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 12, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature:	thome Mules	
Name:	Yvonne J. Meeks	
Company: _	Pacific Gas and Electric Company	
Title:	Site Remediation - Portfolio Manager	
Date	October 13, 2006	

Tables

Well Construction and Sampling Summary for Groundwater Samples, Third Quarter 2006

PG&E Topock Compliance Monitoring Program

Well ID	Site Area	Measuring Point Elevation (ft AMSL)	Screen Interval	Well Casing (inches)	Well Depth (ft btoc)	Depth to Water (ft btoc)	Sampling	Typical Purge Rate (gpm)	Typical Purge Volume (gallons)		Transducer Installed	Remarks
IM Complian	ce Wells											
CW-01M	East Mesa	566.07	140 - 190	2 (PVC)	190.0	109.0	Dedi Redi-Flo A	AR 2	42	165	Active	
CW-01D	East Mesa	566.46	250 - 300	2 (PVC)	300.2	96.8	Dedi Redi-Flo A	AR 3	110	180	Active	
CW-02M	East Mesa	549.45	152 - 202	2 (PVC)	202.0	92.6	Dedi Redi-Flo A	AR 2	55	195	Active	
CW-02D	East Mesa	549.43	285 - 335	2 (PVC)	355.0	92.4	Dedi Redi-Flo A	AR 3	140	159	Active	
CW-03M	East Mesa	534.10	172 - 222	2 (PVC)	222.0	77.0	Dedi Redi-Flo A	AR 2	75	180	Active	
CW-03D	East Mesa	534.14	270 - 320	2 (PVC)	340.0	77.1	Dedi Redi-Flo A	AR 3	140	143	Active	
CW-04M	East Mesa	518.55	119.5 - 169.8	2 (PVC)	169.8	61.2	Dedi Redi-Flo A	AR 2	60	160	Active	
CW-04D	East Mesa	518.55	233 - 283	2 (PVC)	303.0	61.3	Dedi Redi-Flo A	AR 3	120	134	Active	
IM Observati	on Wells											
OW-01S	East Mesa	550.15	83.5 - 113.5	2 (PVC)	113.5	93.3	Temp Redi-Flo	AR 1	15	100	Active	
OW-01M	East Mesa	550.36	165 - 185	2 (PVC)	185.8	93.3	Temp Redi-Flo	AR 2	54	109.6	Active	
OW-01D	East Mesa	550.36	257 - 277	2 (PVC)	277.0	92.8	Temp Redi-Flo	AR 3	100	111.4	Active	
OW-02S	East Mesa	548.75	71 - 101	2 (PVC)	121.0	92.1	Temp Redi-Flo	AR 2	15	100	Active	
OW-02M	East Mesa	548.52	190 - 210	2 (PVC)	210.3	91.4	Temp Redi-Flo	AR 3	60	111.4	Active	
OW-02D	East Mesa	549.01	310 - 330	2 (PVC)	340.0	91.0	Temp Redi-Flo	AR 3	120	110.3	Active	
OW-05S	East Mesa	551.75	70 - 110	2 (PVC)	110.3	94.8	Temp Redi-Flo	AR 1	9	100	Active	
OW-05M	East Mesa	551.75	210 - 250	2 (PVC)	250.3	94.0	Temp Redi-Flo	AR 3	80	112.5	Active	
OW-05D	East Mesa	552.35	300 - 320	2 (PVC)	350.0	94.1	Temp Redi-Flo	AR 3	135	113.2	Active	

NOTES:

AMSL	above mean sea level
BGS	below ground surface
BTOC	below top of polyvinyl chloride (PVC) casing
Dedi	dedicated
Redi-Flo AR	adjustable-rate electric submersible pump
Temp	temporary

Depth to water shown is the most recently measured depth to water. Well depth, screen interval and water level depths rounded-off to whole-foot values. All wells were purged and sampled using well-volume method.

Chromium Results for Groundwater Samples, Third Quarter 2006 *PG&E Topock Compliance Monitoring Program*

	Method:	SW7199	SW6020A, SW6010B	
Location ID	Sample Date	Hexavalent Chromium (μg/L)	Dissolved Chromium (μg/L)	
OW-01S	8/31/2006	20.5	23.0	
OW-01M	8/31/2006	1.30	2.60	
OW-01D	8/31/2006	0.84	1.20	
OW-02S	9/8/2006	40.4	35.4	
OW-02S	9/8/2006 (FD)	38.2	38.9	
OW-02M	8/30/2006	0.97	1.20	
OW-02D	8/31/2006	0.49	ND (1.0)	
OW-05S	8/31/2006	28.4	30.4	
OW-05M	8/30/2006	5.10	6.50	
OW-05D	8/30/2006	ND (0.2)	ND (1.0)	

NOTES:

FD field duplicate

ND parameter not detected at the listed reporting limit

µg/L micrograms per liter

Hexavalent Chromium is lab filtered and Dissolved Chromium is field filtered.

TABLE 3 Metal and Cation Results for Groundwater Samples, Third Quarter 2006 PG&E Topock Compliance Monitoring Program

	Method:											Filtered S	W6010B, S	W6020A, SW7	7470A (Mercu	ry)										
Location	Sample	Aluminum	Antimon	y Arsenio	c Barium	Beryllium	Cadmium	Cobalt	Copper	Lead	Manganese	Mercury	Molybden	um Nickel	Selenium	Silver	Thallium	Vanadium	n Zinc	Boron	Calciu	m Iron ¹	Iron P	otassium	Magnesium	n Sodium
ID	Date										µg/L												mg	j/L		
OW-01S	8/31/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	14.9	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	0.286	115	0.676	ND (0.3)	13.2	19.3	287
OW-01M	8/31/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	11.5	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.28	169	ND (0.3)	ND (0.3)	21.8	13.9	920
OW-01D	8/31/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	15.8	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	6.80	ND (20)	1.31	120	ND (0.3)	ND (0.3)	17.4	8.39	980
OW-02S	9/8/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	46.2	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	6.70	ND (20)	0.668	37.6	ND (0.3)	ND (0.3)	7.93	4.98	227
OW-02S	9/8/2006 (FD)	66.5	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	44.8	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	6.20	ND (20)	0.662	35.9	ND (0.3)	ND (0.3)	7.82	4.86	245
OW-02M	8/30/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	13.0	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.22	187	ND (0.3)	ND (0.3)	23.4	16.8	922
OW-02D	8/31/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	14.4	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.28	196	ND (0.3)	ND (0.3)	22.1	18.0	904
OW-05S	8/31/2006	99.1	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	25.2	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	5.20	ND (20)	0.546	56.4	0.314	ND (0.3)	8.22	8.58	187
OW-05M	8/30/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	44.7	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	ND (5.0)	ND (20)	1.35	186	ND (0.3)	ND (0.3)	26.1	11.6	1300
OW-05D	8/30/2006	ND (52)	ND (3.0)	ND (5.0)	ND (300)	ND (1.0)	ND (2.0)	ND (5.0)	ND (10)	ND (2.0)	ND (500)	ND (0.2)	13.0	ND (20)	ND (5.0)	ND (5.0)	ND (1.0)	5.10	ND (20)	1.23	102	ND (0.3)	ND (0.3)	17.8	5.42	1020

NOTES:

NEnot establishedFDfield duplicateNDparameter not detected at the listed reporting limitmg/Lmilligrams per literμg/Lmicrograms per liter

¹ Unfiltered Iron

Other Inorganic Results for Groundwater Samples, Third Quarter 2006 PG&E Topock Compliance Monitoring Program

	Method:	E120.1	E150.1	E160.1	E180.1	E300.0	E300.0	E300.0	E353.3	E310.1	E310.1	E310.1	E350.2	
Location ID	Sample Date	Specific Conductance (uS/cm)	pH (pH units)	Total Dissolved Solids (mg/L)	Turbidity (NTU)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Alkalinity, bicarb as CaCo3 (mg/L)	Alkalinity as carbonate (mg/L)	Alkalinity, total as CaCo3 (mg/L)	Ammonia as Nitrogen (mg/L)	
OW-01S	8/31/2006	2310	7.78	1310	4.21	606	2.41	124	3.58	65.6	ND (5.0)	65.6	ND (0.5)	
OW-01M	8/31/2006	7310	7.76	3670	ND (1.0)	1870	1.83	489	2.45	65.6	ND (5.0)	65.6	ND (0.5)	
OW-01D	8/31/2006	7520	7.93	3790	ND (1.0)	1910	2.35	497	3.03	54.1	ND (5.0)	54.1	ND (0.5)	
OW-02S	9/8/2006	1770	7.68	1100	1.81	409	4.42	120	4.96	103	ND (5.0)	103	ND (0.5)	
OW-02S	9/8/2006 (FD)	1770	7.68	1070	1.79	414	4.36	122	4.71	113	ND (5.0)	113	ND (0.5)	
OW-02M	8/30/2006	7340	7.69	3920	ND (1.0)	2220	1.83	555	2.68	65.1	ND (5.0)	65.1	ND (0.5)	
OW-02D	8/31/2006	7280	7.87	3680	ND (1.0)	1890	1.71	492	2.83	64.7	ND (5.0)	64.7	ND (0.5)	
OW-05S	8/31/2006	1700	7.85	902	3.09	389	2.54	118	4.76	88.8	ND (5.0)	88.8	ND (0.5)	
OW-05M	8/30/2006	8400	7.88	4380	ND (1.0)	2680	3.60	531	2.48	52.3	ND (5.0)	52.3	ND (0.5)	
OW-05D	8/30/2006	7620	7.94	3940	ND (1.0)	2280	1.98	534	2.68	72.0	ND (5.0)	72.0	ND (0.5)	

NOTES:

NE not established

ND parameter not detected at the listed reporting limit

microSiemens per centimeter Nephelometric Turbidity Unit milligrams per liter uS/cm

NTU

mg/L

TABLE 5 Treated Water Quality Compared to OW and CW Pre-injection Water Quality PG&E Topock Compliance Monitoring Program

Location ID	Sample Date	Hexavalent Chromium	Total Chromium	Fluoride	Molybdenum	Nitrate	Sulfate	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Treated Water	8/29/2005	ND(0.001)	ND(0.0021)	1.95	0.0083	3.7	450	3620
Treated Water	3/18/2006	ND(0.001)	ND(0.001)	1.92	0.0082	2.79	482	4040
Treated Water	8/2/2006	ND(0.002)	ND(0.001)	1.9	0.0129	2.32	468	3650
OW-01S	7/28/2005	0.0194	0.0235	2.45	0.0172	3.2	114	1320
OW-01M	7/27/2005	0.0163	0.0189	2.31	0.027	1.01	311	3450
OW-01D	7/27/2005	ND(0.001)	ND(0.0013)	1.14	0.0461	0.321	441	6170
OW-02S	7/28/2005	0.0153	0.0148	3.79	0.0356	3.81	126	1090
OW-02M	7/28/2005	0.0054	0.0057	2.19	0.0324	0.735	342	4380
OW-02D	7/28/2005	ND(0.001)	ND(0.0012)	0.966	0.0512	0.1	616	9550
OW-05S	7/28/2005	0.0234	0.0256	2.3	0.0171	3.55	105	1060
OW-05M	7/28/2005	0.0086	0.0088	2.74	0.0354	0.621	417	5550
OW-05D	7/28/2005	ND(0.001)	ND(0.0012)	1.11	0.057	0.151	480	8970
CW-01M	9/15/2005	0.0181	0.0178	2.34	0.0216	1.11	318	2990
CW-01D	9/15/2005	ND(0.001)	0.0016	0.951	0.0321	0.972	379	6230
CW-02M	9/15/2005	0.0158	0.0155	2.3	0.0231	0.908	342	3500
CW-02D	9/15/2005	ND(0.001)	0.0016	0.982	0.0416	0.28	601	8770
CW-03M	9/15/2005	0.0088	0.0081	2.57	0.0242	0.642	464	4740
CW-03D	9/15/2005	ND(0.001)	ND(0.001)	1.4	0.0292	0.304	672	9550
CW-04M	9/15/2005	0.0192	0.019	1.5	0.0123	1.18	240	3310
CW-04D	9/15/2005	ND(0.001)	ND(0.001)	1.01	0.026	0.188	534	7470

NOTES:

ND(0.001) = Non-detect with a detection limit of 0.001 mg/L.

Hexavalent chromium samples were analyzed with methods SW7199 and E218.6. Total chromium samples were analyzed with methods SW6010B, SW6020A, and E200.7. Total chromium samples of the treated water were unfiltered.

Treated Water Quality Compared to Third Quarter 2006 Sampling Event Water Quality *PG&E Topock Compliance Monitoring Program*

Location ID	Sample Date	Hexavalent Chromium (mg/L)	Total Chromium (mg/L)	Fluoride (mg/L)	Molybdenum (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Treated Water	8/29/2005	ND (0.001)	ND (0.0021)	1.95	0.0083	3.7	450	3620
Treated Water	3/8/2006	ND (0.001)	ND (0.001)	1.92	0.0082	2.79	482	4040
Treated Water	8/2/2006	ND (0.0002)	ND (0.001)	1.9	0.0129	2.32	468	3650
OW-01S	8/31/2006	0.0205	0.023	2.41	0.0149	3.58	124	1310
OW-01M	8/31/2006	0.0013	0.0026	1.83	0.0115	2.45	489	3670
OW-01D	8/31/2006	0.00084	0.0012	2.35	0.0158	3.03	497	3790
OW-02S	9/8/2006	0.0404	0.0354	4.42	0.0462	4.96	120	1100
OW-02S	9/8/2006 (FD)	0.0382	0.0389	4.36	0.0448	4.71	122	1070
OW-02M	8/30/2006	0.00097	0.0012	1.83	0.013	2.68	555	3920
OW-02D	8/31/2006	0.00049	ND (0.001)	1.71	0.0144	2.83	492	3680
OW-05S	8/31/2006	0.0284	0.0304	2.54	0.0252	4.76	118	902
OW-05M	8/30/2006	0.0051	0.0065	3.6	0.0447	2.48	531	4380
OW-05D	8/30/2006	ND (0.0002)	ND (0.001)	1.98	0.013	2.68	534	3940

NOTES:

FD field duplicate

ND parameter not detected at the listed reporting limit

mg/L milligrams per liter

Manual Water Level Measurements and Elevations, Third Quarter 2006 PG&E Topock Compliance Monitoring Program

Location ID	Well M Depth (feet BTOC)	leasuring Poin Elevation (feet AMSL)	it Monito Date &	0	Water Level Measurement (feet BTOC)	Salinity (percent)	Groundwater/Water Elevation Adjusted for Salinity (feet AMSL)
OW-01S	114	550.15	31-Aug-06	8:30 AM	93.26	0.16	456.83
OW-01M	186	550.36	31-Aug-06	5:43 AM	93.30	0.47	456.95
OW-01D	277	550.36	31-Aug-06	7:29 AM	92.85	0.50	457.33
OW-02S	121	548.75	08-Sep-06	5:00 AM	92.06	0.13	456.60
OW-02M	210	548.52	30-Aug-06	1:30 PM	91.40	0.50	457.00
OW-02D	340	549.01	31-Aug-06	12:02 PM	90.96	0.53	457.79
OW-05S	110	551.75	31-Aug-06	10:32 AM	94.76	0.13	456.92
OW-05M	250	551.75	30-Aug-06	8:23 AM	94.04	0.64	457.71
OW-05D	350	552.35	30-Aug-06	9:49 AM	94.09	0.59	458.13

NOTES:

AMSL above mean sea level BTOC below top of polyvinyl chloride (PVC) casing

Well depths rounded off to whole foot.

Well Pairs	Vertical Gradient (ft/ft) ^a
CW-01D to CW-01M	0.0081
CW-02D to CW-02M	0.0086
CW-03D to CW-03M	0.0086
CW-04D to CW-04M	0.0060
OW-01M to OW-01S	0.0033*
OW-01D to OW-01M	0.0055*
OW-02M to OW-02S	0.0044*
OW-02D to OW-02M	0.0095

 TABLE 8

 Vertical Gradients within the OW and CW clusters

 PG&E Topock Compliance Monitoring Program

^a Positive value signifies an upward gradient.

Gradients calculated using August 15 through September 15, 2006 average groundwater levels.

* Data not available August 15 through September 15, 2006. Gradients calculated using July 15 through August 15, 2006 average groundwater levels.

Field Parameter Measurements for Groundwater Samples, Third Quarter 2006 PG&E Topock Compliance Monitoring Program

		Specific				Dissolved		
Location ID	Sampling Date	Conductance (µS/cm)	Temperature (°C)	рН (pH units)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTU)	Salinity (%)
OW-01S	8/31/2006	2440	29.81	6.97	180	5.54	12.2	0.1
OW-01M	8/31/2006	8280	30.27	7.38	149	6.79	1.7	0.46
OW-01D	8/31/2006	7930	30.4	7.64	73	6.45	7.24	0.43
OW-02S	9/8/2006	1600	27.49	7.89	146	8.13	3.14	0.08
OW-02M	8/30/2006	7700	35	7.46	106	6.79	0.19	0.42
OW-02D	8/31/2006	7850	32.99	7.57	193	6.6	0.94	0.43
OW-05S	8/31/2006	1810	29.8	7.19	190	7.88	16	0.1
OW-05M	8/30/2006	9800	31.31	7.61	75	4.77	0.46	0.55
OW-05D	8/30/2006		31.49	7.68	78	6.09	0.61	

NOTES:

μS/cm microSiemens per centimeter °C degree centigrade ORP oxidation reduction potential mV millivolts

mg/L NTU

milligrams per liter Nephelometric Turbidity Unit

percentage %

data not collected, not available, or rejected (---)

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-01D	OW-01D-009	Allan Erickson	8/31/2006	9:42:00 AM	TLI	EPA 120.1	SC	9/1/2006	Tina Acquiat
					TLI	EPA 150.1	PH	9/1/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	9/7/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasigar
					EMXT	EPA 300.0	CL	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/2/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/11/2006	Cherry Dam
					EMXT	EPA 310.1	ALKB	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/7/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrov
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

_ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-01D	OW-01D-009	Allan Erickson	8/31/2006	9:42:00 AM	TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/31/2006	Roger Chen
OW-01M	OW-01M-009	Allan Erickson	8/31/2006	8:10:00 AM	TLI	EPA 120.1	SC	9/1/2006	Tina Acquiat
					TLI	EPA 150.1	PH	9/1/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	9/7/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasiga
					EMXT	EPA 300.0	SO4	9/14/2006	Cherry Dam
					EMXT	EPA 300.0	CL	9/14/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/2/2006	Cherry Dam
					EMXT	EPA 310.1	ALKB	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/7/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-01M	OW-01M-009	Allan Erickson	8/31/2006	8:10:00 AM	TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrova
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/31/2006	Roger Chen
OW-01S	OW-01S-009	Allan Erickson	8/31/2006	10:35:00 AM	TLI	EPA 120.1	SC	9/1/2006	Tina Acquiat
					TLI	EPA 150.1	PH	9/1/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	9/7/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasigan
					EMXT	EPA 300.0	CL	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/2/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/11/2006	Cherry Dam
					EMXT	EPA 310.1	ALKT	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKB	9/7/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-01S	OW-01S-009	Allan Erickson	8/31/2006	10:35:00 AM	TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrov
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/31/2006	Roger Chen
OW-02D	OW-02D-009	Allan Erickson	8/31/2006	2:20:00 PM	TLI	EPA 120.1	SC	9/1/2006	Tina Acquiat
					TLI	EPA 150.1	PH	9/1/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	9/7/2006	Tina Acquiat

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-02D	OW-02D-009	Allan Erickson	8/31/2006	2:20:00 PM	EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasigan
					EMXT	EPA 300.0	CL	9/12/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/2/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/12/2006	Cherry Dam
					EMXT	EPA 310.1	ALKB	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/7/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrov
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006 *PG&E Topock Compliance Monitoring Program*

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-02D	OW-02D-009	Allan Erickson	8/31/2006	2:20:00 PM	TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/31/2006	Roger Chen
OW-02M	OW-02M-009	Allan Erickson	8/30/2006	3:30:00 PM	TLI	EPA 120.1	SC	8/31/2006	Tina Acquiat
					TLI	EPA 150.1	PH	8/31/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	8/31/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasiga
					EMXT	EPA 300.0	CL	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/1/2006	Cherry Dam
					EMXT	EPA 310.1	ALKC	9/6/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/6/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKB	9/6/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

_ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-02M	OW-02M-009	Allan Erickson	8/30/2006	3:30:00 PM	TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrova
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/30/2006	Ali Kharrazi
OW-02S	OW-02S-009	Allan Erickson	9/8/2006	7:31:00 AM	TLI	EPA 120.1	SC	9/11/2006	Tina Acquiat
					TLI	EPA 150.1	PH	9/8/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	9/14/2006	Tina Acquiat
					TLI	EPA 180.1	TRB	9/8/2006	Gautam Savani
					EMXT	EPA 300.0	CL	9/14/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/15/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/14/2006	Cherry Dam
					EMXT	EPA 310.1	ALKT	9/14/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKB	9/14/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/14/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/15/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/14/2006	Kam Ng
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-02S	OW-02S-009	Allan Erickson	9/8/2006	7:31:00 AM	TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/15/2006	Riddhi Patel
					TLI	EPA 6010B	CRTD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/12/2006	Aksiniya Dimitrova
					TLI	SW 6020A	SED	9/14/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/14/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/14/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/14/2006	Riddhi Patel
					TLI	SW 7199	CR6	9/8/2006	Roger Chen
OW-05D	OW-05D-009	Allan Erickson	8/30/2006	12:35:00 PM	TLI	EPA 120.1	SC	8/31/2006	Tina Acquiat
					TLI	EPA 150.1	PH	8/31/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	8/31/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasigan
					EMXT	EPA 300.0	CL	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/11/2006	Cherry Dam

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-05D	OW-05D-009	Allan Erickson	8/30/2006	12:35:00 PM	EMXT	EPA 300.0	FL	9/1/2006	Cherry Dam
					EMXT	EPA 310.1	ALKC	9/6/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/6/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKB	9/6/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakaw
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitro
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel

Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-05D	OW-05D-009	Allan Erickson	8/30/2006	12:35:00 PM	TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/30/2006	Ali Kharrazi
OW-05M	OW-05M-009	Allan Erickson	8/30/2006	10:20:00 AM	TLI	EPA 120.1	SC	8/31/2006	Tina Acquiat
					TLI	EPA 150.1	PH	8/31/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	8/31/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasigar
					EMXT	EPA 300.0	CL	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/11/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/1/2006	Cherry Dam
					EMXT	EPA 310.1	ALKB	9/6/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/6/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/6/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrov
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel

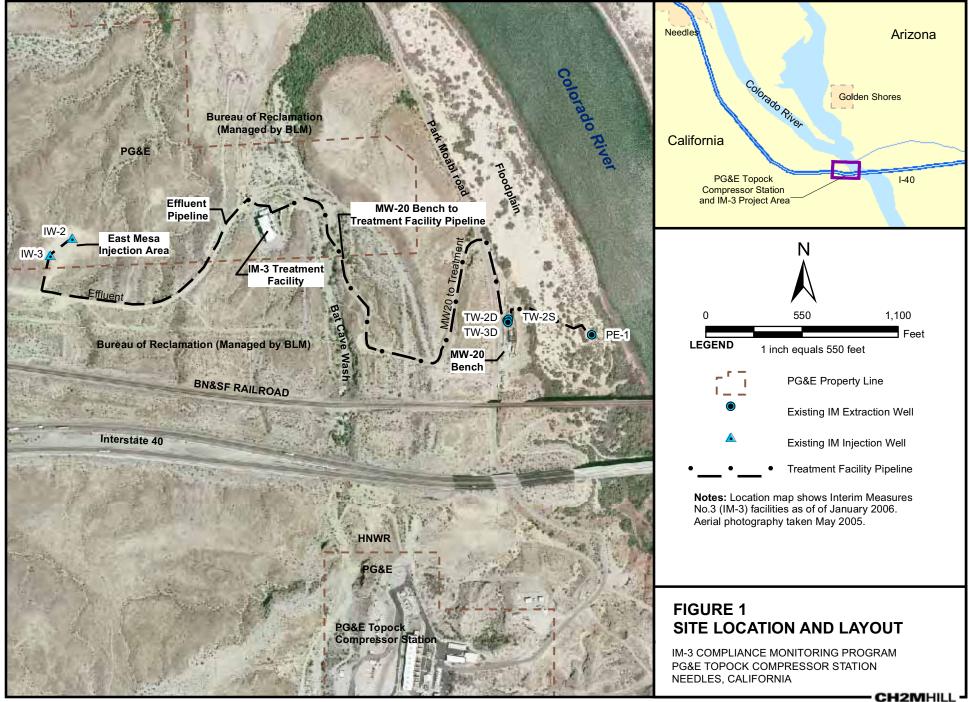
Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

ocation	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-05M	OW-05M-009	Allan Erickson	8/30/2006	10:20:00 AM	TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/30/2006	Ali Kharrazi
OW-05S	OW-05S-009	Allan Erickson	8/31/2006	12:30:00 PM	TLI	EPA 120.1	SC	9/1/2006	Tina Acquiat
					TLI	EPA 150.1	PH	9/1/2006	Tina Acquiat
					TLI	EPA 160.1	TDS	9/7/2006	Tina Acquiat
					EMXT	EPA 180.1	TRB	9/1/2006	Romy Marasiga
					EMXT	EPA 300.0	CL	9/12/2006	Cherry Dam
					EMXT	EPA 300.0	SO4	9/12/2006	Cherry Dam
					EMXT	EPA 300.0	FL	9/7/2006	Cherry Dam
					EMXT	EPA 310.1	ALKB	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKC	9/7/2006	Karen Hirakawa
					EMXT	EPA 310.1	ALKT	9/7/2006	Karen Hirakawa
					EMXT	EPA 350.2	NH3N	9/6/2006	Karen Hirakawa
					EMXT	EPA 353.3	NO3NO2N	9/8/2006	Kam Ng
					TLI	EPA 6010B	MGD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	NID	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	NAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	MND	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ZND	9/14/2006	Riddhi Patel

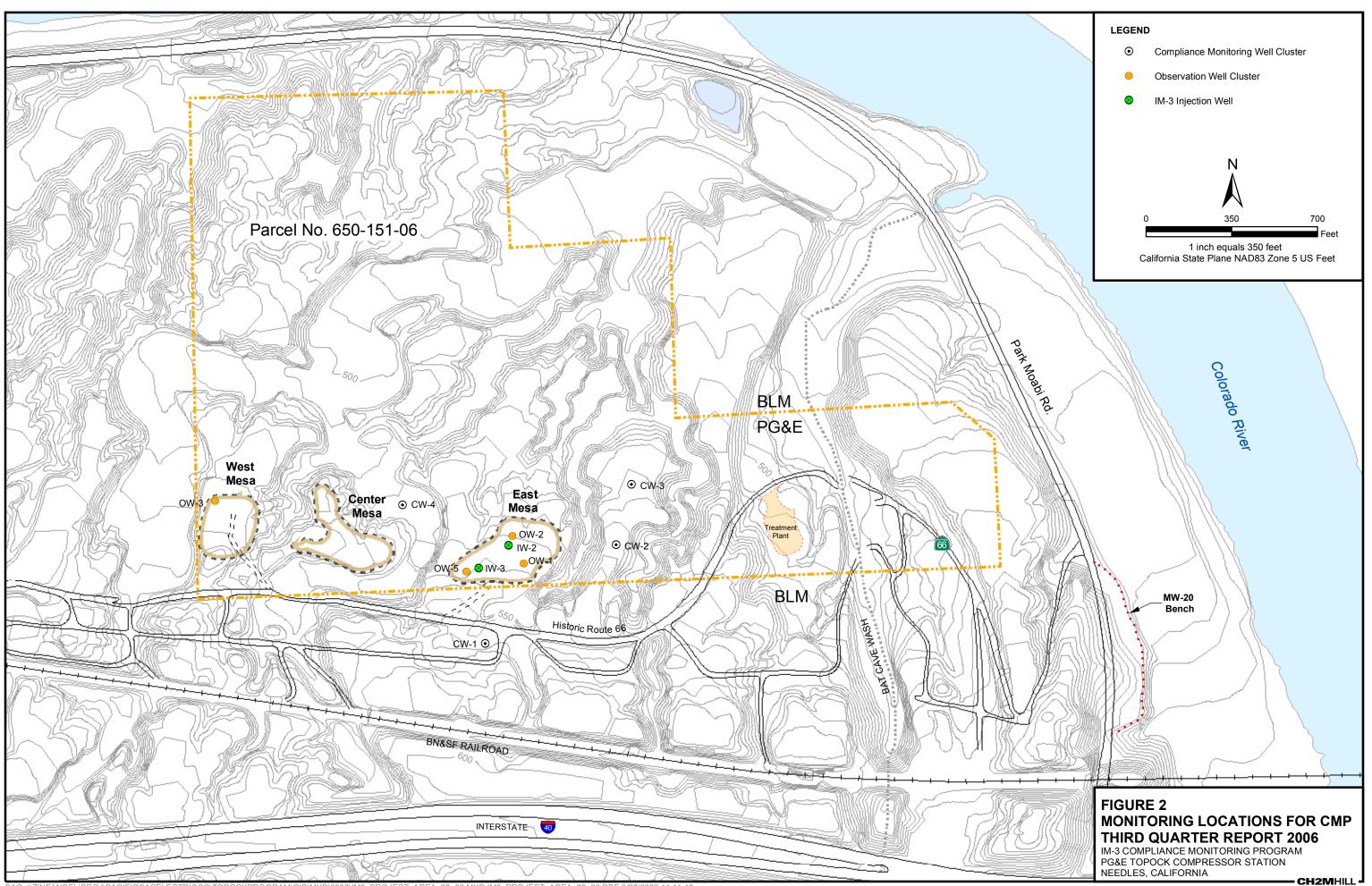
Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
OW-05S	OW-05S-009	Allan Erickson	8/31/2006	12:30:00 PM	TLI	EPA 6010B	FETD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	CAD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	BAD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	ALD	9/14/2006	Riddhi Patel
					TLI	EPA 6010B	KD	9/13/2006	Riddhi Patel
					TLI	EPA 6010B	FET	9/11/2006	Riddhi Patel
					TLI	EPA 7470A	HGD	9/5/2006	Aksiniya Dimitrova
					TLI	SW 6020A	BED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	VD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	TLD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SED	9/7/2006	Riddhi Patel
					TLI	SW 6020A	SBD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	PBD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	MOD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CUD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CRTD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	CDD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	ASD	9/7/2006	Riddhi Patel
					TLI	SW 6020A	AGD	9/8/2006	Riddhi Patel
					TLI	SW 6020A	COBD	9/7/2006	Riddhi Patel
					TLI	SW 7199	CR6	8/31/2006	Roger Chen

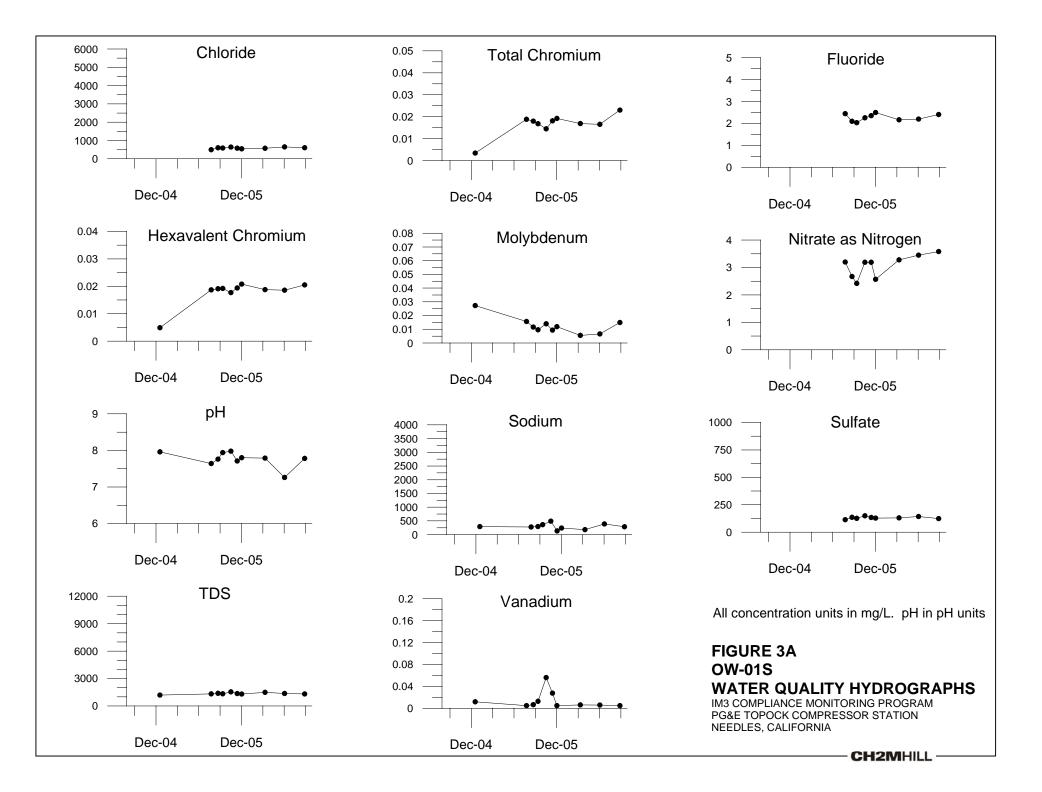
Board Order No. R7-2004-0103 WDR Monitoring Information for Groundwater Samples, Third Quarter 2006

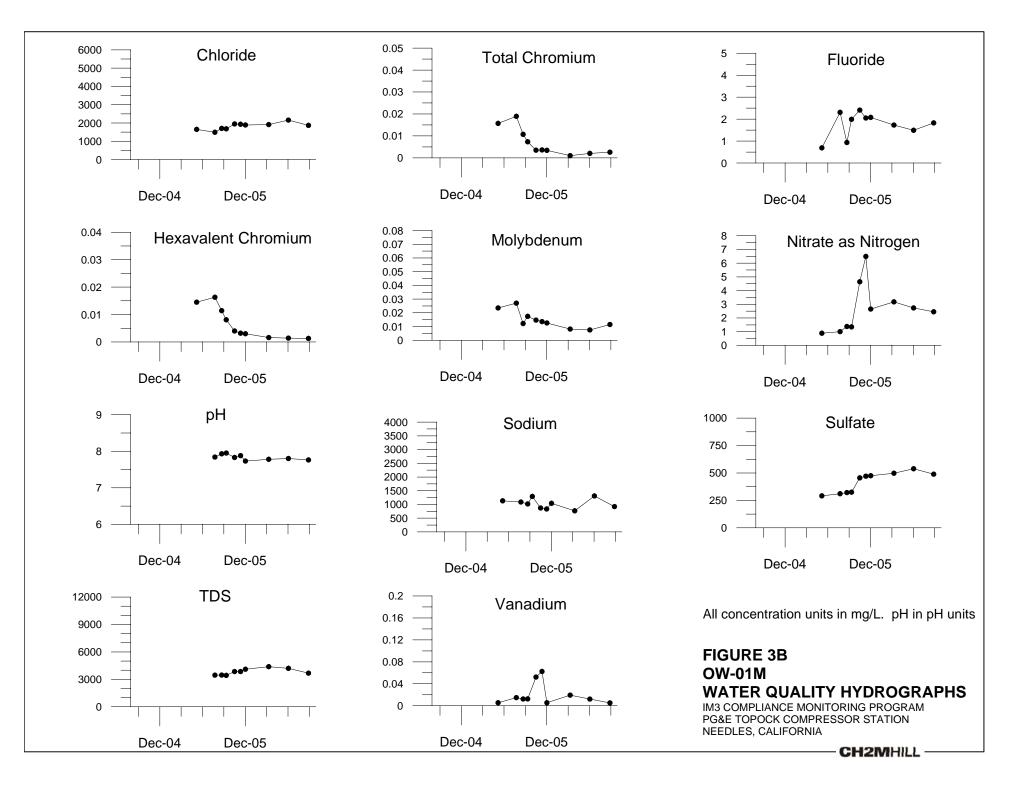

PG&E Topock Compliance Monitoring Program

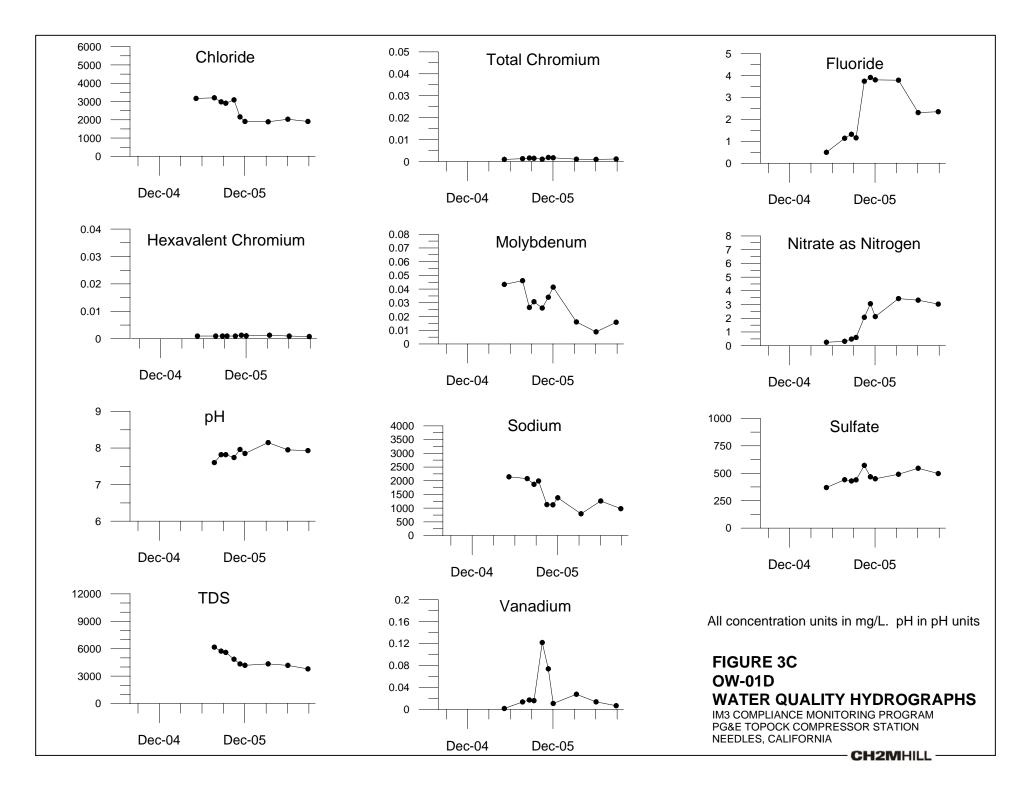
NOTES:

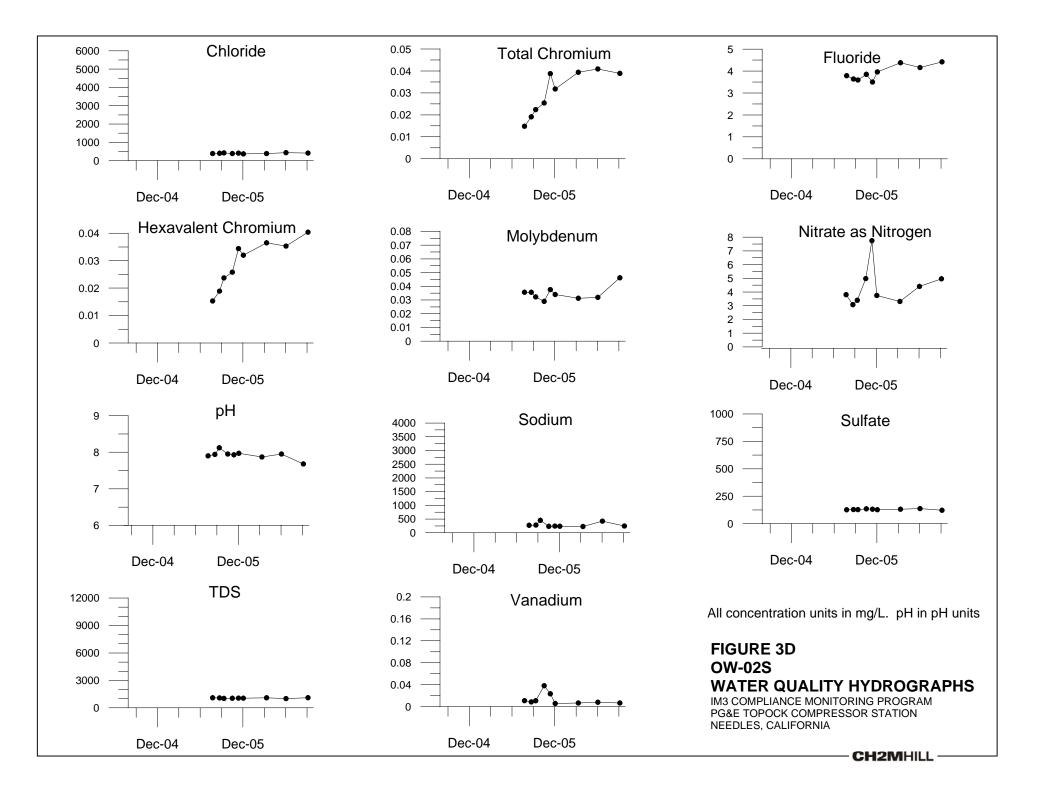

TLI Truesdail Laboratories, Inc. EMXT Emax Laboratories, Inc.

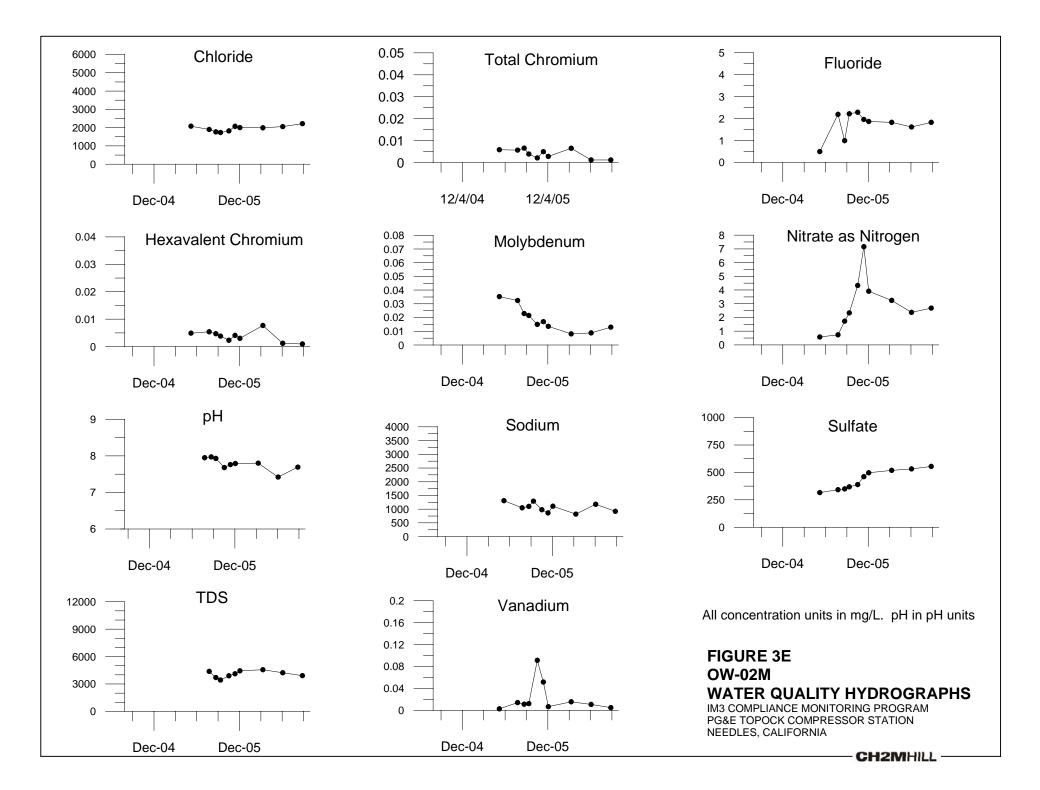
WDR Waste Discharge Requirements

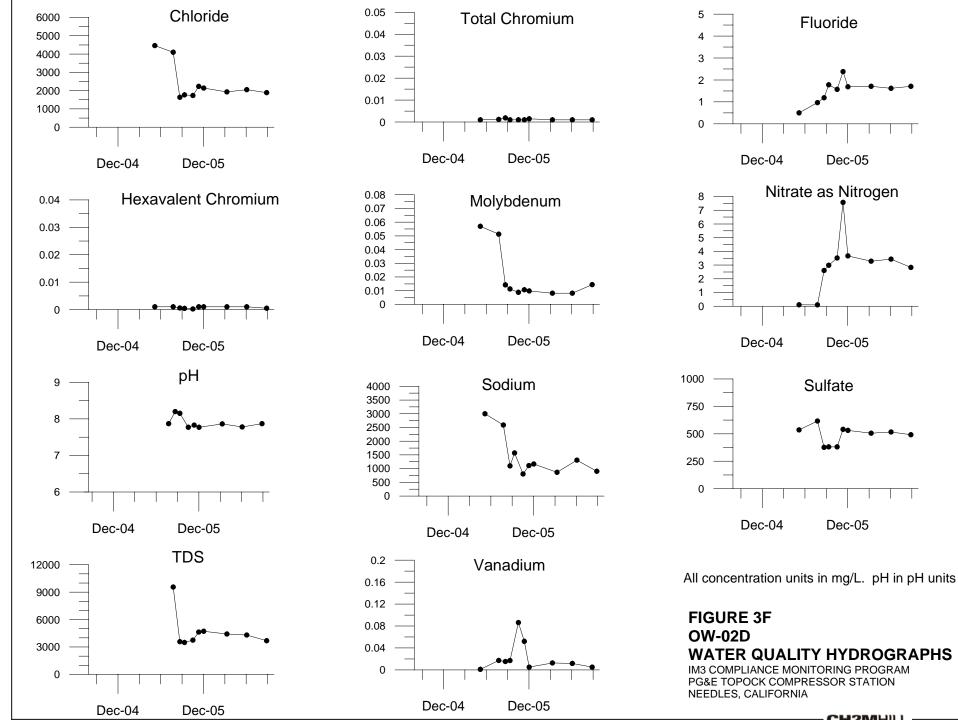

Figures

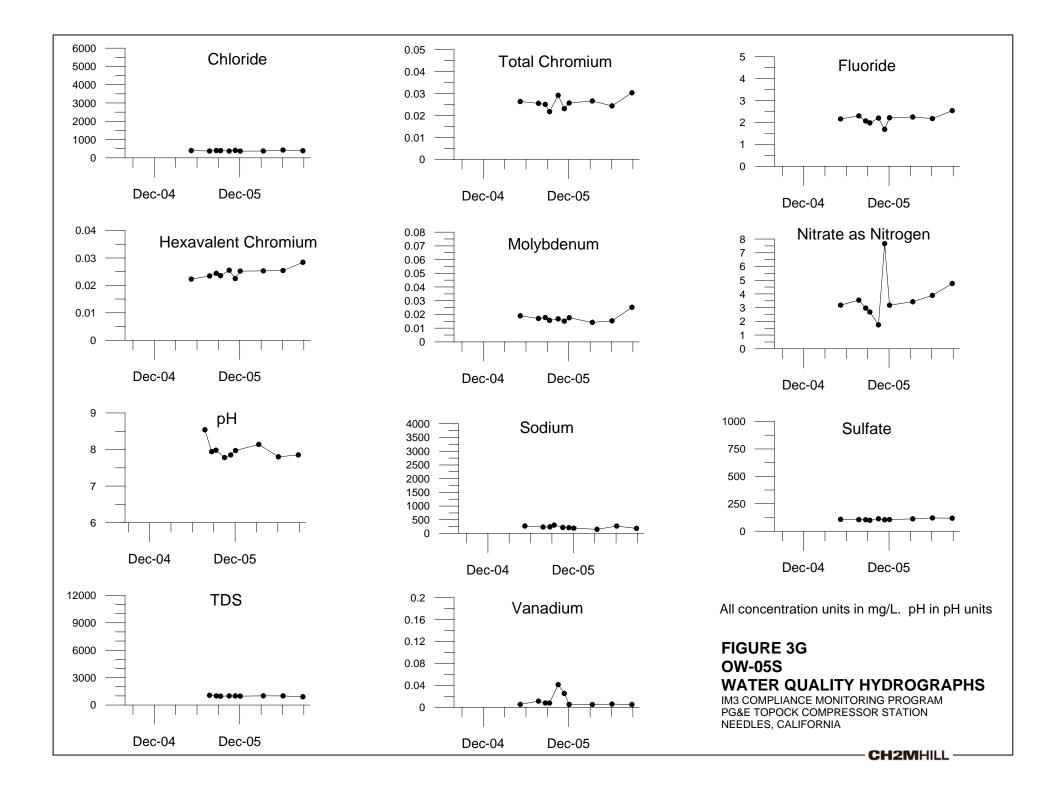


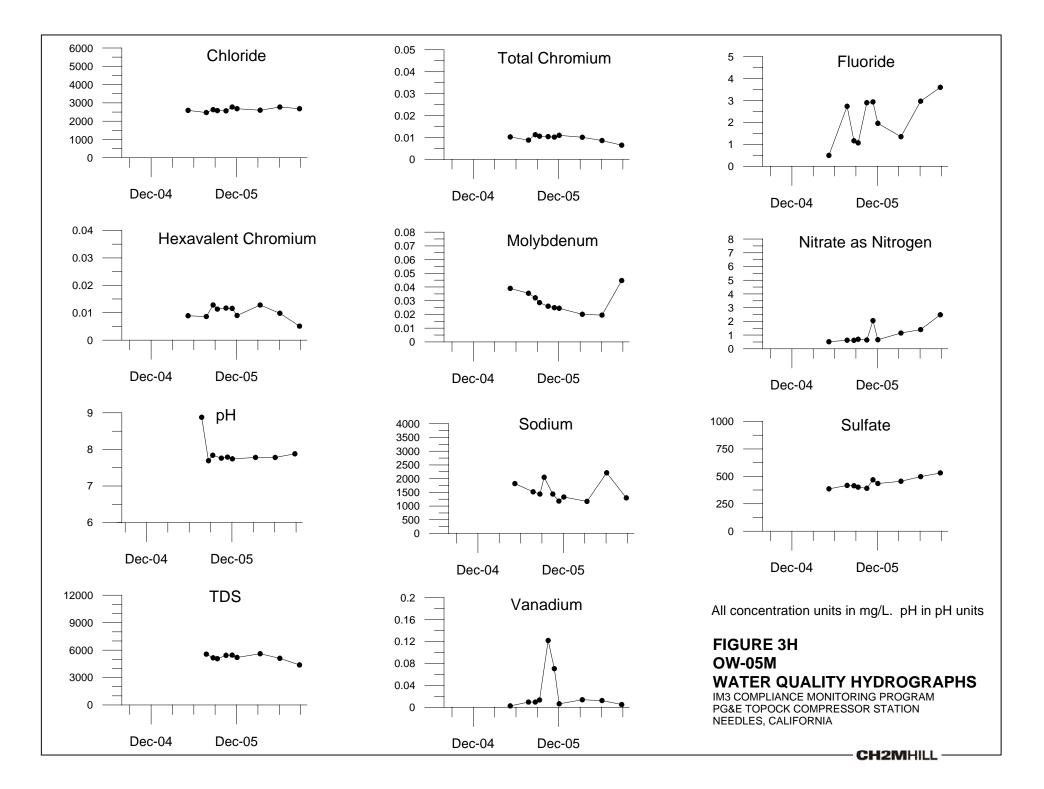

BAO \\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MXD\2006\IM3_MARCH06_LOCS_IM3_FACILITIES_SHIFTED.MXD IM3_MARCH06_LOCS_IM3_FACILITIES_SHIFTED.PDF 6/29/2006 12:00:25

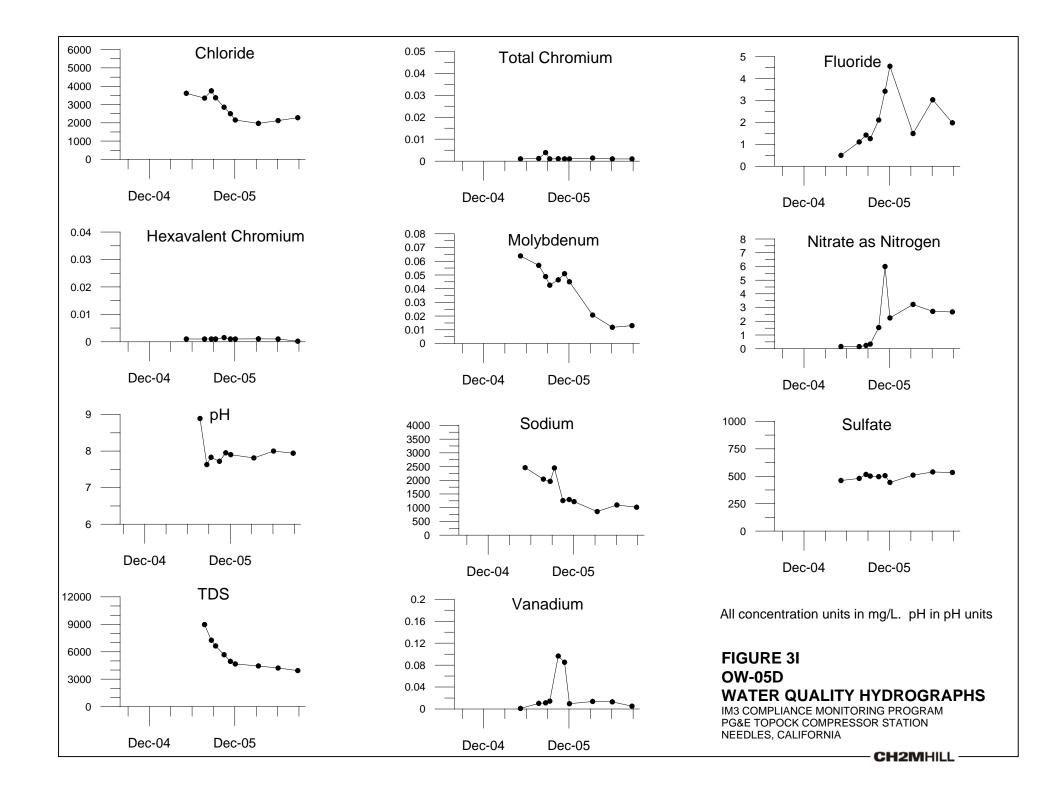


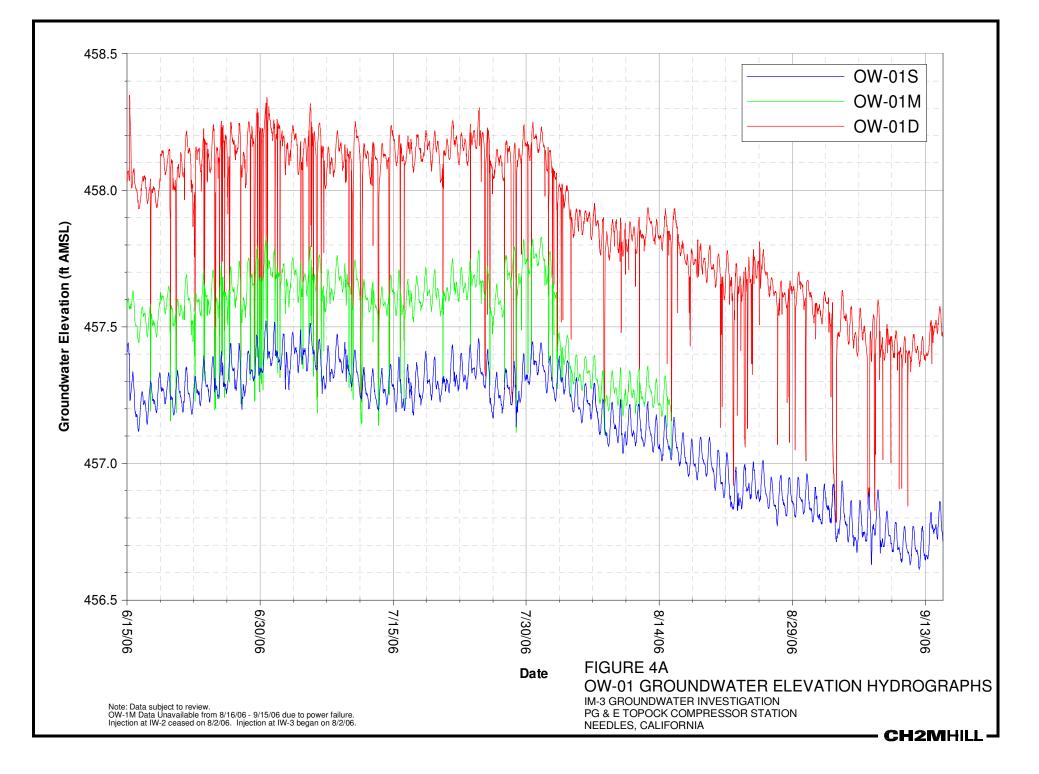

BAO \\ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MXD\2006\IM3_PROJECT_AREA_09_06.MXD IM3_PROJECT_AREA_09_06.PDF 9/27/2006 11:11:40

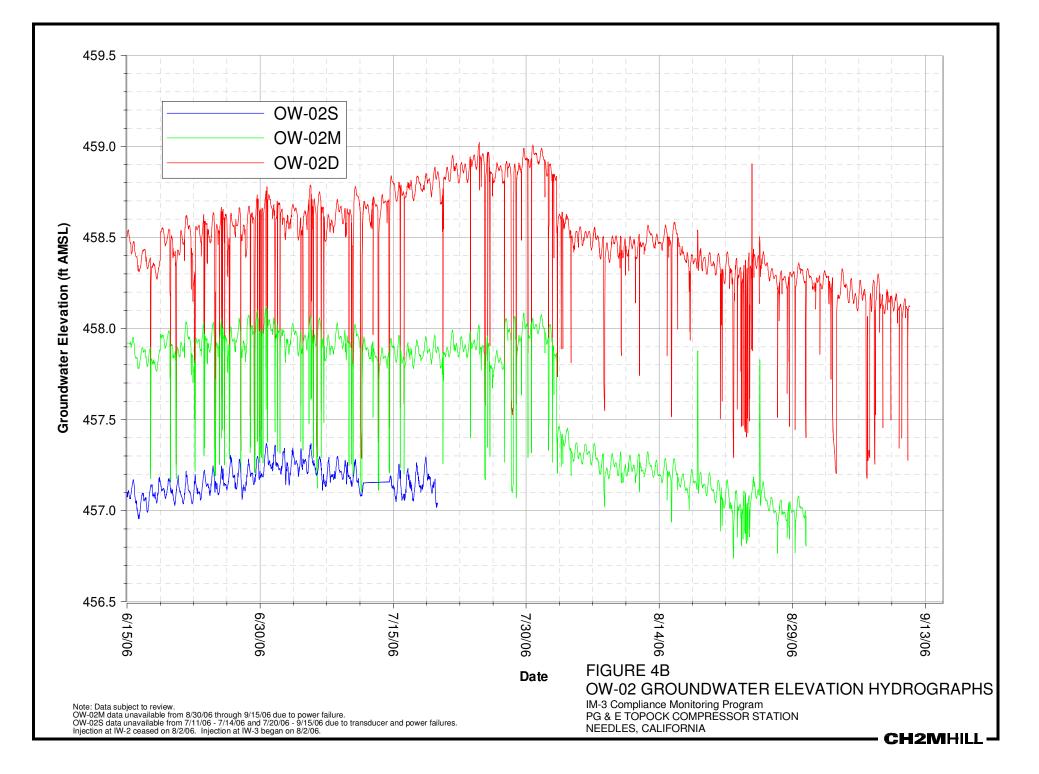




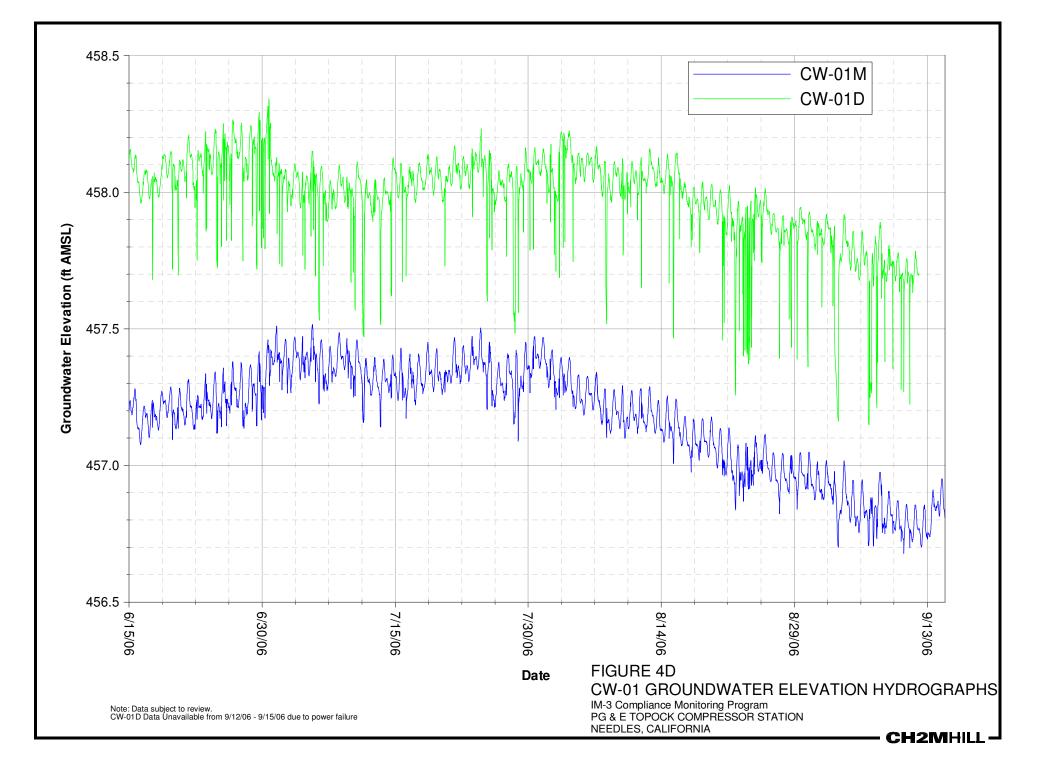


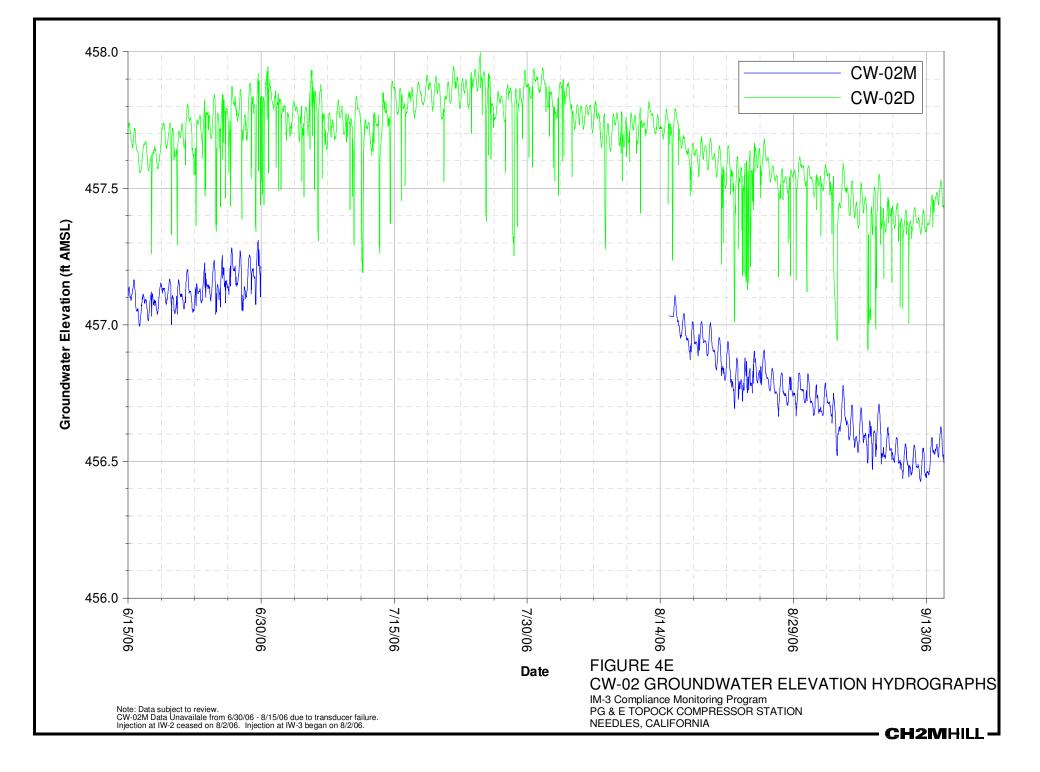


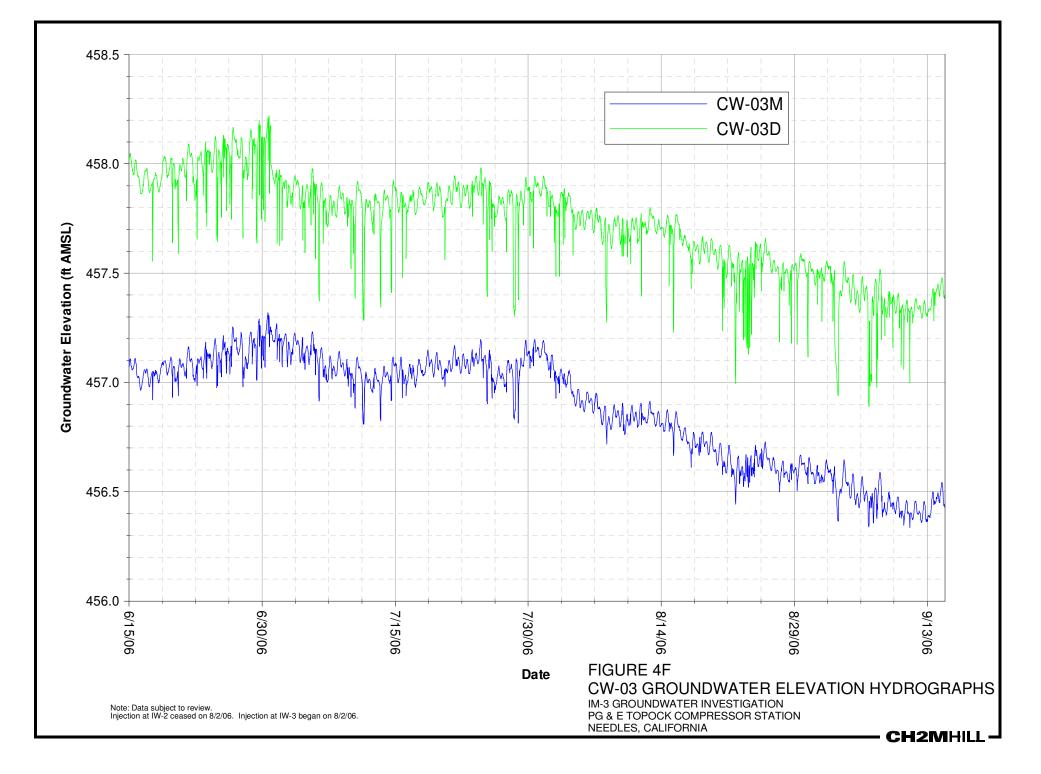


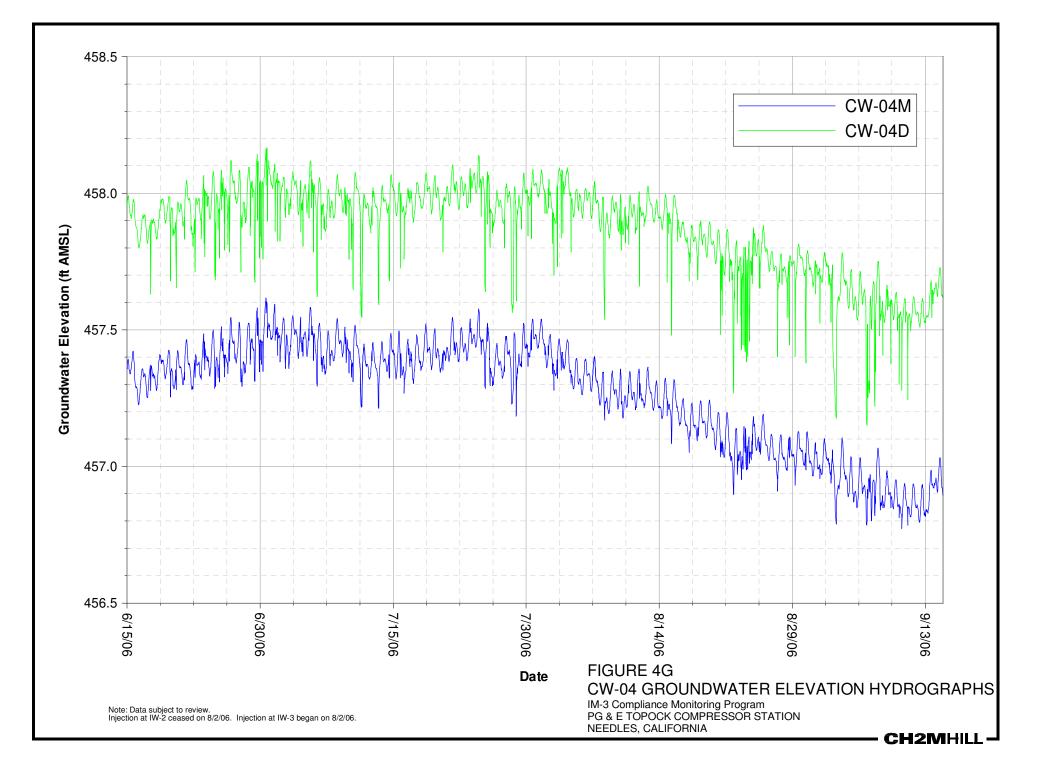

CH2MHILL

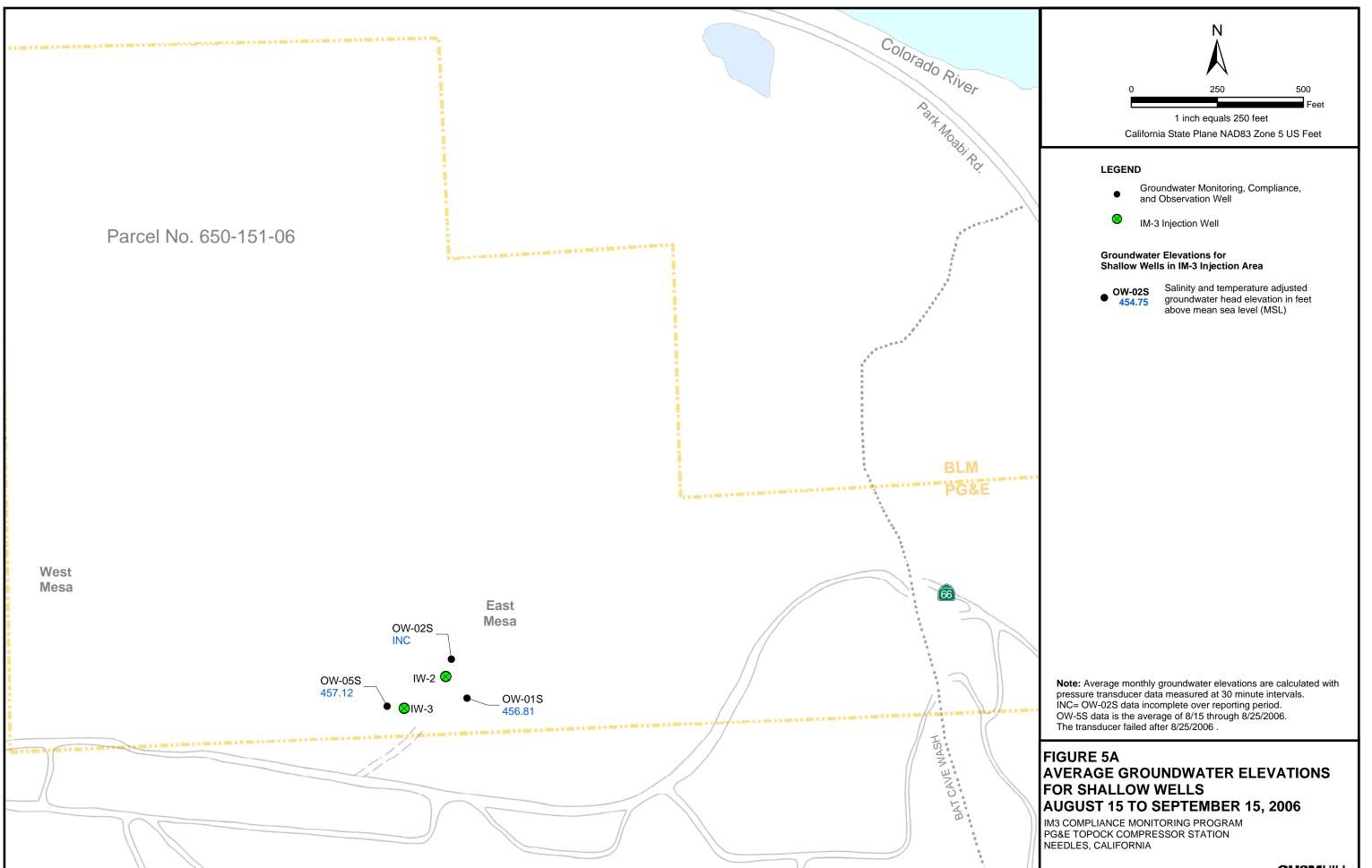


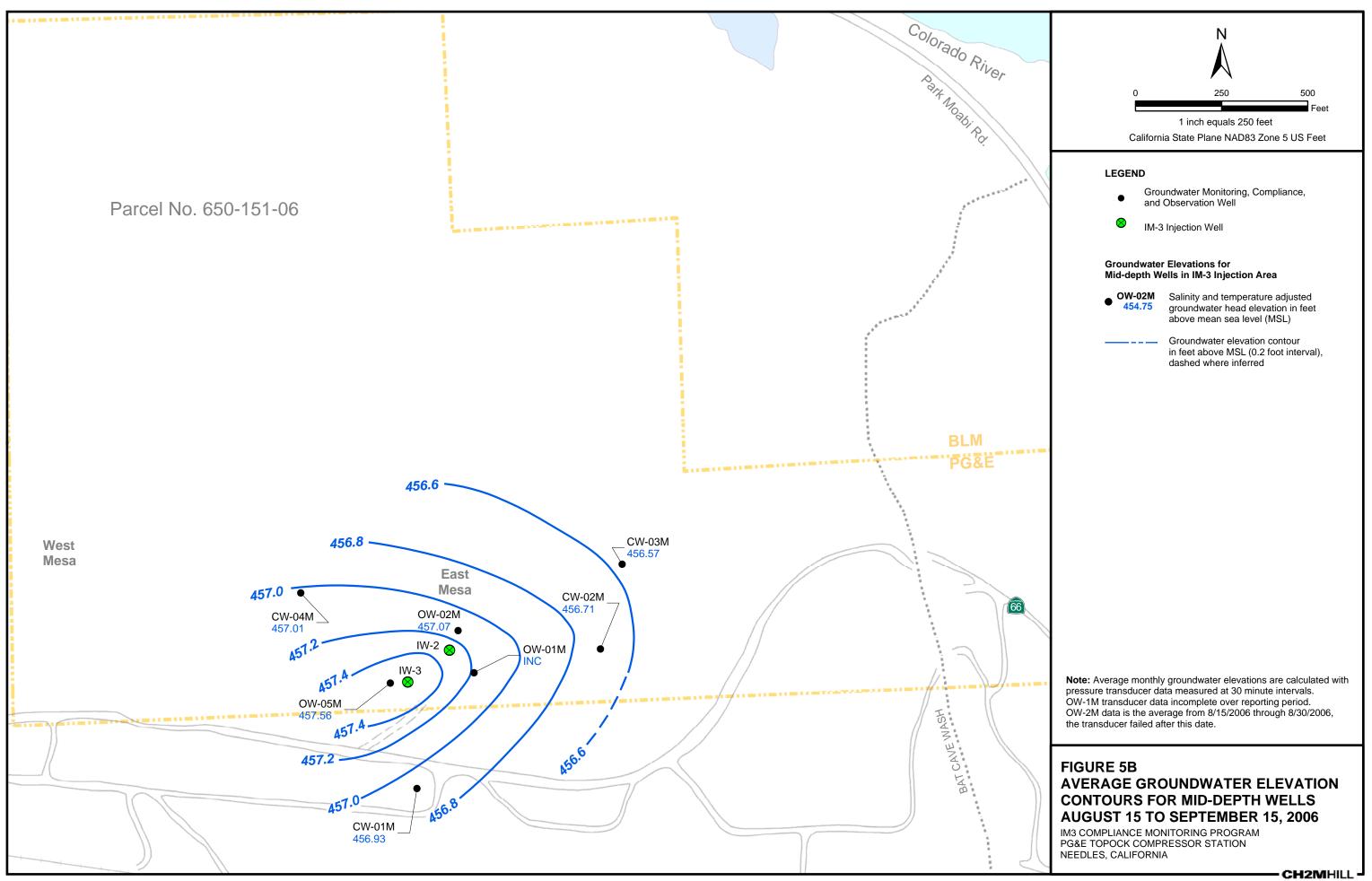


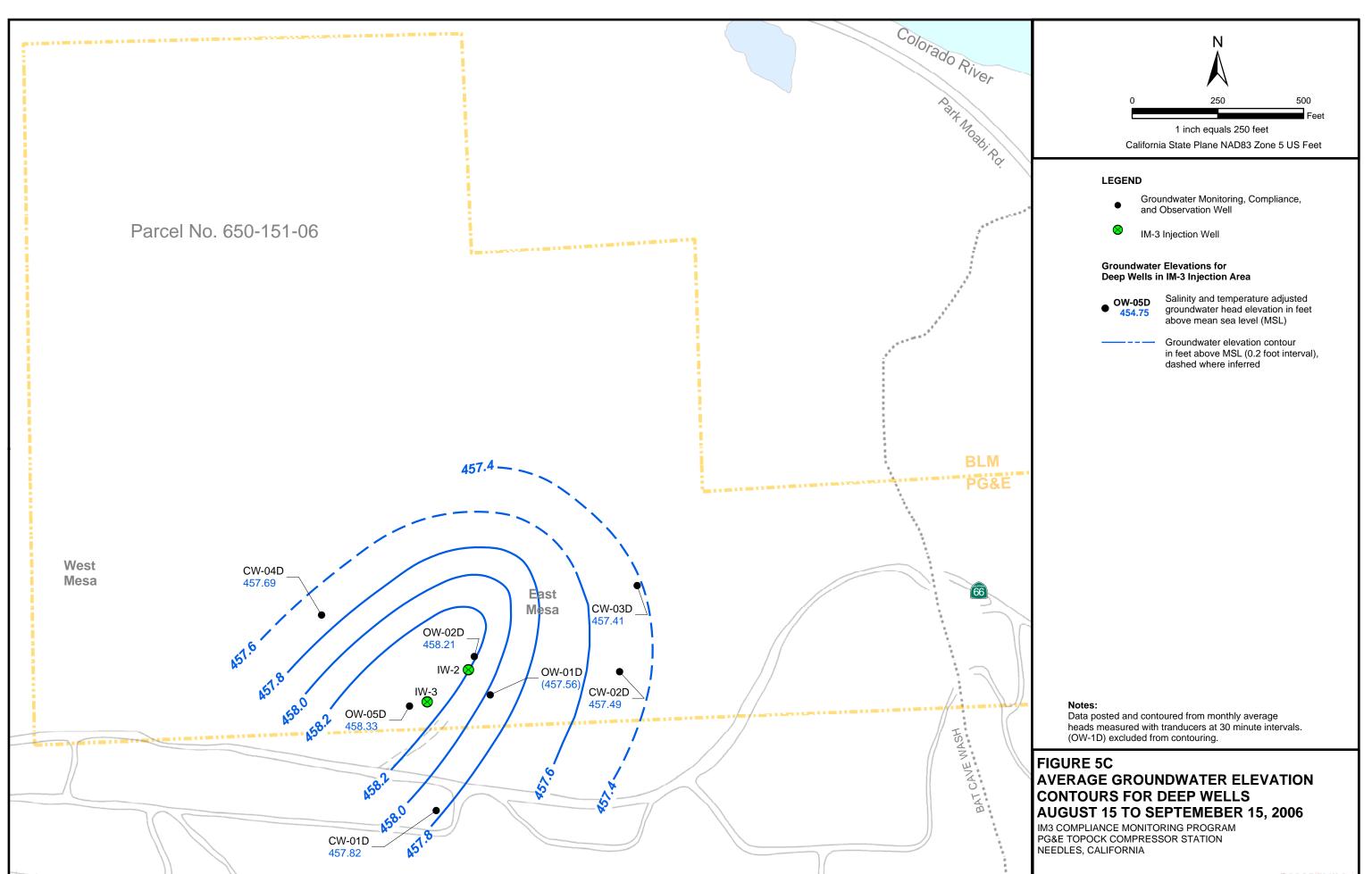












CH2MHILL

\/ZINFANDEL\PROJ\PACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MXD\2006\GW\IM3_GW_ELEV_DEEP_8-15_TO_9-15-06.MXD

CH2MHILL

Appendix A Laboratory Reports, Third Quarter 2006

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

September 14, 2006

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: REVISED CASE NARRATIVE PG&E TOPOCK 2006-CMP-009 PROJECT, GROUNDWATER MONITORING

TLI NO.: 958365

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2006-CMP-009 project groundwater monitoring. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on August 30, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter they will be kept in warm storage for an additional 2 months before disposal.

A results for Dissolved Mercury by SW 7470A is reported in the matrix spike calculation although it is below the reporting limit due to the small amount of Dissolved Mercury present in the samples.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAT, LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K. R. P. gyw

K.R.P. Iyer Quality Assurance/Quality Control Officer

CC: Mr. Mark Cichy, CH2M HILL Redding CA

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Four (4) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958365 Date: September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006

ANALYST LIST

SW 7199	Hexavalent Chromium	Ali Kharrazi
SW 6010B	Dissolved Metals by ICP	Riddhi Patel
SW 6020	Dissolved Metals by ICP/MS	Riddhi Patel
SW 7470A	Mercury	Aksiniya Dimitrova

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Four (4) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Investigation:

Laboratory No.: 958365

Date: September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006 Analyzed: August 30, 2006 Analyzed: August 30, 2006

Hexavalent Chromium by IC Using Method SW 7199.

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	RL	Results
958365-1	OW-05-009	10:20	20:59	mg/L	1.05	0.00020	0.0051
958365-2	OW-05D-009	12:35	21:08	mg/L	1.05	0.00020	ND
958365-3	OW-02M-009	15:30	21:18	mg/L	1.05	0.00020	0.00097
958365-4	EB-CMP-009-01	15:40	21:27	mg/L	1.05	0.00020	ND

QA/QC Summary

					1	u uş u	. J ui		neur j	y					
	QC STD	I.D.		oratory Imber	Concentration		Concentration		Relative Percent Difference		Acceptance limits		QC Within Control		
	Duplica	cate 958365-1 0.0		0.0050	0.00506 0.00511		1	0.944% ≤ 2			20%	Yes			
QC Std I.D.	Lab Number	Con unsp sam	oiked	Dilutio Factor			MS Co nount s		Measured Conc. of spiked sample		eoretica Conc. of spiked sample_	1	AS% covery	Acceptance limits	QC Within Control
MS	958365-1	0.00)506	1.06	0.00500	0.0	0.00530		.0103		0.0104	98.6%		85-115%	Yes
MS	958365-2	0.000	0141	1.06	0.00100	0.0	0.00106		00116		0.00120		5.9%	85-115%	Yes
MS	958365-3	0.000	0976	1.06	0.00100	0.0	0106	0.	0.00199		0.00204		5.8%	85-115%	Yes
		Q	QC Std I.D.		Measured Concentration		eoretica centrati		Perce Recovi		Accepta Limit		QC Within Contro	-	
		MRCCS 0.00483 0.00500			96.69	% 90% - 11		10%	Yes						
		N	/RCV	S#1	0.00994		0.0100		99.4%	6	90% - 11	10%	Yes		
			/RCV	S#2	0.0101		0.0100		101%	6	90% - 1 ⁴	10%	Yes		
		LCS 0.00482			0.00500 96.5		96.5%	6	<u>90% - 110</u>		Yes				
			LCS	D	0.00479		0.00500		95.7%	γ.	90% - 1 ⁻	10%	Yes		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted. ABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958365

Date: September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006 Prep/ Analyzed: September 11, 2006 Analytical Batch: 091106C

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: Four (4) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 091106C

Investigation:

Total Metals Iron (Fe) by Inductively Coupled Argon Plasma using SW 6010B

Analytical Results Total Metals Iron (Fe)

<u>TLi I.D.</u>	<u>Field I.D.</u>	<u>Sample Time</u>	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
958365-1	OW-05-009	10:20	07:42	mg/L	1.04	0.0010	ND
958365-2	OW-05D-009	12:35	08:00	mg/L	1.04	0.0010	ND
958365-3	OW-02M-009	15:30	08:04	mg/L	1.04	0.0010	ND

QA/QC Summary

	QC STD	I.D.		bora lumt		Concentratio	Concentration Duplicate Concentration			Relative Percent Difference		nt limits				QC Within Control	
	Duplica	ate	958365		5-1	0.00	0.00 0.		0.0	0.00%				0.00%	Yes		
QC Std I.D.	Lab Number	Con unsp san			ution Ictor	Added Spike Conc.	M: Amo	_	C	easured onc. of ed sample		Theoretical Conc. of spiked sample	R	MS% ecovery	Acceptance limits	QC Within Control	
MS	958365-1 0.00 1		.04	.04 2.50		60		2.62		2.60		101%	75-125%	Yes			
		Q	C Std	I.D.	-	Measured ncentration	The Conc	eoreti :entri		Percen Recove		Acceptan Limits	CĐ	QC With Contro			
			MRCC	s		5.11		5.00		102%)	90% - 110)%	Yes			
		м	IRCVS	;# 1		5.12		5,00		102%		90% - 110)%	Yes			
		м	IRCVS	# 2_		5.09		5.00		102%		90% - 110)%	Yes			
			ICS			2.12		2.00		106%	,	80% - 120)%	Yes	_		
			LCS			5.22		5.00		104%	,	90% - 110)%_	Yes			

ND: Below the reporting limit (Not Detected).

DF: Oilution Factor.

Respectfully submitted, ABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958365

Date: September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006 Prep/ Analyzed: August 31, 2006 Analytical Batch: 08EC06M

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Sample: Four (4) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Investigation:

Specific Conductivity by EPA 120.1

REPORT

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	<u>RL</u>	<u>Results</u>
958365-1	OW-05-009	μmhos/cm	EPA 120.1	10.0	20.0	8400
958365-2	OW-05D-009	μmhos/cm	EPA 120.1	10.0	20.0	7620
958365-3	OW-02M-009	μmhos/cm	EPA 120.1	10.0	20.0	7340

QA/QC Summary

QC ST	D Laborato Number	1 Concentrati	on	Duplicate Concentration		Relative Percent Difference		Acceptance limits		QC Within Control Yes
Duplica	ste 958365-	3 7340	7340		7350		0.136%		<u><</u> 10%	
	QC Std I.D.	Measured Concentration		Theoretical Incentration	Perce Recove				QC With Control	
	CCS	694		706	98.39	6	90% - 11	0%	Yes	
	CVS#1	952		1000	95.2%	6	90% - 11	0%	Yes	
Ĩ	CVS#2	956		1000	95.6%	6	90% - 11	0%	Yes	
	LCS	694		706	98.39	6	90% - 11	0%	Yes	4
	LCSD	693		706	98.29	6	90% - 11	0%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC. lisa)

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Four (4) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 958365

Date: September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006 Prep/ Analyzed: August 31, 2006 Analytical Batch: 08PH06Z

Investigation:

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Run Time</u>	<u>Units</u>	MDL	<u>RL</u>	<u>Results</u>
958365-1	OW-05-009	08:44	pH Units	0.0570	2.00	7.88
958365-2	OW-05D-009	08:45	pH Units	0.0570	2.00	7.94
958365-3	OW-02M-009	08:46	pH Units	0.0570	2.00	7.69

QA/QC Summary

QC STD I.D. Laboratory Number		-	Concentration		Duplicate Concentration		Difference (Units)		Acceptance limits		QC Within Control	
Duplicat	cate 958365-3		3	7.69	7.69 7.7		0 0.0100		<u>+</u> 0.100 Units		Yes	
	QC	OC Std I D I		leasured centration		eoretical centration	Differer (Unit:		Accepta Limit		QC Within Control	
		LCS		7.00		7.00	0.00		<u>+</u> 0.100	Units	Yes	
	L	CS #1		7.00		7.00	0.00		<u>+</u> 0.100	Units	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Four (4) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Laboratory No.: 958365 Date: September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006 Prep/ Analyzed: August 31, 2006 Analytical Batch: 08TDS060

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI 1.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>RL</u>	<u>Results</u>
958365-1	OW-05-009	mg/L	EPA 160.1	250	4380
958365-2	OW-05D-009	mg/L	EPA 160.1	250	3940
958365-3	OW-02M-009	mg/L	EPA 160.1	250	3920

QA/QC Summary

QC STD I	.D.	Laborator Number	-	Concentra	tion	Duplic Concent		-	Percent fference		eptance Imits	QC Within Control
Duplicat	e	958364		3975		390	0	(0.952%		<u><</u> 5%	Yes
	Q	C Std I.D.		Measured incentration		eoretical	Perce Recov		Accepta Limit		QC Within Control	١
		LCS 1		499		500	99.89	%	90% - 1	10%	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Four (4) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

investigation: California Title 22, Section 26 Metals [dissolved]

Laboratory No.: 958365 Reported September 13, 2006 Collected: August 30, 2006 Received: August 30, 2006 Analyzed: See Below

Analytical Results

SAMPLE ID:	OW-05-009		Time Co	liected: 10:	20		LAB ID:	958365-1	
			Reported					Date	Time
Parameter		Method	Value	DF	Units	RL	Batch	Analyzed	Anatyzed
Aluminum		SW 6010B	ND	1.04	mg/L	0.0520	091406A	09/14/06	13:07
Antimony		SW 6020	ND	1.04	mg/L	0.0030	090806A	09/08/06	11:38
Arsenic		SW 6020	ND	1.04	mg/∟	0.0050	090706A	09/07/06	11:09
Barium		SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:07
Beryllium		SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:09
Cadmium		SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:09
Chromium		SW 6010B	0.0065	1.04	mg/L	0.0010	090706A	09/07/06	11:09
Cobait		SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:09
Copper		SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:09
Lead		SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:09
Magnesium		SW 6010B	11.6	2.08	mg/L	1.00	091306A	09/13/06	10:39
Manganese		SW 6010B	ND	1.04	mg/L	0.500	091416A	09/14/16	13:07
Mercury		SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	14:46
Motybdenum		SW 6020	0.0447	1.04	mg/L	0.0050	090706A	09/07/06	11:09
Nickel		SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:07
Selenium		SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:09
Silver		SW 6020	ND	1.04	mg/L	0.0050	090806A	09/08/06	11:38
Thallium		SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:09
Vanadium		SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:09
Zinc		SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:07
Boron		SW 6010B	1.35	1.04	mg/L	0.200	091406A	09/14/06	13:07
Calcium		SW 6010B	186	52.1	mg/L	10.4	091306A	09/13/06	11:30
Iron		SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:07
Potassium		SW 6010B	26.1	2.08	mg/L	1.00	091306A	09/13/06	10:39
Sodium		SW 6010B	1300	52,1	mg/L	10.4	091306A	09/13/06	11:30

Report Continued

SAMPLE ID:	OW-05D-009	Time Col	lected:	12:35		LAB ID:	958365-2	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	SW 6010B	ND	1.04	mg/L	0.0520	091 40 6A	09/14/06	13:11
Antimony	SW 6020	NQ	1.04	mg/L	0.0030	090806A	09/08/06	11:44
Arsenic	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:15
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:11
Berylilum	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:15
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:15
Chromium	SW 6010B	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:15
Cobalt	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:15
Copper	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:15
Lead	SW 6020	ND	1.0 4	mg/L	0.0020	090706A	09/07/06	11:15
Magnesium	SW 6010B	5.42	2.08	mg/L	1.00	091306A	09/13/06	10:42
Manganese	SW 6010B	ND	1.04	mg/L	0.500	091416A	09/14/16	13:11
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	14:48
Molypdenum	\$W 6020	0.0130	1.04	mg/L	0.0050	090706A	09/07/06	11:15
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:11
Selenium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:15
Silver	SW 6020	ND	1,04	mg/L	0.0050	090806A	09/08/06	11:44
Thallium	\$W 6020	NĎ	1.04	mg/L	0.0010	090706A	09/07/06	11:15
Vanadium	SW 6020	0.0051	1.04	mg/L	0.0050	090706A	09/07/06	11:15
Zinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:11
Boron	SW 6010B	1.23	1.04	mg/L	0.200	091406A	09/14/06	13:11
Calcium	SW 6010B	102	26.0	mg/L	5.21	091306A	09/13/06	11:33
Iron	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:11
Potassium	SW 6010B	17.8	2.08	mg/L	1.00	091306A	09/13/06	10:42
Sodium	SW 6010B	1020	26.0	mg/L	5.21	091306A	09/13/06	11:33

Report Continued

SAMPLE ID:	QW-02M-009	Time Col	lected: 15	:30		LAB ID:	958365-3	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	SW 6010B	ND	1.04	mg/L_	0.0520	091406A	09/14/06	13:15
Antimony	SW 6020	ND	1.04	mg/L	0.0030	090806A	09/08/06	11:50
Arsenic	SW 6020	NĎ	1.04	mg/L	0.0050	090706A	09/07/06	11:21
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:15
Beryllium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:21
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:21
Chromium	SW 6010B	0.0012	1.04	mg/L	0.0010	090706A	09/07/06	11:21
Cobalt	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:21
Соррег	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:21
Lead	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:21
Magnesium	SW 6010B	16.8	2.08	mg/L	1.00	091306A	09/13/06	10:44
Manganese	SW 6010B	NO	1.04	mg/L	0.500	091416A	09/14/16	13:15
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	14:51
Molybdenum	SW 6020	0.0130	1.04	mg/L	0.0050	090706A	09/07/06	11:21
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:15
Selenium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:21
Silver	\$W 6020	ND	1.04	mg/L	0.0050	090806A	09/08/06	11:50
Thallium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:21
Vanadium	SW 6020	NĎ	1.04	mg/L	0.0050	090706A	09/07/06	11:21
Zinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:15
Boron	SW 6010B	1.22	1.04	mg/L	0.200	091 406 A	09/14/06	13:15
Calcium	SW 6010B	187	26.0	mg/L	5.21	091306A	09/13/06	11:36
Iron	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:15
Potassium	SW 6010B	23.4	2.08	mg/L	1.00	091306A	09/13/06	10:44
Sodium	SW 6010B	922	26.0	mg/L_	5.21	091306A	09/13/06	11:36

14201 (714)7	SDAIL LABORATO Franklin Avenue, 730-6239 FAX: (71 truesdail.com	Tustin, CA 92	760-7008		СНА				ODY P-009				83	36	5		TUR		UND 1	пме <i>2/06</i>		10 Days	OF -
COMPANY	E2			— <u> </u>	Τ		7	7	7	7	7	7	7	7	7	7	7	7	7	7	Γ7	COMM	
PROJECT NAME	PG&E Topock						/	/		/		/	/	/	/	/	/	/	/	/ /		00mm	LINIG
PHONE	(530) 229-330	3	fax <u>(</u> 530	0) 339-3303			/ .	k,	/ ,	/ .	/ .	/ /	/	/	/ /	/	/ ,	/ /	' /		/		
ADDRESS	155 Grand Ave	e Ste 1000				_/	F		5	./	/	/	R	ec'd	a.	8/30	104			M	/		
	Oakland, CA 9	4612	_			/3	La		1/2		/	/	sI		95	8:	200 2	б.	/ .	<u>ا اً ا</u>			
P.O. NUMBER	332959.CM.FV	N.01						95 @		/ .	/ .	/	$\left(\right)$	/	77	7	;	ן י		ĝ			
SAMPLERS (SIGNA	ITURE MA	-5			1/	Transmission Lab Fill and	2. C. Marker	Specific 60100) Unification	DH (150 Th COMINTATE (120 -		" /	/	/	/	/	/				OC ONTRINETS			
								و / ا	1/8	108 (180.1	1	/	/	/	/	/	/	/ .	พื่ม	/			
SAMPLE I.D.		DATE	TIME	DESCRIPTION	18	<u>F</u>	1,2	<u> \$</u>	<u>/ ä</u>		(4	4		4				<u> </u>	·			
00- 050	n - 009	3/30/06	1020	Groundwater	\times	1	×	×.	ᆇ	ĸ									4		(m=	
OM -02	5-009	B130/06	1235	Groundwater	X	X	x	s/	K	R.								î	₹‡			<u>m∈.</u>	2
000-00	2m-009	8130/00	1530	Groundwater	×	×	×	×	×	×								1	Ý			m =	<u>)</u>
EB-CAP	- 009-01	8130/06	1540	Groundwater	X	 													(
				Groundwater									Г			_							
				Groundwater									L		AI	F	DT		-	7			
				Groundwater						ļ							4			[
				Groundwater									-		e	4	Π	\mathbf{Q}	7				
				Groundwater												-		শ	\mathbf{T}				
	. (HAIN OF	CUSTO	DY SIGNATU	RE R	ECO	RD				-							SAN	IPLE (CONDITI	ONS	_	
Signature (Relinquished)	Un ?	Printed Name	Ikan Er	Company Company Agency	' Ul	ten	HI	cu	Dai Tin	te/ g	7/24	48	-	RI	ECEIV	ED	co		כ	WAR	4 🗆		۴F
Signature (Received)		Printed	LARGE	Company	1				Dat	te/ 8- 1e 3	·] 0-	06			USTO	DY SF		,	YES	п	NO		
Signature (Relinquished)		Printed		Company			<u> </u>		Dat Tirr	te/	12			 									
01	Mabumn	Name Printed	h.c.	Agency Company	, .	\overline{n}	; ;		Dat	te/ d	0/3	0/0	6	1	- 184 FR		Fo	re	-			lition. hed	
Signature	MAN MU	Printed	Inau	и и и и и и и и и и и и и и и и и и и		01			Tirr Dat	18 (8/		07 00 - 30	pr.				2		am	Ple (nn-	lias	 ;
(Relinquished) Signature		Name Printed		Agency Company	,				Tim Dat				· 1			L	- -	CQ	Foj	Ϊm Δ	110 110	lition,	s /
(Received)		Name		Agency					Tim						-				_	<u> </u>	uac.	hed	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

September 15, 2006

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK 2006-CMP-009 PROJECT, GROUNDWATER MONITORING

TLI NO.: 958392

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2006-CMP-009 project groundwater monitoring. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on August 31, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter they will be kept in warm storage for an additional 2 months before disposal.

A results for Dissolved Mercury by SW 7470A is reported in the matrix spike calculation although it is below the reporting limit due to the small amount of Dissolved Mercury present in the samples.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDALL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K. R. P. gyl

K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958392

Collected: August 31, 2006

Received: August 31, 2006

Date: September 15, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01

ANALYST LIST

		ANALYST
SW 7199	Hexavalent Chromium	Roger Chen
SW 6010B	Dissolved Metals by ICP	Riddhi Patel
SW 6020	Dissolved Metals by ICP/MS	Riddhi Patel
SW 7470A	Mercury	Aksiniya Dimitrova
EPA 120.1	Specific Conductivity	Tina Acquiat
EPA 150.1	рН	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Tina Acquiat

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

.....

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 08CrH06X

Laboratory No.: 958392 Date: September 15, 2006 Collected: August 31, 2006 Received: August 31, 2006 Prep/ Analyzed: August 31, 2006 Analytical Batch: 08CrH06X

Investigation:

Hexavalent Chromium by IC using SW 7199

Analytical Results Hexavalent Chromium

<u>TLH.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
958392-1 958392-2 958392-3 958392-4 958392-5 958392-6	OW-01M-009 OW-01D-009 OW-01S-009 OW-05S-009 OW-02D-009 EB-CMP-009-02	08:10 09:42 10:35 12:30 14:20 14:30	19:40 19:50 19:59 20:37 20:18 20:27	mg/L mg/L mg/L mg/L mg/L	1.05 1.05 1.05 5.00 1.05 1.05	0.00020 0.00020 0.00020 0.0010 0.00020 0.00020	0.0013 0.00084 0.0205 0.0284 0.00049 ND

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

009

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

142 TUSTIN (714) 730

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958392

Collected: August 31, 2006

Received: August 31, 2006

Prep/ Analyzed: August 31, 2006

Analytical Batch: 08CrH06X

Date: September 15, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 08CrH06X

Hexavalent Chromium by IC using SW 7199

				Q/	\/G	C S	umma	ry	,			
	QC STE	1.0.1	aboratory Number	Concentra	tion	-	plicate entration		Relative Percent Ifference	Acceptance limits	QC Within Control	
	Duplic	ate s	958392-4	0.0284		0	.0281		1.06%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sam	,	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
<u>MŞ</u>	958392-1	0.0013	1.06	0.00500	0.0	0 <u>05</u> 30	0.00628		0.00660	94.0%	85-115%	Yes
MS	958392-2	0.00084	1.06	0.00100	0.0	00106	0.00182		0.00190	92.5%	85-115%	Yes
MS	958392-3	0.0205	1.06	0.0200	0.	0212	0.0400		0.0417	92.0%	85-115%	Yes
MS	958392-4	0.0284	5.00	0.0100	0.	0500	0,0787		0.0784	101%	85-115%	Yes
MŚ	958392-5	0.00049	1.06	0.00100	0,0	00106	0.00144		0.00155	89.6%	85-115%	Yes
MS	958392-6	0.00	1.06	0.00100	0.0	00106	0.00099		0.00106	93.4%	85-115%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00487	0.00500	97.4%	90% - 110%	Yes
MRCVS#1	0.00944	0.0100	94.4%	90% - 110%	Yes
MRCVS#2	0.00934	0.0100	93.4%	90% - 110%	Yes
LCS	0.00487	0.00500	<u>9</u> 7.4%	90% - 110%	Yes
LCSD	0.00487	0.00500	97.4%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Investigation:

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 090706A

Analytical Results Total Dissolved Chromium

Total Dissolved Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

using SW 6020

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
958392-1	OW-01M-009	08:10	11:27	mg/L	1.04	0.0010	0.0026
958392-2	OW-01D-009	09:42	11:34	mg/ኒ	1.04	0.0010	0.0012
958392-3	OW-01S-009	10:35	11:40	mg/L	1.04	0.0010	0.0230
958392-4	OW-05S-009	12:30	11:46	mg/L	1.04	0.0010	0.0304
958392-5	OW-02D-009	14:20	11:52	mg/L	1.04	0.0010	ND

QA/QC Summarv

		Number Duplicate 958392-5 ND .ab Conc.of Dllution Added mber sample Factor Spike		Concentra	tion			icate Itration		Relative Percent lifference		ceptance limits		QC Within Control					
	Duplic			ND		N		ND		0.00%	<u><</u> 20%		Yes						
QC Std I.D.	Lab Number				Spike Am		MS nount		Measured nc. of spiked sample		Theoretical Conc. of spiked sample		MS% acovery	Act	ceptance limit	s QC Within Control			
MS	958392-5	0.	0.00 1.04		1.04 0.05		Ö.	0.0520		0520		0.0476		0.0520		91.5%		75-125%	Yes
		Q	C Std	I.D.		leasured icentration				Percent Recovery	,	Acceptan Limits		QC Wit Contr			-		
			MRCC	\$\$		0.0483		0.0500		96.6%		90% - 1109		Yes	s				
		Ν	IRCV :	S#1	_	0.0486		0.0500		97.2%		90% - 110)%	Yes		1			
			ICS			0.0965		0.100		96.5%		80% - 120)%	Yes]			
		LCS 0.0486			0.0500		97.2%		90% - 110)%	Yeş		1						

ND: Bolow the reporting limit (Not Detected).

DF: Dilution Factor.

Investigation:

*: The sample was filtered in the laboratory,

Respectfully submitted. TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories. 011

Laboratory No.: 958392 Date: September 15, 2006 Collected: August 31, 2006 Received: August 31, 2006 Prep/ Analyzed: September 7, 2006 Analytical Batch: 090706A

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958392 Date: September 15, 2006 Collected: August 31, 2006 Received: August 31, 2006 Prep/ Analyzed: September 11, 2006 Analytical Batch: 091106C

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 091106C

Investigation: Total Iron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using SW 6010B

Analytical Results Total Iron

<u>TL(I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	Results
958392-1	OW-01M-009	08:10	20:08	mg/L	1.04	0.300	ND
958392-2	OW-01D-009	09:42	20:13	mg/L	1.04	0.300	ND
958392-3	OW-01S-009	10:35	20:17	mg/L	1.04	0.300	0.676
958392-4	OW-05S-009	12:30	20:21	mg/L	1.04	0.300	0.314
958392-5	OW-02D-009	14:20	20:26	mg/L	1.04	0.300	ND

QA/QC Summary

	QC STC) I.D.		borato		Concentra	ation		•	icate stration		Relative Percent Difference		ceptance limits	-	QC Within Control	
	Duplic	ate	95	<u>8</u> 365-	<u>1T</u>	ND			N			0.00%		<u><</u> 20%	-+-	Yes	
QC Std I.D.	Lab Number	unsp	nc.of piked nple	Dilu Fac		Added Spike Conc.		MS nount		Measured nc. of spiked sample		Theoretical Conc. of spiked sample			Ace	ceptance limit	GC Within Control
MS	958365-1T	0.	00	1.0)4	2.50		2.60		2.62	╋	2.60		101%		75-125%	Yes
		a	C Std	I.D.	•	leasured icentration	_	neoretica ncentrati		Percent Recovery		Acceptan Limits	IC Q	QC Wit Contr		1	
		_	MRĊ	CS		5.11		5.00		102%		90% - 110)%	Yes			
			ARCV:			5.12		5.00		102%		90% - 110		Yes			
		<u> </u>	<u>/R</u> ¢V	5#2		5.09		5.00		102%		90% - 110		Yes		1	
			ICS	_		2.12		2.00		106%		80% - 120)%	Yes		1	
.		L	LCS	1		5.22		5.00		104%		90% - 110)%	Yes		1	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

The sample was filtered in the laboratory.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Laboratory No.: 958392

Date: September 15, 2006 Collected: August 31, 2006 Received: August 31, 2006 Prep/ Analyzed: September 1, 2006 Analytical Batch: 09EC06A

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	Field I.D.	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
958392-1	OW-01M-009	µmhos/cm	EPA 120.1	10.0	20.0	7310
958392-2	OW-01D-009	µmhos/cm	EPA 120.1	10.0	20.0	7520
958392-3	OW-01S-009	µmhos/cm	EPA 120.1	1.00	2.00	2310
958392-4	OW-05S-009	µmhos/cm	EPA 120.1	1.00	2.00	1700
958392-5	OW-02D-009	µmhos/cm	EPA 120.1	10.0	20.0	7280

QA/QC Summary

QC S I.D.	· - 1	Laborato Number	1 Concontra	tion	Duplica Concentra			Relative Percent Ifference	Acceptance limits		QC Within Control
Duplic	ate	958392-	5 7280		7290	290		0.14%	<u><</u> 10%		Yes
	Q	C Std I.D.	Measured Concentration		Theoretical oncentration	Perce Recov		Acceptan Limits		QC Withi Control	
		CCS	694		706	98.39	%	90% - 110	0%	Yes	
		CVS#1	965		1001	96.4%		90% - 110	5%	Yes	
		LCS	693		706	98.2%		90% - 11)% Yes		

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

essim

Mona Nassimi, Manager Analytical Services

013

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Sample: Six (6) Groundwater Samples

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 332959.CM.FW.01

P.O. No.: 332959.CM.FW.01

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958392

Date: September 15, 2006 Collected: August 31, 2006 Received: August 31, 2006 Prep/ Analyzed: September 1, 2006 Analytical Batch: 09PH06A

Investigation:

pH by EPA 150.1

Analytical Results pH

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	<u>RL</u>	<u>Results</u>
958392-1	QW-01M-009	08:10	08:33	pH Units	2.00	7.76
958392-2	OW-01D-009	09:42	08:35	pH Units	2.00	7.93
958392-3	OW-01S-009	10:35	08:37	pH Units	2.00	7.78
958392-4	OW-05S-009	12:30	08:39	pH Units	2.00	7.85
958392-5	OW-02D-009	14:20	08:41	pH Units	2.00	7.87

QA/QC Summary

QC STD I	.D. Laborator Number	* L Concentra	ation	Dupi Concer			fference (Units)		eptance Imits	QC Within Control
Duplicat	e 958392-5	5 7.87	7.87		7.87		0.00	<u>+</u> 0,1	100 Units	Yes
	QC Std I.D.	Measured Concentration			Differen (Units		Accepta Limit		QC Withl Control	·)
	LCS	7.00		7.00	0.00		<u>+</u> 0.100	Units	Yes	
	LCS #1	7.00		7.00	0.00		<u>+</u> 0.100	Units	Yes	

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

014

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958392

Collected: August 31, 2006

Received: August 31, 2006

Prep/ Analyzed: September 7, 2006

Analytical Batch: 09TDS06A

Date: September 15, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Prep. Batch: 09TDS06A

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Units</u>	Method	<u>RL</u>	<u>Results</u>
958392-1	OW-01M-009	08:10	mg/L	EPA 160.1	250	3670
958392-2	OW-01D-009	09:42	mg/L	EPA 160.1	250	3790
958392-3	OW-01S-009	10:35	mg/L	EPA 160.1	35.7	1310
958392-4	OW-058-009	12:30	mg/L	EPA 160.1	50.0	902
958392-5	OW-02D-009	14:20	mg/L	EPA 160.1	250	3680

QA/QC Summary

QC STD I.	Number		Concentra	Concentration				ercent iference	Acceptance limits		QC Within Control	
Duplicate	Duplicate 958392-5		3680	3680 3590) 1.24%		<u>≤</u> 5%		Yes		
				easured icentration		neoretical Incentration	Perce Recov		Accept: Limi		QC WithIn Control	
	LCS 1 493		500 98		98.69	3.6% <u>90%</u> - 110%		10%	Yes			

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

015

Established 1931

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958392

Received: August 31, 2006

Reported September 15, 2006 Collected: August 31, 2006

Analyzed: September 5 - 14, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakiand, CA 94612 Attention: Shawn Duffy

Samples: Six (6) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Investigation: California Title 22, Section 26 Metals (Dissolved)

Analytical Results

SAMPLE ID:	OW-01M-009	Time Co	llected:	08:10		LAB ID:	958392-1	-
		Reported				······	Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	SW 6010B	ND	1.04	mg/L	0.0520	091406A	09/14/06	13:20
Antimony	SW 6020	ND .	1.04	mg/L	0.0030	090806A	09/08/06	11:57
Arsenic	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:27
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:20
Beryllium	SW 6020	ND	1.04	ոց/Լ	0.0010	090706A	09/07/06	11:27
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:27
Chromium	SW 6020	0.0026	1.04	mg/L	0.0010	090706A	09/07/06	11:27
Cobalt	SW 6020	NQ	1.04	mg/L	0.0050	090706A	09/07/06	11:27
Copper	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:27
Lead	SW 6020	ND	1.04		0.0020	090706A	09/07/06	11:27
Magnesium	SW 6010B	13.9	2.08	mg/L	1,00	091306A	09/13/06	11:47
Manganese	SW 6010B	ND	1.04	mg/L	0.500	091406A	09/14/06	13:20
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	NA
Molybdenum	\$W 6020	0.0115	1.04	mg/L	0.0050	090706A	09/07/06	11:27
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:20
Selenium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:27
Silver	SW 6020	ND -	1.04	mg/L	0.0050	090806A	09/08/06	11:57
Thallium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:27
Vanadium	\$W 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:27
Zinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:20
Boron	SW 6010B	1.28	1.04	mg/L	0.200	091406A	09/14/06	13:20
Calcium	SW 6010B	169	26.0	mg/L	5.20	091306A	09/13/06	11:41
iron	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:20
Potassium	SW 6010B	21.8	2.08	mg/L	1.00	091306A	09/13/06	10:47
Sodium	SW 6010B	920	26.0	mg/L	5.20	091306A	09/13/06	11:41

Report Continued

SAMPLE ID: OW-	01D-009	Time Col	lected:	09:42		LAB ID	958392-2	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	SW 6010B	ND	1.04		0.0520	091406A	09/14/06	13:24
Antimony	SW 6020	ND	1.04	 mg/L	0.0030	090806A	09/08/06	12:03
Arsenic	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11.34
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	
Beryllium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	1 <u>3:24</u> 11:34
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:34
Chromium	SW 6020	0.0012	1,04		0.0010	090706A	09/07/06	
Cobalt	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:34
Copper	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:34
Lead	SW 6020	ND	1.04		0.0020	090706A	09/07/06	11:34
Magnesium	SW 6010B	8.39	2.08	mg/L	1.00	091306A	09/13/06	11:34
Manganese	SW 6010B	ND	1.04	mg/L	0.500	091406A	09/14/06	<u>10</u> :50 13:24
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	13:24 NA
Molybdenum	SW 6020	0.0158	1.04	mg/L	0.0050	090706A	09/07/06	
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	<u>11:34</u> 13:24
Selenium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	
Silver	SW 6020	ND	1.04	mg/L	0.0050	090806A	09/08/06	11:34
Thallium	SW 6020	ND	1,04	mg/L	0.0010	090706A	09/07/06	12:03
Vanadium	SW 6020	0.0068	1,04	mg/L	0.0050	090706A		11:34
Zinc	SW 6010B	ND	1,04	mg/L	0.0200	091406A	09/07/06	11:34
Boron	SW 6010B	1.31	1.04	mg/L	0.200		09/14/06	13:24
Calcium	SW 6010B	120	26.0			091406A	09/14/06	13:24
Iron	SW 6010B	ND	<u>20.0</u> 1.04	mg/L	<u>.</u> <u>5.20</u>	<u>091306A</u>	09/13/06	11:44
Potassium	SW 6010B	17.4	2.08	<u>mg/L</u>	0.300	091406A	09/14/06	13:24
Sodium	SW 6010B	980		mg/L,	1.00	09 <u>1306A</u>	09/13/06	10:50
	01100100	300	26.0	mg/L	5.20	091306A	09/13/06	20:28

017

Report Continued

SAMPLE ID:	OW-01S-009	Time Co	llected:	10:35		LAB (D)	958392-3	
		Reported					Date	Time
Parameter	Method	<u>Value</u>	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	SW 6010B	ND	1.04	mg/L	0.0520	091406A	09/14/06	13:28
Antimony	<u>SW</u> 6020	ND	1.04	mg/L	0.0030	090806A	09/08/06	12:09
Arsenic	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:40
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:28
Beryllium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:40
Cadmium	SW 6020	NĎ	1.04	mg/L	0.0020	090706A	09/07/06	. 11:40
Chromium	SW 6020	0.0230	1.04	mg/L	0.0010	090706A	09/07/06	11:40
Cobalt	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:40
Copper	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11;40
Lead	SW 6020	ND	1.04		0.0020	090706A	09/07/06	11:40
Magnesium	SW 6010B	19.3	2.08	mg/L	1.00	091306A	09/13/06	10:53
Manganese	SW 6010B	NĎ	1.04	mg/L	0.500	091406A	09/14/06	13:28
Mercury	SW 7470A	ND	1.00	mg/L,	0.00020	09HG06A	09/05/06	NA
Molybdenum	SW 6020	0.0149	1.04	mg/L	0.0050	090706A	09/07/06	11:40
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:28
Selenium	SW 6020	ND	1,04	mg/L	0.0050	090706A	09/07/06	11:40
Silver	SW 6020	ND	1.04		0.0050	090806A	09/08/06	12:09
Thallium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:40
Vanadium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:40
Žinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:28
Boron	SW 6010B	0.286	1.04	mg/L	0.200	091406A	09/14/06	13:28
Calcium	SW 6010B	115	10,4	mg/L	2.08	091306A	09/13/06	11:47
Iron	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:28
Potassium	SW 6010B	13.2	2.08	m <u>g/L</u>	1.00	091306A	09/13/06	10:53
Sodium	SW 6010B	287	10.4	mg/L	2.08	091306A	09/13/06	10:53

018

Report Continued

SAMPLE ID:	OW-05S-009	Time Coli	ected:	12:30		LAB ID	958392-4	
_		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	SW 6010B	0.0991	1.04	mg/L	0.0520	091406A	09/14/06	13:40
Antimony	SW 6020	ND	1.04	mg/L	0.0030	090806A	09/08/06	12:15
Arsenic	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:46
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:40
Beryllium	SW 6020	ND	1.04		0.0010	090706A	09/07/06	11:46
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:46
Chromium	SW 6020	0.0304	1.04	mg/L	0.0010	090706A	09/07/06	11.46
Cobalt	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:46
Copper	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:46
Lead	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	
Magnesium	SW 6010B	8.58	2.08		1.00	091306A	09/13/06	10:56
Manganese	SW 6010B	ND	1,04	 mg/L	0.500	091406A	09/14/06	13:40
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	NA
Molybdenum	SW 6020	0.0252	1.04	mg/L	0.0050	090706A	09/07/06	11:46
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:40
Selenium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:46
Silver	SW 6020	ND	1.04	mg/L	0.0050	090806A	09/08/06	12:15
Thallium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:46
Vanadium	SW 6020	0.0052	1.04	mg/L	0.0050	090706A	09/07/06	11:46
Zinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:40
Boron	SW 6010B	0.546	1.04		0.200	091406A	09/14/06	13:40
Calcium	SW 6010B	56.4	5.21	mg/L	1,04	091306A	09/13/06	11:50
Iron	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:40
Potassium	SW 6010B	8.22	2.08	mg/L	1.00	091306A	09/13/06	10:56
Sodium	SW 6010B	187	5.21	s mg/L	1.04	091306A	06/28/06	11:50

Report Continued

SAMPLE ID:	ÓW-02D-009	Time Co	ollected:	14:20		LAB ID:	958392-5	
		Reported					Date	Time
Parameter	Method	Value	<u> </u>	Units		Batch	Analyzed	Analyzed
Aluminum	SW 6010B	ND	1.04	mg/L	0.0520	091406A	09/14/06	13:44
Antimony	SW 6020	ND	1.04	mg/L	0.0030	090806A	09/08/06	12:39
Arsenic	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:52
Barium	SW 60108	ND	1.04	mg/L	0.300	091406A	09/14/06	13:44
Beryllium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:52
Cadmium	SW 6020	<u>ND</u>	1.04	mg/L	0.0020	090706A	09/07/06	11:52
Chromium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:52
Cobalt	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:52
Copper	SW 6020	ND	1.04	mg/L	0.0100	090706A	09/07/06	11:52
Lead	SW 6020	ND	1.04	mg/L	0.0020	090706A	09/07/06	11:52
Magnesium	SW 6010B	18.0	2.08	mg/L	1.00	091306A	09/13/06	11:02
Manganese	SW 6010B	ND	1.04	mg/L	0.500	091406A	09/14/06	13:44
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06A	09/05/06	NA
Molybdenum	SW 6020	0.0144	1.04	mg/L	0.0050	090706A	09/07/06	11:52
Nickel	\$W 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13:44
Selenium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:52
Silver	SW 6020	ND	1.04	mg/L	0.0050	090806A	09/08/06	12:39
Thallium	SW 6020	ND	1.04	mg/L	0.0010	090706A	09/07/06	11:52
Vanadium	SW 6020	ND	1.04	mg/L	0.0050	090706A	09/07/06	11:52
Zinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	13;44
Boron	SW 6010B	1.28	1.04	mg/L	0.200	091406A	09/14/06	13:44
Calcium	SW 6010B	196	26.0	mg/L	5.20	091306A	09/13/06	12:07
Iron	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:44
Potassium	SW 6010B	22.1	2.08	mg/L	1.00	091306A	09/13/06	11:02
Sodium	SW 6010B	904	26.0	mg/L	5.20	091306A	09/13/06	12:07

ND: Not detected, or below limit of detection. DF: Dilution factor,

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mora Nasseer

Mona Nassimi, Manager Analytical Services

020

	ຸ (((•.	
1	14201	SDAIL LABORATO Franklin Avenue, 730-6239 FAX: (71 truesdail.com	Tustin, CA 927	780-7008	ł	СНА				ODY P-009		cor 9			39	N)	TUR	C Nun (NAR) TE	NUND	тіме 1 <i>10</i> 6 -	PA	10 Day GE	^{/s}	
	COMPANY	E2						7	1	1	7	1	1	7	1	1	7	7	7	- /	7	$\overline{\Box}$		MENTS	٦
	PROJECT NAME	PG&E Topock	ι					/	/	/	/	/	<i>f</i>	+	<i></i>	±-		/-	+	√	/ /	/ /		101CH 13	ļ
	PHONE	(530) 229-330	3	fax (530	0) 339-3303			/ .	(/	/ ,	/	Λ /		AL/	£ħ	(1/	!! ;	/ · _						Ì
	ADORESS	155 Grand Ave Oakland, CA 9						linear 1	4)		T	¢1	vél	<u>/</u> [Ų	Ø	Ç]/	AINER	/			
	P.O. NUMBER	332959.CM.F\					the Filler	22 B.Ca.Mark	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ttante (1	/ /	/	\square	 	1	/	/	 	1	7				т; О	
	SAMPLERS (SIGNA		len m				The second second	LEE CO	Specific Control United	04(130,1)	105 (160.		1	/	/	/	/	/	/		CONTAINERS		See	or Sample	
	SAMPLE I.D.		DATE	TIME	DESCRIPTION	18	Ĕ_	1.2	/\$	Ĩ	18	\square	4	Rec s ²	≓d ►9		31/0			Z	\square		Form	13	Ц
I	<u>0w-01</u>	1-009	8131/06	0810	Groundwater	×		<u>بر</u>	×		ĸ							2 	•	Y		'-2	⊥∃	<u>Te</u>	Ш
2	OW-OIT	2~009	8131/00	0942	Groundwater	K	X	4	Â	X	ير									4	6H	-2			
3	OW-OL	5-009	8 131/06	1035	Groundwater	×	x	<u>ب</u>	. ×	- ଏ	. K									4	pH	-2	ttache	onditi	Ш
4	Ow-0	55-009	Q131/00	12:30	Groundwater	X	¥	≻	\checkmark	Х	$\boldsymbol{\varkappa}$									4	64	-2			
\$	60-020	~ 009	B/31/06	1420	Groundwater	\star	x	፞	×	×	$\boldsymbol{\kappa}$									4	04	-2	ă	ž	
6	EB. Cong.	009-02	8/31/06	1430	Groundwater	×						-								i	1		· · · · ·	(1)	Л
^					Groundwater																				٦
					Groundwater																				7
					Groundwater						Π														
		(CHAIN OF	CUSTO	DY SIGNATUR							<u> </u>							SA	MPLE		TIONS			
	Signature (Relinquished)	Ile E_	Printed Name	f(lan 8	Company/	СЬ	Izm	HJ	۲۲	Dati Tim		12/3/ -	106	-	RE	CEIVI	ED	СС	OL		WA	RM 🗖		۴F	
	Signature (Received)	I Duglo	Printed Name	TR T	Company/ Agency	E	F			Date Tim		3/	20	0	cu	ISTO	DY SE	ALEC)	YES		NO			=
	Signature (Relinquished)	Uavearow	Printed	1416	Company/ AROVI Agency	Ť	. L	Ĩ		Dati Tim	# <i>81</i>	31	100		SPEC	IAL RE	QUIRE	MEN	TS:						\neg
	Signature (Received)		Printed Name		Company/ Agency					Date Tim															
	Signature (Relinquished)		Printed Name		Company/ Agency					Date Tim	э/														
	Signature (Received)		Printed Name		Company/ Agency					Date Tim	ษ														
	(Received)		Name		Agency	-				lim	e					· ·· · ·									

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

T.

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

September 18, 2006

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK 2006-CMP-009 PROJECT, GROUNDWATER MONITORING

'I'LI NO.: 958631

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2006-CMP-009 project groundwater monitoring. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on September 8, 2006, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter they will be kept in warm storage for an additional 2 months before disposal.

Although it was not on the chain of custody, Shawn Duffy requested that we test for Turbidity by EPA 180.1

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi Manager, Analytical Services

K. R. P. Sye

K.R.P. Iyer Quality Assurance/Quality Control Officer

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Ì)-

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: September 18, 2006

Laboratory No.: 958631

Collected: September 8, 2006

Received: September 8, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01

ANALYST LIST

Mentapp		ANALYST
<u>SW 7199</u>	Hexavalent Chromium	Roger Chen
SW 6010B	Dissolved Metals by ICP	Riddhi Patel
SW 6020	Dissolved Metals by ICP/MS	Riddhi Patel
SW 7470A	Mercury	Aksiniya Dimitrova
EPA 120.1	Specific Conductivity	Tina Acquiat
EPA 150.1	pH	Tina Acquiat
EPA 160.1	Total Dissolved Solids	Tina Acquiat
EPA 180.1	Turbidity	Gautam Savani

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 F TUSTIN, C/ (714) 730-62

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 09CrH06H

Laboratory No.: 958631 Date: September 18, 2006 Collected: September 8, 2006 Received: September 8, 2006 Prep/ Analyzed: September 8, 2006 Analytical Batch: 09CrH06H

Investigation:

Hexavalent Chromium by IC using SW 7199

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
958631-1	MW-90-009	12:00	19:03	mg/L	5.00	0.0010	0.0382
958631-2	OW-02S-009	07:31	19:12	mg/L	5.00	0.0010	0.0404

						Q	<u> </u>	<u>10 3</u>	un	nma	гу						
	QC STD) I.D.		abora Numb	•	Concentra	ation	Duj Conce	plica entra		I	Relative Percent Ifference	Ac	ceptance limits	(C Within Control	
	Duplic	ate	ę	5863	2-5	0.556		0	.556	5		0.00%		<u><</u> 20%		Yes	
QC Std 1.D.	Lab Number	umber unspiked Factor		I SDIKA		Amount		leasured Conc. of (ed sam)		Theoretical Conc. of spiked sample	R	M\$% ecovery	A	cceptance limits	QC Within Control		
M\$	958631-1	0.03	382	5	.00	0.0100	0.0500			0.0849		0.0882		93,4%	-	85-115%	Yes
MS	958631-2	0.04	404	5	.00	0.0100	0,	0500		0.0857		0.0904		90.6%		85-115%	Yes
•		Q	C Std	I.D.		easured		eoretical centratic	-	Perce Recov		Acceptar Limits		QC With Contro			
			MRCC	s	0	.00517		0.00500		1039	6	90% - 110	0%	Yes			
		M	RCV	5#1	(0.0103		0.0100		1039	6	90% - 110		Yes			
		M	RCV	S#2	0).0103		0.0100		103%	6	90% - 110	0%	Yes			
			LCS		0	.00527		0.00500		105%	6	90% - 110	0%	Yes			
			LÇSt	5	0	.00516		0.00500		103%	6	90% - 110	0%	Yes	-		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date: September 18, 2006

Laboratory No.: 958631

Prep/ Analyzed: September 13, 2006

Analytical Batch: 091306A

Collected: September 8, 2006

Received: September 8, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 091306A

Total Dissolved Chromium by Inductively Coupled Argon Plasma Atomic Emission Investigation: Spectrometer using SW 6010B

Analytical Results Total Dissolved Chromium

<u>TLI I.D.</u>	Field I.D.	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
958631-1	MW-90-009	12:00	15:54	mg/L	2.08	0.0021	0.0389
958631-2	OW-02\$-009	07:31	15:58	mg/L	2.08	0.0021	0.0354

QA/QC Summary

	G	AC STD	I.D.		orato umbei		Concentra	tion			icate tration		Relative Percent ifference	Ac	ceptan fimits	C O	QC Within Control	
		Duplica	ate	95	8631-	2	0.0354	,		0.03	360		1.68%		<u><</u> 20%		Yeş	
QC St		Lab Imber	unsp	Conc.of unspiked sample 0.00 1.04			Added Spike Conc.	MŠ Amount		Measured Conc. of spike sample		spiked sample		R	MS% ecover	y A	Acceptance limit	GC WithIn Control
MS	958	3599-1	0.	00	. 1.0	4	0.0100	0.0104		04 0.00842		0.0104			81.0%	\neg	75-125%	Yes
			٩	C Std	I.D.		leasured icentration		eoretica Icentrati		Percent Recovery	,	Acceptar Limits		QC V Co	Nith ntro		
				MRCC	>\$		0.00998		0.0100		99.8%		90% - 11	0%	Ϋ́	'es	_	
			N	/RCVS	S#1		0.00981		0.0100		98.1%		90% - 11	0%)	'es		
				ICS			0.00918		0.0100		91.8%		80% - 12	0%))	′es		
				LĊŚ			0.00960		0.0100		96.0%		90% - 11	0%	1	′es		

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

*: The sample was filtered in the laboratory.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

010

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 091506A

Laboratory No.: 958631

Date: September 18, 2006 Collected: September 8, 2006 Received: September 8, 2006 Prep/ Analyzed: September 15, 2006 Analytical Batch: 091506A

Investigation: Total Iron by Inductively Coupled Argon Plasma Atomic Emission Spectrometer using SW 6010B

Analytical Results Total Iron

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	<u>Run Time</u>	<u>Units</u>	DF	<u>RL</u>	<u>Results</u>
958631-1	MW-90-009	12:00	13:39	mg/L	1.04	0.300	
958631-2	OW-02S-009	07:31	13:44	mg/L	1.04	0.300	

QA/QC Summary

	QC STE) I.D.		oorate umbe		Concentra	tion			icate tration	Relative Percent Differenc			eptance limits		QC Within Control	
	Duplic	ate	95	58631-	2	ND			N		0.00%		1	20%		Yes	
QC Std I.D.	.D. Number		nc.of piked mple	Dilut Faç		Added Spike Conc.		MS nount		Measured nc. of spiked sample	Theore Conc. spike samp	of d		M\$% covery	Ac	ceptance limits	QC Within Control
MŚ	958631-2	0	.00	1.0)4	2.50		2.60		2.85	2.60)		110%		75-125%	Yes
		0	QC Std	1.D.		leasured ncentration		eoretica Icentrati		Percent Recovery		eptar imits		QC Wit Contr			
			MRCO	CS		5.11		5.00		102%	90%	- 11	0%	Yes		1	
			MRCV	\$#1		5.30		5.00		106%	90%	- 11	0%	Yes		7	
			IĊS			2.31		2.00		116%		- 12	0%	Yes		1	
		ł	LCS	;		5.13		5.00		103%	90%	- 11	0%	Yes		1	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

*: The sample was filtered in the laboratory.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

/Mona Nassimi, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

011

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Laboratory No.: 958631

Date: September 18, 2006 Collected: September 8, 2006 Received: September 8, 2006 Prep/ Analyzed: September 8, 2006 Analytical Batch: 09TUC06G

Investigation:

Turbidity by EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	DF	<u>RL</u>	<u>Results</u>
958631-1	MW-90-009	NTU	EPA 180.1	1.00	0.100	1.79
958631-2	OW-02S-009	NTU	EPA 180.1	1.00	0.100	1.81

QA/QC Summary

QC S I.D		Laborato Number	-	Concentrat	ion	Duplica Concentra			Relative Percent Ifference		ceptance limits	QC Within Control
Duplic	plicate 958581_4		\$	0.161		0.158			1.88%		<u><</u> 10%	Yes
	QC Std I.D. C		Measured Concentration			heoretical incentration	Perce Recov		Acceptar Limits		QC With Control	
		LCS		7.32		8.00	91.5%	6	90% - 11	0%	Yes	-
		LCS		7.30		8.00	91.39	6	90% - 11	0%	Yes	-
	Ĺ	LCS		7.38		8.00	92.3%	6	90% - 11	0%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Laboratory No.: 958631

Date: September 18, 2006 Collected: September 8, 2006 Received: September 8, 2006 Prep/ Analyzed: September 11, 2006 Analytical Batch: 09EC06D

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	Method	DF	<u>RL</u>	<u>Results</u>
958631-1	MW-90-009	μmhos/cm	EPA 120.1	1.00	2.00	1770
958631-2	OW-02S-009	μmhos/cm	EPA 120.1	1.00	2.00	1770

QA/QC Summary

QC S 1.D.		Laborato Number	1 Concentration		Duplica Concentra			Relative Percent lifference		ceptance limits	QC Within Control
Duplicate 958631-2		2 1	770	1770			0.00%	<u><</u> 10%		Yes	
	q	C Std I.D.	Measure Concentrat		heoretical incentration	Perce Recove		Acceptar Limits			
		CCS	690		706	97.7%	%	90% - 110	0%	Yes	-
		CVS#1	987		1000	98.79	%	90% - 110	0%	Yes	
	LCS		696		706	98.69	%	90% - 110	2%	Yes	

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Sample: Two (2) Groundwater Samples

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 332959.CM.FW.01

P.O. No.: 332959.CM.FW.01

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958631

Date: September 18, 2006 Collected: September 8, 2006 Received: September 8, 2006 Prep/ Analyzed: September 8, 2006 Analytical Batch: 09PH06E

Investigation:

pH by EPA 150.1

Analytical Results pH

OA/OC Summary

<u>TLI I.D.</u>	Field I.D.	<u>Sample Time</u>	Run Time	<u>Units</u>	<u>RL</u>	<u>Results</u>
958631-1	MW-90-009	12:00	18:56	pH Units	2.00	7.68
958631-2	OW-02S-009	07:31	18:57	pH Units	2.00	7.68

			<u> </u>	VW	<u>o Sun</u>	innai j	<u>y</u>				
QC STD I.D. Laborator Number		1 Concontra	ition	Duplicate [Concentration			ifference (Units)		eptance imits	QC Within Control	
Duplicate 958631-2		2 7.68		7.71			0.03	<u>+</u> 0.1	100 Units	Yes	
	QÇ	Std I.D.			eoretical centration			Accepta Limit		QC Within Control	
ĺ	LCS		7.00		7.00	0.00		<u>+</u> 0.100	Units	Yes	1
	LCS #1		7.00	7.00		0.00		<u>+</u> 0.100	Units	Yes	
	LCS #2		7.01		7.00	0.01		<u>+</u> 0.100	Units	Yes]

ND: Below the reporting limit (Not Detected). RL: Reporting Limit.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 www.truesdail.com

Date: September 18, 2006

Laboratory No.: 958631

Prep/ Analyzed: September 14, 2006

Analytical Batch: 09TDS06C

Collected: September 8, 2006

Received: September 8, 2006

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy Sample: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01 Prep. Batch: 09TDS06C

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 958631-1 958631-2	<u>Field I.D.</u> MW-90-009 OW-02S-00		<u>Sample_Tit</u> 12:00 07:31	<mark>me Un</mark> mç mç	J/L	<u>Meth</u> EPA 16 EPA 16	50.1	<u>F</u> 50 50		<u>Results</u> 1070 1100
			Q	A/QC Su	mmar	у				_
	QC STD I.I	D. Laborato Numbe	Concentra	ation Duplic		Percent Difference		eptance limits	QC Within Control]
	Duplicate	958595	1 5940	572	0	1.89%		≤ 5%	Yes	
		QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recover			QC Within Control		
		LCS 1	491	500	9 8.2%	90% - 1	10%	Yes		

ND: Below the reporting limit (Not Detected). DF: Dilution Factor.

> Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 958631 Reported September 18, 2006 Collected: September 8, 2006 Received: September 8, 2006 Analyzed: September 5 - 14, 2006

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Samples: Two (2) Groundwater Samples Project Name: PG&E Topock Project Project No.: 332959.CM.FW.01 P.O. No.: 332959.CM.FW.01

Investigation: California Title 22, Section 26 Metals (Dissolved)

Analytical Results

SAMPLE ID: MW-90-00	9	Time Col	lected: 1	2:00		LAB ID:	958631-1	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzeci	Analyzed
Aluminum	SW 6010B	0.0665	1.04	mg/L	0.0520	091406A	09/14/06	12:49
Antimony	SW 6020	ND	1.04	mg/L	0.0030	091406A	09/14/06	- 11:20
Arsenic	\$W 6020	ND	1.04	mg/L	0.0050	091406A	09/14/06	11:20
Barium	SW 6010B	ND	1.04	mg/L,	0.300	091406A	09/14/06	12:49
Beryllium	SW 6020	ND	1.04	mg/L	0.0010	091406A	09/14/06	11:20
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	091406A	09/14/06	11:20
Chromium	SW 6010B	0.0389	2.08	mg/L	0.0021	091306A	09/13/06	15:54
Cobait	SW 6020	ND	1.04	mg/L	0.0050	091406A	09/14/06	11:20
Copper	SW 6020	ND	1.04	mg/L	0.0100	091406A	09/14/06	11:20
Lead	SW 6020	ND	1.04	mg/L	0.0020	091406A	09/14/06	11:20
Magnesium	SW 6010B	4.86	2.08	mg/L	1.00	091306A	09/13/06	10:33
Manganese	SW 6010B	ND	1.04	mg/L	0.500	091406A	09/14/06	12:49
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06D	09/12/06	NA
Molybdenum	SW 6020	0.0448	1,04	mg/L	0.0050	091406A	09/14/06	11:20
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	12:49
Selenium	SW 6020	ND	1.04	mg/L	0.0050	091406B	09/14/06	18:11
Silver	SW 6020	ND	1.04	mġ/L	0.0050	091406A	09/14/06	11:20
Thallium	SW 6020	ND	1.04		0.0010	091406A	09/14/05	11:20
Vanadium	SW 6020	0.0062	1.04	mg/L	0.0050	091406A	09/14/06	11:20
Zinc	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	12:49
Boron	SW 6010B	0.662	1.04	mg/L	0.200	091406A	09/14/06	12:49
Calcium	SW 6010B	35.9	2.08	mg/L	1.00	091306A	09/13/06	10:33
Iron	SW 6010B	ND	1.04	 mg/L	0.300	091406A	09/14/06	12:49
Potassium	SW 6010B	7.82	2.08	mg/L	1.00	091306A	09/13/06	10:33
Sodium	SW 6010B	245	5.21	mg/L	1.04	091306A	09/13/06	11:24

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

٠.

Report Continued

SAMPLE ID:	OW-025-009	Time Co	llected:	07:31		LAB ID:	958631-2	
Parameter		Reported					Date	Time
	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	\$W_6010B	ND	1.04	mg/L	0.0520	091406A	09/14/06	13:02
Antimony	\$W 6020	<u>ND</u>	1.04	mg/L	0.0030	091406A	09/14/06	11:32
Arsenic	SW 6020	<u>ND</u>	1.04	mg/L	0.0050	091406A	09/14/06	11:32
Barium	SW 6010B	ND	1.04	mg/L	0.300	091406A	09/14/06	13:02
Beryllium	SW 6020	ND	1.04	mg/L	0.0010	091406A	09/14/06	<u>13.02</u> 11:32
Cadmium	SW 6020	ND	1.04	mg/L	0.0020	091406A	09/14/06	
Chromium	SW 6010B	0.0354	2.08	 	0.0021	091306A	09/13/06	11:32
Cobalt	SW 6020	ND	1.04	<u></u>	0.0050	091406A	09/14/06	15:58
Copper	SW 6020	ND	1.04	mg/L	0.0100	091406A		11:32
Lead	SW 6020	ND	1.04	mg/L	0.0020	091406A	09/14/06	11:32
Magneslum	SW 6010B	4.98	2.08	mg/L	1.00	091306A	09/14/06	11:32
Manganese	SW 6010B	ND	1.04	mg/L	0.500	091406A	09/13/06	10:36
Mercury	SW 7470A	ND	1.00	mg/L	0.00020	09HG06D	09/14/06	13:02
Molybdenum	SW 6020	0.0462	1.04		0.0050		09/12/06	<u>NA</u>
Nickel	SW 6010B	ND	1.04	mg/L	0.0200	091406A	09/14/06	11:32
Selenium	SW 6020	ND	1.04			<u>091406A</u>	09/14/06	13:02
Silver	SW 6020	ND	1.04	mg/L	0.0050	091406B	09/14/06	18:22
Thallium	SW 6020	ND	1.04	mg/L	0.0050	091406A	09/14/06	11:32
Vanadium	SW 6020	0.0067	· · · · -		0.0010	091406A	09/14/06	<u>11</u> :32
Zinc	SW 6010B		1.04	mg/	0.0050	091406A	09/14/06	11:32
Boron	SW 6010B	ND 0.668		mg/L	0.0200	091406A	09/14/06	13:02
Calcium			1.04	mg/L	0.200	091406A	09/14/06	13:02
Iron	SW 6010B	37,6	2.08	mg/L	1.00	091306A	09/13/06	10:36
	\$W 6010B	<u>ND</u>	1.04	mg/L	0.300	091406A	09/14/06	13:02
Potassium	<u>SW 6010B</u>	7.93	2.08	mg/L	1.00	091306A	09/13/06	10:36
Sodium	SW 6010B	<u> </u>	5.21	mg/L	1,04	091306A	09/13/06	11:27

ND: Not detected,or below limit of detection, DF: Dilution factor.

OAAADI CID.

ALL 444 444

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Mona Nassimi, Manager Analytical Services

	, (((
30		enue, Tustin, CA 927 X: (714) 730-6462	80-7008	(CHA		F CL 2006-				COR	D				Т	URN		UND	TIME 106		10 Days E <u>1</u> OF	2
	COMPANY E2						/	1	/	- /	1	1	7	7	7	7	/_		7	7	77	COMMENT	
	PROJECT NAME PG&E TO	pock				Re	c'd	09/	/08/	06	1	7/	t	K	λ			Ż	/	11	'/	COMMENT	
	рноме (530) 229	-3303	fax (530) 339-3303		<u>.</u>	÷ĝ	586	8 3		5		21	0	/ 🕻) /.		2		/ 			
		d Ave Ste 1000 CA 94612	_				There are the	eer la	101 - 102		1	7	Ąί	Ē	F/T	1	1	1		TAINER	/		
	P.O. NUMBER 332959.C		_			Discriment Lab Fridad	TOBING COMPLETE	Specific Cond B) United in	auctance ()	/ /	/[]	Le	٧ø	1	ÍIJ/	Ø	9	[]/		TER OF CONTRINETS			
	SAMPLERS (SIGNATURE	usd Af	<u>a. 17</u>			Streens 1	Val Nor Co		⁴ (150, 1)	128 (160			/	/	/ /	.	/	/					
	SAMPLE I.D.	DATE	TIME	DESCRIPTION		<u>م</u>	\vdash	5/	٦ ا				{	-1	<u> </u>	+	+	-1		-			
	EB-6MP-009-01			Groundwater	×		-	-+	-1	Fo	- 0			-		╾┼╼	-	-	1				
	58-CMP-009-02	-		Groundwater	×				-#		5	am	Diệ	C	ond	itio	nk	-	1				
-1	MW-90-009	918/06	1200	Groundwater	x	x	x	×	×	xð	ee	Fo	Ľт		tac!		1	4	4	14	-2		
	,OW-01D-009			Groundwater	x	x	x	x	×	x						^v u		\square	4	. ,			
				Groundwater	x	x	x	x	x	x									4				
	GW-015-009			Groundwater	x	x	x	x	x	x							-		4				
				Groundwater	x	x	x	x	x	x	ĺ						Τ		4				
	CW-02M-009 -	<u></u>		Groundwater	۰x	x	x	x	x	x									4			_	
.2	OW-02S-009	9/8/06	0791	Groundwater	x	x	x	x	x	x						ŀ			4	PH.	2	. – .	
				DY SIGNATUR	RE R	ECO	RD			4	/0	06		-				SA	MPLE	E CONDI	TIONS		
	Signature (Relinquished	Printed // Name //	rad)	Company/	<u>CH</u>	ĴМ	H'	//	Dat Tim	e/ ⊫e ∦*	2)	5		R	ECEIVE	D	CO	ol i		WAS	RM 🔲	• 	F
	(Received) MANGOR			Company/ Agency		-1	I	-	Dat Tim	e∕∂ e	910 14	, <i>81</i>	5	С	USTOD	Y SEAI	LED		YES	S 🗖	NO [C	
	Signature (Relinquished)	Printed Name		Company/ Agency					Dat Tim	e/				SPE	CIAL RE	QUIREN	AENT	S:					
	Signature (Received)	Printed Name		Company/ Agency					Dat Tim														
	Signature	Printed		Company/					Dat Tim	e/													
	(Relinquished) Signature	Name Printed		Agency Company/					Dat	e!													
	(Received)	Name		Agency					Tim	e													

CASE NARRATIVE

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 06H315

METHOD 180.1 TURBIDITY

Three (3) water samples were received on 08/31/06 for Turbidity analysis by Method 180.1 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analysis met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample H315-03 was analyzed for duplicate. %RPD was within QC limit.

5. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

METHOD 180.1 TURBIDITY

Client : CH2M Project : PG&U Batch No. : O6H3	E'S TOPOCK GAS COMPRE	Matrix : WATER Instrument ID : I30											
SAMPLE ID	EMAX SAMPLE ID	RESULTS (NTU)		MOIST	RL (NTU)	MDL (NTU)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	TUI001WB	ND	1	NA	1	.1	09/01/0607:15	NA	TUI001-03	NA	TUI001W	NA	NA
LCS1W	TUI001WL	4.95	1	NA	1	.1	09/01/0607:19	NA	TUI001-04	NA	TU1001W	NA	NA
OW-05M-009	Н315-01	ND	1	NA	1	. 1	09/01/0607:23	NA	TUI001-05	NA	TUI001W	08/30/06	08/31/06
OW-05D-009	H315-02	ND	1	NA	1	. 1	09/01/0607:25	NA	TUI001-06	NA	TUI001W	08/30/06	08/31/06
OW-02M-009	Н315-03	ND	1	NA	1	.1	09/01/0607:27	NA	TUI001-07	NA	TUI001W	08/30/06	08/31/06
OW-02M-009DUP	H315-03D	ND	1	NA	1	.1	09/01/0607:27	NA	TUI001-08	NA	TU1001W	08/30/06	08/31/06

CASE NARRATIVE

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 06H315

METHOD 300.0 ANIONS

Three (3) water samples were received on 08/31/06 for Chloride, Fluoride and Sulfate analyses by method 300.0 in accordance with "Method for Determination of Inorganic Anions by Ion Chromatography", EPA 600/84-017.

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blanks were free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limits.

4. Duplicate

Duplicate sample was not designated in this SDG.

5. Matrix Spike

MS sample was not designated in this SDG.

6. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

METHOD 300.0 CHLORIDE

Natrix : CH2M HILL Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID Natch No. : 06H315													WATER I 100
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)		MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ICI018WB	ND	1	NA	.5		09/11/0620:44	NA	AI11-03	AI11-01	ICI018W	NA	NA
LCS1W	ICI018WL	4.78	1	NA	.5	. 1	09/11/0621:02	NA	AI11-04	AI11-01	IC1018W	NA	NA
LCD1W	ICI018WC	4.77	1	NA	.5	. 1	09/11/0621:21	NA	AI11-05	AI11-01	IC1018W	NA	NA
OW-05M-009	H315-01	2680	500	NA	250	50	09/11/0621:40	NA	AI11-06	AI11-01	IC1018W	08/30/06	08/31/06
OW-05D-009	H315-02	2280	500	NA	250	50	09/11/0621:58	NA	AI11-07	AI11-01	IC1018W	08/30/06	08/31/06
OW-02M-009	H315-03	2220	500	NA	250	50	09/11/0622:17	NA	AI11-08	AI11-01	ICI018W	08/30/06	08/31/06

C

METHOD 300.0 FLUORIDE

Batch No. : 06H31	S TOPOCK GAS COMPRE											rument ID : I	IATER 100
SAMPLE ID	EMAX SAMPLE ID	RESULIS (mg/L)		MOIST	RL (mg/l)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
 18lk1w	1C1001WB	ND		NA	.5	.05	09/01/0618:53	NA	AI01-03	AI01-01	IC1001W	NA	NA
.CS1W	IC1001WL	1.95	1	NA	.5		09/01/0619:10	NA	AI01-04	AI01-01	IC1001W	NA	NA
.CD1W	ICI001WC	1.94	1	NA	.5	.05	09/01/0619:27	NA	AI01-05	AI01-01	ICI001W	NA	NA
W-05M-009	H315-01R	3.6	1	NA	.5	.05	09/01/0623:21	NA	AI01-19	A101-13	ICI001W	08/30/06	08/31/06
W-05D-009	H315-02R	1.98	- 1	NA	.5	.05	09/01/0623:38	NA	AI01-20	AI01-13	ICI001W	08/30/06	08/31/06
DW-02M-009	H315-03R	1.83	1	NA	.5	.05	09/01/0623:54	NA	AI01-21	AI01-13	ICI001W	08/30/06	08/31/06

METHOD 300.0 SULFATE

Client : CH2M Project : PG&E Satch No. : 06H3	'S TOPOCK GAS COMPRE	SSOR STAT	=======	======:								ix : W rument ID : I	
AMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF N	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
IBLK1W	ICI018WB	ND	1	NA	.5	.25	09/11/0620:44	NA	AI11-03	AI11-01	ICI018W	NA	NA
.CS1W	ICI018WL	4.73	1	NA	.5	.25	09/11/0621:02	NA	AI11-04	AI11-01	ICI018W	NA	NA
.cd1w	ICI018WC	4.77	1	NA	.5	.25	09/11/0621:21	NA	AI11-05	AI11-01	ICI018W	NA	NA
W-05M-009	Н315-01	531	500	NA	250	125	09/11/0621:40	NA	AI11-06	AI11-01	ICI018W	08/30/06	08/31/06
W-05D-009	H315-02	534	500	NA	250	125	09/11/0621:58	NA	AI11-07	AI11-01	ICI018W	08/30/06	08/31/06
W-02M-009	H315-03	555	500	NA	250	125	09/11/0622:17	NA	AI11-08	AI11-01	ICI018W	08/30/06	08/31/06

antino, attinuz, attino, attino, Monata 20.0000, attino, attino Sanata 20.0000, attino attino

Con la con

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 06H315

METHOD 310.1 ALKALINITY

Three (3) water samples were received on 08/31/06 for Bicarbonate, Carbonate and Total Alkalinity analyses by Method 310.1 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample H315-03 was analyzed for duplicate. %RPD was within QC limit.

5. Matrix Spike

Sample H315-03 was spiked. %Recovery was within QC limit.

6. Sample Analysis

METHOD 310.1 TOTAL ALKALINITY

Client : CH2M H Project : PG&E'S Batch No. : O6H315 ==========	TOPOCK GAS COMPRE										Matrix Instru	: WAT ment ID : 153	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
 MBLK1W	ALI002WB	ND	1	NA	5	1	09/06/0615:49	NA	ALI002-01	NA	ALI002W	NA	NA
_CS1W	ALI002WL	116	1	NA	5	1	09/06/0615:54	NA	AL1002-02	NA	AL1002W	NA	NA
.CD1W	ALI002WC	118	1	NA	5	1	09/06/0615:59	NA	ALI002-03	NA	AL1002W	NA	NA
W-05M-009	H315-01	52.3	1	NA	5	1	09/06/0617:55	NA	ALI002-19	NA	AL1002W	08/30/06	08/31/06
W-05D-009	H315-02	72 (mm)	1	NA	5	1	09/06/0618:01	NA	ALI002-20	NA	AL1002W	08/30/06	08/31/06
W-02M-009	H315-03	65.1 mm	1	NA	5	1	09/06/0618:08	NA	ALI002-21	NA	AL1002W	08/30/06	08/31/06
W-02M-009DUP	H315-03D	64.1	1	NA	5	1	09/06/0618:12	NA	ALI002-22	NA	AL1002W	08/30/06	08/31/06
W-02M-009MS	H315-03M	123	1	NA	5	1	09/06/0618:58	NA	ALI002-23	NA	ALI002W	08/30/06	08/31/06

¢

METHOD 310.1 BICARBONATE ALKALINITY

		ک کہ جب بر جار کے دیا ہو ہے ہے ہے ۔				========							
Client : CH2M H	IILL TOPOCK GAS COMPRE	SSOR STAT									Matr Inst	rument ID : I	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
 18LK1W 0W-05M-009	ALI002WB H315-01	ND 52.3	1 1	NA NA	5		09/06/0615:49 09/06/0617:55	NA NA	AL1002-01 AL1002-19	NA NA	AL 1002W AL 1002W	NA 08/30/06 08/30/06	NA 08/31/06 08/31/06
0W-05D-009 0W-02M-009 0W-02M-009DUP	H315-02 H315-03 H315-03D	72 65.1 64.1	1 1 1	NA NA NA	5 5 5	1 1 1	09/06/0618:01 09/06/0618:08 09/06/0618:12	NA NA NA	AL1002-20 AL1002-21 AL1002-22	NA NA NA	AL 1002W AL 1002W AL 1002W	08/30/08 08/30/06 08/30/06	08/31/06 08/31/06 08/31/06

METHOD 310.1 CARBONATE ALKALINITY

Client : Project : Batch No. :	CH2M HILL PG&E'S TOPOCK GAS COMPRE 06H315	SSOR STAT										ment ID : 153	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	AL I 002WB	ND	1	NA	5	1	09/06/0615:49	NA	ALI002-01	NA	AL1002W	NA	NA
OW-05M-009	н315-01	ND	1	NA	5	1	09/06/0617:55	NA	ALI002-19	NA	AL1002W	08/30/06	08/31/06
OW-05D-009	н315-02	ND	1	NA	5	1	09/06/0618:01	NA	ALI002-20	NA	AL1002W	08/30/06	08/31/06
OW-02M-009	Н315-03	ND	1	NA	5	1	09/06/0618:08	NA	ALI002-21	NA	AL1002W	08/30/06	08/31/06
OW-02M-009DUP		ND	1	NA	5	1	09/06/0618:12	NA	ALI002-22	NA	AL1002W	08/30/06	08/31/06

S

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 06H315

METHOD 350.2 AMMONIA (NH3-N)

Three (3) water samples were received on 08/31/06 for Ammonia (NH3-N) analysis by Method 350.2 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analysis met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample H315-01 was analyzed for duplicate. %RPD was within QC limit.

5. Matrix Spike

Sample H315-01 was spiked. Recovery was within QC limit.

6. Sample Analysis

METHOD 350.2 AMMONIA (NH3-N)

Client : CH2M H Project : PG&E'S Batch No. : 06H315	ILL TOPOCK GAS COMPRE	SSOR STAT									Matr Inst	ix :W rument ID : I	ATER 70
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)		IOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
 MBLK1W	NHI002WB	ND		NA	.5	.03	09/06/0616:23	09/06/0610:00	NH1002-05	NH1002-01	NH1002W	NA	09/06/06
CS1W	NHI002WL	1.06	1	NA	.5	.03	09/06/0616:23	09/06/0610:00	NH1002-06	NH1002-01	NHIOO2W	NA	09/06/06
.cd1W	NHI002WC	1.03	1	NA	.5	.03	09/06/0616:23	09/06/0610:00	NH1002-07	NHI002-01	NH1002W	NA	09/06/06
W-05M-009	H315-01	ND	1	NA	.5	.03	09/06/0616:24	09/06/0610:00	NH1002-08	NHI002-01	NH1002W	08/30/06	08/31/06
W-05M-009 W-05M-009DUP	H315-01D	ND	1	NA	.5		09/06/0616:24	09/06/0610:00	NH1002-09	NHI002-01	NH1002W	08/30/06	08/31/06
	H315-01M	.920	1	NΔ	.5		09/06/0616:24	09/06/0610:00	NH1002-10	NH1002-01	NH1002W	08/30/06	08/31/06
W-05M-009MS	H315-02	. 920 ND	1	NA	.5		09/06/0616:25	09/06/0610:00	NH1002-11	NH1002-01	NHIOO2W	08/30/06	08/31/06
009 - 050 - 009 00 - 020 - 009	H315-02	ND	1	NA	.5		09/06/0616:25	09/06/0610:00		NH1002-01	NH1002W	08/30/06	08/31/06

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 06H315

METHOD 353.3 NITRATE/NITRITE-N

Three (3) water samples were received on 08/31/06 for Nitrate/Nitrite-N analyses by Method 353.3 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample H315-01 was analyzed for duplicate. %RPD was within QC limit.

5. Matrix Spike

Sample H315-01 was spiked. Recovery was within QC limit.

6. Sample Analysis

METHOD 353.3 NITRATE/NITRITE-N

Client : CH2M H Project : PG&E'S Batch No. : 06H315	S TOPOCK GAS COMPRE	SSOR STAT										ment ID : 170)
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NAI004WB	ND		NA	.1	.02	09/08/0617:13	NA	NAI004-10	NAI004-07	NA I 004W	NA	NA
LCS1W	NAI004WL	.531	1	NA	.1	.02	09/08/0617:14	NA	NAI004-11	NA1004-07	NA1004W	NA	NA
LCD1W	NAI004WC	.534	1	NA	.1	.02	09/08/0617:14	NA	NAI004-12	NAI004-07	NAI004W	NA	NA
OW-05M-009	H315-01T	2.48	10	NA	1	.2	09/08/0617:21	NA	NAI004-32	NAI004-30	NA I 004W	08/30/06	08/31/06
OW-05M-009DUP	H315-01Z	2.45	10	NA	1	.2	09/08/0617:21	NA	NAI004-33	NAI004-30	NAI004W	08/30/06	08/31/06
OW-05M-009MS	H315-01G	3.03	20	NA	2	.4	09/08/0617:22	NA	NAI004-34	NAI004-30	NAI004W	08/30/06	08/31/06
OW-05D-009	H315-02T	2.68	10	NA	1	.2	09/08/0617:22	NA	NAI004-35	NAI004-30	NA1004W	08/30/06	08/31/06
OW-02M-009	H315-03T	2.68	10	NA	1	.2	09/08/0617:36	NA	NA1004-36	NAI004-30	NA I 004W	08/30/06	08/31/06

5

	2 	un s ^{al}			¢								تو	J.		• 41.1 10.1 _2	- 1		.			۰. بر	
	1835 Tel: (K Laboratories, Inc W. 205th Street, To 310) 618 8889 Ext. Kelbley jkelbley@er	orrance, CA 90 119 Fax: (310)			CHAI				DDY 2-009		COR	p Bas-			ен, ₁ , 1 1		COC TURN	Numbei IAROUN	1315 10 TIME		12 Days	OF (
	COMPANY PROJECT NAME PHONE ADDRESS P.O. NUMBER SAMPLERS (SIGN/	E2 PG&E Topock (530) 229-330 155 Grand Ave Oakland, CA 9 332959.CM-FV	3 e Ste 1000 94612	Fax <u>(530</u>)) 339-3303 /	Altainin, c	Ariors (300)	Mitrate/Mitric Choride, Fluorine, C	Annonia (E353.3) as Sulfale	Turbility (10-2)	(Liber)									CONTRIPER OF CONTAINFER	23	COM	AENTS
1	SAMPLE I.D. $O(1 - O(1 + O(1 $	M-20C	DATE	TIME	DESCRIPTION Groundwater	/ 等 人	$\left \frac{\xi}{\chi}\right $	13 1	X 4 ⁿ	12	/	/(/ (-	-		$\frac{1}{2}$				
/	00-051 Ju-05		8(30/00			X	X	×	×	×									2				
3	ν	zm-009	8130/06		Groundwater	$\left \right\rangle$	X	. X	X	X									2				
					Groundwater																		
		-			Groundwater															1000 000000000000000000000000000000000	EPERSON Provide Contraction	Anny Production	
					Groundwater														for a second	AL	<u>LR</u>	<u> </u>	
					Groundwater														Lle	Vel	TTT	-	
					Groundwater														Norman Providences	and a construction of the second second	Andreally .	<u>Yr</u>	
					Groundwater										<u> </u>							and the second se	~
		(DY SIGNATUR		ECOI	RD											SAMP	LE COND	ITIONS	~	_
l an 1	Signature (Relinquished) Signature (Received)	the En-	Printed Name 14 Printed Name 21		Company	CHZ	utiv		-	Dat	e/	1301 30-0	106		4				DL 🗖 Y		ARM 🗖 NO	2.	
A Constant of the second	Signature (Relinquished)	<u>, , , , , , , , , , , , , , , , , , , </u>	Printed Name		Company Agency	/				Dat Tim					SPEC	IAL RE	QUIR	EMENT	S:	NUTRING STREET, STREET			
	Signature (Received)	Mabumn HANGADON	Printed X Name X		Company Company Company Company Company Company	1	72 72 74	J	 ×	Dat Tim Dat Tim Dat Tim	e/ 8/ e/ 9		000000000000000000000000000000000000000	6 pm		l		Se	San e Fo	ⁱ Ple (⁾ rm A	NO Pond Itach	itione ed	>/
	Phil	Hatcher	8-31	05	1545 0		Cant		_	8/3	1/0 Q	1-2-	154	5							South States	And the second	/

\\$>

 $\sim_{i_{\rm K}}$

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061010

METHOD 180.1 TURBIDITY

Five (5) water samples were received on 09/01/06 for Turbidity analysis by Method 180.1 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analysis met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample I010-05 was analyzed for duplicate. %RPD was within QC limit.

5. Sample Analysis

METHOD 180.1 TURBIDITY

Client : CH2M H Project : PG&E'S Batch No. : 061010	TOPOCK GAS COMPRE											rument ID : I	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (NTU)		MDIST	RL (NTU)	MDL (NTU)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	TU1002WB	ND		NA			09/01/0618:21	NA	TUI002-03	NA	TUI002W	NA	NA
_CS1W	TU1002WL	5.35	1	NA	1		09/01/0618:21	NA	TU1002-04	NA	TUIOO2W	NA	NA
W-01M-009	1010-01	ND	1	NA	1	.1	09/01/0618:21	NA	TUI002-05	NA	TU1002W	08/31/06	09/01/06
W-01D-009	1010-02	ND	1	NA	1	.1	09/01/0618:25	NA	TU1002-06	NA	TU1002W	08/31/06	09/01/06
W-01S-009	1010-03	4.21	1	NA	1	.1	09/01/0618:28	NA	TU1002-07	NA	TUI002W	08/31/06	09/01/06
W-05S-009	1010-04	3.09	1	NA	1	.1	09/01/0618:30	NA	TUI002-08	NA	TUI002W	08/31/06	09/01/06
W-02D-009	I010-05	ND	1	NA	1	.1	09/01/0618:31	NA	TUI002-09	NA	TUI002W	08/31/06	09/01/06
DW-02D-009DUP	1010-05D	ND	1	NA	• Const	.1	09/01/0618:31	NA	TUI002-10	NA	TUI002W	08/31/06	09/01/06

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061010

METHOD 310.1 ALKALINITY

Five (5) water samples were received on 09/01/06 for Bicarbonate, Carbonate and Total Alkalinity analyses by Method 310.1 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Duplicate sample was not designated in this SDG.

5. Matrix Spike

MS sample was not designated in this SDG.

6. Sample Analysis

METHOD 310.1 BICARBONATE ALKALINITY

Batch No. : 06101	S TOPOCK GAS COMPRE				==========	=========						ment ID : 153	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ALI004WB	ND	1	NA	5	1	09/07/0611:27	NA	AL1004-01	NA	AL1004W	NA	NA
OW-01M-009	1010-01	65.6	1	NA	5	1	09/07/0614:23	NA	ALI004-19	NA	ALI004W	08/31/06	09/01/06
OW-01D-009	1010-02	54.1	1	NA	5	1	09/07/0614:29	NA	ALI004-20	NA	ALIOO4W	08/31/06	09/01/06
OW-015-009	1010-03	65.6	1	NA	5	1	09/07/0614:33	NA	ALI004-21	NA	ALIOO4W	08/31/06	09/01/06
OW-05S-009	1010-04	88.8	1	NA	5	1	09/07/0614:37	NA	ALI004-22	NA	ALI004W	08/31/06	09/01/06
OW-02D-009	I010-05	64.7	1	NA	5	1	09/07/0614:41	NA	ALI004-23	NA	AL1004W	08/31/06	09/01/06

METHOD 310.1 CARBONATE ALKALINITY

Client : Project : Batch No. :	CH2M HILL PG&E'S TOPOCK GAS COMPF 061010	ESSOR STAT									Matrix Instru	: WAT ment ID : 153	ER
SAMPLE ID	EMAX Sample ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ALI004WB	ND	1	NA	5	1	09/07/0611:27	NA	AL1004-01	NA	AL1004W	NA	NA
OW-01M-009	1010-01	ND	1	NA	5	1	09/07/0614:23	NA	AL1004-19	NA	ALI004W	08/31/06	09/01/06
ow-01D-009	1010-02	ND	1	NA	5	1	09/07/0614:29	NA	AL1004-20	NA	ALI004W	08/31/06	09/01/06
GW-015-009	1010-03	ND	1	NA	5	1	09/07/0614:33	NA	AL1004-21	NA	AL I 004W	08/31/06	09/01/06
OW-055-009	1010-04	ND	1	NA	5	1	09/07/0614:37	NA	AL1004-22	NA	ALI004W	08/31/06	09/01/06
OW-02D-009	1010-05	ND	1	NA	5	1	09/07/0614:41	NA	AL1004-23	NA	ALI004W	08/31/06	09/01/06

¢

METHOD 310.1 TOTAL ALKALINITY

Client : CH2M Project : PG&E' Batch No. : O6I01	S TOPOCK GAS COMPRE	SSOR STAT										ment ID : 153	3
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ALI004WB	ND	1	NA	5	1	09/07/0611:27	NA	ALI004-01	NA	ALIOO4W	NA	NA
LCS1W	ALI004WL	116	1	NA	5	1	09/07/0611:36	NA	ALI004-02	NA	ALIOO4W	NA	NA
LCD1W	ALI004WC	113	1	NA	5	1	09/07/0611:39	NA	ALI004-03	NA	ALI004W	NA	NA
OW-01M-009	1010-01	65.6	1	NA	5	1	09/07/0614:23	NA	AL1004-19	NA	ALI004W	08/31/06	09/01/06
OW-01D-009	1010-02	54.1	1	NA	5	1	09/07/0614:29	NA	ALI004-20	NA	ALI004W	08/31/06	09/01/06
OW-015-009	1010-03	65.6	1	NA	5	1	09/07/0614:33	NA	ALI004-21	NA	ALI004W	08/31/06	09/01/06
0W-05S-009	1010-04	88.8	1	NA	5	1	09/07/0614:37	NA	ALI004-22	NA	ALI004W	08/31/06	09/01/06
0W-02D-009	1010-05	64.7	1	NA	5	1	09/07/0614:41	NA	ALI004-23	NA	AL1004W	08/31/06	09/01/06

~

6

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061010

METHOD 300.0 ANIONS

Five (5) water samples were received on 09/01/06 for Chloride, Fluoride and Sulfate analyses by method 300.0 in accordance with "Method for Determination of Inorganic Anions by Ion Chromatography", EPA 600/84-017.

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blanks were free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limits.

4. Duplicate

Duplicate sample was not designated in this SDG.

5. Matrix Spike

MS sample was not designated in this SDG.

6. Sample Analysis

METHOD 300.0 CHLORIDE

Batch No. : 06101	S TOPOCK GAS COMPRE			=====									IATER 100
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MDIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
 1BLK1W	ICI018WB	ND		NA	.5	.1	09/11/0620:44	NA	AI11-03	AI11-01	ICI018W	NA	NA
_CS1W	ICI018WL	4.78	1	NA	.5	.1	09/11/0621:02	NA	AI11-04	AI11-01	ICI018W	NA	NA
_CD1W	ICI018WC	4.77	1	NA	.5	.1	09/11/0621:21	NA	AI11-05	AI11-01	ICI018W	NA	NA
-01D-009	1010-02	1910 🦯	500	NA	250	50	09/11/0622:54	NA	AI11-10	AI11-01	ICI018W	08/31/06	09/01/06
W-01S-009	1010-03	606	100	NA	50	10	09/11/0623:31	NA	AI11-12	AI11-01	ICI018W	08/31/06	09/01/06
DW-05S-009	1010-04	389	100	NA	50	10	09/12/0600:27	NA	AI11-15	AI11-13	ICI018W	08/31/06	09/01/06
DW-02D-009	1010-05	1890 🦯	500	NA	250	50	09/12/0600:45	NA	AI11-16	AI11-13	ICI018W	08/31/06	09/01/06
1BLK2W	ICI025WB	ND	1	NA	.5	. 1	09/14/0609:57	NA	AI13-57	AI13-55	IC1025W	NA	NA
.CS2W	IC1025WL	4.75	1	NA	.5	.1	09/14/0610:34	NA	A113-58	AI13-55	ICI025W	NA	NA
.CD2W	ICI025WC	5.04	1	NA	.5	.1	09/14/0611:17	NA	AI13-59	AI13-55	IC1025W	NA	NA
DW-01M-009	1010-01	1870 🛩	500	NA	250	50	09/14/0613:11	NA	AI13-65	A113-61	ICI025W	08/31/06	09/01/06

0

METHOD 300.0 FLUORIDE

Batch No. : 06101	S TOPOCK GAS COMPRE											rument ID : I	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF I	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ICI001WB	ND		NA	.5	.05	09/01/0618:53	NA	AI01-03	AI01-01	1C1001W	NA	NA
_CS1W	ICI001WL	1.95	1	NA	.5	.05	09/01/0619:10	NA	AI01-04	AI01-01	ICI001W	NA	NA
.CD1W	1C1001WC	1.94	1	NA	.5	.05	09/01/0619:27	NA	AI01-05	AI01-01	ICI001W	NA	NA
W-01M-009	1010-01	1.83	1	NA	.5	.05	09/02/0600:11	NA	AI01-22	AI01-13	1C1001W	08/31/06	09/01/06
W-01D-009	1010-02	2.35	1	NA	.5	.05	09/02/0600:28	NA	AI01-23	AI01-13	IC1001W	08/31/06	09/01/06
W-01S-009	1010-03	2.41	1	NA	.5	.05	09/02/0601:34	NA	AI01-27	AI01-25	IC1001W	08/31/06	09/01/06
W-02D-009	1010-05	1.71	1	NA	.5	.05	09/02/0602:07	NA	AI01-29	A101-25	IC1001W	08/31/06	09/01/06
1BLK2W	1C1009WB	ND	1	NA	.5	.05	09/07/0600:53	NA	AI06-36	A106-32	IC1009W	NA	NA
CS2W	1C1009WL	1.96	1	NA	.5	.05	09/07/0601:12	NA	A106-37	A106-32	1C1009W	NA	NA
CD2W	IC1009WC	1.96	1	NA	.5	.05	09/07/0601:32	NA	AI06-38	A106-32	1C1009W	NA	NA
	1010-04R	2.54	1	NA	.5	.05	09/07/0608:22	NA	AI06-59	A106-56	1C1009W	08/31/06	09/01/06

Ş

ŗ

-

METHOD 300.0 SULFATE

Client : CH2M H Project : PG&E'S Batch No. : O61010	S TOPOCK GAS COMPRE 0	SSOR STAT	======	=====;								rument ID : I	VATER 100
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF N	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
 4BLK1W	ICI018WB	ND		NA	.5	.25	09/11/0620:44	NA	AI11-03	AI11-01	ICI018W	NA	NA
LCS1W	ICI018WL	4.73	1	NA	.5	.25	09/11/0621:02	NA	AI11-04	AI11-01	ICI018W	NA	NA
LCD1W	ICI018WC	4.77	1	NA	.5	.25	09/11/0621:21	NA	AI11-05	AI11-01	ICI018W	NA	NA
DW-01D-009	1010-02	497	500	NA	250	125	09/11/0622:54	NA	AI11-10	AI11-01	ICI018W	08/31/06	09/01/06
DW-01S-009	1010-03	124	10	NA	5	2.5	09/11/0623:12	NA	AI11-11	AI11-01	ICI018W	08/31/06	09/01/06
DW-05S-009	1010-04	118	100	NA	50	25	09/12/0600:27	NA	AI11-15	AI11-13	ICI018W	08/31/06	09/01/06
DW-02D-009	1010-05	492	500	NA	250	125	09/12/0600:45	NA	AI11-16	AI11-13	ICI018W	08/31/06	09/01/06
MBLK2W	ICI025WB	ND	1	NA	.5	.25	09/14/0609:57	NA	AI13-57	AI13-55	IC1025W	NA	NA
LCS2W	ICI025WL	4.68	1	NA	.5	.25	09/14/0610:34	NA	AI13-58	AI13-55	ICI025W	NA	NA
LCD2W	1C1025WC	4.98	1	NA	.5	.25	09/14/0611:17	NA	AI13-59	AI13-55	ICI025W	NA	NA
DW-01M-009	1010-01	489	500	NA	250	125	09/14/0613:11	NA	A113-65	AI 13-61	IC1025W	08/31/06	09/01/06

Ąż

\b

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061010

METHOD 350.2 AMMONIA (NH3-N)

Five (5) water samples were received on 09/01/06 for Ammonia (NH3-N) analysis by Method 350.2 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analysis met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Duplicate sample was not designated in this SDG.

5. Matrix Spike

MS sample was not designated in this SDG.

6. Sample Analysis

METHOD 350.2 AMMONIA (NH3-N)

Batch No. : 06101	S TOPOCK GAS COMPRE			======								rument ID : I	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NHI002WB	ND		NA	.5	.03	09/06/0616:23	09/06/0610:00		NH1002-01	NHI002W	NA	09/06/06
LCS1W	NHI002WL	1.06	1	NA	.5	.03	09/06/0616:23	09/06/0610:00	NH1002-06	NHI002-01	NH1002W	NA	09/06/06
LCD1W	NH1002WC	1.03	1	NA	.5	.03	09/06/0616:23	09/06/0610:00	NHI002-07	NHI002-01	NHI002W	NA	09/06/06
OW-01M-009	1010-01	ND	1	NA	.5	.03	09/06/0616:26	09/06/0610:00	NH002-15	NHI002-13	NH1002W	08/31/06	09/01/06
0W-01D-009	1010-02	ND	1	NA	.5	.03	09/06/0616:26	09/06/0610:00	NH002-16	NHI002-13	NH I 002W	08/31/06	09/01/06
0W-01S-009	1010-03	ND	1	NA	.5	.03	09/06/0616:26	09/06/0610:00	NH002-17	NHI002-13	NH1002W	08/31/06	09/01/06
0W-05S-009	1010-04	ND	1	NA	.5	.03	09/06/0616:26	09/06/0610:00	NH002-18	NHI002-13	NH1002W	08/31/06	09/01/06
OW-02D-009	1010-05	ND	1	NA	.5	.03	09/06/0616:26	09/06/0610:00	NH002-19	NHI002-13	NH1002W	08/31/06	09/01/06

12

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061010

METHOD 353.3 NITRATE/NITRITE-N

Five (5) water samples were received on 09/11/06 for Nitrate/Nitrite-N analyses by Method 353.3 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Duplicate sample was not designated in this SDG.

5. Matrix Spike

MS sample was not designated in this SDG.

6. Sample Analysis

METHOD 353.3 NITRATE/NITRITE-N

Batch No. : D6I01	S TOPOCK GAS COMPRE			========								ment ID : 170)
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
SAMPLE ID	5767 EE 10	(119/2)											
MBLK1W	NA I 004WB	ND	1	NA	.1	.02	09/08/0617:13	NA	NAI004-10	NAI004-07	NA1004W	NA	NA
LCS1W	NAI004WL	.531	1	NA	.1	.02	09/08/0617:14	NA	NAI004-11	NAI004-07	NAI004W	NA	NA
LCD1W	NAI004WC	.534	1	NA	.1	.02	09/08/0617:14	NA	NAI004-12	NAI004-07	NAI004W	NA	NA
OW-01M-009	[010-01T	2.45	10	NA	1	.2	09/08/0617:16	NA	NAI004-25	NAI004-19	NA1004W	08/31/06	09/01/06
OW-01D-009	I010-02T	3.03	20	NA	2	.4	09/08/0617:17	NA	NAI004-26	NAI004-19	NA1004W	08/31/06	09/01/06
OW-015-009	1010-03T	3.58	10	NA	1	.2	09/08/0617:17	NA	NA1004-27	NAI004-19	NA1004W	08/31/06	09/01/06
OW-05S-009	1010-04T	4.76	20	NA	2	.4	09/08/0617:17	NA	NAI004-28	NAI004-19	NA1004W	08/31/06	09/01/06
OW-02D-009	1010-05T	2.83	20	NA	2	.4	09/08/0617:17	NA	NAI004-29	NAI004-19	NAI004W	08/31/06	09/01/06

5

.

Ø

067010

	EMAX	Laboratories, Inc.			(СНА		F Cl	JSTO	ODY	REC	OR	D					COC	Numbe	ər			40	-	
	Tel: (W. 205th Street, Tor 310) 618 8889 Ext. 1	19 Fax: (310)	501) 618 0818			I	2006	-CMI	P-009	9]							TURN	arou . Di	ND T	гіме С С	PA	12 GE /	Days OF	7
	Joe K	elbley jkelbley@em	axlabs.com																<u> </u>	<u> </u>	<u> </u>		,		<u></u>
	COMPANY	E2						/		/	st								/	/			(COMMENTS	
	PROJECT NAME	PG&E Topock	GWM							12	9	/		/	/ ,	/	/			/					
	PHONE	(530) 229-3303		fax (530) 339-3303		,	MitateMis. Chonde, Fluce	llate	2		/	/ /		/	/		' /		/	0	, /			
	ADDRESS	155 Grand Ave	Ste 1000						, ge' S'	,				/					/	/					
•		Oakland, CA 94	1612					Eluo		//	/	/		/		/ ,	/		/ /	/		1		•	
	P.O. NUMBER	332959.CM.FW	/.01	TEAN	1			Monide	Ammonia (E353.3)			/	/ /				/	/ /			UF CONTAINERS				
	SAMPLERS (SIGNA	TURE AL	5				Anione (310.1)	<u></u>	Ammonia (E35,	Turbidity (350.2)	(180														
	,		- un			al Div				^t bidih.		/		/	/ ,	/	/	1.1	/ /	UMB	/				
	SAMPLE I.D.		DATE		DESCRIPTION		4	1	4	12		/ ({	{	{	(
1	GW-01mg	-009	8/31/06	0810	Groundwater	$ $ \checkmark	1×	×	¥	\mathbf{x}									2						
2	OW-01	>-029	8131100	0442	Groundwater	X	X	X	X	4									5						
3	0W-015	5-009	8(31/06	1035	Groundwater	×	<u>x</u>	×	- 50	X									_2	2					
4	()w-05	5-004	8131/06	1230	Groundwater	×	×	×	×.	4		_							Z	2					
J	0w-021	1- 609	8/31/06	1420	Groundwater	K	X	\times	×	X									_2	?				<u></u>	
			•		Groundwater																				
					Groundwater																				
					Groundwater																				
					Groundwater																				
		С	HAIN OF	CUSTO	DY SIGNATUR	RE R	ECC	RD	<u>.</u>										SAM	PLE	CONDI	TIONS		-	
	Signature (Relinquished)	Ila En	Printed Name	Alkan E	Company/ کرکر از San gency	Cl	tem	17.	TIL-		10	2131	135		RE	CEIV	ED	coo	DL 📮		WA	RM 🗌	2	/_ °F	_
	Signature (Received)	Daugh	Printed Name	EDD	Company/ Company/ Company/	\mathcal{O}	Ē			Tin	te/》~ 1e	14	-0 33	9	CU	ISTOR	DY SE	EALED	١	YES		NO			
	Signature (Relinquished)	CINGADOVA	1.111000	ANGA	= +	T	- 4	2 -	Ĩ	Da Tin	te/ <i>ð),</i> ne	31	106 700	,	SPEC	IAL RE	EQUIR	EMENT	S:		····		·····		
	Signature	a		-GALL	0		Ea	167	2	Da [.] Tin	te/ (1a1 143	06 30												
	Signature	LANGADONG	Printed 2 Name	Nada.	Company/ Activ Agency	7	L	. ĩ	ī	Da [.] Tin		910 14	36	6	~	1-	2.	8	_						
	Signature (Received)	AR	Printed		Company/ PUMM/Agency			1A7		Da [.] Tin		101	10%												
	(1.6061/60)	<u>~ </u>		//	1 0 10 1947 - 3 9								-75												

and allowing provide the second secon

\$...

								Sant								1	26]	Eori)			
1835 V Tel: (3	K Laboratories, Inc. W. 205th Street, Tor 310) 618 8889 Ext. 1 Kelbley jkelbley@em	19 Fax: (310)		(СНА	IN O [ODY P-009			D ORI	IGI	NA	L	TUF	C Nur RNAR(TE	DUND	time 106		2 Days	OF /
COMPANY	E2									7		7	/		/ /	/		7		\square	COMMI	ENTS
PROJECT NAME	PG&E Topock	GWM											/ /									
PHONE	(530) 229-3303		fax <u>(</u> 530)) 339-3303		,	/	llate		/ /	/ /	/ 1	х. (' j	м. :л.	/		/ /	/ /			
ADDRESS	155 Grand Ave Oakland, CA 94						Flue	unde, Su				a.		w/l) []. 			VTAINER			
P.O. NUMBER	332959.CM.FW	/.01	TEAN	1		310,1)	Mitatent: Choride, Files	Ammonia (E353.3)	(350.2)	(1)	/ /					/ /			JER OF CONTAINERS			
SAMPLERS (SIGNA		DATE	TIME	DESCRIPTION	Alkalini	Anione (370.1)	Nitratem	Ammonia (E35	Turbidity (350.2)									NUMBE				
GW-Olm	-009	8/31/06	0810	Groundwater	$\left \right. \right. $	×	×	\checkmark	\mathbf{x}		_							Z				
OW-OU		8131100	0942	Groundwater	X	X	×	×	4									5				
OW-OLS		8(31/06	1035	Groundwater	×	X	_ <	- ,%	e	4*								2				
100-05		8131/06	1230	Groundwater	×	×	×	×-	\prec									2				
00-020	1- 009	8/31/06	1420	Groundwater	K	X	メ	×	X									Ζ				
				Groundwater																		
				Groundwater	1																	
				Groundwater																		
				Groundwater																		
	С	HAIN OF	CUSTO	DY SIGNATUR	RER	ECO	RD				-						SA	MPLE	e condi	TIONS		
Signature (Relinquished)	Ula En		fliand	Company, ک <i>اند از Ser</i> Agency Company,		tem	17	ΣlL_		te/ g te/		135		REC	EIVED	С	OOL		WA	RM 🗌		°F
Signature (Received)	UDaybe_	Printed Name Printed	EDD	Company Company Company	<u>L</u> _	E			Tin	าย้	14	35			TODY			YES	G □	NO []	
(Relinquished)	CINGAROVA	Name M	ANGA	err Agency	/	- 4	/ + / +		Tim	1e	r si Tat	7:00	7	SPECIA	L REQU	IREME	NTS:					
(Received)	eived Ac Grace of Ac Grace of Ac						CK7	<u> </u>	Tim	ne	143	30	_									
(Relinquished)	UANGARON B	1 Name)	Upder	Company, <u>ARAV</u> A Agency Company	7	- 2		/	Tim Dat		14	30	2									
Signature (Received)		Printed Name		Company, Agency	1				Tim													

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061062

METHOD 300.0 ANIONS

Two (2) water samples were received on 09/11/06 for Chloride, Fluoride and Sulfate analyses by method 300.0 in accordance with "Method for Determination of Inorganic Anions by Ion Chromatography", EPA 600/84-017.

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blanks were free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limits.

4. Duplicate

Duplicate sample was not designated in this SDG.

5. Matrix Spike

MS sample was not designated in this SDG.

6. Sample Analysis

METHOD 300.0 CHLORIDE

Project : PG Batch No. : 06	2M HILL &E'S TOPOCK GAS COMPRE 1062											rument ID : I	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)		MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ICI025WB	ND	1	NA	.5	.1	09/14/0609:57	NA	AI13-57	AI13-55	IC1025W	NA	NA
LCS1W	ICI025WL	4.75	1	NA	.5	.1	09/14/0610:34	NA	AI13-58	AI13-55	1C1025W	NA	NA
LCD1W	IC1025WC	5.04	1	NA	.5	.1	09/14/0611:17	NA	AI 13-59	AI13-55	1C1025W	NA	NA
MW-90-009	1062-01	414	50	NA	25	5	09/14/0617:01	NA	AI13-76	AI 13-73	IC1025W	09/08/06	09/11/06
CW-02S-009	1062-02	409 🎽	50	NA	25	5	09/14/0617:19	NA	AI13-77	AI 13-73	IC1025W	09/08/06	09/11/06

METHOD 300.0 FLUORIDE

Project : F Batch No. : (CH2M HILL PG&E'S TOPOCK GAS COMPRE 061062											rument ID : I	
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)		MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
1BLK1W	1C1026WB	ND	1	NA	.5	.05	09/14/0621:57	NA	AI14-03	AI14-01	IC1026W	NA	NA
.cs1W	1C1026WL	1.88	1	NA	.5	.05	09/14/0622:16	NA	AI14-04	AI14-01	1C1026W	NA	NA
.CD1W	1C1026WC	1.89	1	NA	.5	.05	09/14/0622:34	NA	AI14-05	AI14-01	IC1026W	NA	NA
W-90-009	1062-01	4.36	1	NA	.5	.05	09/15/0606:37	NA	AI14-31	AI14-29	IC1026W	09/08/06	09/11/06
0W-02S-009	1062-02	4.42	1	NA	.5	.05	09/15/0606:55	NA	A114-32	AI14-29	ICI026W	09/08/06	09/11/06

1

METHOD 300.0 SULFATE

			======	=======	===========	========	=======================================	=======================================		=======================================	=================	=================	
Client Project	: CH2M HILL : PG&E'S TOPOCK GAS COMPR	ESSOR STAT									Matr Inst		VATER I 100
Batch No.	: 061062			=======================================					=======================================			=======================================	=========================
	EMAX	RESULTS			RL	MDL	Analysis	Extraction				Collection	Received
SAMPLE ID	SAMPLE ID	(mg/L)	DLF	MOIST	(mg/L)	(mg/L)	DATETIME	DATETIME	LFID	CAL REF	PREP BATCH	DATETIME	DATETIME
MBLK1W	ICI025WB	ND	1	NA	.5	.25	09/14/0609:57	NA	AI 13-57	AI13-55	1C1025W	NA	NA
LCS1W	ICI025WL	4.68	1	NA	.5	.25	09/14/0610:34	NA	AI13-58	AI13-55	IC1025W	NA	NA
LCD1W	1C1025WC	4.98	1	NA	.5	. 25	09/14/0611:17	NA	AI13-59	AI13-55	IC1025W	NA	NA
MW-90-009	1062-01	122 🥌	50	NA	25	12.5	09/14/0617:01	NA	AI 13-76	AI13-73	ICI025W	09/08/06	09/11/06
OW-025-005		120	50	NA	25	12.5	09/14/0617:19	NA	AI13-77	AI13-73	IC1025W	09/08/06	09/11/06

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061010

METHOD 353.3 NITRATE/NITRITE-N

Two (2) water samples were received on 09/11/06 for Nitrate/Nitrite-N analyses by Method 353.3 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

No sample was analyzed for duplicate in this SDG.

5. Matrix Spike

No sample was spiked for this SDG.

6. Sample Analysis

METHOD 353.3 NITRATE/NITRITE-N

			======	=======	=========			=======================================	================				.======================================
Project : Batch No. :	CH2M HILL PG&E'S TOPOCK GAS COMPRES 061062	4										ment ID : 170)
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NAI 006WB	ND	1	NA	.1	.02	09/14/0620:09	NA	NAI006-10	NA1006-07	NA1006W	NA	NA
LCS1W	NAIOOSWL	.540	1	NA	.1	.02	09/14/0620:09	NA	NAI006-11	NA1006-07	NA1006W	NA	NA
LCD1W	NAI006WC	.509	1	NA	.1	.02	09/14/0620:09	NA	NAI006-12	NAI006-07	NA1006W	NA	NA
MW-90-009	1062-011	4.71	5	NA	.5	. 1	09/14/0620:19	NA	NAI006-26	NAI006-19	NAI006W	09/08/06	09/11/06
0W-02S-009	1062-021	4.96	5	NA	.5	.1	09/14/0620:20	NA	NAI006-27	NAI006-19	NA1006W	09/08/06	09/11/06

 \mathfrak{S}

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061062

METHOD 310.1 ALKALINITY

Two (2) water samples were received on 09/11/06 for Bicarbonate, Carbonate and Total Alkalinity analyses by Method 310.1 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analyses met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample I062-02 was analyzed for duplicate. %RPD was within QC limit.

5. Matrix Spike

Sample I062-02 was spiked. %Recovery was within QC limit.

6. Sample Analysis

METHOD 310.1 BICARBONATE ALKALINITY

Client : CH2M H Project : PG&E ¹ S Batch No. : 061062	HILL S TOPOCK GAS COMPRE 2	SSOR STAT									Matrix Instru	: WAT Iment ID : 153	IER S
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ALI008WB	ND	1	NA	5	1	09/14/0617:07	NA	AL1008-01	NA	AL1008W	NA	NA
MW-90-009	1062-01	113	1	NA	5	1	09/14/0617:10	NA	AL1008-04	NA	ALI008W	09/08/06	09/11/06
0W-02S-009	1062-02	103	1	NA	5	1	09/14/0617:10	NA	ALI008-05	NA	ALI008W	09/08/06	09/11/06
OW-025-009 OW-025-009DUP	1062-02D	105	1	NA	5	1	09/14/0617:16	NA	ALI008-06	NA	AL1008W	09/08/06	09/11/06

 \mathcal{T}

ŝ

METHOD 310.1 CARBONATE ALKALINITY

Client : CH2M HILL Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Batch No. : 061062										Matrix : WATER Instrument ID : 153			
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W MW-90-009 OW-02S-009 OW-02S-009D	ALI008WB 1062-01 1062-02	ND ND ND ND	1 1 1 1	NA NA NA NA	5 5 5 5	1 1 1 1	09/14/0617:07 09/14/0617:10 09/14/0617:10 09/14/0617:16	NA NA NA	ALI008-01 ALI008-04 ALI008-05 ALI008-06	NA NA NA NA	AL1008W AL1008W AL1008W AL1008W	NA 09/08/06 09/08/06 09/08/06	NA 09/11/06 09/11/06 09/11/06

()

METHOD 310.1 TOTAL ALKALINITY

Client : CH2M H Project : PG&E'S Batch No. : O61062	ILL TOPOCK GAS COMPRE	SSOR STAT									Matrix Instru	: WAT ment ID : 153	ER
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	ALIO08WB	ND	1	NA	5	1	09/14/0617:07	NA	ALI008-01	NA	AL1008W	NA	NA
LCS1W	ALIOO8WL	115	1	NA	5	1	09/14/0617:08	NA	AL1008-02	NA	ALI008W	NA	NA
LCD1W	ALI008WC	113	1	NA	5	1	09/14/0617:09	NA	AL1008-03	NA	AL I 008W	NA	NA
MW-90-009	1062-01	113	1	NA	5	1	09/14/0617:10	NA	ALI008-04	NA	AL1008W	09/08/06	09/11/06
0W-02S-009	1062-02	103	1	NA	5	1	09/14/0617:10	NA	ALI008-05	NA	AL I 008W	09/08/06	09/11/06
OW-023-009 OW-02S-009DUP	1062-02D	105	1	NA	5	1	09/14/0617:16	NA	ALI008-06	NA	AL1008W	09/08/06	09/11/06
OW-025-00900P OW-025-009MS	1062-02M	106	1	NA	5	1	09/14/0617:30	NA	ALI008-07	NA	AL1008W	09/08/06	09/11/06

 \leq

CASE NARRATIVE

12

 $\mathbf{v}_{\mathbf{k}}$

CLIENT: CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG: 061062

METHOD 350.2 AMMONIA (NH3-N)

Two (2) water samples were received on 09/11/06 for Ammonia (NH3-N) analysis by Method 350.2 in accordance with "Method for Chemical Analysis of Water and Wastewater", EPA 600/4-79-020 (1983).

1. Holding Time

Analysis met holding time criteria.

2. Method Blank

Method blank was free of contamination at the reporting limit.

3. Lab Control Sample/Lab Control Sample Duplicate

Lab control results were within QC limit.

4. Duplicate

Sample 1062-01 was analyzed for duplicate. %RPD was within QC limit.

5. Matrix Spike

Sample 1062-01 was spiked. Recovery was within QC limit.

6. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

METHOD 350.2 AMMONIA (NH3-N)

Client : CH2M H Project : PG&E'S Batch No. : O61062	S TOPOCK GAS COMPRE	SSOR STAT	=====								Matrix Instrum	: WATE ent ID : 170	R
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/L)	DLF	MOIST	RL (mg/L)	MDL (mg/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	NHI003WB	ND	1	NA	.5	.03	09/15/0610:01	09/14/0613:00	NH1003-05	NH1003-01	NHIOO3W	NA	09/14/06
LCS1W	NHI003WL	1.01	1	NA	.5	.03	09/15/0610:15	09/14/0613:00	NH1003-06	NHI003-01	NH1003W	NA	09/14/06
LCD1W	NHI003WC	1.02	1	NA	.5	.03	09/15/0610:15	09/14/0613:00	NH1003-07	NH1003-01	NHI003W	NA	09/14/06
MW-90-009	1062-01	ND	1	NA	.5	.03	09/15/0610:17	09/14/0613:00	NH1003-10	NH1003-01	NH1003W	09/08/06	09/11/06
MW-90-009DUP	1062-01D	ND	1	NA	.5	.03	09/15/0610:17	09/14/0613:00	NH1003-11	NHI003-01	NH1003W	09/08/06	09/11/06
MW-90-009MS	1062-01M	.854	1	NA	.5	.03	09/15/0610:18	09/14/0613:00	NH1003-12	NHI003-01	NH1003W	09/08/06	09/11/06
OW-02S-009	1062-02	ND	1	NA	.5	.03	09/15/0610:18	09/14/0613:00	NHI003-15	NHI003-13	NHIOO3W	09/08/06	09/11/06

061062

	EMA	Laboratories, Inc.			C	CHA		F Cl	JST	ODY I	REC	OR	D					000	lumbe	r					
	1835 ⁻ Tel: (:	W. 205th Street, To 310) 618 8889 Ext. 4 elbley jkelbley@en	orrance, CA 90 119 Fax: (310)	501) 618 0818						P-009]								TURN/ DATE	1001	ND TIM 8/06	E	12 PAGE	2 Day		1
	COMPANY	E2						7		1	7	1	5/	7	7	7	7	7	7	7	7	7	0.014	MENTS	
	PROJECT NAME	PG&E Topock	GWM								/		N/	/		/ /	/		/ /	' /			COW	MENIS	
	PHONE	(530) 229-3303	3	FAX (530) 339-3303		/	/ /	Itate		' /		$\langle $	' /	/ /						01	/			
	ADDRESS	155 Grand Ave							106°S			I're C				/	/			/ /					
	P.O. NUMBER SAMPLERS (SIGNA	Oakland, CA 9 332959.CM.FV	<u>V.01</u>	TEAJ	M <u>1</u>	Alkalinth	Aniors (310.1)	rate/Aix. Chonide, Flu	Ammonic (E353.3)	Turbiolity (180.2)	A. A.									WUMMER OF CONT					
	SAMPLE I.D.		DATE	TIME	DESCRIPTION	1	/ ₹	/ 💐	4	<u> / ~ /</u>	{		{	{	<u> </u>	{-	-{		$-\frac{1}{2}$					·	-
	MW-90-	009	9/8/06	1200	Groundwater	X	Х	X	X	ļ									2						
2	0W-02	5-009	9/8/06	0731	Groundwater	X	Х	X	X										2	·					
					Groundwater																				
					Groundwater											ļ									
					Groundwater																				
					Groundwater																				
					Groundwater																				
					Groundwater]
					Groundwater																				
				CUSTO	DY SIGNATUR	ER	ECO	RD			0	111	()	¢					SAMP	LE CO		NS			
	Signature (Relinquish	Me	Printed P Name	ad S	Company/	H2	M	4/	ĩ	Date Time	= 16	1111 2	100 D		RE	CEIVE	Ð	coo		-	WARM		3.0	∽ິ℃€	-
	Signature (Received)	m	Printed Name	- LVN	Company/ A Agency	E	MA	×		Date Time	<u> </u>	420			cυ	STOD	Y SE/	ALED	Y	es 🗖]	NO 🗖			
	Signature (Relinguished)		Printed Name		Company/ Agency					Date Time					SPECI	AL REG	QUIRE	MENTS	i:						
	Signature (Received)		Printed Name		Company/ Agency					Date Time															
	Signature (Relinquished)		Printed Name	<u></u>	Company/ Agency					Date Time															
	Signature (Received)		Printed Name		Company/ Agency					Date Time															

Appendix B Field Data Sheets and Chains of Custody Third Quarter 2006

	\cap					\cap				Topock	Sampling Lo	og
Project N		Topock CMP			ē		Samplin		2006-CM			
	Team 1	59.CM.FW.01	Field Conditi	ons C	0,50,0			Date _ Page		105		
Tiolu			Tiola Contain)unn	× 959			Fage	_(0I			
Well/San	nple Number	OW-01S-009			QC Sa	mple ID NA				QC Sample	e Time	
Purge Sta	rt Time ノン」	15			Purge	Method We	tter	Ded. Pu	imp			
		/ N		Min	. Purge Volume	(gal)/(L) /0;	<u>5 </u> P	urge Rate (gpm)/(mLpn	1) 21		
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv		Comments (See description below
93.34	1015	~	6.64	2.54	437	5.65	30.19	©.1	1.9	207		
93.41	1020	5	6.8(2.82	88.9	5.38	30.22	0.1	1.8	158		
93.39		10	6.44	2.51	31.6	5.87	29.86		1.6	188		
93.40	1030	15	6.97	2.44	12.2	5.54	29.81		1.6	(80		
12 1	10.50	1-2					3					
											-	
******		-										
												1
										and the property of the second state		
Parameter 9	Stabilization Cri	itoria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		
	s Stablize prior to s	Contraction and the second	X	N	N	Y	NA	Y	Ý	Y		
Previous Field		(6/6/2006)	6.49	2120	6.1	4.07	30.75	0.1		99		
Are measurem	ents consistent wit	h previous?	10	- Y	A	N	NA	У	8	N	11-82	
Sample Time	1035	Sample Location		ump tubing X	14	spigo	t	bailer	other			
Comments: _	1											
	52			19 M					1. Ale			
Initial Depth t	to Water (ft BTO	c): 43.2	6		Measu	re Point: Wel	TOC St	eel Casing	WATE	R LEVEL ME	TER SERIAI	L NUMBER: 2005-02
Field measur	ed confirmation	of Well Depth (ft	btoc):(14	_						Fransduce	
WD (Well De	pth - from datab	ase) ft btoc(1	14)		Initial DTV	/ / Before Remo	oval /	Approx. 5 m	in After Reir	WENE	Time of Re	A
SWH (Standi	ng Water Heigh	t) = WD-Initial De	pth 20	. 74	Time	Initial DT	N	Time		al DTW	Time of Re	1
D (Volume as	s per diameter) 2	2"= 0.17, 4"= 0.66	6, 1"=0.041	(2 in)	- 930	93.2	6			-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One Casing V	Volume = D*SW	н_3,6	3		Comments:	- Merican Beneric Articles (12 - CH 10					A
Three Casing	y Volumes =	10.53										
Color: clear.	arev, vellow, br	own, black, cloud	y, green		Odor; none.	sulphur, organi	c, other		Solids: Jre	ice, Small Qu	Med Qu, La	arge Qu, Particulate, Silt, Sand

	\cap					in.				Topock	Sampling Log
Project I	Name PGE 1	opock CMP				\bigcirc	Sampling	a Event	2006-CM	P-009	\bigcirc
Job N	lumber 33295	9.CM.FW.01					eampini,		8/31/0	6	
Field	Team 1		Field Condition	ons				Page	of		
Well/San	nple Number[OW-01M-009			QC Sar	mple ID NA				QC Sample	Time
Purge Sta	rt Time 0734	1			Purge	Method 2"	brondfla	Ded. Pu	Imp	140 Y 220	_
	Flow Cell) N		Min.	Purge Volume	(gal)/(L) 4(9	P	urge Rate (gpm)/(mLpn	u 2	
Water Level	Time	Vol. Purged gallons / liters	pН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
93.48	6740	0	6.14	8,21	4.6	7.15	29,75	0,45	5.2	169	Clear, No Odor
93,48	0745	10	6.76	8.40	25	6.98	29.94	0.46	53	158	
93.48		20	6.99	8.44	1.2	6.87	30.10	0.48	100 C C C C C C C C C C C C C C C C C C	152	
93.48	and the second sec	30	7.25	8.48	0,8	6.73	 Interface 	0.47		150	
	0800	40	7.31	8.48	1.7	6.64	30.41			149	
93.49	1805	50	7.38	8.28	1.1	6.79	30.27			149	-
								0.11			
							•				
Parameter S	Stabilization Crit	eria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
Did Parameters	s Stablize prior to sa	ampling?					NA				
Previous Field	measurement	(6/6/2006)	6.51	5840	0.53	4.65	36.62	0.31		97	
1	ents consistent with	previous?	no	no	~0	NO	NA	-		NO	
Sample Time Comments: _	0810	Sample Locatio	n: pu	mp tubing _ 📈	well port	spigot	<u></u>	bailer	other		
Initial Depth to	o Water (ft BTOC	s): <u>43.3</u>	10.50		_ Measur	e Point: Well	TOC Ste	el Casing	WATE	R L <mark>E</mark> VEL MET	ER SERIAL NUMBER:
Field measure	ed confirmation o	of Well Depth (ft i	otoc): 18	9.25	3.5				an ang sa	lf T	ransducer
WD (Well De	pth - from databa	ase) ft btoc(1	89)		Initial DTW	/ Before Remov	val A	pprox. 5 m	in After Rein		Time of Removal 6:43
SWH (Standi	ng Water Height)	= WD-Initial Dep	pth <u>95</u> .	45	Time	Initial DTV	v	Time			Time of Reinstallation 8:17
D (Volume as	s per diameter) 2	'= 0.17, 4"= 0.66	, 1"=0.041(2 in)	6:43	93.30	5 8:	23	93	.29	

One Casing Volume = D*SWH

Three Casing Volumes = -

Color: clear, grey, yellow, brown, black, cloudy, green

48.93

			lf	Transducer	
Initial DTW /	Before Removal	Approx. 5 mi	n After Reinstallation	Time of Removal	6:43
Time	Initial DTW	Time	Final DTW	Time of Reinstallation	8.17
6:43	93.30	8:23	93.29		0.1
Comments:		<i>Q</i>			

Odor: none, sulphur, organic, other

Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand

	\cap					-				Topock \$	Sampling L	_og	
Project N		Fopock CMP				\bigcirc	Sampling		2006-CN	IP-009			
	(Mar)	9.CM.FW.01	Fi LLO IT		10			1000 and 100	5/31/06				1
Field	Team1		Field Conditio	ns Sany	lifot			Page	_/ of				
	nple Number[mple ID NA				QC Sample	Time		
Purge Sta	rt Time \$08	47			Purge	Method 600	ulfic 2	_ Ded. Pu	imp		-		
	Flow Cell:	' N		Min.	Purge Volume	(gal)/(L) <u>(</u> S	7.9 Pi	urge Rate (gpm)/(mLpn	n) 2			
Water Level	Time	Vol. Purged gallons / liters	pН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv		Comments (See description below	
97,97	0848	0	7.31	8.01	3.9	3.00	30,76	0.44	5.0	145	Cle	ar No Odor	
97.97	0858	20	7.44	q. 5	808	4,09	30.42	0,52	600	118	Clou	dy	
99,00	0908	40	7.64	7.94	662	5.80	30,31	0.43		100		1	
98.09	0918	60	7.64	2.93	139	6.05	30.29		5.0	44			
98.11	0928	80	7.64	7,93	19.2	6.35	30.27	0.43	5.0	74			
51.89	0938	96	7.64	7.93	7.24	6.45		0.43		73			
							a						
Parameter S	tabilization Crit	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV			
Did Parameters	s Stablize prior to s	ampling?					NA						
Previous Field		(6/6/2006)	6.61	6170	153	5.22	32.11	0.33		84	192 		
	ents consistent with	31	N	N	N	N	NA	-		Y			
Sample Time Comments:	OTTC	Sample Locatio	n: pur	np tubing	well port	spigot		bailer	other				
comments													
			-										
Initial Depth to	o Water (ft BTO	c): 92.85	, ,		_ Measu	re Point: Vell	TOC) Ste	el Casing	WATE	R LEVEL MET	ER SERIA	L NUMBER:	
Field measure	ed confirmation o	of Well Depth (ft I	otoc):	/	-					lf T	ransduc	er	
some and degree of	oth - from databa		81)	17	-	/ / Before Remov			n After Rein		Time of Re	emoval 0830	
1 A A A A A A A A A A A A A A A A A A A	S . S . S) = WD-Initial Dep	2	15 2 in) D.17	- Time 0829	Initial DTV		Time		al DTW	Time of Re	einstallation 615	
	olume = D*SWF	"= 0.17, 4"= 0.66	, 1"=0.041\ 3 \. 9		Comments:	92.85	10	20	9z.	06			
Three Casing		95.9				22							
and out out ing								14					

Color: clear, grey, yellow, brown, black, cloudy, green

Odor: none, sulphur, organic, other

1	\cap					\square	-			Topock S	ampling Log		
Project N		Fopock CMP				Q	Sampling	g Event	2006-CM			-	-
Job Ni	umber 33295	9.CM.FW.01						Date	9-	-8-06			
Field	Team 1		Field Condition	ons)ann	<u>~ 85%</u>	5		Page	of	_/			
Well/Sam	nple Number	OW-02S-009		/	QC Sa	mple ID MW	/-90-009			QC Sample	Time /	2:00	
Purge Star	rt Time 06	30			Purge	Method WA -	TERRA	7 Ded. Pu	imp_N		-	*	
	Flow Cell			Min.	Purge Volume	(gal)/(L) <u> Ŷ</u> ,	73_рі	urge Rate	gpm)/(mLpn	n) 0.2			
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv		Comments (See description belo	w
92.06	6:35	1	7.11	1.63	16.1	7.71	27.18	.08	1.0	186			
	6:42	2	7.80	1.61	13.1	8.02	27.41	,08	1.0	166			
	6:54	-46	7.85	1.61	7.46	7.80	27.26	.08	1.0	151			
	7:05	9	7.85	1-61	3.82	8-11	27.48		1.0	146			
	7:15	12	7.86	1-61	3-13	8.13	27.51	.09	1-0	144			
	7:25	15	7.84	1.60	3.14	8.13	27.49	.08	1.0	146			
		· · ·		-									
Parameter S	itabilization Cri	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		1	
Somerace and	s Stablize prior to s	1	Y	Y	Ý	Y	NA	Y	Y	Y			
Previous Field		(6/6/2006)	6.61	1580	8.76	6.36	29.95	0.07	-	70			
a second second second s	ents consistent with	n previous?	N	Y	N	N	NA	Ý	~	N			
Sample Time	07:31	Sample Locatio	n: pu	mp tubing $\underline{\chi}$	well port	spigot		bailer	other	<u>,</u>			
Comments: _													
		9 5	.06			/	5					200	2005
55	o Water (ft BTO)	J	1		Measu	re Point: (Well	TOC Ste	el Casing	WATE	ER LEVEL METE	ER SERIAL N	JUMBER: 460	20-5
		of Well Depth (ft I	1999 1999 1999 1999 1999 1999 1999 199		-						ansducer		
	pth - from databa		21)	8.94		/ / Before Remo	22020 - A 1985	All and the second s	in After Rein		Time of Remo	oval <u>610</u>	5
	191 <u>9</u> - 1919 -) = WD-Initial Dep	and the second	2 in)	- Time	Initial DTV		Time			Time of Reins	tallation 8:5	2 8:05
10 2		"= 0.17, 4"= 0.66	U, C		6:00	92.0	0	8:07	12	03		-87	C
	/olume = D*SWI	14.73	41	1	Comments:			8:19					
Three Casing Color: clear,		own, black, cloudy	/, green		Odor: none,	julphur, organic	, other		Solids: Tra	ace, Small Qu, A	vled Qu, Larg	e-Qu, Particulate, Silt	t, Sand

Page 7 of 10

2

	\cap		τ.			\cdot				Topock S	Sampling Log
Project	Name PGE	Fopock CMP					Sampling	a Event	2006-CN	MP-009	
Job N	umber 33295	9.CM.FW.01						Date	8130	106	
Field	l Team 1		Field Condition	ons				Page	(of	_(
Well/Sar	mple Number[OW-02M-009		-	QC Sa	mple ID NA				QC Sample	Time
Purge Sta	art Time 145	2			Purge	Method 6100	rd flo 2	_ Ded. Pu	mp		
	Flow Cell		1	Min	. Purge Volume	(gal)/(L) 🤄 🕻	Pu	urge Rate (g	gpm)/(mLpi	m)	
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
91.50	1453	0	7.27	7.80	2.71	7.17	35.33	0.43	4.9	113	Clear, No Odor
91.50	1459	10	7.38	7.72	0.98	7.31	33.79	0.42	4.9	113	
91.50	1504	20	7,43	7.69	0.67	6.89	34.66		To and the second second	108	
91.49	1509	31	7.44	7.70	0.56	6.88	34.73	0.42	4.8	108	5 M
91.49	1514	41	7.45	7.71	0.34	6.84	34.88			105	
91.49	1519	51	7,46	7.70	0,23	6.81	35.00	0.42	4.9	106	
91.49	1524	61	7.46	7,70	0.19	6.79	35,00			106	
Parameter S	Stabilization Crit	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
Did Parameter	s Stablize prior to s	ampling?			9		NA				
	measurement nents consistent with	(6/7/2006)	6.61	7330	1.88	6.4	30.78	0.4		140	
1		N. M. L.					NA				
Sample Time Comments: _	1530	Sample Locatio	n: pu	mp tubing _	_ well port	spigot		bailer	other		
Catal Distance 1	to Water (ft BTO	State and the state of the state of the			_ Measu	re Point: Well	TOC Ste	el Casing	WATI	ER LEVE <mark>L</mark> MET	ER SERIAL NUMBER:
		of Well Depth (ft I			-		w			lf Tı	ransducer
- CO - C	12	ase) ft btoc (2	2.10	1.0	-	/ / Before Remo		pprox. 5 mi			Time of Removal
S.	· 영향 · · · · · · · · · · · · · · · · · ·) = WD-Initial De "= 0.17, 4"= 0.66	A 60		_ Time	Initial DTV		Time 544	- Fi	nal DTW . ງີງ4	Time of Reinstallation 1537
		-0.17,4=0.00 1 <u>76,33</u>			Comments:		/	241	10		
Three Casing		60.496	<u> </u>						to a generation		
. mee oasing	g . olainoo					and a state of the	10. A H EADA				

Color: clear, grey, yellow, brown, black, cloudy, green

Odor: none, sulphur, organic, other

Solids: Trace, Small Qu, Med Qu, Large Qu, Particulate, Silt, Sand

	\cap					\cap				Topock	Sampling Log	
Project		Topock CMP				\bigcirc	Sampling	g Event _	2006-CN		X.	
	- 7. State	59.CM.FW.01						Date _	8/31	1/05		
Field	Team 1	Sector Anna States and	Field Conditi	ons				Page	of			
Well/Sar	mple Number	OW-02D-009				mple ID NA				QC Sample	e Time	
Purge Sta	art Time 131	6			Purge	Method <u>Stars</u>	ito 2"	_ Ded. Pu	imp			
	Flow Cell	/ N		Min	. Purge Volume	(gal)/(L) <u>(</u> າ	<u>8</u> Pi		gpm)/(mLpn	n(6	
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv		nments cription below
91,01	1318	0	7,12	7.89	85,68	5,68	32.46	0.43	5.0)4)	Clear, No	Odor al ruge retete
91.14	1328	26	7.33	7.83	1.82	6.22	32.58		4.9	133	Mis-calculat	al ruse retet
91.14	1338	(4)4052	7.55	7.80	0,86	6.62	32.75	0.43	4.9	139		
91.14	1348	16078	7.56	7.81	1.10	6.55	32.98	0,43	4,9	159		
91.14	1358	10080104	7.56	7.83	0.96	6.62	33.05	0.43	4,9	182	al .	
91.14	1408	Ph 100130	-	7.61	0.96	6.54	32.90	0.43	4.9	194		
91.14	1418	E 20140	1	7.85	0,94	6.60	32.59	0.43	4.5	193	\checkmark	
- Al	1423	-130										
Parameter S	Stabilization Cr	iteria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		
Did Parameter	rs Stablize prior to	sampling?					NA					
	measurement	(6/7/2006)	6.79	7200	0.68	5.88	33.6	0.39		136		
	nents consistent wit						NA					1
35	1420	Sample Locatio	n: pi	ump tubing	well port	spigot	tr	bailer	other	-		
Comments: _												a construction of the second
Initial Depth (to Water (ft BTC	90.0	16		Measu	re Point: Wel	I TOC Ste	el Casing	WATE		TER SERIAL NUMBER:	1
		of Well Depth (ft I	otoc): 2	51.04							[ransducer	
		base) ft btoc (3			Initial DTV	/ / Before Remo	val A	pprox. 5 mi	in After Reir	0.24/5#2	Time of Removal	1302
SWH (Stand	ing Water Heigh	t) = WD-Initial De	pth_こらん	.04	Time	Initial DTV	N	Time	Fir	nal DTW	Time of Reinstallation	1430
D (Volume a	s per diameter)	2"= 0.17, 4"= 0.66	, 1"=0.041	(2 in)	#1302	2 90.91	6 12	135	90	.97		
One Casing	Volume = D*SW	н <u> 42. (</u>	•8		_ Comments:							
Three Casing	g Volumes = —	128.03										
Color: clear	, grey, yellow, br	own, black, cloud	y, green		Odor: none,	sulphur, organio	c, other		Solids: Tra	ace, Small Qu	, Med Qu, Large Qu, Par	ticulate, Silt, Sand

	<u> </u>					-				Topock	sampling Log		0
Project		Topock CMP				\mathcal{O}	Sampling		2006-CN	320	ñ.	_	
- 2004 - H		9.CM.FW.01						Date _	813110				
Field	Team 1		Field Condition	ons 				Page	(of	_(
Well/Sa	mple Number[OW-05S-009			QC Sa	mple ID NA				QC Sampl	e Time		
Purge Sta	art Time (2.5	02			Purge	Method Ma	ttog	_ Ded. Pu	mp				
		/ N		Min	. Purge Volume	(gal)/(L) <u>(</u> つ	P	urge Rate (gpm)/(mLpn	n)			1
Water Level	Time	Vol. Purged gallons / liters	pН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv	(5	Comments See description I	
	12:02		6.96	1.19	14(7.73	30.11	0.1	1.2	220	3		A
	12:00	5	7.89	1.88	69.9	7.66	30.60		1.2	201		51 Y	
	12:12	8	7.13	1.85	45.9	7-86	30.20	0.1	1.2	197			
	12:17	10	7.19	1.81	32.5	7.88	29.94		1.2	193			
	11 (11.0		1081	32.5	7.88	2994	0.1	1.2	190	-		
	12:02		7.19		Ĩ.	the second se		- 1-					
	12.6	15	7.19	1,81	16.0	7,88	29,30	0.1	1.2	190			
				8. C.								N.	
				and the second		an Se							<u></u>
Parameter	Stabilization Cri	iteria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV			
Did Paramete	rs Stablize prior to s	sampling?			1000		NA	1					
	measurement	(6/7/2006)	6.85	1560	14	5.59	34.7	0.08		131			
	nents consistent wit	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					NA						
Sample Time Comments:		Sample Locatio	on: pu	Imp tubing	well port	spigot		bailer	other				
Initial Depth	to Water (ft BTO	c):94.	76		_ Measu	re Point: Well	TOC Ste	el Casing	WATE	ER LEVEL ME	TER SERIAL NU		2245
		of Well Depth (ft	btoc):		_ [1. Support		lf ⁻	Transducer		
	epth - from datab	30 State 1	13)		_ Initial DTW	/ / Before Remo	val A	pprox. 5 mi	n After Reir		Time of Remov	al 🚱	2 11:33
		t) = WD-Initial De		14	_ Time	Initial DTV		Time	Fir	nal DTW	Time of Reinsta	10 M 10 M	53
		2"= 0.17, 4"= 0.66	, 1"=0.041 <u> </u>	(2 m)	- Konsil	94.76	12	257					<u></u>
	Volume = D*SW	10 .10			_ Comments:	11:32							
Three Casin	g Volumes =	i gat											

Color: clear, grey, yellow, brown, black, cloudy, green

Odor: none, sulphur, organic, other

	5					\cap				Topock	Sampling Log
Project I		Topock CMP				0	Sampling	g Event	2006-CI		
10245	Venno: II	59.CM.FW.01			9			Date		2100	
Field	I Team1		Field Condition	ons Hort	1000			Page	(of		
Well/Sar	mple Number	OW-05M-009			QC Sa	mple ID NA				QC Sample	Time
Purge Sta	art Time 093	55			Purge	Method 2"6	rendfie	_ Ded. Pur	mp	0	
		/ N		Min	Purge Volume	(gal)/(L) <u> </u>	P	urge Rate (g	ipm)/(mLpi	m)	
Water Level	Time	Vol. Purged gallons / liters	pН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv	Comments (See description below
94,45	0936	0	7.10	12.3	0.74	4.02	31.05	0.67	7	101	clear, no odor
94.45	0950	28	7.55	9.9	0.87	4.75	31.24	0.55	6	84	
94.47	1000	48	7.58	9.8	0,72	4.78	31.24	0.56	6	80	
94.45	10.10	68	7.61	9.8	0.48	4.82	31.23	0.58	6	75	
94,44	1017	83	7.61	9.8	0,46	4.77		0.55	6	75	
-						3-					
Description			+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV	
	Stabilization Cri	longer and					NA			5	
Previous Field		(6/7/2006)	6.85	8760	0.51	1.04	33.14	0.48		82	
Are measurem	nents consistent wit	th previous?	NO	jas	4.05	NO	NA	YUL	-	Yel	
Sample Time Comments: _	•_10 90	Sample Locatio	n: pu	imp tubing X	11 C	spigot		bailer	other		
	to Water (ft BTO				_ Measu	re Point: Well	TOC St	eel Casing	WAT	ER LEVEL MET	TER SERIAL NUMBER:
		of Well Depth (ft I	1002.05	-	-					lf T	ransducer
State and the state and the sec	pth - from datab		54)	9.61	-	/ / Before Remo		pprox. 5 mi			Time of Removal 923
10 Mar 10	1274 1375	t) = WD-Initial Dep		1.96 (2 in)	_ Time	Initial DTV		Time)42		nal DTW	Time of Reinstallation 1037
1);	-	2"= 0.17, 4"= 0.66 H	A CONTRACTOR OF A CONTRACTOR A CONTRA		- 923 Comments:	17.04		1 pc	-17	·IT	
Three Casing		81.58		A.			ev en				
110103355100000000000000000000000000000	 Besselver and an end of the second sec	own, black, cloud	/ green		Odor: none	sulphur, organic	other		Solids: Tr	ace, Small Qu	Med Qu, Large Qu, Particulate, Silt, Sand

(S		\square				Topock	Sampling Log		
Project N		Topock CMP				\bigcirc	Sampling	gEvent	2006-CN	1P-009	5		
Job Nu	00200	9.CM.FW.01	-						8/30/0	6		e ⁴	
Field	Team 1		Field Condition	ons Hot	- Sunt			Page	of	_/			
Well/Sam	nple Number	OW-05D-009		-		mple ID NA				QC Sample	e Time		
Purge Star	rt Time	5											
		N		Min.	Purge Volume	(gal)/(L) <u>¹3(</u>	-5 Pi	urge Rate (gpm)/(mLpr	n)	· · · · · · · · · · · · · · · · · · ·	N.	
Water Level	Time	Vol. Purged gallons / liters	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. oC	Salinity %	TDS g/L	Eh/ORP mv			
HO694.33	1106	0	7.37	8.89	2.16	3.82	32.90	0.49	5.6	107	clear, no a	x	
94,20	1116	20	7.21	28.9	1.25	2.94	33.09	1.90	19	102		5A	
94.30	1. Marchannes	40	7.20	34,5	1.98	3.25	31,99	2.19	20	and the second second second second second			
		60				5.15				20 23			
		80	A CONTRACTOR OF			at the second		-		86			
										81			
	and the state of a		112220 10 1000						-				
							a series						
11.20	10.30	100	1.60	2011		001	2011			.0			
Parameter S	tabilization Cri	teria	+/- 0.1 pH units	+/- 3%	+/- 10% NTU units when >10 NTUs	+/- 0.3 mg/L	NA	NA	NA	+/- 10 mV		6 - 0	
Did Parameters	s Stablize prior to s	ampling?	170				NA						
		(6/7/2006)	2/2/1525-01/0	6910	0.29	8.66	37.8	0.37		4			
		1997		2.0	no			no	-	No		()()	
· · · · · · · · · · · · · · · · · · ·	^		1124. ^{pu}	Repaired	and Cont	spigot		~ · · · · ·	other 4	Ċ.			
				/	Measu	re Point: Well	TOC	eel Casing	WATE	ER LEVEL ME	TER SERIAL NUMBER:		
Purge Start Time 1105 Purge Method 2 ⁴⁷⁶ (bc.u.f. 4 ⁻⁰ Ded. Pump Nin. Purge Volume (gal/VL) Nin. Purge Volume (gal/VL) 131.5 Purge Ratio (gan/VIII.pm)													
NOT DRAWN WATCH ON STREET OF STREET			(1997).	7.91	-		1	and the second s			and an and an an an	Contraction of the second s	
						and the second se	100	1440 No. 11	-		Time of Reinstallation _	1305	
	/olume = D*SWI	H_ 43.8		. H	Comments:				-6		L		
Three Casing		131.5			-				4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
Color: clear	grey, yellow, bro	own, black, cloud	y, green		Odor: One,	sulphur, organic	, other		Solids: Tra	ace, Small Qu,	Med Qu, Large Qu, Par		
()												Page 8 of	

TRUESDAIL LABORATO 14201 Franklin Avenue, (714)730-6239 FAX: (71 www.truesdail.com	Tustin, CA 92780-700	8 .	СНА				ODY P-009		cori 9		<u>?</u> :	36	5	/	TU	RNAR	mber OUNI <u>Ø</u> /	о тіме / <u>З<i>е/о</i> 6</u>		0 Days	s OF -4
COMPANY E2			T		1	1	7	1	7	7	7	7	7	7	7	/	- /		LT	0014	
PROJECT NAME PG&E TOPOCK	· · ·						/	/	/	/	1	/	/				/	//		COMP	MENTS
PHONE (530) 229-330		30) 339-3303	•		/	/	/ ,	/ ,	/ /	Ι,	/ _	/ ,	/	/	/	/	/	//	1		
<u></u>					' /	1	' ह /	- /							-	•	, ,	1 2	/		
ADDRESS <u>155 Grand Ave</u>				Distinguistic laboration	lie a	Specific Control United	PH(130,1) CONDUCTORNE (120,1)	>/	/	/	$R \epsilon$	ec'd)/06		/	THER OF CONTRINERS	r		
Oakland, CA 9	4612			18			'/ৼ	/	ſ,	/	s		95	8;	3 6	ቫ	/	Iŝ/			
P.O. NUMBER 332959.CM.F	<u>N.01</u>			mans an Filer	Z.B		/ ខ្លុំ /	' /	' /	/	' /	' /	/ /	/ ,		/	/	[8] -			
SAMPLERS (SIGNATURE	5			3 E	3	ğ/	Į /	$ _{z}$		/	/	/	/	_/			1				
			$ /\delta $		2		$\frac{3}{8}$	18	1	/	/	/	/	/							
SAMPLE I.O.	DATE TIM	E DESCRIPTION	18	Ē	<u> </u>]	/ 🤻	0 (100)Hd		/	ί,	l,	$\left(\right)$	/	/	/	/	/ᢓ	1			
00- 55-009	8130/06 102	Groundwater	×	\mathbf{F}	X	×		<			-						4		đ	m ³	2
200-050-009	E/20/06 1239	- Groundwater	K	x	x	s/	4	e				ļ					ዣ		v A	µ1 ≠	2
	8130/00 153		X	X	Х	X	×	×									Ý		····· •	р <i>п =</i>	2
OW-02M-004 EB-CMP-009-01	8/33/20 154	Groundwater	X						ĺ							ĺ	ſ		,		
		Groundwater						Ì			η	_	/	1		-					
		Groundwater		,							T	•	AI	F	67			-	-		·
		Groundwater				·					17				1			17	· · · · · · · · ·		
······	·	Groundwater									ية. محمد ا	C	'ei	1	IT	n		V			
		Groundwater												-		T			-		
. (CHAIN OF CUST	ODY SIGNATUR		ECO	RD						- 1		_			s/	\MPL	E CONDITI	ONS		
Signature Relinquished	Printed Name Allera	Company/ CF/2624 Agency	СH	m	HI	;u	Date Tim	∦ ∦ 9	136	ļţ	-	Rf	ecen	ÆD	Ci	DOL		WAR	M 🗆		۴F
Signature Received) <i>Clamo</i>	Printed Name <i>CLARG</i>	Company/					Date	¥8- ≥3<	30-	96		C	USTO	DY S	EALE	D	YE	s 🗖	NO 🔲		
Signature	Printed	Company/					Date Time	ฟ				eper		EQUE	REME	170					
Relinquished) Signature	Name Printed / //	Agency Company/		7			Date	1 J	730	Tan	6		N		IF	 77 (np le ()rm A			
Signature Received) L. Justa mil	Printed / / 40	Company		U			Tim Date		S,	30	Croy C					77 Q D	×81	NDie r			-
Signature Relinquished)	Name	Company/ Agency					Time	9			Jan 1			-[- C	266	Fr		ond	ition	1 01
Signature Received)	Printed Name	Company/ Agency					Date Time											"IN A	ttari		18

ω

														ĸ		•	÷.					7	
														- 20- -		т • •		OL	H	315	~		
		X Laboratories, Inc. W. 205th Street, To		501	(сна	N OF	- cu	STO	DDY	REC	OR	æ Bær					OC Nur	nber			2 Days	
	Tel: (310) 618 8889 Ext. Kelbley jkelbley@en	119 Fax: (310)				[2	006-	CMF	°-009]									тіме 7 <i>с</i> с			OF 1
	COMPANY	E2			######################################		energen og skalandares en	7	7	1	7	7	7	7	1	1	7	77	7	1	\overline{TT}	сомме	INTS
	PROJECT NAME	PG&E Topock	GWM					/	/	/	/	/	/ /	/								00111112	
	PHONE	(530) 229-3303	31	FAX (530) 339-3303		/	/ /	Ifate	/ /	/ /	/ /	/ /	/	/				/ ,		/		
	ADDRESS	155 Grand Ave	e Ste 1000					je o						/			/ /			VER	/		oprozozalikarni (e waza
		Oakland, CA 9	4612				/	3Flug		/	/	/	/ /	/		/ /				NEN			
	P.O. NUMBER	332959.CM-FV	V.01	TEAN	1	/	<u> </u>	Mond	[323]	2	() ()	' /	/ /	/		/	/	/ ,					VERNOVATICAL INFORMATICA
	SAMPLERS (SIGN		to Lun			Alkalinity C	Anions (300)	Mitrate/Nitring Chloride, F	Ammonia (E35	Turbidity (700	Dor			/			/ /	/ /	La	JER OF CONTAINERS			534400000 wayne we 4020 9
	SAMPLE I.D.		DATE	TIME	DESCRIPTION	Akalin	Anions	Nitrate	Ammo	Turbid		/		/									
1	00-051	M-009	¥ 8/3066	1620	Groundwater	X	\propto	~	×	t									2				
2_	16-05	してい	8130100		Groundwater	X	2	×	ĸ	X									2				
3	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	2M-009	8130/06		Groundwater	X	×	- ×	X	\times									2				
		S			Groundwater													_					
					Groundwater													Pres		-#	Concession of the second discount of the seco	Nonconcernant and distances	
					Groundwater															AL	<u>-RT</u>		
					Groundwater												_	and a second	Le	101	117		
					Groundwater													<u>i</u>	the second second		4.4.2	<u>YU</u>	
					Groundwater																() = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	an a sub	2
					DY SIGNATUR		ECO	RD				/ 50%						S	AMPLI	E CONDI	TIONS	~ ~	-
	Signature (Relinquished)	Un En	Printed Name A	len Eric		CH	~ 4	4726	<u> </u>			1301	345			CEIVEI		COOL			RM 🔲	2,5	
	Signature (Received)	lam	Printed Name 24	ARENS		-210	UTiv	ie		Dat Tim	<u>e 8/</u>	<u>30-0</u>	345 06		CU	STODY	SEAL	ED	YE	s 🗖	NO []	
	Signature (Relinquished)		Printed Name		Company/ Agency	/				Dat Tim	e				SPEC	AL REC	VIREN	ENTS:		The second s	**		
	Signature (Received)	Ruebunn	Printed X	, Sha			R	1		Tim		1 34 	2/06				6		<u>a</u> m	Dler		Contraction of the local division of the loc	1000 A
		UANGAFOV.		have.	Company/ A P-OV & Agency		T2	J		Dat Tim	<u> </u>	12	00	3222		L		, 99°	For	ma	undi	tions	1
	Signature (Received)	ng Hal	Printed	hilta	Company/ Agency	È	EN	1A;	X	Dat Tim		31	40								vach.	tions	<u>/ </u>
	01	11-1-1	8-21	M	isue O	r al	Cant	ina		8/3	1/06	, /	1545								A CONTRACTOR OF THE OWNER		

1420	55DAIL LABORAT(1 Franklin Avenue, 730-6239 FAX: (7 truesdail.com	Tustin, CA 92	780-7008		СНА			UST(-CMI		(RE 9] (cor 9.	5	<u>}:</u>	39	Ľ	2		•	mber OUNE 9/3		IE	PAG	10 Da ЭЕ <u>(</u>	-	L
COMPANY	E2						7	7	7	7	7	7	7	7	7	7	7	-/	7			7	CO	MMENTS	
ROJECT NAME	PG&E Topock	¢					/				/	\leftarrow	+	<i>†</i>	╆╴	⇇	.	+	7	/	1				
HONE	(530) 229-330	13	fax <u>(53</u>	0) 339-3303			/	k i	/	/ ,	/ ,	4.,		ΑĻ/	Εţ	<u> </u>	<u>/!</u>	<u> </u>	Δ.	/	1	/			
DORESS	155 Grand Av Oakland, CA 9					10	T THE REAL	The second			/	1	é	ıel	/1	Į	¢	Ŷ	ļ						
.o. NUMBER	332959.CM.F	W.01						95 @1		/ ,	/ /	/ · ,	/ /	r	/	Ι	/ ,	$l_{\mathbb{Z}}$		/ð	7			Ĩ	Í
AMPLERS (SIGN)		llen En			8	The mark the billing of	Toul M. Canartine	Space (60108) United to		100 (180). 100 (180)		, /	 Rec	 :'d	.]	 12	/ //	/	Tan a	Nek O	Shanners		See Fo	or Sample	
SAMPLE I.D.		DATE	TIME	DESCRIPTION	-	r i		/% *	/ <u>à</u> ×		-1	<u> </u>	s 2	- 9	5 4	3 9	22	نــــن ،	<u>२</u> ५५	\vdash	оН	7			╡
<u>0w-01</u> ~		8131/ac	0810	Groundwater	 ≁	1~	عر		× .	x							=					•			╉
JW-011	2~09	8131/06			K	×	2	1	$\frac{\alpha}{2}$	X									4	-4	<u>e H</u>		╞╡	<mark>ه م</mark>	4
<u>0w-01</u>	5-009	8131/00	1035	Groundwater	×	X	У	<u> </u>	- 2	14									4		<u>е Н</u> .		nacre	nd l	4
<u>ow-0</u>	55-009	9/31/a	12:30	Groundwater	X	4	≻	\checkmark	\times	8									Ч	4	· <u>H</u> :	5			╡
50-020	- 009	8/31/06	1420	Groundwater	\times	×	ታ	بر	×	\times						•			¥	Ļ	<u>, H</u>	5	Ĩ	bus	┛
B-Cop-	009-02	0/31/06	1430	Groundwater	×		· .												Ì	Ĺ					_
· •				Groundwater																	_				
				Groundwater																			•		
•				Groundwater																		<u></u>			
		CHAIN OF	CUSTO	DY SIGNATUR	E R	ECC	RD			!								s/	MPLE	E CO	NDITI	ONS	-		
gnature telinquished)	IN.E	Drintod		Company				re	Dal Tin	tel E 18	777 14	106		RE	CEIV	ΈD	co	OL	D	١	WARK			۴F	_
ignature	Rugh	Printed Name	ER I	Company/ Agency Company/		Ē			Dat Tirr Dat		3/ 3/	10 100	0	CU	STO	DY SI	EALEC)	YES	; D	. –	NO []		
gnature (elinquished)	Mane AROL	🖊 Name 🏓	416	ARU/A Agency	T	. <i>1</i>	1		Tim	е°′	19	00		SPECI	AL RI	EQUIF	REMEN	TS:			•				
ignature (eceived)		Printed Name		Company/ Agency					Dat Tim	ie															
ignature Relinquished)		Prințed Name		Company/ Agency					Dat Tim																
ignature Received)	·····	Printed Name		Company/ Agency		•			Dat Tim	ie/	_														
veceived)				rigenoj												<u> </u>		÷							—

067010

No. of Concession, Name	
-	

	_ 1835 ^v Tel: (3	(Laboratories, Inc W. 205th Street, To 310) 618 8889 Ext. elbley jkelbley@el	orrance, CA 90 119 Fax: (310		C	:HAI		F CL 2006-			RE(COR	D					TUR		OUND	TIME	PA	12 \GE 4	Days OF
ſ	COMPANY	E2						7	1	7	c Ŧ	7	7	7	1	7	7	1	7				1	COMMENTS
	PROJECT NAME	PG&E Topock	GWM							13	9			/	/	/	/					[]		50MINICIATO
	PHONE	(530) 229-330	3	fax (530) 339-3303		/	/ /	'fate	12)	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/					: ~
	ADDRESS	155 Grand Av Oakland, CA S						Flumis	ng'ann	, / /											VTAINER			۲
	P.O. NUMBER	332959.CM.F	W.01	TEAN	. 1		1	'Noride	353.3	~ ~		/ /	/ /	/ /		'	' · /	/ /	/ · _					
	SAMPLERS (SIGNA	ATURE	la En			Alkalinin, 2	hions (200)	Nitrate Nitra	Annonia (E35	Turbidity, (-1)	1.180									Tann	JER OF CONTAINERS			
,	SAMPLE I.D.	G	B/31/06		DESCRIPTION Groundwater	$\frac{1}{4}$	X	/ <u><</u> /	X	$\frac{1}{2}$	((((<u> </u>	((Z	ſ			
	6W-01m		8/31/06	0810	Groundwater	X	X		×	×									9.05	5	·			
2	00-04		8131/06		Groundwater	Y Y	~ ¥		X											2				
4	<u>06-013</u> ()w-05	_	8131/06		Groundwater	XX		×		メ	·									2				
H	0w-021		8/31/06		Groundwater	K	<u>х</u>	X	×	X										2				
	00-02	/ 0 - /	- Callob		Groundwater																			
					Groundwater																			
					Groundwater																			
ŀ					Groundwater																			
	en na fan de		CHAIN OF	CUSTO	DY SIGNATUR	E RI	ECO	RD											S٨	AMPLI	E COND	ITIONS		
	Signature (Relinquished)	Ulan En	Printed Name	Alkan 2	Company/ EricksaAgency	Ċĺ	tem	14.	TIL-	Da Tin		8131	136	5	RI	ECEIV	/ED	С	DOL	ņ	WA	RM 🗌		7- °I
-	Signature (Received)	Daughe	Printed Name	EDD	Company/	X	Æ	-		Da Tin	te/ X -	- "7] 74	-03	36	CI	USTO	DY SI	EALE	D	YE	5 🗖	NO		
	Signature	CINGAROVA	Printed Name	Company/ Log & Agency		- 1	· -	Ĩ.	Da Tin	te/ 00 ne	1/3/		5	SPEC	CIAL R	EQUIF	REMEN	NTS:						
	Signature (Received)	1 ~ .	Printed A	-GALL	Company/ Agency			crox		Da Tin	ne	1/a/ 14	06 30											
ľ	Signature U	UANGAGON.	Printed	4 A	Company/ Agency	7	-1	Ĩ	ĩ	Da Tin	te/ Q ne	910 14	1/0	26		7-	2.	8	Ċ	-				
F	Signature (Received)	Ale	Printed		Company/ PCMMAgency			B-J-		Da [.] Tin		7.5	106	,										

			(СНА	IN O	FC	UST	ODY	RE	CO	RD					CC	C Nu	mber					
(714)730-6239 FAX: (7	CT NAME PG&E Topock (530) 229-3303 FAX (ss 155 Grand Ave Ste 1000 Oakland, CA 94612 MBER 332959.CM.FW.01 ers (signature Scale MP-009-01 Date MP-009-02 9/8/06 MP-009 9/8/06 Octog 9/8/06				C	2006	-CMI	P-009	ŋ										TIME			Days	<u> </u>
www.truesdail.com																DA	чЕ . _	44	106		PAGE .	1	OF 2
COMPANY E2						,	/	- 7	/	$ \neg$	-/	7	7	/				\Box	7	7	7	COMM	ENTS
PROJECT NAME PG&E Topoch	¢					ec'd	09	0/08/	06	1	7	4	· K	7	Z		2	/		/ /	/		
PHONE (530) 229-330)3	fax <u>(53</u> (0) 339-3303		ند. ر	- 9	5 s	8 3	1	يا لار	1,	2	0	L	\underline{P}	/_	2			່ /			
ADDRESS 155 Grand Av	e Ste 1000				/	E.	ز ا		。/	1	7	A	LÉ	\mathbb{R}'	ΤV	! /	Ĭ	'/		§/			
Oakland, CA	94612				12			1/2	/	Λ	1/2	1.	7	$\frac{1}{1}$	$\frac{1}{2}$	d a	-1						
P.O. NUMBER <u>332959.CM.F</u>	W.01	,			1		18 8	Lange 1	1	/L	<u></u> e	Жę	я,	Ц	¥	QC	1	/ .	<u>ا چ</u>	·			
	ad the	on			Distriction (ab Filerer	Tobility Salar Indian	Specific (80)(8) United	DH (130,1)	./.	<u> </u>	- 7	1	1	7	7	/	/		THER OF CONTRINCT				
	• • •			$\left \left \frac{\delta}{\vartheta} \right \right $		1/2		182	18/18/	<u> </u>	/	/	/	/	1	1	/		¥ /				
SAMPLE I.D.	DATE	TIME	DESCRIPTION		<u>۾</u>		15		-	\leftarrow	\leftarrow	(-	- 1	(-	+	←		{—				
EB-CMP-009-01			Groundwater	×					C 2			<u> </u>			-		-						
EB-CMP-009-02			Groundwater	×						13	an	ple	EC	DĄ	dit	inn		1	ļ		_		
MW-90-009	9/8/06	1200	Groundwater	×	x	x	x	×Į	X	See	ļFr	in	4	ta		L.	P /	4	<i>74</i>	12	<u> </u>		
OW-01D-069			Groundwater	x	x	x	x	x	X	<u> </u>								4				<u></u>	
-OW-01M-009			Groundwater	x	x	x	x	x	x								Î.	4					
CW-015-009			Groundwater	x	x	x	x	x	x									4				_	_
GW-02D-009 -	•		Groundwater	<u>.</u> х	x	x	x	x	x									4				<u></u>	
GW-02M-000-			Groundwater	x	x	x	x	x	x									4					
OW-02S-009	9/8/06	0731	Groundwater	x	x	x	x	x	x						-			4	o li	-2			
	CHAIN OF	CUSTO				RD				† /0	no	<u> </u>					S	AMPLI			s		
Signature (Relinquished nather	Name / 2		Company/		M	\mathcal{H}	/	Dab Tim		2	35	-	R	ECEI	NED	С	OOL		W	ARM [J _	<u></u>	°F
Signature	Printed	4416	Company/ Agency اُر Agency	T	·Ł	I	~	Dat Tim	9	910	<u>e l</u>	100	c	USTO	DDY S	SEALE	Ð	YES		N			ļ
Signature (Relinquished)	ceived) <u>MANGOROV & Name MA</u> nature Printed inquished) Name							Oati Tim					SPE	CIAL	REQU	REME	NTS:	<u> </u>					
Signature (Received)	inquished) Name nature Printed							Date Tim								-							
Signature	Printed		Agency Company/ Agency					Date Tim	eł 🦳														
Signature	CHAIN OF CUSTO Printed Printed inquished Printed Printed name Printed Printed nature Printed Printed							Date Tim	s)														
(Received)	Name	<u> </u>	Agency					(EII)]

~

÷

·

•

• .

 \sim

061062

	1835 \ Tel: (3	(Laboratories, Inc. W. 205th Street, To 310) 618 8889 Ext. 1 elbiey jkelbley@em	19 Fax: (310)			CHAI				ODY P-009		COR	D					TUR		nber DUND	TIME -		12 GE _	Days	<u>Z</u> I
co	MPANY	E2			1001000-1000-1000-000-000			1	1	7	1	7,	5/	7	7	7	1	7	1	1	/	\square		COMMENTS	
PF	OJECT NAME	PG&E Topock	GWM					/	/	/	/	14	Y	/	/	/	/	/	/	1	/ /	' /	3	Journey 10	
	IONE	(530) 229-3303		FAX (530)) 339-3303		Arione (2001)	/ /	tate	/ /	/ ,	1	×,	/ /	$\left \right $	/ ,	/ ,	/ /	/	/ /					
A	DRESS	155 Grand Ave	Ste 1000				/		106,54	/		42ce	/	/	/	/	/	/	/	/	New York	1			
		Oakland, CA 94	4612	_			/	Eluno		/	1	7	/	/	/	/	/	/	/	/	E				
P.	D. NUMBER	332959.CM.FV	V.01	TEAN	n <u>1</u>		1	Chlonid	Ammonia (E) (2)	Turbilly (350.2)	J.	!	/ /	/ /	/ /	/ /	/ /	/ /	/ /		TER OF CONTAINERS				
s/	MPLERS (SIGNA	TURE De	al St	nee		Alkalinhu	1300		Ammonia (E)83	11 (38)		/	/	/	/	/	/	/	/	1 al					
s	AMPLE I.D.		DATE	TIME	DESCRIPTION	Alkali	Anion	Nitrate	Amm	Turbio							/ -			2					
1	MW-90-	009	9/8/06	1200	Groundwater	X	X	X	X											2					
	2W-025		. /	0731	Groundwater	X	Х	X	X											2					
Ē	/00 010-				Groundwater																2010				
\vdash					Groundwater									2											
\vdash					Groundwater																				
					Groundwater																				
					Groundwater																				
Γ					Groundwater																				
F					Groundwater																				
		CHAIN OF CUSTODY SIGN										14	in	£					SA	MPLE		TIONS			
Si (F	gnature telinquish	Me	Company Adres Agency	HZ	M	4/1	Ĩ	Dat Tim	ne /	22	100		R	ECEN	VED	CC	00	Ð	WA	RM 🗍	5	8.0°℃			
Si	gnature (eceived)	ceived) Printed - LVNA Ag								Dal Tim	ne /	7-11 142	- 0 0 0	•	c	USTC	DY S	EALE	D	YES		NO			
	gnature (ature Printed Co nquished) Name Ag								Dat Tin					SPE		EQUI	REMEN	ITS:						1
Si	gnature teceived)		Printed Name		Company/ Agency	'				Dat Tin															
S	gnature telinquished)		Printed		Company/ Agency	1				Dat Tin	te/]										
S	gnature teceived)		Printed Name		Company/ Agency	'				Dat Tim]										